perf_counter: Generate mmap events for install_special_mapping()
[deliverable/linux.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/hardirq.h>
24 #include <linux/rculist.h>
25 #include <linux/uaccess.h>
26 #include <linux/syscalls.h>
27 #include <linux/anon_inodes.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/perf_counter.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34 * Each CPU has a list of per CPU counters:
35 */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_counters __read_mostly;
44 static atomic_t nr_comm_counters __read_mostly;
45
46 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
47 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
48 int sysctl_perf_counter_limit __read_mostly = 100000; /* max NMIs per second */
49
50 static atomic64_t perf_counter_id;
51
52 /*
53 * Lock for (sysadmin-configurable) counter reservations:
54 */
55 static DEFINE_SPINLOCK(perf_resource_lock);
56
57 /*
58 * Architecture provided APIs - weak aliases:
59 */
60 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
61 {
62 return NULL;
63 }
64
65 void __weak hw_perf_disable(void) { barrier(); }
66 void __weak hw_perf_enable(void) { barrier(); }
67
68 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
69
70 int __weak
71 hw_perf_group_sched_in(struct perf_counter *group_leader,
72 struct perf_cpu_context *cpuctx,
73 struct perf_counter_context *ctx, int cpu)
74 {
75 return 0;
76 }
77
78 void __weak perf_counter_print_debug(void) { }
79
80 static DEFINE_PER_CPU(int, disable_count);
81
82 void __perf_disable(void)
83 {
84 __get_cpu_var(disable_count)++;
85 }
86
87 bool __perf_enable(void)
88 {
89 return !--__get_cpu_var(disable_count);
90 }
91
92 void perf_disable(void)
93 {
94 __perf_disable();
95 hw_perf_disable();
96 }
97
98 void perf_enable(void)
99 {
100 if (__perf_enable())
101 hw_perf_enable();
102 }
103
104 static void get_ctx(struct perf_counter_context *ctx)
105 {
106 atomic_inc(&ctx->refcount);
107 }
108
109 static void free_ctx(struct rcu_head *head)
110 {
111 struct perf_counter_context *ctx;
112
113 ctx = container_of(head, struct perf_counter_context, rcu_head);
114 kfree(ctx);
115 }
116
117 static void put_ctx(struct perf_counter_context *ctx)
118 {
119 if (atomic_dec_and_test(&ctx->refcount)) {
120 if (ctx->parent_ctx)
121 put_ctx(ctx->parent_ctx);
122 if (ctx->task)
123 put_task_struct(ctx->task);
124 call_rcu(&ctx->rcu_head, free_ctx);
125 }
126 }
127
128 /*
129 * Get the perf_counter_context for a task and lock it.
130 * This has to cope with with the fact that until it is locked,
131 * the context could get moved to another task.
132 */
133 static struct perf_counter_context *
134 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
135 {
136 struct perf_counter_context *ctx;
137
138 rcu_read_lock();
139 retry:
140 ctx = rcu_dereference(task->perf_counter_ctxp);
141 if (ctx) {
142 /*
143 * If this context is a clone of another, it might
144 * get swapped for another underneath us by
145 * perf_counter_task_sched_out, though the
146 * rcu_read_lock() protects us from any context
147 * getting freed. Lock the context and check if it
148 * got swapped before we could get the lock, and retry
149 * if so. If we locked the right context, then it
150 * can't get swapped on us any more.
151 */
152 spin_lock_irqsave(&ctx->lock, *flags);
153 if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
154 spin_unlock_irqrestore(&ctx->lock, *flags);
155 goto retry;
156 }
157 }
158 rcu_read_unlock();
159 return ctx;
160 }
161
162 /*
163 * Get the context for a task and increment its pin_count so it
164 * can't get swapped to another task. This also increments its
165 * reference count so that the context can't get freed.
166 */
167 static struct perf_counter_context *perf_pin_task_context(struct task_struct *task)
168 {
169 struct perf_counter_context *ctx;
170 unsigned long flags;
171
172 ctx = perf_lock_task_context(task, &flags);
173 if (ctx) {
174 ++ctx->pin_count;
175 get_ctx(ctx);
176 spin_unlock_irqrestore(&ctx->lock, flags);
177 }
178 return ctx;
179 }
180
181 static void perf_unpin_context(struct perf_counter_context *ctx)
182 {
183 unsigned long flags;
184
185 spin_lock_irqsave(&ctx->lock, flags);
186 --ctx->pin_count;
187 spin_unlock_irqrestore(&ctx->lock, flags);
188 put_ctx(ctx);
189 }
190
191 /*
192 * Add a counter from the lists for its context.
193 * Must be called with ctx->mutex and ctx->lock held.
194 */
195 static void
196 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
197 {
198 struct perf_counter *group_leader = counter->group_leader;
199
200 /*
201 * Depending on whether it is a standalone or sibling counter,
202 * add it straight to the context's counter list, or to the group
203 * leader's sibling list:
204 */
205 if (group_leader == counter)
206 list_add_tail(&counter->list_entry, &ctx->counter_list);
207 else {
208 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
209 group_leader->nr_siblings++;
210 }
211
212 list_add_rcu(&counter->event_entry, &ctx->event_list);
213 ctx->nr_counters++;
214 }
215
216 /*
217 * Remove a counter from the lists for its context.
218 * Must be called with ctx->mutex and ctx->lock held.
219 */
220 static void
221 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
222 {
223 struct perf_counter *sibling, *tmp;
224
225 if (list_empty(&counter->list_entry))
226 return;
227 ctx->nr_counters--;
228
229 list_del_init(&counter->list_entry);
230 list_del_rcu(&counter->event_entry);
231
232 if (counter->group_leader != counter)
233 counter->group_leader->nr_siblings--;
234
235 /*
236 * If this was a group counter with sibling counters then
237 * upgrade the siblings to singleton counters by adding them
238 * to the context list directly:
239 */
240 list_for_each_entry_safe(sibling, tmp,
241 &counter->sibling_list, list_entry) {
242
243 list_move_tail(&sibling->list_entry, &ctx->counter_list);
244 sibling->group_leader = sibling;
245 }
246 }
247
248 static void
249 counter_sched_out(struct perf_counter *counter,
250 struct perf_cpu_context *cpuctx,
251 struct perf_counter_context *ctx)
252 {
253 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
254 return;
255
256 counter->state = PERF_COUNTER_STATE_INACTIVE;
257 counter->tstamp_stopped = ctx->time;
258 counter->pmu->disable(counter);
259 counter->oncpu = -1;
260
261 if (!is_software_counter(counter))
262 cpuctx->active_oncpu--;
263 ctx->nr_active--;
264 if (counter->attr.exclusive || !cpuctx->active_oncpu)
265 cpuctx->exclusive = 0;
266 }
267
268 static void
269 group_sched_out(struct perf_counter *group_counter,
270 struct perf_cpu_context *cpuctx,
271 struct perf_counter_context *ctx)
272 {
273 struct perf_counter *counter;
274
275 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
276 return;
277
278 counter_sched_out(group_counter, cpuctx, ctx);
279
280 /*
281 * Schedule out siblings (if any):
282 */
283 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
284 counter_sched_out(counter, cpuctx, ctx);
285
286 if (group_counter->attr.exclusive)
287 cpuctx->exclusive = 0;
288 }
289
290 /*
291 * Cross CPU call to remove a performance counter
292 *
293 * We disable the counter on the hardware level first. After that we
294 * remove it from the context list.
295 */
296 static void __perf_counter_remove_from_context(void *info)
297 {
298 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
299 struct perf_counter *counter = info;
300 struct perf_counter_context *ctx = counter->ctx;
301
302 /*
303 * If this is a task context, we need to check whether it is
304 * the current task context of this cpu. If not it has been
305 * scheduled out before the smp call arrived.
306 */
307 if (ctx->task && cpuctx->task_ctx != ctx)
308 return;
309
310 spin_lock(&ctx->lock);
311 /*
312 * Protect the list operation against NMI by disabling the
313 * counters on a global level.
314 */
315 perf_disable();
316
317 counter_sched_out(counter, cpuctx, ctx);
318
319 list_del_counter(counter, ctx);
320
321 if (!ctx->task) {
322 /*
323 * Allow more per task counters with respect to the
324 * reservation:
325 */
326 cpuctx->max_pertask =
327 min(perf_max_counters - ctx->nr_counters,
328 perf_max_counters - perf_reserved_percpu);
329 }
330
331 perf_enable();
332 spin_unlock(&ctx->lock);
333 }
334
335
336 /*
337 * Remove the counter from a task's (or a CPU's) list of counters.
338 *
339 * Must be called with ctx->mutex held.
340 *
341 * CPU counters are removed with a smp call. For task counters we only
342 * call when the task is on a CPU.
343 *
344 * If counter->ctx is a cloned context, callers must make sure that
345 * every task struct that counter->ctx->task could possibly point to
346 * remains valid. This is OK when called from perf_release since
347 * that only calls us on the top-level context, which can't be a clone.
348 * When called from perf_counter_exit_task, it's OK because the
349 * context has been detached from its task.
350 */
351 static void perf_counter_remove_from_context(struct perf_counter *counter)
352 {
353 struct perf_counter_context *ctx = counter->ctx;
354 struct task_struct *task = ctx->task;
355
356 if (!task) {
357 /*
358 * Per cpu counters are removed via an smp call and
359 * the removal is always sucessful.
360 */
361 smp_call_function_single(counter->cpu,
362 __perf_counter_remove_from_context,
363 counter, 1);
364 return;
365 }
366
367 retry:
368 task_oncpu_function_call(task, __perf_counter_remove_from_context,
369 counter);
370
371 spin_lock_irq(&ctx->lock);
372 /*
373 * If the context is active we need to retry the smp call.
374 */
375 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
376 spin_unlock_irq(&ctx->lock);
377 goto retry;
378 }
379
380 /*
381 * The lock prevents that this context is scheduled in so we
382 * can remove the counter safely, if the call above did not
383 * succeed.
384 */
385 if (!list_empty(&counter->list_entry)) {
386 list_del_counter(counter, ctx);
387 }
388 spin_unlock_irq(&ctx->lock);
389 }
390
391 static inline u64 perf_clock(void)
392 {
393 return cpu_clock(smp_processor_id());
394 }
395
396 /*
397 * Update the record of the current time in a context.
398 */
399 static void update_context_time(struct perf_counter_context *ctx)
400 {
401 u64 now = perf_clock();
402
403 ctx->time += now - ctx->timestamp;
404 ctx->timestamp = now;
405 }
406
407 /*
408 * Update the total_time_enabled and total_time_running fields for a counter.
409 */
410 static void update_counter_times(struct perf_counter *counter)
411 {
412 struct perf_counter_context *ctx = counter->ctx;
413 u64 run_end;
414
415 if (counter->state < PERF_COUNTER_STATE_INACTIVE)
416 return;
417
418 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
419
420 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
421 run_end = counter->tstamp_stopped;
422 else
423 run_end = ctx->time;
424
425 counter->total_time_running = run_end - counter->tstamp_running;
426 }
427
428 /*
429 * Update total_time_enabled and total_time_running for all counters in a group.
430 */
431 static void update_group_times(struct perf_counter *leader)
432 {
433 struct perf_counter *counter;
434
435 update_counter_times(leader);
436 list_for_each_entry(counter, &leader->sibling_list, list_entry)
437 update_counter_times(counter);
438 }
439
440 /*
441 * Cross CPU call to disable a performance counter
442 */
443 static void __perf_counter_disable(void *info)
444 {
445 struct perf_counter *counter = info;
446 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
447 struct perf_counter_context *ctx = counter->ctx;
448
449 /*
450 * If this is a per-task counter, need to check whether this
451 * counter's task is the current task on this cpu.
452 */
453 if (ctx->task && cpuctx->task_ctx != ctx)
454 return;
455
456 spin_lock(&ctx->lock);
457
458 /*
459 * If the counter is on, turn it off.
460 * If it is in error state, leave it in error state.
461 */
462 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
463 update_context_time(ctx);
464 update_counter_times(counter);
465 if (counter == counter->group_leader)
466 group_sched_out(counter, cpuctx, ctx);
467 else
468 counter_sched_out(counter, cpuctx, ctx);
469 counter->state = PERF_COUNTER_STATE_OFF;
470 }
471
472 spin_unlock(&ctx->lock);
473 }
474
475 /*
476 * Disable a counter.
477 *
478 * If counter->ctx is a cloned context, callers must make sure that
479 * every task struct that counter->ctx->task could possibly point to
480 * remains valid. This condition is satisifed when called through
481 * perf_counter_for_each_child or perf_counter_for_each because they
482 * hold the top-level counter's child_mutex, so any descendant that
483 * goes to exit will block in sync_child_counter.
484 * When called from perf_pending_counter it's OK because counter->ctx
485 * is the current context on this CPU and preemption is disabled,
486 * hence we can't get into perf_counter_task_sched_out for this context.
487 */
488 static void perf_counter_disable(struct perf_counter *counter)
489 {
490 struct perf_counter_context *ctx = counter->ctx;
491 struct task_struct *task = ctx->task;
492
493 if (!task) {
494 /*
495 * Disable the counter on the cpu that it's on
496 */
497 smp_call_function_single(counter->cpu, __perf_counter_disable,
498 counter, 1);
499 return;
500 }
501
502 retry:
503 task_oncpu_function_call(task, __perf_counter_disable, counter);
504
505 spin_lock_irq(&ctx->lock);
506 /*
507 * If the counter is still active, we need to retry the cross-call.
508 */
509 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
510 spin_unlock_irq(&ctx->lock);
511 goto retry;
512 }
513
514 /*
515 * Since we have the lock this context can't be scheduled
516 * in, so we can change the state safely.
517 */
518 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
519 update_counter_times(counter);
520 counter->state = PERF_COUNTER_STATE_OFF;
521 }
522
523 spin_unlock_irq(&ctx->lock);
524 }
525
526 static int
527 counter_sched_in(struct perf_counter *counter,
528 struct perf_cpu_context *cpuctx,
529 struct perf_counter_context *ctx,
530 int cpu)
531 {
532 if (counter->state <= PERF_COUNTER_STATE_OFF)
533 return 0;
534
535 counter->state = PERF_COUNTER_STATE_ACTIVE;
536 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
537 /*
538 * The new state must be visible before we turn it on in the hardware:
539 */
540 smp_wmb();
541
542 if (counter->pmu->enable(counter)) {
543 counter->state = PERF_COUNTER_STATE_INACTIVE;
544 counter->oncpu = -1;
545 return -EAGAIN;
546 }
547
548 counter->tstamp_running += ctx->time - counter->tstamp_stopped;
549
550 if (!is_software_counter(counter))
551 cpuctx->active_oncpu++;
552 ctx->nr_active++;
553
554 if (counter->attr.exclusive)
555 cpuctx->exclusive = 1;
556
557 return 0;
558 }
559
560 static int
561 group_sched_in(struct perf_counter *group_counter,
562 struct perf_cpu_context *cpuctx,
563 struct perf_counter_context *ctx,
564 int cpu)
565 {
566 struct perf_counter *counter, *partial_group;
567 int ret;
568
569 if (group_counter->state == PERF_COUNTER_STATE_OFF)
570 return 0;
571
572 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
573 if (ret)
574 return ret < 0 ? ret : 0;
575
576 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
577 return -EAGAIN;
578
579 /*
580 * Schedule in siblings as one group (if any):
581 */
582 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
583 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
584 partial_group = counter;
585 goto group_error;
586 }
587 }
588
589 return 0;
590
591 group_error:
592 /*
593 * Groups can be scheduled in as one unit only, so undo any
594 * partial group before returning:
595 */
596 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
597 if (counter == partial_group)
598 break;
599 counter_sched_out(counter, cpuctx, ctx);
600 }
601 counter_sched_out(group_counter, cpuctx, ctx);
602
603 return -EAGAIN;
604 }
605
606 /*
607 * Return 1 for a group consisting entirely of software counters,
608 * 0 if the group contains any hardware counters.
609 */
610 static int is_software_only_group(struct perf_counter *leader)
611 {
612 struct perf_counter *counter;
613
614 if (!is_software_counter(leader))
615 return 0;
616
617 list_for_each_entry(counter, &leader->sibling_list, list_entry)
618 if (!is_software_counter(counter))
619 return 0;
620
621 return 1;
622 }
623
624 /*
625 * Work out whether we can put this counter group on the CPU now.
626 */
627 static int group_can_go_on(struct perf_counter *counter,
628 struct perf_cpu_context *cpuctx,
629 int can_add_hw)
630 {
631 /*
632 * Groups consisting entirely of software counters can always go on.
633 */
634 if (is_software_only_group(counter))
635 return 1;
636 /*
637 * If an exclusive group is already on, no other hardware
638 * counters can go on.
639 */
640 if (cpuctx->exclusive)
641 return 0;
642 /*
643 * If this group is exclusive and there are already
644 * counters on the CPU, it can't go on.
645 */
646 if (counter->attr.exclusive && cpuctx->active_oncpu)
647 return 0;
648 /*
649 * Otherwise, try to add it if all previous groups were able
650 * to go on.
651 */
652 return can_add_hw;
653 }
654
655 static void add_counter_to_ctx(struct perf_counter *counter,
656 struct perf_counter_context *ctx)
657 {
658 list_add_counter(counter, ctx);
659 counter->tstamp_enabled = ctx->time;
660 counter->tstamp_running = ctx->time;
661 counter->tstamp_stopped = ctx->time;
662 }
663
664 /*
665 * Cross CPU call to install and enable a performance counter
666 *
667 * Must be called with ctx->mutex held
668 */
669 static void __perf_install_in_context(void *info)
670 {
671 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
672 struct perf_counter *counter = info;
673 struct perf_counter_context *ctx = counter->ctx;
674 struct perf_counter *leader = counter->group_leader;
675 int cpu = smp_processor_id();
676 int err;
677
678 /*
679 * If this is a task context, we need to check whether it is
680 * the current task context of this cpu. If not it has been
681 * scheduled out before the smp call arrived.
682 * Or possibly this is the right context but it isn't
683 * on this cpu because it had no counters.
684 */
685 if (ctx->task && cpuctx->task_ctx != ctx) {
686 if (cpuctx->task_ctx || ctx->task != current)
687 return;
688 cpuctx->task_ctx = ctx;
689 }
690
691 spin_lock(&ctx->lock);
692 ctx->is_active = 1;
693 update_context_time(ctx);
694
695 /*
696 * Protect the list operation against NMI by disabling the
697 * counters on a global level. NOP for non NMI based counters.
698 */
699 perf_disable();
700
701 add_counter_to_ctx(counter, ctx);
702
703 /*
704 * Don't put the counter on if it is disabled or if
705 * it is in a group and the group isn't on.
706 */
707 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
708 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
709 goto unlock;
710
711 /*
712 * An exclusive counter can't go on if there are already active
713 * hardware counters, and no hardware counter can go on if there
714 * is already an exclusive counter on.
715 */
716 if (!group_can_go_on(counter, cpuctx, 1))
717 err = -EEXIST;
718 else
719 err = counter_sched_in(counter, cpuctx, ctx, cpu);
720
721 if (err) {
722 /*
723 * This counter couldn't go on. If it is in a group
724 * then we have to pull the whole group off.
725 * If the counter group is pinned then put it in error state.
726 */
727 if (leader != counter)
728 group_sched_out(leader, cpuctx, ctx);
729 if (leader->attr.pinned) {
730 update_group_times(leader);
731 leader->state = PERF_COUNTER_STATE_ERROR;
732 }
733 }
734
735 if (!err && !ctx->task && cpuctx->max_pertask)
736 cpuctx->max_pertask--;
737
738 unlock:
739 perf_enable();
740
741 spin_unlock(&ctx->lock);
742 }
743
744 /*
745 * Attach a performance counter to a context
746 *
747 * First we add the counter to the list with the hardware enable bit
748 * in counter->hw_config cleared.
749 *
750 * If the counter is attached to a task which is on a CPU we use a smp
751 * call to enable it in the task context. The task might have been
752 * scheduled away, but we check this in the smp call again.
753 *
754 * Must be called with ctx->mutex held.
755 */
756 static void
757 perf_install_in_context(struct perf_counter_context *ctx,
758 struct perf_counter *counter,
759 int cpu)
760 {
761 struct task_struct *task = ctx->task;
762
763 if (!task) {
764 /*
765 * Per cpu counters are installed via an smp call and
766 * the install is always sucessful.
767 */
768 smp_call_function_single(cpu, __perf_install_in_context,
769 counter, 1);
770 return;
771 }
772
773 retry:
774 task_oncpu_function_call(task, __perf_install_in_context,
775 counter);
776
777 spin_lock_irq(&ctx->lock);
778 /*
779 * we need to retry the smp call.
780 */
781 if (ctx->is_active && list_empty(&counter->list_entry)) {
782 spin_unlock_irq(&ctx->lock);
783 goto retry;
784 }
785
786 /*
787 * The lock prevents that this context is scheduled in so we
788 * can add the counter safely, if it the call above did not
789 * succeed.
790 */
791 if (list_empty(&counter->list_entry))
792 add_counter_to_ctx(counter, ctx);
793 spin_unlock_irq(&ctx->lock);
794 }
795
796 /*
797 * Cross CPU call to enable a performance counter
798 */
799 static void __perf_counter_enable(void *info)
800 {
801 struct perf_counter *counter = info;
802 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
803 struct perf_counter_context *ctx = counter->ctx;
804 struct perf_counter *leader = counter->group_leader;
805 int err;
806
807 /*
808 * If this is a per-task counter, need to check whether this
809 * counter's task is the current task on this cpu.
810 */
811 if (ctx->task && cpuctx->task_ctx != ctx) {
812 if (cpuctx->task_ctx || ctx->task != current)
813 return;
814 cpuctx->task_ctx = ctx;
815 }
816
817 spin_lock(&ctx->lock);
818 ctx->is_active = 1;
819 update_context_time(ctx);
820
821 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
822 goto unlock;
823 counter->state = PERF_COUNTER_STATE_INACTIVE;
824 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
825
826 /*
827 * If the counter is in a group and isn't the group leader,
828 * then don't put it on unless the group is on.
829 */
830 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
831 goto unlock;
832
833 if (!group_can_go_on(counter, cpuctx, 1)) {
834 err = -EEXIST;
835 } else {
836 perf_disable();
837 if (counter == leader)
838 err = group_sched_in(counter, cpuctx, ctx,
839 smp_processor_id());
840 else
841 err = counter_sched_in(counter, cpuctx, ctx,
842 smp_processor_id());
843 perf_enable();
844 }
845
846 if (err) {
847 /*
848 * If this counter can't go on and it's part of a
849 * group, then the whole group has to come off.
850 */
851 if (leader != counter)
852 group_sched_out(leader, cpuctx, ctx);
853 if (leader->attr.pinned) {
854 update_group_times(leader);
855 leader->state = PERF_COUNTER_STATE_ERROR;
856 }
857 }
858
859 unlock:
860 spin_unlock(&ctx->lock);
861 }
862
863 /*
864 * Enable a counter.
865 *
866 * If counter->ctx is a cloned context, callers must make sure that
867 * every task struct that counter->ctx->task could possibly point to
868 * remains valid. This condition is satisfied when called through
869 * perf_counter_for_each_child or perf_counter_for_each as described
870 * for perf_counter_disable.
871 */
872 static void perf_counter_enable(struct perf_counter *counter)
873 {
874 struct perf_counter_context *ctx = counter->ctx;
875 struct task_struct *task = ctx->task;
876
877 if (!task) {
878 /*
879 * Enable the counter on the cpu that it's on
880 */
881 smp_call_function_single(counter->cpu, __perf_counter_enable,
882 counter, 1);
883 return;
884 }
885
886 spin_lock_irq(&ctx->lock);
887 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
888 goto out;
889
890 /*
891 * If the counter is in error state, clear that first.
892 * That way, if we see the counter in error state below, we
893 * know that it has gone back into error state, as distinct
894 * from the task having been scheduled away before the
895 * cross-call arrived.
896 */
897 if (counter->state == PERF_COUNTER_STATE_ERROR)
898 counter->state = PERF_COUNTER_STATE_OFF;
899
900 retry:
901 spin_unlock_irq(&ctx->lock);
902 task_oncpu_function_call(task, __perf_counter_enable, counter);
903
904 spin_lock_irq(&ctx->lock);
905
906 /*
907 * If the context is active and the counter is still off,
908 * we need to retry the cross-call.
909 */
910 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
911 goto retry;
912
913 /*
914 * Since we have the lock this context can't be scheduled
915 * in, so we can change the state safely.
916 */
917 if (counter->state == PERF_COUNTER_STATE_OFF) {
918 counter->state = PERF_COUNTER_STATE_INACTIVE;
919 counter->tstamp_enabled =
920 ctx->time - counter->total_time_enabled;
921 }
922 out:
923 spin_unlock_irq(&ctx->lock);
924 }
925
926 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
927 {
928 /*
929 * not supported on inherited counters
930 */
931 if (counter->attr.inherit)
932 return -EINVAL;
933
934 atomic_add(refresh, &counter->event_limit);
935 perf_counter_enable(counter);
936
937 return 0;
938 }
939
940 void __perf_counter_sched_out(struct perf_counter_context *ctx,
941 struct perf_cpu_context *cpuctx)
942 {
943 struct perf_counter *counter;
944
945 spin_lock(&ctx->lock);
946 ctx->is_active = 0;
947 if (likely(!ctx->nr_counters))
948 goto out;
949 update_context_time(ctx);
950
951 perf_disable();
952 if (ctx->nr_active) {
953 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
954 if (counter != counter->group_leader)
955 counter_sched_out(counter, cpuctx, ctx);
956 else
957 group_sched_out(counter, cpuctx, ctx);
958 }
959 }
960 perf_enable();
961 out:
962 spin_unlock(&ctx->lock);
963 }
964
965 /*
966 * Test whether two contexts are equivalent, i.e. whether they
967 * have both been cloned from the same version of the same context
968 * and they both have the same number of enabled counters.
969 * If the number of enabled counters is the same, then the set
970 * of enabled counters should be the same, because these are both
971 * inherited contexts, therefore we can't access individual counters
972 * in them directly with an fd; we can only enable/disable all
973 * counters via prctl, or enable/disable all counters in a family
974 * via ioctl, which will have the same effect on both contexts.
975 */
976 static int context_equiv(struct perf_counter_context *ctx1,
977 struct perf_counter_context *ctx2)
978 {
979 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
980 && ctx1->parent_gen == ctx2->parent_gen
981 && !ctx1->pin_count && !ctx2->pin_count;
982 }
983
984 /*
985 * Called from scheduler to remove the counters of the current task,
986 * with interrupts disabled.
987 *
988 * We stop each counter and update the counter value in counter->count.
989 *
990 * This does not protect us against NMI, but disable()
991 * sets the disabled bit in the control field of counter _before_
992 * accessing the counter control register. If a NMI hits, then it will
993 * not restart the counter.
994 */
995 void perf_counter_task_sched_out(struct task_struct *task,
996 struct task_struct *next, int cpu)
997 {
998 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
999 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1000 struct perf_counter_context *next_ctx;
1001 struct perf_counter_context *parent;
1002 struct pt_regs *regs;
1003 int do_switch = 1;
1004
1005 regs = task_pt_regs(task);
1006 perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
1007
1008 if (likely(!ctx || !cpuctx->task_ctx))
1009 return;
1010
1011 update_context_time(ctx);
1012
1013 rcu_read_lock();
1014 parent = rcu_dereference(ctx->parent_ctx);
1015 next_ctx = next->perf_counter_ctxp;
1016 if (parent && next_ctx &&
1017 rcu_dereference(next_ctx->parent_ctx) == parent) {
1018 /*
1019 * Looks like the two contexts are clones, so we might be
1020 * able to optimize the context switch. We lock both
1021 * contexts and check that they are clones under the
1022 * lock (including re-checking that neither has been
1023 * uncloned in the meantime). It doesn't matter which
1024 * order we take the locks because no other cpu could
1025 * be trying to lock both of these tasks.
1026 */
1027 spin_lock(&ctx->lock);
1028 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1029 if (context_equiv(ctx, next_ctx)) {
1030 /*
1031 * XXX do we need a memory barrier of sorts
1032 * wrt to rcu_dereference() of perf_counter_ctxp
1033 */
1034 task->perf_counter_ctxp = next_ctx;
1035 next->perf_counter_ctxp = ctx;
1036 ctx->task = next;
1037 next_ctx->task = task;
1038 do_switch = 0;
1039 }
1040 spin_unlock(&next_ctx->lock);
1041 spin_unlock(&ctx->lock);
1042 }
1043 rcu_read_unlock();
1044
1045 if (do_switch) {
1046 __perf_counter_sched_out(ctx, cpuctx);
1047 cpuctx->task_ctx = NULL;
1048 }
1049 }
1050
1051 /*
1052 * Called with IRQs disabled
1053 */
1054 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
1055 {
1056 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1057
1058 if (!cpuctx->task_ctx)
1059 return;
1060
1061 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1062 return;
1063
1064 __perf_counter_sched_out(ctx, cpuctx);
1065 cpuctx->task_ctx = NULL;
1066 }
1067
1068 /*
1069 * Called with IRQs disabled
1070 */
1071 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1072 {
1073 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1074 }
1075
1076 static void
1077 __perf_counter_sched_in(struct perf_counter_context *ctx,
1078 struct perf_cpu_context *cpuctx, int cpu)
1079 {
1080 struct perf_counter *counter;
1081 int can_add_hw = 1;
1082
1083 spin_lock(&ctx->lock);
1084 ctx->is_active = 1;
1085 if (likely(!ctx->nr_counters))
1086 goto out;
1087
1088 ctx->timestamp = perf_clock();
1089
1090 perf_disable();
1091
1092 /*
1093 * First go through the list and put on any pinned groups
1094 * in order to give them the best chance of going on.
1095 */
1096 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1097 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1098 !counter->attr.pinned)
1099 continue;
1100 if (counter->cpu != -1 && counter->cpu != cpu)
1101 continue;
1102
1103 if (counter != counter->group_leader)
1104 counter_sched_in(counter, cpuctx, ctx, cpu);
1105 else {
1106 if (group_can_go_on(counter, cpuctx, 1))
1107 group_sched_in(counter, cpuctx, ctx, cpu);
1108 }
1109
1110 /*
1111 * If this pinned group hasn't been scheduled,
1112 * put it in error state.
1113 */
1114 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1115 update_group_times(counter);
1116 counter->state = PERF_COUNTER_STATE_ERROR;
1117 }
1118 }
1119
1120 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1121 /*
1122 * Ignore counters in OFF or ERROR state, and
1123 * ignore pinned counters since we did them already.
1124 */
1125 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1126 counter->attr.pinned)
1127 continue;
1128
1129 /*
1130 * Listen to the 'cpu' scheduling filter constraint
1131 * of counters:
1132 */
1133 if (counter->cpu != -1 && counter->cpu != cpu)
1134 continue;
1135
1136 if (counter != counter->group_leader) {
1137 if (counter_sched_in(counter, cpuctx, ctx, cpu))
1138 can_add_hw = 0;
1139 } else {
1140 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1141 if (group_sched_in(counter, cpuctx, ctx, cpu))
1142 can_add_hw = 0;
1143 }
1144 }
1145 }
1146 perf_enable();
1147 out:
1148 spin_unlock(&ctx->lock);
1149 }
1150
1151 /*
1152 * Called from scheduler to add the counters of the current task
1153 * with interrupts disabled.
1154 *
1155 * We restore the counter value and then enable it.
1156 *
1157 * This does not protect us against NMI, but enable()
1158 * sets the enabled bit in the control field of counter _before_
1159 * accessing the counter control register. If a NMI hits, then it will
1160 * keep the counter running.
1161 */
1162 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1163 {
1164 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1165 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1166
1167 if (likely(!ctx))
1168 return;
1169 if (cpuctx->task_ctx == ctx)
1170 return;
1171 __perf_counter_sched_in(ctx, cpuctx, cpu);
1172 cpuctx->task_ctx = ctx;
1173 }
1174
1175 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1176 {
1177 struct perf_counter_context *ctx = &cpuctx->ctx;
1178
1179 __perf_counter_sched_in(ctx, cpuctx, cpu);
1180 }
1181
1182 #define MAX_INTERRUPTS (~0ULL)
1183
1184 static void perf_log_throttle(struct perf_counter *counter, int enable);
1185 static void perf_log_period(struct perf_counter *counter, u64 period);
1186
1187 static void perf_adjust_freq(struct perf_counter_context *ctx)
1188 {
1189 struct perf_counter *counter;
1190 u64 interrupts, sample_period;
1191 u64 events, period;
1192 s64 delta;
1193
1194 spin_lock(&ctx->lock);
1195 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1196 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1197 continue;
1198
1199 interrupts = counter->hw.interrupts;
1200 counter->hw.interrupts = 0;
1201
1202 if (interrupts == MAX_INTERRUPTS) {
1203 perf_log_throttle(counter, 1);
1204 counter->pmu->unthrottle(counter);
1205 interrupts = 2*sysctl_perf_counter_limit/HZ;
1206 }
1207
1208 if (!counter->attr.freq || !counter->attr.sample_freq)
1209 continue;
1210
1211 events = HZ * interrupts * counter->hw.sample_period;
1212 period = div64_u64(events, counter->attr.sample_freq);
1213
1214 delta = (s64)(1 + period - counter->hw.sample_period);
1215 delta >>= 1;
1216
1217 sample_period = counter->hw.sample_period + delta;
1218
1219 if (!sample_period)
1220 sample_period = 1;
1221
1222 perf_log_period(counter, sample_period);
1223
1224 counter->hw.sample_period = sample_period;
1225 }
1226 spin_unlock(&ctx->lock);
1227 }
1228
1229 /*
1230 * Round-robin a context's counters:
1231 */
1232 static void rotate_ctx(struct perf_counter_context *ctx)
1233 {
1234 struct perf_counter *counter;
1235
1236 if (!ctx->nr_counters)
1237 return;
1238
1239 spin_lock(&ctx->lock);
1240 /*
1241 * Rotate the first entry last (works just fine for group counters too):
1242 */
1243 perf_disable();
1244 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1245 list_move_tail(&counter->list_entry, &ctx->counter_list);
1246 break;
1247 }
1248 perf_enable();
1249
1250 spin_unlock(&ctx->lock);
1251 }
1252
1253 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1254 {
1255 struct perf_cpu_context *cpuctx;
1256 struct perf_counter_context *ctx;
1257
1258 if (!atomic_read(&nr_counters))
1259 return;
1260
1261 cpuctx = &per_cpu(perf_cpu_context, cpu);
1262 ctx = curr->perf_counter_ctxp;
1263
1264 perf_adjust_freq(&cpuctx->ctx);
1265 if (ctx)
1266 perf_adjust_freq(ctx);
1267
1268 perf_counter_cpu_sched_out(cpuctx);
1269 if (ctx)
1270 __perf_counter_task_sched_out(ctx);
1271
1272 rotate_ctx(&cpuctx->ctx);
1273 if (ctx)
1274 rotate_ctx(ctx);
1275
1276 perf_counter_cpu_sched_in(cpuctx, cpu);
1277 if (ctx)
1278 perf_counter_task_sched_in(curr, cpu);
1279 }
1280
1281 /*
1282 * Cross CPU call to read the hardware counter
1283 */
1284 static void __read(void *info)
1285 {
1286 struct perf_counter *counter = info;
1287 struct perf_counter_context *ctx = counter->ctx;
1288 unsigned long flags;
1289
1290 local_irq_save(flags);
1291 if (ctx->is_active)
1292 update_context_time(ctx);
1293 counter->pmu->read(counter);
1294 update_counter_times(counter);
1295 local_irq_restore(flags);
1296 }
1297
1298 static u64 perf_counter_read(struct perf_counter *counter)
1299 {
1300 /*
1301 * If counter is enabled and currently active on a CPU, update the
1302 * value in the counter structure:
1303 */
1304 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1305 smp_call_function_single(counter->oncpu,
1306 __read, counter, 1);
1307 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1308 update_counter_times(counter);
1309 }
1310
1311 return atomic64_read(&counter->count);
1312 }
1313
1314 /*
1315 * Initialize the perf_counter context in a task_struct:
1316 */
1317 static void
1318 __perf_counter_init_context(struct perf_counter_context *ctx,
1319 struct task_struct *task)
1320 {
1321 memset(ctx, 0, sizeof(*ctx));
1322 spin_lock_init(&ctx->lock);
1323 mutex_init(&ctx->mutex);
1324 INIT_LIST_HEAD(&ctx->counter_list);
1325 INIT_LIST_HEAD(&ctx->event_list);
1326 atomic_set(&ctx->refcount, 1);
1327 ctx->task = task;
1328 }
1329
1330 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1331 {
1332 struct perf_counter_context *parent_ctx;
1333 struct perf_counter_context *ctx;
1334 struct perf_cpu_context *cpuctx;
1335 struct task_struct *task;
1336 unsigned long flags;
1337 int err;
1338
1339 /*
1340 * If cpu is not a wildcard then this is a percpu counter:
1341 */
1342 if (cpu != -1) {
1343 /* Must be root to operate on a CPU counter: */
1344 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1345 return ERR_PTR(-EACCES);
1346
1347 if (cpu < 0 || cpu > num_possible_cpus())
1348 return ERR_PTR(-EINVAL);
1349
1350 /*
1351 * We could be clever and allow to attach a counter to an
1352 * offline CPU and activate it when the CPU comes up, but
1353 * that's for later.
1354 */
1355 if (!cpu_isset(cpu, cpu_online_map))
1356 return ERR_PTR(-ENODEV);
1357
1358 cpuctx = &per_cpu(perf_cpu_context, cpu);
1359 ctx = &cpuctx->ctx;
1360 get_ctx(ctx);
1361
1362 return ctx;
1363 }
1364
1365 rcu_read_lock();
1366 if (!pid)
1367 task = current;
1368 else
1369 task = find_task_by_vpid(pid);
1370 if (task)
1371 get_task_struct(task);
1372 rcu_read_unlock();
1373
1374 if (!task)
1375 return ERR_PTR(-ESRCH);
1376
1377 /*
1378 * Can't attach counters to a dying task.
1379 */
1380 err = -ESRCH;
1381 if (task->flags & PF_EXITING)
1382 goto errout;
1383
1384 /* Reuse ptrace permission checks for now. */
1385 err = -EACCES;
1386 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1387 goto errout;
1388
1389 retry:
1390 ctx = perf_lock_task_context(task, &flags);
1391 if (ctx) {
1392 parent_ctx = ctx->parent_ctx;
1393 if (parent_ctx) {
1394 put_ctx(parent_ctx);
1395 ctx->parent_ctx = NULL; /* no longer a clone */
1396 }
1397 /*
1398 * Get an extra reference before dropping the lock so that
1399 * this context won't get freed if the task exits.
1400 */
1401 get_ctx(ctx);
1402 spin_unlock_irqrestore(&ctx->lock, flags);
1403 }
1404
1405 if (!ctx) {
1406 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1407 err = -ENOMEM;
1408 if (!ctx)
1409 goto errout;
1410 __perf_counter_init_context(ctx, task);
1411 get_ctx(ctx);
1412 if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1413 /*
1414 * We raced with some other task; use
1415 * the context they set.
1416 */
1417 kfree(ctx);
1418 goto retry;
1419 }
1420 get_task_struct(task);
1421 }
1422
1423 put_task_struct(task);
1424 return ctx;
1425
1426 errout:
1427 put_task_struct(task);
1428 return ERR_PTR(err);
1429 }
1430
1431 static void free_counter_rcu(struct rcu_head *head)
1432 {
1433 struct perf_counter *counter;
1434
1435 counter = container_of(head, struct perf_counter, rcu_head);
1436 if (counter->ns)
1437 put_pid_ns(counter->ns);
1438 kfree(counter);
1439 }
1440
1441 static void perf_pending_sync(struct perf_counter *counter);
1442
1443 static void free_counter(struct perf_counter *counter)
1444 {
1445 perf_pending_sync(counter);
1446
1447 atomic_dec(&nr_counters);
1448 if (counter->attr.mmap)
1449 atomic_dec(&nr_mmap_counters);
1450 if (counter->attr.comm)
1451 atomic_dec(&nr_comm_counters);
1452
1453 if (counter->destroy)
1454 counter->destroy(counter);
1455
1456 put_ctx(counter->ctx);
1457 call_rcu(&counter->rcu_head, free_counter_rcu);
1458 }
1459
1460 /*
1461 * Called when the last reference to the file is gone.
1462 */
1463 static int perf_release(struct inode *inode, struct file *file)
1464 {
1465 struct perf_counter *counter = file->private_data;
1466 struct perf_counter_context *ctx = counter->ctx;
1467
1468 file->private_data = NULL;
1469
1470 WARN_ON_ONCE(ctx->parent_ctx);
1471 mutex_lock(&ctx->mutex);
1472 perf_counter_remove_from_context(counter);
1473 mutex_unlock(&ctx->mutex);
1474
1475 mutex_lock(&counter->owner->perf_counter_mutex);
1476 list_del_init(&counter->owner_entry);
1477 mutex_unlock(&counter->owner->perf_counter_mutex);
1478 put_task_struct(counter->owner);
1479
1480 free_counter(counter);
1481
1482 return 0;
1483 }
1484
1485 /*
1486 * Read the performance counter - simple non blocking version for now
1487 */
1488 static ssize_t
1489 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1490 {
1491 u64 values[3];
1492 int n;
1493
1494 /*
1495 * Return end-of-file for a read on a counter that is in
1496 * error state (i.e. because it was pinned but it couldn't be
1497 * scheduled on to the CPU at some point).
1498 */
1499 if (counter->state == PERF_COUNTER_STATE_ERROR)
1500 return 0;
1501
1502 WARN_ON_ONCE(counter->ctx->parent_ctx);
1503 mutex_lock(&counter->child_mutex);
1504 values[0] = perf_counter_read(counter);
1505 n = 1;
1506 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1507 values[n++] = counter->total_time_enabled +
1508 atomic64_read(&counter->child_total_time_enabled);
1509 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1510 values[n++] = counter->total_time_running +
1511 atomic64_read(&counter->child_total_time_running);
1512 if (counter->attr.read_format & PERF_FORMAT_ID)
1513 values[n++] = counter->id;
1514 mutex_unlock(&counter->child_mutex);
1515
1516 if (count < n * sizeof(u64))
1517 return -EINVAL;
1518 count = n * sizeof(u64);
1519
1520 if (copy_to_user(buf, values, count))
1521 return -EFAULT;
1522
1523 return count;
1524 }
1525
1526 static ssize_t
1527 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1528 {
1529 struct perf_counter *counter = file->private_data;
1530
1531 return perf_read_hw(counter, buf, count);
1532 }
1533
1534 static unsigned int perf_poll(struct file *file, poll_table *wait)
1535 {
1536 struct perf_counter *counter = file->private_data;
1537 struct perf_mmap_data *data;
1538 unsigned int events = POLL_HUP;
1539
1540 rcu_read_lock();
1541 data = rcu_dereference(counter->data);
1542 if (data)
1543 events = atomic_xchg(&data->poll, 0);
1544 rcu_read_unlock();
1545
1546 poll_wait(file, &counter->waitq, wait);
1547
1548 return events;
1549 }
1550
1551 static void perf_counter_reset(struct perf_counter *counter)
1552 {
1553 (void)perf_counter_read(counter);
1554 atomic64_set(&counter->count, 0);
1555 perf_counter_update_userpage(counter);
1556 }
1557
1558 static void perf_counter_for_each_sibling(struct perf_counter *counter,
1559 void (*func)(struct perf_counter *))
1560 {
1561 struct perf_counter_context *ctx = counter->ctx;
1562 struct perf_counter *sibling;
1563
1564 WARN_ON_ONCE(ctx->parent_ctx);
1565 mutex_lock(&ctx->mutex);
1566 counter = counter->group_leader;
1567
1568 func(counter);
1569 list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1570 func(sibling);
1571 mutex_unlock(&ctx->mutex);
1572 }
1573
1574 /*
1575 * Holding the top-level counter's child_mutex means that any
1576 * descendant process that has inherited this counter will block
1577 * in sync_child_counter if it goes to exit, thus satisfying the
1578 * task existence requirements of perf_counter_enable/disable.
1579 */
1580 static void perf_counter_for_each_child(struct perf_counter *counter,
1581 void (*func)(struct perf_counter *))
1582 {
1583 struct perf_counter *child;
1584
1585 WARN_ON_ONCE(counter->ctx->parent_ctx);
1586 mutex_lock(&counter->child_mutex);
1587 func(counter);
1588 list_for_each_entry(child, &counter->child_list, child_list)
1589 func(child);
1590 mutex_unlock(&counter->child_mutex);
1591 }
1592
1593 static void perf_counter_for_each(struct perf_counter *counter,
1594 void (*func)(struct perf_counter *))
1595 {
1596 struct perf_counter *child;
1597
1598 WARN_ON_ONCE(counter->ctx->parent_ctx);
1599 mutex_lock(&counter->child_mutex);
1600 perf_counter_for_each_sibling(counter, func);
1601 list_for_each_entry(child, &counter->child_list, child_list)
1602 perf_counter_for_each_sibling(child, func);
1603 mutex_unlock(&counter->child_mutex);
1604 }
1605
1606 static int perf_counter_period(struct perf_counter *counter, u64 __user *arg)
1607 {
1608 struct perf_counter_context *ctx = counter->ctx;
1609 unsigned long size;
1610 int ret = 0;
1611 u64 value;
1612
1613 if (!counter->attr.sample_period)
1614 return -EINVAL;
1615
1616 size = copy_from_user(&value, arg, sizeof(value));
1617 if (size != sizeof(value))
1618 return -EFAULT;
1619
1620 if (!value)
1621 return -EINVAL;
1622
1623 spin_lock_irq(&ctx->lock);
1624 if (counter->attr.freq) {
1625 if (value > sysctl_perf_counter_limit) {
1626 ret = -EINVAL;
1627 goto unlock;
1628 }
1629
1630 counter->attr.sample_freq = value;
1631 } else {
1632 counter->attr.sample_period = value;
1633 counter->hw.sample_period = value;
1634
1635 perf_log_period(counter, value);
1636 }
1637 unlock:
1638 spin_unlock_irq(&ctx->lock);
1639
1640 return ret;
1641 }
1642
1643 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1644 {
1645 struct perf_counter *counter = file->private_data;
1646 void (*func)(struct perf_counter *);
1647 u32 flags = arg;
1648
1649 switch (cmd) {
1650 case PERF_COUNTER_IOC_ENABLE:
1651 func = perf_counter_enable;
1652 break;
1653 case PERF_COUNTER_IOC_DISABLE:
1654 func = perf_counter_disable;
1655 break;
1656 case PERF_COUNTER_IOC_RESET:
1657 func = perf_counter_reset;
1658 break;
1659
1660 case PERF_COUNTER_IOC_REFRESH:
1661 return perf_counter_refresh(counter, arg);
1662
1663 case PERF_COUNTER_IOC_PERIOD:
1664 return perf_counter_period(counter, (u64 __user *)arg);
1665
1666 default:
1667 return -ENOTTY;
1668 }
1669
1670 if (flags & PERF_IOC_FLAG_GROUP)
1671 perf_counter_for_each(counter, func);
1672 else
1673 perf_counter_for_each_child(counter, func);
1674
1675 return 0;
1676 }
1677
1678 int perf_counter_task_enable(void)
1679 {
1680 struct perf_counter *counter;
1681
1682 mutex_lock(&current->perf_counter_mutex);
1683 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1684 perf_counter_for_each_child(counter, perf_counter_enable);
1685 mutex_unlock(&current->perf_counter_mutex);
1686
1687 return 0;
1688 }
1689
1690 int perf_counter_task_disable(void)
1691 {
1692 struct perf_counter *counter;
1693
1694 mutex_lock(&current->perf_counter_mutex);
1695 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1696 perf_counter_for_each_child(counter, perf_counter_disable);
1697 mutex_unlock(&current->perf_counter_mutex);
1698
1699 return 0;
1700 }
1701
1702 /*
1703 * Callers need to ensure there can be no nesting of this function, otherwise
1704 * the seqlock logic goes bad. We can not serialize this because the arch
1705 * code calls this from NMI context.
1706 */
1707 void perf_counter_update_userpage(struct perf_counter *counter)
1708 {
1709 struct perf_counter_mmap_page *userpg;
1710 struct perf_mmap_data *data;
1711
1712 rcu_read_lock();
1713 data = rcu_dereference(counter->data);
1714 if (!data)
1715 goto unlock;
1716
1717 userpg = data->user_page;
1718
1719 /*
1720 * Disable preemption so as to not let the corresponding user-space
1721 * spin too long if we get preempted.
1722 */
1723 preempt_disable();
1724 ++userpg->lock;
1725 barrier();
1726 userpg->index = counter->hw.idx;
1727 userpg->offset = atomic64_read(&counter->count);
1728 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1729 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1730
1731 barrier();
1732 ++userpg->lock;
1733 preempt_enable();
1734 unlock:
1735 rcu_read_unlock();
1736 }
1737
1738 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1739 {
1740 struct perf_counter *counter = vma->vm_file->private_data;
1741 struct perf_mmap_data *data;
1742 int ret = VM_FAULT_SIGBUS;
1743
1744 rcu_read_lock();
1745 data = rcu_dereference(counter->data);
1746 if (!data)
1747 goto unlock;
1748
1749 if (vmf->pgoff == 0) {
1750 vmf->page = virt_to_page(data->user_page);
1751 } else {
1752 int nr = vmf->pgoff - 1;
1753
1754 if ((unsigned)nr > data->nr_pages)
1755 goto unlock;
1756
1757 vmf->page = virt_to_page(data->data_pages[nr]);
1758 }
1759 get_page(vmf->page);
1760 ret = 0;
1761 unlock:
1762 rcu_read_unlock();
1763
1764 return ret;
1765 }
1766
1767 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1768 {
1769 struct perf_mmap_data *data;
1770 unsigned long size;
1771 int i;
1772
1773 WARN_ON(atomic_read(&counter->mmap_count));
1774
1775 size = sizeof(struct perf_mmap_data);
1776 size += nr_pages * sizeof(void *);
1777
1778 data = kzalloc(size, GFP_KERNEL);
1779 if (!data)
1780 goto fail;
1781
1782 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1783 if (!data->user_page)
1784 goto fail_user_page;
1785
1786 for (i = 0; i < nr_pages; i++) {
1787 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1788 if (!data->data_pages[i])
1789 goto fail_data_pages;
1790 }
1791
1792 data->nr_pages = nr_pages;
1793 atomic_set(&data->lock, -1);
1794
1795 rcu_assign_pointer(counter->data, data);
1796
1797 return 0;
1798
1799 fail_data_pages:
1800 for (i--; i >= 0; i--)
1801 free_page((unsigned long)data->data_pages[i]);
1802
1803 free_page((unsigned long)data->user_page);
1804
1805 fail_user_page:
1806 kfree(data);
1807
1808 fail:
1809 return -ENOMEM;
1810 }
1811
1812 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1813 {
1814 struct perf_mmap_data *data;
1815 int i;
1816
1817 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
1818
1819 free_page((unsigned long)data->user_page);
1820 for (i = 0; i < data->nr_pages; i++)
1821 free_page((unsigned long)data->data_pages[i]);
1822 kfree(data);
1823 }
1824
1825 static void perf_mmap_data_free(struct perf_counter *counter)
1826 {
1827 struct perf_mmap_data *data = counter->data;
1828
1829 WARN_ON(atomic_read(&counter->mmap_count));
1830
1831 rcu_assign_pointer(counter->data, NULL);
1832 call_rcu(&data->rcu_head, __perf_mmap_data_free);
1833 }
1834
1835 static void perf_mmap_open(struct vm_area_struct *vma)
1836 {
1837 struct perf_counter *counter = vma->vm_file->private_data;
1838
1839 atomic_inc(&counter->mmap_count);
1840 }
1841
1842 static void perf_mmap_close(struct vm_area_struct *vma)
1843 {
1844 struct perf_counter *counter = vma->vm_file->private_data;
1845
1846 WARN_ON_ONCE(counter->ctx->parent_ctx);
1847 if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) {
1848 struct user_struct *user = current_user();
1849
1850 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1851 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1852 perf_mmap_data_free(counter);
1853 mutex_unlock(&counter->mmap_mutex);
1854 }
1855 }
1856
1857 static struct vm_operations_struct perf_mmap_vmops = {
1858 .open = perf_mmap_open,
1859 .close = perf_mmap_close,
1860 .fault = perf_mmap_fault,
1861 };
1862
1863 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1864 {
1865 struct perf_counter *counter = file->private_data;
1866 unsigned long user_locked, user_lock_limit;
1867 struct user_struct *user = current_user();
1868 unsigned long locked, lock_limit;
1869 unsigned long vma_size;
1870 unsigned long nr_pages;
1871 long user_extra, extra;
1872 int ret = 0;
1873
1874 if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1875 return -EINVAL;
1876
1877 vma_size = vma->vm_end - vma->vm_start;
1878 nr_pages = (vma_size / PAGE_SIZE) - 1;
1879
1880 /*
1881 * If we have data pages ensure they're a power-of-two number, so we
1882 * can do bitmasks instead of modulo.
1883 */
1884 if (nr_pages != 0 && !is_power_of_2(nr_pages))
1885 return -EINVAL;
1886
1887 if (vma_size != PAGE_SIZE * (1 + nr_pages))
1888 return -EINVAL;
1889
1890 if (vma->vm_pgoff != 0)
1891 return -EINVAL;
1892
1893 WARN_ON_ONCE(counter->ctx->parent_ctx);
1894 mutex_lock(&counter->mmap_mutex);
1895 if (atomic_inc_not_zero(&counter->mmap_count)) {
1896 if (nr_pages != counter->data->nr_pages)
1897 ret = -EINVAL;
1898 goto unlock;
1899 }
1900
1901 user_extra = nr_pages + 1;
1902 user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1903
1904 /*
1905 * Increase the limit linearly with more CPUs:
1906 */
1907 user_lock_limit *= num_online_cpus();
1908
1909 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1910
1911 extra = 0;
1912 if (user_locked > user_lock_limit)
1913 extra = user_locked - user_lock_limit;
1914
1915 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1916 lock_limit >>= PAGE_SHIFT;
1917 locked = vma->vm_mm->locked_vm + extra;
1918
1919 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1920 ret = -EPERM;
1921 goto unlock;
1922 }
1923
1924 WARN_ON(counter->data);
1925 ret = perf_mmap_data_alloc(counter, nr_pages);
1926 if (ret)
1927 goto unlock;
1928
1929 atomic_set(&counter->mmap_count, 1);
1930 atomic_long_add(user_extra, &user->locked_vm);
1931 vma->vm_mm->locked_vm += extra;
1932 counter->data->nr_locked = extra;
1933 unlock:
1934 mutex_unlock(&counter->mmap_mutex);
1935
1936 vma->vm_flags &= ~VM_MAYWRITE;
1937 vma->vm_flags |= VM_RESERVED;
1938 vma->vm_ops = &perf_mmap_vmops;
1939
1940 return ret;
1941 }
1942
1943 static int perf_fasync(int fd, struct file *filp, int on)
1944 {
1945 struct inode *inode = filp->f_path.dentry->d_inode;
1946 struct perf_counter *counter = filp->private_data;
1947 int retval;
1948
1949 mutex_lock(&inode->i_mutex);
1950 retval = fasync_helper(fd, filp, on, &counter->fasync);
1951 mutex_unlock(&inode->i_mutex);
1952
1953 if (retval < 0)
1954 return retval;
1955
1956 return 0;
1957 }
1958
1959 static const struct file_operations perf_fops = {
1960 .release = perf_release,
1961 .read = perf_read,
1962 .poll = perf_poll,
1963 .unlocked_ioctl = perf_ioctl,
1964 .compat_ioctl = perf_ioctl,
1965 .mmap = perf_mmap,
1966 .fasync = perf_fasync,
1967 };
1968
1969 /*
1970 * Perf counter wakeup
1971 *
1972 * If there's data, ensure we set the poll() state and publish everything
1973 * to user-space before waking everybody up.
1974 */
1975
1976 void perf_counter_wakeup(struct perf_counter *counter)
1977 {
1978 wake_up_all(&counter->waitq);
1979
1980 if (counter->pending_kill) {
1981 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1982 counter->pending_kill = 0;
1983 }
1984 }
1985
1986 /*
1987 * Pending wakeups
1988 *
1989 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1990 *
1991 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1992 * single linked list and use cmpxchg() to add entries lockless.
1993 */
1994
1995 static void perf_pending_counter(struct perf_pending_entry *entry)
1996 {
1997 struct perf_counter *counter = container_of(entry,
1998 struct perf_counter, pending);
1999
2000 if (counter->pending_disable) {
2001 counter->pending_disable = 0;
2002 perf_counter_disable(counter);
2003 }
2004
2005 if (counter->pending_wakeup) {
2006 counter->pending_wakeup = 0;
2007 perf_counter_wakeup(counter);
2008 }
2009 }
2010
2011 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2012
2013 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2014 PENDING_TAIL,
2015 };
2016
2017 static void perf_pending_queue(struct perf_pending_entry *entry,
2018 void (*func)(struct perf_pending_entry *))
2019 {
2020 struct perf_pending_entry **head;
2021
2022 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2023 return;
2024
2025 entry->func = func;
2026
2027 head = &get_cpu_var(perf_pending_head);
2028
2029 do {
2030 entry->next = *head;
2031 } while (cmpxchg(head, entry->next, entry) != entry->next);
2032
2033 set_perf_counter_pending();
2034
2035 put_cpu_var(perf_pending_head);
2036 }
2037
2038 static int __perf_pending_run(void)
2039 {
2040 struct perf_pending_entry *list;
2041 int nr = 0;
2042
2043 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2044 while (list != PENDING_TAIL) {
2045 void (*func)(struct perf_pending_entry *);
2046 struct perf_pending_entry *entry = list;
2047
2048 list = list->next;
2049
2050 func = entry->func;
2051 entry->next = NULL;
2052 /*
2053 * Ensure we observe the unqueue before we issue the wakeup,
2054 * so that we won't be waiting forever.
2055 * -- see perf_not_pending().
2056 */
2057 smp_wmb();
2058
2059 func(entry);
2060 nr++;
2061 }
2062
2063 return nr;
2064 }
2065
2066 static inline int perf_not_pending(struct perf_counter *counter)
2067 {
2068 /*
2069 * If we flush on whatever cpu we run, there is a chance we don't
2070 * need to wait.
2071 */
2072 get_cpu();
2073 __perf_pending_run();
2074 put_cpu();
2075
2076 /*
2077 * Ensure we see the proper queue state before going to sleep
2078 * so that we do not miss the wakeup. -- see perf_pending_handle()
2079 */
2080 smp_rmb();
2081 return counter->pending.next == NULL;
2082 }
2083
2084 static void perf_pending_sync(struct perf_counter *counter)
2085 {
2086 wait_event(counter->waitq, perf_not_pending(counter));
2087 }
2088
2089 void perf_counter_do_pending(void)
2090 {
2091 __perf_pending_run();
2092 }
2093
2094 /*
2095 * Callchain support -- arch specific
2096 */
2097
2098 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2099 {
2100 return NULL;
2101 }
2102
2103 /*
2104 * Output
2105 */
2106
2107 struct perf_output_handle {
2108 struct perf_counter *counter;
2109 struct perf_mmap_data *data;
2110 unsigned long head;
2111 unsigned long offset;
2112 int nmi;
2113 int overflow;
2114 int locked;
2115 unsigned long flags;
2116 };
2117
2118 static void perf_output_wakeup(struct perf_output_handle *handle)
2119 {
2120 atomic_set(&handle->data->poll, POLL_IN);
2121
2122 if (handle->nmi) {
2123 handle->counter->pending_wakeup = 1;
2124 perf_pending_queue(&handle->counter->pending,
2125 perf_pending_counter);
2126 } else
2127 perf_counter_wakeup(handle->counter);
2128 }
2129
2130 /*
2131 * Curious locking construct.
2132 *
2133 * We need to ensure a later event doesn't publish a head when a former
2134 * event isn't done writing. However since we need to deal with NMIs we
2135 * cannot fully serialize things.
2136 *
2137 * What we do is serialize between CPUs so we only have to deal with NMI
2138 * nesting on a single CPU.
2139 *
2140 * We only publish the head (and generate a wakeup) when the outer-most
2141 * event completes.
2142 */
2143 static void perf_output_lock(struct perf_output_handle *handle)
2144 {
2145 struct perf_mmap_data *data = handle->data;
2146 int cpu;
2147
2148 handle->locked = 0;
2149
2150 local_irq_save(handle->flags);
2151 cpu = smp_processor_id();
2152
2153 if (in_nmi() && atomic_read(&data->lock) == cpu)
2154 return;
2155
2156 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2157 cpu_relax();
2158
2159 handle->locked = 1;
2160 }
2161
2162 static void perf_output_unlock(struct perf_output_handle *handle)
2163 {
2164 struct perf_mmap_data *data = handle->data;
2165 unsigned long head;
2166 int cpu;
2167
2168 data->done_head = data->head;
2169
2170 if (!handle->locked)
2171 goto out;
2172
2173 again:
2174 /*
2175 * The xchg implies a full barrier that ensures all writes are done
2176 * before we publish the new head, matched by a rmb() in userspace when
2177 * reading this position.
2178 */
2179 while ((head = atomic_long_xchg(&data->done_head, 0)))
2180 data->user_page->data_head = head;
2181
2182 /*
2183 * NMI can happen here, which means we can miss a done_head update.
2184 */
2185
2186 cpu = atomic_xchg(&data->lock, -1);
2187 WARN_ON_ONCE(cpu != smp_processor_id());
2188
2189 /*
2190 * Therefore we have to validate we did not indeed do so.
2191 */
2192 if (unlikely(atomic_long_read(&data->done_head))) {
2193 /*
2194 * Since we had it locked, we can lock it again.
2195 */
2196 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2197 cpu_relax();
2198
2199 goto again;
2200 }
2201
2202 if (atomic_xchg(&data->wakeup, 0))
2203 perf_output_wakeup(handle);
2204 out:
2205 local_irq_restore(handle->flags);
2206 }
2207
2208 static int perf_output_begin(struct perf_output_handle *handle,
2209 struct perf_counter *counter, unsigned int size,
2210 int nmi, int overflow)
2211 {
2212 struct perf_mmap_data *data;
2213 unsigned int offset, head;
2214
2215 /*
2216 * For inherited counters we send all the output towards the parent.
2217 */
2218 if (counter->parent)
2219 counter = counter->parent;
2220
2221 rcu_read_lock();
2222 data = rcu_dereference(counter->data);
2223 if (!data)
2224 goto out;
2225
2226 handle->data = data;
2227 handle->counter = counter;
2228 handle->nmi = nmi;
2229 handle->overflow = overflow;
2230
2231 if (!data->nr_pages)
2232 goto fail;
2233
2234 perf_output_lock(handle);
2235
2236 do {
2237 offset = head = atomic_long_read(&data->head);
2238 head += size;
2239 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2240
2241 handle->offset = offset;
2242 handle->head = head;
2243
2244 if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2245 atomic_set(&data->wakeup, 1);
2246
2247 return 0;
2248
2249 fail:
2250 perf_output_wakeup(handle);
2251 out:
2252 rcu_read_unlock();
2253
2254 return -ENOSPC;
2255 }
2256
2257 static void perf_output_copy(struct perf_output_handle *handle,
2258 const void *buf, unsigned int len)
2259 {
2260 unsigned int pages_mask;
2261 unsigned int offset;
2262 unsigned int size;
2263 void **pages;
2264
2265 offset = handle->offset;
2266 pages_mask = handle->data->nr_pages - 1;
2267 pages = handle->data->data_pages;
2268
2269 do {
2270 unsigned int page_offset;
2271 int nr;
2272
2273 nr = (offset >> PAGE_SHIFT) & pages_mask;
2274 page_offset = offset & (PAGE_SIZE - 1);
2275 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2276
2277 memcpy(pages[nr] + page_offset, buf, size);
2278
2279 len -= size;
2280 buf += size;
2281 offset += size;
2282 } while (len);
2283
2284 handle->offset = offset;
2285
2286 /*
2287 * Check we didn't copy past our reservation window, taking the
2288 * possible unsigned int wrap into account.
2289 */
2290 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2291 }
2292
2293 #define perf_output_put(handle, x) \
2294 perf_output_copy((handle), &(x), sizeof(x))
2295
2296 static void perf_output_end(struct perf_output_handle *handle)
2297 {
2298 struct perf_counter *counter = handle->counter;
2299 struct perf_mmap_data *data = handle->data;
2300
2301 int wakeup_events = counter->attr.wakeup_events;
2302
2303 if (handle->overflow && wakeup_events) {
2304 int events = atomic_inc_return(&data->events);
2305 if (events >= wakeup_events) {
2306 atomic_sub(wakeup_events, &data->events);
2307 atomic_set(&data->wakeup, 1);
2308 }
2309 }
2310
2311 perf_output_unlock(handle);
2312 rcu_read_unlock();
2313 }
2314
2315 static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p)
2316 {
2317 /*
2318 * only top level counters have the pid namespace they were created in
2319 */
2320 if (counter->parent)
2321 counter = counter->parent;
2322
2323 return task_tgid_nr_ns(p, counter->ns);
2324 }
2325
2326 static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p)
2327 {
2328 /*
2329 * only top level counters have the pid namespace they were created in
2330 */
2331 if (counter->parent)
2332 counter = counter->parent;
2333
2334 return task_pid_nr_ns(p, counter->ns);
2335 }
2336
2337 static void perf_counter_output(struct perf_counter *counter,
2338 int nmi, struct pt_regs *regs, u64 addr)
2339 {
2340 int ret;
2341 u64 sample_type = counter->attr.sample_type;
2342 struct perf_output_handle handle;
2343 struct perf_event_header header;
2344 u64 ip;
2345 struct {
2346 u32 pid, tid;
2347 } tid_entry;
2348 struct {
2349 u64 id;
2350 u64 counter;
2351 } group_entry;
2352 struct perf_callchain_entry *callchain = NULL;
2353 int callchain_size = 0;
2354 u64 time;
2355 struct {
2356 u32 cpu, reserved;
2357 } cpu_entry;
2358
2359 header.type = 0;
2360 header.size = sizeof(header);
2361
2362 header.misc = PERF_EVENT_MISC_OVERFLOW;
2363 header.misc |= perf_misc_flags(regs);
2364
2365 if (sample_type & PERF_SAMPLE_IP) {
2366 ip = perf_instruction_pointer(regs);
2367 header.type |= PERF_SAMPLE_IP;
2368 header.size += sizeof(ip);
2369 }
2370
2371 if (sample_type & PERF_SAMPLE_TID) {
2372 /* namespace issues */
2373 tid_entry.pid = perf_counter_pid(counter, current);
2374 tid_entry.tid = perf_counter_tid(counter, current);
2375
2376 header.type |= PERF_SAMPLE_TID;
2377 header.size += sizeof(tid_entry);
2378 }
2379
2380 if (sample_type & PERF_SAMPLE_TIME) {
2381 /*
2382 * Maybe do better on x86 and provide cpu_clock_nmi()
2383 */
2384 time = sched_clock();
2385
2386 header.type |= PERF_SAMPLE_TIME;
2387 header.size += sizeof(u64);
2388 }
2389
2390 if (sample_type & PERF_SAMPLE_ADDR) {
2391 header.type |= PERF_SAMPLE_ADDR;
2392 header.size += sizeof(u64);
2393 }
2394
2395 if (sample_type & PERF_SAMPLE_CONFIG) {
2396 header.type |= PERF_SAMPLE_CONFIG;
2397 header.size += sizeof(u64);
2398 }
2399
2400 if (sample_type & PERF_SAMPLE_CPU) {
2401 header.type |= PERF_SAMPLE_CPU;
2402 header.size += sizeof(cpu_entry);
2403
2404 cpu_entry.cpu = raw_smp_processor_id();
2405 }
2406
2407 if (sample_type & PERF_SAMPLE_GROUP) {
2408 header.type |= PERF_SAMPLE_GROUP;
2409 header.size += sizeof(u64) +
2410 counter->nr_siblings * sizeof(group_entry);
2411 }
2412
2413 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2414 callchain = perf_callchain(regs);
2415
2416 if (callchain) {
2417 callchain_size = (1 + callchain->nr) * sizeof(u64);
2418
2419 header.type |= PERF_SAMPLE_CALLCHAIN;
2420 header.size += callchain_size;
2421 }
2422 }
2423
2424 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2425 if (ret)
2426 return;
2427
2428 perf_output_put(&handle, header);
2429
2430 if (sample_type & PERF_SAMPLE_IP)
2431 perf_output_put(&handle, ip);
2432
2433 if (sample_type & PERF_SAMPLE_TID)
2434 perf_output_put(&handle, tid_entry);
2435
2436 if (sample_type & PERF_SAMPLE_TIME)
2437 perf_output_put(&handle, time);
2438
2439 if (sample_type & PERF_SAMPLE_ADDR)
2440 perf_output_put(&handle, addr);
2441
2442 if (sample_type & PERF_SAMPLE_CONFIG)
2443 perf_output_put(&handle, counter->attr.config);
2444
2445 if (sample_type & PERF_SAMPLE_CPU)
2446 perf_output_put(&handle, cpu_entry);
2447
2448 /*
2449 * XXX PERF_SAMPLE_GROUP vs inherited counters seems difficult.
2450 */
2451 if (sample_type & PERF_SAMPLE_GROUP) {
2452 struct perf_counter *leader, *sub;
2453 u64 nr = counter->nr_siblings;
2454
2455 perf_output_put(&handle, nr);
2456
2457 leader = counter->group_leader;
2458 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2459 if (sub != counter)
2460 sub->pmu->read(sub);
2461
2462 group_entry.id = sub->id;
2463 group_entry.counter = atomic64_read(&sub->count);
2464
2465 perf_output_put(&handle, group_entry);
2466 }
2467 }
2468
2469 if (callchain)
2470 perf_output_copy(&handle, callchain, callchain_size);
2471
2472 perf_output_end(&handle);
2473 }
2474
2475 /*
2476 * fork tracking
2477 */
2478
2479 struct perf_fork_event {
2480 struct task_struct *task;
2481
2482 struct {
2483 struct perf_event_header header;
2484
2485 u32 pid;
2486 u32 ppid;
2487 } event;
2488 };
2489
2490 static void perf_counter_fork_output(struct perf_counter *counter,
2491 struct perf_fork_event *fork_event)
2492 {
2493 struct perf_output_handle handle;
2494 int size = fork_event->event.header.size;
2495 struct task_struct *task = fork_event->task;
2496 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2497
2498 if (ret)
2499 return;
2500
2501 fork_event->event.pid = perf_counter_pid(counter, task);
2502 fork_event->event.ppid = perf_counter_pid(counter, task->real_parent);
2503
2504 perf_output_put(&handle, fork_event->event);
2505 perf_output_end(&handle);
2506 }
2507
2508 static int perf_counter_fork_match(struct perf_counter *counter)
2509 {
2510 if (counter->attr.comm || counter->attr.mmap)
2511 return 1;
2512
2513 return 0;
2514 }
2515
2516 static void perf_counter_fork_ctx(struct perf_counter_context *ctx,
2517 struct perf_fork_event *fork_event)
2518 {
2519 struct perf_counter *counter;
2520
2521 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2522 return;
2523
2524 rcu_read_lock();
2525 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2526 if (perf_counter_fork_match(counter))
2527 perf_counter_fork_output(counter, fork_event);
2528 }
2529 rcu_read_unlock();
2530 }
2531
2532 static void perf_counter_fork_event(struct perf_fork_event *fork_event)
2533 {
2534 struct perf_cpu_context *cpuctx;
2535 struct perf_counter_context *ctx;
2536
2537 cpuctx = &get_cpu_var(perf_cpu_context);
2538 perf_counter_fork_ctx(&cpuctx->ctx, fork_event);
2539 put_cpu_var(perf_cpu_context);
2540
2541 rcu_read_lock();
2542 /*
2543 * doesn't really matter which of the child contexts the
2544 * events ends up in.
2545 */
2546 ctx = rcu_dereference(current->perf_counter_ctxp);
2547 if (ctx)
2548 perf_counter_fork_ctx(ctx, fork_event);
2549 rcu_read_unlock();
2550 }
2551
2552 void perf_counter_fork(struct task_struct *task)
2553 {
2554 struct perf_fork_event fork_event;
2555
2556 if (!atomic_read(&nr_comm_counters) &&
2557 !atomic_read(&nr_mmap_counters))
2558 return;
2559
2560 fork_event = (struct perf_fork_event){
2561 .task = task,
2562 .event = {
2563 .header = {
2564 .type = PERF_EVENT_FORK,
2565 .size = sizeof(fork_event.event),
2566 },
2567 },
2568 };
2569
2570 perf_counter_fork_event(&fork_event);
2571 }
2572
2573 /*
2574 * comm tracking
2575 */
2576
2577 struct perf_comm_event {
2578 struct task_struct *task;
2579 char *comm;
2580 int comm_size;
2581
2582 struct {
2583 struct perf_event_header header;
2584
2585 u32 pid;
2586 u32 tid;
2587 } event;
2588 };
2589
2590 static void perf_counter_comm_output(struct perf_counter *counter,
2591 struct perf_comm_event *comm_event)
2592 {
2593 struct perf_output_handle handle;
2594 int size = comm_event->event.header.size;
2595 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2596
2597 if (ret)
2598 return;
2599
2600 comm_event->event.pid = perf_counter_pid(counter, comm_event->task);
2601 comm_event->event.tid = perf_counter_tid(counter, comm_event->task);
2602
2603 perf_output_put(&handle, comm_event->event);
2604 perf_output_copy(&handle, comm_event->comm,
2605 comm_event->comm_size);
2606 perf_output_end(&handle);
2607 }
2608
2609 static int perf_counter_comm_match(struct perf_counter *counter)
2610 {
2611 if (counter->attr.comm)
2612 return 1;
2613
2614 return 0;
2615 }
2616
2617 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2618 struct perf_comm_event *comm_event)
2619 {
2620 struct perf_counter *counter;
2621
2622 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2623 return;
2624
2625 rcu_read_lock();
2626 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2627 if (perf_counter_comm_match(counter))
2628 perf_counter_comm_output(counter, comm_event);
2629 }
2630 rcu_read_unlock();
2631 }
2632
2633 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2634 {
2635 struct perf_cpu_context *cpuctx;
2636 struct perf_counter_context *ctx;
2637 unsigned int size;
2638 char *comm = comm_event->task->comm;
2639
2640 size = ALIGN(strlen(comm)+1, sizeof(u64));
2641
2642 comm_event->comm = comm;
2643 comm_event->comm_size = size;
2644
2645 comm_event->event.header.size = sizeof(comm_event->event) + size;
2646
2647 cpuctx = &get_cpu_var(perf_cpu_context);
2648 perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2649 put_cpu_var(perf_cpu_context);
2650
2651 rcu_read_lock();
2652 /*
2653 * doesn't really matter which of the child contexts the
2654 * events ends up in.
2655 */
2656 ctx = rcu_dereference(current->perf_counter_ctxp);
2657 if (ctx)
2658 perf_counter_comm_ctx(ctx, comm_event);
2659 rcu_read_unlock();
2660 }
2661
2662 void perf_counter_comm(struct task_struct *task)
2663 {
2664 struct perf_comm_event comm_event;
2665
2666 if (!atomic_read(&nr_comm_counters))
2667 return;
2668
2669 comm_event = (struct perf_comm_event){
2670 .task = task,
2671 .event = {
2672 .header = { .type = PERF_EVENT_COMM, },
2673 },
2674 };
2675
2676 perf_counter_comm_event(&comm_event);
2677 }
2678
2679 /*
2680 * mmap tracking
2681 */
2682
2683 struct perf_mmap_event {
2684 struct vm_area_struct *vma;
2685
2686 const char *file_name;
2687 int file_size;
2688
2689 struct {
2690 struct perf_event_header header;
2691
2692 u32 pid;
2693 u32 tid;
2694 u64 start;
2695 u64 len;
2696 u64 pgoff;
2697 } event;
2698 };
2699
2700 static void perf_counter_mmap_output(struct perf_counter *counter,
2701 struct perf_mmap_event *mmap_event)
2702 {
2703 struct perf_output_handle handle;
2704 int size = mmap_event->event.header.size;
2705 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2706
2707 if (ret)
2708 return;
2709
2710 mmap_event->event.pid = perf_counter_pid(counter, current);
2711 mmap_event->event.tid = perf_counter_tid(counter, current);
2712
2713 perf_output_put(&handle, mmap_event->event);
2714 perf_output_copy(&handle, mmap_event->file_name,
2715 mmap_event->file_size);
2716 perf_output_end(&handle);
2717 }
2718
2719 static int perf_counter_mmap_match(struct perf_counter *counter,
2720 struct perf_mmap_event *mmap_event)
2721 {
2722 if (counter->attr.mmap)
2723 return 1;
2724
2725 return 0;
2726 }
2727
2728 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2729 struct perf_mmap_event *mmap_event)
2730 {
2731 struct perf_counter *counter;
2732
2733 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2734 return;
2735
2736 rcu_read_lock();
2737 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2738 if (perf_counter_mmap_match(counter, mmap_event))
2739 perf_counter_mmap_output(counter, mmap_event);
2740 }
2741 rcu_read_unlock();
2742 }
2743
2744 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2745 {
2746 struct perf_cpu_context *cpuctx;
2747 struct perf_counter_context *ctx;
2748 struct vm_area_struct *vma = mmap_event->vma;
2749 struct file *file = vma->vm_file;
2750 unsigned int size;
2751 char tmp[16];
2752 char *buf = NULL;
2753 const char *name;
2754
2755 if (file) {
2756 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2757 if (!buf) {
2758 name = strncpy(tmp, "//enomem", sizeof(tmp));
2759 goto got_name;
2760 }
2761 name = d_path(&file->f_path, buf, PATH_MAX);
2762 if (IS_ERR(name)) {
2763 name = strncpy(tmp, "//toolong", sizeof(tmp));
2764 goto got_name;
2765 }
2766 } else {
2767 name = arch_vma_name(mmap_event->vma);
2768 if (name)
2769 goto got_name;
2770
2771 if (!vma->vm_mm) {
2772 name = strncpy(tmp, "[vdso]", sizeof(tmp));
2773 goto got_name;
2774 }
2775
2776 name = strncpy(tmp, "//anon", sizeof(tmp));
2777 goto got_name;
2778 }
2779
2780 got_name:
2781 size = ALIGN(strlen(name)+1, sizeof(u64));
2782
2783 mmap_event->file_name = name;
2784 mmap_event->file_size = size;
2785
2786 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2787
2788 cpuctx = &get_cpu_var(perf_cpu_context);
2789 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2790 put_cpu_var(perf_cpu_context);
2791
2792 rcu_read_lock();
2793 /*
2794 * doesn't really matter which of the child contexts the
2795 * events ends up in.
2796 */
2797 ctx = rcu_dereference(current->perf_counter_ctxp);
2798 if (ctx)
2799 perf_counter_mmap_ctx(ctx, mmap_event);
2800 rcu_read_unlock();
2801
2802 kfree(buf);
2803 }
2804
2805 void __perf_counter_mmap(struct vm_area_struct *vma)
2806 {
2807 struct perf_mmap_event mmap_event;
2808
2809 if (!atomic_read(&nr_mmap_counters))
2810 return;
2811
2812 mmap_event = (struct perf_mmap_event){
2813 .vma = vma,
2814 .event = {
2815 .header = { .type = PERF_EVENT_MMAP, },
2816 .start = vma->vm_start,
2817 .len = vma->vm_end - vma->vm_start,
2818 .pgoff = vma->vm_pgoff,
2819 },
2820 };
2821
2822 perf_counter_mmap_event(&mmap_event);
2823 }
2824
2825 /*
2826 * Log sample_period changes so that analyzing tools can re-normalize the
2827 * event flow.
2828 */
2829
2830 static void perf_log_period(struct perf_counter *counter, u64 period)
2831 {
2832 struct perf_output_handle handle;
2833 int ret;
2834
2835 struct {
2836 struct perf_event_header header;
2837 u64 time;
2838 u64 period;
2839 } freq_event = {
2840 .header = {
2841 .type = PERF_EVENT_PERIOD,
2842 .misc = 0,
2843 .size = sizeof(freq_event),
2844 },
2845 .time = sched_clock(),
2846 .period = period,
2847 };
2848
2849 if (counter->hw.sample_period == period)
2850 return;
2851
2852 ret = perf_output_begin(&handle, counter, sizeof(freq_event), 0, 0);
2853 if (ret)
2854 return;
2855
2856 perf_output_put(&handle, freq_event);
2857 perf_output_end(&handle);
2858 }
2859
2860 /*
2861 * IRQ throttle logging
2862 */
2863
2864 static void perf_log_throttle(struct perf_counter *counter, int enable)
2865 {
2866 struct perf_output_handle handle;
2867 int ret;
2868
2869 struct {
2870 struct perf_event_header header;
2871 u64 time;
2872 } throttle_event = {
2873 .header = {
2874 .type = PERF_EVENT_THROTTLE + 1,
2875 .misc = 0,
2876 .size = sizeof(throttle_event),
2877 },
2878 .time = sched_clock(),
2879 };
2880
2881 ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
2882 if (ret)
2883 return;
2884
2885 perf_output_put(&handle, throttle_event);
2886 perf_output_end(&handle);
2887 }
2888
2889 /*
2890 * Generic counter overflow handling.
2891 */
2892
2893 int perf_counter_overflow(struct perf_counter *counter,
2894 int nmi, struct pt_regs *regs, u64 addr)
2895 {
2896 int events = atomic_read(&counter->event_limit);
2897 int throttle = counter->pmu->unthrottle != NULL;
2898 int ret = 0;
2899
2900 if (!throttle) {
2901 counter->hw.interrupts++;
2902 } else {
2903 if (counter->hw.interrupts != MAX_INTERRUPTS) {
2904 counter->hw.interrupts++;
2905 if (HZ*counter->hw.interrupts > (u64)sysctl_perf_counter_limit) {
2906 counter->hw.interrupts = MAX_INTERRUPTS;
2907 perf_log_throttle(counter, 0);
2908 ret = 1;
2909 }
2910 } else {
2911 /*
2912 * Keep re-disabling counters even though on the previous
2913 * pass we disabled it - just in case we raced with a
2914 * sched-in and the counter got enabled again:
2915 */
2916 ret = 1;
2917 }
2918 }
2919
2920 /*
2921 * XXX event_limit might not quite work as expected on inherited
2922 * counters
2923 */
2924
2925 counter->pending_kill = POLL_IN;
2926 if (events && atomic_dec_and_test(&counter->event_limit)) {
2927 ret = 1;
2928 counter->pending_kill = POLL_HUP;
2929 if (nmi) {
2930 counter->pending_disable = 1;
2931 perf_pending_queue(&counter->pending,
2932 perf_pending_counter);
2933 } else
2934 perf_counter_disable(counter);
2935 }
2936
2937 perf_counter_output(counter, nmi, regs, addr);
2938 return ret;
2939 }
2940
2941 /*
2942 * Generic software counter infrastructure
2943 */
2944
2945 static void perf_swcounter_update(struct perf_counter *counter)
2946 {
2947 struct hw_perf_counter *hwc = &counter->hw;
2948 u64 prev, now;
2949 s64 delta;
2950
2951 again:
2952 prev = atomic64_read(&hwc->prev_count);
2953 now = atomic64_read(&hwc->count);
2954 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2955 goto again;
2956
2957 delta = now - prev;
2958
2959 atomic64_add(delta, &counter->count);
2960 atomic64_sub(delta, &hwc->period_left);
2961 }
2962
2963 static void perf_swcounter_set_period(struct perf_counter *counter)
2964 {
2965 struct hw_perf_counter *hwc = &counter->hw;
2966 s64 left = atomic64_read(&hwc->period_left);
2967 s64 period = hwc->sample_period;
2968
2969 if (unlikely(left <= -period)) {
2970 left = period;
2971 atomic64_set(&hwc->period_left, left);
2972 }
2973
2974 if (unlikely(left <= 0)) {
2975 left += period;
2976 atomic64_add(period, &hwc->period_left);
2977 }
2978
2979 atomic64_set(&hwc->prev_count, -left);
2980 atomic64_set(&hwc->count, -left);
2981 }
2982
2983 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2984 {
2985 enum hrtimer_restart ret = HRTIMER_RESTART;
2986 struct perf_counter *counter;
2987 struct pt_regs *regs;
2988 u64 period;
2989
2990 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2991 counter->pmu->read(counter);
2992
2993 regs = get_irq_regs();
2994 /*
2995 * In case we exclude kernel IPs or are somehow not in interrupt
2996 * context, provide the next best thing, the user IP.
2997 */
2998 if ((counter->attr.exclude_kernel || !regs) &&
2999 !counter->attr.exclude_user)
3000 regs = task_pt_regs(current);
3001
3002 if (regs) {
3003 if (perf_counter_overflow(counter, 0, regs, 0))
3004 ret = HRTIMER_NORESTART;
3005 }
3006
3007 period = max_t(u64, 10000, counter->hw.sample_period);
3008 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3009
3010 return ret;
3011 }
3012
3013 static void perf_swcounter_overflow(struct perf_counter *counter,
3014 int nmi, struct pt_regs *regs, u64 addr)
3015 {
3016 perf_swcounter_update(counter);
3017 perf_swcounter_set_period(counter);
3018 if (perf_counter_overflow(counter, nmi, regs, addr))
3019 /* soft-disable the counter */
3020 ;
3021
3022 }
3023
3024 static int perf_swcounter_is_counting(struct perf_counter *counter)
3025 {
3026 struct perf_counter_context *ctx;
3027 unsigned long flags;
3028 int count;
3029
3030 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
3031 return 1;
3032
3033 if (counter->state != PERF_COUNTER_STATE_INACTIVE)
3034 return 0;
3035
3036 /*
3037 * If the counter is inactive, it could be just because
3038 * its task is scheduled out, or because it's in a group
3039 * which could not go on the PMU. We want to count in
3040 * the first case but not the second. If the context is
3041 * currently active then an inactive software counter must
3042 * be the second case. If it's not currently active then
3043 * we need to know whether the counter was active when the
3044 * context was last active, which we can determine by
3045 * comparing counter->tstamp_stopped with ctx->time.
3046 *
3047 * We are within an RCU read-side critical section,
3048 * which protects the existence of *ctx.
3049 */
3050 ctx = counter->ctx;
3051 spin_lock_irqsave(&ctx->lock, flags);
3052 count = 1;
3053 /* Re-check state now we have the lock */
3054 if (counter->state < PERF_COUNTER_STATE_INACTIVE ||
3055 counter->ctx->is_active ||
3056 counter->tstamp_stopped < ctx->time)
3057 count = 0;
3058 spin_unlock_irqrestore(&ctx->lock, flags);
3059 return count;
3060 }
3061
3062 static int perf_swcounter_match(struct perf_counter *counter,
3063 enum perf_event_types type,
3064 u32 event, struct pt_regs *regs)
3065 {
3066 u64 event_config;
3067
3068 event_config = ((u64) type << PERF_COUNTER_TYPE_SHIFT) | event;
3069
3070 if (!perf_swcounter_is_counting(counter))
3071 return 0;
3072
3073 if (counter->attr.config != event_config)
3074 return 0;
3075
3076 if (regs) {
3077 if (counter->attr.exclude_user && user_mode(regs))
3078 return 0;
3079
3080 if (counter->attr.exclude_kernel && !user_mode(regs))
3081 return 0;
3082 }
3083
3084 return 1;
3085 }
3086
3087 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
3088 int nmi, struct pt_regs *regs, u64 addr)
3089 {
3090 int neg = atomic64_add_negative(nr, &counter->hw.count);
3091
3092 if (counter->hw.sample_period && !neg && regs)
3093 perf_swcounter_overflow(counter, nmi, regs, addr);
3094 }
3095
3096 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
3097 enum perf_event_types type, u32 event,
3098 u64 nr, int nmi, struct pt_regs *regs,
3099 u64 addr)
3100 {
3101 struct perf_counter *counter;
3102
3103 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3104 return;
3105
3106 rcu_read_lock();
3107 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3108 if (perf_swcounter_match(counter, type, event, regs))
3109 perf_swcounter_add(counter, nr, nmi, regs, addr);
3110 }
3111 rcu_read_unlock();
3112 }
3113
3114 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
3115 {
3116 if (in_nmi())
3117 return &cpuctx->recursion[3];
3118
3119 if (in_irq())
3120 return &cpuctx->recursion[2];
3121
3122 if (in_softirq())
3123 return &cpuctx->recursion[1];
3124
3125 return &cpuctx->recursion[0];
3126 }
3127
3128 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
3129 u64 nr, int nmi, struct pt_regs *regs,
3130 u64 addr)
3131 {
3132 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3133 int *recursion = perf_swcounter_recursion_context(cpuctx);
3134 struct perf_counter_context *ctx;
3135
3136 if (*recursion)
3137 goto out;
3138
3139 (*recursion)++;
3140 barrier();
3141
3142 perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
3143 nr, nmi, regs, addr);
3144 rcu_read_lock();
3145 /*
3146 * doesn't really matter which of the child contexts the
3147 * events ends up in.
3148 */
3149 ctx = rcu_dereference(current->perf_counter_ctxp);
3150 if (ctx)
3151 perf_swcounter_ctx_event(ctx, type, event, nr, nmi, regs, addr);
3152 rcu_read_unlock();
3153
3154 barrier();
3155 (*recursion)--;
3156
3157 out:
3158 put_cpu_var(perf_cpu_context);
3159 }
3160
3161 void
3162 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
3163 {
3164 __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
3165 }
3166
3167 static void perf_swcounter_read(struct perf_counter *counter)
3168 {
3169 perf_swcounter_update(counter);
3170 }
3171
3172 static int perf_swcounter_enable(struct perf_counter *counter)
3173 {
3174 perf_swcounter_set_period(counter);
3175 return 0;
3176 }
3177
3178 static void perf_swcounter_disable(struct perf_counter *counter)
3179 {
3180 perf_swcounter_update(counter);
3181 }
3182
3183 static const struct pmu perf_ops_generic = {
3184 .enable = perf_swcounter_enable,
3185 .disable = perf_swcounter_disable,
3186 .read = perf_swcounter_read,
3187 };
3188
3189 /*
3190 * Software counter: cpu wall time clock
3191 */
3192
3193 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
3194 {
3195 int cpu = raw_smp_processor_id();
3196 s64 prev;
3197 u64 now;
3198
3199 now = cpu_clock(cpu);
3200 prev = atomic64_read(&counter->hw.prev_count);
3201 atomic64_set(&counter->hw.prev_count, now);
3202 atomic64_add(now - prev, &counter->count);
3203 }
3204
3205 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
3206 {
3207 struct hw_perf_counter *hwc = &counter->hw;
3208 int cpu = raw_smp_processor_id();
3209
3210 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3211 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3212 hwc->hrtimer.function = perf_swcounter_hrtimer;
3213 if (hwc->sample_period) {
3214 u64 period = max_t(u64, 10000, hwc->sample_period);
3215 __hrtimer_start_range_ns(&hwc->hrtimer,
3216 ns_to_ktime(period), 0,
3217 HRTIMER_MODE_REL, 0);
3218 }
3219
3220 return 0;
3221 }
3222
3223 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
3224 {
3225 if (counter->hw.sample_period)
3226 hrtimer_cancel(&counter->hw.hrtimer);
3227 cpu_clock_perf_counter_update(counter);
3228 }
3229
3230 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
3231 {
3232 cpu_clock_perf_counter_update(counter);
3233 }
3234
3235 static const struct pmu perf_ops_cpu_clock = {
3236 .enable = cpu_clock_perf_counter_enable,
3237 .disable = cpu_clock_perf_counter_disable,
3238 .read = cpu_clock_perf_counter_read,
3239 };
3240
3241 /*
3242 * Software counter: task time clock
3243 */
3244
3245 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
3246 {
3247 u64 prev;
3248 s64 delta;
3249
3250 prev = atomic64_xchg(&counter->hw.prev_count, now);
3251 delta = now - prev;
3252 atomic64_add(delta, &counter->count);
3253 }
3254
3255 static int task_clock_perf_counter_enable(struct perf_counter *counter)
3256 {
3257 struct hw_perf_counter *hwc = &counter->hw;
3258 u64 now;
3259
3260 now = counter->ctx->time;
3261
3262 atomic64_set(&hwc->prev_count, now);
3263 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3264 hwc->hrtimer.function = perf_swcounter_hrtimer;
3265 if (hwc->sample_period) {
3266 u64 period = max_t(u64, 10000, hwc->sample_period);
3267 __hrtimer_start_range_ns(&hwc->hrtimer,
3268 ns_to_ktime(period), 0,
3269 HRTIMER_MODE_REL, 0);
3270 }
3271
3272 return 0;
3273 }
3274
3275 static void task_clock_perf_counter_disable(struct perf_counter *counter)
3276 {
3277 if (counter->hw.sample_period)
3278 hrtimer_cancel(&counter->hw.hrtimer);
3279 task_clock_perf_counter_update(counter, counter->ctx->time);
3280
3281 }
3282
3283 static void task_clock_perf_counter_read(struct perf_counter *counter)
3284 {
3285 u64 time;
3286
3287 if (!in_nmi()) {
3288 update_context_time(counter->ctx);
3289 time = counter->ctx->time;
3290 } else {
3291 u64 now = perf_clock();
3292 u64 delta = now - counter->ctx->timestamp;
3293 time = counter->ctx->time + delta;
3294 }
3295
3296 task_clock_perf_counter_update(counter, time);
3297 }
3298
3299 static const struct pmu perf_ops_task_clock = {
3300 .enable = task_clock_perf_counter_enable,
3301 .disable = task_clock_perf_counter_disable,
3302 .read = task_clock_perf_counter_read,
3303 };
3304
3305 /*
3306 * Software counter: cpu migrations
3307 */
3308 void perf_counter_task_migration(struct task_struct *task, int cpu)
3309 {
3310 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3311 struct perf_counter_context *ctx;
3312
3313 perf_swcounter_ctx_event(&cpuctx->ctx, PERF_TYPE_SOFTWARE,
3314 PERF_COUNT_CPU_MIGRATIONS,
3315 1, 1, NULL, 0);
3316
3317 ctx = perf_pin_task_context(task);
3318 if (ctx) {
3319 perf_swcounter_ctx_event(ctx, PERF_TYPE_SOFTWARE,
3320 PERF_COUNT_CPU_MIGRATIONS,
3321 1, 1, NULL, 0);
3322 perf_unpin_context(ctx);
3323 }
3324 }
3325
3326 #ifdef CONFIG_EVENT_PROFILE
3327 void perf_tpcounter_event(int event_id)
3328 {
3329 struct pt_regs *regs = get_irq_regs();
3330
3331 if (!regs)
3332 regs = task_pt_regs(current);
3333
3334 __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
3335 }
3336 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3337
3338 extern int ftrace_profile_enable(int);
3339 extern void ftrace_profile_disable(int);
3340
3341 static void tp_perf_counter_destroy(struct perf_counter *counter)
3342 {
3343 ftrace_profile_disable(perf_event_id(&counter->attr));
3344 }
3345
3346 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3347 {
3348 int event_id = perf_event_id(&counter->attr);
3349 int ret;
3350
3351 ret = ftrace_profile_enable(event_id);
3352 if (ret)
3353 return NULL;
3354
3355 counter->destroy = tp_perf_counter_destroy;
3356 counter->hw.sample_period = counter->attr.sample_period;
3357
3358 return &perf_ops_generic;
3359 }
3360 #else
3361 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3362 {
3363 return NULL;
3364 }
3365 #endif
3366
3367 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3368 {
3369 const struct pmu *pmu = NULL;
3370
3371 /*
3372 * Software counters (currently) can't in general distinguish
3373 * between user, kernel and hypervisor events.
3374 * However, context switches and cpu migrations are considered
3375 * to be kernel events, and page faults are never hypervisor
3376 * events.
3377 */
3378 switch (perf_event_id(&counter->attr)) {
3379 case PERF_COUNT_CPU_CLOCK:
3380 pmu = &perf_ops_cpu_clock;
3381
3382 break;
3383 case PERF_COUNT_TASK_CLOCK:
3384 /*
3385 * If the user instantiates this as a per-cpu counter,
3386 * use the cpu_clock counter instead.
3387 */
3388 if (counter->ctx->task)
3389 pmu = &perf_ops_task_clock;
3390 else
3391 pmu = &perf_ops_cpu_clock;
3392
3393 break;
3394 case PERF_COUNT_PAGE_FAULTS:
3395 case PERF_COUNT_PAGE_FAULTS_MIN:
3396 case PERF_COUNT_PAGE_FAULTS_MAJ:
3397 case PERF_COUNT_CONTEXT_SWITCHES:
3398 case PERF_COUNT_CPU_MIGRATIONS:
3399 pmu = &perf_ops_generic;
3400 break;
3401 }
3402
3403 return pmu;
3404 }
3405
3406 /*
3407 * Allocate and initialize a counter structure
3408 */
3409 static struct perf_counter *
3410 perf_counter_alloc(struct perf_counter_attr *attr,
3411 int cpu,
3412 struct perf_counter_context *ctx,
3413 struct perf_counter *group_leader,
3414 gfp_t gfpflags)
3415 {
3416 const struct pmu *pmu;
3417 struct perf_counter *counter;
3418 struct hw_perf_counter *hwc;
3419 long err;
3420
3421 counter = kzalloc(sizeof(*counter), gfpflags);
3422 if (!counter)
3423 return ERR_PTR(-ENOMEM);
3424
3425 /*
3426 * Single counters are their own group leaders, with an
3427 * empty sibling list:
3428 */
3429 if (!group_leader)
3430 group_leader = counter;
3431
3432 mutex_init(&counter->child_mutex);
3433 INIT_LIST_HEAD(&counter->child_list);
3434
3435 INIT_LIST_HEAD(&counter->list_entry);
3436 INIT_LIST_HEAD(&counter->event_entry);
3437 INIT_LIST_HEAD(&counter->sibling_list);
3438 init_waitqueue_head(&counter->waitq);
3439
3440 mutex_init(&counter->mmap_mutex);
3441
3442 counter->cpu = cpu;
3443 counter->attr = *attr;
3444 counter->group_leader = group_leader;
3445 counter->pmu = NULL;
3446 counter->ctx = ctx;
3447 counter->oncpu = -1;
3448
3449 counter->ns = get_pid_ns(current->nsproxy->pid_ns);
3450 counter->id = atomic64_inc_return(&perf_counter_id);
3451
3452 counter->state = PERF_COUNTER_STATE_INACTIVE;
3453
3454 if (attr->disabled)
3455 counter->state = PERF_COUNTER_STATE_OFF;
3456
3457 pmu = NULL;
3458
3459 hwc = &counter->hw;
3460 if (attr->freq && attr->sample_freq)
3461 hwc->sample_period = div64_u64(TICK_NSEC, attr->sample_freq);
3462 else
3463 hwc->sample_period = attr->sample_period;
3464
3465 /*
3466 * we currently do not support PERF_SAMPLE_GROUP on inherited counters
3467 */
3468 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_GROUP))
3469 goto done;
3470
3471 if (perf_event_raw(attr)) {
3472 pmu = hw_perf_counter_init(counter);
3473 goto done;
3474 }
3475
3476 switch (perf_event_type(attr)) {
3477 case PERF_TYPE_HARDWARE:
3478 pmu = hw_perf_counter_init(counter);
3479 break;
3480
3481 case PERF_TYPE_SOFTWARE:
3482 pmu = sw_perf_counter_init(counter);
3483 break;
3484
3485 case PERF_TYPE_TRACEPOINT:
3486 pmu = tp_perf_counter_init(counter);
3487 break;
3488 }
3489 done:
3490 err = 0;
3491 if (!pmu)
3492 err = -EINVAL;
3493 else if (IS_ERR(pmu))
3494 err = PTR_ERR(pmu);
3495
3496 if (err) {
3497 if (counter->ns)
3498 put_pid_ns(counter->ns);
3499 kfree(counter);
3500 return ERR_PTR(err);
3501 }
3502
3503 counter->pmu = pmu;
3504
3505 atomic_inc(&nr_counters);
3506 if (counter->attr.mmap)
3507 atomic_inc(&nr_mmap_counters);
3508 if (counter->attr.comm)
3509 atomic_inc(&nr_comm_counters);
3510
3511 return counter;
3512 }
3513
3514 /**
3515 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
3516 *
3517 * @attr_uptr: event type attributes for monitoring/sampling
3518 * @pid: target pid
3519 * @cpu: target cpu
3520 * @group_fd: group leader counter fd
3521 */
3522 SYSCALL_DEFINE5(perf_counter_open,
3523 const struct perf_counter_attr __user *, attr_uptr,
3524 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
3525 {
3526 struct perf_counter *counter, *group_leader;
3527 struct perf_counter_attr attr;
3528 struct perf_counter_context *ctx;
3529 struct file *counter_file = NULL;
3530 struct file *group_file = NULL;
3531 int fput_needed = 0;
3532 int fput_needed2 = 0;
3533 int ret;
3534
3535 /* for future expandability... */
3536 if (flags)
3537 return -EINVAL;
3538
3539 if (copy_from_user(&attr, attr_uptr, sizeof(attr)) != 0)
3540 return -EFAULT;
3541
3542 /*
3543 * Get the target context (task or percpu):
3544 */
3545 ctx = find_get_context(pid, cpu);
3546 if (IS_ERR(ctx))
3547 return PTR_ERR(ctx);
3548
3549 /*
3550 * Look up the group leader (we will attach this counter to it):
3551 */
3552 group_leader = NULL;
3553 if (group_fd != -1) {
3554 ret = -EINVAL;
3555 group_file = fget_light(group_fd, &fput_needed);
3556 if (!group_file)
3557 goto err_put_context;
3558 if (group_file->f_op != &perf_fops)
3559 goto err_put_context;
3560
3561 group_leader = group_file->private_data;
3562 /*
3563 * Do not allow a recursive hierarchy (this new sibling
3564 * becoming part of another group-sibling):
3565 */
3566 if (group_leader->group_leader != group_leader)
3567 goto err_put_context;
3568 /*
3569 * Do not allow to attach to a group in a different
3570 * task or CPU context:
3571 */
3572 if (group_leader->ctx != ctx)
3573 goto err_put_context;
3574 /*
3575 * Only a group leader can be exclusive or pinned
3576 */
3577 if (attr.exclusive || attr.pinned)
3578 goto err_put_context;
3579 }
3580
3581 counter = perf_counter_alloc(&attr, cpu, ctx, group_leader,
3582 GFP_KERNEL);
3583 ret = PTR_ERR(counter);
3584 if (IS_ERR(counter))
3585 goto err_put_context;
3586
3587 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
3588 if (ret < 0)
3589 goto err_free_put_context;
3590
3591 counter_file = fget_light(ret, &fput_needed2);
3592 if (!counter_file)
3593 goto err_free_put_context;
3594
3595 counter->filp = counter_file;
3596 WARN_ON_ONCE(ctx->parent_ctx);
3597 mutex_lock(&ctx->mutex);
3598 perf_install_in_context(ctx, counter, cpu);
3599 ++ctx->generation;
3600 mutex_unlock(&ctx->mutex);
3601
3602 counter->owner = current;
3603 get_task_struct(current);
3604 mutex_lock(&current->perf_counter_mutex);
3605 list_add_tail(&counter->owner_entry, &current->perf_counter_list);
3606 mutex_unlock(&current->perf_counter_mutex);
3607
3608 fput_light(counter_file, fput_needed2);
3609
3610 out_fput:
3611 fput_light(group_file, fput_needed);
3612
3613 return ret;
3614
3615 err_free_put_context:
3616 kfree(counter);
3617
3618 err_put_context:
3619 put_ctx(ctx);
3620
3621 goto out_fput;
3622 }
3623
3624 /*
3625 * inherit a counter from parent task to child task:
3626 */
3627 static struct perf_counter *
3628 inherit_counter(struct perf_counter *parent_counter,
3629 struct task_struct *parent,
3630 struct perf_counter_context *parent_ctx,
3631 struct task_struct *child,
3632 struct perf_counter *group_leader,
3633 struct perf_counter_context *child_ctx)
3634 {
3635 struct perf_counter *child_counter;
3636
3637 /*
3638 * Instead of creating recursive hierarchies of counters,
3639 * we link inherited counters back to the original parent,
3640 * which has a filp for sure, which we use as the reference
3641 * count:
3642 */
3643 if (parent_counter->parent)
3644 parent_counter = parent_counter->parent;
3645
3646 child_counter = perf_counter_alloc(&parent_counter->attr,
3647 parent_counter->cpu, child_ctx,
3648 group_leader, GFP_KERNEL);
3649 if (IS_ERR(child_counter))
3650 return child_counter;
3651 get_ctx(child_ctx);
3652
3653 /*
3654 * Make the child state follow the state of the parent counter,
3655 * not its attr.disabled bit. We hold the parent's mutex,
3656 * so we won't race with perf_counter_{en, dis}able_family.
3657 */
3658 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3659 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3660 else
3661 child_counter->state = PERF_COUNTER_STATE_OFF;
3662
3663 /*
3664 * Link it up in the child's context:
3665 */
3666 add_counter_to_ctx(child_counter, child_ctx);
3667
3668 child_counter->parent = parent_counter;
3669 /*
3670 * inherit into child's child as well:
3671 */
3672 child_counter->attr.inherit = 1;
3673
3674 /*
3675 * Get a reference to the parent filp - we will fput it
3676 * when the child counter exits. This is safe to do because
3677 * we are in the parent and we know that the filp still
3678 * exists and has a nonzero count:
3679 */
3680 atomic_long_inc(&parent_counter->filp->f_count);
3681
3682 /*
3683 * Link this into the parent counter's child list
3684 */
3685 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3686 mutex_lock(&parent_counter->child_mutex);
3687 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3688 mutex_unlock(&parent_counter->child_mutex);
3689
3690 return child_counter;
3691 }
3692
3693 static int inherit_group(struct perf_counter *parent_counter,
3694 struct task_struct *parent,
3695 struct perf_counter_context *parent_ctx,
3696 struct task_struct *child,
3697 struct perf_counter_context *child_ctx)
3698 {
3699 struct perf_counter *leader;
3700 struct perf_counter *sub;
3701 struct perf_counter *child_ctr;
3702
3703 leader = inherit_counter(parent_counter, parent, parent_ctx,
3704 child, NULL, child_ctx);
3705 if (IS_ERR(leader))
3706 return PTR_ERR(leader);
3707 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3708 child_ctr = inherit_counter(sub, parent, parent_ctx,
3709 child, leader, child_ctx);
3710 if (IS_ERR(child_ctr))
3711 return PTR_ERR(child_ctr);
3712 }
3713 return 0;
3714 }
3715
3716 static void sync_child_counter(struct perf_counter *child_counter,
3717 struct perf_counter *parent_counter)
3718 {
3719 u64 child_val;
3720
3721 child_val = atomic64_read(&child_counter->count);
3722
3723 /*
3724 * Add back the child's count to the parent's count:
3725 */
3726 atomic64_add(child_val, &parent_counter->count);
3727 atomic64_add(child_counter->total_time_enabled,
3728 &parent_counter->child_total_time_enabled);
3729 atomic64_add(child_counter->total_time_running,
3730 &parent_counter->child_total_time_running);
3731
3732 /*
3733 * Remove this counter from the parent's list
3734 */
3735 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3736 mutex_lock(&parent_counter->child_mutex);
3737 list_del_init(&child_counter->child_list);
3738 mutex_unlock(&parent_counter->child_mutex);
3739
3740 /*
3741 * Release the parent counter, if this was the last
3742 * reference to it.
3743 */
3744 fput(parent_counter->filp);
3745 }
3746
3747 static void
3748 __perf_counter_exit_task(struct perf_counter *child_counter,
3749 struct perf_counter_context *child_ctx)
3750 {
3751 struct perf_counter *parent_counter;
3752
3753 update_counter_times(child_counter);
3754 perf_counter_remove_from_context(child_counter);
3755
3756 parent_counter = child_counter->parent;
3757 /*
3758 * It can happen that parent exits first, and has counters
3759 * that are still around due to the child reference. These
3760 * counters need to be zapped - but otherwise linger.
3761 */
3762 if (parent_counter) {
3763 sync_child_counter(child_counter, parent_counter);
3764 free_counter(child_counter);
3765 }
3766 }
3767
3768 /*
3769 * When a child task exits, feed back counter values to parent counters.
3770 */
3771 void perf_counter_exit_task(struct task_struct *child)
3772 {
3773 struct perf_counter *child_counter, *tmp;
3774 struct perf_counter_context *child_ctx;
3775 unsigned long flags;
3776
3777 if (likely(!child->perf_counter_ctxp))
3778 return;
3779
3780 local_irq_save(flags);
3781 /*
3782 * We can't reschedule here because interrupts are disabled,
3783 * and either child is current or it is a task that can't be
3784 * scheduled, so we are now safe from rescheduling changing
3785 * our context.
3786 */
3787 child_ctx = child->perf_counter_ctxp;
3788 __perf_counter_task_sched_out(child_ctx);
3789
3790 /*
3791 * Take the context lock here so that if find_get_context is
3792 * reading child->perf_counter_ctxp, we wait until it has
3793 * incremented the context's refcount before we do put_ctx below.
3794 */
3795 spin_lock(&child_ctx->lock);
3796 child->perf_counter_ctxp = NULL;
3797 if (child_ctx->parent_ctx) {
3798 /*
3799 * This context is a clone; unclone it so it can't get
3800 * swapped to another process while we're removing all
3801 * the counters from it.
3802 */
3803 put_ctx(child_ctx->parent_ctx);
3804 child_ctx->parent_ctx = NULL;
3805 }
3806 spin_unlock(&child_ctx->lock);
3807 local_irq_restore(flags);
3808
3809 mutex_lock(&child_ctx->mutex);
3810
3811 again:
3812 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3813 list_entry)
3814 __perf_counter_exit_task(child_counter, child_ctx);
3815
3816 /*
3817 * If the last counter was a group counter, it will have appended all
3818 * its siblings to the list, but we obtained 'tmp' before that which
3819 * will still point to the list head terminating the iteration.
3820 */
3821 if (!list_empty(&child_ctx->counter_list))
3822 goto again;
3823
3824 mutex_unlock(&child_ctx->mutex);
3825
3826 put_ctx(child_ctx);
3827 }
3828
3829 /*
3830 * free an unexposed, unused context as created by inheritance by
3831 * init_task below, used by fork() in case of fail.
3832 */
3833 void perf_counter_free_task(struct task_struct *task)
3834 {
3835 struct perf_counter_context *ctx = task->perf_counter_ctxp;
3836 struct perf_counter *counter, *tmp;
3837
3838 if (!ctx)
3839 return;
3840
3841 mutex_lock(&ctx->mutex);
3842 again:
3843 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) {
3844 struct perf_counter *parent = counter->parent;
3845
3846 if (WARN_ON_ONCE(!parent))
3847 continue;
3848
3849 mutex_lock(&parent->child_mutex);
3850 list_del_init(&counter->child_list);
3851 mutex_unlock(&parent->child_mutex);
3852
3853 fput(parent->filp);
3854
3855 list_del_counter(counter, ctx);
3856 free_counter(counter);
3857 }
3858
3859 if (!list_empty(&ctx->counter_list))
3860 goto again;
3861
3862 mutex_unlock(&ctx->mutex);
3863
3864 put_ctx(ctx);
3865 }
3866
3867 /*
3868 * Initialize the perf_counter context in task_struct
3869 */
3870 int perf_counter_init_task(struct task_struct *child)
3871 {
3872 struct perf_counter_context *child_ctx, *parent_ctx;
3873 struct perf_counter_context *cloned_ctx;
3874 struct perf_counter *counter;
3875 struct task_struct *parent = current;
3876 int inherited_all = 1;
3877 int ret = 0;
3878
3879 child->perf_counter_ctxp = NULL;
3880
3881 mutex_init(&child->perf_counter_mutex);
3882 INIT_LIST_HEAD(&child->perf_counter_list);
3883
3884 if (likely(!parent->perf_counter_ctxp))
3885 return 0;
3886
3887 /*
3888 * This is executed from the parent task context, so inherit
3889 * counters that have been marked for cloning.
3890 * First allocate and initialize a context for the child.
3891 */
3892
3893 child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
3894 if (!child_ctx)
3895 return -ENOMEM;
3896
3897 __perf_counter_init_context(child_ctx, child);
3898 child->perf_counter_ctxp = child_ctx;
3899 get_task_struct(child);
3900
3901 /*
3902 * If the parent's context is a clone, pin it so it won't get
3903 * swapped under us.
3904 */
3905 parent_ctx = perf_pin_task_context(parent);
3906
3907 /*
3908 * No need to check if parent_ctx != NULL here; since we saw
3909 * it non-NULL earlier, the only reason for it to become NULL
3910 * is if we exit, and since we're currently in the middle of
3911 * a fork we can't be exiting at the same time.
3912 */
3913
3914 /*
3915 * Lock the parent list. No need to lock the child - not PID
3916 * hashed yet and not running, so nobody can access it.
3917 */
3918 mutex_lock(&parent_ctx->mutex);
3919
3920 /*
3921 * We dont have to disable NMIs - we are only looking at
3922 * the list, not manipulating it:
3923 */
3924 list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
3925 if (counter != counter->group_leader)
3926 continue;
3927
3928 if (!counter->attr.inherit) {
3929 inherited_all = 0;
3930 continue;
3931 }
3932
3933 ret = inherit_group(counter, parent, parent_ctx,
3934 child, child_ctx);
3935 if (ret) {
3936 inherited_all = 0;
3937 break;
3938 }
3939 }
3940
3941 if (inherited_all) {
3942 /*
3943 * Mark the child context as a clone of the parent
3944 * context, or of whatever the parent is a clone of.
3945 * Note that if the parent is a clone, it could get
3946 * uncloned at any point, but that doesn't matter
3947 * because the list of counters and the generation
3948 * count can't have changed since we took the mutex.
3949 */
3950 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
3951 if (cloned_ctx) {
3952 child_ctx->parent_ctx = cloned_ctx;
3953 child_ctx->parent_gen = parent_ctx->parent_gen;
3954 } else {
3955 child_ctx->parent_ctx = parent_ctx;
3956 child_ctx->parent_gen = parent_ctx->generation;
3957 }
3958 get_ctx(child_ctx->parent_ctx);
3959 }
3960
3961 mutex_unlock(&parent_ctx->mutex);
3962
3963 perf_unpin_context(parent_ctx);
3964
3965 return ret;
3966 }
3967
3968 static void __cpuinit perf_counter_init_cpu(int cpu)
3969 {
3970 struct perf_cpu_context *cpuctx;
3971
3972 cpuctx = &per_cpu(perf_cpu_context, cpu);
3973 __perf_counter_init_context(&cpuctx->ctx, NULL);
3974
3975 spin_lock(&perf_resource_lock);
3976 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3977 spin_unlock(&perf_resource_lock);
3978
3979 hw_perf_counter_setup(cpu);
3980 }
3981
3982 #ifdef CONFIG_HOTPLUG_CPU
3983 static void __perf_counter_exit_cpu(void *info)
3984 {
3985 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3986 struct perf_counter_context *ctx = &cpuctx->ctx;
3987 struct perf_counter *counter, *tmp;
3988
3989 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3990 __perf_counter_remove_from_context(counter);
3991 }
3992 static void perf_counter_exit_cpu(int cpu)
3993 {
3994 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3995 struct perf_counter_context *ctx = &cpuctx->ctx;
3996
3997 mutex_lock(&ctx->mutex);
3998 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3999 mutex_unlock(&ctx->mutex);
4000 }
4001 #else
4002 static inline void perf_counter_exit_cpu(int cpu) { }
4003 #endif
4004
4005 static int __cpuinit
4006 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
4007 {
4008 unsigned int cpu = (long)hcpu;
4009
4010 switch (action) {
4011
4012 case CPU_UP_PREPARE:
4013 case CPU_UP_PREPARE_FROZEN:
4014 perf_counter_init_cpu(cpu);
4015 break;
4016
4017 case CPU_DOWN_PREPARE:
4018 case CPU_DOWN_PREPARE_FROZEN:
4019 perf_counter_exit_cpu(cpu);
4020 break;
4021
4022 default:
4023 break;
4024 }
4025
4026 return NOTIFY_OK;
4027 }
4028
4029 /*
4030 * This has to have a higher priority than migration_notifier in sched.c.
4031 */
4032 static struct notifier_block __cpuinitdata perf_cpu_nb = {
4033 .notifier_call = perf_cpu_notify,
4034 .priority = 20,
4035 };
4036
4037 void __init perf_counter_init(void)
4038 {
4039 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
4040 (void *)(long)smp_processor_id());
4041 register_cpu_notifier(&perf_cpu_nb);
4042 }
4043
4044 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
4045 {
4046 return sprintf(buf, "%d\n", perf_reserved_percpu);
4047 }
4048
4049 static ssize_t
4050 perf_set_reserve_percpu(struct sysdev_class *class,
4051 const char *buf,
4052 size_t count)
4053 {
4054 struct perf_cpu_context *cpuctx;
4055 unsigned long val;
4056 int err, cpu, mpt;
4057
4058 err = strict_strtoul(buf, 10, &val);
4059 if (err)
4060 return err;
4061 if (val > perf_max_counters)
4062 return -EINVAL;
4063
4064 spin_lock(&perf_resource_lock);
4065 perf_reserved_percpu = val;
4066 for_each_online_cpu(cpu) {
4067 cpuctx = &per_cpu(perf_cpu_context, cpu);
4068 spin_lock_irq(&cpuctx->ctx.lock);
4069 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
4070 perf_max_counters - perf_reserved_percpu);
4071 cpuctx->max_pertask = mpt;
4072 spin_unlock_irq(&cpuctx->ctx.lock);
4073 }
4074 spin_unlock(&perf_resource_lock);
4075
4076 return count;
4077 }
4078
4079 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
4080 {
4081 return sprintf(buf, "%d\n", perf_overcommit);
4082 }
4083
4084 static ssize_t
4085 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
4086 {
4087 unsigned long val;
4088 int err;
4089
4090 err = strict_strtoul(buf, 10, &val);
4091 if (err)
4092 return err;
4093 if (val > 1)
4094 return -EINVAL;
4095
4096 spin_lock(&perf_resource_lock);
4097 perf_overcommit = val;
4098 spin_unlock(&perf_resource_lock);
4099
4100 return count;
4101 }
4102
4103 static SYSDEV_CLASS_ATTR(
4104 reserve_percpu,
4105 0644,
4106 perf_show_reserve_percpu,
4107 perf_set_reserve_percpu
4108 );
4109
4110 static SYSDEV_CLASS_ATTR(
4111 overcommit,
4112 0644,
4113 perf_show_overcommit,
4114 perf_set_overcommit
4115 );
4116
4117 static struct attribute *perfclass_attrs[] = {
4118 &attr_reserve_percpu.attr,
4119 &attr_overcommit.attr,
4120 NULL
4121 };
4122
4123 static struct attribute_group perfclass_attr_group = {
4124 .attrs = perfclass_attrs,
4125 .name = "perf_counters",
4126 };
4127
4128 static int __init perf_counter_sysfs_init(void)
4129 {
4130 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
4131 &perfclass_attr_group);
4132 }
4133 device_initcall(perf_counter_sysfs_init);
This page took 0.220959 seconds and 6 git commands to generate.