perf_counter: Fix PERF_COUNTER_CONTEXT_SWITCHES for cpu counters
[deliverable/linux.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/ptrace.h>
20 #include <linux/percpu.h>
21 #include <linux/vmstat.h>
22 #include <linux/hardirq.h>
23 #include <linux/rculist.h>
24 #include <linux/uaccess.h>
25 #include <linux/syscalls.h>
26 #include <linux/anon_inodes.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/perf_counter.h>
29 #include <linux/dcache.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34 * Each CPU has a list of per CPU counters:
35 */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_tracking __read_mostly;
44 static atomic_t nr_munmap_tracking __read_mostly;
45 static atomic_t nr_comm_tracking __read_mostly;
46
47 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
49
50 /*
51 * Lock for (sysadmin-configurable) counter reservations:
52 */
53 static DEFINE_SPINLOCK(perf_resource_lock);
54
55 /*
56 * Architecture provided APIs - weak aliases:
57 */
58 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
59 {
60 return NULL;
61 }
62
63 void __weak hw_perf_disable(void) { barrier(); }
64 void __weak hw_perf_enable(void) { barrier(); }
65
66 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
67 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
68 struct perf_cpu_context *cpuctx,
69 struct perf_counter_context *ctx, int cpu)
70 {
71 return 0;
72 }
73
74 void __weak perf_counter_print_debug(void) { }
75
76 static DEFINE_PER_CPU(int, disable_count);
77
78 void __perf_disable(void)
79 {
80 __get_cpu_var(disable_count)++;
81 }
82
83 bool __perf_enable(void)
84 {
85 return !--__get_cpu_var(disable_count);
86 }
87
88 void perf_disable(void)
89 {
90 __perf_disable();
91 hw_perf_disable();
92 }
93
94 void perf_enable(void)
95 {
96 if (__perf_enable())
97 hw_perf_enable();
98 }
99
100 static void get_ctx(struct perf_counter_context *ctx)
101 {
102 atomic_inc(&ctx->refcount);
103 }
104
105 static void put_ctx(struct perf_counter_context *ctx)
106 {
107 if (atomic_dec_and_test(&ctx->refcount)) {
108 if (ctx->parent_ctx)
109 put_ctx(ctx->parent_ctx);
110 kfree(ctx);
111 }
112 }
113
114 /*
115 * Add a counter from the lists for its context.
116 * Must be called with ctx->mutex and ctx->lock held.
117 */
118 static void
119 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
120 {
121 struct perf_counter *group_leader = counter->group_leader;
122
123 /*
124 * Depending on whether it is a standalone or sibling counter,
125 * add it straight to the context's counter list, or to the group
126 * leader's sibling list:
127 */
128 if (group_leader == counter)
129 list_add_tail(&counter->list_entry, &ctx->counter_list);
130 else {
131 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
132 group_leader->nr_siblings++;
133 }
134
135 list_add_rcu(&counter->event_entry, &ctx->event_list);
136 ctx->nr_counters++;
137 }
138
139 /*
140 * Remove a counter from the lists for its context.
141 * Must be called with ctx->mutex and ctx->lock held.
142 */
143 static void
144 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
145 {
146 struct perf_counter *sibling, *tmp;
147
148 if (list_empty(&counter->list_entry))
149 return;
150 ctx->nr_counters--;
151
152 list_del_init(&counter->list_entry);
153 list_del_rcu(&counter->event_entry);
154
155 if (counter->group_leader != counter)
156 counter->group_leader->nr_siblings--;
157
158 /*
159 * If this was a group counter with sibling counters then
160 * upgrade the siblings to singleton counters by adding them
161 * to the context list directly:
162 */
163 list_for_each_entry_safe(sibling, tmp,
164 &counter->sibling_list, list_entry) {
165
166 list_move_tail(&sibling->list_entry, &ctx->counter_list);
167 sibling->group_leader = sibling;
168 }
169 }
170
171 static void
172 counter_sched_out(struct perf_counter *counter,
173 struct perf_cpu_context *cpuctx,
174 struct perf_counter_context *ctx)
175 {
176 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
177 return;
178
179 counter->state = PERF_COUNTER_STATE_INACTIVE;
180 counter->tstamp_stopped = ctx->time;
181 counter->pmu->disable(counter);
182 counter->oncpu = -1;
183
184 if (!is_software_counter(counter))
185 cpuctx->active_oncpu--;
186 ctx->nr_active--;
187 if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
188 cpuctx->exclusive = 0;
189 }
190
191 static void
192 group_sched_out(struct perf_counter *group_counter,
193 struct perf_cpu_context *cpuctx,
194 struct perf_counter_context *ctx)
195 {
196 struct perf_counter *counter;
197
198 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
199 return;
200
201 counter_sched_out(group_counter, cpuctx, ctx);
202
203 /*
204 * Schedule out siblings (if any):
205 */
206 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
207 counter_sched_out(counter, cpuctx, ctx);
208
209 if (group_counter->hw_event.exclusive)
210 cpuctx->exclusive = 0;
211 }
212
213 /*
214 * Mark this context as not being a clone of another.
215 * Called when counters are added to or removed from this context.
216 * We also increment our generation number so that anything that
217 * was cloned from this context before this will not match anything
218 * cloned from this context after this.
219 */
220 static void unclone_ctx(struct perf_counter_context *ctx)
221 {
222 ++ctx->generation;
223 if (!ctx->parent_ctx)
224 return;
225 put_ctx(ctx->parent_ctx);
226 ctx->parent_ctx = NULL;
227 }
228
229 /*
230 * Cross CPU call to remove a performance counter
231 *
232 * We disable the counter on the hardware level first. After that we
233 * remove it from the context list.
234 */
235 static void __perf_counter_remove_from_context(void *info)
236 {
237 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
238 struct perf_counter *counter = info;
239 struct perf_counter_context *ctx = counter->ctx;
240 unsigned long flags;
241
242 /*
243 * If this is a task context, we need to check whether it is
244 * the current task context of this cpu. If not it has been
245 * scheduled out before the smp call arrived.
246 */
247 if (ctx->task && cpuctx->task_ctx != ctx)
248 return;
249
250 spin_lock_irqsave(&ctx->lock, flags);
251 /*
252 * Protect the list operation against NMI by disabling the
253 * counters on a global level.
254 */
255 perf_disable();
256
257 counter_sched_out(counter, cpuctx, ctx);
258
259 list_del_counter(counter, ctx);
260
261 if (!ctx->task) {
262 /*
263 * Allow more per task counters with respect to the
264 * reservation:
265 */
266 cpuctx->max_pertask =
267 min(perf_max_counters - ctx->nr_counters,
268 perf_max_counters - perf_reserved_percpu);
269 }
270
271 perf_enable();
272 spin_unlock_irqrestore(&ctx->lock, flags);
273 }
274
275
276 /*
277 * Remove the counter from a task's (or a CPU's) list of counters.
278 *
279 * Must be called with ctx->mutex held.
280 *
281 * CPU counters are removed with a smp call. For task counters we only
282 * call when the task is on a CPU.
283 */
284 static void perf_counter_remove_from_context(struct perf_counter *counter)
285 {
286 struct perf_counter_context *ctx = counter->ctx;
287 struct task_struct *task = ctx->task;
288
289 unclone_ctx(ctx);
290 if (!task) {
291 /*
292 * Per cpu counters are removed via an smp call and
293 * the removal is always sucessful.
294 */
295 smp_call_function_single(counter->cpu,
296 __perf_counter_remove_from_context,
297 counter, 1);
298 return;
299 }
300
301 retry:
302 task_oncpu_function_call(task, __perf_counter_remove_from_context,
303 counter);
304
305 spin_lock_irq(&ctx->lock);
306 /*
307 * If the context is active we need to retry the smp call.
308 */
309 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
310 spin_unlock_irq(&ctx->lock);
311 goto retry;
312 }
313
314 /*
315 * The lock prevents that this context is scheduled in so we
316 * can remove the counter safely, if the call above did not
317 * succeed.
318 */
319 if (!list_empty(&counter->list_entry)) {
320 list_del_counter(counter, ctx);
321 }
322 spin_unlock_irq(&ctx->lock);
323 }
324
325 static inline u64 perf_clock(void)
326 {
327 return cpu_clock(smp_processor_id());
328 }
329
330 /*
331 * Update the record of the current time in a context.
332 */
333 static void update_context_time(struct perf_counter_context *ctx)
334 {
335 u64 now = perf_clock();
336
337 ctx->time += now - ctx->timestamp;
338 ctx->timestamp = now;
339 }
340
341 /*
342 * Update the total_time_enabled and total_time_running fields for a counter.
343 */
344 static void update_counter_times(struct perf_counter *counter)
345 {
346 struct perf_counter_context *ctx = counter->ctx;
347 u64 run_end;
348
349 if (counter->state < PERF_COUNTER_STATE_INACTIVE)
350 return;
351
352 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
353
354 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
355 run_end = counter->tstamp_stopped;
356 else
357 run_end = ctx->time;
358
359 counter->total_time_running = run_end - counter->tstamp_running;
360 }
361
362 /*
363 * Update total_time_enabled and total_time_running for all counters in a group.
364 */
365 static void update_group_times(struct perf_counter *leader)
366 {
367 struct perf_counter *counter;
368
369 update_counter_times(leader);
370 list_for_each_entry(counter, &leader->sibling_list, list_entry)
371 update_counter_times(counter);
372 }
373
374 /*
375 * Cross CPU call to disable a performance counter
376 */
377 static void __perf_counter_disable(void *info)
378 {
379 struct perf_counter *counter = info;
380 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
381 struct perf_counter_context *ctx = counter->ctx;
382 unsigned long flags;
383
384 /*
385 * If this is a per-task counter, need to check whether this
386 * counter's task is the current task on this cpu.
387 */
388 if (ctx->task && cpuctx->task_ctx != ctx)
389 return;
390
391 spin_lock_irqsave(&ctx->lock, flags);
392
393 /*
394 * If the counter is on, turn it off.
395 * If it is in error state, leave it in error state.
396 */
397 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
398 update_context_time(ctx);
399 update_counter_times(counter);
400 if (counter == counter->group_leader)
401 group_sched_out(counter, cpuctx, ctx);
402 else
403 counter_sched_out(counter, cpuctx, ctx);
404 counter->state = PERF_COUNTER_STATE_OFF;
405 }
406
407 spin_unlock_irqrestore(&ctx->lock, flags);
408 }
409
410 /*
411 * Disable a counter.
412 */
413 static void perf_counter_disable(struct perf_counter *counter)
414 {
415 struct perf_counter_context *ctx = counter->ctx;
416 struct task_struct *task = ctx->task;
417
418 if (!task) {
419 /*
420 * Disable the counter on the cpu that it's on
421 */
422 smp_call_function_single(counter->cpu, __perf_counter_disable,
423 counter, 1);
424 return;
425 }
426
427 retry:
428 task_oncpu_function_call(task, __perf_counter_disable, counter);
429
430 spin_lock_irq(&ctx->lock);
431 /*
432 * If the counter is still active, we need to retry the cross-call.
433 */
434 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
435 spin_unlock_irq(&ctx->lock);
436 goto retry;
437 }
438
439 /*
440 * Since we have the lock this context can't be scheduled
441 * in, so we can change the state safely.
442 */
443 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
444 update_counter_times(counter);
445 counter->state = PERF_COUNTER_STATE_OFF;
446 }
447
448 spin_unlock_irq(&ctx->lock);
449 }
450
451 static int
452 counter_sched_in(struct perf_counter *counter,
453 struct perf_cpu_context *cpuctx,
454 struct perf_counter_context *ctx,
455 int cpu)
456 {
457 if (counter->state <= PERF_COUNTER_STATE_OFF)
458 return 0;
459
460 counter->state = PERF_COUNTER_STATE_ACTIVE;
461 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
462 /*
463 * The new state must be visible before we turn it on in the hardware:
464 */
465 smp_wmb();
466
467 if (counter->pmu->enable(counter)) {
468 counter->state = PERF_COUNTER_STATE_INACTIVE;
469 counter->oncpu = -1;
470 return -EAGAIN;
471 }
472
473 counter->tstamp_running += ctx->time - counter->tstamp_stopped;
474
475 if (!is_software_counter(counter))
476 cpuctx->active_oncpu++;
477 ctx->nr_active++;
478
479 if (counter->hw_event.exclusive)
480 cpuctx->exclusive = 1;
481
482 return 0;
483 }
484
485 static int
486 group_sched_in(struct perf_counter *group_counter,
487 struct perf_cpu_context *cpuctx,
488 struct perf_counter_context *ctx,
489 int cpu)
490 {
491 struct perf_counter *counter, *partial_group;
492 int ret;
493
494 if (group_counter->state == PERF_COUNTER_STATE_OFF)
495 return 0;
496
497 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
498 if (ret)
499 return ret < 0 ? ret : 0;
500
501 group_counter->prev_state = group_counter->state;
502 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
503 return -EAGAIN;
504
505 /*
506 * Schedule in siblings as one group (if any):
507 */
508 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
509 counter->prev_state = counter->state;
510 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
511 partial_group = counter;
512 goto group_error;
513 }
514 }
515
516 return 0;
517
518 group_error:
519 /*
520 * Groups can be scheduled in as one unit only, so undo any
521 * partial group before returning:
522 */
523 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
524 if (counter == partial_group)
525 break;
526 counter_sched_out(counter, cpuctx, ctx);
527 }
528 counter_sched_out(group_counter, cpuctx, ctx);
529
530 return -EAGAIN;
531 }
532
533 /*
534 * Return 1 for a group consisting entirely of software counters,
535 * 0 if the group contains any hardware counters.
536 */
537 static int is_software_only_group(struct perf_counter *leader)
538 {
539 struct perf_counter *counter;
540
541 if (!is_software_counter(leader))
542 return 0;
543
544 list_for_each_entry(counter, &leader->sibling_list, list_entry)
545 if (!is_software_counter(counter))
546 return 0;
547
548 return 1;
549 }
550
551 /*
552 * Work out whether we can put this counter group on the CPU now.
553 */
554 static int group_can_go_on(struct perf_counter *counter,
555 struct perf_cpu_context *cpuctx,
556 int can_add_hw)
557 {
558 /*
559 * Groups consisting entirely of software counters can always go on.
560 */
561 if (is_software_only_group(counter))
562 return 1;
563 /*
564 * If an exclusive group is already on, no other hardware
565 * counters can go on.
566 */
567 if (cpuctx->exclusive)
568 return 0;
569 /*
570 * If this group is exclusive and there are already
571 * counters on the CPU, it can't go on.
572 */
573 if (counter->hw_event.exclusive && cpuctx->active_oncpu)
574 return 0;
575 /*
576 * Otherwise, try to add it if all previous groups were able
577 * to go on.
578 */
579 return can_add_hw;
580 }
581
582 static void add_counter_to_ctx(struct perf_counter *counter,
583 struct perf_counter_context *ctx)
584 {
585 list_add_counter(counter, ctx);
586 counter->prev_state = PERF_COUNTER_STATE_OFF;
587 counter->tstamp_enabled = ctx->time;
588 counter->tstamp_running = ctx->time;
589 counter->tstamp_stopped = ctx->time;
590 }
591
592 /*
593 * Cross CPU call to install and enable a performance counter
594 *
595 * Must be called with ctx->mutex held
596 */
597 static void __perf_install_in_context(void *info)
598 {
599 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
600 struct perf_counter *counter = info;
601 struct perf_counter_context *ctx = counter->ctx;
602 struct perf_counter *leader = counter->group_leader;
603 int cpu = smp_processor_id();
604 unsigned long flags;
605 int err;
606
607 /*
608 * If this is a task context, we need to check whether it is
609 * the current task context of this cpu. If not it has been
610 * scheduled out before the smp call arrived.
611 * Or possibly this is the right context but it isn't
612 * on this cpu because it had no counters.
613 */
614 if (ctx->task && cpuctx->task_ctx != ctx) {
615 if (cpuctx->task_ctx || ctx->task != current)
616 return;
617 cpuctx->task_ctx = ctx;
618 }
619
620 spin_lock_irqsave(&ctx->lock, flags);
621 ctx->is_active = 1;
622 update_context_time(ctx);
623
624 /*
625 * Protect the list operation against NMI by disabling the
626 * counters on a global level. NOP for non NMI based counters.
627 */
628 perf_disable();
629
630 add_counter_to_ctx(counter, ctx);
631
632 /*
633 * Don't put the counter on if it is disabled or if
634 * it is in a group and the group isn't on.
635 */
636 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
637 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
638 goto unlock;
639
640 /*
641 * An exclusive counter can't go on if there are already active
642 * hardware counters, and no hardware counter can go on if there
643 * is already an exclusive counter on.
644 */
645 if (!group_can_go_on(counter, cpuctx, 1))
646 err = -EEXIST;
647 else
648 err = counter_sched_in(counter, cpuctx, ctx, cpu);
649
650 if (err) {
651 /*
652 * This counter couldn't go on. If it is in a group
653 * then we have to pull the whole group off.
654 * If the counter group is pinned then put it in error state.
655 */
656 if (leader != counter)
657 group_sched_out(leader, cpuctx, ctx);
658 if (leader->hw_event.pinned) {
659 update_group_times(leader);
660 leader->state = PERF_COUNTER_STATE_ERROR;
661 }
662 }
663
664 if (!err && !ctx->task && cpuctx->max_pertask)
665 cpuctx->max_pertask--;
666
667 unlock:
668 perf_enable();
669
670 spin_unlock_irqrestore(&ctx->lock, flags);
671 }
672
673 /*
674 * Attach a performance counter to a context
675 *
676 * First we add the counter to the list with the hardware enable bit
677 * in counter->hw_config cleared.
678 *
679 * If the counter is attached to a task which is on a CPU we use a smp
680 * call to enable it in the task context. The task might have been
681 * scheduled away, but we check this in the smp call again.
682 *
683 * Must be called with ctx->mutex held.
684 */
685 static void
686 perf_install_in_context(struct perf_counter_context *ctx,
687 struct perf_counter *counter,
688 int cpu)
689 {
690 struct task_struct *task = ctx->task;
691
692 if (!task) {
693 /*
694 * Per cpu counters are installed via an smp call and
695 * the install is always sucessful.
696 */
697 smp_call_function_single(cpu, __perf_install_in_context,
698 counter, 1);
699 return;
700 }
701
702 retry:
703 task_oncpu_function_call(task, __perf_install_in_context,
704 counter);
705
706 spin_lock_irq(&ctx->lock);
707 /*
708 * we need to retry the smp call.
709 */
710 if (ctx->is_active && list_empty(&counter->list_entry)) {
711 spin_unlock_irq(&ctx->lock);
712 goto retry;
713 }
714
715 /*
716 * The lock prevents that this context is scheduled in so we
717 * can add the counter safely, if it the call above did not
718 * succeed.
719 */
720 if (list_empty(&counter->list_entry))
721 add_counter_to_ctx(counter, ctx);
722 spin_unlock_irq(&ctx->lock);
723 }
724
725 /*
726 * Cross CPU call to enable a performance counter
727 */
728 static void __perf_counter_enable(void *info)
729 {
730 struct perf_counter *counter = info;
731 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
732 struct perf_counter_context *ctx = counter->ctx;
733 struct perf_counter *leader = counter->group_leader;
734 unsigned long flags;
735 int err;
736
737 /*
738 * If this is a per-task counter, need to check whether this
739 * counter's task is the current task on this cpu.
740 */
741 if (ctx->task && cpuctx->task_ctx != ctx) {
742 if (cpuctx->task_ctx || ctx->task != current)
743 return;
744 cpuctx->task_ctx = ctx;
745 }
746
747 spin_lock_irqsave(&ctx->lock, flags);
748 ctx->is_active = 1;
749 update_context_time(ctx);
750
751 counter->prev_state = counter->state;
752 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
753 goto unlock;
754 counter->state = PERF_COUNTER_STATE_INACTIVE;
755 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
756
757 /*
758 * If the counter is in a group and isn't the group leader,
759 * then don't put it on unless the group is on.
760 */
761 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
762 goto unlock;
763
764 if (!group_can_go_on(counter, cpuctx, 1)) {
765 err = -EEXIST;
766 } else {
767 perf_disable();
768 if (counter == leader)
769 err = group_sched_in(counter, cpuctx, ctx,
770 smp_processor_id());
771 else
772 err = counter_sched_in(counter, cpuctx, ctx,
773 smp_processor_id());
774 perf_enable();
775 }
776
777 if (err) {
778 /*
779 * If this counter can't go on and it's part of a
780 * group, then the whole group has to come off.
781 */
782 if (leader != counter)
783 group_sched_out(leader, cpuctx, ctx);
784 if (leader->hw_event.pinned) {
785 update_group_times(leader);
786 leader->state = PERF_COUNTER_STATE_ERROR;
787 }
788 }
789
790 unlock:
791 spin_unlock_irqrestore(&ctx->lock, flags);
792 }
793
794 /*
795 * Enable a counter.
796 */
797 static void perf_counter_enable(struct perf_counter *counter)
798 {
799 struct perf_counter_context *ctx = counter->ctx;
800 struct task_struct *task = ctx->task;
801
802 if (!task) {
803 /*
804 * Enable the counter on the cpu that it's on
805 */
806 smp_call_function_single(counter->cpu, __perf_counter_enable,
807 counter, 1);
808 return;
809 }
810
811 spin_lock_irq(&ctx->lock);
812 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
813 goto out;
814
815 /*
816 * If the counter is in error state, clear that first.
817 * That way, if we see the counter in error state below, we
818 * know that it has gone back into error state, as distinct
819 * from the task having been scheduled away before the
820 * cross-call arrived.
821 */
822 if (counter->state == PERF_COUNTER_STATE_ERROR)
823 counter->state = PERF_COUNTER_STATE_OFF;
824
825 retry:
826 spin_unlock_irq(&ctx->lock);
827 task_oncpu_function_call(task, __perf_counter_enable, counter);
828
829 spin_lock_irq(&ctx->lock);
830
831 /*
832 * If the context is active and the counter is still off,
833 * we need to retry the cross-call.
834 */
835 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
836 goto retry;
837
838 /*
839 * Since we have the lock this context can't be scheduled
840 * in, so we can change the state safely.
841 */
842 if (counter->state == PERF_COUNTER_STATE_OFF) {
843 counter->state = PERF_COUNTER_STATE_INACTIVE;
844 counter->tstamp_enabled =
845 ctx->time - counter->total_time_enabled;
846 }
847 out:
848 spin_unlock_irq(&ctx->lock);
849 }
850
851 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
852 {
853 /*
854 * not supported on inherited counters
855 */
856 if (counter->hw_event.inherit)
857 return -EINVAL;
858
859 atomic_add(refresh, &counter->event_limit);
860 perf_counter_enable(counter);
861
862 return 0;
863 }
864
865 void __perf_counter_sched_out(struct perf_counter_context *ctx,
866 struct perf_cpu_context *cpuctx)
867 {
868 struct perf_counter *counter;
869
870 spin_lock(&ctx->lock);
871 ctx->is_active = 0;
872 if (likely(!ctx->nr_counters))
873 goto out;
874 update_context_time(ctx);
875
876 perf_disable();
877 if (ctx->nr_active) {
878 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
879 if (counter != counter->group_leader)
880 counter_sched_out(counter, cpuctx, ctx);
881 else
882 group_sched_out(counter, cpuctx, ctx);
883 }
884 }
885 perf_enable();
886 out:
887 spin_unlock(&ctx->lock);
888 }
889
890 /*
891 * Test whether two contexts are equivalent, i.e. whether they
892 * have both been cloned from the same version of the same context
893 * and they both have the same number of enabled counters.
894 * If the number of enabled counters is the same, then the set
895 * of enabled counters should be the same, because these are both
896 * inherited contexts, therefore we can't access individual counters
897 * in them directly with an fd; we can only enable/disable all
898 * counters via prctl, or enable/disable all counters in a family
899 * via ioctl, which will have the same effect on both contexts.
900 */
901 static int context_equiv(struct perf_counter_context *ctx1,
902 struct perf_counter_context *ctx2)
903 {
904 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
905 && ctx1->parent_gen == ctx2->parent_gen;
906 }
907
908 /*
909 * Called from scheduler to remove the counters of the current task,
910 * with interrupts disabled.
911 *
912 * We stop each counter and update the counter value in counter->count.
913 *
914 * This does not protect us against NMI, but disable()
915 * sets the disabled bit in the control field of counter _before_
916 * accessing the counter control register. If a NMI hits, then it will
917 * not restart the counter.
918 */
919 void perf_counter_task_sched_out(struct task_struct *task,
920 struct task_struct *next, int cpu)
921 {
922 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
923 struct perf_counter_context *ctx = task->perf_counter_ctxp;
924 struct perf_counter_context *next_ctx;
925 struct pt_regs *regs;
926
927 regs = task_pt_regs(task);
928 perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
929
930 if (likely(!ctx || !cpuctx->task_ctx))
931 return;
932
933 update_context_time(ctx);
934 next_ctx = next->perf_counter_ctxp;
935 if (next_ctx && context_equiv(ctx, next_ctx)) {
936 task->perf_counter_ctxp = next_ctx;
937 next->perf_counter_ctxp = ctx;
938 ctx->task = next;
939 next_ctx->task = task;
940 return;
941 }
942
943 __perf_counter_sched_out(ctx, cpuctx);
944
945 cpuctx->task_ctx = NULL;
946 }
947
948 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
949 {
950 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
951
952 if (!cpuctx->task_ctx)
953 return;
954 __perf_counter_sched_out(ctx, cpuctx);
955 cpuctx->task_ctx = NULL;
956 }
957
958 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
959 {
960 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
961 }
962
963 static void
964 __perf_counter_sched_in(struct perf_counter_context *ctx,
965 struct perf_cpu_context *cpuctx, int cpu)
966 {
967 struct perf_counter *counter;
968 int can_add_hw = 1;
969
970 spin_lock(&ctx->lock);
971 ctx->is_active = 1;
972 if (likely(!ctx->nr_counters))
973 goto out;
974
975 ctx->timestamp = perf_clock();
976
977 perf_disable();
978
979 /*
980 * First go through the list and put on any pinned groups
981 * in order to give them the best chance of going on.
982 */
983 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
984 if (counter->state <= PERF_COUNTER_STATE_OFF ||
985 !counter->hw_event.pinned)
986 continue;
987 if (counter->cpu != -1 && counter->cpu != cpu)
988 continue;
989
990 if (counter != counter->group_leader)
991 counter_sched_in(counter, cpuctx, ctx, cpu);
992 else {
993 if (group_can_go_on(counter, cpuctx, 1))
994 group_sched_in(counter, cpuctx, ctx, cpu);
995 }
996
997 /*
998 * If this pinned group hasn't been scheduled,
999 * put it in error state.
1000 */
1001 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1002 update_group_times(counter);
1003 counter->state = PERF_COUNTER_STATE_ERROR;
1004 }
1005 }
1006
1007 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1008 /*
1009 * Ignore counters in OFF or ERROR state, and
1010 * ignore pinned counters since we did them already.
1011 */
1012 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1013 counter->hw_event.pinned)
1014 continue;
1015
1016 /*
1017 * Listen to the 'cpu' scheduling filter constraint
1018 * of counters:
1019 */
1020 if (counter->cpu != -1 && counter->cpu != cpu)
1021 continue;
1022
1023 if (counter != counter->group_leader) {
1024 if (counter_sched_in(counter, cpuctx, ctx, cpu))
1025 can_add_hw = 0;
1026 } else {
1027 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1028 if (group_sched_in(counter, cpuctx, ctx, cpu))
1029 can_add_hw = 0;
1030 }
1031 }
1032 }
1033 perf_enable();
1034 out:
1035 spin_unlock(&ctx->lock);
1036 }
1037
1038 /*
1039 * Called from scheduler to add the counters of the current task
1040 * with interrupts disabled.
1041 *
1042 * We restore the counter value and then enable it.
1043 *
1044 * This does not protect us against NMI, but enable()
1045 * sets the enabled bit in the control field of counter _before_
1046 * accessing the counter control register. If a NMI hits, then it will
1047 * keep the counter running.
1048 */
1049 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1050 {
1051 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1052 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1053
1054 if (likely(!ctx))
1055 return;
1056 if (cpuctx->task_ctx == ctx)
1057 return;
1058 __perf_counter_sched_in(ctx, cpuctx, cpu);
1059 cpuctx->task_ctx = ctx;
1060 }
1061
1062 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1063 {
1064 struct perf_counter_context *ctx = &cpuctx->ctx;
1065
1066 __perf_counter_sched_in(ctx, cpuctx, cpu);
1067 }
1068
1069 static void perf_log_period(struct perf_counter *counter, u64 period);
1070
1071 static void perf_adjust_freq(struct perf_counter_context *ctx)
1072 {
1073 struct perf_counter *counter;
1074 u64 irq_period;
1075 u64 events, period;
1076 s64 delta;
1077
1078 spin_lock(&ctx->lock);
1079 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1080 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1081 continue;
1082
1083 if (!counter->hw_event.freq || !counter->hw_event.irq_freq)
1084 continue;
1085
1086 events = HZ * counter->hw.interrupts * counter->hw.irq_period;
1087 period = div64_u64(events, counter->hw_event.irq_freq);
1088
1089 delta = (s64)(1 + period - counter->hw.irq_period);
1090 delta >>= 1;
1091
1092 irq_period = counter->hw.irq_period + delta;
1093
1094 if (!irq_period)
1095 irq_period = 1;
1096
1097 perf_log_period(counter, irq_period);
1098
1099 counter->hw.irq_period = irq_period;
1100 counter->hw.interrupts = 0;
1101 }
1102 spin_unlock(&ctx->lock);
1103 }
1104
1105 /*
1106 * Round-robin a context's counters:
1107 */
1108 static void rotate_ctx(struct perf_counter_context *ctx)
1109 {
1110 struct perf_counter *counter;
1111
1112 if (!ctx->nr_counters)
1113 return;
1114
1115 spin_lock(&ctx->lock);
1116 /*
1117 * Rotate the first entry last (works just fine for group counters too):
1118 */
1119 perf_disable();
1120 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1121 list_move_tail(&counter->list_entry, &ctx->counter_list);
1122 break;
1123 }
1124 perf_enable();
1125
1126 spin_unlock(&ctx->lock);
1127 }
1128
1129 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1130 {
1131 struct perf_cpu_context *cpuctx;
1132 struct perf_counter_context *ctx;
1133
1134 if (!atomic_read(&nr_counters))
1135 return;
1136
1137 cpuctx = &per_cpu(perf_cpu_context, cpu);
1138 ctx = curr->perf_counter_ctxp;
1139
1140 perf_adjust_freq(&cpuctx->ctx);
1141 if (ctx)
1142 perf_adjust_freq(ctx);
1143
1144 perf_counter_cpu_sched_out(cpuctx);
1145 if (ctx)
1146 __perf_counter_task_sched_out(ctx);
1147
1148 rotate_ctx(&cpuctx->ctx);
1149 if (ctx)
1150 rotate_ctx(ctx);
1151
1152 perf_counter_cpu_sched_in(cpuctx, cpu);
1153 if (ctx)
1154 perf_counter_task_sched_in(curr, cpu);
1155 }
1156
1157 /*
1158 * Cross CPU call to read the hardware counter
1159 */
1160 static void __read(void *info)
1161 {
1162 struct perf_counter *counter = info;
1163 struct perf_counter_context *ctx = counter->ctx;
1164 unsigned long flags;
1165
1166 local_irq_save(flags);
1167 if (ctx->is_active)
1168 update_context_time(ctx);
1169 counter->pmu->read(counter);
1170 update_counter_times(counter);
1171 local_irq_restore(flags);
1172 }
1173
1174 static u64 perf_counter_read(struct perf_counter *counter)
1175 {
1176 /*
1177 * If counter is enabled and currently active on a CPU, update the
1178 * value in the counter structure:
1179 */
1180 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1181 smp_call_function_single(counter->oncpu,
1182 __read, counter, 1);
1183 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1184 update_counter_times(counter);
1185 }
1186
1187 return atomic64_read(&counter->count);
1188 }
1189
1190 /*
1191 * Initialize the perf_counter context in a task_struct:
1192 */
1193 static void
1194 __perf_counter_init_context(struct perf_counter_context *ctx,
1195 struct task_struct *task)
1196 {
1197 memset(ctx, 0, sizeof(*ctx));
1198 spin_lock_init(&ctx->lock);
1199 mutex_init(&ctx->mutex);
1200 INIT_LIST_HEAD(&ctx->counter_list);
1201 INIT_LIST_HEAD(&ctx->event_list);
1202 atomic_set(&ctx->refcount, 1);
1203 ctx->task = task;
1204 }
1205
1206 static void put_context(struct perf_counter_context *ctx)
1207 {
1208 if (ctx->task)
1209 put_task_struct(ctx->task);
1210 }
1211
1212 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1213 {
1214 struct perf_cpu_context *cpuctx;
1215 struct perf_counter_context *ctx;
1216 struct perf_counter_context *tctx;
1217 struct task_struct *task;
1218
1219 /*
1220 * If cpu is not a wildcard then this is a percpu counter:
1221 */
1222 if (cpu != -1) {
1223 /* Must be root to operate on a CPU counter: */
1224 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1225 return ERR_PTR(-EACCES);
1226
1227 if (cpu < 0 || cpu > num_possible_cpus())
1228 return ERR_PTR(-EINVAL);
1229
1230 /*
1231 * We could be clever and allow to attach a counter to an
1232 * offline CPU and activate it when the CPU comes up, but
1233 * that's for later.
1234 */
1235 if (!cpu_isset(cpu, cpu_online_map))
1236 return ERR_PTR(-ENODEV);
1237
1238 cpuctx = &per_cpu(perf_cpu_context, cpu);
1239 ctx = &cpuctx->ctx;
1240
1241 return ctx;
1242 }
1243
1244 rcu_read_lock();
1245 if (!pid)
1246 task = current;
1247 else
1248 task = find_task_by_vpid(pid);
1249 if (task)
1250 get_task_struct(task);
1251 rcu_read_unlock();
1252
1253 if (!task)
1254 return ERR_PTR(-ESRCH);
1255
1256 /* Reuse ptrace permission checks for now. */
1257 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1258 put_task_struct(task);
1259 return ERR_PTR(-EACCES);
1260 }
1261
1262 ctx = task->perf_counter_ctxp;
1263 if (!ctx) {
1264 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1265 if (!ctx) {
1266 put_task_struct(task);
1267 return ERR_PTR(-ENOMEM);
1268 }
1269 __perf_counter_init_context(ctx, task);
1270 /*
1271 * Make sure other cpus see correct values for *ctx
1272 * once task->perf_counter_ctxp is visible to them.
1273 */
1274 smp_wmb();
1275 tctx = cmpxchg(&task->perf_counter_ctxp, NULL, ctx);
1276 if (tctx) {
1277 /*
1278 * We raced with some other task; use
1279 * the context they set.
1280 */
1281 kfree(ctx);
1282 ctx = tctx;
1283 }
1284 }
1285
1286 return ctx;
1287 }
1288
1289 static void free_counter_rcu(struct rcu_head *head)
1290 {
1291 struct perf_counter *counter;
1292
1293 counter = container_of(head, struct perf_counter, rcu_head);
1294 put_ctx(counter->ctx);
1295 kfree(counter);
1296 }
1297
1298 static void perf_pending_sync(struct perf_counter *counter);
1299
1300 static void free_counter(struct perf_counter *counter)
1301 {
1302 perf_pending_sync(counter);
1303
1304 atomic_dec(&nr_counters);
1305 if (counter->hw_event.mmap)
1306 atomic_dec(&nr_mmap_tracking);
1307 if (counter->hw_event.munmap)
1308 atomic_dec(&nr_munmap_tracking);
1309 if (counter->hw_event.comm)
1310 atomic_dec(&nr_comm_tracking);
1311
1312 if (counter->destroy)
1313 counter->destroy(counter);
1314
1315 call_rcu(&counter->rcu_head, free_counter_rcu);
1316 }
1317
1318 /*
1319 * Called when the last reference to the file is gone.
1320 */
1321 static int perf_release(struct inode *inode, struct file *file)
1322 {
1323 struct perf_counter *counter = file->private_data;
1324 struct perf_counter_context *ctx = counter->ctx;
1325
1326 file->private_data = NULL;
1327
1328 mutex_lock(&ctx->mutex);
1329 perf_counter_remove_from_context(counter);
1330 mutex_unlock(&ctx->mutex);
1331
1332 mutex_lock(&counter->owner->perf_counter_mutex);
1333 list_del_init(&counter->owner_entry);
1334 mutex_unlock(&counter->owner->perf_counter_mutex);
1335 put_task_struct(counter->owner);
1336
1337 free_counter(counter);
1338 put_context(ctx);
1339
1340 return 0;
1341 }
1342
1343 /*
1344 * Read the performance counter - simple non blocking version for now
1345 */
1346 static ssize_t
1347 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1348 {
1349 u64 values[3];
1350 int n;
1351
1352 /*
1353 * Return end-of-file for a read on a counter that is in
1354 * error state (i.e. because it was pinned but it couldn't be
1355 * scheduled on to the CPU at some point).
1356 */
1357 if (counter->state == PERF_COUNTER_STATE_ERROR)
1358 return 0;
1359
1360 mutex_lock(&counter->child_mutex);
1361 values[0] = perf_counter_read(counter);
1362 n = 1;
1363 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1364 values[n++] = counter->total_time_enabled +
1365 atomic64_read(&counter->child_total_time_enabled);
1366 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1367 values[n++] = counter->total_time_running +
1368 atomic64_read(&counter->child_total_time_running);
1369 mutex_unlock(&counter->child_mutex);
1370
1371 if (count < n * sizeof(u64))
1372 return -EINVAL;
1373 count = n * sizeof(u64);
1374
1375 if (copy_to_user(buf, values, count))
1376 return -EFAULT;
1377
1378 return count;
1379 }
1380
1381 static ssize_t
1382 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1383 {
1384 struct perf_counter *counter = file->private_data;
1385
1386 return perf_read_hw(counter, buf, count);
1387 }
1388
1389 static unsigned int perf_poll(struct file *file, poll_table *wait)
1390 {
1391 struct perf_counter *counter = file->private_data;
1392 struct perf_mmap_data *data;
1393 unsigned int events = POLL_HUP;
1394
1395 rcu_read_lock();
1396 data = rcu_dereference(counter->data);
1397 if (data)
1398 events = atomic_xchg(&data->poll, 0);
1399 rcu_read_unlock();
1400
1401 poll_wait(file, &counter->waitq, wait);
1402
1403 return events;
1404 }
1405
1406 static void perf_counter_reset(struct perf_counter *counter)
1407 {
1408 (void)perf_counter_read(counter);
1409 atomic64_set(&counter->count, 0);
1410 perf_counter_update_userpage(counter);
1411 }
1412
1413 static void perf_counter_for_each_sibling(struct perf_counter *counter,
1414 void (*func)(struct perf_counter *))
1415 {
1416 struct perf_counter_context *ctx = counter->ctx;
1417 struct perf_counter *sibling;
1418
1419 mutex_lock(&ctx->mutex);
1420 counter = counter->group_leader;
1421
1422 func(counter);
1423 list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1424 func(sibling);
1425 mutex_unlock(&ctx->mutex);
1426 }
1427
1428 static void perf_counter_for_each_child(struct perf_counter *counter,
1429 void (*func)(struct perf_counter *))
1430 {
1431 struct perf_counter *child;
1432
1433 mutex_lock(&counter->child_mutex);
1434 func(counter);
1435 list_for_each_entry(child, &counter->child_list, child_list)
1436 func(child);
1437 mutex_unlock(&counter->child_mutex);
1438 }
1439
1440 static void perf_counter_for_each(struct perf_counter *counter,
1441 void (*func)(struct perf_counter *))
1442 {
1443 struct perf_counter *child;
1444
1445 mutex_lock(&counter->child_mutex);
1446 perf_counter_for_each_sibling(counter, func);
1447 list_for_each_entry(child, &counter->child_list, child_list)
1448 perf_counter_for_each_sibling(child, func);
1449 mutex_unlock(&counter->child_mutex);
1450 }
1451
1452 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1453 {
1454 struct perf_counter *counter = file->private_data;
1455 void (*func)(struct perf_counter *);
1456 u32 flags = arg;
1457
1458 switch (cmd) {
1459 case PERF_COUNTER_IOC_ENABLE:
1460 func = perf_counter_enable;
1461 break;
1462 case PERF_COUNTER_IOC_DISABLE:
1463 func = perf_counter_disable;
1464 break;
1465 case PERF_COUNTER_IOC_RESET:
1466 func = perf_counter_reset;
1467 break;
1468
1469 case PERF_COUNTER_IOC_REFRESH:
1470 return perf_counter_refresh(counter, arg);
1471 default:
1472 return -ENOTTY;
1473 }
1474
1475 if (flags & PERF_IOC_FLAG_GROUP)
1476 perf_counter_for_each(counter, func);
1477 else
1478 perf_counter_for_each_child(counter, func);
1479
1480 return 0;
1481 }
1482
1483 int perf_counter_task_enable(void)
1484 {
1485 struct perf_counter *counter;
1486
1487 mutex_lock(&current->perf_counter_mutex);
1488 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1489 perf_counter_for_each_child(counter, perf_counter_enable);
1490 mutex_unlock(&current->perf_counter_mutex);
1491
1492 return 0;
1493 }
1494
1495 int perf_counter_task_disable(void)
1496 {
1497 struct perf_counter *counter;
1498
1499 mutex_lock(&current->perf_counter_mutex);
1500 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1501 perf_counter_for_each_child(counter, perf_counter_disable);
1502 mutex_unlock(&current->perf_counter_mutex);
1503
1504 return 0;
1505 }
1506
1507 /*
1508 * Callers need to ensure there can be no nesting of this function, otherwise
1509 * the seqlock logic goes bad. We can not serialize this because the arch
1510 * code calls this from NMI context.
1511 */
1512 void perf_counter_update_userpage(struct perf_counter *counter)
1513 {
1514 struct perf_mmap_data *data;
1515 struct perf_counter_mmap_page *userpg;
1516
1517 rcu_read_lock();
1518 data = rcu_dereference(counter->data);
1519 if (!data)
1520 goto unlock;
1521
1522 userpg = data->user_page;
1523
1524 /*
1525 * Disable preemption so as to not let the corresponding user-space
1526 * spin too long if we get preempted.
1527 */
1528 preempt_disable();
1529 ++userpg->lock;
1530 barrier();
1531 userpg->index = counter->hw.idx;
1532 userpg->offset = atomic64_read(&counter->count);
1533 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1534 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1535
1536 barrier();
1537 ++userpg->lock;
1538 preempt_enable();
1539 unlock:
1540 rcu_read_unlock();
1541 }
1542
1543 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1544 {
1545 struct perf_counter *counter = vma->vm_file->private_data;
1546 struct perf_mmap_data *data;
1547 int ret = VM_FAULT_SIGBUS;
1548
1549 rcu_read_lock();
1550 data = rcu_dereference(counter->data);
1551 if (!data)
1552 goto unlock;
1553
1554 if (vmf->pgoff == 0) {
1555 vmf->page = virt_to_page(data->user_page);
1556 } else {
1557 int nr = vmf->pgoff - 1;
1558
1559 if ((unsigned)nr > data->nr_pages)
1560 goto unlock;
1561
1562 vmf->page = virt_to_page(data->data_pages[nr]);
1563 }
1564 get_page(vmf->page);
1565 ret = 0;
1566 unlock:
1567 rcu_read_unlock();
1568
1569 return ret;
1570 }
1571
1572 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1573 {
1574 struct perf_mmap_data *data;
1575 unsigned long size;
1576 int i;
1577
1578 WARN_ON(atomic_read(&counter->mmap_count));
1579
1580 size = sizeof(struct perf_mmap_data);
1581 size += nr_pages * sizeof(void *);
1582
1583 data = kzalloc(size, GFP_KERNEL);
1584 if (!data)
1585 goto fail;
1586
1587 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1588 if (!data->user_page)
1589 goto fail_user_page;
1590
1591 for (i = 0; i < nr_pages; i++) {
1592 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1593 if (!data->data_pages[i])
1594 goto fail_data_pages;
1595 }
1596
1597 data->nr_pages = nr_pages;
1598 atomic_set(&data->lock, -1);
1599
1600 rcu_assign_pointer(counter->data, data);
1601
1602 return 0;
1603
1604 fail_data_pages:
1605 for (i--; i >= 0; i--)
1606 free_page((unsigned long)data->data_pages[i]);
1607
1608 free_page((unsigned long)data->user_page);
1609
1610 fail_user_page:
1611 kfree(data);
1612
1613 fail:
1614 return -ENOMEM;
1615 }
1616
1617 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1618 {
1619 struct perf_mmap_data *data = container_of(rcu_head,
1620 struct perf_mmap_data, rcu_head);
1621 int i;
1622
1623 free_page((unsigned long)data->user_page);
1624 for (i = 0; i < data->nr_pages; i++)
1625 free_page((unsigned long)data->data_pages[i]);
1626 kfree(data);
1627 }
1628
1629 static void perf_mmap_data_free(struct perf_counter *counter)
1630 {
1631 struct perf_mmap_data *data = counter->data;
1632
1633 WARN_ON(atomic_read(&counter->mmap_count));
1634
1635 rcu_assign_pointer(counter->data, NULL);
1636 call_rcu(&data->rcu_head, __perf_mmap_data_free);
1637 }
1638
1639 static void perf_mmap_open(struct vm_area_struct *vma)
1640 {
1641 struct perf_counter *counter = vma->vm_file->private_data;
1642
1643 atomic_inc(&counter->mmap_count);
1644 }
1645
1646 static void perf_mmap_close(struct vm_area_struct *vma)
1647 {
1648 struct perf_counter *counter = vma->vm_file->private_data;
1649
1650 if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1651 &counter->mmap_mutex)) {
1652 struct user_struct *user = current_user();
1653
1654 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1655 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1656 perf_mmap_data_free(counter);
1657 mutex_unlock(&counter->mmap_mutex);
1658 }
1659 }
1660
1661 static struct vm_operations_struct perf_mmap_vmops = {
1662 .open = perf_mmap_open,
1663 .close = perf_mmap_close,
1664 .fault = perf_mmap_fault,
1665 };
1666
1667 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1668 {
1669 struct perf_counter *counter = file->private_data;
1670 struct user_struct *user = current_user();
1671 unsigned long vma_size;
1672 unsigned long nr_pages;
1673 unsigned long user_locked, user_lock_limit;
1674 unsigned long locked, lock_limit;
1675 long user_extra, extra;
1676 int ret = 0;
1677
1678 if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1679 return -EINVAL;
1680
1681 vma_size = vma->vm_end - vma->vm_start;
1682 nr_pages = (vma_size / PAGE_SIZE) - 1;
1683
1684 /*
1685 * If we have data pages ensure they're a power-of-two number, so we
1686 * can do bitmasks instead of modulo.
1687 */
1688 if (nr_pages != 0 && !is_power_of_2(nr_pages))
1689 return -EINVAL;
1690
1691 if (vma_size != PAGE_SIZE * (1 + nr_pages))
1692 return -EINVAL;
1693
1694 if (vma->vm_pgoff != 0)
1695 return -EINVAL;
1696
1697 mutex_lock(&counter->mmap_mutex);
1698 if (atomic_inc_not_zero(&counter->mmap_count)) {
1699 if (nr_pages != counter->data->nr_pages)
1700 ret = -EINVAL;
1701 goto unlock;
1702 }
1703
1704 user_extra = nr_pages + 1;
1705 user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1706
1707 /*
1708 * Increase the limit linearly with more CPUs:
1709 */
1710 user_lock_limit *= num_online_cpus();
1711
1712 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1713
1714 extra = 0;
1715 if (user_locked > user_lock_limit)
1716 extra = user_locked - user_lock_limit;
1717
1718 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1719 lock_limit >>= PAGE_SHIFT;
1720 locked = vma->vm_mm->locked_vm + extra;
1721
1722 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1723 ret = -EPERM;
1724 goto unlock;
1725 }
1726
1727 WARN_ON(counter->data);
1728 ret = perf_mmap_data_alloc(counter, nr_pages);
1729 if (ret)
1730 goto unlock;
1731
1732 atomic_set(&counter->mmap_count, 1);
1733 atomic_long_add(user_extra, &user->locked_vm);
1734 vma->vm_mm->locked_vm += extra;
1735 counter->data->nr_locked = extra;
1736 unlock:
1737 mutex_unlock(&counter->mmap_mutex);
1738
1739 vma->vm_flags &= ~VM_MAYWRITE;
1740 vma->vm_flags |= VM_RESERVED;
1741 vma->vm_ops = &perf_mmap_vmops;
1742
1743 return ret;
1744 }
1745
1746 static int perf_fasync(int fd, struct file *filp, int on)
1747 {
1748 struct perf_counter *counter = filp->private_data;
1749 struct inode *inode = filp->f_path.dentry->d_inode;
1750 int retval;
1751
1752 mutex_lock(&inode->i_mutex);
1753 retval = fasync_helper(fd, filp, on, &counter->fasync);
1754 mutex_unlock(&inode->i_mutex);
1755
1756 if (retval < 0)
1757 return retval;
1758
1759 return 0;
1760 }
1761
1762 static const struct file_operations perf_fops = {
1763 .release = perf_release,
1764 .read = perf_read,
1765 .poll = perf_poll,
1766 .unlocked_ioctl = perf_ioctl,
1767 .compat_ioctl = perf_ioctl,
1768 .mmap = perf_mmap,
1769 .fasync = perf_fasync,
1770 };
1771
1772 /*
1773 * Perf counter wakeup
1774 *
1775 * If there's data, ensure we set the poll() state and publish everything
1776 * to user-space before waking everybody up.
1777 */
1778
1779 void perf_counter_wakeup(struct perf_counter *counter)
1780 {
1781 wake_up_all(&counter->waitq);
1782
1783 if (counter->pending_kill) {
1784 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1785 counter->pending_kill = 0;
1786 }
1787 }
1788
1789 /*
1790 * Pending wakeups
1791 *
1792 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1793 *
1794 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1795 * single linked list and use cmpxchg() to add entries lockless.
1796 */
1797
1798 static void perf_pending_counter(struct perf_pending_entry *entry)
1799 {
1800 struct perf_counter *counter = container_of(entry,
1801 struct perf_counter, pending);
1802
1803 if (counter->pending_disable) {
1804 counter->pending_disable = 0;
1805 perf_counter_disable(counter);
1806 }
1807
1808 if (counter->pending_wakeup) {
1809 counter->pending_wakeup = 0;
1810 perf_counter_wakeup(counter);
1811 }
1812 }
1813
1814 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1815
1816 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1817 PENDING_TAIL,
1818 };
1819
1820 static void perf_pending_queue(struct perf_pending_entry *entry,
1821 void (*func)(struct perf_pending_entry *))
1822 {
1823 struct perf_pending_entry **head;
1824
1825 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1826 return;
1827
1828 entry->func = func;
1829
1830 head = &get_cpu_var(perf_pending_head);
1831
1832 do {
1833 entry->next = *head;
1834 } while (cmpxchg(head, entry->next, entry) != entry->next);
1835
1836 set_perf_counter_pending();
1837
1838 put_cpu_var(perf_pending_head);
1839 }
1840
1841 static int __perf_pending_run(void)
1842 {
1843 struct perf_pending_entry *list;
1844 int nr = 0;
1845
1846 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1847 while (list != PENDING_TAIL) {
1848 void (*func)(struct perf_pending_entry *);
1849 struct perf_pending_entry *entry = list;
1850
1851 list = list->next;
1852
1853 func = entry->func;
1854 entry->next = NULL;
1855 /*
1856 * Ensure we observe the unqueue before we issue the wakeup,
1857 * so that we won't be waiting forever.
1858 * -- see perf_not_pending().
1859 */
1860 smp_wmb();
1861
1862 func(entry);
1863 nr++;
1864 }
1865
1866 return nr;
1867 }
1868
1869 static inline int perf_not_pending(struct perf_counter *counter)
1870 {
1871 /*
1872 * If we flush on whatever cpu we run, there is a chance we don't
1873 * need to wait.
1874 */
1875 get_cpu();
1876 __perf_pending_run();
1877 put_cpu();
1878
1879 /*
1880 * Ensure we see the proper queue state before going to sleep
1881 * so that we do not miss the wakeup. -- see perf_pending_handle()
1882 */
1883 smp_rmb();
1884 return counter->pending.next == NULL;
1885 }
1886
1887 static void perf_pending_sync(struct perf_counter *counter)
1888 {
1889 wait_event(counter->waitq, perf_not_pending(counter));
1890 }
1891
1892 void perf_counter_do_pending(void)
1893 {
1894 __perf_pending_run();
1895 }
1896
1897 /*
1898 * Callchain support -- arch specific
1899 */
1900
1901 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1902 {
1903 return NULL;
1904 }
1905
1906 /*
1907 * Output
1908 */
1909
1910 struct perf_output_handle {
1911 struct perf_counter *counter;
1912 struct perf_mmap_data *data;
1913 unsigned int offset;
1914 unsigned int head;
1915 int nmi;
1916 int overflow;
1917 int locked;
1918 unsigned long flags;
1919 };
1920
1921 static void perf_output_wakeup(struct perf_output_handle *handle)
1922 {
1923 atomic_set(&handle->data->poll, POLL_IN);
1924
1925 if (handle->nmi) {
1926 handle->counter->pending_wakeup = 1;
1927 perf_pending_queue(&handle->counter->pending,
1928 perf_pending_counter);
1929 } else
1930 perf_counter_wakeup(handle->counter);
1931 }
1932
1933 /*
1934 * Curious locking construct.
1935 *
1936 * We need to ensure a later event doesn't publish a head when a former
1937 * event isn't done writing. However since we need to deal with NMIs we
1938 * cannot fully serialize things.
1939 *
1940 * What we do is serialize between CPUs so we only have to deal with NMI
1941 * nesting on a single CPU.
1942 *
1943 * We only publish the head (and generate a wakeup) when the outer-most
1944 * event completes.
1945 */
1946 static void perf_output_lock(struct perf_output_handle *handle)
1947 {
1948 struct perf_mmap_data *data = handle->data;
1949 int cpu;
1950
1951 handle->locked = 0;
1952
1953 local_irq_save(handle->flags);
1954 cpu = smp_processor_id();
1955
1956 if (in_nmi() && atomic_read(&data->lock) == cpu)
1957 return;
1958
1959 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1960 cpu_relax();
1961
1962 handle->locked = 1;
1963 }
1964
1965 static void perf_output_unlock(struct perf_output_handle *handle)
1966 {
1967 struct perf_mmap_data *data = handle->data;
1968 int head, cpu;
1969
1970 data->done_head = data->head;
1971
1972 if (!handle->locked)
1973 goto out;
1974
1975 again:
1976 /*
1977 * The xchg implies a full barrier that ensures all writes are done
1978 * before we publish the new head, matched by a rmb() in userspace when
1979 * reading this position.
1980 */
1981 while ((head = atomic_xchg(&data->done_head, 0)))
1982 data->user_page->data_head = head;
1983
1984 /*
1985 * NMI can happen here, which means we can miss a done_head update.
1986 */
1987
1988 cpu = atomic_xchg(&data->lock, -1);
1989 WARN_ON_ONCE(cpu != smp_processor_id());
1990
1991 /*
1992 * Therefore we have to validate we did not indeed do so.
1993 */
1994 if (unlikely(atomic_read(&data->done_head))) {
1995 /*
1996 * Since we had it locked, we can lock it again.
1997 */
1998 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1999 cpu_relax();
2000
2001 goto again;
2002 }
2003
2004 if (atomic_xchg(&data->wakeup, 0))
2005 perf_output_wakeup(handle);
2006 out:
2007 local_irq_restore(handle->flags);
2008 }
2009
2010 static int perf_output_begin(struct perf_output_handle *handle,
2011 struct perf_counter *counter, unsigned int size,
2012 int nmi, int overflow)
2013 {
2014 struct perf_mmap_data *data;
2015 unsigned int offset, head;
2016
2017 /*
2018 * For inherited counters we send all the output towards the parent.
2019 */
2020 if (counter->parent)
2021 counter = counter->parent;
2022
2023 rcu_read_lock();
2024 data = rcu_dereference(counter->data);
2025 if (!data)
2026 goto out;
2027
2028 handle->data = data;
2029 handle->counter = counter;
2030 handle->nmi = nmi;
2031 handle->overflow = overflow;
2032
2033 if (!data->nr_pages)
2034 goto fail;
2035
2036 perf_output_lock(handle);
2037
2038 do {
2039 offset = head = atomic_read(&data->head);
2040 head += size;
2041 } while (atomic_cmpxchg(&data->head, offset, head) != offset);
2042
2043 handle->offset = offset;
2044 handle->head = head;
2045
2046 if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2047 atomic_set(&data->wakeup, 1);
2048
2049 return 0;
2050
2051 fail:
2052 perf_output_wakeup(handle);
2053 out:
2054 rcu_read_unlock();
2055
2056 return -ENOSPC;
2057 }
2058
2059 static void perf_output_copy(struct perf_output_handle *handle,
2060 void *buf, unsigned int len)
2061 {
2062 unsigned int pages_mask;
2063 unsigned int offset;
2064 unsigned int size;
2065 void **pages;
2066
2067 offset = handle->offset;
2068 pages_mask = handle->data->nr_pages - 1;
2069 pages = handle->data->data_pages;
2070
2071 do {
2072 unsigned int page_offset;
2073 int nr;
2074
2075 nr = (offset >> PAGE_SHIFT) & pages_mask;
2076 page_offset = offset & (PAGE_SIZE - 1);
2077 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2078
2079 memcpy(pages[nr] + page_offset, buf, size);
2080
2081 len -= size;
2082 buf += size;
2083 offset += size;
2084 } while (len);
2085
2086 handle->offset = offset;
2087
2088 /*
2089 * Check we didn't copy past our reservation window, taking the
2090 * possible unsigned int wrap into account.
2091 */
2092 WARN_ON_ONCE(((int)(handle->head - handle->offset)) < 0);
2093 }
2094
2095 #define perf_output_put(handle, x) \
2096 perf_output_copy((handle), &(x), sizeof(x))
2097
2098 static void perf_output_end(struct perf_output_handle *handle)
2099 {
2100 struct perf_counter *counter = handle->counter;
2101 struct perf_mmap_data *data = handle->data;
2102
2103 int wakeup_events = counter->hw_event.wakeup_events;
2104
2105 if (handle->overflow && wakeup_events) {
2106 int events = atomic_inc_return(&data->events);
2107 if (events >= wakeup_events) {
2108 atomic_sub(wakeup_events, &data->events);
2109 atomic_set(&data->wakeup, 1);
2110 }
2111 }
2112
2113 perf_output_unlock(handle);
2114 rcu_read_unlock();
2115 }
2116
2117 static void perf_counter_output(struct perf_counter *counter,
2118 int nmi, struct pt_regs *regs, u64 addr)
2119 {
2120 int ret;
2121 u64 record_type = counter->hw_event.record_type;
2122 struct perf_output_handle handle;
2123 struct perf_event_header header;
2124 u64 ip;
2125 struct {
2126 u32 pid, tid;
2127 } tid_entry;
2128 struct {
2129 u64 event;
2130 u64 counter;
2131 } group_entry;
2132 struct perf_callchain_entry *callchain = NULL;
2133 int callchain_size = 0;
2134 u64 time;
2135 struct {
2136 u32 cpu, reserved;
2137 } cpu_entry;
2138
2139 header.type = 0;
2140 header.size = sizeof(header);
2141
2142 header.misc = PERF_EVENT_MISC_OVERFLOW;
2143 header.misc |= perf_misc_flags(regs);
2144
2145 if (record_type & PERF_RECORD_IP) {
2146 ip = perf_instruction_pointer(regs);
2147 header.type |= PERF_RECORD_IP;
2148 header.size += sizeof(ip);
2149 }
2150
2151 if (record_type & PERF_RECORD_TID) {
2152 /* namespace issues */
2153 tid_entry.pid = current->group_leader->pid;
2154 tid_entry.tid = current->pid;
2155
2156 header.type |= PERF_RECORD_TID;
2157 header.size += sizeof(tid_entry);
2158 }
2159
2160 if (record_type & PERF_RECORD_TIME) {
2161 /*
2162 * Maybe do better on x86 and provide cpu_clock_nmi()
2163 */
2164 time = sched_clock();
2165
2166 header.type |= PERF_RECORD_TIME;
2167 header.size += sizeof(u64);
2168 }
2169
2170 if (record_type & PERF_RECORD_ADDR) {
2171 header.type |= PERF_RECORD_ADDR;
2172 header.size += sizeof(u64);
2173 }
2174
2175 if (record_type & PERF_RECORD_CONFIG) {
2176 header.type |= PERF_RECORD_CONFIG;
2177 header.size += sizeof(u64);
2178 }
2179
2180 if (record_type & PERF_RECORD_CPU) {
2181 header.type |= PERF_RECORD_CPU;
2182 header.size += sizeof(cpu_entry);
2183
2184 cpu_entry.cpu = raw_smp_processor_id();
2185 }
2186
2187 if (record_type & PERF_RECORD_GROUP) {
2188 header.type |= PERF_RECORD_GROUP;
2189 header.size += sizeof(u64) +
2190 counter->nr_siblings * sizeof(group_entry);
2191 }
2192
2193 if (record_type & PERF_RECORD_CALLCHAIN) {
2194 callchain = perf_callchain(regs);
2195
2196 if (callchain) {
2197 callchain_size = (1 + callchain->nr) * sizeof(u64);
2198
2199 header.type |= PERF_RECORD_CALLCHAIN;
2200 header.size += callchain_size;
2201 }
2202 }
2203
2204 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2205 if (ret)
2206 return;
2207
2208 perf_output_put(&handle, header);
2209
2210 if (record_type & PERF_RECORD_IP)
2211 perf_output_put(&handle, ip);
2212
2213 if (record_type & PERF_RECORD_TID)
2214 perf_output_put(&handle, tid_entry);
2215
2216 if (record_type & PERF_RECORD_TIME)
2217 perf_output_put(&handle, time);
2218
2219 if (record_type & PERF_RECORD_ADDR)
2220 perf_output_put(&handle, addr);
2221
2222 if (record_type & PERF_RECORD_CONFIG)
2223 perf_output_put(&handle, counter->hw_event.config);
2224
2225 if (record_type & PERF_RECORD_CPU)
2226 perf_output_put(&handle, cpu_entry);
2227
2228 /*
2229 * XXX PERF_RECORD_GROUP vs inherited counters seems difficult.
2230 */
2231 if (record_type & PERF_RECORD_GROUP) {
2232 struct perf_counter *leader, *sub;
2233 u64 nr = counter->nr_siblings;
2234
2235 perf_output_put(&handle, nr);
2236
2237 leader = counter->group_leader;
2238 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2239 if (sub != counter)
2240 sub->pmu->read(sub);
2241
2242 group_entry.event = sub->hw_event.config;
2243 group_entry.counter = atomic64_read(&sub->count);
2244
2245 perf_output_put(&handle, group_entry);
2246 }
2247 }
2248
2249 if (callchain)
2250 perf_output_copy(&handle, callchain, callchain_size);
2251
2252 perf_output_end(&handle);
2253 }
2254
2255 /*
2256 * comm tracking
2257 */
2258
2259 struct perf_comm_event {
2260 struct task_struct *task;
2261 char *comm;
2262 int comm_size;
2263
2264 struct {
2265 struct perf_event_header header;
2266
2267 u32 pid;
2268 u32 tid;
2269 } event;
2270 };
2271
2272 static void perf_counter_comm_output(struct perf_counter *counter,
2273 struct perf_comm_event *comm_event)
2274 {
2275 struct perf_output_handle handle;
2276 int size = comm_event->event.header.size;
2277 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2278
2279 if (ret)
2280 return;
2281
2282 perf_output_put(&handle, comm_event->event);
2283 perf_output_copy(&handle, comm_event->comm,
2284 comm_event->comm_size);
2285 perf_output_end(&handle);
2286 }
2287
2288 static int perf_counter_comm_match(struct perf_counter *counter,
2289 struct perf_comm_event *comm_event)
2290 {
2291 if (counter->hw_event.comm &&
2292 comm_event->event.header.type == PERF_EVENT_COMM)
2293 return 1;
2294
2295 return 0;
2296 }
2297
2298 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2299 struct perf_comm_event *comm_event)
2300 {
2301 struct perf_counter *counter;
2302
2303 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2304 return;
2305
2306 rcu_read_lock();
2307 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2308 if (perf_counter_comm_match(counter, comm_event))
2309 perf_counter_comm_output(counter, comm_event);
2310 }
2311 rcu_read_unlock();
2312 }
2313
2314 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2315 {
2316 struct perf_cpu_context *cpuctx;
2317 unsigned int size;
2318 char *comm = comm_event->task->comm;
2319
2320 size = ALIGN(strlen(comm)+1, sizeof(u64));
2321
2322 comm_event->comm = comm;
2323 comm_event->comm_size = size;
2324
2325 comm_event->event.header.size = sizeof(comm_event->event) + size;
2326
2327 cpuctx = &get_cpu_var(perf_cpu_context);
2328 perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2329 put_cpu_var(perf_cpu_context);
2330
2331 perf_counter_comm_ctx(current->perf_counter_ctxp, comm_event);
2332 }
2333
2334 void perf_counter_comm(struct task_struct *task)
2335 {
2336 struct perf_comm_event comm_event;
2337
2338 if (!atomic_read(&nr_comm_tracking))
2339 return;
2340 if (!current->perf_counter_ctxp)
2341 return;
2342
2343 comm_event = (struct perf_comm_event){
2344 .task = task,
2345 .event = {
2346 .header = { .type = PERF_EVENT_COMM, },
2347 .pid = task->group_leader->pid,
2348 .tid = task->pid,
2349 },
2350 };
2351
2352 perf_counter_comm_event(&comm_event);
2353 }
2354
2355 /*
2356 * mmap tracking
2357 */
2358
2359 struct perf_mmap_event {
2360 struct file *file;
2361 char *file_name;
2362 int file_size;
2363
2364 struct {
2365 struct perf_event_header header;
2366
2367 u32 pid;
2368 u32 tid;
2369 u64 start;
2370 u64 len;
2371 u64 pgoff;
2372 } event;
2373 };
2374
2375 static void perf_counter_mmap_output(struct perf_counter *counter,
2376 struct perf_mmap_event *mmap_event)
2377 {
2378 struct perf_output_handle handle;
2379 int size = mmap_event->event.header.size;
2380 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2381
2382 if (ret)
2383 return;
2384
2385 perf_output_put(&handle, mmap_event->event);
2386 perf_output_copy(&handle, mmap_event->file_name,
2387 mmap_event->file_size);
2388 perf_output_end(&handle);
2389 }
2390
2391 static int perf_counter_mmap_match(struct perf_counter *counter,
2392 struct perf_mmap_event *mmap_event)
2393 {
2394 if (counter->hw_event.mmap &&
2395 mmap_event->event.header.type == PERF_EVENT_MMAP)
2396 return 1;
2397
2398 if (counter->hw_event.munmap &&
2399 mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2400 return 1;
2401
2402 return 0;
2403 }
2404
2405 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2406 struct perf_mmap_event *mmap_event)
2407 {
2408 struct perf_counter *counter;
2409
2410 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2411 return;
2412
2413 rcu_read_lock();
2414 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2415 if (perf_counter_mmap_match(counter, mmap_event))
2416 perf_counter_mmap_output(counter, mmap_event);
2417 }
2418 rcu_read_unlock();
2419 }
2420
2421 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2422 {
2423 struct perf_cpu_context *cpuctx;
2424 struct file *file = mmap_event->file;
2425 unsigned int size;
2426 char tmp[16];
2427 char *buf = NULL;
2428 char *name;
2429
2430 if (file) {
2431 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2432 if (!buf) {
2433 name = strncpy(tmp, "//enomem", sizeof(tmp));
2434 goto got_name;
2435 }
2436 name = d_path(&file->f_path, buf, PATH_MAX);
2437 if (IS_ERR(name)) {
2438 name = strncpy(tmp, "//toolong", sizeof(tmp));
2439 goto got_name;
2440 }
2441 } else {
2442 name = strncpy(tmp, "//anon", sizeof(tmp));
2443 goto got_name;
2444 }
2445
2446 got_name:
2447 size = ALIGN(strlen(name)+1, sizeof(u64));
2448
2449 mmap_event->file_name = name;
2450 mmap_event->file_size = size;
2451
2452 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2453
2454 cpuctx = &get_cpu_var(perf_cpu_context);
2455 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2456 put_cpu_var(perf_cpu_context);
2457
2458 perf_counter_mmap_ctx(current->perf_counter_ctxp, mmap_event);
2459
2460 kfree(buf);
2461 }
2462
2463 void perf_counter_mmap(unsigned long addr, unsigned long len,
2464 unsigned long pgoff, struct file *file)
2465 {
2466 struct perf_mmap_event mmap_event;
2467
2468 if (!atomic_read(&nr_mmap_tracking))
2469 return;
2470 if (!current->perf_counter_ctxp)
2471 return;
2472
2473 mmap_event = (struct perf_mmap_event){
2474 .file = file,
2475 .event = {
2476 .header = { .type = PERF_EVENT_MMAP, },
2477 .pid = current->group_leader->pid,
2478 .tid = current->pid,
2479 .start = addr,
2480 .len = len,
2481 .pgoff = pgoff,
2482 },
2483 };
2484
2485 perf_counter_mmap_event(&mmap_event);
2486 }
2487
2488 void perf_counter_munmap(unsigned long addr, unsigned long len,
2489 unsigned long pgoff, struct file *file)
2490 {
2491 struct perf_mmap_event mmap_event;
2492
2493 if (!atomic_read(&nr_munmap_tracking))
2494 return;
2495
2496 mmap_event = (struct perf_mmap_event){
2497 .file = file,
2498 .event = {
2499 .header = { .type = PERF_EVENT_MUNMAP, },
2500 .pid = current->group_leader->pid,
2501 .tid = current->pid,
2502 .start = addr,
2503 .len = len,
2504 .pgoff = pgoff,
2505 },
2506 };
2507
2508 perf_counter_mmap_event(&mmap_event);
2509 }
2510
2511 /*
2512 * Log irq_period changes so that analyzing tools can re-normalize the
2513 * event flow.
2514 */
2515
2516 static void perf_log_period(struct perf_counter *counter, u64 period)
2517 {
2518 struct perf_output_handle handle;
2519 int ret;
2520
2521 struct {
2522 struct perf_event_header header;
2523 u64 time;
2524 u64 period;
2525 } freq_event = {
2526 .header = {
2527 .type = PERF_EVENT_PERIOD,
2528 .misc = 0,
2529 .size = sizeof(freq_event),
2530 },
2531 .time = sched_clock(),
2532 .period = period,
2533 };
2534
2535 if (counter->hw.irq_period == period)
2536 return;
2537
2538 ret = perf_output_begin(&handle, counter, sizeof(freq_event), 0, 0);
2539 if (ret)
2540 return;
2541
2542 perf_output_put(&handle, freq_event);
2543 perf_output_end(&handle);
2544 }
2545
2546 /*
2547 * Generic counter overflow handling.
2548 */
2549
2550 int perf_counter_overflow(struct perf_counter *counter,
2551 int nmi, struct pt_regs *regs, u64 addr)
2552 {
2553 int events = atomic_read(&counter->event_limit);
2554 int ret = 0;
2555
2556 counter->hw.interrupts++;
2557
2558 /*
2559 * XXX event_limit might not quite work as expected on inherited
2560 * counters
2561 */
2562
2563 counter->pending_kill = POLL_IN;
2564 if (events && atomic_dec_and_test(&counter->event_limit)) {
2565 ret = 1;
2566 counter->pending_kill = POLL_HUP;
2567 if (nmi) {
2568 counter->pending_disable = 1;
2569 perf_pending_queue(&counter->pending,
2570 perf_pending_counter);
2571 } else
2572 perf_counter_disable(counter);
2573 }
2574
2575 perf_counter_output(counter, nmi, regs, addr);
2576 return ret;
2577 }
2578
2579 /*
2580 * Generic software counter infrastructure
2581 */
2582
2583 static void perf_swcounter_update(struct perf_counter *counter)
2584 {
2585 struct hw_perf_counter *hwc = &counter->hw;
2586 u64 prev, now;
2587 s64 delta;
2588
2589 again:
2590 prev = atomic64_read(&hwc->prev_count);
2591 now = atomic64_read(&hwc->count);
2592 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2593 goto again;
2594
2595 delta = now - prev;
2596
2597 atomic64_add(delta, &counter->count);
2598 atomic64_sub(delta, &hwc->period_left);
2599 }
2600
2601 static void perf_swcounter_set_period(struct perf_counter *counter)
2602 {
2603 struct hw_perf_counter *hwc = &counter->hw;
2604 s64 left = atomic64_read(&hwc->period_left);
2605 s64 period = hwc->irq_period;
2606
2607 if (unlikely(left <= -period)) {
2608 left = period;
2609 atomic64_set(&hwc->period_left, left);
2610 }
2611
2612 if (unlikely(left <= 0)) {
2613 left += period;
2614 atomic64_add(period, &hwc->period_left);
2615 }
2616
2617 atomic64_set(&hwc->prev_count, -left);
2618 atomic64_set(&hwc->count, -left);
2619 }
2620
2621 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2622 {
2623 enum hrtimer_restart ret = HRTIMER_RESTART;
2624 struct perf_counter *counter;
2625 struct pt_regs *regs;
2626 u64 period;
2627
2628 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2629 counter->pmu->read(counter);
2630
2631 regs = get_irq_regs();
2632 /*
2633 * In case we exclude kernel IPs or are somehow not in interrupt
2634 * context, provide the next best thing, the user IP.
2635 */
2636 if ((counter->hw_event.exclude_kernel || !regs) &&
2637 !counter->hw_event.exclude_user)
2638 regs = task_pt_regs(current);
2639
2640 if (regs) {
2641 if (perf_counter_overflow(counter, 0, regs, 0))
2642 ret = HRTIMER_NORESTART;
2643 }
2644
2645 period = max_t(u64, 10000, counter->hw.irq_period);
2646 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
2647
2648 return ret;
2649 }
2650
2651 static void perf_swcounter_overflow(struct perf_counter *counter,
2652 int nmi, struct pt_regs *regs, u64 addr)
2653 {
2654 perf_swcounter_update(counter);
2655 perf_swcounter_set_period(counter);
2656 if (perf_counter_overflow(counter, nmi, regs, addr))
2657 /* soft-disable the counter */
2658 ;
2659
2660 }
2661
2662 static int perf_swcounter_match(struct perf_counter *counter,
2663 enum perf_event_types type,
2664 u32 event, struct pt_regs *regs)
2665 {
2666 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2667 return 0;
2668
2669 if (perf_event_raw(&counter->hw_event))
2670 return 0;
2671
2672 if (perf_event_type(&counter->hw_event) != type)
2673 return 0;
2674
2675 if (perf_event_id(&counter->hw_event) != event)
2676 return 0;
2677
2678 if (counter->hw_event.exclude_user && user_mode(regs))
2679 return 0;
2680
2681 if (counter->hw_event.exclude_kernel && !user_mode(regs))
2682 return 0;
2683
2684 return 1;
2685 }
2686
2687 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2688 int nmi, struct pt_regs *regs, u64 addr)
2689 {
2690 int neg = atomic64_add_negative(nr, &counter->hw.count);
2691 if (counter->hw.irq_period && !neg)
2692 perf_swcounter_overflow(counter, nmi, regs, addr);
2693 }
2694
2695 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2696 enum perf_event_types type, u32 event,
2697 u64 nr, int nmi, struct pt_regs *regs,
2698 u64 addr)
2699 {
2700 struct perf_counter *counter;
2701
2702 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2703 return;
2704
2705 rcu_read_lock();
2706 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2707 if (perf_swcounter_match(counter, type, event, regs))
2708 perf_swcounter_add(counter, nr, nmi, regs, addr);
2709 }
2710 rcu_read_unlock();
2711 }
2712
2713 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2714 {
2715 if (in_nmi())
2716 return &cpuctx->recursion[3];
2717
2718 if (in_irq())
2719 return &cpuctx->recursion[2];
2720
2721 if (in_softirq())
2722 return &cpuctx->recursion[1];
2723
2724 return &cpuctx->recursion[0];
2725 }
2726
2727 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2728 u64 nr, int nmi, struct pt_regs *regs,
2729 u64 addr)
2730 {
2731 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2732 int *recursion = perf_swcounter_recursion_context(cpuctx);
2733
2734 if (*recursion)
2735 goto out;
2736
2737 (*recursion)++;
2738 barrier();
2739
2740 perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
2741 nr, nmi, regs, addr);
2742 if (cpuctx->task_ctx) {
2743 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2744 nr, nmi, regs, addr);
2745 }
2746
2747 barrier();
2748 (*recursion)--;
2749
2750 out:
2751 put_cpu_var(perf_cpu_context);
2752 }
2753
2754 void
2755 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2756 {
2757 __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2758 }
2759
2760 static void perf_swcounter_read(struct perf_counter *counter)
2761 {
2762 perf_swcounter_update(counter);
2763 }
2764
2765 static int perf_swcounter_enable(struct perf_counter *counter)
2766 {
2767 perf_swcounter_set_period(counter);
2768 return 0;
2769 }
2770
2771 static void perf_swcounter_disable(struct perf_counter *counter)
2772 {
2773 perf_swcounter_update(counter);
2774 }
2775
2776 static const struct pmu perf_ops_generic = {
2777 .enable = perf_swcounter_enable,
2778 .disable = perf_swcounter_disable,
2779 .read = perf_swcounter_read,
2780 };
2781
2782 /*
2783 * Software counter: cpu wall time clock
2784 */
2785
2786 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2787 {
2788 int cpu = raw_smp_processor_id();
2789 s64 prev;
2790 u64 now;
2791
2792 now = cpu_clock(cpu);
2793 prev = atomic64_read(&counter->hw.prev_count);
2794 atomic64_set(&counter->hw.prev_count, now);
2795 atomic64_add(now - prev, &counter->count);
2796 }
2797
2798 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2799 {
2800 struct hw_perf_counter *hwc = &counter->hw;
2801 int cpu = raw_smp_processor_id();
2802
2803 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2804 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2805 hwc->hrtimer.function = perf_swcounter_hrtimer;
2806 if (hwc->irq_period) {
2807 u64 period = max_t(u64, 10000, hwc->irq_period);
2808 __hrtimer_start_range_ns(&hwc->hrtimer,
2809 ns_to_ktime(period), 0,
2810 HRTIMER_MODE_REL, 0);
2811 }
2812
2813 return 0;
2814 }
2815
2816 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2817 {
2818 if (counter->hw.irq_period)
2819 hrtimer_cancel(&counter->hw.hrtimer);
2820 cpu_clock_perf_counter_update(counter);
2821 }
2822
2823 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2824 {
2825 cpu_clock_perf_counter_update(counter);
2826 }
2827
2828 static const struct pmu perf_ops_cpu_clock = {
2829 .enable = cpu_clock_perf_counter_enable,
2830 .disable = cpu_clock_perf_counter_disable,
2831 .read = cpu_clock_perf_counter_read,
2832 };
2833
2834 /*
2835 * Software counter: task time clock
2836 */
2837
2838 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2839 {
2840 u64 prev;
2841 s64 delta;
2842
2843 prev = atomic64_xchg(&counter->hw.prev_count, now);
2844 delta = now - prev;
2845 atomic64_add(delta, &counter->count);
2846 }
2847
2848 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2849 {
2850 struct hw_perf_counter *hwc = &counter->hw;
2851 u64 now;
2852
2853 now = counter->ctx->time;
2854
2855 atomic64_set(&hwc->prev_count, now);
2856 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2857 hwc->hrtimer.function = perf_swcounter_hrtimer;
2858 if (hwc->irq_period) {
2859 u64 period = max_t(u64, 10000, hwc->irq_period);
2860 __hrtimer_start_range_ns(&hwc->hrtimer,
2861 ns_to_ktime(period), 0,
2862 HRTIMER_MODE_REL, 0);
2863 }
2864
2865 return 0;
2866 }
2867
2868 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2869 {
2870 if (counter->hw.irq_period)
2871 hrtimer_cancel(&counter->hw.hrtimer);
2872 task_clock_perf_counter_update(counter, counter->ctx->time);
2873
2874 }
2875
2876 static void task_clock_perf_counter_read(struct perf_counter *counter)
2877 {
2878 u64 time;
2879
2880 if (!in_nmi()) {
2881 update_context_time(counter->ctx);
2882 time = counter->ctx->time;
2883 } else {
2884 u64 now = perf_clock();
2885 u64 delta = now - counter->ctx->timestamp;
2886 time = counter->ctx->time + delta;
2887 }
2888
2889 task_clock_perf_counter_update(counter, time);
2890 }
2891
2892 static const struct pmu perf_ops_task_clock = {
2893 .enable = task_clock_perf_counter_enable,
2894 .disable = task_clock_perf_counter_disable,
2895 .read = task_clock_perf_counter_read,
2896 };
2897
2898 /*
2899 * Software counter: cpu migrations
2900 */
2901
2902 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2903 {
2904 struct task_struct *curr = counter->ctx->task;
2905
2906 if (curr)
2907 return curr->se.nr_migrations;
2908 return cpu_nr_migrations(smp_processor_id());
2909 }
2910
2911 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2912 {
2913 u64 prev, now;
2914 s64 delta;
2915
2916 prev = atomic64_read(&counter->hw.prev_count);
2917 now = get_cpu_migrations(counter);
2918
2919 atomic64_set(&counter->hw.prev_count, now);
2920
2921 delta = now - prev;
2922
2923 atomic64_add(delta, &counter->count);
2924 }
2925
2926 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2927 {
2928 cpu_migrations_perf_counter_update(counter);
2929 }
2930
2931 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2932 {
2933 if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2934 atomic64_set(&counter->hw.prev_count,
2935 get_cpu_migrations(counter));
2936 return 0;
2937 }
2938
2939 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2940 {
2941 cpu_migrations_perf_counter_update(counter);
2942 }
2943
2944 static const struct pmu perf_ops_cpu_migrations = {
2945 .enable = cpu_migrations_perf_counter_enable,
2946 .disable = cpu_migrations_perf_counter_disable,
2947 .read = cpu_migrations_perf_counter_read,
2948 };
2949
2950 #ifdef CONFIG_EVENT_PROFILE
2951 void perf_tpcounter_event(int event_id)
2952 {
2953 struct pt_regs *regs = get_irq_regs();
2954
2955 if (!regs)
2956 regs = task_pt_regs(current);
2957
2958 __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
2959 }
2960 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
2961
2962 extern int ftrace_profile_enable(int);
2963 extern void ftrace_profile_disable(int);
2964
2965 static void tp_perf_counter_destroy(struct perf_counter *counter)
2966 {
2967 ftrace_profile_disable(perf_event_id(&counter->hw_event));
2968 }
2969
2970 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2971 {
2972 int event_id = perf_event_id(&counter->hw_event);
2973 int ret;
2974
2975 ret = ftrace_profile_enable(event_id);
2976 if (ret)
2977 return NULL;
2978
2979 counter->destroy = tp_perf_counter_destroy;
2980 counter->hw.irq_period = counter->hw_event.irq_period;
2981
2982 return &perf_ops_generic;
2983 }
2984 #else
2985 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2986 {
2987 return NULL;
2988 }
2989 #endif
2990
2991 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
2992 {
2993 const struct pmu *pmu = NULL;
2994
2995 /*
2996 * Software counters (currently) can't in general distinguish
2997 * between user, kernel and hypervisor events.
2998 * However, context switches and cpu migrations are considered
2999 * to be kernel events, and page faults are never hypervisor
3000 * events.
3001 */
3002 switch (perf_event_id(&counter->hw_event)) {
3003 case PERF_COUNT_CPU_CLOCK:
3004 pmu = &perf_ops_cpu_clock;
3005
3006 break;
3007 case PERF_COUNT_TASK_CLOCK:
3008 /*
3009 * If the user instantiates this as a per-cpu counter,
3010 * use the cpu_clock counter instead.
3011 */
3012 if (counter->ctx->task)
3013 pmu = &perf_ops_task_clock;
3014 else
3015 pmu = &perf_ops_cpu_clock;
3016
3017 break;
3018 case PERF_COUNT_PAGE_FAULTS:
3019 case PERF_COUNT_PAGE_FAULTS_MIN:
3020 case PERF_COUNT_PAGE_FAULTS_MAJ:
3021 case PERF_COUNT_CONTEXT_SWITCHES:
3022 pmu = &perf_ops_generic;
3023 break;
3024 case PERF_COUNT_CPU_MIGRATIONS:
3025 if (!counter->hw_event.exclude_kernel)
3026 pmu = &perf_ops_cpu_migrations;
3027 break;
3028 }
3029
3030 return pmu;
3031 }
3032
3033 /*
3034 * Allocate and initialize a counter structure
3035 */
3036 static struct perf_counter *
3037 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
3038 int cpu,
3039 struct perf_counter_context *ctx,
3040 struct perf_counter *group_leader,
3041 gfp_t gfpflags)
3042 {
3043 const struct pmu *pmu;
3044 struct perf_counter *counter;
3045 struct hw_perf_counter *hwc;
3046 long err;
3047
3048 counter = kzalloc(sizeof(*counter), gfpflags);
3049 if (!counter)
3050 return ERR_PTR(-ENOMEM);
3051
3052 /*
3053 * Single counters are their own group leaders, with an
3054 * empty sibling list:
3055 */
3056 if (!group_leader)
3057 group_leader = counter;
3058
3059 mutex_init(&counter->child_mutex);
3060 INIT_LIST_HEAD(&counter->child_list);
3061
3062 INIT_LIST_HEAD(&counter->list_entry);
3063 INIT_LIST_HEAD(&counter->event_entry);
3064 INIT_LIST_HEAD(&counter->sibling_list);
3065 init_waitqueue_head(&counter->waitq);
3066
3067 mutex_init(&counter->mmap_mutex);
3068
3069 counter->cpu = cpu;
3070 counter->hw_event = *hw_event;
3071 counter->group_leader = group_leader;
3072 counter->pmu = NULL;
3073 counter->ctx = ctx;
3074 get_ctx(ctx);
3075
3076 counter->state = PERF_COUNTER_STATE_INACTIVE;
3077 if (hw_event->disabled)
3078 counter->state = PERF_COUNTER_STATE_OFF;
3079
3080 pmu = NULL;
3081
3082 hwc = &counter->hw;
3083 if (hw_event->freq && hw_event->irq_freq)
3084 hwc->irq_period = div64_u64(TICK_NSEC, hw_event->irq_freq);
3085 else
3086 hwc->irq_period = hw_event->irq_period;
3087
3088 /*
3089 * we currently do not support PERF_RECORD_GROUP on inherited counters
3090 */
3091 if (hw_event->inherit && (hw_event->record_type & PERF_RECORD_GROUP))
3092 goto done;
3093
3094 if (perf_event_raw(hw_event)) {
3095 pmu = hw_perf_counter_init(counter);
3096 goto done;
3097 }
3098
3099 switch (perf_event_type(hw_event)) {
3100 case PERF_TYPE_HARDWARE:
3101 pmu = hw_perf_counter_init(counter);
3102 break;
3103
3104 case PERF_TYPE_SOFTWARE:
3105 pmu = sw_perf_counter_init(counter);
3106 break;
3107
3108 case PERF_TYPE_TRACEPOINT:
3109 pmu = tp_perf_counter_init(counter);
3110 break;
3111 }
3112 done:
3113 err = 0;
3114 if (!pmu)
3115 err = -EINVAL;
3116 else if (IS_ERR(pmu))
3117 err = PTR_ERR(pmu);
3118
3119 if (err) {
3120 kfree(counter);
3121 return ERR_PTR(err);
3122 }
3123
3124 counter->pmu = pmu;
3125
3126 atomic_inc(&nr_counters);
3127 if (counter->hw_event.mmap)
3128 atomic_inc(&nr_mmap_tracking);
3129 if (counter->hw_event.munmap)
3130 atomic_inc(&nr_munmap_tracking);
3131 if (counter->hw_event.comm)
3132 atomic_inc(&nr_comm_tracking);
3133
3134 return counter;
3135 }
3136
3137 /**
3138 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
3139 *
3140 * @hw_event_uptr: event type attributes for monitoring/sampling
3141 * @pid: target pid
3142 * @cpu: target cpu
3143 * @group_fd: group leader counter fd
3144 */
3145 SYSCALL_DEFINE5(perf_counter_open,
3146 const struct perf_counter_hw_event __user *, hw_event_uptr,
3147 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
3148 {
3149 struct perf_counter *counter, *group_leader;
3150 struct perf_counter_hw_event hw_event;
3151 struct perf_counter_context *ctx;
3152 struct file *counter_file = NULL;
3153 struct file *group_file = NULL;
3154 int fput_needed = 0;
3155 int fput_needed2 = 0;
3156 int ret;
3157
3158 /* for future expandability... */
3159 if (flags)
3160 return -EINVAL;
3161
3162 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
3163 return -EFAULT;
3164
3165 /*
3166 * Get the target context (task or percpu):
3167 */
3168 ctx = find_get_context(pid, cpu);
3169 if (IS_ERR(ctx))
3170 return PTR_ERR(ctx);
3171
3172 /*
3173 * Look up the group leader (we will attach this counter to it):
3174 */
3175 group_leader = NULL;
3176 if (group_fd != -1) {
3177 ret = -EINVAL;
3178 group_file = fget_light(group_fd, &fput_needed);
3179 if (!group_file)
3180 goto err_put_context;
3181 if (group_file->f_op != &perf_fops)
3182 goto err_put_context;
3183
3184 group_leader = group_file->private_data;
3185 /*
3186 * Do not allow a recursive hierarchy (this new sibling
3187 * becoming part of another group-sibling):
3188 */
3189 if (group_leader->group_leader != group_leader)
3190 goto err_put_context;
3191 /*
3192 * Do not allow to attach to a group in a different
3193 * task or CPU context:
3194 */
3195 if (group_leader->ctx != ctx)
3196 goto err_put_context;
3197 /*
3198 * Only a group leader can be exclusive or pinned
3199 */
3200 if (hw_event.exclusive || hw_event.pinned)
3201 goto err_put_context;
3202 }
3203
3204 counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
3205 GFP_KERNEL);
3206 ret = PTR_ERR(counter);
3207 if (IS_ERR(counter))
3208 goto err_put_context;
3209
3210 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
3211 if (ret < 0)
3212 goto err_free_put_context;
3213
3214 counter_file = fget_light(ret, &fput_needed2);
3215 if (!counter_file)
3216 goto err_free_put_context;
3217
3218 counter->filp = counter_file;
3219 mutex_lock(&ctx->mutex);
3220 perf_install_in_context(ctx, counter, cpu);
3221 mutex_unlock(&ctx->mutex);
3222
3223 counter->owner = current;
3224 get_task_struct(current);
3225 mutex_lock(&current->perf_counter_mutex);
3226 list_add_tail(&counter->owner_entry, &current->perf_counter_list);
3227 mutex_unlock(&current->perf_counter_mutex);
3228
3229 fput_light(counter_file, fput_needed2);
3230
3231 out_fput:
3232 fput_light(group_file, fput_needed);
3233
3234 return ret;
3235
3236 err_free_put_context:
3237 kfree(counter);
3238
3239 err_put_context:
3240 put_context(ctx);
3241
3242 goto out_fput;
3243 }
3244
3245 /*
3246 * inherit a counter from parent task to child task:
3247 */
3248 static struct perf_counter *
3249 inherit_counter(struct perf_counter *parent_counter,
3250 struct task_struct *parent,
3251 struct perf_counter_context *parent_ctx,
3252 struct task_struct *child,
3253 struct perf_counter *group_leader,
3254 struct perf_counter_context *child_ctx)
3255 {
3256 struct perf_counter *child_counter;
3257
3258 /*
3259 * Instead of creating recursive hierarchies of counters,
3260 * we link inherited counters back to the original parent,
3261 * which has a filp for sure, which we use as the reference
3262 * count:
3263 */
3264 if (parent_counter->parent)
3265 parent_counter = parent_counter->parent;
3266
3267 child_counter = perf_counter_alloc(&parent_counter->hw_event,
3268 parent_counter->cpu, child_ctx,
3269 group_leader, GFP_KERNEL);
3270 if (IS_ERR(child_counter))
3271 return child_counter;
3272
3273 /*
3274 * Make the child state follow the state of the parent counter,
3275 * not its hw_event.disabled bit. We hold the parent's mutex,
3276 * so we won't race with perf_counter_{en,dis}able_family.
3277 */
3278 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3279 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3280 else
3281 child_counter->state = PERF_COUNTER_STATE_OFF;
3282
3283 /*
3284 * Link it up in the child's context:
3285 */
3286 add_counter_to_ctx(child_counter, child_ctx);
3287
3288 child_counter->parent = parent_counter;
3289 /*
3290 * inherit into child's child as well:
3291 */
3292 child_counter->hw_event.inherit = 1;
3293
3294 /*
3295 * Get a reference to the parent filp - we will fput it
3296 * when the child counter exits. This is safe to do because
3297 * we are in the parent and we know that the filp still
3298 * exists and has a nonzero count:
3299 */
3300 atomic_long_inc(&parent_counter->filp->f_count);
3301
3302 /*
3303 * Link this into the parent counter's child list
3304 */
3305 mutex_lock(&parent_counter->child_mutex);
3306 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3307 mutex_unlock(&parent_counter->child_mutex);
3308
3309 return child_counter;
3310 }
3311
3312 static int inherit_group(struct perf_counter *parent_counter,
3313 struct task_struct *parent,
3314 struct perf_counter_context *parent_ctx,
3315 struct task_struct *child,
3316 struct perf_counter_context *child_ctx)
3317 {
3318 struct perf_counter *leader;
3319 struct perf_counter *sub;
3320 struct perf_counter *child_ctr;
3321
3322 leader = inherit_counter(parent_counter, parent, parent_ctx,
3323 child, NULL, child_ctx);
3324 if (IS_ERR(leader))
3325 return PTR_ERR(leader);
3326 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3327 child_ctr = inherit_counter(sub, parent, parent_ctx,
3328 child, leader, child_ctx);
3329 if (IS_ERR(child_ctr))
3330 return PTR_ERR(child_ctr);
3331 }
3332 return 0;
3333 }
3334
3335 static void sync_child_counter(struct perf_counter *child_counter,
3336 struct perf_counter *parent_counter)
3337 {
3338 u64 child_val;
3339
3340 child_val = atomic64_read(&child_counter->count);
3341
3342 /*
3343 * Add back the child's count to the parent's count:
3344 */
3345 atomic64_add(child_val, &parent_counter->count);
3346 atomic64_add(child_counter->total_time_enabled,
3347 &parent_counter->child_total_time_enabled);
3348 atomic64_add(child_counter->total_time_running,
3349 &parent_counter->child_total_time_running);
3350
3351 /*
3352 * Remove this counter from the parent's list
3353 */
3354 mutex_lock(&parent_counter->child_mutex);
3355 list_del_init(&child_counter->child_list);
3356 mutex_unlock(&parent_counter->child_mutex);
3357
3358 /*
3359 * Release the parent counter, if this was the last
3360 * reference to it.
3361 */
3362 fput(parent_counter->filp);
3363 }
3364
3365 static void
3366 __perf_counter_exit_task(struct task_struct *child,
3367 struct perf_counter *child_counter,
3368 struct perf_counter_context *child_ctx)
3369 {
3370 struct perf_counter *parent_counter;
3371
3372 update_counter_times(child_counter);
3373 perf_counter_remove_from_context(child_counter);
3374
3375 parent_counter = child_counter->parent;
3376 /*
3377 * It can happen that parent exits first, and has counters
3378 * that are still around due to the child reference. These
3379 * counters need to be zapped - but otherwise linger.
3380 */
3381 if (parent_counter) {
3382 sync_child_counter(child_counter, parent_counter);
3383 free_counter(child_counter);
3384 }
3385 }
3386
3387 /*
3388 * When a child task exits, feed back counter values to parent counters.
3389 *
3390 * Note: we may be running in child context, but the PID is not hashed
3391 * anymore so new counters will not be added.
3392 * (XXX not sure that is true when we get called from flush_old_exec.
3393 * -- paulus)
3394 */
3395 void perf_counter_exit_task(struct task_struct *child)
3396 {
3397 struct perf_counter *child_counter, *tmp;
3398 struct perf_counter_context *child_ctx;
3399 unsigned long flags;
3400
3401 WARN_ON_ONCE(child != current);
3402
3403 child_ctx = child->perf_counter_ctxp;
3404
3405 if (likely(!child_ctx))
3406 return;
3407
3408 local_irq_save(flags);
3409 __perf_counter_task_sched_out(child_ctx);
3410 child->perf_counter_ctxp = NULL;
3411 local_irq_restore(flags);
3412
3413 mutex_lock(&child_ctx->mutex);
3414
3415 again:
3416 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3417 list_entry)
3418 __perf_counter_exit_task(child, child_counter, child_ctx);
3419
3420 /*
3421 * If the last counter was a group counter, it will have appended all
3422 * its siblings to the list, but we obtained 'tmp' before that which
3423 * will still point to the list head terminating the iteration.
3424 */
3425 if (!list_empty(&child_ctx->counter_list))
3426 goto again;
3427
3428 mutex_unlock(&child_ctx->mutex);
3429
3430 put_ctx(child_ctx);
3431 }
3432
3433 /*
3434 * Initialize the perf_counter context in task_struct
3435 */
3436 int perf_counter_init_task(struct task_struct *child)
3437 {
3438 struct perf_counter_context *child_ctx, *parent_ctx;
3439 struct perf_counter *counter;
3440 struct task_struct *parent = current;
3441 int inherited_all = 1;
3442 int ret = 0;
3443
3444 child->perf_counter_ctxp = NULL;
3445
3446 mutex_init(&child->perf_counter_mutex);
3447 INIT_LIST_HEAD(&child->perf_counter_list);
3448
3449 parent_ctx = parent->perf_counter_ctxp;
3450 if (likely(!parent_ctx || !parent_ctx->nr_counters))
3451 return 0;
3452
3453 /*
3454 * This is executed from the parent task context, so inherit
3455 * counters that have been marked for cloning.
3456 * First allocate and initialize a context for the child.
3457 */
3458
3459 child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
3460 if (!child_ctx)
3461 return -ENOMEM;
3462
3463 __perf_counter_init_context(child_ctx, child);
3464 child->perf_counter_ctxp = child_ctx;
3465
3466 /*
3467 * Lock the parent list. No need to lock the child - not PID
3468 * hashed yet and not running, so nobody can access it.
3469 */
3470 mutex_lock(&parent_ctx->mutex);
3471
3472 /*
3473 * We dont have to disable NMIs - we are only looking at
3474 * the list, not manipulating it:
3475 */
3476 list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
3477 if (counter != counter->group_leader)
3478 continue;
3479
3480 if (!counter->hw_event.inherit) {
3481 inherited_all = 0;
3482 continue;
3483 }
3484
3485 ret = inherit_group(counter, parent, parent_ctx,
3486 child, child_ctx);
3487 if (ret) {
3488 inherited_all = 0;
3489 break;
3490 }
3491 }
3492
3493 if (inherited_all) {
3494 /*
3495 * Mark the child context as a clone of the parent
3496 * context, or of whatever the parent is a clone of.
3497 */
3498 if (parent_ctx->parent_ctx) {
3499 child_ctx->parent_ctx = parent_ctx->parent_ctx;
3500 child_ctx->parent_gen = parent_ctx->parent_gen;
3501 } else {
3502 child_ctx->parent_ctx = parent_ctx;
3503 child_ctx->parent_gen = parent_ctx->generation;
3504 }
3505 get_ctx(child_ctx->parent_ctx);
3506 }
3507
3508 mutex_unlock(&parent_ctx->mutex);
3509
3510 return ret;
3511 }
3512
3513 static void __cpuinit perf_counter_init_cpu(int cpu)
3514 {
3515 struct perf_cpu_context *cpuctx;
3516
3517 cpuctx = &per_cpu(perf_cpu_context, cpu);
3518 __perf_counter_init_context(&cpuctx->ctx, NULL);
3519
3520 spin_lock(&perf_resource_lock);
3521 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3522 spin_unlock(&perf_resource_lock);
3523
3524 hw_perf_counter_setup(cpu);
3525 }
3526
3527 #ifdef CONFIG_HOTPLUG_CPU
3528 static void __perf_counter_exit_cpu(void *info)
3529 {
3530 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3531 struct perf_counter_context *ctx = &cpuctx->ctx;
3532 struct perf_counter *counter, *tmp;
3533
3534 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3535 __perf_counter_remove_from_context(counter);
3536 }
3537 static void perf_counter_exit_cpu(int cpu)
3538 {
3539 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3540 struct perf_counter_context *ctx = &cpuctx->ctx;
3541
3542 mutex_lock(&ctx->mutex);
3543 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3544 mutex_unlock(&ctx->mutex);
3545 }
3546 #else
3547 static inline void perf_counter_exit_cpu(int cpu) { }
3548 #endif
3549
3550 static int __cpuinit
3551 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3552 {
3553 unsigned int cpu = (long)hcpu;
3554
3555 switch (action) {
3556
3557 case CPU_UP_PREPARE:
3558 case CPU_UP_PREPARE_FROZEN:
3559 perf_counter_init_cpu(cpu);
3560 break;
3561
3562 case CPU_DOWN_PREPARE:
3563 case CPU_DOWN_PREPARE_FROZEN:
3564 perf_counter_exit_cpu(cpu);
3565 break;
3566
3567 default:
3568 break;
3569 }
3570
3571 return NOTIFY_OK;
3572 }
3573
3574 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3575 .notifier_call = perf_cpu_notify,
3576 };
3577
3578 void __init perf_counter_init(void)
3579 {
3580 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3581 (void *)(long)smp_processor_id());
3582 register_cpu_notifier(&perf_cpu_nb);
3583 }
3584
3585 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3586 {
3587 return sprintf(buf, "%d\n", perf_reserved_percpu);
3588 }
3589
3590 static ssize_t
3591 perf_set_reserve_percpu(struct sysdev_class *class,
3592 const char *buf,
3593 size_t count)
3594 {
3595 struct perf_cpu_context *cpuctx;
3596 unsigned long val;
3597 int err, cpu, mpt;
3598
3599 err = strict_strtoul(buf, 10, &val);
3600 if (err)
3601 return err;
3602 if (val > perf_max_counters)
3603 return -EINVAL;
3604
3605 spin_lock(&perf_resource_lock);
3606 perf_reserved_percpu = val;
3607 for_each_online_cpu(cpu) {
3608 cpuctx = &per_cpu(perf_cpu_context, cpu);
3609 spin_lock_irq(&cpuctx->ctx.lock);
3610 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3611 perf_max_counters - perf_reserved_percpu);
3612 cpuctx->max_pertask = mpt;
3613 spin_unlock_irq(&cpuctx->ctx.lock);
3614 }
3615 spin_unlock(&perf_resource_lock);
3616
3617 return count;
3618 }
3619
3620 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3621 {
3622 return sprintf(buf, "%d\n", perf_overcommit);
3623 }
3624
3625 static ssize_t
3626 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3627 {
3628 unsigned long val;
3629 int err;
3630
3631 err = strict_strtoul(buf, 10, &val);
3632 if (err)
3633 return err;
3634 if (val > 1)
3635 return -EINVAL;
3636
3637 spin_lock(&perf_resource_lock);
3638 perf_overcommit = val;
3639 spin_unlock(&perf_resource_lock);
3640
3641 return count;
3642 }
3643
3644 static SYSDEV_CLASS_ATTR(
3645 reserve_percpu,
3646 0644,
3647 perf_show_reserve_percpu,
3648 perf_set_reserve_percpu
3649 );
3650
3651 static SYSDEV_CLASS_ATTR(
3652 overcommit,
3653 0644,
3654 perf_show_overcommit,
3655 perf_set_overcommit
3656 );
3657
3658 static struct attribute *perfclass_attrs[] = {
3659 &attr_reserve_percpu.attr,
3660 &attr_overcommit.attr,
3661 NULL
3662 };
3663
3664 static struct attribute_group perfclass_attr_group = {
3665 .attrs = perfclass_attrs,
3666 .name = "perf_counters",
3667 };
3668
3669 static int __init perf_counter_sysfs_init(void)
3670 {
3671 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3672 &perfclass_attr_group);
3673 }
3674 device_initcall(perf_counter_sysfs_init);
This page took 0.102822 seconds and 6 git commands to generate.