perf_counter: Allow for a wakeup watermark
[deliverable/linux.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/hardirq.h>
24 #include <linux/rculist.h>
25 #include <linux/uaccess.h>
26 #include <linux/syscalls.h>
27 #include <linux/anon_inodes.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/perf_counter.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34 * Each CPU has a list of per CPU counters:
35 */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_counters __read_mostly;
44 static atomic_t nr_comm_counters __read_mostly;
45 static atomic_t nr_task_counters __read_mostly;
46
47 /*
48 * perf counter paranoia level:
49 * -1 - not paranoid at all
50 * 0 - disallow raw tracepoint access for unpriv
51 * 1 - disallow cpu counters for unpriv
52 * 2 - disallow kernel profiling for unpriv
53 */
54 int sysctl_perf_counter_paranoid __read_mostly = 1;
55
56 static inline bool perf_paranoid_tracepoint_raw(void)
57 {
58 return sysctl_perf_counter_paranoid > -1;
59 }
60
61 static inline bool perf_paranoid_cpu(void)
62 {
63 return sysctl_perf_counter_paranoid > 0;
64 }
65
66 static inline bool perf_paranoid_kernel(void)
67 {
68 return sysctl_perf_counter_paranoid > 1;
69 }
70
71 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
72
73 /*
74 * max perf counter sample rate
75 */
76 int sysctl_perf_counter_sample_rate __read_mostly = 100000;
77
78 static atomic64_t perf_counter_id;
79
80 /*
81 * Lock for (sysadmin-configurable) counter reservations:
82 */
83 static DEFINE_SPINLOCK(perf_resource_lock);
84
85 /*
86 * Architecture provided APIs - weak aliases:
87 */
88 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
89 {
90 return NULL;
91 }
92
93 void __weak hw_perf_disable(void) { barrier(); }
94 void __weak hw_perf_enable(void) { barrier(); }
95
96 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
97 void __weak hw_perf_counter_setup_online(int cpu) { barrier(); }
98
99 int __weak
100 hw_perf_group_sched_in(struct perf_counter *group_leader,
101 struct perf_cpu_context *cpuctx,
102 struct perf_counter_context *ctx, int cpu)
103 {
104 return 0;
105 }
106
107 void __weak perf_counter_print_debug(void) { }
108
109 static DEFINE_PER_CPU(int, disable_count);
110
111 void __perf_disable(void)
112 {
113 __get_cpu_var(disable_count)++;
114 }
115
116 bool __perf_enable(void)
117 {
118 return !--__get_cpu_var(disable_count);
119 }
120
121 void perf_disable(void)
122 {
123 __perf_disable();
124 hw_perf_disable();
125 }
126
127 void perf_enable(void)
128 {
129 if (__perf_enable())
130 hw_perf_enable();
131 }
132
133 static void get_ctx(struct perf_counter_context *ctx)
134 {
135 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
136 }
137
138 static void free_ctx(struct rcu_head *head)
139 {
140 struct perf_counter_context *ctx;
141
142 ctx = container_of(head, struct perf_counter_context, rcu_head);
143 kfree(ctx);
144 }
145
146 static void put_ctx(struct perf_counter_context *ctx)
147 {
148 if (atomic_dec_and_test(&ctx->refcount)) {
149 if (ctx->parent_ctx)
150 put_ctx(ctx->parent_ctx);
151 if (ctx->task)
152 put_task_struct(ctx->task);
153 call_rcu(&ctx->rcu_head, free_ctx);
154 }
155 }
156
157 static void unclone_ctx(struct perf_counter_context *ctx)
158 {
159 if (ctx->parent_ctx) {
160 put_ctx(ctx->parent_ctx);
161 ctx->parent_ctx = NULL;
162 }
163 }
164
165 /*
166 * If we inherit counters we want to return the parent counter id
167 * to userspace.
168 */
169 static u64 primary_counter_id(struct perf_counter *counter)
170 {
171 u64 id = counter->id;
172
173 if (counter->parent)
174 id = counter->parent->id;
175
176 return id;
177 }
178
179 /*
180 * Get the perf_counter_context for a task and lock it.
181 * This has to cope with with the fact that until it is locked,
182 * the context could get moved to another task.
183 */
184 static struct perf_counter_context *
185 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
186 {
187 struct perf_counter_context *ctx;
188
189 rcu_read_lock();
190 retry:
191 ctx = rcu_dereference(task->perf_counter_ctxp);
192 if (ctx) {
193 /*
194 * If this context is a clone of another, it might
195 * get swapped for another underneath us by
196 * perf_counter_task_sched_out, though the
197 * rcu_read_lock() protects us from any context
198 * getting freed. Lock the context and check if it
199 * got swapped before we could get the lock, and retry
200 * if so. If we locked the right context, then it
201 * can't get swapped on us any more.
202 */
203 spin_lock_irqsave(&ctx->lock, *flags);
204 if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
205 spin_unlock_irqrestore(&ctx->lock, *flags);
206 goto retry;
207 }
208
209 if (!atomic_inc_not_zero(&ctx->refcount)) {
210 spin_unlock_irqrestore(&ctx->lock, *flags);
211 ctx = NULL;
212 }
213 }
214 rcu_read_unlock();
215 return ctx;
216 }
217
218 /*
219 * Get the context for a task and increment its pin_count so it
220 * can't get swapped to another task. This also increments its
221 * reference count so that the context can't get freed.
222 */
223 static struct perf_counter_context *perf_pin_task_context(struct task_struct *task)
224 {
225 struct perf_counter_context *ctx;
226 unsigned long flags;
227
228 ctx = perf_lock_task_context(task, &flags);
229 if (ctx) {
230 ++ctx->pin_count;
231 spin_unlock_irqrestore(&ctx->lock, flags);
232 }
233 return ctx;
234 }
235
236 static void perf_unpin_context(struct perf_counter_context *ctx)
237 {
238 unsigned long flags;
239
240 spin_lock_irqsave(&ctx->lock, flags);
241 --ctx->pin_count;
242 spin_unlock_irqrestore(&ctx->lock, flags);
243 put_ctx(ctx);
244 }
245
246 /*
247 * Add a counter from the lists for its context.
248 * Must be called with ctx->mutex and ctx->lock held.
249 */
250 static void
251 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
252 {
253 struct perf_counter *group_leader = counter->group_leader;
254
255 /*
256 * Depending on whether it is a standalone or sibling counter,
257 * add it straight to the context's counter list, or to the group
258 * leader's sibling list:
259 */
260 if (group_leader == counter)
261 list_add_tail(&counter->list_entry, &ctx->counter_list);
262 else {
263 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
264 group_leader->nr_siblings++;
265 }
266
267 list_add_rcu(&counter->event_entry, &ctx->event_list);
268 ctx->nr_counters++;
269 if (counter->attr.inherit_stat)
270 ctx->nr_stat++;
271 }
272
273 /*
274 * Remove a counter from the lists for its context.
275 * Must be called with ctx->mutex and ctx->lock held.
276 */
277 static void
278 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
279 {
280 struct perf_counter *sibling, *tmp;
281
282 if (list_empty(&counter->list_entry))
283 return;
284 ctx->nr_counters--;
285 if (counter->attr.inherit_stat)
286 ctx->nr_stat--;
287
288 list_del_init(&counter->list_entry);
289 list_del_rcu(&counter->event_entry);
290
291 if (counter->group_leader != counter)
292 counter->group_leader->nr_siblings--;
293
294 /*
295 * If this was a group counter with sibling counters then
296 * upgrade the siblings to singleton counters by adding them
297 * to the context list directly:
298 */
299 list_for_each_entry_safe(sibling, tmp,
300 &counter->sibling_list, list_entry) {
301
302 list_move_tail(&sibling->list_entry, &ctx->counter_list);
303 sibling->group_leader = sibling;
304 }
305 }
306
307 static void
308 counter_sched_out(struct perf_counter *counter,
309 struct perf_cpu_context *cpuctx,
310 struct perf_counter_context *ctx)
311 {
312 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
313 return;
314
315 counter->state = PERF_COUNTER_STATE_INACTIVE;
316 if (counter->pending_disable) {
317 counter->pending_disable = 0;
318 counter->state = PERF_COUNTER_STATE_OFF;
319 }
320 counter->tstamp_stopped = ctx->time;
321 counter->pmu->disable(counter);
322 counter->oncpu = -1;
323
324 if (!is_software_counter(counter))
325 cpuctx->active_oncpu--;
326 ctx->nr_active--;
327 if (counter->attr.exclusive || !cpuctx->active_oncpu)
328 cpuctx->exclusive = 0;
329 }
330
331 static void
332 group_sched_out(struct perf_counter *group_counter,
333 struct perf_cpu_context *cpuctx,
334 struct perf_counter_context *ctx)
335 {
336 struct perf_counter *counter;
337
338 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
339 return;
340
341 counter_sched_out(group_counter, cpuctx, ctx);
342
343 /*
344 * Schedule out siblings (if any):
345 */
346 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
347 counter_sched_out(counter, cpuctx, ctx);
348
349 if (group_counter->attr.exclusive)
350 cpuctx->exclusive = 0;
351 }
352
353 /*
354 * Cross CPU call to remove a performance counter
355 *
356 * We disable the counter on the hardware level first. After that we
357 * remove it from the context list.
358 */
359 static void __perf_counter_remove_from_context(void *info)
360 {
361 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
362 struct perf_counter *counter = info;
363 struct perf_counter_context *ctx = counter->ctx;
364
365 /*
366 * If this is a task context, we need to check whether it is
367 * the current task context of this cpu. If not it has been
368 * scheduled out before the smp call arrived.
369 */
370 if (ctx->task && cpuctx->task_ctx != ctx)
371 return;
372
373 spin_lock(&ctx->lock);
374 /*
375 * Protect the list operation against NMI by disabling the
376 * counters on a global level.
377 */
378 perf_disable();
379
380 counter_sched_out(counter, cpuctx, ctx);
381
382 list_del_counter(counter, ctx);
383
384 if (!ctx->task) {
385 /*
386 * Allow more per task counters with respect to the
387 * reservation:
388 */
389 cpuctx->max_pertask =
390 min(perf_max_counters - ctx->nr_counters,
391 perf_max_counters - perf_reserved_percpu);
392 }
393
394 perf_enable();
395 spin_unlock(&ctx->lock);
396 }
397
398
399 /*
400 * Remove the counter from a task's (or a CPU's) list of counters.
401 *
402 * Must be called with ctx->mutex held.
403 *
404 * CPU counters are removed with a smp call. For task counters we only
405 * call when the task is on a CPU.
406 *
407 * If counter->ctx is a cloned context, callers must make sure that
408 * every task struct that counter->ctx->task could possibly point to
409 * remains valid. This is OK when called from perf_release since
410 * that only calls us on the top-level context, which can't be a clone.
411 * When called from perf_counter_exit_task, it's OK because the
412 * context has been detached from its task.
413 */
414 static void perf_counter_remove_from_context(struct perf_counter *counter)
415 {
416 struct perf_counter_context *ctx = counter->ctx;
417 struct task_struct *task = ctx->task;
418
419 if (!task) {
420 /*
421 * Per cpu counters are removed via an smp call and
422 * the removal is always sucessful.
423 */
424 smp_call_function_single(counter->cpu,
425 __perf_counter_remove_from_context,
426 counter, 1);
427 return;
428 }
429
430 retry:
431 task_oncpu_function_call(task, __perf_counter_remove_from_context,
432 counter);
433
434 spin_lock_irq(&ctx->lock);
435 /*
436 * If the context is active we need to retry the smp call.
437 */
438 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
439 spin_unlock_irq(&ctx->lock);
440 goto retry;
441 }
442
443 /*
444 * The lock prevents that this context is scheduled in so we
445 * can remove the counter safely, if the call above did not
446 * succeed.
447 */
448 if (!list_empty(&counter->list_entry)) {
449 list_del_counter(counter, ctx);
450 }
451 spin_unlock_irq(&ctx->lock);
452 }
453
454 static inline u64 perf_clock(void)
455 {
456 return cpu_clock(smp_processor_id());
457 }
458
459 /*
460 * Update the record of the current time in a context.
461 */
462 static void update_context_time(struct perf_counter_context *ctx)
463 {
464 u64 now = perf_clock();
465
466 ctx->time += now - ctx->timestamp;
467 ctx->timestamp = now;
468 }
469
470 /*
471 * Update the total_time_enabled and total_time_running fields for a counter.
472 */
473 static void update_counter_times(struct perf_counter *counter)
474 {
475 struct perf_counter_context *ctx = counter->ctx;
476 u64 run_end;
477
478 if (counter->state < PERF_COUNTER_STATE_INACTIVE ||
479 counter->group_leader->state < PERF_COUNTER_STATE_INACTIVE)
480 return;
481
482 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
483
484 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
485 run_end = counter->tstamp_stopped;
486 else
487 run_end = ctx->time;
488
489 counter->total_time_running = run_end - counter->tstamp_running;
490 }
491
492 /*
493 * Update total_time_enabled and total_time_running for all counters in a group.
494 */
495 static void update_group_times(struct perf_counter *leader)
496 {
497 struct perf_counter *counter;
498
499 update_counter_times(leader);
500 list_for_each_entry(counter, &leader->sibling_list, list_entry)
501 update_counter_times(counter);
502 }
503
504 /*
505 * Cross CPU call to disable a performance counter
506 */
507 static void __perf_counter_disable(void *info)
508 {
509 struct perf_counter *counter = info;
510 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
511 struct perf_counter_context *ctx = counter->ctx;
512
513 /*
514 * If this is a per-task counter, need to check whether this
515 * counter's task is the current task on this cpu.
516 */
517 if (ctx->task && cpuctx->task_ctx != ctx)
518 return;
519
520 spin_lock(&ctx->lock);
521
522 /*
523 * If the counter is on, turn it off.
524 * If it is in error state, leave it in error state.
525 */
526 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
527 update_context_time(ctx);
528 update_group_times(counter);
529 if (counter == counter->group_leader)
530 group_sched_out(counter, cpuctx, ctx);
531 else
532 counter_sched_out(counter, cpuctx, ctx);
533 counter->state = PERF_COUNTER_STATE_OFF;
534 }
535
536 spin_unlock(&ctx->lock);
537 }
538
539 /*
540 * Disable a counter.
541 *
542 * If counter->ctx is a cloned context, callers must make sure that
543 * every task struct that counter->ctx->task could possibly point to
544 * remains valid. This condition is satisifed when called through
545 * perf_counter_for_each_child or perf_counter_for_each because they
546 * hold the top-level counter's child_mutex, so any descendant that
547 * goes to exit will block in sync_child_counter.
548 * When called from perf_pending_counter it's OK because counter->ctx
549 * is the current context on this CPU and preemption is disabled,
550 * hence we can't get into perf_counter_task_sched_out for this context.
551 */
552 static void perf_counter_disable(struct perf_counter *counter)
553 {
554 struct perf_counter_context *ctx = counter->ctx;
555 struct task_struct *task = ctx->task;
556
557 if (!task) {
558 /*
559 * Disable the counter on the cpu that it's on
560 */
561 smp_call_function_single(counter->cpu, __perf_counter_disable,
562 counter, 1);
563 return;
564 }
565
566 retry:
567 task_oncpu_function_call(task, __perf_counter_disable, counter);
568
569 spin_lock_irq(&ctx->lock);
570 /*
571 * If the counter is still active, we need to retry the cross-call.
572 */
573 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
574 spin_unlock_irq(&ctx->lock);
575 goto retry;
576 }
577
578 /*
579 * Since we have the lock this context can't be scheduled
580 * in, so we can change the state safely.
581 */
582 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
583 update_group_times(counter);
584 counter->state = PERF_COUNTER_STATE_OFF;
585 }
586
587 spin_unlock_irq(&ctx->lock);
588 }
589
590 static int
591 counter_sched_in(struct perf_counter *counter,
592 struct perf_cpu_context *cpuctx,
593 struct perf_counter_context *ctx,
594 int cpu)
595 {
596 if (counter->state <= PERF_COUNTER_STATE_OFF)
597 return 0;
598
599 counter->state = PERF_COUNTER_STATE_ACTIVE;
600 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
601 /*
602 * The new state must be visible before we turn it on in the hardware:
603 */
604 smp_wmb();
605
606 if (counter->pmu->enable(counter)) {
607 counter->state = PERF_COUNTER_STATE_INACTIVE;
608 counter->oncpu = -1;
609 return -EAGAIN;
610 }
611
612 counter->tstamp_running += ctx->time - counter->tstamp_stopped;
613
614 if (!is_software_counter(counter))
615 cpuctx->active_oncpu++;
616 ctx->nr_active++;
617
618 if (counter->attr.exclusive)
619 cpuctx->exclusive = 1;
620
621 return 0;
622 }
623
624 static int
625 group_sched_in(struct perf_counter *group_counter,
626 struct perf_cpu_context *cpuctx,
627 struct perf_counter_context *ctx,
628 int cpu)
629 {
630 struct perf_counter *counter, *partial_group;
631 int ret;
632
633 if (group_counter->state == PERF_COUNTER_STATE_OFF)
634 return 0;
635
636 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
637 if (ret)
638 return ret < 0 ? ret : 0;
639
640 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
641 return -EAGAIN;
642
643 /*
644 * Schedule in siblings as one group (if any):
645 */
646 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
647 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
648 partial_group = counter;
649 goto group_error;
650 }
651 }
652
653 return 0;
654
655 group_error:
656 /*
657 * Groups can be scheduled in as one unit only, so undo any
658 * partial group before returning:
659 */
660 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
661 if (counter == partial_group)
662 break;
663 counter_sched_out(counter, cpuctx, ctx);
664 }
665 counter_sched_out(group_counter, cpuctx, ctx);
666
667 return -EAGAIN;
668 }
669
670 /*
671 * Return 1 for a group consisting entirely of software counters,
672 * 0 if the group contains any hardware counters.
673 */
674 static int is_software_only_group(struct perf_counter *leader)
675 {
676 struct perf_counter *counter;
677
678 if (!is_software_counter(leader))
679 return 0;
680
681 list_for_each_entry(counter, &leader->sibling_list, list_entry)
682 if (!is_software_counter(counter))
683 return 0;
684
685 return 1;
686 }
687
688 /*
689 * Work out whether we can put this counter group on the CPU now.
690 */
691 static int group_can_go_on(struct perf_counter *counter,
692 struct perf_cpu_context *cpuctx,
693 int can_add_hw)
694 {
695 /*
696 * Groups consisting entirely of software counters can always go on.
697 */
698 if (is_software_only_group(counter))
699 return 1;
700 /*
701 * If an exclusive group is already on, no other hardware
702 * counters can go on.
703 */
704 if (cpuctx->exclusive)
705 return 0;
706 /*
707 * If this group is exclusive and there are already
708 * counters on the CPU, it can't go on.
709 */
710 if (counter->attr.exclusive && cpuctx->active_oncpu)
711 return 0;
712 /*
713 * Otherwise, try to add it if all previous groups were able
714 * to go on.
715 */
716 return can_add_hw;
717 }
718
719 static void add_counter_to_ctx(struct perf_counter *counter,
720 struct perf_counter_context *ctx)
721 {
722 list_add_counter(counter, ctx);
723 counter->tstamp_enabled = ctx->time;
724 counter->tstamp_running = ctx->time;
725 counter->tstamp_stopped = ctx->time;
726 }
727
728 /*
729 * Cross CPU call to install and enable a performance counter
730 *
731 * Must be called with ctx->mutex held
732 */
733 static void __perf_install_in_context(void *info)
734 {
735 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
736 struct perf_counter *counter = info;
737 struct perf_counter_context *ctx = counter->ctx;
738 struct perf_counter *leader = counter->group_leader;
739 int cpu = smp_processor_id();
740 int err;
741
742 /*
743 * If this is a task context, we need to check whether it is
744 * the current task context of this cpu. If not it has been
745 * scheduled out before the smp call arrived.
746 * Or possibly this is the right context but it isn't
747 * on this cpu because it had no counters.
748 */
749 if (ctx->task && cpuctx->task_ctx != ctx) {
750 if (cpuctx->task_ctx || ctx->task != current)
751 return;
752 cpuctx->task_ctx = ctx;
753 }
754
755 spin_lock(&ctx->lock);
756 ctx->is_active = 1;
757 update_context_time(ctx);
758
759 /*
760 * Protect the list operation against NMI by disabling the
761 * counters on a global level. NOP for non NMI based counters.
762 */
763 perf_disable();
764
765 add_counter_to_ctx(counter, ctx);
766
767 /*
768 * Don't put the counter on if it is disabled or if
769 * it is in a group and the group isn't on.
770 */
771 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
772 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
773 goto unlock;
774
775 /*
776 * An exclusive counter can't go on if there are already active
777 * hardware counters, and no hardware counter can go on if there
778 * is already an exclusive counter on.
779 */
780 if (!group_can_go_on(counter, cpuctx, 1))
781 err = -EEXIST;
782 else
783 err = counter_sched_in(counter, cpuctx, ctx, cpu);
784
785 if (err) {
786 /*
787 * This counter couldn't go on. If it is in a group
788 * then we have to pull the whole group off.
789 * If the counter group is pinned then put it in error state.
790 */
791 if (leader != counter)
792 group_sched_out(leader, cpuctx, ctx);
793 if (leader->attr.pinned) {
794 update_group_times(leader);
795 leader->state = PERF_COUNTER_STATE_ERROR;
796 }
797 }
798
799 if (!err && !ctx->task && cpuctx->max_pertask)
800 cpuctx->max_pertask--;
801
802 unlock:
803 perf_enable();
804
805 spin_unlock(&ctx->lock);
806 }
807
808 /*
809 * Attach a performance counter to a context
810 *
811 * First we add the counter to the list with the hardware enable bit
812 * in counter->hw_config cleared.
813 *
814 * If the counter is attached to a task which is on a CPU we use a smp
815 * call to enable it in the task context. The task might have been
816 * scheduled away, but we check this in the smp call again.
817 *
818 * Must be called with ctx->mutex held.
819 */
820 static void
821 perf_install_in_context(struct perf_counter_context *ctx,
822 struct perf_counter *counter,
823 int cpu)
824 {
825 struct task_struct *task = ctx->task;
826
827 if (!task) {
828 /*
829 * Per cpu counters are installed via an smp call and
830 * the install is always sucessful.
831 */
832 smp_call_function_single(cpu, __perf_install_in_context,
833 counter, 1);
834 return;
835 }
836
837 retry:
838 task_oncpu_function_call(task, __perf_install_in_context,
839 counter);
840
841 spin_lock_irq(&ctx->lock);
842 /*
843 * we need to retry the smp call.
844 */
845 if (ctx->is_active && list_empty(&counter->list_entry)) {
846 spin_unlock_irq(&ctx->lock);
847 goto retry;
848 }
849
850 /*
851 * The lock prevents that this context is scheduled in so we
852 * can add the counter safely, if it the call above did not
853 * succeed.
854 */
855 if (list_empty(&counter->list_entry))
856 add_counter_to_ctx(counter, ctx);
857 spin_unlock_irq(&ctx->lock);
858 }
859
860 /*
861 * Put a counter into inactive state and update time fields.
862 * Enabling the leader of a group effectively enables all
863 * the group members that aren't explicitly disabled, so we
864 * have to update their ->tstamp_enabled also.
865 * Note: this works for group members as well as group leaders
866 * since the non-leader members' sibling_lists will be empty.
867 */
868 static void __perf_counter_mark_enabled(struct perf_counter *counter,
869 struct perf_counter_context *ctx)
870 {
871 struct perf_counter *sub;
872
873 counter->state = PERF_COUNTER_STATE_INACTIVE;
874 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
875 list_for_each_entry(sub, &counter->sibling_list, list_entry)
876 if (sub->state >= PERF_COUNTER_STATE_INACTIVE)
877 sub->tstamp_enabled =
878 ctx->time - sub->total_time_enabled;
879 }
880
881 /*
882 * Cross CPU call to enable a performance counter
883 */
884 static void __perf_counter_enable(void *info)
885 {
886 struct perf_counter *counter = info;
887 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
888 struct perf_counter_context *ctx = counter->ctx;
889 struct perf_counter *leader = counter->group_leader;
890 int err;
891
892 /*
893 * If this is a per-task counter, need to check whether this
894 * counter's task is the current task on this cpu.
895 */
896 if (ctx->task && cpuctx->task_ctx != ctx) {
897 if (cpuctx->task_ctx || ctx->task != current)
898 return;
899 cpuctx->task_ctx = ctx;
900 }
901
902 spin_lock(&ctx->lock);
903 ctx->is_active = 1;
904 update_context_time(ctx);
905
906 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
907 goto unlock;
908 __perf_counter_mark_enabled(counter, ctx);
909
910 /*
911 * If the counter is in a group and isn't the group leader,
912 * then don't put it on unless the group is on.
913 */
914 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
915 goto unlock;
916
917 if (!group_can_go_on(counter, cpuctx, 1)) {
918 err = -EEXIST;
919 } else {
920 perf_disable();
921 if (counter == leader)
922 err = group_sched_in(counter, cpuctx, ctx,
923 smp_processor_id());
924 else
925 err = counter_sched_in(counter, cpuctx, ctx,
926 smp_processor_id());
927 perf_enable();
928 }
929
930 if (err) {
931 /*
932 * If this counter can't go on and it's part of a
933 * group, then the whole group has to come off.
934 */
935 if (leader != counter)
936 group_sched_out(leader, cpuctx, ctx);
937 if (leader->attr.pinned) {
938 update_group_times(leader);
939 leader->state = PERF_COUNTER_STATE_ERROR;
940 }
941 }
942
943 unlock:
944 spin_unlock(&ctx->lock);
945 }
946
947 /*
948 * Enable a counter.
949 *
950 * If counter->ctx is a cloned context, callers must make sure that
951 * every task struct that counter->ctx->task could possibly point to
952 * remains valid. This condition is satisfied when called through
953 * perf_counter_for_each_child or perf_counter_for_each as described
954 * for perf_counter_disable.
955 */
956 static void perf_counter_enable(struct perf_counter *counter)
957 {
958 struct perf_counter_context *ctx = counter->ctx;
959 struct task_struct *task = ctx->task;
960
961 if (!task) {
962 /*
963 * Enable the counter on the cpu that it's on
964 */
965 smp_call_function_single(counter->cpu, __perf_counter_enable,
966 counter, 1);
967 return;
968 }
969
970 spin_lock_irq(&ctx->lock);
971 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
972 goto out;
973
974 /*
975 * If the counter is in error state, clear that first.
976 * That way, if we see the counter in error state below, we
977 * know that it has gone back into error state, as distinct
978 * from the task having been scheduled away before the
979 * cross-call arrived.
980 */
981 if (counter->state == PERF_COUNTER_STATE_ERROR)
982 counter->state = PERF_COUNTER_STATE_OFF;
983
984 retry:
985 spin_unlock_irq(&ctx->lock);
986 task_oncpu_function_call(task, __perf_counter_enable, counter);
987
988 spin_lock_irq(&ctx->lock);
989
990 /*
991 * If the context is active and the counter is still off,
992 * we need to retry the cross-call.
993 */
994 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
995 goto retry;
996
997 /*
998 * Since we have the lock this context can't be scheduled
999 * in, so we can change the state safely.
1000 */
1001 if (counter->state == PERF_COUNTER_STATE_OFF)
1002 __perf_counter_mark_enabled(counter, ctx);
1003
1004 out:
1005 spin_unlock_irq(&ctx->lock);
1006 }
1007
1008 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
1009 {
1010 /*
1011 * not supported on inherited counters
1012 */
1013 if (counter->attr.inherit)
1014 return -EINVAL;
1015
1016 atomic_add(refresh, &counter->event_limit);
1017 perf_counter_enable(counter);
1018
1019 return 0;
1020 }
1021
1022 void __perf_counter_sched_out(struct perf_counter_context *ctx,
1023 struct perf_cpu_context *cpuctx)
1024 {
1025 struct perf_counter *counter;
1026
1027 spin_lock(&ctx->lock);
1028 ctx->is_active = 0;
1029 if (likely(!ctx->nr_counters))
1030 goto out;
1031 update_context_time(ctx);
1032
1033 perf_disable();
1034 if (ctx->nr_active) {
1035 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1036 if (counter != counter->group_leader)
1037 counter_sched_out(counter, cpuctx, ctx);
1038 else
1039 group_sched_out(counter, cpuctx, ctx);
1040 }
1041 }
1042 perf_enable();
1043 out:
1044 spin_unlock(&ctx->lock);
1045 }
1046
1047 /*
1048 * Test whether two contexts are equivalent, i.e. whether they
1049 * have both been cloned from the same version of the same context
1050 * and they both have the same number of enabled counters.
1051 * If the number of enabled counters is the same, then the set
1052 * of enabled counters should be the same, because these are both
1053 * inherited contexts, therefore we can't access individual counters
1054 * in them directly with an fd; we can only enable/disable all
1055 * counters via prctl, or enable/disable all counters in a family
1056 * via ioctl, which will have the same effect on both contexts.
1057 */
1058 static int context_equiv(struct perf_counter_context *ctx1,
1059 struct perf_counter_context *ctx2)
1060 {
1061 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1062 && ctx1->parent_gen == ctx2->parent_gen
1063 && !ctx1->pin_count && !ctx2->pin_count;
1064 }
1065
1066 static void __perf_counter_read(void *counter);
1067
1068 static void __perf_counter_sync_stat(struct perf_counter *counter,
1069 struct perf_counter *next_counter)
1070 {
1071 u64 value;
1072
1073 if (!counter->attr.inherit_stat)
1074 return;
1075
1076 /*
1077 * Update the counter value, we cannot use perf_counter_read()
1078 * because we're in the middle of a context switch and have IRQs
1079 * disabled, which upsets smp_call_function_single(), however
1080 * we know the counter must be on the current CPU, therefore we
1081 * don't need to use it.
1082 */
1083 switch (counter->state) {
1084 case PERF_COUNTER_STATE_ACTIVE:
1085 __perf_counter_read(counter);
1086 break;
1087
1088 case PERF_COUNTER_STATE_INACTIVE:
1089 update_counter_times(counter);
1090 break;
1091
1092 default:
1093 break;
1094 }
1095
1096 /*
1097 * In order to keep per-task stats reliable we need to flip the counter
1098 * values when we flip the contexts.
1099 */
1100 value = atomic64_read(&next_counter->count);
1101 value = atomic64_xchg(&counter->count, value);
1102 atomic64_set(&next_counter->count, value);
1103
1104 swap(counter->total_time_enabled, next_counter->total_time_enabled);
1105 swap(counter->total_time_running, next_counter->total_time_running);
1106
1107 /*
1108 * Since we swizzled the values, update the user visible data too.
1109 */
1110 perf_counter_update_userpage(counter);
1111 perf_counter_update_userpage(next_counter);
1112 }
1113
1114 #define list_next_entry(pos, member) \
1115 list_entry(pos->member.next, typeof(*pos), member)
1116
1117 static void perf_counter_sync_stat(struct perf_counter_context *ctx,
1118 struct perf_counter_context *next_ctx)
1119 {
1120 struct perf_counter *counter, *next_counter;
1121
1122 if (!ctx->nr_stat)
1123 return;
1124
1125 counter = list_first_entry(&ctx->event_list,
1126 struct perf_counter, event_entry);
1127
1128 next_counter = list_first_entry(&next_ctx->event_list,
1129 struct perf_counter, event_entry);
1130
1131 while (&counter->event_entry != &ctx->event_list &&
1132 &next_counter->event_entry != &next_ctx->event_list) {
1133
1134 __perf_counter_sync_stat(counter, next_counter);
1135
1136 counter = list_next_entry(counter, event_entry);
1137 next_counter = list_next_entry(next_counter, event_entry);
1138 }
1139 }
1140
1141 /*
1142 * Called from scheduler to remove the counters of the current task,
1143 * with interrupts disabled.
1144 *
1145 * We stop each counter and update the counter value in counter->count.
1146 *
1147 * This does not protect us against NMI, but disable()
1148 * sets the disabled bit in the control field of counter _before_
1149 * accessing the counter control register. If a NMI hits, then it will
1150 * not restart the counter.
1151 */
1152 void perf_counter_task_sched_out(struct task_struct *task,
1153 struct task_struct *next, int cpu)
1154 {
1155 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1156 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1157 struct perf_counter_context *next_ctx;
1158 struct perf_counter_context *parent;
1159 struct pt_regs *regs;
1160 int do_switch = 1;
1161
1162 regs = task_pt_regs(task);
1163 perf_swcounter_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1164
1165 if (likely(!ctx || !cpuctx->task_ctx))
1166 return;
1167
1168 update_context_time(ctx);
1169
1170 rcu_read_lock();
1171 parent = rcu_dereference(ctx->parent_ctx);
1172 next_ctx = next->perf_counter_ctxp;
1173 if (parent && next_ctx &&
1174 rcu_dereference(next_ctx->parent_ctx) == parent) {
1175 /*
1176 * Looks like the two contexts are clones, so we might be
1177 * able to optimize the context switch. We lock both
1178 * contexts and check that they are clones under the
1179 * lock (including re-checking that neither has been
1180 * uncloned in the meantime). It doesn't matter which
1181 * order we take the locks because no other cpu could
1182 * be trying to lock both of these tasks.
1183 */
1184 spin_lock(&ctx->lock);
1185 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1186 if (context_equiv(ctx, next_ctx)) {
1187 /*
1188 * XXX do we need a memory barrier of sorts
1189 * wrt to rcu_dereference() of perf_counter_ctxp
1190 */
1191 task->perf_counter_ctxp = next_ctx;
1192 next->perf_counter_ctxp = ctx;
1193 ctx->task = next;
1194 next_ctx->task = task;
1195 do_switch = 0;
1196
1197 perf_counter_sync_stat(ctx, next_ctx);
1198 }
1199 spin_unlock(&next_ctx->lock);
1200 spin_unlock(&ctx->lock);
1201 }
1202 rcu_read_unlock();
1203
1204 if (do_switch) {
1205 __perf_counter_sched_out(ctx, cpuctx);
1206 cpuctx->task_ctx = NULL;
1207 }
1208 }
1209
1210 /*
1211 * Called with IRQs disabled
1212 */
1213 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
1214 {
1215 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1216
1217 if (!cpuctx->task_ctx)
1218 return;
1219
1220 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1221 return;
1222
1223 __perf_counter_sched_out(ctx, cpuctx);
1224 cpuctx->task_ctx = NULL;
1225 }
1226
1227 /*
1228 * Called with IRQs disabled
1229 */
1230 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1231 {
1232 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1233 }
1234
1235 static void
1236 __perf_counter_sched_in(struct perf_counter_context *ctx,
1237 struct perf_cpu_context *cpuctx, int cpu)
1238 {
1239 struct perf_counter *counter;
1240 int can_add_hw = 1;
1241
1242 spin_lock(&ctx->lock);
1243 ctx->is_active = 1;
1244 if (likely(!ctx->nr_counters))
1245 goto out;
1246
1247 ctx->timestamp = perf_clock();
1248
1249 perf_disable();
1250
1251 /*
1252 * First go through the list and put on any pinned groups
1253 * in order to give them the best chance of going on.
1254 */
1255 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1256 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1257 !counter->attr.pinned)
1258 continue;
1259 if (counter->cpu != -1 && counter->cpu != cpu)
1260 continue;
1261
1262 if (counter != counter->group_leader)
1263 counter_sched_in(counter, cpuctx, ctx, cpu);
1264 else {
1265 if (group_can_go_on(counter, cpuctx, 1))
1266 group_sched_in(counter, cpuctx, ctx, cpu);
1267 }
1268
1269 /*
1270 * If this pinned group hasn't been scheduled,
1271 * put it in error state.
1272 */
1273 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1274 update_group_times(counter);
1275 counter->state = PERF_COUNTER_STATE_ERROR;
1276 }
1277 }
1278
1279 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1280 /*
1281 * Ignore counters in OFF or ERROR state, and
1282 * ignore pinned counters since we did them already.
1283 */
1284 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1285 counter->attr.pinned)
1286 continue;
1287
1288 /*
1289 * Listen to the 'cpu' scheduling filter constraint
1290 * of counters:
1291 */
1292 if (counter->cpu != -1 && counter->cpu != cpu)
1293 continue;
1294
1295 if (counter != counter->group_leader) {
1296 if (counter_sched_in(counter, cpuctx, ctx, cpu))
1297 can_add_hw = 0;
1298 } else {
1299 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1300 if (group_sched_in(counter, cpuctx, ctx, cpu))
1301 can_add_hw = 0;
1302 }
1303 }
1304 }
1305 perf_enable();
1306 out:
1307 spin_unlock(&ctx->lock);
1308 }
1309
1310 /*
1311 * Called from scheduler to add the counters of the current task
1312 * with interrupts disabled.
1313 *
1314 * We restore the counter value and then enable it.
1315 *
1316 * This does not protect us against NMI, but enable()
1317 * sets the enabled bit in the control field of counter _before_
1318 * accessing the counter control register. If a NMI hits, then it will
1319 * keep the counter running.
1320 */
1321 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1322 {
1323 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1324 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1325
1326 if (likely(!ctx))
1327 return;
1328 if (cpuctx->task_ctx == ctx)
1329 return;
1330 __perf_counter_sched_in(ctx, cpuctx, cpu);
1331 cpuctx->task_ctx = ctx;
1332 }
1333
1334 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1335 {
1336 struct perf_counter_context *ctx = &cpuctx->ctx;
1337
1338 __perf_counter_sched_in(ctx, cpuctx, cpu);
1339 }
1340
1341 #define MAX_INTERRUPTS (~0ULL)
1342
1343 static void perf_log_throttle(struct perf_counter *counter, int enable);
1344
1345 static void perf_adjust_period(struct perf_counter *counter, u64 events)
1346 {
1347 struct hw_perf_counter *hwc = &counter->hw;
1348 u64 period, sample_period;
1349 s64 delta;
1350
1351 events *= hwc->sample_period;
1352 period = div64_u64(events, counter->attr.sample_freq);
1353
1354 delta = (s64)(period - hwc->sample_period);
1355 delta = (delta + 7) / 8; /* low pass filter */
1356
1357 sample_period = hwc->sample_period + delta;
1358
1359 if (!sample_period)
1360 sample_period = 1;
1361
1362 hwc->sample_period = sample_period;
1363 }
1364
1365 static void perf_ctx_adjust_freq(struct perf_counter_context *ctx)
1366 {
1367 struct perf_counter *counter;
1368 struct hw_perf_counter *hwc;
1369 u64 interrupts, freq;
1370
1371 spin_lock(&ctx->lock);
1372 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1373 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1374 continue;
1375
1376 hwc = &counter->hw;
1377
1378 interrupts = hwc->interrupts;
1379 hwc->interrupts = 0;
1380
1381 /*
1382 * unthrottle counters on the tick
1383 */
1384 if (interrupts == MAX_INTERRUPTS) {
1385 perf_log_throttle(counter, 1);
1386 counter->pmu->unthrottle(counter);
1387 interrupts = 2*sysctl_perf_counter_sample_rate/HZ;
1388 }
1389
1390 if (!counter->attr.freq || !counter->attr.sample_freq)
1391 continue;
1392
1393 /*
1394 * if the specified freq < HZ then we need to skip ticks
1395 */
1396 if (counter->attr.sample_freq < HZ) {
1397 freq = counter->attr.sample_freq;
1398
1399 hwc->freq_count += freq;
1400 hwc->freq_interrupts += interrupts;
1401
1402 if (hwc->freq_count < HZ)
1403 continue;
1404
1405 interrupts = hwc->freq_interrupts;
1406 hwc->freq_interrupts = 0;
1407 hwc->freq_count -= HZ;
1408 } else
1409 freq = HZ;
1410
1411 perf_adjust_period(counter, freq * interrupts);
1412
1413 /*
1414 * In order to avoid being stalled by an (accidental) huge
1415 * sample period, force reset the sample period if we didn't
1416 * get any events in this freq period.
1417 */
1418 if (!interrupts) {
1419 perf_disable();
1420 counter->pmu->disable(counter);
1421 atomic64_set(&hwc->period_left, 0);
1422 counter->pmu->enable(counter);
1423 perf_enable();
1424 }
1425 }
1426 spin_unlock(&ctx->lock);
1427 }
1428
1429 /*
1430 * Round-robin a context's counters:
1431 */
1432 static void rotate_ctx(struct perf_counter_context *ctx)
1433 {
1434 struct perf_counter *counter;
1435
1436 if (!ctx->nr_counters)
1437 return;
1438
1439 spin_lock(&ctx->lock);
1440 /*
1441 * Rotate the first entry last (works just fine for group counters too):
1442 */
1443 perf_disable();
1444 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1445 list_move_tail(&counter->list_entry, &ctx->counter_list);
1446 break;
1447 }
1448 perf_enable();
1449
1450 spin_unlock(&ctx->lock);
1451 }
1452
1453 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1454 {
1455 struct perf_cpu_context *cpuctx;
1456 struct perf_counter_context *ctx;
1457
1458 if (!atomic_read(&nr_counters))
1459 return;
1460
1461 cpuctx = &per_cpu(perf_cpu_context, cpu);
1462 ctx = curr->perf_counter_ctxp;
1463
1464 perf_ctx_adjust_freq(&cpuctx->ctx);
1465 if (ctx)
1466 perf_ctx_adjust_freq(ctx);
1467
1468 perf_counter_cpu_sched_out(cpuctx);
1469 if (ctx)
1470 __perf_counter_task_sched_out(ctx);
1471
1472 rotate_ctx(&cpuctx->ctx);
1473 if (ctx)
1474 rotate_ctx(ctx);
1475
1476 perf_counter_cpu_sched_in(cpuctx, cpu);
1477 if (ctx)
1478 perf_counter_task_sched_in(curr, cpu);
1479 }
1480
1481 /*
1482 * Enable all of a task's counters that have been marked enable-on-exec.
1483 * This expects task == current.
1484 */
1485 static void perf_counter_enable_on_exec(struct task_struct *task)
1486 {
1487 struct perf_counter_context *ctx;
1488 struct perf_counter *counter;
1489 unsigned long flags;
1490 int enabled = 0;
1491
1492 local_irq_save(flags);
1493 ctx = task->perf_counter_ctxp;
1494 if (!ctx || !ctx->nr_counters)
1495 goto out;
1496
1497 __perf_counter_task_sched_out(ctx);
1498
1499 spin_lock(&ctx->lock);
1500
1501 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1502 if (!counter->attr.enable_on_exec)
1503 continue;
1504 counter->attr.enable_on_exec = 0;
1505 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
1506 continue;
1507 __perf_counter_mark_enabled(counter, ctx);
1508 enabled = 1;
1509 }
1510
1511 /*
1512 * Unclone this context if we enabled any counter.
1513 */
1514 if (enabled)
1515 unclone_ctx(ctx);
1516
1517 spin_unlock(&ctx->lock);
1518
1519 perf_counter_task_sched_in(task, smp_processor_id());
1520 out:
1521 local_irq_restore(flags);
1522 }
1523
1524 /*
1525 * Cross CPU call to read the hardware counter
1526 */
1527 static void __perf_counter_read(void *info)
1528 {
1529 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1530 struct perf_counter *counter = info;
1531 struct perf_counter_context *ctx = counter->ctx;
1532 unsigned long flags;
1533
1534 /*
1535 * If this is a task context, we need to check whether it is
1536 * the current task context of this cpu. If not it has been
1537 * scheduled out before the smp call arrived. In that case
1538 * counter->count would have been updated to a recent sample
1539 * when the counter was scheduled out.
1540 */
1541 if (ctx->task && cpuctx->task_ctx != ctx)
1542 return;
1543
1544 local_irq_save(flags);
1545 if (ctx->is_active)
1546 update_context_time(ctx);
1547 counter->pmu->read(counter);
1548 update_counter_times(counter);
1549 local_irq_restore(flags);
1550 }
1551
1552 static u64 perf_counter_read(struct perf_counter *counter)
1553 {
1554 /*
1555 * If counter is enabled and currently active on a CPU, update the
1556 * value in the counter structure:
1557 */
1558 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1559 smp_call_function_single(counter->oncpu,
1560 __perf_counter_read, counter, 1);
1561 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1562 update_counter_times(counter);
1563 }
1564
1565 return atomic64_read(&counter->count);
1566 }
1567
1568 /*
1569 * Initialize the perf_counter context in a task_struct:
1570 */
1571 static void
1572 __perf_counter_init_context(struct perf_counter_context *ctx,
1573 struct task_struct *task)
1574 {
1575 memset(ctx, 0, sizeof(*ctx));
1576 spin_lock_init(&ctx->lock);
1577 mutex_init(&ctx->mutex);
1578 INIT_LIST_HEAD(&ctx->counter_list);
1579 INIT_LIST_HEAD(&ctx->event_list);
1580 atomic_set(&ctx->refcount, 1);
1581 ctx->task = task;
1582 }
1583
1584 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1585 {
1586 struct perf_counter_context *ctx;
1587 struct perf_cpu_context *cpuctx;
1588 struct task_struct *task;
1589 unsigned long flags;
1590 int err;
1591
1592 /*
1593 * If cpu is not a wildcard then this is a percpu counter:
1594 */
1595 if (cpu != -1) {
1596 /* Must be root to operate on a CPU counter: */
1597 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1598 return ERR_PTR(-EACCES);
1599
1600 if (cpu < 0 || cpu > num_possible_cpus())
1601 return ERR_PTR(-EINVAL);
1602
1603 /*
1604 * We could be clever and allow to attach a counter to an
1605 * offline CPU and activate it when the CPU comes up, but
1606 * that's for later.
1607 */
1608 if (!cpu_isset(cpu, cpu_online_map))
1609 return ERR_PTR(-ENODEV);
1610
1611 cpuctx = &per_cpu(perf_cpu_context, cpu);
1612 ctx = &cpuctx->ctx;
1613 get_ctx(ctx);
1614
1615 return ctx;
1616 }
1617
1618 rcu_read_lock();
1619 if (!pid)
1620 task = current;
1621 else
1622 task = find_task_by_vpid(pid);
1623 if (task)
1624 get_task_struct(task);
1625 rcu_read_unlock();
1626
1627 if (!task)
1628 return ERR_PTR(-ESRCH);
1629
1630 /*
1631 * Can't attach counters to a dying task.
1632 */
1633 err = -ESRCH;
1634 if (task->flags & PF_EXITING)
1635 goto errout;
1636
1637 /* Reuse ptrace permission checks for now. */
1638 err = -EACCES;
1639 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1640 goto errout;
1641
1642 retry:
1643 ctx = perf_lock_task_context(task, &flags);
1644 if (ctx) {
1645 unclone_ctx(ctx);
1646 spin_unlock_irqrestore(&ctx->lock, flags);
1647 }
1648
1649 if (!ctx) {
1650 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1651 err = -ENOMEM;
1652 if (!ctx)
1653 goto errout;
1654 __perf_counter_init_context(ctx, task);
1655 get_ctx(ctx);
1656 if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1657 /*
1658 * We raced with some other task; use
1659 * the context they set.
1660 */
1661 kfree(ctx);
1662 goto retry;
1663 }
1664 get_task_struct(task);
1665 }
1666
1667 put_task_struct(task);
1668 return ctx;
1669
1670 errout:
1671 put_task_struct(task);
1672 return ERR_PTR(err);
1673 }
1674
1675 static void free_counter_rcu(struct rcu_head *head)
1676 {
1677 struct perf_counter *counter;
1678
1679 counter = container_of(head, struct perf_counter, rcu_head);
1680 if (counter->ns)
1681 put_pid_ns(counter->ns);
1682 kfree(counter);
1683 }
1684
1685 static void perf_pending_sync(struct perf_counter *counter);
1686
1687 static void free_counter(struct perf_counter *counter)
1688 {
1689 perf_pending_sync(counter);
1690
1691 if (!counter->parent) {
1692 atomic_dec(&nr_counters);
1693 if (counter->attr.mmap)
1694 atomic_dec(&nr_mmap_counters);
1695 if (counter->attr.comm)
1696 atomic_dec(&nr_comm_counters);
1697 if (counter->attr.task)
1698 atomic_dec(&nr_task_counters);
1699 }
1700
1701 if (counter->output) {
1702 fput(counter->output->filp);
1703 counter->output = NULL;
1704 }
1705
1706 if (counter->destroy)
1707 counter->destroy(counter);
1708
1709 put_ctx(counter->ctx);
1710 call_rcu(&counter->rcu_head, free_counter_rcu);
1711 }
1712
1713 /*
1714 * Called when the last reference to the file is gone.
1715 */
1716 static int perf_release(struct inode *inode, struct file *file)
1717 {
1718 struct perf_counter *counter = file->private_data;
1719 struct perf_counter_context *ctx = counter->ctx;
1720
1721 file->private_data = NULL;
1722
1723 WARN_ON_ONCE(ctx->parent_ctx);
1724 mutex_lock(&ctx->mutex);
1725 perf_counter_remove_from_context(counter);
1726 mutex_unlock(&ctx->mutex);
1727
1728 mutex_lock(&counter->owner->perf_counter_mutex);
1729 list_del_init(&counter->owner_entry);
1730 mutex_unlock(&counter->owner->perf_counter_mutex);
1731 put_task_struct(counter->owner);
1732
1733 free_counter(counter);
1734
1735 return 0;
1736 }
1737
1738 static int perf_counter_read_size(struct perf_counter *counter)
1739 {
1740 int entry = sizeof(u64); /* value */
1741 int size = 0;
1742 int nr = 1;
1743
1744 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1745 size += sizeof(u64);
1746
1747 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1748 size += sizeof(u64);
1749
1750 if (counter->attr.read_format & PERF_FORMAT_ID)
1751 entry += sizeof(u64);
1752
1753 if (counter->attr.read_format & PERF_FORMAT_GROUP) {
1754 nr += counter->group_leader->nr_siblings;
1755 size += sizeof(u64);
1756 }
1757
1758 size += entry * nr;
1759
1760 return size;
1761 }
1762
1763 static u64 perf_counter_read_value(struct perf_counter *counter)
1764 {
1765 struct perf_counter *child;
1766 u64 total = 0;
1767
1768 total += perf_counter_read(counter);
1769 list_for_each_entry(child, &counter->child_list, child_list)
1770 total += perf_counter_read(child);
1771
1772 return total;
1773 }
1774
1775 static int perf_counter_read_entry(struct perf_counter *counter,
1776 u64 read_format, char __user *buf)
1777 {
1778 int n = 0, count = 0;
1779 u64 values[2];
1780
1781 values[n++] = perf_counter_read_value(counter);
1782 if (read_format & PERF_FORMAT_ID)
1783 values[n++] = primary_counter_id(counter);
1784
1785 count = n * sizeof(u64);
1786
1787 if (copy_to_user(buf, values, count))
1788 return -EFAULT;
1789
1790 return count;
1791 }
1792
1793 static int perf_counter_read_group(struct perf_counter *counter,
1794 u64 read_format, char __user *buf)
1795 {
1796 struct perf_counter *leader = counter->group_leader, *sub;
1797 int n = 0, size = 0, err = -EFAULT;
1798 u64 values[3];
1799
1800 values[n++] = 1 + leader->nr_siblings;
1801 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1802 values[n++] = leader->total_time_enabled +
1803 atomic64_read(&leader->child_total_time_enabled);
1804 }
1805 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1806 values[n++] = leader->total_time_running +
1807 atomic64_read(&leader->child_total_time_running);
1808 }
1809
1810 size = n * sizeof(u64);
1811
1812 if (copy_to_user(buf, values, size))
1813 return -EFAULT;
1814
1815 err = perf_counter_read_entry(leader, read_format, buf + size);
1816 if (err < 0)
1817 return err;
1818
1819 size += err;
1820
1821 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
1822 err = perf_counter_read_entry(sub, read_format,
1823 buf + size);
1824 if (err < 0)
1825 return err;
1826
1827 size += err;
1828 }
1829
1830 return size;
1831 }
1832
1833 static int perf_counter_read_one(struct perf_counter *counter,
1834 u64 read_format, char __user *buf)
1835 {
1836 u64 values[4];
1837 int n = 0;
1838
1839 values[n++] = perf_counter_read_value(counter);
1840 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1841 values[n++] = counter->total_time_enabled +
1842 atomic64_read(&counter->child_total_time_enabled);
1843 }
1844 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1845 values[n++] = counter->total_time_running +
1846 atomic64_read(&counter->child_total_time_running);
1847 }
1848 if (read_format & PERF_FORMAT_ID)
1849 values[n++] = primary_counter_id(counter);
1850
1851 if (copy_to_user(buf, values, n * sizeof(u64)))
1852 return -EFAULT;
1853
1854 return n * sizeof(u64);
1855 }
1856
1857 /*
1858 * Read the performance counter - simple non blocking version for now
1859 */
1860 static ssize_t
1861 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1862 {
1863 u64 read_format = counter->attr.read_format;
1864 int ret;
1865
1866 /*
1867 * Return end-of-file for a read on a counter that is in
1868 * error state (i.e. because it was pinned but it couldn't be
1869 * scheduled on to the CPU at some point).
1870 */
1871 if (counter->state == PERF_COUNTER_STATE_ERROR)
1872 return 0;
1873
1874 if (count < perf_counter_read_size(counter))
1875 return -ENOSPC;
1876
1877 WARN_ON_ONCE(counter->ctx->parent_ctx);
1878 mutex_lock(&counter->child_mutex);
1879 if (read_format & PERF_FORMAT_GROUP)
1880 ret = perf_counter_read_group(counter, read_format, buf);
1881 else
1882 ret = perf_counter_read_one(counter, read_format, buf);
1883 mutex_unlock(&counter->child_mutex);
1884
1885 return ret;
1886 }
1887
1888 static ssize_t
1889 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1890 {
1891 struct perf_counter *counter = file->private_data;
1892
1893 return perf_read_hw(counter, buf, count);
1894 }
1895
1896 static unsigned int perf_poll(struct file *file, poll_table *wait)
1897 {
1898 struct perf_counter *counter = file->private_data;
1899 struct perf_mmap_data *data;
1900 unsigned int events = POLL_HUP;
1901
1902 rcu_read_lock();
1903 data = rcu_dereference(counter->data);
1904 if (data)
1905 events = atomic_xchg(&data->poll, 0);
1906 rcu_read_unlock();
1907
1908 poll_wait(file, &counter->waitq, wait);
1909
1910 return events;
1911 }
1912
1913 static void perf_counter_reset(struct perf_counter *counter)
1914 {
1915 (void)perf_counter_read(counter);
1916 atomic64_set(&counter->count, 0);
1917 perf_counter_update_userpage(counter);
1918 }
1919
1920 /*
1921 * Holding the top-level counter's child_mutex means that any
1922 * descendant process that has inherited this counter will block
1923 * in sync_child_counter if it goes to exit, thus satisfying the
1924 * task existence requirements of perf_counter_enable/disable.
1925 */
1926 static void perf_counter_for_each_child(struct perf_counter *counter,
1927 void (*func)(struct perf_counter *))
1928 {
1929 struct perf_counter *child;
1930
1931 WARN_ON_ONCE(counter->ctx->parent_ctx);
1932 mutex_lock(&counter->child_mutex);
1933 func(counter);
1934 list_for_each_entry(child, &counter->child_list, child_list)
1935 func(child);
1936 mutex_unlock(&counter->child_mutex);
1937 }
1938
1939 static void perf_counter_for_each(struct perf_counter *counter,
1940 void (*func)(struct perf_counter *))
1941 {
1942 struct perf_counter_context *ctx = counter->ctx;
1943 struct perf_counter *sibling;
1944
1945 WARN_ON_ONCE(ctx->parent_ctx);
1946 mutex_lock(&ctx->mutex);
1947 counter = counter->group_leader;
1948
1949 perf_counter_for_each_child(counter, func);
1950 func(counter);
1951 list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1952 perf_counter_for_each_child(counter, func);
1953 mutex_unlock(&ctx->mutex);
1954 }
1955
1956 static int perf_counter_period(struct perf_counter *counter, u64 __user *arg)
1957 {
1958 struct perf_counter_context *ctx = counter->ctx;
1959 unsigned long size;
1960 int ret = 0;
1961 u64 value;
1962
1963 if (!counter->attr.sample_period)
1964 return -EINVAL;
1965
1966 size = copy_from_user(&value, arg, sizeof(value));
1967 if (size != sizeof(value))
1968 return -EFAULT;
1969
1970 if (!value)
1971 return -EINVAL;
1972
1973 spin_lock_irq(&ctx->lock);
1974 if (counter->attr.freq) {
1975 if (value > sysctl_perf_counter_sample_rate) {
1976 ret = -EINVAL;
1977 goto unlock;
1978 }
1979
1980 counter->attr.sample_freq = value;
1981 } else {
1982 counter->attr.sample_period = value;
1983 counter->hw.sample_period = value;
1984 }
1985 unlock:
1986 spin_unlock_irq(&ctx->lock);
1987
1988 return ret;
1989 }
1990
1991 int perf_counter_set_output(struct perf_counter *counter, int output_fd);
1992
1993 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1994 {
1995 struct perf_counter *counter = file->private_data;
1996 void (*func)(struct perf_counter *);
1997 u32 flags = arg;
1998
1999 switch (cmd) {
2000 case PERF_COUNTER_IOC_ENABLE:
2001 func = perf_counter_enable;
2002 break;
2003 case PERF_COUNTER_IOC_DISABLE:
2004 func = perf_counter_disable;
2005 break;
2006 case PERF_COUNTER_IOC_RESET:
2007 func = perf_counter_reset;
2008 break;
2009
2010 case PERF_COUNTER_IOC_REFRESH:
2011 return perf_counter_refresh(counter, arg);
2012
2013 case PERF_COUNTER_IOC_PERIOD:
2014 return perf_counter_period(counter, (u64 __user *)arg);
2015
2016 case PERF_COUNTER_IOC_SET_OUTPUT:
2017 return perf_counter_set_output(counter, arg);
2018
2019 default:
2020 return -ENOTTY;
2021 }
2022
2023 if (flags & PERF_IOC_FLAG_GROUP)
2024 perf_counter_for_each(counter, func);
2025 else
2026 perf_counter_for_each_child(counter, func);
2027
2028 return 0;
2029 }
2030
2031 int perf_counter_task_enable(void)
2032 {
2033 struct perf_counter *counter;
2034
2035 mutex_lock(&current->perf_counter_mutex);
2036 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
2037 perf_counter_for_each_child(counter, perf_counter_enable);
2038 mutex_unlock(&current->perf_counter_mutex);
2039
2040 return 0;
2041 }
2042
2043 int perf_counter_task_disable(void)
2044 {
2045 struct perf_counter *counter;
2046
2047 mutex_lock(&current->perf_counter_mutex);
2048 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
2049 perf_counter_for_each_child(counter, perf_counter_disable);
2050 mutex_unlock(&current->perf_counter_mutex);
2051
2052 return 0;
2053 }
2054
2055 #ifndef PERF_COUNTER_INDEX_OFFSET
2056 # define PERF_COUNTER_INDEX_OFFSET 0
2057 #endif
2058
2059 static int perf_counter_index(struct perf_counter *counter)
2060 {
2061 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2062 return 0;
2063
2064 return counter->hw.idx + 1 - PERF_COUNTER_INDEX_OFFSET;
2065 }
2066
2067 /*
2068 * Callers need to ensure there can be no nesting of this function, otherwise
2069 * the seqlock logic goes bad. We can not serialize this because the arch
2070 * code calls this from NMI context.
2071 */
2072 void perf_counter_update_userpage(struct perf_counter *counter)
2073 {
2074 struct perf_counter_mmap_page *userpg;
2075 struct perf_mmap_data *data;
2076
2077 rcu_read_lock();
2078 data = rcu_dereference(counter->data);
2079 if (!data)
2080 goto unlock;
2081
2082 userpg = data->user_page;
2083
2084 /*
2085 * Disable preemption so as to not let the corresponding user-space
2086 * spin too long if we get preempted.
2087 */
2088 preempt_disable();
2089 ++userpg->lock;
2090 barrier();
2091 userpg->index = perf_counter_index(counter);
2092 userpg->offset = atomic64_read(&counter->count);
2093 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
2094 userpg->offset -= atomic64_read(&counter->hw.prev_count);
2095
2096 userpg->time_enabled = counter->total_time_enabled +
2097 atomic64_read(&counter->child_total_time_enabled);
2098
2099 userpg->time_running = counter->total_time_running +
2100 atomic64_read(&counter->child_total_time_running);
2101
2102 barrier();
2103 ++userpg->lock;
2104 preempt_enable();
2105 unlock:
2106 rcu_read_unlock();
2107 }
2108
2109 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2110 {
2111 struct perf_counter *counter = vma->vm_file->private_data;
2112 struct perf_mmap_data *data;
2113 int ret = VM_FAULT_SIGBUS;
2114
2115 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2116 if (vmf->pgoff == 0)
2117 ret = 0;
2118 return ret;
2119 }
2120
2121 rcu_read_lock();
2122 data = rcu_dereference(counter->data);
2123 if (!data)
2124 goto unlock;
2125
2126 if (vmf->pgoff == 0) {
2127 vmf->page = virt_to_page(data->user_page);
2128 } else {
2129 int nr = vmf->pgoff - 1;
2130
2131 if ((unsigned)nr > data->nr_pages)
2132 goto unlock;
2133
2134 if (vmf->flags & FAULT_FLAG_WRITE)
2135 goto unlock;
2136
2137 vmf->page = virt_to_page(data->data_pages[nr]);
2138 }
2139
2140 get_page(vmf->page);
2141 vmf->page->mapping = vma->vm_file->f_mapping;
2142 vmf->page->index = vmf->pgoff;
2143
2144 ret = 0;
2145 unlock:
2146 rcu_read_unlock();
2147
2148 return ret;
2149 }
2150
2151 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
2152 {
2153 struct perf_mmap_data *data;
2154 unsigned long size;
2155 int i;
2156
2157 WARN_ON(atomic_read(&counter->mmap_count));
2158
2159 size = sizeof(struct perf_mmap_data);
2160 size += nr_pages * sizeof(void *);
2161
2162 data = kzalloc(size, GFP_KERNEL);
2163 if (!data)
2164 goto fail;
2165
2166 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2167 if (!data->user_page)
2168 goto fail_user_page;
2169
2170 for (i = 0; i < nr_pages; i++) {
2171 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2172 if (!data->data_pages[i])
2173 goto fail_data_pages;
2174 }
2175
2176 data->nr_pages = nr_pages;
2177 atomic_set(&data->lock, -1);
2178
2179 if (counter->attr.watermark) {
2180 data->watermark = min_t(long, PAGE_SIZE * nr_pages,
2181 counter->attr.wakeup_watermark);
2182 }
2183 if (!data->watermark)
2184 data->watermark = max(PAGE_SIZE, PAGE_SIZE * nr_pages / 4);
2185
2186 rcu_assign_pointer(counter->data, data);
2187
2188 return 0;
2189
2190 fail_data_pages:
2191 for (i--; i >= 0; i--)
2192 free_page((unsigned long)data->data_pages[i]);
2193
2194 free_page((unsigned long)data->user_page);
2195
2196 fail_user_page:
2197 kfree(data);
2198
2199 fail:
2200 return -ENOMEM;
2201 }
2202
2203 static void perf_mmap_free_page(unsigned long addr)
2204 {
2205 struct page *page = virt_to_page((void *)addr);
2206
2207 page->mapping = NULL;
2208 __free_page(page);
2209 }
2210
2211 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
2212 {
2213 struct perf_mmap_data *data;
2214 int i;
2215
2216 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2217
2218 perf_mmap_free_page((unsigned long)data->user_page);
2219 for (i = 0; i < data->nr_pages; i++)
2220 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2221
2222 kfree(data);
2223 }
2224
2225 static void perf_mmap_data_free(struct perf_counter *counter)
2226 {
2227 struct perf_mmap_data *data = counter->data;
2228
2229 WARN_ON(atomic_read(&counter->mmap_count));
2230
2231 rcu_assign_pointer(counter->data, NULL);
2232 call_rcu(&data->rcu_head, __perf_mmap_data_free);
2233 }
2234
2235 static void perf_mmap_open(struct vm_area_struct *vma)
2236 {
2237 struct perf_counter *counter = vma->vm_file->private_data;
2238
2239 atomic_inc(&counter->mmap_count);
2240 }
2241
2242 static void perf_mmap_close(struct vm_area_struct *vma)
2243 {
2244 struct perf_counter *counter = vma->vm_file->private_data;
2245
2246 WARN_ON_ONCE(counter->ctx->parent_ctx);
2247 if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) {
2248 struct user_struct *user = current_user();
2249
2250 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
2251 vma->vm_mm->locked_vm -= counter->data->nr_locked;
2252 perf_mmap_data_free(counter);
2253 mutex_unlock(&counter->mmap_mutex);
2254 }
2255 }
2256
2257 static struct vm_operations_struct perf_mmap_vmops = {
2258 .open = perf_mmap_open,
2259 .close = perf_mmap_close,
2260 .fault = perf_mmap_fault,
2261 .page_mkwrite = perf_mmap_fault,
2262 };
2263
2264 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2265 {
2266 struct perf_counter *counter = file->private_data;
2267 unsigned long user_locked, user_lock_limit;
2268 struct user_struct *user = current_user();
2269 unsigned long locked, lock_limit;
2270 unsigned long vma_size;
2271 unsigned long nr_pages;
2272 long user_extra, extra;
2273 int ret = 0;
2274
2275 if (!(vma->vm_flags & VM_SHARED))
2276 return -EINVAL;
2277
2278 vma_size = vma->vm_end - vma->vm_start;
2279 nr_pages = (vma_size / PAGE_SIZE) - 1;
2280
2281 /*
2282 * If we have data pages ensure they're a power-of-two number, so we
2283 * can do bitmasks instead of modulo.
2284 */
2285 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2286 return -EINVAL;
2287
2288 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2289 return -EINVAL;
2290
2291 if (vma->vm_pgoff != 0)
2292 return -EINVAL;
2293
2294 WARN_ON_ONCE(counter->ctx->parent_ctx);
2295 mutex_lock(&counter->mmap_mutex);
2296 if (counter->output) {
2297 ret = -EINVAL;
2298 goto unlock;
2299 }
2300
2301 if (atomic_inc_not_zero(&counter->mmap_count)) {
2302 if (nr_pages != counter->data->nr_pages)
2303 ret = -EINVAL;
2304 goto unlock;
2305 }
2306
2307 user_extra = nr_pages + 1;
2308 user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
2309
2310 /*
2311 * Increase the limit linearly with more CPUs:
2312 */
2313 user_lock_limit *= num_online_cpus();
2314
2315 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2316
2317 extra = 0;
2318 if (user_locked > user_lock_limit)
2319 extra = user_locked - user_lock_limit;
2320
2321 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2322 lock_limit >>= PAGE_SHIFT;
2323 locked = vma->vm_mm->locked_vm + extra;
2324
2325 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2326 !capable(CAP_IPC_LOCK)) {
2327 ret = -EPERM;
2328 goto unlock;
2329 }
2330
2331 WARN_ON(counter->data);
2332 ret = perf_mmap_data_alloc(counter, nr_pages);
2333 if (ret)
2334 goto unlock;
2335
2336 atomic_set(&counter->mmap_count, 1);
2337 atomic_long_add(user_extra, &user->locked_vm);
2338 vma->vm_mm->locked_vm += extra;
2339 counter->data->nr_locked = extra;
2340 if (vma->vm_flags & VM_WRITE)
2341 counter->data->writable = 1;
2342
2343 unlock:
2344 mutex_unlock(&counter->mmap_mutex);
2345
2346 vma->vm_flags |= VM_RESERVED;
2347 vma->vm_ops = &perf_mmap_vmops;
2348
2349 return ret;
2350 }
2351
2352 static int perf_fasync(int fd, struct file *filp, int on)
2353 {
2354 struct inode *inode = filp->f_path.dentry->d_inode;
2355 struct perf_counter *counter = filp->private_data;
2356 int retval;
2357
2358 mutex_lock(&inode->i_mutex);
2359 retval = fasync_helper(fd, filp, on, &counter->fasync);
2360 mutex_unlock(&inode->i_mutex);
2361
2362 if (retval < 0)
2363 return retval;
2364
2365 return 0;
2366 }
2367
2368 static const struct file_operations perf_fops = {
2369 .release = perf_release,
2370 .read = perf_read,
2371 .poll = perf_poll,
2372 .unlocked_ioctl = perf_ioctl,
2373 .compat_ioctl = perf_ioctl,
2374 .mmap = perf_mmap,
2375 .fasync = perf_fasync,
2376 };
2377
2378 /*
2379 * Perf counter wakeup
2380 *
2381 * If there's data, ensure we set the poll() state and publish everything
2382 * to user-space before waking everybody up.
2383 */
2384
2385 void perf_counter_wakeup(struct perf_counter *counter)
2386 {
2387 wake_up_all(&counter->waitq);
2388
2389 if (counter->pending_kill) {
2390 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
2391 counter->pending_kill = 0;
2392 }
2393 }
2394
2395 /*
2396 * Pending wakeups
2397 *
2398 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2399 *
2400 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2401 * single linked list and use cmpxchg() to add entries lockless.
2402 */
2403
2404 static void perf_pending_counter(struct perf_pending_entry *entry)
2405 {
2406 struct perf_counter *counter = container_of(entry,
2407 struct perf_counter, pending);
2408
2409 if (counter->pending_disable) {
2410 counter->pending_disable = 0;
2411 __perf_counter_disable(counter);
2412 }
2413
2414 if (counter->pending_wakeup) {
2415 counter->pending_wakeup = 0;
2416 perf_counter_wakeup(counter);
2417 }
2418 }
2419
2420 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2421
2422 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2423 PENDING_TAIL,
2424 };
2425
2426 static void perf_pending_queue(struct perf_pending_entry *entry,
2427 void (*func)(struct perf_pending_entry *))
2428 {
2429 struct perf_pending_entry **head;
2430
2431 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2432 return;
2433
2434 entry->func = func;
2435
2436 head = &get_cpu_var(perf_pending_head);
2437
2438 do {
2439 entry->next = *head;
2440 } while (cmpxchg(head, entry->next, entry) != entry->next);
2441
2442 set_perf_counter_pending();
2443
2444 put_cpu_var(perf_pending_head);
2445 }
2446
2447 static int __perf_pending_run(void)
2448 {
2449 struct perf_pending_entry *list;
2450 int nr = 0;
2451
2452 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2453 while (list != PENDING_TAIL) {
2454 void (*func)(struct perf_pending_entry *);
2455 struct perf_pending_entry *entry = list;
2456
2457 list = list->next;
2458
2459 func = entry->func;
2460 entry->next = NULL;
2461 /*
2462 * Ensure we observe the unqueue before we issue the wakeup,
2463 * so that we won't be waiting forever.
2464 * -- see perf_not_pending().
2465 */
2466 smp_wmb();
2467
2468 func(entry);
2469 nr++;
2470 }
2471
2472 return nr;
2473 }
2474
2475 static inline int perf_not_pending(struct perf_counter *counter)
2476 {
2477 /*
2478 * If we flush on whatever cpu we run, there is a chance we don't
2479 * need to wait.
2480 */
2481 get_cpu();
2482 __perf_pending_run();
2483 put_cpu();
2484
2485 /*
2486 * Ensure we see the proper queue state before going to sleep
2487 * so that we do not miss the wakeup. -- see perf_pending_handle()
2488 */
2489 smp_rmb();
2490 return counter->pending.next == NULL;
2491 }
2492
2493 static void perf_pending_sync(struct perf_counter *counter)
2494 {
2495 wait_event(counter->waitq, perf_not_pending(counter));
2496 }
2497
2498 void perf_counter_do_pending(void)
2499 {
2500 __perf_pending_run();
2501 }
2502
2503 /*
2504 * Callchain support -- arch specific
2505 */
2506
2507 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2508 {
2509 return NULL;
2510 }
2511
2512 /*
2513 * Output
2514 */
2515
2516 struct perf_output_handle {
2517 struct perf_counter *counter;
2518 struct perf_mmap_data *data;
2519 unsigned long head;
2520 unsigned long offset;
2521 int nmi;
2522 int sample;
2523 int locked;
2524 unsigned long flags;
2525 };
2526
2527 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2528 unsigned long offset, unsigned long head)
2529 {
2530 unsigned long mask;
2531
2532 if (!data->writable)
2533 return true;
2534
2535 mask = (data->nr_pages << PAGE_SHIFT) - 1;
2536
2537 offset = (offset - tail) & mask;
2538 head = (head - tail) & mask;
2539
2540 if ((int)(head - offset) < 0)
2541 return false;
2542
2543 return true;
2544 }
2545
2546 static void perf_output_wakeup(struct perf_output_handle *handle)
2547 {
2548 atomic_set(&handle->data->poll, POLL_IN);
2549
2550 if (handle->nmi) {
2551 handle->counter->pending_wakeup = 1;
2552 perf_pending_queue(&handle->counter->pending,
2553 perf_pending_counter);
2554 } else
2555 perf_counter_wakeup(handle->counter);
2556 }
2557
2558 /*
2559 * Curious locking construct.
2560 *
2561 * We need to ensure a later event doesn't publish a head when a former
2562 * event isn't done writing. However since we need to deal with NMIs we
2563 * cannot fully serialize things.
2564 *
2565 * What we do is serialize between CPUs so we only have to deal with NMI
2566 * nesting on a single CPU.
2567 *
2568 * We only publish the head (and generate a wakeup) when the outer-most
2569 * event completes.
2570 */
2571 static void perf_output_lock(struct perf_output_handle *handle)
2572 {
2573 struct perf_mmap_data *data = handle->data;
2574 int cpu;
2575
2576 handle->locked = 0;
2577
2578 local_irq_save(handle->flags);
2579 cpu = smp_processor_id();
2580
2581 if (in_nmi() && atomic_read(&data->lock) == cpu)
2582 return;
2583
2584 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2585 cpu_relax();
2586
2587 handle->locked = 1;
2588 }
2589
2590 static void perf_output_unlock(struct perf_output_handle *handle)
2591 {
2592 struct perf_mmap_data *data = handle->data;
2593 unsigned long head;
2594 int cpu;
2595
2596 data->done_head = data->head;
2597
2598 if (!handle->locked)
2599 goto out;
2600
2601 again:
2602 /*
2603 * The xchg implies a full barrier that ensures all writes are done
2604 * before we publish the new head, matched by a rmb() in userspace when
2605 * reading this position.
2606 */
2607 while ((head = atomic_long_xchg(&data->done_head, 0)))
2608 data->user_page->data_head = head;
2609
2610 /*
2611 * NMI can happen here, which means we can miss a done_head update.
2612 */
2613
2614 cpu = atomic_xchg(&data->lock, -1);
2615 WARN_ON_ONCE(cpu != smp_processor_id());
2616
2617 /*
2618 * Therefore we have to validate we did not indeed do so.
2619 */
2620 if (unlikely(atomic_long_read(&data->done_head))) {
2621 /*
2622 * Since we had it locked, we can lock it again.
2623 */
2624 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2625 cpu_relax();
2626
2627 goto again;
2628 }
2629
2630 if (atomic_xchg(&data->wakeup, 0))
2631 perf_output_wakeup(handle);
2632 out:
2633 local_irq_restore(handle->flags);
2634 }
2635
2636 static void perf_output_copy(struct perf_output_handle *handle,
2637 const void *buf, unsigned int len)
2638 {
2639 unsigned int pages_mask;
2640 unsigned int offset;
2641 unsigned int size;
2642 void **pages;
2643
2644 offset = handle->offset;
2645 pages_mask = handle->data->nr_pages - 1;
2646 pages = handle->data->data_pages;
2647
2648 do {
2649 unsigned int page_offset;
2650 int nr;
2651
2652 nr = (offset >> PAGE_SHIFT) & pages_mask;
2653 page_offset = offset & (PAGE_SIZE - 1);
2654 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2655
2656 memcpy(pages[nr] + page_offset, buf, size);
2657
2658 len -= size;
2659 buf += size;
2660 offset += size;
2661 } while (len);
2662
2663 handle->offset = offset;
2664
2665 /*
2666 * Check we didn't copy past our reservation window, taking the
2667 * possible unsigned int wrap into account.
2668 */
2669 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2670 }
2671
2672 #define perf_output_put(handle, x) \
2673 perf_output_copy((handle), &(x), sizeof(x))
2674
2675 static int perf_output_begin(struct perf_output_handle *handle,
2676 struct perf_counter *counter, unsigned int size,
2677 int nmi, int sample)
2678 {
2679 struct perf_counter *output_counter;
2680 struct perf_mmap_data *data;
2681 unsigned long tail, offset, head;
2682 int have_lost;
2683 struct {
2684 struct perf_event_header header;
2685 u64 id;
2686 u64 lost;
2687 } lost_event;
2688
2689 rcu_read_lock();
2690 /*
2691 * For inherited counters we send all the output towards the parent.
2692 */
2693 if (counter->parent)
2694 counter = counter->parent;
2695
2696 output_counter = rcu_dereference(counter->output);
2697 if (output_counter)
2698 counter = output_counter;
2699
2700 data = rcu_dereference(counter->data);
2701 if (!data)
2702 goto out;
2703
2704 handle->data = data;
2705 handle->counter = counter;
2706 handle->nmi = nmi;
2707 handle->sample = sample;
2708
2709 if (!data->nr_pages)
2710 goto fail;
2711
2712 have_lost = atomic_read(&data->lost);
2713 if (have_lost)
2714 size += sizeof(lost_event);
2715
2716 perf_output_lock(handle);
2717
2718 do {
2719 /*
2720 * Userspace could choose to issue a mb() before updating the
2721 * tail pointer. So that all reads will be completed before the
2722 * write is issued.
2723 */
2724 tail = ACCESS_ONCE(data->user_page->data_tail);
2725 smp_rmb();
2726 offset = head = atomic_long_read(&data->head);
2727 head += size;
2728 if (unlikely(!perf_output_space(data, tail, offset, head)))
2729 goto fail;
2730 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2731
2732 handle->offset = offset;
2733 handle->head = head;
2734
2735 if (head - tail > data->watermark)
2736 atomic_set(&data->wakeup, 1);
2737
2738 if (have_lost) {
2739 lost_event.header.type = PERF_EVENT_LOST;
2740 lost_event.header.misc = 0;
2741 lost_event.header.size = sizeof(lost_event);
2742 lost_event.id = counter->id;
2743 lost_event.lost = atomic_xchg(&data->lost, 0);
2744
2745 perf_output_put(handle, lost_event);
2746 }
2747
2748 return 0;
2749
2750 fail:
2751 atomic_inc(&data->lost);
2752 perf_output_unlock(handle);
2753 out:
2754 rcu_read_unlock();
2755
2756 return -ENOSPC;
2757 }
2758
2759 static void perf_output_end(struct perf_output_handle *handle)
2760 {
2761 struct perf_counter *counter = handle->counter;
2762 struct perf_mmap_data *data = handle->data;
2763
2764 int wakeup_events = counter->attr.wakeup_events;
2765
2766 if (handle->sample && wakeup_events) {
2767 int events = atomic_inc_return(&data->events);
2768 if (events >= wakeup_events) {
2769 atomic_sub(wakeup_events, &data->events);
2770 atomic_set(&data->wakeup, 1);
2771 }
2772 }
2773
2774 perf_output_unlock(handle);
2775 rcu_read_unlock();
2776 }
2777
2778 static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p)
2779 {
2780 /*
2781 * only top level counters have the pid namespace they were created in
2782 */
2783 if (counter->parent)
2784 counter = counter->parent;
2785
2786 return task_tgid_nr_ns(p, counter->ns);
2787 }
2788
2789 static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p)
2790 {
2791 /*
2792 * only top level counters have the pid namespace they were created in
2793 */
2794 if (counter->parent)
2795 counter = counter->parent;
2796
2797 return task_pid_nr_ns(p, counter->ns);
2798 }
2799
2800 static void perf_output_read_one(struct perf_output_handle *handle,
2801 struct perf_counter *counter)
2802 {
2803 u64 read_format = counter->attr.read_format;
2804 u64 values[4];
2805 int n = 0;
2806
2807 values[n++] = atomic64_read(&counter->count);
2808 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2809 values[n++] = counter->total_time_enabled +
2810 atomic64_read(&counter->child_total_time_enabled);
2811 }
2812 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2813 values[n++] = counter->total_time_running +
2814 atomic64_read(&counter->child_total_time_running);
2815 }
2816 if (read_format & PERF_FORMAT_ID)
2817 values[n++] = primary_counter_id(counter);
2818
2819 perf_output_copy(handle, values, n * sizeof(u64));
2820 }
2821
2822 /*
2823 * XXX PERF_FORMAT_GROUP vs inherited counters seems difficult.
2824 */
2825 static void perf_output_read_group(struct perf_output_handle *handle,
2826 struct perf_counter *counter)
2827 {
2828 struct perf_counter *leader = counter->group_leader, *sub;
2829 u64 read_format = counter->attr.read_format;
2830 u64 values[5];
2831 int n = 0;
2832
2833 values[n++] = 1 + leader->nr_siblings;
2834
2835 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2836 values[n++] = leader->total_time_enabled;
2837
2838 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2839 values[n++] = leader->total_time_running;
2840
2841 if (leader != counter)
2842 leader->pmu->read(leader);
2843
2844 values[n++] = atomic64_read(&leader->count);
2845 if (read_format & PERF_FORMAT_ID)
2846 values[n++] = primary_counter_id(leader);
2847
2848 perf_output_copy(handle, values, n * sizeof(u64));
2849
2850 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2851 n = 0;
2852
2853 if (sub != counter)
2854 sub->pmu->read(sub);
2855
2856 values[n++] = atomic64_read(&sub->count);
2857 if (read_format & PERF_FORMAT_ID)
2858 values[n++] = primary_counter_id(sub);
2859
2860 perf_output_copy(handle, values, n * sizeof(u64));
2861 }
2862 }
2863
2864 static void perf_output_read(struct perf_output_handle *handle,
2865 struct perf_counter *counter)
2866 {
2867 if (counter->attr.read_format & PERF_FORMAT_GROUP)
2868 perf_output_read_group(handle, counter);
2869 else
2870 perf_output_read_one(handle, counter);
2871 }
2872
2873 void perf_counter_output(struct perf_counter *counter, int nmi,
2874 struct perf_sample_data *data)
2875 {
2876 int ret;
2877 u64 sample_type = counter->attr.sample_type;
2878 struct perf_output_handle handle;
2879 struct perf_event_header header;
2880 u64 ip;
2881 struct {
2882 u32 pid, tid;
2883 } tid_entry;
2884 struct perf_callchain_entry *callchain = NULL;
2885 int callchain_size = 0;
2886 u64 time;
2887 struct {
2888 u32 cpu, reserved;
2889 } cpu_entry;
2890
2891 header.type = PERF_EVENT_SAMPLE;
2892 header.size = sizeof(header);
2893
2894 header.misc = 0;
2895 header.misc |= perf_misc_flags(data->regs);
2896
2897 if (sample_type & PERF_SAMPLE_IP) {
2898 ip = perf_instruction_pointer(data->regs);
2899 header.size += sizeof(ip);
2900 }
2901
2902 if (sample_type & PERF_SAMPLE_TID) {
2903 /* namespace issues */
2904 tid_entry.pid = perf_counter_pid(counter, current);
2905 tid_entry.tid = perf_counter_tid(counter, current);
2906
2907 header.size += sizeof(tid_entry);
2908 }
2909
2910 if (sample_type & PERF_SAMPLE_TIME) {
2911 /*
2912 * Maybe do better on x86 and provide cpu_clock_nmi()
2913 */
2914 time = sched_clock();
2915
2916 header.size += sizeof(u64);
2917 }
2918
2919 if (sample_type & PERF_SAMPLE_ADDR)
2920 header.size += sizeof(u64);
2921
2922 if (sample_type & PERF_SAMPLE_ID)
2923 header.size += sizeof(u64);
2924
2925 if (sample_type & PERF_SAMPLE_STREAM_ID)
2926 header.size += sizeof(u64);
2927
2928 if (sample_type & PERF_SAMPLE_CPU) {
2929 header.size += sizeof(cpu_entry);
2930
2931 cpu_entry.cpu = raw_smp_processor_id();
2932 cpu_entry.reserved = 0;
2933 }
2934
2935 if (sample_type & PERF_SAMPLE_PERIOD)
2936 header.size += sizeof(u64);
2937
2938 if (sample_type & PERF_SAMPLE_READ)
2939 header.size += perf_counter_read_size(counter);
2940
2941 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2942 callchain = perf_callchain(data->regs);
2943
2944 if (callchain) {
2945 callchain_size = (1 + callchain->nr) * sizeof(u64);
2946 header.size += callchain_size;
2947 } else
2948 header.size += sizeof(u64);
2949 }
2950
2951 if (sample_type & PERF_SAMPLE_RAW) {
2952 int size = sizeof(u32);
2953
2954 if (data->raw)
2955 size += data->raw->size;
2956 else
2957 size += sizeof(u32);
2958
2959 WARN_ON_ONCE(size & (sizeof(u64)-1));
2960 header.size += size;
2961 }
2962
2963 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2964 if (ret)
2965 return;
2966
2967 perf_output_put(&handle, header);
2968
2969 if (sample_type & PERF_SAMPLE_IP)
2970 perf_output_put(&handle, ip);
2971
2972 if (sample_type & PERF_SAMPLE_TID)
2973 perf_output_put(&handle, tid_entry);
2974
2975 if (sample_type & PERF_SAMPLE_TIME)
2976 perf_output_put(&handle, time);
2977
2978 if (sample_type & PERF_SAMPLE_ADDR)
2979 perf_output_put(&handle, data->addr);
2980
2981 if (sample_type & PERF_SAMPLE_ID) {
2982 u64 id = primary_counter_id(counter);
2983
2984 perf_output_put(&handle, id);
2985 }
2986
2987 if (sample_type & PERF_SAMPLE_STREAM_ID)
2988 perf_output_put(&handle, counter->id);
2989
2990 if (sample_type & PERF_SAMPLE_CPU)
2991 perf_output_put(&handle, cpu_entry);
2992
2993 if (sample_type & PERF_SAMPLE_PERIOD)
2994 perf_output_put(&handle, data->period);
2995
2996 if (sample_type & PERF_SAMPLE_READ)
2997 perf_output_read(&handle, counter);
2998
2999 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3000 if (callchain)
3001 perf_output_copy(&handle, callchain, callchain_size);
3002 else {
3003 u64 nr = 0;
3004 perf_output_put(&handle, nr);
3005 }
3006 }
3007
3008 if (sample_type & PERF_SAMPLE_RAW) {
3009 if (data->raw) {
3010 perf_output_put(&handle, data->raw->size);
3011 perf_output_copy(&handle, data->raw->data, data->raw->size);
3012 } else {
3013 struct {
3014 u32 size;
3015 u32 data;
3016 } raw = {
3017 .size = sizeof(u32),
3018 .data = 0,
3019 };
3020 perf_output_put(&handle, raw);
3021 }
3022 }
3023
3024 perf_output_end(&handle);
3025 }
3026
3027 /*
3028 * read event
3029 */
3030
3031 struct perf_read_event {
3032 struct perf_event_header header;
3033
3034 u32 pid;
3035 u32 tid;
3036 };
3037
3038 static void
3039 perf_counter_read_event(struct perf_counter *counter,
3040 struct task_struct *task)
3041 {
3042 struct perf_output_handle handle;
3043 struct perf_read_event event = {
3044 .header = {
3045 .type = PERF_EVENT_READ,
3046 .misc = 0,
3047 .size = sizeof(event) + perf_counter_read_size(counter),
3048 },
3049 .pid = perf_counter_pid(counter, task),
3050 .tid = perf_counter_tid(counter, task),
3051 };
3052 int ret;
3053
3054 ret = perf_output_begin(&handle, counter, event.header.size, 0, 0);
3055 if (ret)
3056 return;
3057
3058 perf_output_put(&handle, event);
3059 perf_output_read(&handle, counter);
3060
3061 perf_output_end(&handle);
3062 }
3063
3064 /*
3065 * task tracking -- fork/exit
3066 *
3067 * enabled by: attr.comm | attr.mmap | attr.task
3068 */
3069
3070 struct perf_task_event {
3071 struct task_struct *task;
3072 struct perf_counter_context *task_ctx;
3073
3074 struct {
3075 struct perf_event_header header;
3076
3077 u32 pid;
3078 u32 ppid;
3079 u32 tid;
3080 u32 ptid;
3081 } event;
3082 };
3083
3084 static void perf_counter_task_output(struct perf_counter *counter,
3085 struct perf_task_event *task_event)
3086 {
3087 struct perf_output_handle handle;
3088 int size = task_event->event.header.size;
3089 struct task_struct *task = task_event->task;
3090 int ret = perf_output_begin(&handle, counter, size, 0, 0);
3091
3092 if (ret)
3093 return;
3094
3095 task_event->event.pid = perf_counter_pid(counter, task);
3096 task_event->event.ppid = perf_counter_pid(counter, current);
3097
3098 task_event->event.tid = perf_counter_tid(counter, task);
3099 task_event->event.ptid = perf_counter_tid(counter, current);
3100
3101 perf_output_put(&handle, task_event->event);
3102 perf_output_end(&handle);
3103 }
3104
3105 static int perf_counter_task_match(struct perf_counter *counter)
3106 {
3107 if (counter->attr.comm || counter->attr.mmap || counter->attr.task)
3108 return 1;
3109
3110 return 0;
3111 }
3112
3113 static void perf_counter_task_ctx(struct perf_counter_context *ctx,
3114 struct perf_task_event *task_event)
3115 {
3116 struct perf_counter *counter;
3117
3118 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3119 return;
3120
3121 rcu_read_lock();
3122 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3123 if (perf_counter_task_match(counter))
3124 perf_counter_task_output(counter, task_event);
3125 }
3126 rcu_read_unlock();
3127 }
3128
3129 static void perf_counter_task_event(struct perf_task_event *task_event)
3130 {
3131 struct perf_cpu_context *cpuctx;
3132 struct perf_counter_context *ctx = task_event->task_ctx;
3133
3134 cpuctx = &get_cpu_var(perf_cpu_context);
3135 perf_counter_task_ctx(&cpuctx->ctx, task_event);
3136 put_cpu_var(perf_cpu_context);
3137
3138 rcu_read_lock();
3139 if (!ctx)
3140 ctx = rcu_dereference(task_event->task->perf_counter_ctxp);
3141 if (ctx)
3142 perf_counter_task_ctx(ctx, task_event);
3143 rcu_read_unlock();
3144 }
3145
3146 static void perf_counter_task(struct task_struct *task,
3147 struct perf_counter_context *task_ctx,
3148 int new)
3149 {
3150 struct perf_task_event task_event;
3151
3152 if (!atomic_read(&nr_comm_counters) &&
3153 !atomic_read(&nr_mmap_counters) &&
3154 !atomic_read(&nr_task_counters))
3155 return;
3156
3157 task_event = (struct perf_task_event){
3158 .task = task,
3159 .task_ctx = task_ctx,
3160 .event = {
3161 .header = {
3162 .type = new ? PERF_EVENT_FORK : PERF_EVENT_EXIT,
3163 .misc = 0,
3164 .size = sizeof(task_event.event),
3165 },
3166 /* .pid */
3167 /* .ppid */
3168 /* .tid */
3169 /* .ptid */
3170 },
3171 };
3172
3173 perf_counter_task_event(&task_event);
3174 }
3175
3176 void perf_counter_fork(struct task_struct *task)
3177 {
3178 perf_counter_task(task, NULL, 1);
3179 }
3180
3181 /*
3182 * comm tracking
3183 */
3184
3185 struct perf_comm_event {
3186 struct task_struct *task;
3187 char *comm;
3188 int comm_size;
3189
3190 struct {
3191 struct perf_event_header header;
3192
3193 u32 pid;
3194 u32 tid;
3195 } event;
3196 };
3197
3198 static void perf_counter_comm_output(struct perf_counter *counter,
3199 struct perf_comm_event *comm_event)
3200 {
3201 struct perf_output_handle handle;
3202 int size = comm_event->event.header.size;
3203 int ret = perf_output_begin(&handle, counter, size, 0, 0);
3204
3205 if (ret)
3206 return;
3207
3208 comm_event->event.pid = perf_counter_pid(counter, comm_event->task);
3209 comm_event->event.tid = perf_counter_tid(counter, comm_event->task);
3210
3211 perf_output_put(&handle, comm_event->event);
3212 perf_output_copy(&handle, comm_event->comm,
3213 comm_event->comm_size);
3214 perf_output_end(&handle);
3215 }
3216
3217 static int perf_counter_comm_match(struct perf_counter *counter)
3218 {
3219 if (counter->attr.comm)
3220 return 1;
3221
3222 return 0;
3223 }
3224
3225 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
3226 struct perf_comm_event *comm_event)
3227 {
3228 struct perf_counter *counter;
3229
3230 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3231 return;
3232
3233 rcu_read_lock();
3234 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3235 if (perf_counter_comm_match(counter))
3236 perf_counter_comm_output(counter, comm_event);
3237 }
3238 rcu_read_unlock();
3239 }
3240
3241 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
3242 {
3243 struct perf_cpu_context *cpuctx;
3244 struct perf_counter_context *ctx;
3245 unsigned int size;
3246 char comm[TASK_COMM_LEN];
3247
3248 memset(comm, 0, sizeof(comm));
3249 strncpy(comm, comm_event->task->comm, sizeof(comm));
3250 size = ALIGN(strlen(comm)+1, sizeof(u64));
3251
3252 comm_event->comm = comm;
3253 comm_event->comm_size = size;
3254
3255 comm_event->event.header.size = sizeof(comm_event->event) + size;
3256
3257 cpuctx = &get_cpu_var(perf_cpu_context);
3258 perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
3259 put_cpu_var(perf_cpu_context);
3260
3261 rcu_read_lock();
3262 /*
3263 * doesn't really matter which of the child contexts the
3264 * events ends up in.
3265 */
3266 ctx = rcu_dereference(current->perf_counter_ctxp);
3267 if (ctx)
3268 perf_counter_comm_ctx(ctx, comm_event);
3269 rcu_read_unlock();
3270 }
3271
3272 void perf_counter_comm(struct task_struct *task)
3273 {
3274 struct perf_comm_event comm_event;
3275
3276 if (task->perf_counter_ctxp)
3277 perf_counter_enable_on_exec(task);
3278
3279 if (!atomic_read(&nr_comm_counters))
3280 return;
3281
3282 comm_event = (struct perf_comm_event){
3283 .task = task,
3284 /* .comm */
3285 /* .comm_size */
3286 .event = {
3287 .header = {
3288 .type = PERF_EVENT_COMM,
3289 .misc = 0,
3290 /* .size */
3291 },
3292 /* .pid */
3293 /* .tid */
3294 },
3295 };
3296
3297 perf_counter_comm_event(&comm_event);
3298 }
3299
3300 /*
3301 * mmap tracking
3302 */
3303
3304 struct perf_mmap_event {
3305 struct vm_area_struct *vma;
3306
3307 const char *file_name;
3308 int file_size;
3309
3310 struct {
3311 struct perf_event_header header;
3312
3313 u32 pid;
3314 u32 tid;
3315 u64 start;
3316 u64 len;
3317 u64 pgoff;
3318 } event;
3319 };
3320
3321 static void perf_counter_mmap_output(struct perf_counter *counter,
3322 struct perf_mmap_event *mmap_event)
3323 {
3324 struct perf_output_handle handle;
3325 int size = mmap_event->event.header.size;
3326 int ret = perf_output_begin(&handle, counter, size, 0, 0);
3327
3328 if (ret)
3329 return;
3330
3331 mmap_event->event.pid = perf_counter_pid(counter, current);
3332 mmap_event->event.tid = perf_counter_tid(counter, current);
3333
3334 perf_output_put(&handle, mmap_event->event);
3335 perf_output_copy(&handle, mmap_event->file_name,
3336 mmap_event->file_size);
3337 perf_output_end(&handle);
3338 }
3339
3340 static int perf_counter_mmap_match(struct perf_counter *counter,
3341 struct perf_mmap_event *mmap_event)
3342 {
3343 if (counter->attr.mmap)
3344 return 1;
3345
3346 return 0;
3347 }
3348
3349 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
3350 struct perf_mmap_event *mmap_event)
3351 {
3352 struct perf_counter *counter;
3353
3354 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3355 return;
3356
3357 rcu_read_lock();
3358 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3359 if (perf_counter_mmap_match(counter, mmap_event))
3360 perf_counter_mmap_output(counter, mmap_event);
3361 }
3362 rcu_read_unlock();
3363 }
3364
3365 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
3366 {
3367 struct perf_cpu_context *cpuctx;
3368 struct perf_counter_context *ctx;
3369 struct vm_area_struct *vma = mmap_event->vma;
3370 struct file *file = vma->vm_file;
3371 unsigned int size;
3372 char tmp[16];
3373 char *buf = NULL;
3374 const char *name;
3375
3376 memset(tmp, 0, sizeof(tmp));
3377
3378 if (file) {
3379 /*
3380 * d_path works from the end of the buffer backwards, so we
3381 * need to add enough zero bytes after the string to handle
3382 * the 64bit alignment we do later.
3383 */
3384 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3385 if (!buf) {
3386 name = strncpy(tmp, "//enomem", sizeof(tmp));
3387 goto got_name;
3388 }
3389 name = d_path(&file->f_path, buf, PATH_MAX);
3390 if (IS_ERR(name)) {
3391 name = strncpy(tmp, "//toolong", sizeof(tmp));
3392 goto got_name;
3393 }
3394 } else {
3395 if (arch_vma_name(mmap_event->vma)) {
3396 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3397 sizeof(tmp));
3398 goto got_name;
3399 }
3400
3401 if (!vma->vm_mm) {
3402 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3403 goto got_name;
3404 }
3405
3406 name = strncpy(tmp, "//anon", sizeof(tmp));
3407 goto got_name;
3408 }
3409
3410 got_name:
3411 size = ALIGN(strlen(name)+1, sizeof(u64));
3412
3413 mmap_event->file_name = name;
3414 mmap_event->file_size = size;
3415
3416 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
3417
3418 cpuctx = &get_cpu_var(perf_cpu_context);
3419 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
3420 put_cpu_var(perf_cpu_context);
3421
3422 rcu_read_lock();
3423 /*
3424 * doesn't really matter which of the child contexts the
3425 * events ends up in.
3426 */
3427 ctx = rcu_dereference(current->perf_counter_ctxp);
3428 if (ctx)
3429 perf_counter_mmap_ctx(ctx, mmap_event);
3430 rcu_read_unlock();
3431
3432 kfree(buf);
3433 }
3434
3435 void __perf_counter_mmap(struct vm_area_struct *vma)
3436 {
3437 struct perf_mmap_event mmap_event;
3438
3439 if (!atomic_read(&nr_mmap_counters))
3440 return;
3441
3442 mmap_event = (struct perf_mmap_event){
3443 .vma = vma,
3444 /* .file_name */
3445 /* .file_size */
3446 .event = {
3447 .header = {
3448 .type = PERF_EVENT_MMAP,
3449 .misc = 0,
3450 /* .size */
3451 },
3452 /* .pid */
3453 /* .tid */
3454 .start = vma->vm_start,
3455 .len = vma->vm_end - vma->vm_start,
3456 .pgoff = vma->vm_pgoff,
3457 },
3458 };
3459
3460 perf_counter_mmap_event(&mmap_event);
3461 }
3462
3463 /*
3464 * IRQ throttle logging
3465 */
3466
3467 static void perf_log_throttle(struct perf_counter *counter, int enable)
3468 {
3469 struct perf_output_handle handle;
3470 int ret;
3471
3472 struct {
3473 struct perf_event_header header;
3474 u64 time;
3475 u64 id;
3476 u64 stream_id;
3477 } throttle_event = {
3478 .header = {
3479 .type = PERF_EVENT_THROTTLE,
3480 .misc = 0,
3481 .size = sizeof(throttle_event),
3482 },
3483 .time = sched_clock(),
3484 .id = primary_counter_id(counter),
3485 .stream_id = counter->id,
3486 };
3487
3488 if (enable)
3489 throttle_event.header.type = PERF_EVENT_UNTHROTTLE;
3490
3491 ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
3492 if (ret)
3493 return;
3494
3495 perf_output_put(&handle, throttle_event);
3496 perf_output_end(&handle);
3497 }
3498
3499 /*
3500 * Generic counter overflow handling, sampling.
3501 */
3502
3503 static int __perf_counter_overflow(struct perf_counter *counter, int nmi,
3504 int throttle, struct perf_sample_data *data)
3505 {
3506 int events = atomic_read(&counter->event_limit);
3507 struct hw_perf_counter *hwc = &counter->hw;
3508 int ret = 0;
3509
3510 throttle = (throttle && counter->pmu->unthrottle != NULL);
3511
3512 if (!throttle) {
3513 hwc->interrupts++;
3514 } else {
3515 if (hwc->interrupts != MAX_INTERRUPTS) {
3516 hwc->interrupts++;
3517 if (HZ * hwc->interrupts >
3518 (u64)sysctl_perf_counter_sample_rate) {
3519 hwc->interrupts = MAX_INTERRUPTS;
3520 perf_log_throttle(counter, 0);
3521 ret = 1;
3522 }
3523 } else {
3524 /*
3525 * Keep re-disabling counters even though on the previous
3526 * pass we disabled it - just in case we raced with a
3527 * sched-in and the counter got enabled again:
3528 */
3529 ret = 1;
3530 }
3531 }
3532
3533 if (counter->attr.freq) {
3534 u64 now = sched_clock();
3535 s64 delta = now - hwc->freq_stamp;
3536
3537 hwc->freq_stamp = now;
3538
3539 if (delta > 0 && delta < TICK_NSEC)
3540 perf_adjust_period(counter, NSEC_PER_SEC / (int)delta);
3541 }
3542
3543 /*
3544 * XXX event_limit might not quite work as expected on inherited
3545 * counters
3546 */
3547
3548 counter->pending_kill = POLL_IN;
3549 if (events && atomic_dec_and_test(&counter->event_limit)) {
3550 ret = 1;
3551 counter->pending_kill = POLL_HUP;
3552 if (nmi) {
3553 counter->pending_disable = 1;
3554 perf_pending_queue(&counter->pending,
3555 perf_pending_counter);
3556 } else
3557 perf_counter_disable(counter);
3558 }
3559
3560 perf_counter_output(counter, nmi, data);
3561 return ret;
3562 }
3563
3564 int perf_counter_overflow(struct perf_counter *counter, int nmi,
3565 struct perf_sample_data *data)
3566 {
3567 return __perf_counter_overflow(counter, nmi, 1, data);
3568 }
3569
3570 /*
3571 * Generic software counter infrastructure
3572 */
3573
3574 /*
3575 * We directly increment counter->count and keep a second value in
3576 * counter->hw.period_left to count intervals. This period counter
3577 * is kept in the range [-sample_period, 0] so that we can use the
3578 * sign as trigger.
3579 */
3580
3581 static u64 perf_swcounter_set_period(struct perf_counter *counter)
3582 {
3583 struct hw_perf_counter *hwc = &counter->hw;
3584 u64 period = hwc->last_period;
3585 u64 nr, offset;
3586 s64 old, val;
3587
3588 hwc->last_period = hwc->sample_period;
3589
3590 again:
3591 old = val = atomic64_read(&hwc->period_left);
3592 if (val < 0)
3593 return 0;
3594
3595 nr = div64_u64(period + val, period);
3596 offset = nr * period;
3597 val -= offset;
3598 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3599 goto again;
3600
3601 return nr;
3602 }
3603
3604 static void perf_swcounter_overflow(struct perf_counter *counter,
3605 int nmi, struct perf_sample_data *data)
3606 {
3607 struct hw_perf_counter *hwc = &counter->hw;
3608 int throttle = 0;
3609 u64 overflow;
3610
3611 data->period = counter->hw.last_period;
3612 overflow = perf_swcounter_set_period(counter);
3613
3614 if (hwc->interrupts == MAX_INTERRUPTS)
3615 return;
3616
3617 for (; overflow; overflow--) {
3618 if (__perf_counter_overflow(counter, nmi, throttle, data)) {
3619 /*
3620 * We inhibit the overflow from happening when
3621 * hwc->interrupts == MAX_INTERRUPTS.
3622 */
3623 break;
3624 }
3625 throttle = 0;
3626 }
3627 }
3628
3629 static void perf_swcounter_unthrottle(struct perf_counter *counter)
3630 {
3631 /*
3632 * Nothing to do, we already reset hwc->interrupts.
3633 */
3634 }
3635
3636 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
3637 int nmi, struct perf_sample_data *data)
3638 {
3639 struct hw_perf_counter *hwc = &counter->hw;
3640
3641 atomic64_add(nr, &counter->count);
3642
3643 if (!hwc->sample_period)
3644 return;
3645
3646 if (!data->regs)
3647 return;
3648
3649 if (!atomic64_add_negative(nr, &hwc->period_left))
3650 perf_swcounter_overflow(counter, nmi, data);
3651 }
3652
3653 static int perf_swcounter_is_counting(struct perf_counter *counter)
3654 {
3655 /*
3656 * The counter is active, we're good!
3657 */
3658 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
3659 return 1;
3660
3661 /*
3662 * The counter is off/error, not counting.
3663 */
3664 if (counter->state != PERF_COUNTER_STATE_INACTIVE)
3665 return 0;
3666
3667 /*
3668 * The counter is inactive, if the context is active
3669 * we're part of a group that didn't make it on the 'pmu',
3670 * not counting.
3671 */
3672 if (counter->ctx->is_active)
3673 return 0;
3674
3675 /*
3676 * We're inactive and the context is too, this means the
3677 * task is scheduled out, we're counting events that happen
3678 * to us, like migration events.
3679 */
3680 return 1;
3681 }
3682
3683 static int perf_swcounter_match(struct perf_counter *counter,
3684 enum perf_type_id type,
3685 u32 event, struct pt_regs *regs)
3686 {
3687 if (!perf_swcounter_is_counting(counter))
3688 return 0;
3689
3690 if (counter->attr.type != type)
3691 return 0;
3692 if (counter->attr.config != event)
3693 return 0;
3694
3695 if (regs) {
3696 if (counter->attr.exclude_user && user_mode(regs))
3697 return 0;
3698
3699 if (counter->attr.exclude_kernel && !user_mode(regs))
3700 return 0;
3701 }
3702
3703 return 1;
3704 }
3705
3706 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
3707 enum perf_type_id type,
3708 u32 event, u64 nr, int nmi,
3709 struct perf_sample_data *data)
3710 {
3711 struct perf_counter *counter;
3712
3713 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3714 return;
3715
3716 rcu_read_lock();
3717 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3718 if (perf_swcounter_match(counter, type, event, data->regs))
3719 perf_swcounter_add(counter, nr, nmi, data);
3720 }
3721 rcu_read_unlock();
3722 }
3723
3724 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
3725 {
3726 if (in_nmi())
3727 return &cpuctx->recursion[3];
3728
3729 if (in_irq())
3730 return &cpuctx->recursion[2];
3731
3732 if (in_softirq())
3733 return &cpuctx->recursion[1];
3734
3735 return &cpuctx->recursion[0];
3736 }
3737
3738 static void do_perf_swcounter_event(enum perf_type_id type, u32 event,
3739 u64 nr, int nmi,
3740 struct perf_sample_data *data)
3741 {
3742 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3743 int *recursion = perf_swcounter_recursion_context(cpuctx);
3744 struct perf_counter_context *ctx;
3745
3746 if (*recursion)
3747 goto out;
3748
3749 (*recursion)++;
3750 barrier();
3751
3752 perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
3753 nr, nmi, data);
3754 rcu_read_lock();
3755 /*
3756 * doesn't really matter which of the child contexts the
3757 * events ends up in.
3758 */
3759 ctx = rcu_dereference(current->perf_counter_ctxp);
3760 if (ctx)
3761 perf_swcounter_ctx_event(ctx, type, event, nr, nmi, data);
3762 rcu_read_unlock();
3763
3764 barrier();
3765 (*recursion)--;
3766
3767 out:
3768 put_cpu_var(perf_cpu_context);
3769 }
3770
3771 void __perf_swcounter_event(u32 event, u64 nr, int nmi,
3772 struct pt_regs *regs, u64 addr)
3773 {
3774 struct perf_sample_data data = {
3775 .regs = regs,
3776 .addr = addr,
3777 };
3778
3779 do_perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, &data);
3780 }
3781
3782 static void perf_swcounter_read(struct perf_counter *counter)
3783 {
3784 }
3785
3786 static int perf_swcounter_enable(struct perf_counter *counter)
3787 {
3788 struct hw_perf_counter *hwc = &counter->hw;
3789
3790 if (hwc->sample_period) {
3791 hwc->last_period = hwc->sample_period;
3792 perf_swcounter_set_period(counter);
3793 }
3794 return 0;
3795 }
3796
3797 static void perf_swcounter_disable(struct perf_counter *counter)
3798 {
3799 }
3800
3801 static const struct pmu perf_ops_generic = {
3802 .enable = perf_swcounter_enable,
3803 .disable = perf_swcounter_disable,
3804 .read = perf_swcounter_read,
3805 .unthrottle = perf_swcounter_unthrottle,
3806 };
3807
3808 /*
3809 * hrtimer based swcounter callback
3810 */
3811
3812 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
3813 {
3814 enum hrtimer_restart ret = HRTIMER_RESTART;
3815 struct perf_sample_data data;
3816 struct perf_counter *counter;
3817 u64 period;
3818
3819 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
3820 counter->pmu->read(counter);
3821
3822 data.addr = 0;
3823 data.regs = get_irq_regs();
3824 /*
3825 * In case we exclude kernel IPs or are somehow not in interrupt
3826 * context, provide the next best thing, the user IP.
3827 */
3828 if ((counter->attr.exclude_kernel || !data.regs) &&
3829 !counter->attr.exclude_user)
3830 data.regs = task_pt_regs(current);
3831
3832 if (data.regs) {
3833 if (perf_counter_overflow(counter, 0, &data))
3834 ret = HRTIMER_NORESTART;
3835 }
3836
3837 period = max_t(u64, 10000, counter->hw.sample_period);
3838 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3839
3840 return ret;
3841 }
3842
3843 /*
3844 * Software counter: cpu wall time clock
3845 */
3846
3847 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
3848 {
3849 int cpu = raw_smp_processor_id();
3850 s64 prev;
3851 u64 now;
3852
3853 now = cpu_clock(cpu);
3854 prev = atomic64_read(&counter->hw.prev_count);
3855 atomic64_set(&counter->hw.prev_count, now);
3856 atomic64_add(now - prev, &counter->count);
3857 }
3858
3859 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
3860 {
3861 struct hw_perf_counter *hwc = &counter->hw;
3862 int cpu = raw_smp_processor_id();
3863
3864 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3865 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3866 hwc->hrtimer.function = perf_swcounter_hrtimer;
3867 if (hwc->sample_period) {
3868 u64 period = max_t(u64, 10000, hwc->sample_period);
3869 __hrtimer_start_range_ns(&hwc->hrtimer,
3870 ns_to_ktime(period), 0,
3871 HRTIMER_MODE_REL, 0);
3872 }
3873
3874 return 0;
3875 }
3876
3877 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
3878 {
3879 if (counter->hw.sample_period)
3880 hrtimer_cancel(&counter->hw.hrtimer);
3881 cpu_clock_perf_counter_update(counter);
3882 }
3883
3884 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
3885 {
3886 cpu_clock_perf_counter_update(counter);
3887 }
3888
3889 static const struct pmu perf_ops_cpu_clock = {
3890 .enable = cpu_clock_perf_counter_enable,
3891 .disable = cpu_clock_perf_counter_disable,
3892 .read = cpu_clock_perf_counter_read,
3893 };
3894
3895 /*
3896 * Software counter: task time clock
3897 */
3898
3899 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
3900 {
3901 u64 prev;
3902 s64 delta;
3903
3904 prev = atomic64_xchg(&counter->hw.prev_count, now);
3905 delta = now - prev;
3906 atomic64_add(delta, &counter->count);
3907 }
3908
3909 static int task_clock_perf_counter_enable(struct perf_counter *counter)
3910 {
3911 struct hw_perf_counter *hwc = &counter->hw;
3912 u64 now;
3913
3914 now = counter->ctx->time;
3915
3916 atomic64_set(&hwc->prev_count, now);
3917 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3918 hwc->hrtimer.function = perf_swcounter_hrtimer;
3919 if (hwc->sample_period) {
3920 u64 period = max_t(u64, 10000, hwc->sample_period);
3921 __hrtimer_start_range_ns(&hwc->hrtimer,
3922 ns_to_ktime(period), 0,
3923 HRTIMER_MODE_REL, 0);
3924 }
3925
3926 return 0;
3927 }
3928
3929 static void task_clock_perf_counter_disable(struct perf_counter *counter)
3930 {
3931 if (counter->hw.sample_period)
3932 hrtimer_cancel(&counter->hw.hrtimer);
3933 task_clock_perf_counter_update(counter, counter->ctx->time);
3934
3935 }
3936
3937 static void task_clock_perf_counter_read(struct perf_counter *counter)
3938 {
3939 u64 time;
3940
3941 if (!in_nmi()) {
3942 update_context_time(counter->ctx);
3943 time = counter->ctx->time;
3944 } else {
3945 u64 now = perf_clock();
3946 u64 delta = now - counter->ctx->timestamp;
3947 time = counter->ctx->time + delta;
3948 }
3949
3950 task_clock_perf_counter_update(counter, time);
3951 }
3952
3953 static const struct pmu perf_ops_task_clock = {
3954 .enable = task_clock_perf_counter_enable,
3955 .disable = task_clock_perf_counter_disable,
3956 .read = task_clock_perf_counter_read,
3957 };
3958
3959 #ifdef CONFIG_EVENT_PROFILE
3960 void perf_tpcounter_event(int event_id, u64 addr, u64 count, void *record,
3961 int entry_size)
3962 {
3963 struct perf_raw_record raw = {
3964 .size = entry_size,
3965 .data = record,
3966 };
3967
3968 struct perf_sample_data data = {
3969 .regs = get_irq_regs(),
3970 .addr = addr,
3971 .raw = &raw,
3972 };
3973
3974 if (!data.regs)
3975 data.regs = task_pt_regs(current);
3976
3977 do_perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, count, 1, &data);
3978 }
3979 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3980
3981 extern int ftrace_profile_enable(int);
3982 extern void ftrace_profile_disable(int);
3983
3984 static void tp_perf_counter_destroy(struct perf_counter *counter)
3985 {
3986 ftrace_profile_disable(counter->attr.config);
3987 }
3988
3989 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3990 {
3991 /*
3992 * Raw tracepoint data is a severe data leak, only allow root to
3993 * have these.
3994 */
3995 if ((counter->attr.sample_type & PERF_SAMPLE_RAW) &&
3996 perf_paranoid_tracepoint_raw() &&
3997 !capable(CAP_SYS_ADMIN))
3998 return ERR_PTR(-EPERM);
3999
4000 if (ftrace_profile_enable(counter->attr.config))
4001 return NULL;
4002
4003 counter->destroy = tp_perf_counter_destroy;
4004
4005 return &perf_ops_generic;
4006 }
4007 #else
4008 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
4009 {
4010 return NULL;
4011 }
4012 #endif
4013
4014 atomic_t perf_swcounter_enabled[PERF_COUNT_SW_MAX];
4015
4016 static void sw_perf_counter_destroy(struct perf_counter *counter)
4017 {
4018 u64 event = counter->attr.config;
4019
4020 WARN_ON(counter->parent);
4021
4022 atomic_dec(&perf_swcounter_enabled[event]);
4023 }
4024
4025 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
4026 {
4027 const struct pmu *pmu = NULL;
4028 u64 event = counter->attr.config;
4029
4030 /*
4031 * Software counters (currently) can't in general distinguish
4032 * between user, kernel and hypervisor events.
4033 * However, context switches and cpu migrations are considered
4034 * to be kernel events, and page faults are never hypervisor
4035 * events.
4036 */
4037 switch (event) {
4038 case PERF_COUNT_SW_CPU_CLOCK:
4039 pmu = &perf_ops_cpu_clock;
4040
4041 break;
4042 case PERF_COUNT_SW_TASK_CLOCK:
4043 /*
4044 * If the user instantiates this as a per-cpu counter,
4045 * use the cpu_clock counter instead.
4046 */
4047 if (counter->ctx->task)
4048 pmu = &perf_ops_task_clock;
4049 else
4050 pmu = &perf_ops_cpu_clock;
4051
4052 break;
4053 case PERF_COUNT_SW_PAGE_FAULTS:
4054 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4055 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4056 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4057 case PERF_COUNT_SW_CPU_MIGRATIONS:
4058 if (!counter->parent) {
4059 atomic_inc(&perf_swcounter_enabled[event]);
4060 counter->destroy = sw_perf_counter_destroy;
4061 }
4062 pmu = &perf_ops_generic;
4063 break;
4064 }
4065
4066 return pmu;
4067 }
4068
4069 /*
4070 * Allocate and initialize a counter structure
4071 */
4072 static struct perf_counter *
4073 perf_counter_alloc(struct perf_counter_attr *attr,
4074 int cpu,
4075 struct perf_counter_context *ctx,
4076 struct perf_counter *group_leader,
4077 struct perf_counter *parent_counter,
4078 gfp_t gfpflags)
4079 {
4080 const struct pmu *pmu;
4081 struct perf_counter *counter;
4082 struct hw_perf_counter *hwc;
4083 long err;
4084
4085 counter = kzalloc(sizeof(*counter), gfpflags);
4086 if (!counter)
4087 return ERR_PTR(-ENOMEM);
4088
4089 /*
4090 * Single counters are their own group leaders, with an
4091 * empty sibling list:
4092 */
4093 if (!group_leader)
4094 group_leader = counter;
4095
4096 mutex_init(&counter->child_mutex);
4097 INIT_LIST_HEAD(&counter->child_list);
4098
4099 INIT_LIST_HEAD(&counter->list_entry);
4100 INIT_LIST_HEAD(&counter->event_entry);
4101 INIT_LIST_HEAD(&counter->sibling_list);
4102 init_waitqueue_head(&counter->waitq);
4103
4104 mutex_init(&counter->mmap_mutex);
4105
4106 counter->cpu = cpu;
4107 counter->attr = *attr;
4108 counter->group_leader = group_leader;
4109 counter->pmu = NULL;
4110 counter->ctx = ctx;
4111 counter->oncpu = -1;
4112
4113 counter->parent = parent_counter;
4114
4115 counter->ns = get_pid_ns(current->nsproxy->pid_ns);
4116 counter->id = atomic64_inc_return(&perf_counter_id);
4117
4118 counter->state = PERF_COUNTER_STATE_INACTIVE;
4119
4120 if (attr->disabled)
4121 counter->state = PERF_COUNTER_STATE_OFF;
4122
4123 pmu = NULL;
4124
4125 hwc = &counter->hw;
4126 hwc->sample_period = attr->sample_period;
4127 if (attr->freq && attr->sample_freq)
4128 hwc->sample_period = 1;
4129 hwc->last_period = hwc->sample_period;
4130
4131 atomic64_set(&hwc->period_left, hwc->sample_period);
4132
4133 /*
4134 * we currently do not support PERF_FORMAT_GROUP on inherited counters
4135 */
4136 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4137 goto done;
4138
4139 switch (attr->type) {
4140 case PERF_TYPE_RAW:
4141 case PERF_TYPE_HARDWARE:
4142 case PERF_TYPE_HW_CACHE:
4143 pmu = hw_perf_counter_init(counter);
4144 break;
4145
4146 case PERF_TYPE_SOFTWARE:
4147 pmu = sw_perf_counter_init(counter);
4148 break;
4149
4150 case PERF_TYPE_TRACEPOINT:
4151 pmu = tp_perf_counter_init(counter);
4152 break;
4153
4154 default:
4155 break;
4156 }
4157 done:
4158 err = 0;
4159 if (!pmu)
4160 err = -EINVAL;
4161 else if (IS_ERR(pmu))
4162 err = PTR_ERR(pmu);
4163
4164 if (err) {
4165 if (counter->ns)
4166 put_pid_ns(counter->ns);
4167 kfree(counter);
4168 return ERR_PTR(err);
4169 }
4170
4171 counter->pmu = pmu;
4172
4173 if (!counter->parent) {
4174 atomic_inc(&nr_counters);
4175 if (counter->attr.mmap)
4176 atomic_inc(&nr_mmap_counters);
4177 if (counter->attr.comm)
4178 atomic_inc(&nr_comm_counters);
4179 if (counter->attr.task)
4180 atomic_inc(&nr_task_counters);
4181 }
4182
4183 return counter;
4184 }
4185
4186 static int perf_copy_attr(struct perf_counter_attr __user *uattr,
4187 struct perf_counter_attr *attr)
4188 {
4189 int ret;
4190 u32 size;
4191
4192 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4193 return -EFAULT;
4194
4195 /*
4196 * zero the full structure, so that a short copy will be nice.
4197 */
4198 memset(attr, 0, sizeof(*attr));
4199
4200 ret = get_user(size, &uattr->size);
4201 if (ret)
4202 return ret;
4203
4204 if (size > PAGE_SIZE) /* silly large */
4205 goto err_size;
4206
4207 if (!size) /* abi compat */
4208 size = PERF_ATTR_SIZE_VER0;
4209
4210 if (size < PERF_ATTR_SIZE_VER0)
4211 goto err_size;
4212
4213 /*
4214 * If we're handed a bigger struct than we know of,
4215 * ensure all the unknown bits are 0.
4216 */
4217 if (size > sizeof(*attr)) {
4218 unsigned long val;
4219 unsigned long __user *addr;
4220 unsigned long __user *end;
4221
4222 addr = PTR_ALIGN((void __user *)uattr + sizeof(*attr),
4223 sizeof(unsigned long));
4224 end = PTR_ALIGN((void __user *)uattr + size,
4225 sizeof(unsigned long));
4226
4227 for (; addr < end; addr += sizeof(unsigned long)) {
4228 ret = get_user(val, addr);
4229 if (ret)
4230 return ret;
4231 if (val)
4232 goto err_size;
4233 }
4234 }
4235
4236 ret = copy_from_user(attr, uattr, size);
4237 if (ret)
4238 return -EFAULT;
4239
4240 /*
4241 * If the type exists, the corresponding creation will verify
4242 * the attr->config.
4243 */
4244 if (attr->type >= PERF_TYPE_MAX)
4245 return -EINVAL;
4246
4247 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
4248 return -EINVAL;
4249
4250 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4251 return -EINVAL;
4252
4253 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4254 return -EINVAL;
4255
4256 out:
4257 return ret;
4258
4259 err_size:
4260 put_user(sizeof(*attr), &uattr->size);
4261 ret = -E2BIG;
4262 goto out;
4263 }
4264
4265 int perf_counter_set_output(struct perf_counter *counter, int output_fd)
4266 {
4267 struct perf_counter *output_counter = NULL;
4268 struct file *output_file = NULL;
4269 struct perf_counter *old_output;
4270 int fput_needed = 0;
4271 int ret = -EINVAL;
4272
4273 if (!output_fd)
4274 goto set;
4275
4276 output_file = fget_light(output_fd, &fput_needed);
4277 if (!output_file)
4278 return -EBADF;
4279
4280 if (output_file->f_op != &perf_fops)
4281 goto out;
4282
4283 output_counter = output_file->private_data;
4284
4285 /* Don't chain output fds */
4286 if (output_counter->output)
4287 goto out;
4288
4289 /* Don't set an output fd when we already have an output channel */
4290 if (counter->data)
4291 goto out;
4292
4293 atomic_long_inc(&output_file->f_count);
4294
4295 set:
4296 mutex_lock(&counter->mmap_mutex);
4297 old_output = counter->output;
4298 rcu_assign_pointer(counter->output, output_counter);
4299 mutex_unlock(&counter->mmap_mutex);
4300
4301 if (old_output) {
4302 /*
4303 * we need to make sure no existing perf_output_*()
4304 * is still referencing this counter.
4305 */
4306 synchronize_rcu();
4307 fput(old_output->filp);
4308 }
4309
4310 ret = 0;
4311 out:
4312 fput_light(output_file, fput_needed);
4313 return ret;
4314 }
4315
4316 /**
4317 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
4318 *
4319 * @attr_uptr: event type attributes for monitoring/sampling
4320 * @pid: target pid
4321 * @cpu: target cpu
4322 * @group_fd: group leader counter fd
4323 */
4324 SYSCALL_DEFINE5(perf_counter_open,
4325 struct perf_counter_attr __user *, attr_uptr,
4326 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4327 {
4328 struct perf_counter *counter, *group_leader;
4329 struct perf_counter_attr attr;
4330 struct perf_counter_context *ctx;
4331 struct file *counter_file = NULL;
4332 struct file *group_file = NULL;
4333 int fput_needed = 0;
4334 int fput_needed2 = 0;
4335 int err;
4336
4337 /* for future expandability... */
4338 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4339 return -EINVAL;
4340
4341 err = perf_copy_attr(attr_uptr, &attr);
4342 if (err)
4343 return err;
4344
4345 if (!attr.exclude_kernel) {
4346 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4347 return -EACCES;
4348 }
4349
4350 if (attr.freq) {
4351 if (attr.sample_freq > sysctl_perf_counter_sample_rate)
4352 return -EINVAL;
4353 }
4354
4355 /*
4356 * Get the target context (task or percpu):
4357 */
4358 ctx = find_get_context(pid, cpu);
4359 if (IS_ERR(ctx))
4360 return PTR_ERR(ctx);
4361
4362 /*
4363 * Look up the group leader (we will attach this counter to it):
4364 */
4365 group_leader = NULL;
4366 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4367 err = -EINVAL;
4368 group_file = fget_light(group_fd, &fput_needed);
4369 if (!group_file)
4370 goto err_put_context;
4371 if (group_file->f_op != &perf_fops)
4372 goto err_put_context;
4373
4374 group_leader = group_file->private_data;
4375 /*
4376 * Do not allow a recursive hierarchy (this new sibling
4377 * becoming part of another group-sibling):
4378 */
4379 if (group_leader->group_leader != group_leader)
4380 goto err_put_context;
4381 /*
4382 * Do not allow to attach to a group in a different
4383 * task or CPU context:
4384 */
4385 if (group_leader->ctx != ctx)
4386 goto err_put_context;
4387 /*
4388 * Only a group leader can be exclusive or pinned
4389 */
4390 if (attr.exclusive || attr.pinned)
4391 goto err_put_context;
4392 }
4393
4394 counter = perf_counter_alloc(&attr, cpu, ctx, group_leader,
4395 NULL, GFP_KERNEL);
4396 err = PTR_ERR(counter);
4397 if (IS_ERR(counter))
4398 goto err_put_context;
4399
4400 err = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
4401 if (err < 0)
4402 goto err_free_put_context;
4403
4404 counter_file = fget_light(err, &fput_needed2);
4405 if (!counter_file)
4406 goto err_free_put_context;
4407
4408 if (flags & PERF_FLAG_FD_OUTPUT) {
4409 err = perf_counter_set_output(counter, group_fd);
4410 if (err)
4411 goto err_fput_free_put_context;
4412 }
4413
4414 counter->filp = counter_file;
4415 WARN_ON_ONCE(ctx->parent_ctx);
4416 mutex_lock(&ctx->mutex);
4417 perf_install_in_context(ctx, counter, cpu);
4418 ++ctx->generation;
4419 mutex_unlock(&ctx->mutex);
4420
4421 counter->owner = current;
4422 get_task_struct(current);
4423 mutex_lock(&current->perf_counter_mutex);
4424 list_add_tail(&counter->owner_entry, &current->perf_counter_list);
4425 mutex_unlock(&current->perf_counter_mutex);
4426
4427 err_fput_free_put_context:
4428 fput_light(counter_file, fput_needed2);
4429
4430 err_free_put_context:
4431 if (err < 0)
4432 kfree(counter);
4433
4434 err_put_context:
4435 if (err < 0)
4436 put_ctx(ctx);
4437
4438 fput_light(group_file, fput_needed);
4439
4440 return err;
4441 }
4442
4443 /*
4444 * inherit a counter from parent task to child task:
4445 */
4446 static struct perf_counter *
4447 inherit_counter(struct perf_counter *parent_counter,
4448 struct task_struct *parent,
4449 struct perf_counter_context *parent_ctx,
4450 struct task_struct *child,
4451 struct perf_counter *group_leader,
4452 struct perf_counter_context *child_ctx)
4453 {
4454 struct perf_counter *child_counter;
4455
4456 /*
4457 * Instead of creating recursive hierarchies of counters,
4458 * we link inherited counters back to the original parent,
4459 * which has a filp for sure, which we use as the reference
4460 * count:
4461 */
4462 if (parent_counter->parent)
4463 parent_counter = parent_counter->parent;
4464
4465 child_counter = perf_counter_alloc(&parent_counter->attr,
4466 parent_counter->cpu, child_ctx,
4467 group_leader, parent_counter,
4468 GFP_KERNEL);
4469 if (IS_ERR(child_counter))
4470 return child_counter;
4471 get_ctx(child_ctx);
4472
4473 /*
4474 * Make the child state follow the state of the parent counter,
4475 * not its attr.disabled bit. We hold the parent's mutex,
4476 * so we won't race with perf_counter_{en, dis}able_family.
4477 */
4478 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
4479 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
4480 else
4481 child_counter->state = PERF_COUNTER_STATE_OFF;
4482
4483 if (parent_counter->attr.freq)
4484 child_counter->hw.sample_period = parent_counter->hw.sample_period;
4485
4486 /*
4487 * Link it up in the child's context:
4488 */
4489 add_counter_to_ctx(child_counter, child_ctx);
4490
4491 /*
4492 * Get a reference to the parent filp - we will fput it
4493 * when the child counter exits. This is safe to do because
4494 * we are in the parent and we know that the filp still
4495 * exists and has a nonzero count:
4496 */
4497 atomic_long_inc(&parent_counter->filp->f_count);
4498
4499 /*
4500 * Link this into the parent counter's child list
4501 */
4502 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
4503 mutex_lock(&parent_counter->child_mutex);
4504 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
4505 mutex_unlock(&parent_counter->child_mutex);
4506
4507 return child_counter;
4508 }
4509
4510 static int inherit_group(struct perf_counter *parent_counter,
4511 struct task_struct *parent,
4512 struct perf_counter_context *parent_ctx,
4513 struct task_struct *child,
4514 struct perf_counter_context *child_ctx)
4515 {
4516 struct perf_counter *leader;
4517 struct perf_counter *sub;
4518 struct perf_counter *child_ctr;
4519
4520 leader = inherit_counter(parent_counter, parent, parent_ctx,
4521 child, NULL, child_ctx);
4522 if (IS_ERR(leader))
4523 return PTR_ERR(leader);
4524 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
4525 child_ctr = inherit_counter(sub, parent, parent_ctx,
4526 child, leader, child_ctx);
4527 if (IS_ERR(child_ctr))
4528 return PTR_ERR(child_ctr);
4529 }
4530 return 0;
4531 }
4532
4533 static void sync_child_counter(struct perf_counter *child_counter,
4534 struct task_struct *child)
4535 {
4536 struct perf_counter *parent_counter = child_counter->parent;
4537 u64 child_val;
4538
4539 if (child_counter->attr.inherit_stat)
4540 perf_counter_read_event(child_counter, child);
4541
4542 child_val = atomic64_read(&child_counter->count);
4543
4544 /*
4545 * Add back the child's count to the parent's count:
4546 */
4547 atomic64_add(child_val, &parent_counter->count);
4548 atomic64_add(child_counter->total_time_enabled,
4549 &parent_counter->child_total_time_enabled);
4550 atomic64_add(child_counter->total_time_running,
4551 &parent_counter->child_total_time_running);
4552
4553 /*
4554 * Remove this counter from the parent's list
4555 */
4556 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
4557 mutex_lock(&parent_counter->child_mutex);
4558 list_del_init(&child_counter->child_list);
4559 mutex_unlock(&parent_counter->child_mutex);
4560
4561 /*
4562 * Release the parent counter, if this was the last
4563 * reference to it.
4564 */
4565 fput(parent_counter->filp);
4566 }
4567
4568 static void
4569 __perf_counter_exit_task(struct perf_counter *child_counter,
4570 struct perf_counter_context *child_ctx,
4571 struct task_struct *child)
4572 {
4573 struct perf_counter *parent_counter;
4574
4575 update_counter_times(child_counter);
4576 perf_counter_remove_from_context(child_counter);
4577
4578 parent_counter = child_counter->parent;
4579 /*
4580 * It can happen that parent exits first, and has counters
4581 * that are still around due to the child reference. These
4582 * counters need to be zapped - but otherwise linger.
4583 */
4584 if (parent_counter) {
4585 sync_child_counter(child_counter, child);
4586 free_counter(child_counter);
4587 }
4588 }
4589
4590 /*
4591 * When a child task exits, feed back counter values to parent counters.
4592 */
4593 void perf_counter_exit_task(struct task_struct *child)
4594 {
4595 struct perf_counter *child_counter, *tmp;
4596 struct perf_counter_context *child_ctx;
4597 unsigned long flags;
4598
4599 if (likely(!child->perf_counter_ctxp)) {
4600 perf_counter_task(child, NULL, 0);
4601 return;
4602 }
4603
4604 local_irq_save(flags);
4605 /*
4606 * We can't reschedule here because interrupts are disabled,
4607 * and either child is current or it is a task that can't be
4608 * scheduled, so we are now safe from rescheduling changing
4609 * our context.
4610 */
4611 child_ctx = child->perf_counter_ctxp;
4612 __perf_counter_task_sched_out(child_ctx);
4613
4614 /*
4615 * Take the context lock here so that if find_get_context is
4616 * reading child->perf_counter_ctxp, we wait until it has
4617 * incremented the context's refcount before we do put_ctx below.
4618 */
4619 spin_lock(&child_ctx->lock);
4620 child->perf_counter_ctxp = NULL;
4621 /*
4622 * If this context is a clone; unclone it so it can't get
4623 * swapped to another process while we're removing all
4624 * the counters from it.
4625 */
4626 unclone_ctx(child_ctx);
4627 spin_unlock_irqrestore(&child_ctx->lock, flags);
4628
4629 /*
4630 * Report the task dead after unscheduling the counters so that we
4631 * won't get any samples after PERF_EVENT_EXIT. We can however still
4632 * get a few PERF_EVENT_READ events.
4633 */
4634 perf_counter_task(child, child_ctx, 0);
4635
4636 /*
4637 * We can recurse on the same lock type through:
4638 *
4639 * __perf_counter_exit_task()
4640 * sync_child_counter()
4641 * fput(parent_counter->filp)
4642 * perf_release()
4643 * mutex_lock(&ctx->mutex)
4644 *
4645 * But since its the parent context it won't be the same instance.
4646 */
4647 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4648
4649 again:
4650 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
4651 list_entry)
4652 __perf_counter_exit_task(child_counter, child_ctx, child);
4653
4654 /*
4655 * If the last counter was a group counter, it will have appended all
4656 * its siblings to the list, but we obtained 'tmp' before that which
4657 * will still point to the list head terminating the iteration.
4658 */
4659 if (!list_empty(&child_ctx->counter_list))
4660 goto again;
4661
4662 mutex_unlock(&child_ctx->mutex);
4663
4664 put_ctx(child_ctx);
4665 }
4666
4667 /*
4668 * free an unexposed, unused context as created by inheritance by
4669 * init_task below, used by fork() in case of fail.
4670 */
4671 void perf_counter_free_task(struct task_struct *task)
4672 {
4673 struct perf_counter_context *ctx = task->perf_counter_ctxp;
4674 struct perf_counter *counter, *tmp;
4675
4676 if (!ctx)
4677 return;
4678
4679 mutex_lock(&ctx->mutex);
4680 again:
4681 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) {
4682 struct perf_counter *parent = counter->parent;
4683
4684 if (WARN_ON_ONCE(!parent))
4685 continue;
4686
4687 mutex_lock(&parent->child_mutex);
4688 list_del_init(&counter->child_list);
4689 mutex_unlock(&parent->child_mutex);
4690
4691 fput(parent->filp);
4692
4693 list_del_counter(counter, ctx);
4694 free_counter(counter);
4695 }
4696
4697 if (!list_empty(&ctx->counter_list))
4698 goto again;
4699
4700 mutex_unlock(&ctx->mutex);
4701
4702 put_ctx(ctx);
4703 }
4704
4705 /*
4706 * Initialize the perf_counter context in task_struct
4707 */
4708 int perf_counter_init_task(struct task_struct *child)
4709 {
4710 struct perf_counter_context *child_ctx, *parent_ctx;
4711 struct perf_counter_context *cloned_ctx;
4712 struct perf_counter *counter;
4713 struct task_struct *parent = current;
4714 int inherited_all = 1;
4715 int ret = 0;
4716
4717 child->perf_counter_ctxp = NULL;
4718
4719 mutex_init(&child->perf_counter_mutex);
4720 INIT_LIST_HEAD(&child->perf_counter_list);
4721
4722 if (likely(!parent->perf_counter_ctxp))
4723 return 0;
4724
4725 /*
4726 * This is executed from the parent task context, so inherit
4727 * counters that have been marked for cloning.
4728 * First allocate and initialize a context for the child.
4729 */
4730
4731 child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
4732 if (!child_ctx)
4733 return -ENOMEM;
4734
4735 __perf_counter_init_context(child_ctx, child);
4736 child->perf_counter_ctxp = child_ctx;
4737 get_task_struct(child);
4738
4739 /*
4740 * If the parent's context is a clone, pin it so it won't get
4741 * swapped under us.
4742 */
4743 parent_ctx = perf_pin_task_context(parent);
4744
4745 /*
4746 * No need to check if parent_ctx != NULL here; since we saw
4747 * it non-NULL earlier, the only reason for it to become NULL
4748 * is if we exit, and since we're currently in the middle of
4749 * a fork we can't be exiting at the same time.
4750 */
4751
4752 /*
4753 * Lock the parent list. No need to lock the child - not PID
4754 * hashed yet and not running, so nobody can access it.
4755 */
4756 mutex_lock(&parent_ctx->mutex);
4757
4758 /*
4759 * We dont have to disable NMIs - we are only looking at
4760 * the list, not manipulating it:
4761 */
4762 list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
4763 if (counter != counter->group_leader)
4764 continue;
4765
4766 if (!counter->attr.inherit) {
4767 inherited_all = 0;
4768 continue;
4769 }
4770
4771 ret = inherit_group(counter, parent, parent_ctx,
4772 child, child_ctx);
4773 if (ret) {
4774 inherited_all = 0;
4775 break;
4776 }
4777 }
4778
4779 if (inherited_all) {
4780 /*
4781 * Mark the child context as a clone of the parent
4782 * context, or of whatever the parent is a clone of.
4783 * Note that if the parent is a clone, it could get
4784 * uncloned at any point, but that doesn't matter
4785 * because the list of counters and the generation
4786 * count can't have changed since we took the mutex.
4787 */
4788 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
4789 if (cloned_ctx) {
4790 child_ctx->parent_ctx = cloned_ctx;
4791 child_ctx->parent_gen = parent_ctx->parent_gen;
4792 } else {
4793 child_ctx->parent_ctx = parent_ctx;
4794 child_ctx->parent_gen = parent_ctx->generation;
4795 }
4796 get_ctx(child_ctx->parent_ctx);
4797 }
4798
4799 mutex_unlock(&parent_ctx->mutex);
4800
4801 perf_unpin_context(parent_ctx);
4802
4803 return ret;
4804 }
4805
4806 static void __cpuinit perf_counter_init_cpu(int cpu)
4807 {
4808 struct perf_cpu_context *cpuctx;
4809
4810 cpuctx = &per_cpu(perf_cpu_context, cpu);
4811 __perf_counter_init_context(&cpuctx->ctx, NULL);
4812
4813 spin_lock(&perf_resource_lock);
4814 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
4815 spin_unlock(&perf_resource_lock);
4816
4817 hw_perf_counter_setup(cpu);
4818 }
4819
4820 #ifdef CONFIG_HOTPLUG_CPU
4821 static void __perf_counter_exit_cpu(void *info)
4822 {
4823 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4824 struct perf_counter_context *ctx = &cpuctx->ctx;
4825 struct perf_counter *counter, *tmp;
4826
4827 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
4828 __perf_counter_remove_from_context(counter);
4829 }
4830 static void perf_counter_exit_cpu(int cpu)
4831 {
4832 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4833 struct perf_counter_context *ctx = &cpuctx->ctx;
4834
4835 mutex_lock(&ctx->mutex);
4836 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
4837 mutex_unlock(&ctx->mutex);
4838 }
4839 #else
4840 static inline void perf_counter_exit_cpu(int cpu) { }
4841 #endif
4842
4843 static int __cpuinit
4844 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
4845 {
4846 unsigned int cpu = (long)hcpu;
4847
4848 switch (action) {
4849
4850 case CPU_UP_PREPARE:
4851 case CPU_UP_PREPARE_FROZEN:
4852 perf_counter_init_cpu(cpu);
4853 break;
4854
4855 case CPU_ONLINE:
4856 case CPU_ONLINE_FROZEN:
4857 hw_perf_counter_setup_online(cpu);
4858 break;
4859
4860 case CPU_DOWN_PREPARE:
4861 case CPU_DOWN_PREPARE_FROZEN:
4862 perf_counter_exit_cpu(cpu);
4863 break;
4864
4865 default:
4866 break;
4867 }
4868
4869 return NOTIFY_OK;
4870 }
4871
4872 /*
4873 * This has to have a higher priority than migration_notifier in sched.c.
4874 */
4875 static struct notifier_block __cpuinitdata perf_cpu_nb = {
4876 .notifier_call = perf_cpu_notify,
4877 .priority = 20,
4878 };
4879
4880 void __init perf_counter_init(void)
4881 {
4882 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
4883 (void *)(long)smp_processor_id());
4884 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
4885 (void *)(long)smp_processor_id());
4886 register_cpu_notifier(&perf_cpu_nb);
4887 }
4888
4889 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
4890 {
4891 return sprintf(buf, "%d\n", perf_reserved_percpu);
4892 }
4893
4894 static ssize_t
4895 perf_set_reserve_percpu(struct sysdev_class *class,
4896 const char *buf,
4897 size_t count)
4898 {
4899 struct perf_cpu_context *cpuctx;
4900 unsigned long val;
4901 int err, cpu, mpt;
4902
4903 err = strict_strtoul(buf, 10, &val);
4904 if (err)
4905 return err;
4906 if (val > perf_max_counters)
4907 return -EINVAL;
4908
4909 spin_lock(&perf_resource_lock);
4910 perf_reserved_percpu = val;
4911 for_each_online_cpu(cpu) {
4912 cpuctx = &per_cpu(perf_cpu_context, cpu);
4913 spin_lock_irq(&cpuctx->ctx.lock);
4914 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
4915 perf_max_counters - perf_reserved_percpu);
4916 cpuctx->max_pertask = mpt;
4917 spin_unlock_irq(&cpuctx->ctx.lock);
4918 }
4919 spin_unlock(&perf_resource_lock);
4920
4921 return count;
4922 }
4923
4924 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
4925 {
4926 return sprintf(buf, "%d\n", perf_overcommit);
4927 }
4928
4929 static ssize_t
4930 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
4931 {
4932 unsigned long val;
4933 int err;
4934
4935 err = strict_strtoul(buf, 10, &val);
4936 if (err)
4937 return err;
4938 if (val > 1)
4939 return -EINVAL;
4940
4941 spin_lock(&perf_resource_lock);
4942 perf_overcommit = val;
4943 spin_unlock(&perf_resource_lock);
4944
4945 return count;
4946 }
4947
4948 static SYSDEV_CLASS_ATTR(
4949 reserve_percpu,
4950 0644,
4951 perf_show_reserve_percpu,
4952 perf_set_reserve_percpu
4953 );
4954
4955 static SYSDEV_CLASS_ATTR(
4956 overcommit,
4957 0644,
4958 perf_show_overcommit,
4959 perf_set_overcommit
4960 );
4961
4962 static struct attribute *perfclass_attrs[] = {
4963 &attr_reserve_percpu.attr,
4964 &attr_overcommit.attr,
4965 NULL
4966 };
4967
4968 static struct attribute_group perfclass_attr_group = {
4969 .attrs = perfclass_attrs,
4970 .name = "perf_counters",
4971 };
4972
4973 static int __init perf_counter_sysfs_init(void)
4974 {
4975 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
4976 &perfclass_attr_group);
4977 }
4978 device_initcall(perf_counter_sysfs_init);
This page took 0.125955 seconds and 6 git commands to generate.