perf_counter: Check task on counter read IPI
[deliverable/linux.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/hardirq.h>
24 #include <linux/rculist.h>
25 #include <linux/uaccess.h>
26 #include <linux/syscalls.h>
27 #include <linux/anon_inodes.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/perf_counter.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34 * Each CPU has a list of per CPU counters:
35 */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_counters __read_mostly;
44 static atomic_t nr_comm_counters __read_mostly;
45 static atomic_t nr_task_counters __read_mostly;
46
47 /*
48 * perf counter paranoia level:
49 * 0 - not paranoid
50 * 1 - disallow cpu counters to unpriv
51 * 2 - disallow kernel profiling to unpriv
52 */
53 int sysctl_perf_counter_paranoid __read_mostly;
54
55 static inline bool perf_paranoid_cpu(void)
56 {
57 return sysctl_perf_counter_paranoid > 0;
58 }
59
60 static inline bool perf_paranoid_kernel(void)
61 {
62 return sysctl_perf_counter_paranoid > 1;
63 }
64
65 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
66
67 /*
68 * max perf counter sample rate
69 */
70 int sysctl_perf_counter_sample_rate __read_mostly = 100000;
71
72 static atomic64_t perf_counter_id;
73
74 /*
75 * Lock for (sysadmin-configurable) counter reservations:
76 */
77 static DEFINE_SPINLOCK(perf_resource_lock);
78
79 /*
80 * Architecture provided APIs - weak aliases:
81 */
82 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
83 {
84 return NULL;
85 }
86
87 void __weak hw_perf_disable(void) { barrier(); }
88 void __weak hw_perf_enable(void) { barrier(); }
89
90 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
91 void __weak hw_perf_counter_setup_online(int cpu) { barrier(); }
92
93 int __weak
94 hw_perf_group_sched_in(struct perf_counter *group_leader,
95 struct perf_cpu_context *cpuctx,
96 struct perf_counter_context *ctx, int cpu)
97 {
98 return 0;
99 }
100
101 void __weak perf_counter_print_debug(void) { }
102
103 static DEFINE_PER_CPU(int, disable_count);
104
105 void __perf_disable(void)
106 {
107 __get_cpu_var(disable_count)++;
108 }
109
110 bool __perf_enable(void)
111 {
112 return !--__get_cpu_var(disable_count);
113 }
114
115 void perf_disable(void)
116 {
117 __perf_disable();
118 hw_perf_disable();
119 }
120
121 void perf_enable(void)
122 {
123 if (__perf_enable())
124 hw_perf_enable();
125 }
126
127 static void get_ctx(struct perf_counter_context *ctx)
128 {
129 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
130 }
131
132 static void free_ctx(struct rcu_head *head)
133 {
134 struct perf_counter_context *ctx;
135
136 ctx = container_of(head, struct perf_counter_context, rcu_head);
137 kfree(ctx);
138 }
139
140 static void put_ctx(struct perf_counter_context *ctx)
141 {
142 if (atomic_dec_and_test(&ctx->refcount)) {
143 if (ctx->parent_ctx)
144 put_ctx(ctx->parent_ctx);
145 if (ctx->task)
146 put_task_struct(ctx->task);
147 call_rcu(&ctx->rcu_head, free_ctx);
148 }
149 }
150
151 static void unclone_ctx(struct perf_counter_context *ctx)
152 {
153 if (ctx->parent_ctx) {
154 put_ctx(ctx->parent_ctx);
155 ctx->parent_ctx = NULL;
156 }
157 }
158
159 /*
160 * If we inherit counters we want to return the parent counter id
161 * to userspace.
162 */
163 static u64 primary_counter_id(struct perf_counter *counter)
164 {
165 u64 id = counter->id;
166
167 if (counter->parent)
168 id = counter->parent->id;
169
170 return id;
171 }
172
173 /*
174 * Get the perf_counter_context for a task and lock it.
175 * This has to cope with with the fact that until it is locked,
176 * the context could get moved to another task.
177 */
178 static struct perf_counter_context *
179 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
180 {
181 struct perf_counter_context *ctx;
182
183 rcu_read_lock();
184 retry:
185 ctx = rcu_dereference(task->perf_counter_ctxp);
186 if (ctx) {
187 /*
188 * If this context is a clone of another, it might
189 * get swapped for another underneath us by
190 * perf_counter_task_sched_out, though the
191 * rcu_read_lock() protects us from any context
192 * getting freed. Lock the context and check if it
193 * got swapped before we could get the lock, and retry
194 * if so. If we locked the right context, then it
195 * can't get swapped on us any more.
196 */
197 spin_lock_irqsave(&ctx->lock, *flags);
198 if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
199 spin_unlock_irqrestore(&ctx->lock, *flags);
200 goto retry;
201 }
202
203 if (!atomic_inc_not_zero(&ctx->refcount)) {
204 spin_unlock_irqrestore(&ctx->lock, *flags);
205 ctx = NULL;
206 }
207 }
208 rcu_read_unlock();
209 return ctx;
210 }
211
212 /*
213 * Get the context for a task and increment its pin_count so it
214 * can't get swapped to another task. This also increments its
215 * reference count so that the context can't get freed.
216 */
217 static struct perf_counter_context *perf_pin_task_context(struct task_struct *task)
218 {
219 struct perf_counter_context *ctx;
220 unsigned long flags;
221
222 ctx = perf_lock_task_context(task, &flags);
223 if (ctx) {
224 ++ctx->pin_count;
225 spin_unlock_irqrestore(&ctx->lock, flags);
226 }
227 return ctx;
228 }
229
230 static void perf_unpin_context(struct perf_counter_context *ctx)
231 {
232 unsigned long flags;
233
234 spin_lock_irqsave(&ctx->lock, flags);
235 --ctx->pin_count;
236 spin_unlock_irqrestore(&ctx->lock, flags);
237 put_ctx(ctx);
238 }
239
240 /*
241 * Add a counter from the lists for its context.
242 * Must be called with ctx->mutex and ctx->lock held.
243 */
244 static void
245 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
246 {
247 struct perf_counter *group_leader = counter->group_leader;
248
249 /*
250 * Depending on whether it is a standalone or sibling counter,
251 * add it straight to the context's counter list, or to the group
252 * leader's sibling list:
253 */
254 if (group_leader == counter)
255 list_add_tail(&counter->list_entry, &ctx->counter_list);
256 else {
257 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
258 group_leader->nr_siblings++;
259 }
260
261 list_add_rcu(&counter->event_entry, &ctx->event_list);
262 ctx->nr_counters++;
263 if (counter->attr.inherit_stat)
264 ctx->nr_stat++;
265 }
266
267 /*
268 * Remove a counter from the lists for its context.
269 * Must be called with ctx->mutex and ctx->lock held.
270 */
271 static void
272 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
273 {
274 struct perf_counter *sibling, *tmp;
275
276 if (list_empty(&counter->list_entry))
277 return;
278 ctx->nr_counters--;
279 if (counter->attr.inherit_stat)
280 ctx->nr_stat--;
281
282 list_del_init(&counter->list_entry);
283 list_del_rcu(&counter->event_entry);
284
285 if (counter->group_leader != counter)
286 counter->group_leader->nr_siblings--;
287
288 /*
289 * If this was a group counter with sibling counters then
290 * upgrade the siblings to singleton counters by adding them
291 * to the context list directly:
292 */
293 list_for_each_entry_safe(sibling, tmp,
294 &counter->sibling_list, list_entry) {
295
296 list_move_tail(&sibling->list_entry, &ctx->counter_list);
297 sibling->group_leader = sibling;
298 }
299 }
300
301 static void
302 counter_sched_out(struct perf_counter *counter,
303 struct perf_cpu_context *cpuctx,
304 struct perf_counter_context *ctx)
305 {
306 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
307 return;
308
309 counter->state = PERF_COUNTER_STATE_INACTIVE;
310 if (counter->pending_disable) {
311 counter->pending_disable = 0;
312 counter->state = PERF_COUNTER_STATE_OFF;
313 }
314 counter->tstamp_stopped = ctx->time;
315 counter->pmu->disable(counter);
316 counter->oncpu = -1;
317
318 if (!is_software_counter(counter))
319 cpuctx->active_oncpu--;
320 ctx->nr_active--;
321 if (counter->attr.exclusive || !cpuctx->active_oncpu)
322 cpuctx->exclusive = 0;
323 }
324
325 static void
326 group_sched_out(struct perf_counter *group_counter,
327 struct perf_cpu_context *cpuctx,
328 struct perf_counter_context *ctx)
329 {
330 struct perf_counter *counter;
331
332 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
333 return;
334
335 counter_sched_out(group_counter, cpuctx, ctx);
336
337 /*
338 * Schedule out siblings (if any):
339 */
340 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
341 counter_sched_out(counter, cpuctx, ctx);
342
343 if (group_counter->attr.exclusive)
344 cpuctx->exclusive = 0;
345 }
346
347 /*
348 * Cross CPU call to remove a performance counter
349 *
350 * We disable the counter on the hardware level first. After that we
351 * remove it from the context list.
352 */
353 static void __perf_counter_remove_from_context(void *info)
354 {
355 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
356 struct perf_counter *counter = info;
357 struct perf_counter_context *ctx = counter->ctx;
358
359 /*
360 * If this is a task context, we need to check whether it is
361 * the current task context of this cpu. If not it has been
362 * scheduled out before the smp call arrived.
363 */
364 if (ctx->task && cpuctx->task_ctx != ctx)
365 return;
366
367 spin_lock(&ctx->lock);
368 /*
369 * Protect the list operation against NMI by disabling the
370 * counters on a global level.
371 */
372 perf_disable();
373
374 counter_sched_out(counter, cpuctx, ctx);
375
376 list_del_counter(counter, ctx);
377
378 if (!ctx->task) {
379 /*
380 * Allow more per task counters with respect to the
381 * reservation:
382 */
383 cpuctx->max_pertask =
384 min(perf_max_counters - ctx->nr_counters,
385 perf_max_counters - perf_reserved_percpu);
386 }
387
388 perf_enable();
389 spin_unlock(&ctx->lock);
390 }
391
392
393 /*
394 * Remove the counter from a task's (or a CPU's) list of counters.
395 *
396 * Must be called with ctx->mutex held.
397 *
398 * CPU counters are removed with a smp call. For task counters we only
399 * call when the task is on a CPU.
400 *
401 * If counter->ctx is a cloned context, callers must make sure that
402 * every task struct that counter->ctx->task could possibly point to
403 * remains valid. This is OK when called from perf_release since
404 * that only calls us on the top-level context, which can't be a clone.
405 * When called from perf_counter_exit_task, it's OK because the
406 * context has been detached from its task.
407 */
408 static void perf_counter_remove_from_context(struct perf_counter *counter)
409 {
410 struct perf_counter_context *ctx = counter->ctx;
411 struct task_struct *task = ctx->task;
412
413 if (!task) {
414 /*
415 * Per cpu counters are removed via an smp call and
416 * the removal is always sucessful.
417 */
418 smp_call_function_single(counter->cpu,
419 __perf_counter_remove_from_context,
420 counter, 1);
421 return;
422 }
423
424 retry:
425 task_oncpu_function_call(task, __perf_counter_remove_from_context,
426 counter);
427
428 spin_lock_irq(&ctx->lock);
429 /*
430 * If the context is active we need to retry the smp call.
431 */
432 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
433 spin_unlock_irq(&ctx->lock);
434 goto retry;
435 }
436
437 /*
438 * The lock prevents that this context is scheduled in so we
439 * can remove the counter safely, if the call above did not
440 * succeed.
441 */
442 if (!list_empty(&counter->list_entry)) {
443 list_del_counter(counter, ctx);
444 }
445 spin_unlock_irq(&ctx->lock);
446 }
447
448 static inline u64 perf_clock(void)
449 {
450 return cpu_clock(smp_processor_id());
451 }
452
453 /*
454 * Update the record of the current time in a context.
455 */
456 static void update_context_time(struct perf_counter_context *ctx)
457 {
458 u64 now = perf_clock();
459
460 ctx->time += now - ctx->timestamp;
461 ctx->timestamp = now;
462 }
463
464 /*
465 * Update the total_time_enabled and total_time_running fields for a counter.
466 */
467 static void update_counter_times(struct perf_counter *counter)
468 {
469 struct perf_counter_context *ctx = counter->ctx;
470 u64 run_end;
471
472 if (counter->state < PERF_COUNTER_STATE_INACTIVE)
473 return;
474
475 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
476
477 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
478 run_end = counter->tstamp_stopped;
479 else
480 run_end = ctx->time;
481
482 counter->total_time_running = run_end - counter->tstamp_running;
483 }
484
485 /*
486 * Update total_time_enabled and total_time_running for all counters in a group.
487 */
488 static void update_group_times(struct perf_counter *leader)
489 {
490 struct perf_counter *counter;
491
492 update_counter_times(leader);
493 list_for_each_entry(counter, &leader->sibling_list, list_entry)
494 update_counter_times(counter);
495 }
496
497 /*
498 * Cross CPU call to disable a performance counter
499 */
500 static void __perf_counter_disable(void *info)
501 {
502 struct perf_counter *counter = info;
503 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
504 struct perf_counter_context *ctx = counter->ctx;
505
506 /*
507 * If this is a per-task counter, need to check whether this
508 * counter's task is the current task on this cpu.
509 */
510 if (ctx->task && cpuctx->task_ctx != ctx)
511 return;
512
513 spin_lock(&ctx->lock);
514
515 /*
516 * If the counter is on, turn it off.
517 * If it is in error state, leave it in error state.
518 */
519 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
520 update_context_time(ctx);
521 update_counter_times(counter);
522 if (counter == counter->group_leader)
523 group_sched_out(counter, cpuctx, ctx);
524 else
525 counter_sched_out(counter, cpuctx, ctx);
526 counter->state = PERF_COUNTER_STATE_OFF;
527 }
528
529 spin_unlock(&ctx->lock);
530 }
531
532 /*
533 * Disable a counter.
534 *
535 * If counter->ctx is a cloned context, callers must make sure that
536 * every task struct that counter->ctx->task could possibly point to
537 * remains valid. This condition is satisifed when called through
538 * perf_counter_for_each_child or perf_counter_for_each because they
539 * hold the top-level counter's child_mutex, so any descendant that
540 * goes to exit will block in sync_child_counter.
541 * When called from perf_pending_counter it's OK because counter->ctx
542 * is the current context on this CPU and preemption is disabled,
543 * hence we can't get into perf_counter_task_sched_out for this context.
544 */
545 static void perf_counter_disable(struct perf_counter *counter)
546 {
547 struct perf_counter_context *ctx = counter->ctx;
548 struct task_struct *task = ctx->task;
549
550 if (!task) {
551 /*
552 * Disable the counter on the cpu that it's on
553 */
554 smp_call_function_single(counter->cpu, __perf_counter_disable,
555 counter, 1);
556 return;
557 }
558
559 retry:
560 task_oncpu_function_call(task, __perf_counter_disable, counter);
561
562 spin_lock_irq(&ctx->lock);
563 /*
564 * If the counter is still active, we need to retry the cross-call.
565 */
566 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
567 spin_unlock_irq(&ctx->lock);
568 goto retry;
569 }
570
571 /*
572 * Since we have the lock this context can't be scheduled
573 * in, so we can change the state safely.
574 */
575 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
576 update_counter_times(counter);
577 counter->state = PERF_COUNTER_STATE_OFF;
578 }
579
580 spin_unlock_irq(&ctx->lock);
581 }
582
583 static int
584 counter_sched_in(struct perf_counter *counter,
585 struct perf_cpu_context *cpuctx,
586 struct perf_counter_context *ctx,
587 int cpu)
588 {
589 if (counter->state <= PERF_COUNTER_STATE_OFF)
590 return 0;
591
592 counter->state = PERF_COUNTER_STATE_ACTIVE;
593 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
594 /*
595 * The new state must be visible before we turn it on in the hardware:
596 */
597 smp_wmb();
598
599 if (counter->pmu->enable(counter)) {
600 counter->state = PERF_COUNTER_STATE_INACTIVE;
601 counter->oncpu = -1;
602 return -EAGAIN;
603 }
604
605 counter->tstamp_running += ctx->time - counter->tstamp_stopped;
606
607 if (!is_software_counter(counter))
608 cpuctx->active_oncpu++;
609 ctx->nr_active++;
610
611 if (counter->attr.exclusive)
612 cpuctx->exclusive = 1;
613
614 return 0;
615 }
616
617 static int
618 group_sched_in(struct perf_counter *group_counter,
619 struct perf_cpu_context *cpuctx,
620 struct perf_counter_context *ctx,
621 int cpu)
622 {
623 struct perf_counter *counter, *partial_group;
624 int ret;
625
626 if (group_counter->state == PERF_COUNTER_STATE_OFF)
627 return 0;
628
629 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
630 if (ret)
631 return ret < 0 ? ret : 0;
632
633 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
634 return -EAGAIN;
635
636 /*
637 * Schedule in siblings as one group (if any):
638 */
639 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
640 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
641 partial_group = counter;
642 goto group_error;
643 }
644 }
645
646 return 0;
647
648 group_error:
649 /*
650 * Groups can be scheduled in as one unit only, so undo any
651 * partial group before returning:
652 */
653 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
654 if (counter == partial_group)
655 break;
656 counter_sched_out(counter, cpuctx, ctx);
657 }
658 counter_sched_out(group_counter, cpuctx, ctx);
659
660 return -EAGAIN;
661 }
662
663 /*
664 * Return 1 for a group consisting entirely of software counters,
665 * 0 if the group contains any hardware counters.
666 */
667 static int is_software_only_group(struct perf_counter *leader)
668 {
669 struct perf_counter *counter;
670
671 if (!is_software_counter(leader))
672 return 0;
673
674 list_for_each_entry(counter, &leader->sibling_list, list_entry)
675 if (!is_software_counter(counter))
676 return 0;
677
678 return 1;
679 }
680
681 /*
682 * Work out whether we can put this counter group on the CPU now.
683 */
684 static int group_can_go_on(struct perf_counter *counter,
685 struct perf_cpu_context *cpuctx,
686 int can_add_hw)
687 {
688 /*
689 * Groups consisting entirely of software counters can always go on.
690 */
691 if (is_software_only_group(counter))
692 return 1;
693 /*
694 * If an exclusive group is already on, no other hardware
695 * counters can go on.
696 */
697 if (cpuctx->exclusive)
698 return 0;
699 /*
700 * If this group is exclusive and there are already
701 * counters on the CPU, it can't go on.
702 */
703 if (counter->attr.exclusive && cpuctx->active_oncpu)
704 return 0;
705 /*
706 * Otherwise, try to add it if all previous groups were able
707 * to go on.
708 */
709 return can_add_hw;
710 }
711
712 static void add_counter_to_ctx(struct perf_counter *counter,
713 struct perf_counter_context *ctx)
714 {
715 list_add_counter(counter, ctx);
716 counter->tstamp_enabled = ctx->time;
717 counter->tstamp_running = ctx->time;
718 counter->tstamp_stopped = ctx->time;
719 }
720
721 /*
722 * Cross CPU call to install and enable a performance counter
723 *
724 * Must be called with ctx->mutex held
725 */
726 static void __perf_install_in_context(void *info)
727 {
728 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
729 struct perf_counter *counter = info;
730 struct perf_counter_context *ctx = counter->ctx;
731 struct perf_counter *leader = counter->group_leader;
732 int cpu = smp_processor_id();
733 int err;
734
735 /*
736 * If this is a task context, we need to check whether it is
737 * the current task context of this cpu. If not it has been
738 * scheduled out before the smp call arrived.
739 * Or possibly this is the right context but it isn't
740 * on this cpu because it had no counters.
741 */
742 if (ctx->task && cpuctx->task_ctx != ctx) {
743 if (cpuctx->task_ctx || ctx->task != current)
744 return;
745 cpuctx->task_ctx = ctx;
746 }
747
748 spin_lock(&ctx->lock);
749 ctx->is_active = 1;
750 update_context_time(ctx);
751
752 /*
753 * Protect the list operation against NMI by disabling the
754 * counters on a global level. NOP for non NMI based counters.
755 */
756 perf_disable();
757
758 add_counter_to_ctx(counter, ctx);
759
760 /*
761 * Don't put the counter on if it is disabled or if
762 * it is in a group and the group isn't on.
763 */
764 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
765 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
766 goto unlock;
767
768 /*
769 * An exclusive counter can't go on if there are already active
770 * hardware counters, and no hardware counter can go on if there
771 * is already an exclusive counter on.
772 */
773 if (!group_can_go_on(counter, cpuctx, 1))
774 err = -EEXIST;
775 else
776 err = counter_sched_in(counter, cpuctx, ctx, cpu);
777
778 if (err) {
779 /*
780 * This counter couldn't go on. If it is in a group
781 * then we have to pull the whole group off.
782 * If the counter group is pinned then put it in error state.
783 */
784 if (leader != counter)
785 group_sched_out(leader, cpuctx, ctx);
786 if (leader->attr.pinned) {
787 update_group_times(leader);
788 leader->state = PERF_COUNTER_STATE_ERROR;
789 }
790 }
791
792 if (!err && !ctx->task && cpuctx->max_pertask)
793 cpuctx->max_pertask--;
794
795 unlock:
796 perf_enable();
797
798 spin_unlock(&ctx->lock);
799 }
800
801 /*
802 * Attach a performance counter to a context
803 *
804 * First we add the counter to the list with the hardware enable bit
805 * in counter->hw_config cleared.
806 *
807 * If the counter is attached to a task which is on a CPU we use a smp
808 * call to enable it in the task context. The task might have been
809 * scheduled away, but we check this in the smp call again.
810 *
811 * Must be called with ctx->mutex held.
812 */
813 static void
814 perf_install_in_context(struct perf_counter_context *ctx,
815 struct perf_counter *counter,
816 int cpu)
817 {
818 struct task_struct *task = ctx->task;
819
820 if (!task) {
821 /*
822 * Per cpu counters are installed via an smp call and
823 * the install is always sucessful.
824 */
825 smp_call_function_single(cpu, __perf_install_in_context,
826 counter, 1);
827 return;
828 }
829
830 retry:
831 task_oncpu_function_call(task, __perf_install_in_context,
832 counter);
833
834 spin_lock_irq(&ctx->lock);
835 /*
836 * we need to retry the smp call.
837 */
838 if (ctx->is_active && list_empty(&counter->list_entry)) {
839 spin_unlock_irq(&ctx->lock);
840 goto retry;
841 }
842
843 /*
844 * The lock prevents that this context is scheduled in so we
845 * can add the counter safely, if it the call above did not
846 * succeed.
847 */
848 if (list_empty(&counter->list_entry))
849 add_counter_to_ctx(counter, ctx);
850 spin_unlock_irq(&ctx->lock);
851 }
852
853 /*
854 * Cross CPU call to enable a performance counter
855 */
856 static void __perf_counter_enable(void *info)
857 {
858 struct perf_counter *counter = info;
859 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
860 struct perf_counter_context *ctx = counter->ctx;
861 struct perf_counter *leader = counter->group_leader;
862 int err;
863
864 /*
865 * If this is a per-task counter, need to check whether this
866 * counter's task is the current task on this cpu.
867 */
868 if (ctx->task && cpuctx->task_ctx != ctx) {
869 if (cpuctx->task_ctx || ctx->task != current)
870 return;
871 cpuctx->task_ctx = ctx;
872 }
873
874 spin_lock(&ctx->lock);
875 ctx->is_active = 1;
876 update_context_time(ctx);
877
878 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
879 goto unlock;
880 counter->state = PERF_COUNTER_STATE_INACTIVE;
881 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
882
883 /*
884 * If the counter is in a group and isn't the group leader,
885 * then don't put it on unless the group is on.
886 */
887 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
888 goto unlock;
889
890 if (!group_can_go_on(counter, cpuctx, 1)) {
891 err = -EEXIST;
892 } else {
893 perf_disable();
894 if (counter == leader)
895 err = group_sched_in(counter, cpuctx, ctx,
896 smp_processor_id());
897 else
898 err = counter_sched_in(counter, cpuctx, ctx,
899 smp_processor_id());
900 perf_enable();
901 }
902
903 if (err) {
904 /*
905 * If this counter can't go on and it's part of a
906 * group, then the whole group has to come off.
907 */
908 if (leader != counter)
909 group_sched_out(leader, cpuctx, ctx);
910 if (leader->attr.pinned) {
911 update_group_times(leader);
912 leader->state = PERF_COUNTER_STATE_ERROR;
913 }
914 }
915
916 unlock:
917 spin_unlock(&ctx->lock);
918 }
919
920 /*
921 * Enable a counter.
922 *
923 * If counter->ctx is a cloned context, callers must make sure that
924 * every task struct that counter->ctx->task could possibly point to
925 * remains valid. This condition is satisfied when called through
926 * perf_counter_for_each_child or perf_counter_for_each as described
927 * for perf_counter_disable.
928 */
929 static void perf_counter_enable(struct perf_counter *counter)
930 {
931 struct perf_counter_context *ctx = counter->ctx;
932 struct task_struct *task = ctx->task;
933
934 if (!task) {
935 /*
936 * Enable the counter on the cpu that it's on
937 */
938 smp_call_function_single(counter->cpu, __perf_counter_enable,
939 counter, 1);
940 return;
941 }
942
943 spin_lock_irq(&ctx->lock);
944 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
945 goto out;
946
947 /*
948 * If the counter is in error state, clear that first.
949 * That way, if we see the counter in error state below, we
950 * know that it has gone back into error state, as distinct
951 * from the task having been scheduled away before the
952 * cross-call arrived.
953 */
954 if (counter->state == PERF_COUNTER_STATE_ERROR)
955 counter->state = PERF_COUNTER_STATE_OFF;
956
957 retry:
958 spin_unlock_irq(&ctx->lock);
959 task_oncpu_function_call(task, __perf_counter_enable, counter);
960
961 spin_lock_irq(&ctx->lock);
962
963 /*
964 * If the context is active and the counter is still off,
965 * we need to retry the cross-call.
966 */
967 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
968 goto retry;
969
970 /*
971 * Since we have the lock this context can't be scheduled
972 * in, so we can change the state safely.
973 */
974 if (counter->state == PERF_COUNTER_STATE_OFF) {
975 counter->state = PERF_COUNTER_STATE_INACTIVE;
976 counter->tstamp_enabled =
977 ctx->time - counter->total_time_enabled;
978 }
979 out:
980 spin_unlock_irq(&ctx->lock);
981 }
982
983 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
984 {
985 /*
986 * not supported on inherited counters
987 */
988 if (counter->attr.inherit)
989 return -EINVAL;
990
991 atomic_add(refresh, &counter->event_limit);
992 perf_counter_enable(counter);
993
994 return 0;
995 }
996
997 void __perf_counter_sched_out(struct perf_counter_context *ctx,
998 struct perf_cpu_context *cpuctx)
999 {
1000 struct perf_counter *counter;
1001
1002 spin_lock(&ctx->lock);
1003 ctx->is_active = 0;
1004 if (likely(!ctx->nr_counters))
1005 goto out;
1006 update_context_time(ctx);
1007
1008 perf_disable();
1009 if (ctx->nr_active) {
1010 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1011 if (counter != counter->group_leader)
1012 counter_sched_out(counter, cpuctx, ctx);
1013 else
1014 group_sched_out(counter, cpuctx, ctx);
1015 }
1016 }
1017 perf_enable();
1018 out:
1019 spin_unlock(&ctx->lock);
1020 }
1021
1022 /*
1023 * Test whether two contexts are equivalent, i.e. whether they
1024 * have both been cloned from the same version of the same context
1025 * and they both have the same number of enabled counters.
1026 * If the number of enabled counters is the same, then the set
1027 * of enabled counters should be the same, because these are both
1028 * inherited contexts, therefore we can't access individual counters
1029 * in them directly with an fd; we can only enable/disable all
1030 * counters via prctl, or enable/disable all counters in a family
1031 * via ioctl, which will have the same effect on both contexts.
1032 */
1033 static int context_equiv(struct perf_counter_context *ctx1,
1034 struct perf_counter_context *ctx2)
1035 {
1036 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1037 && ctx1->parent_gen == ctx2->parent_gen
1038 && !ctx1->pin_count && !ctx2->pin_count;
1039 }
1040
1041 static void __perf_counter_read(void *counter);
1042
1043 static void __perf_counter_sync_stat(struct perf_counter *counter,
1044 struct perf_counter *next_counter)
1045 {
1046 u64 value;
1047
1048 if (!counter->attr.inherit_stat)
1049 return;
1050
1051 /*
1052 * Update the counter value, we cannot use perf_counter_read()
1053 * because we're in the middle of a context switch and have IRQs
1054 * disabled, which upsets smp_call_function_single(), however
1055 * we know the counter must be on the current CPU, therefore we
1056 * don't need to use it.
1057 */
1058 switch (counter->state) {
1059 case PERF_COUNTER_STATE_ACTIVE:
1060 __perf_counter_read(counter);
1061 break;
1062
1063 case PERF_COUNTER_STATE_INACTIVE:
1064 update_counter_times(counter);
1065 break;
1066
1067 default:
1068 break;
1069 }
1070
1071 /*
1072 * In order to keep per-task stats reliable we need to flip the counter
1073 * values when we flip the contexts.
1074 */
1075 value = atomic64_read(&next_counter->count);
1076 value = atomic64_xchg(&counter->count, value);
1077 atomic64_set(&next_counter->count, value);
1078
1079 swap(counter->total_time_enabled, next_counter->total_time_enabled);
1080 swap(counter->total_time_running, next_counter->total_time_running);
1081
1082 /*
1083 * Since we swizzled the values, update the user visible data too.
1084 */
1085 perf_counter_update_userpage(counter);
1086 perf_counter_update_userpage(next_counter);
1087 }
1088
1089 #define list_next_entry(pos, member) \
1090 list_entry(pos->member.next, typeof(*pos), member)
1091
1092 static void perf_counter_sync_stat(struct perf_counter_context *ctx,
1093 struct perf_counter_context *next_ctx)
1094 {
1095 struct perf_counter *counter, *next_counter;
1096
1097 if (!ctx->nr_stat)
1098 return;
1099
1100 counter = list_first_entry(&ctx->event_list,
1101 struct perf_counter, event_entry);
1102
1103 next_counter = list_first_entry(&next_ctx->event_list,
1104 struct perf_counter, event_entry);
1105
1106 while (&counter->event_entry != &ctx->event_list &&
1107 &next_counter->event_entry != &next_ctx->event_list) {
1108
1109 __perf_counter_sync_stat(counter, next_counter);
1110
1111 counter = list_next_entry(counter, event_entry);
1112 next_counter = list_next_entry(next_counter, event_entry);
1113 }
1114 }
1115
1116 /*
1117 * Called from scheduler to remove the counters of the current task,
1118 * with interrupts disabled.
1119 *
1120 * We stop each counter and update the counter value in counter->count.
1121 *
1122 * This does not protect us against NMI, but disable()
1123 * sets the disabled bit in the control field of counter _before_
1124 * accessing the counter control register. If a NMI hits, then it will
1125 * not restart the counter.
1126 */
1127 void perf_counter_task_sched_out(struct task_struct *task,
1128 struct task_struct *next, int cpu)
1129 {
1130 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1131 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1132 struct perf_counter_context *next_ctx;
1133 struct perf_counter_context *parent;
1134 struct pt_regs *regs;
1135 int do_switch = 1;
1136
1137 regs = task_pt_regs(task);
1138 perf_swcounter_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1139
1140 if (likely(!ctx || !cpuctx->task_ctx))
1141 return;
1142
1143 update_context_time(ctx);
1144
1145 rcu_read_lock();
1146 parent = rcu_dereference(ctx->parent_ctx);
1147 next_ctx = next->perf_counter_ctxp;
1148 if (parent && next_ctx &&
1149 rcu_dereference(next_ctx->parent_ctx) == parent) {
1150 /*
1151 * Looks like the two contexts are clones, so we might be
1152 * able to optimize the context switch. We lock both
1153 * contexts and check that they are clones under the
1154 * lock (including re-checking that neither has been
1155 * uncloned in the meantime). It doesn't matter which
1156 * order we take the locks because no other cpu could
1157 * be trying to lock both of these tasks.
1158 */
1159 spin_lock(&ctx->lock);
1160 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1161 if (context_equiv(ctx, next_ctx)) {
1162 /*
1163 * XXX do we need a memory barrier of sorts
1164 * wrt to rcu_dereference() of perf_counter_ctxp
1165 */
1166 task->perf_counter_ctxp = next_ctx;
1167 next->perf_counter_ctxp = ctx;
1168 ctx->task = next;
1169 next_ctx->task = task;
1170 do_switch = 0;
1171
1172 perf_counter_sync_stat(ctx, next_ctx);
1173 }
1174 spin_unlock(&next_ctx->lock);
1175 spin_unlock(&ctx->lock);
1176 }
1177 rcu_read_unlock();
1178
1179 if (do_switch) {
1180 __perf_counter_sched_out(ctx, cpuctx);
1181 cpuctx->task_ctx = NULL;
1182 }
1183 }
1184
1185 /*
1186 * Called with IRQs disabled
1187 */
1188 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
1189 {
1190 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1191
1192 if (!cpuctx->task_ctx)
1193 return;
1194
1195 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1196 return;
1197
1198 __perf_counter_sched_out(ctx, cpuctx);
1199 cpuctx->task_ctx = NULL;
1200 }
1201
1202 /*
1203 * Called with IRQs disabled
1204 */
1205 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1206 {
1207 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1208 }
1209
1210 static void
1211 __perf_counter_sched_in(struct perf_counter_context *ctx,
1212 struct perf_cpu_context *cpuctx, int cpu)
1213 {
1214 struct perf_counter *counter;
1215 int can_add_hw = 1;
1216
1217 spin_lock(&ctx->lock);
1218 ctx->is_active = 1;
1219 if (likely(!ctx->nr_counters))
1220 goto out;
1221
1222 ctx->timestamp = perf_clock();
1223
1224 perf_disable();
1225
1226 /*
1227 * First go through the list and put on any pinned groups
1228 * in order to give them the best chance of going on.
1229 */
1230 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1231 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1232 !counter->attr.pinned)
1233 continue;
1234 if (counter->cpu != -1 && counter->cpu != cpu)
1235 continue;
1236
1237 if (counter != counter->group_leader)
1238 counter_sched_in(counter, cpuctx, ctx, cpu);
1239 else {
1240 if (group_can_go_on(counter, cpuctx, 1))
1241 group_sched_in(counter, cpuctx, ctx, cpu);
1242 }
1243
1244 /*
1245 * If this pinned group hasn't been scheduled,
1246 * put it in error state.
1247 */
1248 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1249 update_group_times(counter);
1250 counter->state = PERF_COUNTER_STATE_ERROR;
1251 }
1252 }
1253
1254 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1255 /*
1256 * Ignore counters in OFF or ERROR state, and
1257 * ignore pinned counters since we did them already.
1258 */
1259 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1260 counter->attr.pinned)
1261 continue;
1262
1263 /*
1264 * Listen to the 'cpu' scheduling filter constraint
1265 * of counters:
1266 */
1267 if (counter->cpu != -1 && counter->cpu != cpu)
1268 continue;
1269
1270 if (counter != counter->group_leader) {
1271 if (counter_sched_in(counter, cpuctx, ctx, cpu))
1272 can_add_hw = 0;
1273 } else {
1274 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1275 if (group_sched_in(counter, cpuctx, ctx, cpu))
1276 can_add_hw = 0;
1277 }
1278 }
1279 }
1280 perf_enable();
1281 out:
1282 spin_unlock(&ctx->lock);
1283 }
1284
1285 /*
1286 * Called from scheduler to add the counters of the current task
1287 * with interrupts disabled.
1288 *
1289 * We restore the counter value and then enable it.
1290 *
1291 * This does not protect us against NMI, but enable()
1292 * sets the enabled bit in the control field of counter _before_
1293 * accessing the counter control register. If a NMI hits, then it will
1294 * keep the counter running.
1295 */
1296 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1297 {
1298 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1299 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1300
1301 if (likely(!ctx))
1302 return;
1303 if (cpuctx->task_ctx == ctx)
1304 return;
1305 __perf_counter_sched_in(ctx, cpuctx, cpu);
1306 cpuctx->task_ctx = ctx;
1307 }
1308
1309 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1310 {
1311 struct perf_counter_context *ctx = &cpuctx->ctx;
1312
1313 __perf_counter_sched_in(ctx, cpuctx, cpu);
1314 }
1315
1316 #define MAX_INTERRUPTS (~0ULL)
1317
1318 static void perf_log_throttle(struct perf_counter *counter, int enable);
1319
1320 static void perf_adjust_period(struct perf_counter *counter, u64 events)
1321 {
1322 struct hw_perf_counter *hwc = &counter->hw;
1323 u64 period, sample_period;
1324 s64 delta;
1325
1326 events *= hwc->sample_period;
1327 period = div64_u64(events, counter->attr.sample_freq);
1328
1329 delta = (s64)(period - hwc->sample_period);
1330 delta = (delta + 7) / 8; /* low pass filter */
1331
1332 sample_period = hwc->sample_period + delta;
1333
1334 if (!sample_period)
1335 sample_period = 1;
1336
1337 hwc->sample_period = sample_period;
1338 }
1339
1340 static void perf_ctx_adjust_freq(struct perf_counter_context *ctx)
1341 {
1342 struct perf_counter *counter;
1343 struct hw_perf_counter *hwc;
1344 u64 interrupts, freq;
1345
1346 spin_lock(&ctx->lock);
1347 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1348 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1349 continue;
1350
1351 hwc = &counter->hw;
1352
1353 interrupts = hwc->interrupts;
1354 hwc->interrupts = 0;
1355
1356 /*
1357 * unthrottle counters on the tick
1358 */
1359 if (interrupts == MAX_INTERRUPTS) {
1360 perf_log_throttle(counter, 1);
1361 counter->pmu->unthrottle(counter);
1362 interrupts = 2*sysctl_perf_counter_sample_rate/HZ;
1363 }
1364
1365 if (!counter->attr.freq || !counter->attr.sample_freq)
1366 continue;
1367
1368 /*
1369 * if the specified freq < HZ then we need to skip ticks
1370 */
1371 if (counter->attr.sample_freq < HZ) {
1372 freq = counter->attr.sample_freq;
1373
1374 hwc->freq_count += freq;
1375 hwc->freq_interrupts += interrupts;
1376
1377 if (hwc->freq_count < HZ)
1378 continue;
1379
1380 interrupts = hwc->freq_interrupts;
1381 hwc->freq_interrupts = 0;
1382 hwc->freq_count -= HZ;
1383 } else
1384 freq = HZ;
1385
1386 perf_adjust_period(counter, freq * interrupts);
1387
1388 /*
1389 * In order to avoid being stalled by an (accidental) huge
1390 * sample period, force reset the sample period if we didn't
1391 * get any events in this freq period.
1392 */
1393 if (!interrupts) {
1394 perf_disable();
1395 counter->pmu->disable(counter);
1396 atomic64_set(&hwc->period_left, 0);
1397 counter->pmu->enable(counter);
1398 perf_enable();
1399 }
1400 }
1401 spin_unlock(&ctx->lock);
1402 }
1403
1404 /*
1405 * Round-robin a context's counters:
1406 */
1407 static void rotate_ctx(struct perf_counter_context *ctx)
1408 {
1409 struct perf_counter *counter;
1410
1411 if (!ctx->nr_counters)
1412 return;
1413
1414 spin_lock(&ctx->lock);
1415 /*
1416 * Rotate the first entry last (works just fine for group counters too):
1417 */
1418 perf_disable();
1419 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1420 list_move_tail(&counter->list_entry, &ctx->counter_list);
1421 break;
1422 }
1423 perf_enable();
1424
1425 spin_unlock(&ctx->lock);
1426 }
1427
1428 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1429 {
1430 struct perf_cpu_context *cpuctx;
1431 struct perf_counter_context *ctx;
1432
1433 if (!atomic_read(&nr_counters))
1434 return;
1435
1436 cpuctx = &per_cpu(perf_cpu_context, cpu);
1437 ctx = curr->perf_counter_ctxp;
1438
1439 perf_ctx_adjust_freq(&cpuctx->ctx);
1440 if (ctx)
1441 perf_ctx_adjust_freq(ctx);
1442
1443 perf_counter_cpu_sched_out(cpuctx);
1444 if (ctx)
1445 __perf_counter_task_sched_out(ctx);
1446
1447 rotate_ctx(&cpuctx->ctx);
1448 if (ctx)
1449 rotate_ctx(ctx);
1450
1451 perf_counter_cpu_sched_in(cpuctx, cpu);
1452 if (ctx)
1453 perf_counter_task_sched_in(curr, cpu);
1454 }
1455
1456 /*
1457 * Enable all of a task's counters that have been marked enable-on-exec.
1458 * This expects task == current.
1459 */
1460 static void perf_counter_enable_on_exec(struct task_struct *task)
1461 {
1462 struct perf_counter_context *ctx;
1463 struct perf_counter *counter;
1464 unsigned long flags;
1465 int enabled = 0;
1466
1467 local_irq_save(flags);
1468 ctx = task->perf_counter_ctxp;
1469 if (!ctx || !ctx->nr_counters)
1470 goto out;
1471
1472 __perf_counter_task_sched_out(ctx);
1473
1474 spin_lock(&ctx->lock);
1475
1476 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1477 if (!counter->attr.enable_on_exec)
1478 continue;
1479 counter->attr.enable_on_exec = 0;
1480 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
1481 continue;
1482 counter->state = PERF_COUNTER_STATE_INACTIVE;
1483 counter->tstamp_enabled =
1484 ctx->time - counter->total_time_enabled;
1485 enabled = 1;
1486 }
1487
1488 /*
1489 * Unclone this context if we enabled any counter.
1490 */
1491 if (enabled)
1492 unclone_ctx(ctx);
1493
1494 spin_unlock(&ctx->lock);
1495
1496 perf_counter_task_sched_in(task, smp_processor_id());
1497 out:
1498 local_irq_restore(flags);
1499 }
1500
1501 /*
1502 * Cross CPU call to read the hardware counter
1503 */
1504 static void __perf_counter_read(void *info)
1505 {
1506 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1507 struct perf_counter *counter = info;
1508 struct perf_counter_context *ctx = counter->ctx;
1509 unsigned long flags;
1510
1511 /*
1512 * If this is a task context, we need to check whether it is
1513 * the current task context of this cpu. If not it has been
1514 * scheduled out before the smp call arrived. In that case
1515 * counter->count would have been updated to a recent sample
1516 * when the counter was scheduled out.
1517 */
1518 if (ctx->task && cpuctx->task_ctx != ctx)
1519 return;
1520
1521 local_irq_save(flags);
1522 if (ctx->is_active)
1523 update_context_time(ctx);
1524 counter->pmu->read(counter);
1525 update_counter_times(counter);
1526 local_irq_restore(flags);
1527 }
1528
1529 static u64 perf_counter_read(struct perf_counter *counter)
1530 {
1531 /*
1532 * If counter is enabled and currently active on a CPU, update the
1533 * value in the counter structure:
1534 */
1535 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1536 smp_call_function_single(counter->oncpu,
1537 __perf_counter_read, counter, 1);
1538 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1539 update_counter_times(counter);
1540 }
1541
1542 return atomic64_read(&counter->count);
1543 }
1544
1545 /*
1546 * Initialize the perf_counter context in a task_struct:
1547 */
1548 static void
1549 __perf_counter_init_context(struct perf_counter_context *ctx,
1550 struct task_struct *task)
1551 {
1552 memset(ctx, 0, sizeof(*ctx));
1553 spin_lock_init(&ctx->lock);
1554 mutex_init(&ctx->mutex);
1555 INIT_LIST_HEAD(&ctx->counter_list);
1556 INIT_LIST_HEAD(&ctx->event_list);
1557 atomic_set(&ctx->refcount, 1);
1558 ctx->task = task;
1559 }
1560
1561 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1562 {
1563 struct perf_counter_context *ctx;
1564 struct perf_cpu_context *cpuctx;
1565 struct task_struct *task;
1566 unsigned long flags;
1567 int err;
1568
1569 /*
1570 * If cpu is not a wildcard then this is a percpu counter:
1571 */
1572 if (cpu != -1) {
1573 /* Must be root to operate on a CPU counter: */
1574 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1575 return ERR_PTR(-EACCES);
1576
1577 if (cpu < 0 || cpu > num_possible_cpus())
1578 return ERR_PTR(-EINVAL);
1579
1580 /*
1581 * We could be clever and allow to attach a counter to an
1582 * offline CPU and activate it when the CPU comes up, but
1583 * that's for later.
1584 */
1585 if (!cpu_isset(cpu, cpu_online_map))
1586 return ERR_PTR(-ENODEV);
1587
1588 cpuctx = &per_cpu(perf_cpu_context, cpu);
1589 ctx = &cpuctx->ctx;
1590 get_ctx(ctx);
1591
1592 return ctx;
1593 }
1594
1595 rcu_read_lock();
1596 if (!pid)
1597 task = current;
1598 else
1599 task = find_task_by_vpid(pid);
1600 if (task)
1601 get_task_struct(task);
1602 rcu_read_unlock();
1603
1604 if (!task)
1605 return ERR_PTR(-ESRCH);
1606
1607 /*
1608 * Can't attach counters to a dying task.
1609 */
1610 err = -ESRCH;
1611 if (task->flags & PF_EXITING)
1612 goto errout;
1613
1614 /* Reuse ptrace permission checks for now. */
1615 err = -EACCES;
1616 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1617 goto errout;
1618
1619 retry:
1620 ctx = perf_lock_task_context(task, &flags);
1621 if (ctx) {
1622 unclone_ctx(ctx);
1623 spin_unlock_irqrestore(&ctx->lock, flags);
1624 }
1625
1626 if (!ctx) {
1627 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1628 err = -ENOMEM;
1629 if (!ctx)
1630 goto errout;
1631 __perf_counter_init_context(ctx, task);
1632 get_ctx(ctx);
1633 if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1634 /*
1635 * We raced with some other task; use
1636 * the context they set.
1637 */
1638 kfree(ctx);
1639 goto retry;
1640 }
1641 get_task_struct(task);
1642 }
1643
1644 put_task_struct(task);
1645 return ctx;
1646
1647 errout:
1648 put_task_struct(task);
1649 return ERR_PTR(err);
1650 }
1651
1652 static void free_counter_rcu(struct rcu_head *head)
1653 {
1654 struct perf_counter *counter;
1655
1656 counter = container_of(head, struct perf_counter, rcu_head);
1657 if (counter->ns)
1658 put_pid_ns(counter->ns);
1659 kfree(counter);
1660 }
1661
1662 static void perf_pending_sync(struct perf_counter *counter);
1663
1664 static void free_counter(struct perf_counter *counter)
1665 {
1666 perf_pending_sync(counter);
1667
1668 if (!counter->parent) {
1669 atomic_dec(&nr_counters);
1670 if (counter->attr.mmap)
1671 atomic_dec(&nr_mmap_counters);
1672 if (counter->attr.comm)
1673 atomic_dec(&nr_comm_counters);
1674 if (counter->attr.task)
1675 atomic_dec(&nr_task_counters);
1676 }
1677
1678 if (counter->destroy)
1679 counter->destroy(counter);
1680
1681 put_ctx(counter->ctx);
1682 call_rcu(&counter->rcu_head, free_counter_rcu);
1683 }
1684
1685 /*
1686 * Called when the last reference to the file is gone.
1687 */
1688 static int perf_release(struct inode *inode, struct file *file)
1689 {
1690 struct perf_counter *counter = file->private_data;
1691 struct perf_counter_context *ctx = counter->ctx;
1692
1693 file->private_data = NULL;
1694
1695 WARN_ON_ONCE(ctx->parent_ctx);
1696 mutex_lock(&ctx->mutex);
1697 perf_counter_remove_from_context(counter);
1698 mutex_unlock(&ctx->mutex);
1699
1700 mutex_lock(&counter->owner->perf_counter_mutex);
1701 list_del_init(&counter->owner_entry);
1702 mutex_unlock(&counter->owner->perf_counter_mutex);
1703 put_task_struct(counter->owner);
1704
1705 free_counter(counter);
1706
1707 return 0;
1708 }
1709
1710 static int perf_counter_read_size(struct perf_counter *counter)
1711 {
1712 int entry = sizeof(u64); /* value */
1713 int size = 0;
1714 int nr = 1;
1715
1716 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1717 size += sizeof(u64);
1718
1719 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1720 size += sizeof(u64);
1721
1722 if (counter->attr.read_format & PERF_FORMAT_ID)
1723 entry += sizeof(u64);
1724
1725 if (counter->attr.read_format & PERF_FORMAT_GROUP) {
1726 nr += counter->group_leader->nr_siblings;
1727 size += sizeof(u64);
1728 }
1729
1730 size += entry * nr;
1731
1732 return size;
1733 }
1734
1735 static u64 perf_counter_read_value(struct perf_counter *counter)
1736 {
1737 struct perf_counter *child;
1738 u64 total = 0;
1739
1740 total += perf_counter_read(counter);
1741 list_for_each_entry(child, &counter->child_list, child_list)
1742 total += perf_counter_read(child);
1743
1744 return total;
1745 }
1746
1747 static int perf_counter_read_entry(struct perf_counter *counter,
1748 u64 read_format, char __user *buf)
1749 {
1750 int n = 0, count = 0;
1751 u64 values[2];
1752
1753 values[n++] = perf_counter_read_value(counter);
1754 if (read_format & PERF_FORMAT_ID)
1755 values[n++] = primary_counter_id(counter);
1756
1757 count = n * sizeof(u64);
1758
1759 if (copy_to_user(buf, values, count))
1760 return -EFAULT;
1761
1762 return count;
1763 }
1764
1765 static int perf_counter_read_group(struct perf_counter *counter,
1766 u64 read_format, char __user *buf)
1767 {
1768 struct perf_counter *leader = counter->group_leader, *sub;
1769 int n = 0, size = 0, err = -EFAULT;
1770 u64 values[3];
1771
1772 values[n++] = 1 + leader->nr_siblings;
1773 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1774 values[n++] = leader->total_time_enabled +
1775 atomic64_read(&leader->child_total_time_enabled);
1776 }
1777 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1778 values[n++] = leader->total_time_running +
1779 atomic64_read(&leader->child_total_time_running);
1780 }
1781
1782 size = n * sizeof(u64);
1783
1784 if (copy_to_user(buf, values, size))
1785 return -EFAULT;
1786
1787 err = perf_counter_read_entry(leader, read_format, buf + size);
1788 if (err < 0)
1789 return err;
1790
1791 size += err;
1792
1793 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
1794 err = perf_counter_read_entry(counter, read_format,
1795 buf + size);
1796 if (err < 0)
1797 return err;
1798
1799 size += err;
1800 }
1801
1802 return size;
1803 }
1804
1805 static int perf_counter_read_one(struct perf_counter *counter,
1806 u64 read_format, char __user *buf)
1807 {
1808 u64 values[4];
1809 int n = 0;
1810
1811 values[n++] = perf_counter_read_value(counter);
1812 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1813 values[n++] = counter->total_time_enabled +
1814 atomic64_read(&counter->child_total_time_enabled);
1815 }
1816 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1817 values[n++] = counter->total_time_running +
1818 atomic64_read(&counter->child_total_time_running);
1819 }
1820 if (read_format & PERF_FORMAT_ID)
1821 values[n++] = primary_counter_id(counter);
1822
1823 if (copy_to_user(buf, values, n * sizeof(u64)))
1824 return -EFAULT;
1825
1826 return n * sizeof(u64);
1827 }
1828
1829 /*
1830 * Read the performance counter - simple non blocking version for now
1831 */
1832 static ssize_t
1833 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1834 {
1835 u64 read_format = counter->attr.read_format;
1836 int ret;
1837
1838 /*
1839 * Return end-of-file for a read on a counter that is in
1840 * error state (i.e. because it was pinned but it couldn't be
1841 * scheduled on to the CPU at some point).
1842 */
1843 if (counter->state == PERF_COUNTER_STATE_ERROR)
1844 return 0;
1845
1846 if (count < perf_counter_read_size(counter))
1847 return -ENOSPC;
1848
1849 WARN_ON_ONCE(counter->ctx->parent_ctx);
1850 mutex_lock(&counter->child_mutex);
1851 if (read_format & PERF_FORMAT_GROUP)
1852 ret = perf_counter_read_group(counter, read_format, buf);
1853 else
1854 ret = perf_counter_read_one(counter, read_format, buf);
1855 mutex_unlock(&counter->child_mutex);
1856
1857 return ret;
1858 }
1859
1860 static ssize_t
1861 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1862 {
1863 struct perf_counter *counter = file->private_data;
1864
1865 return perf_read_hw(counter, buf, count);
1866 }
1867
1868 static unsigned int perf_poll(struct file *file, poll_table *wait)
1869 {
1870 struct perf_counter *counter = file->private_data;
1871 struct perf_mmap_data *data;
1872 unsigned int events = POLL_HUP;
1873
1874 rcu_read_lock();
1875 data = rcu_dereference(counter->data);
1876 if (data)
1877 events = atomic_xchg(&data->poll, 0);
1878 rcu_read_unlock();
1879
1880 poll_wait(file, &counter->waitq, wait);
1881
1882 return events;
1883 }
1884
1885 static void perf_counter_reset(struct perf_counter *counter)
1886 {
1887 (void)perf_counter_read(counter);
1888 atomic64_set(&counter->count, 0);
1889 perf_counter_update_userpage(counter);
1890 }
1891
1892 /*
1893 * Holding the top-level counter's child_mutex means that any
1894 * descendant process that has inherited this counter will block
1895 * in sync_child_counter if it goes to exit, thus satisfying the
1896 * task existence requirements of perf_counter_enable/disable.
1897 */
1898 static void perf_counter_for_each_child(struct perf_counter *counter,
1899 void (*func)(struct perf_counter *))
1900 {
1901 struct perf_counter *child;
1902
1903 WARN_ON_ONCE(counter->ctx->parent_ctx);
1904 mutex_lock(&counter->child_mutex);
1905 func(counter);
1906 list_for_each_entry(child, &counter->child_list, child_list)
1907 func(child);
1908 mutex_unlock(&counter->child_mutex);
1909 }
1910
1911 static void perf_counter_for_each(struct perf_counter *counter,
1912 void (*func)(struct perf_counter *))
1913 {
1914 struct perf_counter_context *ctx = counter->ctx;
1915 struct perf_counter *sibling;
1916
1917 WARN_ON_ONCE(ctx->parent_ctx);
1918 mutex_lock(&ctx->mutex);
1919 counter = counter->group_leader;
1920
1921 perf_counter_for_each_child(counter, func);
1922 func(counter);
1923 list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1924 perf_counter_for_each_child(counter, func);
1925 mutex_unlock(&ctx->mutex);
1926 }
1927
1928 static int perf_counter_period(struct perf_counter *counter, u64 __user *arg)
1929 {
1930 struct perf_counter_context *ctx = counter->ctx;
1931 unsigned long size;
1932 int ret = 0;
1933 u64 value;
1934
1935 if (!counter->attr.sample_period)
1936 return -EINVAL;
1937
1938 size = copy_from_user(&value, arg, sizeof(value));
1939 if (size != sizeof(value))
1940 return -EFAULT;
1941
1942 if (!value)
1943 return -EINVAL;
1944
1945 spin_lock_irq(&ctx->lock);
1946 if (counter->attr.freq) {
1947 if (value > sysctl_perf_counter_sample_rate) {
1948 ret = -EINVAL;
1949 goto unlock;
1950 }
1951
1952 counter->attr.sample_freq = value;
1953 } else {
1954 counter->attr.sample_period = value;
1955 counter->hw.sample_period = value;
1956 }
1957 unlock:
1958 spin_unlock_irq(&ctx->lock);
1959
1960 return ret;
1961 }
1962
1963 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1964 {
1965 struct perf_counter *counter = file->private_data;
1966 void (*func)(struct perf_counter *);
1967 u32 flags = arg;
1968
1969 switch (cmd) {
1970 case PERF_COUNTER_IOC_ENABLE:
1971 func = perf_counter_enable;
1972 break;
1973 case PERF_COUNTER_IOC_DISABLE:
1974 func = perf_counter_disable;
1975 break;
1976 case PERF_COUNTER_IOC_RESET:
1977 func = perf_counter_reset;
1978 break;
1979
1980 case PERF_COUNTER_IOC_REFRESH:
1981 return perf_counter_refresh(counter, arg);
1982
1983 case PERF_COUNTER_IOC_PERIOD:
1984 return perf_counter_period(counter, (u64 __user *)arg);
1985
1986 default:
1987 return -ENOTTY;
1988 }
1989
1990 if (flags & PERF_IOC_FLAG_GROUP)
1991 perf_counter_for_each(counter, func);
1992 else
1993 perf_counter_for_each_child(counter, func);
1994
1995 return 0;
1996 }
1997
1998 int perf_counter_task_enable(void)
1999 {
2000 struct perf_counter *counter;
2001
2002 mutex_lock(&current->perf_counter_mutex);
2003 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
2004 perf_counter_for_each_child(counter, perf_counter_enable);
2005 mutex_unlock(&current->perf_counter_mutex);
2006
2007 return 0;
2008 }
2009
2010 int perf_counter_task_disable(void)
2011 {
2012 struct perf_counter *counter;
2013
2014 mutex_lock(&current->perf_counter_mutex);
2015 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
2016 perf_counter_for_each_child(counter, perf_counter_disable);
2017 mutex_unlock(&current->perf_counter_mutex);
2018
2019 return 0;
2020 }
2021
2022 static int perf_counter_index(struct perf_counter *counter)
2023 {
2024 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2025 return 0;
2026
2027 return counter->hw.idx + 1 - PERF_COUNTER_INDEX_OFFSET;
2028 }
2029
2030 /*
2031 * Callers need to ensure there can be no nesting of this function, otherwise
2032 * the seqlock logic goes bad. We can not serialize this because the arch
2033 * code calls this from NMI context.
2034 */
2035 void perf_counter_update_userpage(struct perf_counter *counter)
2036 {
2037 struct perf_counter_mmap_page *userpg;
2038 struct perf_mmap_data *data;
2039
2040 rcu_read_lock();
2041 data = rcu_dereference(counter->data);
2042 if (!data)
2043 goto unlock;
2044
2045 userpg = data->user_page;
2046
2047 /*
2048 * Disable preemption so as to not let the corresponding user-space
2049 * spin too long if we get preempted.
2050 */
2051 preempt_disable();
2052 ++userpg->lock;
2053 barrier();
2054 userpg->index = perf_counter_index(counter);
2055 userpg->offset = atomic64_read(&counter->count);
2056 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
2057 userpg->offset -= atomic64_read(&counter->hw.prev_count);
2058
2059 userpg->time_enabled = counter->total_time_enabled +
2060 atomic64_read(&counter->child_total_time_enabled);
2061
2062 userpg->time_running = counter->total_time_running +
2063 atomic64_read(&counter->child_total_time_running);
2064
2065 barrier();
2066 ++userpg->lock;
2067 preempt_enable();
2068 unlock:
2069 rcu_read_unlock();
2070 }
2071
2072 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2073 {
2074 struct perf_counter *counter = vma->vm_file->private_data;
2075 struct perf_mmap_data *data;
2076 int ret = VM_FAULT_SIGBUS;
2077
2078 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2079 if (vmf->pgoff == 0)
2080 ret = 0;
2081 return ret;
2082 }
2083
2084 rcu_read_lock();
2085 data = rcu_dereference(counter->data);
2086 if (!data)
2087 goto unlock;
2088
2089 if (vmf->pgoff == 0) {
2090 vmf->page = virt_to_page(data->user_page);
2091 } else {
2092 int nr = vmf->pgoff - 1;
2093
2094 if ((unsigned)nr > data->nr_pages)
2095 goto unlock;
2096
2097 if (vmf->flags & FAULT_FLAG_WRITE)
2098 goto unlock;
2099
2100 vmf->page = virt_to_page(data->data_pages[nr]);
2101 }
2102
2103 get_page(vmf->page);
2104 vmf->page->mapping = vma->vm_file->f_mapping;
2105 vmf->page->index = vmf->pgoff;
2106
2107 ret = 0;
2108 unlock:
2109 rcu_read_unlock();
2110
2111 return ret;
2112 }
2113
2114 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
2115 {
2116 struct perf_mmap_data *data;
2117 unsigned long size;
2118 int i;
2119
2120 WARN_ON(atomic_read(&counter->mmap_count));
2121
2122 size = sizeof(struct perf_mmap_data);
2123 size += nr_pages * sizeof(void *);
2124
2125 data = kzalloc(size, GFP_KERNEL);
2126 if (!data)
2127 goto fail;
2128
2129 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2130 if (!data->user_page)
2131 goto fail_user_page;
2132
2133 for (i = 0; i < nr_pages; i++) {
2134 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2135 if (!data->data_pages[i])
2136 goto fail_data_pages;
2137 }
2138
2139 data->nr_pages = nr_pages;
2140 atomic_set(&data->lock, -1);
2141
2142 rcu_assign_pointer(counter->data, data);
2143
2144 return 0;
2145
2146 fail_data_pages:
2147 for (i--; i >= 0; i--)
2148 free_page((unsigned long)data->data_pages[i]);
2149
2150 free_page((unsigned long)data->user_page);
2151
2152 fail_user_page:
2153 kfree(data);
2154
2155 fail:
2156 return -ENOMEM;
2157 }
2158
2159 static void perf_mmap_free_page(unsigned long addr)
2160 {
2161 struct page *page = virt_to_page((void *)addr);
2162
2163 page->mapping = NULL;
2164 __free_page(page);
2165 }
2166
2167 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
2168 {
2169 struct perf_mmap_data *data;
2170 int i;
2171
2172 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2173
2174 perf_mmap_free_page((unsigned long)data->user_page);
2175 for (i = 0; i < data->nr_pages; i++)
2176 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2177
2178 kfree(data);
2179 }
2180
2181 static void perf_mmap_data_free(struct perf_counter *counter)
2182 {
2183 struct perf_mmap_data *data = counter->data;
2184
2185 WARN_ON(atomic_read(&counter->mmap_count));
2186
2187 rcu_assign_pointer(counter->data, NULL);
2188 call_rcu(&data->rcu_head, __perf_mmap_data_free);
2189 }
2190
2191 static void perf_mmap_open(struct vm_area_struct *vma)
2192 {
2193 struct perf_counter *counter = vma->vm_file->private_data;
2194
2195 atomic_inc(&counter->mmap_count);
2196 }
2197
2198 static void perf_mmap_close(struct vm_area_struct *vma)
2199 {
2200 struct perf_counter *counter = vma->vm_file->private_data;
2201
2202 WARN_ON_ONCE(counter->ctx->parent_ctx);
2203 if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) {
2204 struct user_struct *user = current_user();
2205
2206 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
2207 vma->vm_mm->locked_vm -= counter->data->nr_locked;
2208 perf_mmap_data_free(counter);
2209 mutex_unlock(&counter->mmap_mutex);
2210 }
2211 }
2212
2213 static struct vm_operations_struct perf_mmap_vmops = {
2214 .open = perf_mmap_open,
2215 .close = perf_mmap_close,
2216 .fault = perf_mmap_fault,
2217 .page_mkwrite = perf_mmap_fault,
2218 };
2219
2220 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2221 {
2222 struct perf_counter *counter = file->private_data;
2223 unsigned long user_locked, user_lock_limit;
2224 struct user_struct *user = current_user();
2225 unsigned long locked, lock_limit;
2226 unsigned long vma_size;
2227 unsigned long nr_pages;
2228 long user_extra, extra;
2229 int ret = 0;
2230
2231 if (!(vma->vm_flags & VM_SHARED))
2232 return -EINVAL;
2233
2234 vma_size = vma->vm_end - vma->vm_start;
2235 nr_pages = (vma_size / PAGE_SIZE) - 1;
2236
2237 /*
2238 * If we have data pages ensure they're a power-of-two number, so we
2239 * can do bitmasks instead of modulo.
2240 */
2241 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2242 return -EINVAL;
2243
2244 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2245 return -EINVAL;
2246
2247 if (vma->vm_pgoff != 0)
2248 return -EINVAL;
2249
2250 WARN_ON_ONCE(counter->ctx->parent_ctx);
2251 mutex_lock(&counter->mmap_mutex);
2252 if (atomic_inc_not_zero(&counter->mmap_count)) {
2253 if (nr_pages != counter->data->nr_pages)
2254 ret = -EINVAL;
2255 goto unlock;
2256 }
2257
2258 user_extra = nr_pages + 1;
2259 user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
2260
2261 /*
2262 * Increase the limit linearly with more CPUs:
2263 */
2264 user_lock_limit *= num_online_cpus();
2265
2266 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2267
2268 extra = 0;
2269 if (user_locked > user_lock_limit)
2270 extra = user_locked - user_lock_limit;
2271
2272 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2273 lock_limit >>= PAGE_SHIFT;
2274 locked = vma->vm_mm->locked_vm + extra;
2275
2276 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
2277 ret = -EPERM;
2278 goto unlock;
2279 }
2280
2281 WARN_ON(counter->data);
2282 ret = perf_mmap_data_alloc(counter, nr_pages);
2283 if (ret)
2284 goto unlock;
2285
2286 atomic_set(&counter->mmap_count, 1);
2287 atomic_long_add(user_extra, &user->locked_vm);
2288 vma->vm_mm->locked_vm += extra;
2289 counter->data->nr_locked = extra;
2290 if (vma->vm_flags & VM_WRITE)
2291 counter->data->writable = 1;
2292
2293 unlock:
2294 mutex_unlock(&counter->mmap_mutex);
2295
2296 vma->vm_flags |= VM_RESERVED;
2297 vma->vm_ops = &perf_mmap_vmops;
2298
2299 return ret;
2300 }
2301
2302 static int perf_fasync(int fd, struct file *filp, int on)
2303 {
2304 struct inode *inode = filp->f_path.dentry->d_inode;
2305 struct perf_counter *counter = filp->private_data;
2306 int retval;
2307
2308 mutex_lock(&inode->i_mutex);
2309 retval = fasync_helper(fd, filp, on, &counter->fasync);
2310 mutex_unlock(&inode->i_mutex);
2311
2312 if (retval < 0)
2313 return retval;
2314
2315 return 0;
2316 }
2317
2318 static const struct file_operations perf_fops = {
2319 .release = perf_release,
2320 .read = perf_read,
2321 .poll = perf_poll,
2322 .unlocked_ioctl = perf_ioctl,
2323 .compat_ioctl = perf_ioctl,
2324 .mmap = perf_mmap,
2325 .fasync = perf_fasync,
2326 };
2327
2328 /*
2329 * Perf counter wakeup
2330 *
2331 * If there's data, ensure we set the poll() state and publish everything
2332 * to user-space before waking everybody up.
2333 */
2334
2335 void perf_counter_wakeup(struct perf_counter *counter)
2336 {
2337 wake_up_all(&counter->waitq);
2338
2339 if (counter->pending_kill) {
2340 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
2341 counter->pending_kill = 0;
2342 }
2343 }
2344
2345 /*
2346 * Pending wakeups
2347 *
2348 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2349 *
2350 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2351 * single linked list and use cmpxchg() to add entries lockless.
2352 */
2353
2354 static void perf_pending_counter(struct perf_pending_entry *entry)
2355 {
2356 struct perf_counter *counter = container_of(entry,
2357 struct perf_counter, pending);
2358
2359 if (counter->pending_disable) {
2360 counter->pending_disable = 0;
2361 __perf_counter_disable(counter);
2362 }
2363
2364 if (counter->pending_wakeup) {
2365 counter->pending_wakeup = 0;
2366 perf_counter_wakeup(counter);
2367 }
2368 }
2369
2370 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2371
2372 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2373 PENDING_TAIL,
2374 };
2375
2376 static void perf_pending_queue(struct perf_pending_entry *entry,
2377 void (*func)(struct perf_pending_entry *))
2378 {
2379 struct perf_pending_entry **head;
2380
2381 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2382 return;
2383
2384 entry->func = func;
2385
2386 head = &get_cpu_var(perf_pending_head);
2387
2388 do {
2389 entry->next = *head;
2390 } while (cmpxchg(head, entry->next, entry) != entry->next);
2391
2392 set_perf_counter_pending();
2393
2394 put_cpu_var(perf_pending_head);
2395 }
2396
2397 static int __perf_pending_run(void)
2398 {
2399 struct perf_pending_entry *list;
2400 int nr = 0;
2401
2402 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2403 while (list != PENDING_TAIL) {
2404 void (*func)(struct perf_pending_entry *);
2405 struct perf_pending_entry *entry = list;
2406
2407 list = list->next;
2408
2409 func = entry->func;
2410 entry->next = NULL;
2411 /*
2412 * Ensure we observe the unqueue before we issue the wakeup,
2413 * so that we won't be waiting forever.
2414 * -- see perf_not_pending().
2415 */
2416 smp_wmb();
2417
2418 func(entry);
2419 nr++;
2420 }
2421
2422 return nr;
2423 }
2424
2425 static inline int perf_not_pending(struct perf_counter *counter)
2426 {
2427 /*
2428 * If we flush on whatever cpu we run, there is a chance we don't
2429 * need to wait.
2430 */
2431 get_cpu();
2432 __perf_pending_run();
2433 put_cpu();
2434
2435 /*
2436 * Ensure we see the proper queue state before going to sleep
2437 * so that we do not miss the wakeup. -- see perf_pending_handle()
2438 */
2439 smp_rmb();
2440 return counter->pending.next == NULL;
2441 }
2442
2443 static void perf_pending_sync(struct perf_counter *counter)
2444 {
2445 wait_event(counter->waitq, perf_not_pending(counter));
2446 }
2447
2448 void perf_counter_do_pending(void)
2449 {
2450 __perf_pending_run();
2451 }
2452
2453 /*
2454 * Callchain support -- arch specific
2455 */
2456
2457 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2458 {
2459 return NULL;
2460 }
2461
2462 /*
2463 * Output
2464 */
2465
2466 struct perf_output_handle {
2467 struct perf_counter *counter;
2468 struct perf_mmap_data *data;
2469 unsigned long head;
2470 unsigned long offset;
2471 int nmi;
2472 int sample;
2473 int locked;
2474 unsigned long flags;
2475 };
2476
2477 static bool perf_output_space(struct perf_mmap_data *data,
2478 unsigned int offset, unsigned int head)
2479 {
2480 unsigned long tail;
2481 unsigned long mask;
2482
2483 if (!data->writable)
2484 return true;
2485
2486 mask = (data->nr_pages << PAGE_SHIFT) - 1;
2487 /*
2488 * Userspace could choose to issue a mb() before updating the tail
2489 * pointer. So that all reads will be completed before the write is
2490 * issued.
2491 */
2492 tail = ACCESS_ONCE(data->user_page->data_tail);
2493 smp_rmb();
2494
2495 offset = (offset - tail) & mask;
2496 head = (head - tail) & mask;
2497
2498 if ((int)(head - offset) < 0)
2499 return false;
2500
2501 return true;
2502 }
2503
2504 static void perf_output_wakeup(struct perf_output_handle *handle)
2505 {
2506 atomic_set(&handle->data->poll, POLL_IN);
2507
2508 if (handle->nmi) {
2509 handle->counter->pending_wakeup = 1;
2510 perf_pending_queue(&handle->counter->pending,
2511 perf_pending_counter);
2512 } else
2513 perf_counter_wakeup(handle->counter);
2514 }
2515
2516 /*
2517 * Curious locking construct.
2518 *
2519 * We need to ensure a later event doesn't publish a head when a former
2520 * event isn't done writing. However since we need to deal with NMIs we
2521 * cannot fully serialize things.
2522 *
2523 * What we do is serialize between CPUs so we only have to deal with NMI
2524 * nesting on a single CPU.
2525 *
2526 * We only publish the head (and generate a wakeup) when the outer-most
2527 * event completes.
2528 */
2529 static void perf_output_lock(struct perf_output_handle *handle)
2530 {
2531 struct perf_mmap_data *data = handle->data;
2532 int cpu;
2533
2534 handle->locked = 0;
2535
2536 local_irq_save(handle->flags);
2537 cpu = smp_processor_id();
2538
2539 if (in_nmi() && atomic_read(&data->lock) == cpu)
2540 return;
2541
2542 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2543 cpu_relax();
2544
2545 handle->locked = 1;
2546 }
2547
2548 static void perf_output_unlock(struct perf_output_handle *handle)
2549 {
2550 struct perf_mmap_data *data = handle->data;
2551 unsigned long head;
2552 int cpu;
2553
2554 data->done_head = data->head;
2555
2556 if (!handle->locked)
2557 goto out;
2558
2559 again:
2560 /*
2561 * The xchg implies a full barrier that ensures all writes are done
2562 * before we publish the new head, matched by a rmb() in userspace when
2563 * reading this position.
2564 */
2565 while ((head = atomic_long_xchg(&data->done_head, 0)))
2566 data->user_page->data_head = head;
2567
2568 /*
2569 * NMI can happen here, which means we can miss a done_head update.
2570 */
2571
2572 cpu = atomic_xchg(&data->lock, -1);
2573 WARN_ON_ONCE(cpu != smp_processor_id());
2574
2575 /*
2576 * Therefore we have to validate we did not indeed do so.
2577 */
2578 if (unlikely(atomic_long_read(&data->done_head))) {
2579 /*
2580 * Since we had it locked, we can lock it again.
2581 */
2582 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2583 cpu_relax();
2584
2585 goto again;
2586 }
2587
2588 if (atomic_xchg(&data->wakeup, 0))
2589 perf_output_wakeup(handle);
2590 out:
2591 local_irq_restore(handle->flags);
2592 }
2593
2594 static void perf_output_copy(struct perf_output_handle *handle,
2595 const void *buf, unsigned int len)
2596 {
2597 unsigned int pages_mask;
2598 unsigned int offset;
2599 unsigned int size;
2600 void **pages;
2601
2602 offset = handle->offset;
2603 pages_mask = handle->data->nr_pages - 1;
2604 pages = handle->data->data_pages;
2605
2606 do {
2607 unsigned int page_offset;
2608 int nr;
2609
2610 nr = (offset >> PAGE_SHIFT) & pages_mask;
2611 page_offset = offset & (PAGE_SIZE - 1);
2612 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2613
2614 memcpy(pages[nr] + page_offset, buf, size);
2615
2616 len -= size;
2617 buf += size;
2618 offset += size;
2619 } while (len);
2620
2621 handle->offset = offset;
2622
2623 /*
2624 * Check we didn't copy past our reservation window, taking the
2625 * possible unsigned int wrap into account.
2626 */
2627 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2628 }
2629
2630 #define perf_output_put(handle, x) \
2631 perf_output_copy((handle), &(x), sizeof(x))
2632
2633 static int perf_output_begin(struct perf_output_handle *handle,
2634 struct perf_counter *counter, unsigned int size,
2635 int nmi, int sample)
2636 {
2637 struct perf_mmap_data *data;
2638 unsigned int offset, head;
2639 int have_lost;
2640 struct {
2641 struct perf_event_header header;
2642 u64 id;
2643 u64 lost;
2644 } lost_event;
2645
2646 /*
2647 * For inherited counters we send all the output towards the parent.
2648 */
2649 if (counter->parent)
2650 counter = counter->parent;
2651
2652 rcu_read_lock();
2653 data = rcu_dereference(counter->data);
2654 if (!data)
2655 goto out;
2656
2657 handle->data = data;
2658 handle->counter = counter;
2659 handle->nmi = nmi;
2660 handle->sample = sample;
2661
2662 if (!data->nr_pages)
2663 goto fail;
2664
2665 have_lost = atomic_read(&data->lost);
2666 if (have_lost)
2667 size += sizeof(lost_event);
2668
2669 perf_output_lock(handle);
2670
2671 do {
2672 offset = head = atomic_long_read(&data->head);
2673 head += size;
2674 if (unlikely(!perf_output_space(data, offset, head)))
2675 goto fail;
2676 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2677
2678 handle->offset = offset;
2679 handle->head = head;
2680
2681 if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2682 atomic_set(&data->wakeup, 1);
2683
2684 if (have_lost) {
2685 lost_event.header.type = PERF_EVENT_LOST;
2686 lost_event.header.misc = 0;
2687 lost_event.header.size = sizeof(lost_event);
2688 lost_event.id = counter->id;
2689 lost_event.lost = atomic_xchg(&data->lost, 0);
2690
2691 perf_output_put(handle, lost_event);
2692 }
2693
2694 return 0;
2695
2696 fail:
2697 atomic_inc(&data->lost);
2698 perf_output_unlock(handle);
2699 out:
2700 rcu_read_unlock();
2701
2702 return -ENOSPC;
2703 }
2704
2705 static void perf_output_end(struct perf_output_handle *handle)
2706 {
2707 struct perf_counter *counter = handle->counter;
2708 struct perf_mmap_data *data = handle->data;
2709
2710 int wakeup_events = counter->attr.wakeup_events;
2711
2712 if (handle->sample && wakeup_events) {
2713 int events = atomic_inc_return(&data->events);
2714 if (events >= wakeup_events) {
2715 atomic_sub(wakeup_events, &data->events);
2716 atomic_set(&data->wakeup, 1);
2717 }
2718 }
2719
2720 perf_output_unlock(handle);
2721 rcu_read_unlock();
2722 }
2723
2724 static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p)
2725 {
2726 /*
2727 * only top level counters have the pid namespace they were created in
2728 */
2729 if (counter->parent)
2730 counter = counter->parent;
2731
2732 return task_tgid_nr_ns(p, counter->ns);
2733 }
2734
2735 static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p)
2736 {
2737 /*
2738 * only top level counters have the pid namespace they were created in
2739 */
2740 if (counter->parent)
2741 counter = counter->parent;
2742
2743 return task_pid_nr_ns(p, counter->ns);
2744 }
2745
2746 static void perf_output_read_one(struct perf_output_handle *handle,
2747 struct perf_counter *counter)
2748 {
2749 u64 read_format = counter->attr.read_format;
2750 u64 values[4];
2751 int n = 0;
2752
2753 values[n++] = atomic64_read(&counter->count);
2754 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2755 values[n++] = counter->total_time_enabled +
2756 atomic64_read(&counter->child_total_time_enabled);
2757 }
2758 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2759 values[n++] = counter->total_time_running +
2760 atomic64_read(&counter->child_total_time_running);
2761 }
2762 if (read_format & PERF_FORMAT_ID)
2763 values[n++] = primary_counter_id(counter);
2764
2765 perf_output_copy(handle, values, n * sizeof(u64));
2766 }
2767
2768 /*
2769 * XXX PERF_FORMAT_GROUP vs inherited counters seems difficult.
2770 */
2771 static void perf_output_read_group(struct perf_output_handle *handle,
2772 struct perf_counter *counter)
2773 {
2774 struct perf_counter *leader = counter->group_leader, *sub;
2775 u64 read_format = counter->attr.read_format;
2776 u64 values[5];
2777 int n = 0;
2778
2779 values[n++] = 1 + leader->nr_siblings;
2780
2781 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2782 values[n++] = leader->total_time_enabled;
2783
2784 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2785 values[n++] = leader->total_time_running;
2786
2787 if (leader != counter)
2788 leader->pmu->read(leader);
2789
2790 values[n++] = atomic64_read(&leader->count);
2791 if (read_format & PERF_FORMAT_ID)
2792 values[n++] = primary_counter_id(leader);
2793
2794 perf_output_copy(handle, values, n * sizeof(u64));
2795
2796 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2797 n = 0;
2798
2799 if (sub != counter)
2800 sub->pmu->read(sub);
2801
2802 values[n++] = atomic64_read(&sub->count);
2803 if (read_format & PERF_FORMAT_ID)
2804 values[n++] = primary_counter_id(sub);
2805
2806 perf_output_copy(handle, values, n * sizeof(u64));
2807 }
2808 }
2809
2810 static void perf_output_read(struct perf_output_handle *handle,
2811 struct perf_counter *counter)
2812 {
2813 if (counter->attr.read_format & PERF_FORMAT_GROUP)
2814 perf_output_read_group(handle, counter);
2815 else
2816 perf_output_read_one(handle, counter);
2817 }
2818
2819 void perf_counter_output(struct perf_counter *counter, int nmi,
2820 struct perf_sample_data *data)
2821 {
2822 int ret;
2823 u64 sample_type = counter->attr.sample_type;
2824 struct perf_output_handle handle;
2825 struct perf_event_header header;
2826 u64 ip;
2827 struct {
2828 u32 pid, tid;
2829 } tid_entry;
2830 struct perf_callchain_entry *callchain = NULL;
2831 int callchain_size = 0;
2832 u64 time;
2833 struct {
2834 u32 cpu, reserved;
2835 } cpu_entry;
2836
2837 header.type = PERF_EVENT_SAMPLE;
2838 header.size = sizeof(header);
2839
2840 header.misc = 0;
2841 header.misc |= perf_misc_flags(data->regs);
2842
2843 if (sample_type & PERF_SAMPLE_IP) {
2844 ip = perf_instruction_pointer(data->regs);
2845 header.size += sizeof(ip);
2846 }
2847
2848 if (sample_type & PERF_SAMPLE_TID) {
2849 /* namespace issues */
2850 tid_entry.pid = perf_counter_pid(counter, current);
2851 tid_entry.tid = perf_counter_tid(counter, current);
2852
2853 header.size += sizeof(tid_entry);
2854 }
2855
2856 if (sample_type & PERF_SAMPLE_TIME) {
2857 /*
2858 * Maybe do better on x86 and provide cpu_clock_nmi()
2859 */
2860 time = sched_clock();
2861
2862 header.size += sizeof(u64);
2863 }
2864
2865 if (sample_type & PERF_SAMPLE_ADDR)
2866 header.size += sizeof(u64);
2867
2868 if (sample_type & PERF_SAMPLE_ID)
2869 header.size += sizeof(u64);
2870
2871 if (sample_type & PERF_SAMPLE_STREAM_ID)
2872 header.size += sizeof(u64);
2873
2874 if (sample_type & PERF_SAMPLE_CPU) {
2875 header.size += sizeof(cpu_entry);
2876
2877 cpu_entry.cpu = raw_smp_processor_id();
2878 cpu_entry.reserved = 0;
2879 }
2880
2881 if (sample_type & PERF_SAMPLE_PERIOD)
2882 header.size += sizeof(u64);
2883
2884 if (sample_type & PERF_SAMPLE_READ)
2885 header.size += perf_counter_read_size(counter);
2886
2887 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2888 callchain = perf_callchain(data->regs);
2889
2890 if (callchain) {
2891 callchain_size = (1 + callchain->nr) * sizeof(u64);
2892 header.size += callchain_size;
2893 } else
2894 header.size += sizeof(u64);
2895 }
2896
2897 if (sample_type & PERF_SAMPLE_RAW) {
2898 int size = sizeof(u32);
2899
2900 if (data->raw)
2901 size += data->raw->size;
2902 else
2903 size += sizeof(u32);
2904
2905 WARN_ON_ONCE(size & (sizeof(u64)-1));
2906 header.size += size;
2907 }
2908
2909 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2910 if (ret)
2911 return;
2912
2913 perf_output_put(&handle, header);
2914
2915 if (sample_type & PERF_SAMPLE_IP)
2916 perf_output_put(&handle, ip);
2917
2918 if (sample_type & PERF_SAMPLE_TID)
2919 perf_output_put(&handle, tid_entry);
2920
2921 if (sample_type & PERF_SAMPLE_TIME)
2922 perf_output_put(&handle, time);
2923
2924 if (sample_type & PERF_SAMPLE_ADDR)
2925 perf_output_put(&handle, data->addr);
2926
2927 if (sample_type & PERF_SAMPLE_ID) {
2928 u64 id = primary_counter_id(counter);
2929
2930 perf_output_put(&handle, id);
2931 }
2932
2933 if (sample_type & PERF_SAMPLE_STREAM_ID)
2934 perf_output_put(&handle, counter->id);
2935
2936 if (sample_type & PERF_SAMPLE_CPU)
2937 perf_output_put(&handle, cpu_entry);
2938
2939 if (sample_type & PERF_SAMPLE_PERIOD)
2940 perf_output_put(&handle, data->period);
2941
2942 if (sample_type & PERF_SAMPLE_READ)
2943 perf_output_read(&handle, counter);
2944
2945 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2946 if (callchain)
2947 perf_output_copy(&handle, callchain, callchain_size);
2948 else {
2949 u64 nr = 0;
2950 perf_output_put(&handle, nr);
2951 }
2952 }
2953
2954 if (sample_type & PERF_SAMPLE_RAW) {
2955 if (data->raw) {
2956 perf_output_put(&handle, data->raw->size);
2957 perf_output_copy(&handle, data->raw->data, data->raw->size);
2958 } else {
2959 struct {
2960 u32 size;
2961 u32 data;
2962 } raw = {
2963 .size = sizeof(u32),
2964 .data = 0,
2965 };
2966 perf_output_put(&handle, raw);
2967 }
2968 }
2969
2970 perf_output_end(&handle);
2971 }
2972
2973 /*
2974 * read event
2975 */
2976
2977 struct perf_read_event {
2978 struct perf_event_header header;
2979
2980 u32 pid;
2981 u32 tid;
2982 };
2983
2984 static void
2985 perf_counter_read_event(struct perf_counter *counter,
2986 struct task_struct *task)
2987 {
2988 struct perf_output_handle handle;
2989 struct perf_read_event event = {
2990 .header = {
2991 .type = PERF_EVENT_READ,
2992 .misc = 0,
2993 .size = sizeof(event) + perf_counter_read_size(counter),
2994 },
2995 .pid = perf_counter_pid(counter, task),
2996 .tid = perf_counter_tid(counter, task),
2997 };
2998 int ret;
2999
3000 ret = perf_output_begin(&handle, counter, event.header.size, 0, 0);
3001 if (ret)
3002 return;
3003
3004 perf_output_put(&handle, event);
3005 perf_output_read(&handle, counter);
3006
3007 perf_output_end(&handle);
3008 }
3009
3010 /*
3011 * task tracking -- fork/exit
3012 *
3013 * enabled by: attr.comm | attr.mmap | attr.task
3014 */
3015
3016 struct perf_task_event {
3017 struct task_struct *task;
3018 struct perf_counter_context *task_ctx;
3019
3020 struct {
3021 struct perf_event_header header;
3022
3023 u32 pid;
3024 u32 ppid;
3025 u32 tid;
3026 u32 ptid;
3027 } event;
3028 };
3029
3030 static void perf_counter_task_output(struct perf_counter *counter,
3031 struct perf_task_event *task_event)
3032 {
3033 struct perf_output_handle handle;
3034 int size = task_event->event.header.size;
3035 struct task_struct *task = task_event->task;
3036 int ret = perf_output_begin(&handle, counter, size, 0, 0);
3037
3038 if (ret)
3039 return;
3040
3041 task_event->event.pid = perf_counter_pid(counter, task);
3042 task_event->event.ppid = perf_counter_pid(counter, current);
3043
3044 task_event->event.tid = perf_counter_tid(counter, task);
3045 task_event->event.ptid = perf_counter_tid(counter, current);
3046
3047 perf_output_put(&handle, task_event->event);
3048 perf_output_end(&handle);
3049 }
3050
3051 static int perf_counter_task_match(struct perf_counter *counter)
3052 {
3053 if (counter->attr.comm || counter->attr.mmap || counter->attr.task)
3054 return 1;
3055
3056 return 0;
3057 }
3058
3059 static void perf_counter_task_ctx(struct perf_counter_context *ctx,
3060 struct perf_task_event *task_event)
3061 {
3062 struct perf_counter *counter;
3063
3064 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3065 return;
3066
3067 rcu_read_lock();
3068 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3069 if (perf_counter_task_match(counter))
3070 perf_counter_task_output(counter, task_event);
3071 }
3072 rcu_read_unlock();
3073 }
3074
3075 static void perf_counter_task_event(struct perf_task_event *task_event)
3076 {
3077 struct perf_cpu_context *cpuctx;
3078 struct perf_counter_context *ctx = task_event->task_ctx;
3079
3080 cpuctx = &get_cpu_var(perf_cpu_context);
3081 perf_counter_task_ctx(&cpuctx->ctx, task_event);
3082 put_cpu_var(perf_cpu_context);
3083
3084 rcu_read_lock();
3085 if (!ctx)
3086 ctx = rcu_dereference(task_event->task->perf_counter_ctxp);
3087 if (ctx)
3088 perf_counter_task_ctx(ctx, task_event);
3089 rcu_read_unlock();
3090 }
3091
3092 static void perf_counter_task(struct task_struct *task,
3093 struct perf_counter_context *task_ctx,
3094 int new)
3095 {
3096 struct perf_task_event task_event;
3097
3098 if (!atomic_read(&nr_comm_counters) &&
3099 !atomic_read(&nr_mmap_counters) &&
3100 !atomic_read(&nr_task_counters))
3101 return;
3102
3103 task_event = (struct perf_task_event){
3104 .task = task,
3105 .task_ctx = task_ctx,
3106 .event = {
3107 .header = {
3108 .type = new ? PERF_EVENT_FORK : PERF_EVENT_EXIT,
3109 .misc = 0,
3110 .size = sizeof(task_event.event),
3111 },
3112 /* .pid */
3113 /* .ppid */
3114 /* .tid */
3115 /* .ptid */
3116 },
3117 };
3118
3119 perf_counter_task_event(&task_event);
3120 }
3121
3122 void perf_counter_fork(struct task_struct *task)
3123 {
3124 perf_counter_task(task, NULL, 1);
3125 }
3126
3127 /*
3128 * comm tracking
3129 */
3130
3131 struct perf_comm_event {
3132 struct task_struct *task;
3133 char *comm;
3134 int comm_size;
3135
3136 struct {
3137 struct perf_event_header header;
3138
3139 u32 pid;
3140 u32 tid;
3141 } event;
3142 };
3143
3144 static void perf_counter_comm_output(struct perf_counter *counter,
3145 struct perf_comm_event *comm_event)
3146 {
3147 struct perf_output_handle handle;
3148 int size = comm_event->event.header.size;
3149 int ret = perf_output_begin(&handle, counter, size, 0, 0);
3150
3151 if (ret)
3152 return;
3153
3154 comm_event->event.pid = perf_counter_pid(counter, comm_event->task);
3155 comm_event->event.tid = perf_counter_tid(counter, comm_event->task);
3156
3157 perf_output_put(&handle, comm_event->event);
3158 perf_output_copy(&handle, comm_event->comm,
3159 comm_event->comm_size);
3160 perf_output_end(&handle);
3161 }
3162
3163 static int perf_counter_comm_match(struct perf_counter *counter)
3164 {
3165 if (counter->attr.comm)
3166 return 1;
3167
3168 return 0;
3169 }
3170
3171 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
3172 struct perf_comm_event *comm_event)
3173 {
3174 struct perf_counter *counter;
3175
3176 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3177 return;
3178
3179 rcu_read_lock();
3180 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3181 if (perf_counter_comm_match(counter))
3182 perf_counter_comm_output(counter, comm_event);
3183 }
3184 rcu_read_unlock();
3185 }
3186
3187 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
3188 {
3189 struct perf_cpu_context *cpuctx;
3190 struct perf_counter_context *ctx;
3191 unsigned int size;
3192 char comm[TASK_COMM_LEN];
3193
3194 memset(comm, 0, sizeof(comm));
3195 strncpy(comm, comm_event->task->comm, sizeof(comm));
3196 size = ALIGN(strlen(comm)+1, sizeof(u64));
3197
3198 comm_event->comm = comm;
3199 comm_event->comm_size = size;
3200
3201 comm_event->event.header.size = sizeof(comm_event->event) + size;
3202
3203 cpuctx = &get_cpu_var(perf_cpu_context);
3204 perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
3205 put_cpu_var(perf_cpu_context);
3206
3207 rcu_read_lock();
3208 /*
3209 * doesn't really matter which of the child contexts the
3210 * events ends up in.
3211 */
3212 ctx = rcu_dereference(current->perf_counter_ctxp);
3213 if (ctx)
3214 perf_counter_comm_ctx(ctx, comm_event);
3215 rcu_read_unlock();
3216 }
3217
3218 void perf_counter_comm(struct task_struct *task)
3219 {
3220 struct perf_comm_event comm_event;
3221
3222 if (task->perf_counter_ctxp)
3223 perf_counter_enable_on_exec(task);
3224
3225 if (!atomic_read(&nr_comm_counters))
3226 return;
3227
3228 comm_event = (struct perf_comm_event){
3229 .task = task,
3230 /* .comm */
3231 /* .comm_size */
3232 .event = {
3233 .header = {
3234 .type = PERF_EVENT_COMM,
3235 .misc = 0,
3236 /* .size */
3237 },
3238 /* .pid */
3239 /* .tid */
3240 },
3241 };
3242
3243 perf_counter_comm_event(&comm_event);
3244 }
3245
3246 /*
3247 * mmap tracking
3248 */
3249
3250 struct perf_mmap_event {
3251 struct vm_area_struct *vma;
3252
3253 const char *file_name;
3254 int file_size;
3255
3256 struct {
3257 struct perf_event_header header;
3258
3259 u32 pid;
3260 u32 tid;
3261 u64 start;
3262 u64 len;
3263 u64 pgoff;
3264 } event;
3265 };
3266
3267 static void perf_counter_mmap_output(struct perf_counter *counter,
3268 struct perf_mmap_event *mmap_event)
3269 {
3270 struct perf_output_handle handle;
3271 int size = mmap_event->event.header.size;
3272 int ret = perf_output_begin(&handle, counter, size, 0, 0);
3273
3274 if (ret)
3275 return;
3276
3277 mmap_event->event.pid = perf_counter_pid(counter, current);
3278 mmap_event->event.tid = perf_counter_tid(counter, current);
3279
3280 perf_output_put(&handle, mmap_event->event);
3281 perf_output_copy(&handle, mmap_event->file_name,
3282 mmap_event->file_size);
3283 perf_output_end(&handle);
3284 }
3285
3286 static int perf_counter_mmap_match(struct perf_counter *counter,
3287 struct perf_mmap_event *mmap_event)
3288 {
3289 if (counter->attr.mmap)
3290 return 1;
3291
3292 return 0;
3293 }
3294
3295 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
3296 struct perf_mmap_event *mmap_event)
3297 {
3298 struct perf_counter *counter;
3299
3300 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3301 return;
3302
3303 rcu_read_lock();
3304 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3305 if (perf_counter_mmap_match(counter, mmap_event))
3306 perf_counter_mmap_output(counter, mmap_event);
3307 }
3308 rcu_read_unlock();
3309 }
3310
3311 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
3312 {
3313 struct perf_cpu_context *cpuctx;
3314 struct perf_counter_context *ctx;
3315 struct vm_area_struct *vma = mmap_event->vma;
3316 struct file *file = vma->vm_file;
3317 unsigned int size;
3318 char tmp[16];
3319 char *buf = NULL;
3320 const char *name;
3321
3322 memset(tmp, 0, sizeof(tmp));
3323
3324 if (file) {
3325 /*
3326 * d_path works from the end of the buffer backwards, so we
3327 * need to add enough zero bytes after the string to handle
3328 * the 64bit alignment we do later.
3329 */
3330 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3331 if (!buf) {
3332 name = strncpy(tmp, "//enomem", sizeof(tmp));
3333 goto got_name;
3334 }
3335 name = d_path(&file->f_path, buf, PATH_MAX);
3336 if (IS_ERR(name)) {
3337 name = strncpy(tmp, "//toolong", sizeof(tmp));
3338 goto got_name;
3339 }
3340 } else {
3341 if (arch_vma_name(mmap_event->vma)) {
3342 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3343 sizeof(tmp));
3344 goto got_name;
3345 }
3346
3347 if (!vma->vm_mm) {
3348 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3349 goto got_name;
3350 }
3351
3352 name = strncpy(tmp, "//anon", sizeof(tmp));
3353 goto got_name;
3354 }
3355
3356 got_name:
3357 size = ALIGN(strlen(name)+1, sizeof(u64));
3358
3359 mmap_event->file_name = name;
3360 mmap_event->file_size = size;
3361
3362 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
3363
3364 cpuctx = &get_cpu_var(perf_cpu_context);
3365 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
3366 put_cpu_var(perf_cpu_context);
3367
3368 rcu_read_lock();
3369 /*
3370 * doesn't really matter which of the child contexts the
3371 * events ends up in.
3372 */
3373 ctx = rcu_dereference(current->perf_counter_ctxp);
3374 if (ctx)
3375 perf_counter_mmap_ctx(ctx, mmap_event);
3376 rcu_read_unlock();
3377
3378 kfree(buf);
3379 }
3380
3381 void __perf_counter_mmap(struct vm_area_struct *vma)
3382 {
3383 struct perf_mmap_event mmap_event;
3384
3385 if (!atomic_read(&nr_mmap_counters))
3386 return;
3387
3388 mmap_event = (struct perf_mmap_event){
3389 .vma = vma,
3390 /* .file_name */
3391 /* .file_size */
3392 .event = {
3393 .header = {
3394 .type = PERF_EVENT_MMAP,
3395 .misc = 0,
3396 /* .size */
3397 },
3398 /* .pid */
3399 /* .tid */
3400 .start = vma->vm_start,
3401 .len = vma->vm_end - vma->vm_start,
3402 .pgoff = vma->vm_pgoff,
3403 },
3404 };
3405
3406 perf_counter_mmap_event(&mmap_event);
3407 }
3408
3409 /*
3410 * IRQ throttle logging
3411 */
3412
3413 static void perf_log_throttle(struct perf_counter *counter, int enable)
3414 {
3415 struct perf_output_handle handle;
3416 int ret;
3417
3418 struct {
3419 struct perf_event_header header;
3420 u64 time;
3421 u64 id;
3422 u64 stream_id;
3423 } throttle_event = {
3424 .header = {
3425 .type = PERF_EVENT_THROTTLE,
3426 .misc = 0,
3427 .size = sizeof(throttle_event),
3428 },
3429 .time = sched_clock(),
3430 .id = primary_counter_id(counter),
3431 .stream_id = counter->id,
3432 };
3433
3434 if (enable)
3435 throttle_event.header.type = PERF_EVENT_UNTHROTTLE;
3436
3437 ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
3438 if (ret)
3439 return;
3440
3441 perf_output_put(&handle, throttle_event);
3442 perf_output_end(&handle);
3443 }
3444
3445 /*
3446 * Generic counter overflow handling, sampling.
3447 */
3448
3449 int perf_counter_overflow(struct perf_counter *counter, int nmi,
3450 struct perf_sample_data *data)
3451 {
3452 int events = atomic_read(&counter->event_limit);
3453 int throttle = counter->pmu->unthrottle != NULL;
3454 struct hw_perf_counter *hwc = &counter->hw;
3455 int ret = 0;
3456
3457 if (!throttle) {
3458 hwc->interrupts++;
3459 } else {
3460 if (hwc->interrupts != MAX_INTERRUPTS) {
3461 hwc->interrupts++;
3462 if (HZ * hwc->interrupts >
3463 (u64)sysctl_perf_counter_sample_rate) {
3464 hwc->interrupts = MAX_INTERRUPTS;
3465 perf_log_throttle(counter, 0);
3466 ret = 1;
3467 }
3468 } else {
3469 /*
3470 * Keep re-disabling counters even though on the previous
3471 * pass we disabled it - just in case we raced with a
3472 * sched-in and the counter got enabled again:
3473 */
3474 ret = 1;
3475 }
3476 }
3477
3478 if (counter->attr.freq) {
3479 u64 now = sched_clock();
3480 s64 delta = now - hwc->freq_stamp;
3481
3482 hwc->freq_stamp = now;
3483
3484 if (delta > 0 && delta < TICK_NSEC)
3485 perf_adjust_period(counter, NSEC_PER_SEC / (int)delta);
3486 }
3487
3488 /*
3489 * XXX event_limit might not quite work as expected on inherited
3490 * counters
3491 */
3492
3493 counter->pending_kill = POLL_IN;
3494 if (events && atomic_dec_and_test(&counter->event_limit)) {
3495 ret = 1;
3496 counter->pending_kill = POLL_HUP;
3497 if (nmi) {
3498 counter->pending_disable = 1;
3499 perf_pending_queue(&counter->pending,
3500 perf_pending_counter);
3501 } else
3502 perf_counter_disable(counter);
3503 }
3504
3505 perf_counter_output(counter, nmi, data);
3506 return ret;
3507 }
3508
3509 /*
3510 * Generic software counter infrastructure
3511 */
3512
3513 /*
3514 * We directly increment counter->count and keep a second value in
3515 * counter->hw.period_left to count intervals. This period counter
3516 * is kept in the range [-sample_period, 0] so that we can use the
3517 * sign as trigger.
3518 */
3519
3520 static u64 perf_swcounter_set_period(struct perf_counter *counter)
3521 {
3522 struct hw_perf_counter *hwc = &counter->hw;
3523 u64 period = hwc->last_period;
3524 u64 nr, offset;
3525 s64 old, val;
3526
3527 hwc->last_period = hwc->sample_period;
3528
3529 again:
3530 old = val = atomic64_read(&hwc->period_left);
3531 if (val < 0)
3532 return 0;
3533
3534 nr = div64_u64(period + val, period);
3535 offset = nr * period;
3536 val -= offset;
3537 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3538 goto again;
3539
3540 return nr;
3541 }
3542
3543 static void perf_swcounter_overflow(struct perf_counter *counter,
3544 int nmi, struct perf_sample_data *data)
3545 {
3546 struct hw_perf_counter *hwc = &counter->hw;
3547 u64 overflow;
3548
3549 data->period = counter->hw.last_period;
3550 overflow = perf_swcounter_set_period(counter);
3551
3552 if (hwc->interrupts == MAX_INTERRUPTS)
3553 return;
3554
3555 for (; overflow; overflow--) {
3556 if (perf_counter_overflow(counter, nmi, data)) {
3557 /*
3558 * We inhibit the overflow from happening when
3559 * hwc->interrupts == MAX_INTERRUPTS.
3560 */
3561 break;
3562 }
3563 }
3564 }
3565
3566 static void perf_swcounter_unthrottle(struct perf_counter *counter)
3567 {
3568 /*
3569 * Nothing to do, we already reset hwc->interrupts.
3570 */
3571 }
3572
3573 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
3574 int nmi, struct perf_sample_data *data)
3575 {
3576 struct hw_perf_counter *hwc = &counter->hw;
3577
3578 atomic64_add(nr, &counter->count);
3579
3580 if (!hwc->sample_period)
3581 return;
3582
3583 if (!data->regs)
3584 return;
3585
3586 if (!atomic64_add_negative(nr, &hwc->period_left))
3587 perf_swcounter_overflow(counter, nmi, data);
3588 }
3589
3590 static int perf_swcounter_is_counting(struct perf_counter *counter)
3591 {
3592 /*
3593 * The counter is active, we're good!
3594 */
3595 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
3596 return 1;
3597
3598 /*
3599 * The counter is off/error, not counting.
3600 */
3601 if (counter->state != PERF_COUNTER_STATE_INACTIVE)
3602 return 0;
3603
3604 /*
3605 * The counter is inactive, if the context is active
3606 * we're part of a group that didn't make it on the 'pmu',
3607 * not counting.
3608 */
3609 if (counter->ctx->is_active)
3610 return 0;
3611
3612 /*
3613 * We're inactive and the context is too, this means the
3614 * task is scheduled out, we're counting events that happen
3615 * to us, like migration events.
3616 */
3617 return 1;
3618 }
3619
3620 static int perf_swcounter_match(struct perf_counter *counter,
3621 enum perf_type_id type,
3622 u32 event, struct pt_regs *regs)
3623 {
3624 if (!perf_swcounter_is_counting(counter))
3625 return 0;
3626
3627 if (counter->attr.type != type)
3628 return 0;
3629 if (counter->attr.config != event)
3630 return 0;
3631
3632 if (regs) {
3633 if (counter->attr.exclude_user && user_mode(regs))
3634 return 0;
3635
3636 if (counter->attr.exclude_kernel && !user_mode(regs))
3637 return 0;
3638 }
3639
3640 return 1;
3641 }
3642
3643 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
3644 enum perf_type_id type,
3645 u32 event, u64 nr, int nmi,
3646 struct perf_sample_data *data)
3647 {
3648 struct perf_counter *counter;
3649
3650 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3651 return;
3652
3653 rcu_read_lock();
3654 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3655 if (perf_swcounter_match(counter, type, event, data->regs))
3656 perf_swcounter_add(counter, nr, nmi, data);
3657 }
3658 rcu_read_unlock();
3659 }
3660
3661 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
3662 {
3663 if (in_nmi())
3664 return &cpuctx->recursion[3];
3665
3666 if (in_irq())
3667 return &cpuctx->recursion[2];
3668
3669 if (in_softirq())
3670 return &cpuctx->recursion[1];
3671
3672 return &cpuctx->recursion[0];
3673 }
3674
3675 static void do_perf_swcounter_event(enum perf_type_id type, u32 event,
3676 u64 nr, int nmi,
3677 struct perf_sample_data *data)
3678 {
3679 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3680 int *recursion = perf_swcounter_recursion_context(cpuctx);
3681 struct perf_counter_context *ctx;
3682
3683 if (*recursion)
3684 goto out;
3685
3686 (*recursion)++;
3687 barrier();
3688
3689 perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
3690 nr, nmi, data);
3691 rcu_read_lock();
3692 /*
3693 * doesn't really matter which of the child contexts the
3694 * events ends up in.
3695 */
3696 ctx = rcu_dereference(current->perf_counter_ctxp);
3697 if (ctx)
3698 perf_swcounter_ctx_event(ctx, type, event, nr, nmi, data);
3699 rcu_read_unlock();
3700
3701 barrier();
3702 (*recursion)--;
3703
3704 out:
3705 put_cpu_var(perf_cpu_context);
3706 }
3707
3708 void __perf_swcounter_event(u32 event, u64 nr, int nmi,
3709 struct pt_regs *regs, u64 addr)
3710 {
3711 struct perf_sample_data data = {
3712 .regs = regs,
3713 .addr = addr,
3714 };
3715
3716 do_perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, &data);
3717 }
3718
3719 static void perf_swcounter_read(struct perf_counter *counter)
3720 {
3721 }
3722
3723 static int perf_swcounter_enable(struct perf_counter *counter)
3724 {
3725 struct hw_perf_counter *hwc = &counter->hw;
3726
3727 if (hwc->sample_period) {
3728 hwc->last_period = hwc->sample_period;
3729 perf_swcounter_set_period(counter);
3730 }
3731 return 0;
3732 }
3733
3734 static void perf_swcounter_disable(struct perf_counter *counter)
3735 {
3736 }
3737
3738 static const struct pmu perf_ops_generic = {
3739 .enable = perf_swcounter_enable,
3740 .disable = perf_swcounter_disable,
3741 .read = perf_swcounter_read,
3742 .unthrottle = perf_swcounter_unthrottle,
3743 };
3744
3745 /*
3746 * hrtimer based swcounter callback
3747 */
3748
3749 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
3750 {
3751 enum hrtimer_restart ret = HRTIMER_RESTART;
3752 struct perf_sample_data data;
3753 struct perf_counter *counter;
3754 u64 period;
3755
3756 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
3757 counter->pmu->read(counter);
3758
3759 data.addr = 0;
3760 data.regs = get_irq_regs();
3761 /*
3762 * In case we exclude kernel IPs or are somehow not in interrupt
3763 * context, provide the next best thing, the user IP.
3764 */
3765 if ((counter->attr.exclude_kernel || !data.regs) &&
3766 !counter->attr.exclude_user)
3767 data.regs = task_pt_regs(current);
3768
3769 if (data.regs) {
3770 if (perf_counter_overflow(counter, 0, &data))
3771 ret = HRTIMER_NORESTART;
3772 }
3773
3774 period = max_t(u64, 10000, counter->hw.sample_period);
3775 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3776
3777 return ret;
3778 }
3779
3780 /*
3781 * Software counter: cpu wall time clock
3782 */
3783
3784 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
3785 {
3786 int cpu = raw_smp_processor_id();
3787 s64 prev;
3788 u64 now;
3789
3790 now = cpu_clock(cpu);
3791 prev = atomic64_read(&counter->hw.prev_count);
3792 atomic64_set(&counter->hw.prev_count, now);
3793 atomic64_add(now - prev, &counter->count);
3794 }
3795
3796 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
3797 {
3798 struct hw_perf_counter *hwc = &counter->hw;
3799 int cpu = raw_smp_processor_id();
3800
3801 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3802 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3803 hwc->hrtimer.function = perf_swcounter_hrtimer;
3804 if (hwc->sample_period) {
3805 u64 period = max_t(u64, 10000, hwc->sample_period);
3806 __hrtimer_start_range_ns(&hwc->hrtimer,
3807 ns_to_ktime(period), 0,
3808 HRTIMER_MODE_REL, 0);
3809 }
3810
3811 return 0;
3812 }
3813
3814 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
3815 {
3816 if (counter->hw.sample_period)
3817 hrtimer_cancel(&counter->hw.hrtimer);
3818 cpu_clock_perf_counter_update(counter);
3819 }
3820
3821 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
3822 {
3823 cpu_clock_perf_counter_update(counter);
3824 }
3825
3826 static const struct pmu perf_ops_cpu_clock = {
3827 .enable = cpu_clock_perf_counter_enable,
3828 .disable = cpu_clock_perf_counter_disable,
3829 .read = cpu_clock_perf_counter_read,
3830 };
3831
3832 /*
3833 * Software counter: task time clock
3834 */
3835
3836 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
3837 {
3838 u64 prev;
3839 s64 delta;
3840
3841 prev = atomic64_xchg(&counter->hw.prev_count, now);
3842 delta = now - prev;
3843 atomic64_add(delta, &counter->count);
3844 }
3845
3846 static int task_clock_perf_counter_enable(struct perf_counter *counter)
3847 {
3848 struct hw_perf_counter *hwc = &counter->hw;
3849 u64 now;
3850
3851 now = counter->ctx->time;
3852
3853 atomic64_set(&hwc->prev_count, now);
3854 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3855 hwc->hrtimer.function = perf_swcounter_hrtimer;
3856 if (hwc->sample_period) {
3857 u64 period = max_t(u64, 10000, hwc->sample_period);
3858 __hrtimer_start_range_ns(&hwc->hrtimer,
3859 ns_to_ktime(period), 0,
3860 HRTIMER_MODE_REL, 0);
3861 }
3862
3863 return 0;
3864 }
3865
3866 static void task_clock_perf_counter_disable(struct perf_counter *counter)
3867 {
3868 if (counter->hw.sample_period)
3869 hrtimer_cancel(&counter->hw.hrtimer);
3870 task_clock_perf_counter_update(counter, counter->ctx->time);
3871
3872 }
3873
3874 static void task_clock_perf_counter_read(struct perf_counter *counter)
3875 {
3876 u64 time;
3877
3878 if (!in_nmi()) {
3879 update_context_time(counter->ctx);
3880 time = counter->ctx->time;
3881 } else {
3882 u64 now = perf_clock();
3883 u64 delta = now - counter->ctx->timestamp;
3884 time = counter->ctx->time + delta;
3885 }
3886
3887 task_clock_perf_counter_update(counter, time);
3888 }
3889
3890 static const struct pmu perf_ops_task_clock = {
3891 .enable = task_clock_perf_counter_enable,
3892 .disable = task_clock_perf_counter_disable,
3893 .read = task_clock_perf_counter_read,
3894 };
3895
3896 #ifdef CONFIG_EVENT_PROFILE
3897 void perf_tpcounter_event(int event_id, u64 addr, u64 count, void *record,
3898 int entry_size)
3899 {
3900 struct perf_raw_record raw = {
3901 .size = entry_size,
3902 .data = record,
3903 };
3904
3905 struct perf_sample_data data = {
3906 .regs = get_irq_regs(),
3907 .addr = addr,
3908 .raw = &raw,
3909 };
3910
3911 if (!data.regs)
3912 data.regs = task_pt_regs(current);
3913
3914 do_perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, count, 1, &data);
3915 }
3916 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3917
3918 extern int ftrace_profile_enable(int);
3919 extern void ftrace_profile_disable(int);
3920
3921 static void tp_perf_counter_destroy(struct perf_counter *counter)
3922 {
3923 ftrace_profile_disable(counter->attr.config);
3924 }
3925
3926 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3927 {
3928 /*
3929 * Raw tracepoint data is a severe data leak, only allow root to
3930 * have these.
3931 */
3932 if ((counter->attr.sample_type & PERF_SAMPLE_RAW) &&
3933 !capable(CAP_SYS_ADMIN))
3934 return ERR_PTR(-EPERM);
3935
3936 if (ftrace_profile_enable(counter->attr.config))
3937 return NULL;
3938
3939 counter->destroy = tp_perf_counter_destroy;
3940
3941 return &perf_ops_generic;
3942 }
3943 #else
3944 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3945 {
3946 return NULL;
3947 }
3948 #endif
3949
3950 atomic_t perf_swcounter_enabled[PERF_COUNT_SW_MAX];
3951
3952 static void sw_perf_counter_destroy(struct perf_counter *counter)
3953 {
3954 u64 event = counter->attr.config;
3955
3956 WARN_ON(counter->parent);
3957
3958 atomic_dec(&perf_swcounter_enabled[event]);
3959 }
3960
3961 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3962 {
3963 const struct pmu *pmu = NULL;
3964 u64 event = counter->attr.config;
3965
3966 /*
3967 * Software counters (currently) can't in general distinguish
3968 * between user, kernel and hypervisor events.
3969 * However, context switches and cpu migrations are considered
3970 * to be kernel events, and page faults are never hypervisor
3971 * events.
3972 */
3973 switch (event) {
3974 case PERF_COUNT_SW_CPU_CLOCK:
3975 pmu = &perf_ops_cpu_clock;
3976
3977 break;
3978 case PERF_COUNT_SW_TASK_CLOCK:
3979 /*
3980 * If the user instantiates this as a per-cpu counter,
3981 * use the cpu_clock counter instead.
3982 */
3983 if (counter->ctx->task)
3984 pmu = &perf_ops_task_clock;
3985 else
3986 pmu = &perf_ops_cpu_clock;
3987
3988 break;
3989 case PERF_COUNT_SW_PAGE_FAULTS:
3990 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
3991 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
3992 case PERF_COUNT_SW_CONTEXT_SWITCHES:
3993 case PERF_COUNT_SW_CPU_MIGRATIONS:
3994 if (!counter->parent) {
3995 atomic_inc(&perf_swcounter_enabled[event]);
3996 counter->destroy = sw_perf_counter_destroy;
3997 }
3998 pmu = &perf_ops_generic;
3999 break;
4000 }
4001
4002 return pmu;
4003 }
4004
4005 /*
4006 * Allocate and initialize a counter structure
4007 */
4008 static struct perf_counter *
4009 perf_counter_alloc(struct perf_counter_attr *attr,
4010 int cpu,
4011 struct perf_counter_context *ctx,
4012 struct perf_counter *group_leader,
4013 struct perf_counter *parent_counter,
4014 gfp_t gfpflags)
4015 {
4016 const struct pmu *pmu;
4017 struct perf_counter *counter;
4018 struct hw_perf_counter *hwc;
4019 long err;
4020
4021 counter = kzalloc(sizeof(*counter), gfpflags);
4022 if (!counter)
4023 return ERR_PTR(-ENOMEM);
4024
4025 /*
4026 * Single counters are their own group leaders, with an
4027 * empty sibling list:
4028 */
4029 if (!group_leader)
4030 group_leader = counter;
4031
4032 mutex_init(&counter->child_mutex);
4033 INIT_LIST_HEAD(&counter->child_list);
4034
4035 INIT_LIST_HEAD(&counter->list_entry);
4036 INIT_LIST_HEAD(&counter->event_entry);
4037 INIT_LIST_HEAD(&counter->sibling_list);
4038 init_waitqueue_head(&counter->waitq);
4039
4040 mutex_init(&counter->mmap_mutex);
4041
4042 counter->cpu = cpu;
4043 counter->attr = *attr;
4044 counter->group_leader = group_leader;
4045 counter->pmu = NULL;
4046 counter->ctx = ctx;
4047 counter->oncpu = -1;
4048
4049 counter->parent = parent_counter;
4050
4051 counter->ns = get_pid_ns(current->nsproxy->pid_ns);
4052 counter->id = atomic64_inc_return(&perf_counter_id);
4053
4054 counter->state = PERF_COUNTER_STATE_INACTIVE;
4055
4056 if (attr->disabled)
4057 counter->state = PERF_COUNTER_STATE_OFF;
4058
4059 pmu = NULL;
4060
4061 hwc = &counter->hw;
4062 hwc->sample_period = attr->sample_period;
4063 if (attr->freq && attr->sample_freq)
4064 hwc->sample_period = 1;
4065
4066 atomic64_set(&hwc->period_left, hwc->sample_period);
4067
4068 /*
4069 * we currently do not support PERF_FORMAT_GROUP on inherited counters
4070 */
4071 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4072 goto done;
4073
4074 switch (attr->type) {
4075 case PERF_TYPE_RAW:
4076 case PERF_TYPE_HARDWARE:
4077 case PERF_TYPE_HW_CACHE:
4078 pmu = hw_perf_counter_init(counter);
4079 break;
4080
4081 case PERF_TYPE_SOFTWARE:
4082 pmu = sw_perf_counter_init(counter);
4083 break;
4084
4085 case PERF_TYPE_TRACEPOINT:
4086 pmu = tp_perf_counter_init(counter);
4087 break;
4088
4089 default:
4090 break;
4091 }
4092 done:
4093 err = 0;
4094 if (!pmu)
4095 err = -EINVAL;
4096 else if (IS_ERR(pmu))
4097 err = PTR_ERR(pmu);
4098
4099 if (err) {
4100 if (counter->ns)
4101 put_pid_ns(counter->ns);
4102 kfree(counter);
4103 return ERR_PTR(err);
4104 }
4105
4106 counter->pmu = pmu;
4107
4108 if (!counter->parent) {
4109 atomic_inc(&nr_counters);
4110 if (counter->attr.mmap)
4111 atomic_inc(&nr_mmap_counters);
4112 if (counter->attr.comm)
4113 atomic_inc(&nr_comm_counters);
4114 if (counter->attr.task)
4115 atomic_inc(&nr_task_counters);
4116 }
4117
4118 return counter;
4119 }
4120
4121 static int perf_copy_attr(struct perf_counter_attr __user *uattr,
4122 struct perf_counter_attr *attr)
4123 {
4124 int ret;
4125 u32 size;
4126
4127 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4128 return -EFAULT;
4129
4130 /*
4131 * zero the full structure, so that a short copy will be nice.
4132 */
4133 memset(attr, 0, sizeof(*attr));
4134
4135 ret = get_user(size, &uattr->size);
4136 if (ret)
4137 return ret;
4138
4139 if (size > PAGE_SIZE) /* silly large */
4140 goto err_size;
4141
4142 if (!size) /* abi compat */
4143 size = PERF_ATTR_SIZE_VER0;
4144
4145 if (size < PERF_ATTR_SIZE_VER0)
4146 goto err_size;
4147
4148 /*
4149 * If we're handed a bigger struct than we know of,
4150 * ensure all the unknown bits are 0.
4151 */
4152 if (size > sizeof(*attr)) {
4153 unsigned long val;
4154 unsigned long __user *addr;
4155 unsigned long __user *end;
4156
4157 addr = PTR_ALIGN((void __user *)uattr + sizeof(*attr),
4158 sizeof(unsigned long));
4159 end = PTR_ALIGN((void __user *)uattr + size,
4160 sizeof(unsigned long));
4161
4162 for (; addr < end; addr += sizeof(unsigned long)) {
4163 ret = get_user(val, addr);
4164 if (ret)
4165 return ret;
4166 if (val)
4167 goto err_size;
4168 }
4169 }
4170
4171 ret = copy_from_user(attr, uattr, size);
4172 if (ret)
4173 return -EFAULT;
4174
4175 /*
4176 * If the type exists, the corresponding creation will verify
4177 * the attr->config.
4178 */
4179 if (attr->type >= PERF_TYPE_MAX)
4180 return -EINVAL;
4181
4182 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
4183 return -EINVAL;
4184
4185 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4186 return -EINVAL;
4187
4188 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4189 return -EINVAL;
4190
4191 out:
4192 return ret;
4193
4194 err_size:
4195 put_user(sizeof(*attr), &uattr->size);
4196 ret = -E2BIG;
4197 goto out;
4198 }
4199
4200 /**
4201 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
4202 *
4203 * @attr_uptr: event type attributes for monitoring/sampling
4204 * @pid: target pid
4205 * @cpu: target cpu
4206 * @group_fd: group leader counter fd
4207 */
4208 SYSCALL_DEFINE5(perf_counter_open,
4209 struct perf_counter_attr __user *, attr_uptr,
4210 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4211 {
4212 struct perf_counter *counter, *group_leader;
4213 struct perf_counter_attr attr;
4214 struct perf_counter_context *ctx;
4215 struct file *counter_file = NULL;
4216 struct file *group_file = NULL;
4217 int fput_needed = 0;
4218 int fput_needed2 = 0;
4219 int ret;
4220
4221 /* for future expandability... */
4222 if (flags)
4223 return -EINVAL;
4224
4225 ret = perf_copy_attr(attr_uptr, &attr);
4226 if (ret)
4227 return ret;
4228
4229 if (!attr.exclude_kernel) {
4230 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4231 return -EACCES;
4232 }
4233
4234 if (attr.freq) {
4235 if (attr.sample_freq > sysctl_perf_counter_sample_rate)
4236 return -EINVAL;
4237 }
4238
4239 /*
4240 * Get the target context (task or percpu):
4241 */
4242 ctx = find_get_context(pid, cpu);
4243 if (IS_ERR(ctx))
4244 return PTR_ERR(ctx);
4245
4246 /*
4247 * Look up the group leader (we will attach this counter to it):
4248 */
4249 group_leader = NULL;
4250 if (group_fd != -1) {
4251 ret = -EINVAL;
4252 group_file = fget_light(group_fd, &fput_needed);
4253 if (!group_file)
4254 goto err_put_context;
4255 if (group_file->f_op != &perf_fops)
4256 goto err_put_context;
4257
4258 group_leader = group_file->private_data;
4259 /*
4260 * Do not allow a recursive hierarchy (this new sibling
4261 * becoming part of another group-sibling):
4262 */
4263 if (group_leader->group_leader != group_leader)
4264 goto err_put_context;
4265 /*
4266 * Do not allow to attach to a group in a different
4267 * task or CPU context:
4268 */
4269 if (group_leader->ctx != ctx)
4270 goto err_put_context;
4271 /*
4272 * Only a group leader can be exclusive or pinned
4273 */
4274 if (attr.exclusive || attr.pinned)
4275 goto err_put_context;
4276 }
4277
4278 counter = perf_counter_alloc(&attr, cpu, ctx, group_leader,
4279 NULL, GFP_KERNEL);
4280 ret = PTR_ERR(counter);
4281 if (IS_ERR(counter))
4282 goto err_put_context;
4283
4284 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
4285 if (ret < 0)
4286 goto err_free_put_context;
4287
4288 counter_file = fget_light(ret, &fput_needed2);
4289 if (!counter_file)
4290 goto err_free_put_context;
4291
4292 counter->filp = counter_file;
4293 WARN_ON_ONCE(ctx->parent_ctx);
4294 mutex_lock(&ctx->mutex);
4295 perf_install_in_context(ctx, counter, cpu);
4296 ++ctx->generation;
4297 mutex_unlock(&ctx->mutex);
4298
4299 counter->owner = current;
4300 get_task_struct(current);
4301 mutex_lock(&current->perf_counter_mutex);
4302 list_add_tail(&counter->owner_entry, &current->perf_counter_list);
4303 mutex_unlock(&current->perf_counter_mutex);
4304
4305 fput_light(counter_file, fput_needed2);
4306
4307 out_fput:
4308 fput_light(group_file, fput_needed);
4309
4310 return ret;
4311
4312 err_free_put_context:
4313 kfree(counter);
4314
4315 err_put_context:
4316 put_ctx(ctx);
4317
4318 goto out_fput;
4319 }
4320
4321 /*
4322 * inherit a counter from parent task to child task:
4323 */
4324 static struct perf_counter *
4325 inherit_counter(struct perf_counter *parent_counter,
4326 struct task_struct *parent,
4327 struct perf_counter_context *parent_ctx,
4328 struct task_struct *child,
4329 struct perf_counter *group_leader,
4330 struct perf_counter_context *child_ctx)
4331 {
4332 struct perf_counter *child_counter;
4333
4334 /*
4335 * Instead of creating recursive hierarchies of counters,
4336 * we link inherited counters back to the original parent,
4337 * which has a filp for sure, which we use as the reference
4338 * count:
4339 */
4340 if (parent_counter->parent)
4341 parent_counter = parent_counter->parent;
4342
4343 child_counter = perf_counter_alloc(&parent_counter->attr,
4344 parent_counter->cpu, child_ctx,
4345 group_leader, parent_counter,
4346 GFP_KERNEL);
4347 if (IS_ERR(child_counter))
4348 return child_counter;
4349 get_ctx(child_ctx);
4350
4351 /*
4352 * Make the child state follow the state of the parent counter,
4353 * not its attr.disabled bit. We hold the parent's mutex,
4354 * so we won't race with perf_counter_{en, dis}able_family.
4355 */
4356 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
4357 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
4358 else
4359 child_counter->state = PERF_COUNTER_STATE_OFF;
4360
4361 if (parent_counter->attr.freq)
4362 child_counter->hw.sample_period = parent_counter->hw.sample_period;
4363
4364 /*
4365 * Link it up in the child's context:
4366 */
4367 add_counter_to_ctx(child_counter, child_ctx);
4368
4369 /*
4370 * Get a reference to the parent filp - we will fput it
4371 * when the child counter exits. This is safe to do because
4372 * we are in the parent and we know that the filp still
4373 * exists and has a nonzero count:
4374 */
4375 atomic_long_inc(&parent_counter->filp->f_count);
4376
4377 /*
4378 * Link this into the parent counter's child list
4379 */
4380 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
4381 mutex_lock(&parent_counter->child_mutex);
4382 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
4383 mutex_unlock(&parent_counter->child_mutex);
4384
4385 return child_counter;
4386 }
4387
4388 static int inherit_group(struct perf_counter *parent_counter,
4389 struct task_struct *parent,
4390 struct perf_counter_context *parent_ctx,
4391 struct task_struct *child,
4392 struct perf_counter_context *child_ctx)
4393 {
4394 struct perf_counter *leader;
4395 struct perf_counter *sub;
4396 struct perf_counter *child_ctr;
4397
4398 leader = inherit_counter(parent_counter, parent, parent_ctx,
4399 child, NULL, child_ctx);
4400 if (IS_ERR(leader))
4401 return PTR_ERR(leader);
4402 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
4403 child_ctr = inherit_counter(sub, parent, parent_ctx,
4404 child, leader, child_ctx);
4405 if (IS_ERR(child_ctr))
4406 return PTR_ERR(child_ctr);
4407 }
4408 return 0;
4409 }
4410
4411 static void sync_child_counter(struct perf_counter *child_counter,
4412 struct task_struct *child)
4413 {
4414 struct perf_counter *parent_counter = child_counter->parent;
4415 u64 child_val;
4416
4417 if (child_counter->attr.inherit_stat)
4418 perf_counter_read_event(child_counter, child);
4419
4420 child_val = atomic64_read(&child_counter->count);
4421
4422 /*
4423 * Add back the child's count to the parent's count:
4424 */
4425 atomic64_add(child_val, &parent_counter->count);
4426 atomic64_add(child_counter->total_time_enabled,
4427 &parent_counter->child_total_time_enabled);
4428 atomic64_add(child_counter->total_time_running,
4429 &parent_counter->child_total_time_running);
4430
4431 /*
4432 * Remove this counter from the parent's list
4433 */
4434 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
4435 mutex_lock(&parent_counter->child_mutex);
4436 list_del_init(&child_counter->child_list);
4437 mutex_unlock(&parent_counter->child_mutex);
4438
4439 /*
4440 * Release the parent counter, if this was the last
4441 * reference to it.
4442 */
4443 fput(parent_counter->filp);
4444 }
4445
4446 static void
4447 __perf_counter_exit_task(struct perf_counter *child_counter,
4448 struct perf_counter_context *child_ctx,
4449 struct task_struct *child)
4450 {
4451 struct perf_counter *parent_counter;
4452
4453 update_counter_times(child_counter);
4454 perf_counter_remove_from_context(child_counter);
4455
4456 parent_counter = child_counter->parent;
4457 /*
4458 * It can happen that parent exits first, and has counters
4459 * that are still around due to the child reference. These
4460 * counters need to be zapped - but otherwise linger.
4461 */
4462 if (parent_counter) {
4463 sync_child_counter(child_counter, child);
4464 free_counter(child_counter);
4465 }
4466 }
4467
4468 /*
4469 * When a child task exits, feed back counter values to parent counters.
4470 */
4471 void perf_counter_exit_task(struct task_struct *child)
4472 {
4473 struct perf_counter *child_counter, *tmp;
4474 struct perf_counter_context *child_ctx;
4475 unsigned long flags;
4476
4477 if (likely(!child->perf_counter_ctxp)) {
4478 perf_counter_task(child, NULL, 0);
4479 return;
4480 }
4481
4482 local_irq_save(flags);
4483 /*
4484 * We can't reschedule here because interrupts are disabled,
4485 * and either child is current or it is a task that can't be
4486 * scheduled, so we are now safe from rescheduling changing
4487 * our context.
4488 */
4489 child_ctx = child->perf_counter_ctxp;
4490 __perf_counter_task_sched_out(child_ctx);
4491
4492 /*
4493 * Take the context lock here so that if find_get_context is
4494 * reading child->perf_counter_ctxp, we wait until it has
4495 * incremented the context's refcount before we do put_ctx below.
4496 */
4497 spin_lock(&child_ctx->lock);
4498 child->perf_counter_ctxp = NULL;
4499 /*
4500 * If this context is a clone; unclone it so it can't get
4501 * swapped to another process while we're removing all
4502 * the counters from it.
4503 */
4504 unclone_ctx(child_ctx);
4505 spin_unlock_irqrestore(&child_ctx->lock, flags);
4506
4507 /*
4508 * Report the task dead after unscheduling the counters so that we
4509 * won't get any samples after PERF_EVENT_EXIT. We can however still
4510 * get a few PERF_EVENT_READ events.
4511 */
4512 perf_counter_task(child, child_ctx, 0);
4513
4514 /*
4515 * We can recurse on the same lock type through:
4516 *
4517 * __perf_counter_exit_task()
4518 * sync_child_counter()
4519 * fput(parent_counter->filp)
4520 * perf_release()
4521 * mutex_lock(&ctx->mutex)
4522 *
4523 * But since its the parent context it won't be the same instance.
4524 */
4525 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4526
4527 again:
4528 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
4529 list_entry)
4530 __perf_counter_exit_task(child_counter, child_ctx, child);
4531
4532 /*
4533 * If the last counter was a group counter, it will have appended all
4534 * its siblings to the list, but we obtained 'tmp' before that which
4535 * will still point to the list head terminating the iteration.
4536 */
4537 if (!list_empty(&child_ctx->counter_list))
4538 goto again;
4539
4540 mutex_unlock(&child_ctx->mutex);
4541
4542 put_ctx(child_ctx);
4543 }
4544
4545 /*
4546 * free an unexposed, unused context as created by inheritance by
4547 * init_task below, used by fork() in case of fail.
4548 */
4549 void perf_counter_free_task(struct task_struct *task)
4550 {
4551 struct perf_counter_context *ctx = task->perf_counter_ctxp;
4552 struct perf_counter *counter, *tmp;
4553
4554 if (!ctx)
4555 return;
4556
4557 mutex_lock(&ctx->mutex);
4558 again:
4559 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) {
4560 struct perf_counter *parent = counter->parent;
4561
4562 if (WARN_ON_ONCE(!parent))
4563 continue;
4564
4565 mutex_lock(&parent->child_mutex);
4566 list_del_init(&counter->child_list);
4567 mutex_unlock(&parent->child_mutex);
4568
4569 fput(parent->filp);
4570
4571 list_del_counter(counter, ctx);
4572 free_counter(counter);
4573 }
4574
4575 if (!list_empty(&ctx->counter_list))
4576 goto again;
4577
4578 mutex_unlock(&ctx->mutex);
4579
4580 put_ctx(ctx);
4581 }
4582
4583 /*
4584 * Initialize the perf_counter context in task_struct
4585 */
4586 int perf_counter_init_task(struct task_struct *child)
4587 {
4588 struct perf_counter_context *child_ctx, *parent_ctx;
4589 struct perf_counter_context *cloned_ctx;
4590 struct perf_counter *counter;
4591 struct task_struct *parent = current;
4592 int inherited_all = 1;
4593 int ret = 0;
4594
4595 child->perf_counter_ctxp = NULL;
4596
4597 mutex_init(&child->perf_counter_mutex);
4598 INIT_LIST_HEAD(&child->perf_counter_list);
4599
4600 if (likely(!parent->perf_counter_ctxp))
4601 return 0;
4602
4603 /*
4604 * This is executed from the parent task context, so inherit
4605 * counters that have been marked for cloning.
4606 * First allocate and initialize a context for the child.
4607 */
4608
4609 child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
4610 if (!child_ctx)
4611 return -ENOMEM;
4612
4613 __perf_counter_init_context(child_ctx, child);
4614 child->perf_counter_ctxp = child_ctx;
4615 get_task_struct(child);
4616
4617 /*
4618 * If the parent's context is a clone, pin it so it won't get
4619 * swapped under us.
4620 */
4621 parent_ctx = perf_pin_task_context(parent);
4622
4623 /*
4624 * No need to check if parent_ctx != NULL here; since we saw
4625 * it non-NULL earlier, the only reason for it to become NULL
4626 * is if we exit, and since we're currently in the middle of
4627 * a fork we can't be exiting at the same time.
4628 */
4629
4630 /*
4631 * Lock the parent list. No need to lock the child - not PID
4632 * hashed yet and not running, so nobody can access it.
4633 */
4634 mutex_lock(&parent_ctx->mutex);
4635
4636 /*
4637 * We dont have to disable NMIs - we are only looking at
4638 * the list, not manipulating it:
4639 */
4640 list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
4641 if (counter != counter->group_leader)
4642 continue;
4643
4644 if (!counter->attr.inherit) {
4645 inherited_all = 0;
4646 continue;
4647 }
4648
4649 ret = inherit_group(counter, parent, parent_ctx,
4650 child, child_ctx);
4651 if (ret) {
4652 inherited_all = 0;
4653 break;
4654 }
4655 }
4656
4657 if (inherited_all) {
4658 /*
4659 * Mark the child context as a clone of the parent
4660 * context, or of whatever the parent is a clone of.
4661 * Note that if the parent is a clone, it could get
4662 * uncloned at any point, but that doesn't matter
4663 * because the list of counters and the generation
4664 * count can't have changed since we took the mutex.
4665 */
4666 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
4667 if (cloned_ctx) {
4668 child_ctx->parent_ctx = cloned_ctx;
4669 child_ctx->parent_gen = parent_ctx->parent_gen;
4670 } else {
4671 child_ctx->parent_ctx = parent_ctx;
4672 child_ctx->parent_gen = parent_ctx->generation;
4673 }
4674 get_ctx(child_ctx->parent_ctx);
4675 }
4676
4677 mutex_unlock(&parent_ctx->mutex);
4678
4679 perf_unpin_context(parent_ctx);
4680
4681 return ret;
4682 }
4683
4684 static void __cpuinit perf_counter_init_cpu(int cpu)
4685 {
4686 struct perf_cpu_context *cpuctx;
4687
4688 cpuctx = &per_cpu(perf_cpu_context, cpu);
4689 __perf_counter_init_context(&cpuctx->ctx, NULL);
4690
4691 spin_lock(&perf_resource_lock);
4692 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
4693 spin_unlock(&perf_resource_lock);
4694
4695 hw_perf_counter_setup(cpu);
4696 }
4697
4698 #ifdef CONFIG_HOTPLUG_CPU
4699 static void __perf_counter_exit_cpu(void *info)
4700 {
4701 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4702 struct perf_counter_context *ctx = &cpuctx->ctx;
4703 struct perf_counter *counter, *tmp;
4704
4705 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
4706 __perf_counter_remove_from_context(counter);
4707 }
4708 static void perf_counter_exit_cpu(int cpu)
4709 {
4710 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4711 struct perf_counter_context *ctx = &cpuctx->ctx;
4712
4713 mutex_lock(&ctx->mutex);
4714 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
4715 mutex_unlock(&ctx->mutex);
4716 }
4717 #else
4718 static inline void perf_counter_exit_cpu(int cpu) { }
4719 #endif
4720
4721 static int __cpuinit
4722 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
4723 {
4724 unsigned int cpu = (long)hcpu;
4725
4726 switch (action) {
4727
4728 case CPU_UP_PREPARE:
4729 case CPU_UP_PREPARE_FROZEN:
4730 perf_counter_init_cpu(cpu);
4731 break;
4732
4733 case CPU_ONLINE:
4734 case CPU_ONLINE_FROZEN:
4735 hw_perf_counter_setup_online(cpu);
4736 break;
4737
4738 case CPU_DOWN_PREPARE:
4739 case CPU_DOWN_PREPARE_FROZEN:
4740 perf_counter_exit_cpu(cpu);
4741 break;
4742
4743 default:
4744 break;
4745 }
4746
4747 return NOTIFY_OK;
4748 }
4749
4750 /*
4751 * This has to have a higher priority than migration_notifier in sched.c.
4752 */
4753 static struct notifier_block __cpuinitdata perf_cpu_nb = {
4754 .notifier_call = perf_cpu_notify,
4755 .priority = 20,
4756 };
4757
4758 void __init perf_counter_init(void)
4759 {
4760 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
4761 (void *)(long)smp_processor_id());
4762 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
4763 (void *)(long)smp_processor_id());
4764 register_cpu_notifier(&perf_cpu_nb);
4765 }
4766
4767 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
4768 {
4769 return sprintf(buf, "%d\n", perf_reserved_percpu);
4770 }
4771
4772 static ssize_t
4773 perf_set_reserve_percpu(struct sysdev_class *class,
4774 const char *buf,
4775 size_t count)
4776 {
4777 struct perf_cpu_context *cpuctx;
4778 unsigned long val;
4779 int err, cpu, mpt;
4780
4781 err = strict_strtoul(buf, 10, &val);
4782 if (err)
4783 return err;
4784 if (val > perf_max_counters)
4785 return -EINVAL;
4786
4787 spin_lock(&perf_resource_lock);
4788 perf_reserved_percpu = val;
4789 for_each_online_cpu(cpu) {
4790 cpuctx = &per_cpu(perf_cpu_context, cpu);
4791 spin_lock_irq(&cpuctx->ctx.lock);
4792 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
4793 perf_max_counters - perf_reserved_percpu);
4794 cpuctx->max_pertask = mpt;
4795 spin_unlock_irq(&cpuctx->ctx.lock);
4796 }
4797 spin_unlock(&perf_resource_lock);
4798
4799 return count;
4800 }
4801
4802 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
4803 {
4804 return sprintf(buf, "%d\n", perf_overcommit);
4805 }
4806
4807 static ssize_t
4808 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
4809 {
4810 unsigned long val;
4811 int err;
4812
4813 err = strict_strtoul(buf, 10, &val);
4814 if (err)
4815 return err;
4816 if (val > 1)
4817 return -EINVAL;
4818
4819 spin_lock(&perf_resource_lock);
4820 perf_overcommit = val;
4821 spin_unlock(&perf_resource_lock);
4822
4823 return count;
4824 }
4825
4826 static SYSDEV_CLASS_ATTR(
4827 reserve_percpu,
4828 0644,
4829 perf_show_reserve_percpu,
4830 perf_set_reserve_percpu
4831 );
4832
4833 static SYSDEV_CLASS_ATTR(
4834 overcommit,
4835 0644,
4836 perf_show_overcommit,
4837 perf_set_overcommit
4838 );
4839
4840 static struct attribute *perfclass_attrs[] = {
4841 &attr_reserve_percpu.attr,
4842 &attr_overcommit.attr,
4843 NULL
4844 };
4845
4846 static struct attribute_group perfclass_attr_group = {
4847 .attrs = perfclass_attrs,
4848 .name = "perf_counters",
4849 };
4850
4851 static int __init perf_counter_sysfs_init(void)
4852 {
4853 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
4854 &perfclass_attr_group);
4855 }
4856 device_initcall(perf_counter_sysfs_init);
This page took 0.133691 seconds and 5 git commands to generate.