perf_counter: Log irq_period changes
[deliverable/linux.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/ptrace.h>
20 #include <linux/percpu.h>
21 #include <linux/vmstat.h>
22 #include <linux/hardirq.h>
23 #include <linux/rculist.h>
24 #include <linux/uaccess.h>
25 #include <linux/syscalls.h>
26 #include <linux/anon_inodes.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/perf_counter.h>
29 #include <linux/dcache.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34 * Each CPU has a list of per CPU counters:
35 */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_tracking __read_mostly;
44 static atomic_t nr_munmap_tracking __read_mostly;
45 static atomic_t nr_comm_tracking __read_mostly;
46
47 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
49
50 /*
51 * Lock for (sysadmin-configurable) counter reservations:
52 */
53 static DEFINE_SPINLOCK(perf_resource_lock);
54
55 /*
56 * Architecture provided APIs - weak aliases:
57 */
58 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
59 {
60 return NULL;
61 }
62
63 void __weak hw_perf_disable(void) { barrier(); }
64 void __weak hw_perf_enable(void) { barrier(); }
65
66 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
67 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
68 struct perf_cpu_context *cpuctx,
69 struct perf_counter_context *ctx, int cpu)
70 {
71 return 0;
72 }
73
74 void __weak perf_counter_print_debug(void) { }
75
76 static DEFINE_PER_CPU(int, disable_count);
77
78 void __perf_disable(void)
79 {
80 __get_cpu_var(disable_count)++;
81 }
82
83 bool __perf_enable(void)
84 {
85 return !--__get_cpu_var(disable_count);
86 }
87
88 void perf_disable(void)
89 {
90 __perf_disable();
91 hw_perf_disable();
92 }
93
94 void perf_enable(void)
95 {
96 if (__perf_enable())
97 hw_perf_enable();
98 }
99
100 static void
101 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
102 {
103 struct perf_counter *group_leader = counter->group_leader;
104
105 /*
106 * Depending on whether it is a standalone or sibling counter,
107 * add it straight to the context's counter list, or to the group
108 * leader's sibling list:
109 */
110 if (group_leader == counter)
111 list_add_tail(&counter->list_entry, &ctx->counter_list);
112 else {
113 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
114 group_leader->nr_siblings++;
115 }
116
117 list_add_rcu(&counter->event_entry, &ctx->event_list);
118 ctx->nr_counters++;
119 }
120
121 static void
122 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
123 {
124 struct perf_counter *sibling, *tmp;
125
126 ctx->nr_counters--;
127
128 list_del_init(&counter->list_entry);
129 list_del_rcu(&counter->event_entry);
130
131 if (counter->group_leader != counter)
132 counter->group_leader->nr_siblings--;
133
134 /*
135 * If this was a group counter with sibling counters then
136 * upgrade the siblings to singleton counters by adding them
137 * to the context list directly:
138 */
139 list_for_each_entry_safe(sibling, tmp,
140 &counter->sibling_list, list_entry) {
141
142 list_move_tail(&sibling->list_entry, &ctx->counter_list);
143 sibling->group_leader = sibling;
144 }
145 }
146
147 static void
148 counter_sched_out(struct perf_counter *counter,
149 struct perf_cpu_context *cpuctx,
150 struct perf_counter_context *ctx)
151 {
152 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
153 return;
154
155 counter->state = PERF_COUNTER_STATE_INACTIVE;
156 counter->tstamp_stopped = ctx->time;
157 counter->pmu->disable(counter);
158 counter->oncpu = -1;
159
160 if (!is_software_counter(counter))
161 cpuctx->active_oncpu--;
162 ctx->nr_active--;
163 if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
164 cpuctx->exclusive = 0;
165 }
166
167 static void
168 group_sched_out(struct perf_counter *group_counter,
169 struct perf_cpu_context *cpuctx,
170 struct perf_counter_context *ctx)
171 {
172 struct perf_counter *counter;
173
174 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
175 return;
176
177 counter_sched_out(group_counter, cpuctx, ctx);
178
179 /*
180 * Schedule out siblings (if any):
181 */
182 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
183 counter_sched_out(counter, cpuctx, ctx);
184
185 if (group_counter->hw_event.exclusive)
186 cpuctx->exclusive = 0;
187 }
188
189 /*
190 * Cross CPU call to remove a performance counter
191 *
192 * We disable the counter on the hardware level first. After that we
193 * remove it from the context list.
194 */
195 static void __perf_counter_remove_from_context(void *info)
196 {
197 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
198 struct perf_counter *counter = info;
199 struct perf_counter_context *ctx = counter->ctx;
200 unsigned long flags;
201
202 /*
203 * If this is a task context, we need to check whether it is
204 * the current task context of this cpu. If not it has been
205 * scheduled out before the smp call arrived.
206 */
207 if (ctx->task && cpuctx->task_ctx != ctx)
208 return;
209
210 spin_lock_irqsave(&ctx->lock, flags);
211
212 counter_sched_out(counter, cpuctx, ctx);
213
214 counter->task = NULL;
215
216 /*
217 * Protect the list operation against NMI by disabling the
218 * counters on a global level. NOP for non NMI based counters.
219 */
220 perf_disable();
221 list_del_counter(counter, ctx);
222 perf_enable();
223
224 if (!ctx->task) {
225 /*
226 * Allow more per task counters with respect to the
227 * reservation:
228 */
229 cpuctx->max_pertask =
230 min(perf_max_counters - ctx->nr_counters,
231 perf_max_counters - perf_reserved_percpu);
232 }
233
234 spin_unlock_irqrestore(&ctx->lock, flags);
235 }
236
237
238 /*
239 * Remove the counter from a task's (or a CPU's) list of counters.
240 *
241 * Must be called with counter->mutex and ctx->mutex held.
242 *
243 * CPU counters are removed with a smp call. For task counters we only
244 * call when the task is on a CPU.
245 */
246 static void perf_counter_remove_from_context(struct perf_counter *counter)
247 {
248 struct perf_counter_context *ctx = counter->ctx;
249 struct task_struct *task = ctx->task;
250
251 if (!task) {
252 /*
253 * Per cpu counters are removed via an smp call and
254 * the removal is always sucessful.
255 */
256 smp_call_function_single(counter->cpu,
257 __perf_counter_remove_from_context,
258 counter, 1);
259 return;
260 }
261
262 retry:
263 task_oncpu_function_call(task, __perf_counter_remove_from_context,
264 counter);
265
266 spin_lock_irq(&ctx->lock);
267 /*
268 * If the context is active we need to retry the smp call.
269 */
270 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
271 spin_unlock_irq(&ctx->lock);
272 goto retry;
273 }
274
275 /*
276 * The lock prevents that this context is scheduled in so we
277 * can remove the counter safely, if the call above did not
278 * succeed.
279 */
280 if (!list_empty(&counter->list_entry)) {
281 list_del_counter(counter, ctx);
282 counter->task = NULL;
283 }
284 spin_unlock_irq(&ctx->lock);
285 }
286
287 static inline u64 perf_clock(void)
288 {
289 return cpu_clock(smp_processor_id());
290 }
291
292 /*
293 * Update the record of the current time in a context.
294 */
295 static void update_context_time(struct perf_counter_context *ctx)
296 {
297 u64 now = perf_clock();
298
299 ctx->time += now - ctx->timestamp;
300 ctx->timestamp = now;
301 }
302
303 /*
304 * Update the total_time_enabled and total_time_running fields for a counter.
305 */
306 static void update_counter_times(struct perf_counter *counter)
307 {
308 struct perf_counter_context *ctx = counter->ctx;
309 u64 run_end;
310
311 if (counter->state < PERF_COUNTER_STATE_INACTIVE)
312 return;
313
314 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
315
316 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
317 run_end = counter->tstamp_stopped;
318 else
319 run_end = ctx->time;
320
321 counter->total_time_running = run_end - counter->tstamp_running;
322 }
323
324 /*
325 * Update total_time_enabled and total_time_running for all counters in a group.
326 */
327 static void update_group_times(struct perf_counter *leader)
328 {
329 struct perf_counter *counter;
330
331 update_counter_times(leader);
332 list_for_each_entry(counter, &leader->sibling_list, list_entry)
333 update_counter_times(counter);
334 }
335
336 /*
337 * Cross CPU call to disable a performance counter
338 */
339 static void __perf_counter_disable(void *info)
340 {
341 struct perf_counter *counter = info;
342 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
343 struct perf_counter_context *ctx = counter->ctx;
344 unsigned long flags;
345
346 /*
347 * If this is a per-task counter, need to check whether this
348 * counter's task is the current task on this cpu.
349 */
350 if (ctx->task && cpuctx->task_ctx != ctx)
351 return;
352
353 spin_lock_irqsave(&ctx->lock, flags);
354
355 /*
356 * If the counter is on, turn it off.
357 * If it is in error state, leave it in error state.
358 */
359 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
360 update_context_time(ctx);
361 update_counter_times(counter);
362 if (counter == counter->group_leader)
363 group_sched_out(counter, cpuctx, ctx);
364 else
365 counter_sched_out(counter, cpuctx, ctx);
366 counter->state = PERF_COUNTER_STATE_OFF;
367 }
368
369 spin_unlock_irqrestore(&ctx->lock, flags);
370 }
371
372 /*
373 * Disable a counter.
374 */
375 static void perf_counter_disable(struct perf_counter *counter)
376 {
377 struct perf_counter_context *ctx = counter->ctx;
378 struct task_struct *task = ctx->task;
379
380 if (!task) {
381 /*
382 * Disable the counter on the cpu that it's on
383 */
384 smp_call_function_single(counter->cpu, __perf_counter_disable,
385 counter, 1);
386 return;
387 }
388
389 retry:
390 task_oncpu_function_call(task, __perf_counter_disable, counter);
391
392 spin_lock_irq(&ctx->lock);
393 /*
394 * If the counter is still active, we need to retry the cross-call.
395 */
396 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
397 spin_unlock_irq(&ctx->lock);
398 goto retry;
399 }
400
401 /*
402 * Since we have the lock this context can't be scheduled
403 * in, so we can change the state safely.
404 */
405 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
406 update_counter_times(counter);
407 counter->state = PERF_COUNTER_STATE_OFF;
408 }
409
410 spin_unlock_irq(&ctx->lock);
411 }
412
413 static int
414 counter_sched_in(struct perf_counter *counter,
415 struct perf_cpu_context *cpuctx,
416 struct perf_counter_context *ctx,
417 int cpu)
418 {
419 if (counter->state <= PERF_COUNTER_STATE_OFF)
420 return 0;
421
422 counter->state = PERF_COUNTER_STATE_ACTIVE;
423 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
424 /*
425 * The new state must be visible before we turn it on in the hardware:
426 */
427 smp_wmb();
428
429 if (counter->pmu->enable(counter)) {
430 counter->state = PERF_COUNTER_STATE_INACTIVE;
431 counter->oncpu = -1;
432 return -EAGAIN;
433 }
434
435 counter->tstamp_running += ctx->time - counter->tstamp_stopped;
436
437 if (!is_software_counter(counter))
438 cpuctx->active_oncpu++;
439 ctx->nr_active++;
440
441 if (counter->hw_event.exclusive)
442 cpuctx->exclusive = 1;
443
444 return 0;
445 }
446
447 static int
448 group_sched_in(struct perf_counter *group_counter,
449 struct perf_cpu_context *cpuctx,
450 struct perf_counter_context *ctx,
451 int cpu)
452 {
453 struct perf_counter *counter, *partial_group;
454 int ret;
455
456 if (group_counter->state == PERF_COUNTER_STATE_OFF)
457 return 0;
458
459 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
460 if (ret)
461 return ret < 0 ? ret : 0;
462
463 group_counter->prev_state = group_counter->state;
464 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
465 return -EAGAIN;
466
467 /*
468 * Schedule in siblings as one group (if any):
469 */
470 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
471 counter->prev_state = counter->state;
472 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
473 partial_group = counter;
474 goto group_error;
475 }
476 }
477
478 return 0;
479
480 group_error:
481 /*
482 * Groups can be scheduled in as one unit only, so undo any
483 * partial group before returning:
484 */
485 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
486 if (counter == partial_group)
487 break;
488 counter_sched_out(counter, cpuctx, ctx);
489 }
490 counter_sched_out(group_counter, cpuctx, ctx);
491
492 return -EAGAIN;
493 }
494
495 /*
496 * Return 1 for a group consisting entirely of software counters,
497 * 0 if the group contains any hardware counters.
498 */
499 static int is_software_only_group(struct perf_counter *leader)
500 {
501 struct perf_counter *counter;
502
503 if (!is_software_counter(leader))
504 return 0;
505
506 list_for_each_entry(counter, &leader->sibling_list, list_entry)
507 if (!is_software_counter(counter))
508 return 0;
509
510 return 1;
511 }
512
513 /*
514 * Work out whether we can put this counter group on the CPU now.
515 */
516 static int group_can_go_on(struct perf_counter *counter,
517 struct perf_cpu_context *cpuctx,
518 int can_add_hw)
519 {
520 /*
521 * Groups consisting entirely of software counters can always go on.
522 */
523 if (is_software_only_group(counter))
524 return 1;
525 /*
526 * If an exclusive group is already on, no other hardware
527 * counters can go on.
528 */
529 if (cpuctx->exclusive)
530 return 0;
531 /*
532 * If this group is exclusive and there are already
533 * counters on the CPU, it can't go on.
534 */
535 if (counter->hw_event.exclusive && cpuctx->active_oncpu)
536 return 0;
537 /*
538 * Otherwise, try to add it if all previous groups were able
539 * to go on.
540 */
541 return can_add_hw;
542 }
543
544 static void add_counter_to_ctx(struct perf_counter *counter,
545 struct perf_counter_context *ctx)
546 {
547 list_add_counter(counter, ctx);
548 counter->prev_state = PERF_COUNTER_STATE_OFF;
549 counter->tstamp_enabled = ctx->time;
550 counter->tstamp_running = ctx->time;
551 counter->tstamp_stopped = ctx->time;
552 }
553
554 /*
555 * Cross CPU call to install and enable a performance counter
556 */
557 static void __perf_install_in_context(void *info)
558 {
559 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
560 struct perf_counter *counter = info;
561 struct perf_counter_context *ctx = counter->ctx;
562 struct perf_counter *leader = counter->group_leader;
563 int cpu = smp_processor_id();
564 unsigned long flags;
565 int err;
566
567 /*
568 * If this is a task context, we need to check whether it is
569 * the current task context of this cpu. If not it has been
570 * scheduled out before the smp call arrived.
571 */
572 if (ctx->task && cpuctx->task_ctx != ctx)
573 return;
574
575 spin_lock_irqsave(&ctx->lock, flags);
576 update_context_time(ctx);
577
578 /*
579 * Protect the list operation against NMI by disabling the
580 * counters on a global level. NOP for non NMI based counters.
581 */
582 perf_disable();
583
584 add_counter_to_ctx(counter, ctx);
585
586 /*
587 * Don't put the counter on if it is disabled or if
588 * it is in a group and the group isn't on.
589 */
590 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
591 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
592 goto unlock;
593
594 /*
595 * An exclusive counter can't go on if there are already active
596 * hardware counters, and no hardware counter can go on if there
597 * is already an exclusive counter on.
598 */
599 if (!group_can_go_on(counter, cpuctx, 1))
600 err = -EEXIST;
601 else
602 err = counter_sched_in(counter, cpuctx, ctx, cpu);
603
604 if (err) {
605 /*
606 * This counter couldn't go on. If it is in a group
607 * then we have to pull the whole group off.
608 * If the counter group is pinned then put it in error state.
609 */
610 if (leader != counter)
611 group_sched_out(leader, cpuctx, ctx);
612 if (leader->hw_event.pinned) {
613 update_group_times(leader);
614 leader->state = PERF_COUNTER_STATE_ERROR;
615 }
616 }
617
618 if (!err && !ctx->task && cpuctx->max_pertask)
619 cpuctx->max_pertask--;
620
621 unlock:
622 perf_enable();
623
624 spin_unlock_irqrestore(&ctx->lock, flags);
625 }
626
627 /*
628 * Attach a performance counter to a context
629 *
630 * First we add the counter to the list with the hardware enable bit
631 * in counter->hw_config cleared.
632 *
633 * If the counter is attached to a task which is on a CPU we use a smp
634 * call to enable it in the task context. The task might have been
635 * scheduled away, but we check this in the smp call again.
636 *
637 * Must be called with ctx->mutex held.
638 */
639 static void
640 perf_install_in_context(struct perf_counter_context *ctx,
641 struct perf_counter *counter,
642 int cpu)
643 {
644 struct task_struct *task = ctx->task;
645
646 if (!task) {
647 /*
648 * Per cpu counters are installed via an smp call and
649 * the install is always sucessful.
650 */
651 smp_call_function_single(cpu, __perf_install_in_context,
652 counter, 1);
653 return;
654 }
655
656 counter->task = task;
657 retry:
658 task_oncpu_function_call(task, __perf_install_in_context,
659 counter);
660
661 spin_lock_irq(&ctx->lock);
662 /*
663 * we need to retry the smp call.
664 */
665 if (ctx->is_active && list_empty(&counter->list_entry)) {
666 spin_unlock_irq(&ctx->lock);
667 goto retry;
668 }
669
670 /*
671 * The lock prevents that this context is scheduled in so we
672 * can add the counter safely, if it the call above did not
673 * succeed.
674 */
675 if (list_empty(&counter->list_entry))
676 add_counter_to_ctx(counter, ctx);
677 spin_unlock_irq(&ctx->lock);
678 }
679
680 /*
681 * Cross CPU call to enable a performance counter
682 */
683 static void __perf_counter_enable(void *info)
684 {
685 struct perf_counter *counter = info;
686 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
687 struct perf_counter_context *ctx = counter->ctx;
688 struct perf_counter *leader = counter->group_leader;
689 unsigned long flags;
690 int err;
691
692 /*
693 * If this is a per-task counter, need to check whether this
694 * counter's task is the current task on this cpu.
695 */
696 if (ctx->task && cpuctx->task_ctx != ctx)
697 return;
698
699 spin_lock_irqsave(&ctx->lock, flags);
700 update_context_time(ctx);
701
702 counter->prev_state = counter->state;
703 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
704 goto unlock;
705 counter->state = PERF_COUNTER_STATE_INACTIVE;
706 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
707
708 /*
709 * If the counter is in a group and isn't the group leader,
710 * then don't put it on unless the group is on.
711 */
712 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
713 goto unlock;
714
715 if (!group_can_go_on(counter, cpuctx, 1)) {
716 err = -EEXIST;
717 } else {
718 perf_disable();
719 if (counter == leader)
720 err = group_sched_in(counter, cpuctx, ctx,
721 smp_processor_id());
722 else
723 err = counter_sched_in(counter, cpuctx, ctx,
724 smp_processor_id());
725 perf_enable();
726 }
727
728 if (err) {
729 /*
730 * If this counter can't go on and it's part of a
731 * group, then the whole group has to come off.
732 */
733 if (leader != counter)
734 group_sched_out(leader, cpuctx, ctx);
735 if (leader->hw_event.pinned) {
736 update_group_times(leader);
737 leader->state = PERF_COUNTER_STATE_ERROR;
738 }
739 }
740
741 unlock:
742 spin_unlock_irqrestore(&ctx->lock, flags);
743 }
744
745 /*
746 * Enable a counter.
747 */
748 static void perf_counter_enable(struct perf_counter *counter)
749 {
750 struct perf_counter_context *ctx = counter->ctx;
751 struct task_struct *task = ctx->task;
752
753 if (!task) {
754 /*
755 * Enable the counter on the cpu that it's on
756 */
757 smp_call_function_single(counter->cpu, __perf_counter_enable,
758 counter, 1);
759 return;
760 }
761
762 spin_lock_irq(&ctx->lock);
763 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
764 goto out;
765
766 /*
767 * If the counter is in error state, clear that first.
768 * That way, if we see the counter in error state below, we
769 * know that it has gone back into error state, as distinct
770 * from the task having been scheduled away before the
771 * cross-call arrived.
772 */
773 if (counter->state == PERF_COUNTER_STATE_ERROR)
774 counter->state = PERF_COUNTER_STATE_OFF;
775
776 retry:
777 spin_unlock_irq(&ctx->lock);
778 task_oncpu_function_call(task, __perf_counter_enable, counter);
779
780 spin_lock_irq(&ctx->lock);
781
782 /*
783 * If the context is active and the counter is still off,
784 * we need to retry the cross-call.
785 */
786 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
787 goto retry;
788
789 /*
790 * Since we have the lock this context can't be scheduled
791 * in, so we can change the state safely.
792 */
793 if (counter->state == PERF_COUNTER_STATE_OFF) {
794 counter->state = PERF_COUNTER_STATE_INACTIVE;
795 counter->tstamp_enabled =
796 ctx->time - counter->total_time_enabled;
797 }
798 out:
799 spin_unlock_irq(&ctx->lock);
800 }
801
802 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
803 {
804 /*
805 * not supported on inherited counters
806 */
807 if (counter->hw_event.inherit)
808 return -EINVAL;
809
810 atomic_add(refresh, &counter->event_limit);
811 perf_counter_enable(counter);
812
813 return 0;
814 }
815
816 void __perf_counter_sched_out(struct perf_counter_context *ctx,
817 struct perf_cpu_context *cpuctx)
818 {
819 struct perf_counter *counter;
820
821 spin_lock(&ctx->lock);
822 ctx->is_active = 0;
823 if (likely(!ctx->nr_counters))
824 goto out;
825 update_context_time(ctx);
826
827 perf_disable();
828 if (ctx->nr_active) {
829 list_for_each_entry(counter, &ctx->counter_list, list_entry)
830 group_sched_out(counter, cpuctx, ctx);
831 }
832 perf_enable();
833 out:
834 spin_unlock(&ctx->lock);
835 }
836
837 /*
838 * Called from scheduler to remove the counters of the current task,
839 * with interrupts disabled.
840 *
841 * We stop each counter and update the counter value in counter->count.
842 *
843 * This does not protect us against NMI, but disable()
844 * sets the disabled bit in the control field of counter _before_
845 * accessing the counter control register. If a NMI hits, then it will
846 * not restart the counter.
847 */
848 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
849 {
850 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
851 struct perf_counter_context *ctx = &task->perf_counter_ctx;
852 struct pt_regs *regs;
853
854 if (likely(!cpuctx->task_ctx))
855 return;
856
857 update_context_time(ctx);
858
859 regs = task_pt_regs(task);
860 perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
861 __perf_counter_sched_out(ctx, cpuctx);
862
863 cpuctx->task_ctx = NULL;
864 }
865
866 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
867 {
868 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
869
870 __perf_counter_sched_out(ctx, cpuctx);
871 cpuctx->task_ctx = NULL;
872 }
873
874 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
875 {
876 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
877 }
878
879 static void
880 __perf_counter_sched_in(struct perf_counter_context *ctx,
881 struct perf_cpu_context *cpuctx, int cpu)
882 {
883 struct perf_counter *counter;
884 int can_add_hw = 1;
885
886 spin_lock(&ctx->lock);
887 ctx->is_active = 1;
888 if (likely(!ctx->nr_counters))
889 goto out;
890
891 ctx->timestamp = perf_clock();
892
893 perf_disable();
894
895 /*
896 * First go through the list and put on any pinned groups
897 * in order to give them the best chance of going on.
898 */
899 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
900 if (counter->state <= PERF_COUNTER_STATE_OFF ||
901 !counter->hw_event.pinned)
902 continue;
903 if (counter->cpu != -1 && counter->cpu != cpu)
904 continue;
905
906 if (group_can_go_on(counter, cpuctx, 1))
907 group_sched_in(counter, cpuctx, ctx, cpu);
908
909 /*
910 * If this pinned group hasn't been scheduled,
911 * put it in error state.
912 */
913 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
914 update_group_times(counter);
915 counter->state = PERF_COUNTER_STATE_ERROR;
916 }
917 }
918
919 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
920 /*
921 * Ignore counters in OFF or ERROR state, and
922 * ignore pinned counters since we did them already.
923 */
924 if (counter->state <= PERF_COUNTER_STATE_OFF ||
925 counter->hw_event.pinned)
926 continue;
927
928 /*
929 * Listen to the 'cpu' scheduling filter constraint
930 * of counters:
931 */
932 if (counter->cpu != -1 && counter->cpu != cpu)
933 continue;
934
935 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
936 if (group_sched_in(counter, cpuctx, ctx, cpu))
937 can_add_hw = 0;
938 }
939 }
940 perf_enable();
941 out:
942 spin_unlock(&ctx->lock);
943 }
944
945 /*
946 * Called from scheduler to add the counters of the current task
947 * with interrupts disabled.
948 *
949 * We restore the counter value and then enable it.
950 *
951 * This does not protect us against NMI, but enable()
952 * sets the enabled bit in the control field of counter _before_
953 * accessing the counter control register. If a NMI hits, then it will
954 * keep the counter running.
955 */
956 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
957 {
958 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
959 struct perf_counter_context *ctx = &task->perf_counter_ctx;
960
961 __perf_counter_sched_in(ctx, cpuctx, cpu);
962 cpuctx->task_ctx = ctx;
963 }
964
965 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
966 {
967 struct perf_counter_context *ctx = &cpuctx->ctx;
968
969 __perf_counter_sched_in(ctx, cpuctx, cpu);
970 }
971
972 int perf_counter_task_disable(void)
973 {
974 struct task_struct *curr = current;
975 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
976 struct perf_counter *counter;
977 unsigned long flags;
978
979 if (likely(!ctx->nr_counters))
980 return 0;
981
982 local_irq_save(flags);
983
984 __perf_counter_task_sched_out(ctx);
985
986 spin_lock(&ctx->lock);
987
988 /*
989 * Disable all the counters:
990 */
991 perf_disable();
992
993 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
994 if (counter->state != PERF_COUNTER_STATE_ERROR) {
995 update_group_times(counter);
996 counter->state = PERF_COUNTER_STATE_OFF;
997 }
998 }
999
1000 perf_enable();
1001
1002 spin_unlock_irqrestore(&ctx->lock, flags);
1003
1004 return 0;
1005 }
1006
1007 int perf_counter_task_enable(void)
1008 {
1009 struct task_struct *curr = current;
1010 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1011 struct perf_counter *counter;
1012 unsigned long flags;
1013 int cpu;
1014
1015 if (likely(!ctx->nr_counters))
1016 return 0;
1017
1018 local_irq_save(flags);
1019 cpu = smp_processor_id();
1020
1021 __perf_counter_task_sched_out(ctx);
1022
1023 spin_lock(&ctx->lock);
1024
1025 /*
1026 * Disable all the counters:
1027 */
1028 perf_disable();
1029
1030 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1031 if (counter->state > PERF_COUNTER_STATE_OFF)
1032 continue;
1033 counter->state = PERF_COUNTER_STATE_INACTIVE;
1034 counter->tstamp_enabled =
1035 ctx->time - counter->total_time_enabled;
1036 counter->hw_event.disabled = 0;
1037 }
1038 perf_enable();
1039
1040 spin_unlock(&ctx->lock);
1041
1042 perf_counter_task_sched_in(curr, cpu);
1043
1044 local_irq_restore(flags);
1045
1046 return 0;
1047 }
1048
1049 static void perf_log_period(struct perf_counter *counter, u64 period);
1050
1051 static void perf_adjust_freq(struct perf_counter_context *ctx)
1052 {
1053 struct perf_counter *counter;
1054 u64 irq_period;
1055 u64 events, period;
1056 s64 delta;
1057
1058 spin_lock(&ctx->lock);
1059 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1060 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1061 continue;
1062
1063 if (!counter->hw_event.freq || !counter->hw_event.irq_freq)
1064 continue;
1065
1066 events = HZ * counter->hw.interrupts * counter->hw.irq_period;
1067 period = div64_u64(events, counter->hw_event.irq_freq);
1068
1069 delta = (s64)(1 + period - counter->hw.irq_period);
1070 delta >>= 1;
1071
1072 irq_period = counter->hw.irq_period + delta;
1073
1074 if (!irq_period)
1075 irq_period = 1;
1076
1077 perf_log_period(counter, irq_period);
1078
1079 counter->hw.irq_period = irq_period;
1080 counter->hw.interrupts = 0;
1081 }
1082 spin_unlock(&ctx->lock);
1083 }
1084
1085 /*
1086 * Round-robin a context's counters:
1087 */
1088 static void rotate_ctx(struct perf_counter_context *ctx)
1089 {
1090 struct perf_counter *counter;
1091
1092 if (!ctx->nr_counters)
1093 return;
1094
1095 spin_lock(&ctx->lock);
1096 /*
1097 * Rotate the first entry last (works just fine for group counters too):
1098 */
1099 perf_disable();
1100 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1101 list_move_tail(&counter->list_entry, &ctx->counter_list);
1102 break;
1103 }
1104 perf_enable();
1105
1106 spin_unlock(&ctx->lock);
1107 }
1108
1109 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1110 {
1111 struct perf_cpu_context *cpuctx;
1112 struct perf_counter_context *ctx;
1113
1114 if (!atomic_read(&nr_counters))
1115 return;
1116
1117 cpuctx = &per_cpu(perf_cpu_context, cpu);
1118 ctx = &curr->perf_counter_ctx;
1119
1120 perf_adjust_freq(&cpuctx->ctx);
1121 perf_adjust_freq(ctx);
1122
1123 perf_counter_cpu_sched_out(cpuctx);
1124 __perf_counter_task_sched_out(ctx);
1125
1126 rotate_ctx(&cpuctx->ctx);
1127 rotate_ctx(ctx);
1128
1129 perf_counter_cpu_sched_in(cpuctx, cpu);
1130 perf_counter_task_sched_in(curr, cpu);
1131 }
1132
1133 /*
1134 * Cross CPU call to read the hardware counter
1135 */
1136 static void __read(void *info)
1137 {
1138 struct perf_counter *counter = info;
1139 struct perf_counter_context *ctx = counter->ctx;
1140 unsigned long flags;
1141
1142 local_irq_save(flags);
1143 if (ctx->is_active)
1144 update_context_time(ctx);
1145 counter->pmu->read(counter);
1146 update_counter_times(counter);
1147 local_irq_restore(flags);
1148 }
1149
1150 static u64 perf_counter_read(struct perf_counter *counter)
1151 {
1152 /*
1153 * If counter is enabled and currently active on a CPU, update the
1154 * value in the counter structure:
1155 */
1156 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1157 smp_call_function_single(counter->oncpu,
1158 __read, counter, 1);
1159 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1160 update_counter_times(counter);
1161 }
1162
1163 return atomic64_read(&counter->count);
1164 }
1165
1166 static void put_context(struct perf_counter_context *ctx)
1167 {
1168 if (ctx->task)
1169 put_task_struct(ctx->task);
1170 }
1171
1172 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1173 {
1174 struct perf_cpu_context *cpuctx;
1175 struct perf_counter_context *ctx;
1176 struct task_struct *task;
1177
1178 /*
1179 * If cpu is not a wildcard then this is a percpu counter:
1180 */
1181 if (cpu != -1) {
1182 /* Must be root to operate on a CPU counter: */
1183 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1184 return ERR_PTR(-EACCES);
1185
1186 if (cpu < 0 || cpu > num_possible_cpus())
1187 return ERR_PTR(-EINVAL);
1188
1189 /*
1190 * We could be clever and allow to attach a counter to an
1191 * offline CPU and activate it when the CPU comes up, but
1192 * that's for later.
1193 */
1194 if (!cpu_isset(cpu, cpu_online_map))
1195 return ERR_PTR(-ENODEV);
1196
1197 cpuctx = &per_cpu(perf_cpu_context, cpu);
1198 ctx = &cpuctx->ctx;
1199
1200 return ctx;
1201 }
1202
1203 rcu_read_lock();
1204 if (!pid)
1205 task = current;
1206 else
1207 task = find_task_by_vpid(pid);
1208 if (task)
1209 get_task_struct(task);
1210 rcu_read_unlock();
1211
1212 if (!task)
1213 return ERR_PTR(-ESRCH);
1214
1215 ctx = &task->perf_counter_ctx;
1216 ctx->task = task;
1217
1218 /* Reuse ptrace permission checks for now. */
1219 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1220 put_context(ctx);
1221 return ERR_PTR(-EACCES);
1222 }
1223
1224 return ctx;
1225 }
1226
1227 static void free_counter_rcu(struct rcu_head *head)
1228 {
1229 struct perf_counter *counter;
1230
1231 counter = container_of(head, struct perf_counter, rcu_head);
1232 kfree(counter);
1233 }
1234
1235 static void perf_pending_sync(struct perf_counter *counter);
1236
1237 static void free_counter(struct perf_counter *counter)
1238 {
1239 perf_pending_sync(counter);
1240
1241 atomic_dec(&nr_counters);
1242 if (counter->hw_event.mmap)
1243 atomic_dec(&nr_mmap_tracking);
1244 if (counter->hw_event.munmap)
1245 atomic_dec(&nr_munmap_tracking);
1246 if (counter->hw_event.comm)
1247 atomic_dec(&nr_comm_tracking);
1248
1249 if (counter->destroy)
1250 counter->destroy(counter);
1251
1252 call_rcu(&counter->rcu_head, free_counter_rcu);
1253 }
1254
1255 /*
1256 * Called when the last reference to the file is gone.
1257 */
1258 static int perf_release(struct inode *inode, struct file *file)
1259 {
1260 struct perf_counter *counter = file->private_data;
1261 struct perf_counter_context *ctx = counter->ctx;
1262
1263 file->private_data = NULL;
1264
1265 mutex_lock(&ctx->mutex);
1266 mutex_lock(&counter->mutex);
1267
1268 perf_counter_remove_from_context(counter);
1269
1270 mutex_unlock(&counter->mutex);
1271 mutex_unlock(&ctx->mutex);
1272
1273 free_counter(counter);
1274 put_context(ctx);
1275
1276 return 0;
1277 }
1278
1279 /*
1280 * Read the performance counter - simple non blocking version for now
1281 */
1282 static ssize_t
1283 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1284 {
1285 u64 values[3];
1286 int n;
1287
1288 /*
1289 * Return end-of-file for a read on a counter that is in
1290 * error state (i.e. because it was pinned but it couldn't be
1291 * scheduled on to the CPU at some point).
1292 */
1293 if (counter->state == PERF_COUNTER_STATE_ERROR)
1294 return 0;
1295
1296 mutex_lock(&counter->mutex);
1297 values[0] = perf_counter_read(counter);
1298 n = 1;
1299 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1300 values[n++] = counter->total_time_enabled +
1301 atomic64_read(&counter->child_total_time_enabled);
1302 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1303 values[n++] = counter->total_time_running +
1304 atomic64_read(&counter->child_total_time_running);
1305 mutex_unlock(&counter->mutex);
1306
1307 if (count < n * sizeof(u64))
1308 return -EINVAL;
1309 count = n * sizeof(u64);
1310
1311 if (copy_to_user(buf, values, count))
1312 return -EFAULT;
1313
1314 return count;
1315 }
1316
1317 static ssize_t
1318 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1319 {
1320 struct perf_counter *counter = file->private_data;
1321
1322 return perf_read_hw(counter, buf, count);
1323 }
1324
1325 static unsigned int perf_poll(struct file *file, poll_table *wait)
1326 {
1327 struct perf_counter *counter = file->private_data;
1328 struct perf_mmap_data *data;
1329 unsigned int events = POLL_HUP;
1330
1331 rcu_read_lock();
1332 data = rcu_dereference(counter->data);
1333 if (data)
1334 events = atomic_xchg(&data->poll, 0);
1335 rcu_read_unlock();
1336
1337 poll_wait(file, &counter->waitq, wait);
1338
1339 return events;
1340 }
1341
1342 static void perf_counter_reset(struct perf_counter *counter)
1343 {
1344 (void)perf_counter_read(counter);
1345 atomic64_set(&counter->count, 0);
1346 perf_counter_update_userpage(counter);
1347 }
1348
1349 static void perf_counter_for_each_sibling(struct perf_counter *counter,
1350 void (*func)(struct perf_counter *))
1351 {
1352 struct perf_counter_context *ctx = counter->ctx;
1353 struct perf_counter *sibling;
1354
1355 spin_lock_irq(&ctx->lock);
1356 counter = counter->group_leader;
1357
1358 func(counter);
1359 list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1360 func(sibling);
1361 spin_unlock_irq(&ctx->lock);
1362 }
1363
1364 static void perf_counter_for_each_child(struct perf_counter *counter,
1365 void (*func)(struct perf_counter *))
1366 {
1367 struct perf_counter *child;
1368
1369 mutex_lock(&counter->mutex);
1370 func(counter);
1371 list_for_each_entry(child, &counter->child_list, child_list)
1372 func(child);
1373 mutex_unlock(&counter->mutex);
1374 }
1375
1376 static void perf_counter_for_each(struct perf_counter *counter,
1377 void (*func)(struct perf_counter *))
1378 {
1379 struct perf_counter *child;
1380
1381 mutex_lock(&counter->mutex);
1382 perf_counter_for_each_sibling(counter, func);
1383 list_for_each_entry(child, &counter->child_list, child_list)
1384 perf_counter_for_each_sibling(child, func);
1385 mutex_unlock(&counter->mutex);
1386 }
1387
1388 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1389 {
1390 struct perf_counter *counter = file->private_data;
1391 void (*func)(struct perf_counter *);
1392 u32 flags = arg;
1393
1394 switch (cmd) {
1395 case PERF_COUNTER_IOC_ENABLE:
1396 func = perf_counter_enable;
1397 break;
1398 case PERF_COUNTER_IOC_DISABLE:
1399 func = perf_counter_disable;
1400 break;
1401 case PERF_COUNTER_IOC_RESET:
1402 func = perf_counter_reset;
1403 break;
1404
1405 case PERF_COUNTER_IOC_REFRESH:
1406 return perf_counter_refresh(counter, arg);
1407 default:
1408 return -ENOTTY;
1409 }
1410
1411 if (flags & PERF_IOC_FLAG_GROUP)
1412 perf_counter_for_each(counter, func);
1413 else
1414 perf_counter_for_each_child(counter, func);
1415
1416 return 0;
1417 }
1418
1419 /*
1420 * Callers need to ensure there can be no nesting of this function, otherwise
1421 * the seqlock logic goes bad. We can not serialize this because the arch
1422 * code calls this from NMI context.
1423 */
1424 void perf_counter_update_userpage(struct perf_counter *counter)
1425 {
1426 struct perf_mmap_data *data;
1427 struct perf_counter_mmap_page *userpg;
1428
1429 rcu_read_lock();
1430 data = rcu_dereference(counter->data);
1431 if (!data)
1432 goto unlock;
1433
1434 userpg = data->user_page;
1435
1436 /*
1437 * Disable preemption so as to not let the corresponding user-space
1438 * spin too long if we get preempted.
1439 */
1440 preempt_disable();
1441 ++userpg->lock;
1442 barrier();
1443 userpg->index = counter->hw.idx;
1444 userpg->offset = atomic64_read(&counter->count);
1445 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1446 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1447
1448 barrier();
1449 ++userpg->lock;
1450 preempt_enable();
1451 unlock:
1452 rcu_read_unlock();
1453 }
1454
1455 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1456 {
1457 struct perf_counter *counter = vma->vm_file->private_data;
1458 struct perf_mmap_data *data;
1459 int ret = VM_FAULT_SIGBUS;
1460
1461 rcu_read_lock();
1462 data = rcu_dereference(counter->data);
1463 if (!data)
1464 goto unlock;
1465
1466 if (vmf->pgoff == 0) {
1467 vmf->page = virt_to_page(data->user_page);
1468 } else {
1469 int nr = vmf->pgoff - 1;
1470
1471 if ((unsigned)nr > data->nr_pages)
1472 goto unlock;
1473
1474 vmf->page = virt_to_page(data->data_pages[nr]);
1475 }
1476 get_page(vmf->page);
1477 ret = 0;
1478 unlock:
1479 rcu_read_unlock();
1480
1481 return ret;
1482 }
1483
1484 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1485 {
1486 struct perf_mmap_data *data;
1487 unsigned long size;
1488 int i;
1489
1490 WARN_ON(atomic_read(&counter->mmap_count));
1491
1492 size = sizeof(struct perf_mmap_data);
1493 size += nr_pages * sizeof(void *);
1494
1495 data = kzalloc(size, GFP_KERNEL);
1496 if (!data)
1497 goto fail;
1498
1499 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1500 if (!data->user_page)
1501 goto fail_user_page;
1502
1503 for (i = 0; i < nr_pages; i++) {
1504 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1505 if (!data->data_pages[i])
1506 goto fail_data_pages;
1507 }
1508
1509 data->nr_pages = nr_pages;
1510 atomic_set(&data->lock, -1);
1511
1512 rcu_assign_pointer(counter->data, data);
1513
1514 return 0;
1515
1516 fail_data_pages:
1517 for (i--; i >= 0; i--)
1518 free_page((unsigned long)data->data_pages[i]);
1519
1520 free_page((unsigned long)data->user_page);
1521
1522 fail_user_page:
1523 kfree(data);
1524
1525 fail:
1526 return -ENOMEM;
1527 }
1528
1529 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1530 {
1531 struct perf_mmap_data *data = container_of(rcu_head,
1532 struct perf_mmap_data, rcu_head);
1533 int i;
1534
1535 free_page((unsigned long)data->user_page);
1536 for (i = 0; i < data->nr_pages; i++)
1537 free_page((unsigned long)data->data_pages[i]);
1538 kfree(data);
1539 }
1540
1541 static void perf_mmap_data_free(struct perf_counter *counter)
1542 {
1543 struct perf_mmap_data *data = counter->data;
1544
1545 WARN_ON(atomic_read(&counter->mmap_count));
1546
1547 rcu_assign_pointer(counter->data, NULL);
1548 call_rcu(&data->rcu_head, __perf_mmap_data_free);
1549 }
1550
1551 static void perf_mmap_open(struct vm_area_struct *vma)
1552 {
1553 struct perf_counter *counter = vma->vm_file->private_data;
1554
1555 atomic_inc(&counter->mmap_count);
1556 }
1557
1558 static void perf_mmap_close(struct vm_area_struct *vma)
1559 {
1560 struct perf_counter *counter = vma->vm_file->private_data;
1561
1562 if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1563 &counter->mmap_mutex)) {
1564 struct user_struct *user = current_user();
1565
1566 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1567 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1568 perf_mmap_data_free(counter);
1569 mutex_unlock(&counter->mmap_mutex);
1570 }
1571 }
1572
1573 static struct vm_operations_struct perf_mmap_vmops = {
1574 .open = perf_mmap_open,
1575 .close = perf_mmap_close,
1576 .fault = perf_mmap_fault,
1577 };
1578
1579 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1580 {
1581 struct perf_counter *counter = file->private_data;
1582 struct user_struct *user = current_user();
1583 unsigned long vma_size;
1584 unsigned long nr_pages;
1585 unsigned long user_locked, user_lock_limit;
1586 unsigned long locked, lock_limit;
1587 long user_extra, extra;
1588 int ret = 0;
1589
1590 if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1591 return -EINVAL;
1592
1593 vma_size = vma->vm_end - vma->vm_start;
1594 nr_pages = (vma_size / PAGE_SIZE) - 1;
1595
1596 /*
1597 * If we have data pages ensure they're a power-of-two number, so we
1598 * can do bitmasks instead of modulo.
1599 */
1600 if (nr_pages != 0 && !is_power_of_2(nr_pages))
1601 return -EINVAL;
1602
1603 if (vma_size != PAGE_SIZE * (1 + nr_pages))
1604 return -EINVAL;
1605
1606 if (vma->vm_pgoff != 0)
1607 return -EINVAL;
1608
1609 mutex_lock(&counter->mmap_mutex);
1610 if (atomic_inc_not_zero(&counter->mmap_count)) {
1611 if (nr_pages != counter->data->nr_pages)
1612 ret = -EINVAL;
1613 goto unlock;
1614 }
1615
1616 user_extra = nr_pages + 1;
1617 user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1618 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1619
1620 extra = 0;
1621 if (user_locked > user_lock_limit)
1622 extra = user_locked - user_lock_limit;
1623
1624 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1625 lock_limit >>= PAGE_SHIFT;
1626 locked = vma->vm_mm->locked_vm + extra;
1627
1628 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1629 ret = -EPERM;
1630 goto unlock;
1631 }
1632
1633 WARN_ON(counter->data);
1634 ret = perf_mmap_data_alloc(counter, nr_pages);
1635 if (ret)
1636 goto unlock;
1637
1638 atomic_set(&counter->mmap_count, 1);
1639 atomic_long_add(user_extra, &user->locked_vm);
1640 vma->vm_mm->locked_vm += extra;
1641 counter->data->nr_locked = extra;
1642 unlock:
1643 mutex_unlock(&counter->mmap_mutex);
1644
1645 vma->vm_flags &= ~VM_MAYWRITE;
1646 vma->vm_flags |= VM_RESERVED;
1647 vma->vm_ops = &perf_mmap_vmops;
1648
1649 return ret;
1650 }
1651
1652 static int perf_fasync(int fd, struct file *filp, int on)
1653 {
1654 struct perf_counter *counter = filp->private_data;
1655 struct inode *inode = filp->f_path.dentry->d_inode;
1656 int retval;
1657
1658 mutex_lock(&inode->i_mutex);
1659 retval = fasync_helper(fd, filp, on, &counter->fasync);
1660 mutex_unlock(&inode->i_mutex);
1661
1662 if (retval < 0)
1663 return retval;
1664
1665 return 0;
1666 }
1667
1668 static const struct file_operations perf_fops = {
1669 .release = perf_release,
1670 .read = perf_read,
1671 .poll = perf_poll,
1672 .unlocked_ioctl = perf_ioctl,
1673 .compat_ioctl = perf_ioctl,
1674 .mmap = perf_mmap,
1675 .fasync = perf_fasync,
1676 };
1677
1678 /*
1679 * Perf counter wakeup
1680 *
1681 * If there's data, ensure we set the poll() state and publish everything
1682 * to user-space before waking everybody up.
1683 */
1684
1685 void perf_counter_wakeup(struct perf_counter *counter)
1686 {
1687 wake_up_all(&counter->waitq);
1688
1689 if (counter->pending_kill) {
1690 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1691 counter->pending_kill = 0;
1692 }
1693 }
1694
1695 /*
1696 * Pending wakeups
1697 *
1698 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1699 *
1700 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1701 * single linked list and use cmpxchg() to add entries lockless.
1702 */
1703
1704 static void perf_pending_counter(struct perf_pending_entry *entry)
1705 {
1706 struct perf_counter *counter = container_of(entry,
1707 struct perf_counter, pending);
1708
1709 if (counter->pending_disable) {
1710 counter->pending_disable = 0;
1711 perf_counter_disable(counter);
1712 }
1713
1714 if (counter->pending_wakeup) {
1715 counter->pending_wakeup = 0;
1716 perf_counter_wakeup(counter);
1717 }
1718 }
1719
1720 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1721
1722 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1723 PENDING_TAIL,
1724 };
1725
1726 static void perf_pending_queue(struct perf_pending_entry *entry,
1727 void (*func)(struct perf_pending_entry *))
1728 {
1729 struct perf_pending_entry **head;
1730
1731 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1732 return;
1733
1734 entry->func = func;
1735
1736 head = &get_cpu_var(perf_pending_head);
1737
1738 do {
1739 entry->next = *head;
1740 } while (cmpxchg(head, entry->next, entry) != entry->next);
1741
1742 set_perf_counter_pending();
1743
1744 put_cpu_var(perf_pending_head);
1745 }
1746
1747 static int __perf_pending_run(void)
1748 {
1749 struct perf_pending_entry *list;
1750 int nr = 0;
1751
1752 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1753 while (list != PENDING_TAIL) {
1754 void (*func)(struct perf_pending_entry *);
1755 struct perf_pending_entry *entry = list;
1756
1757 list = list->next;
1758
1759 func = entry->func;
1760 entry->next = NULL;
1761 /*
1762 * Ensure we observe the unqueue before we issue the wakeup,
1763 * so that we won't be waiting forever.
1764 * -- see perf_not_pending().
1765 */
1766 smp_wmb();
1767
1768 func(entry);
1769 nr++;
1770 }
1771
1772 return nr;
1773 }
1774
1775 static inline int perf_not_pending(struct perf_counter *counter)
1776 {
1777 /*
1778 * If we flush on whatever cpu we run, there is a chance we don't
1779 * need to wait.
1780 */
1781 get_cpu();
1782 __perf_pending_run();
1783 put_cpu();
1784
1785 /*
1786 * Ensure we see the proper queue state before going to sleep
1787 * so that we do not miss the wakeup. -- see perf_pending_handle()
1788 */
1789 smp_rmb();
1790 return counter->pending.next == NULL;
1791 }
1792
1793 static void perf_pending_sync(struct perf_counter *counter)
1794 {
1795 wait_event(counter->waitq, perf_not_pending(counter));
1796 }
1797
1798 void perf_counter_do_pending(void)
1799 {
1800 __perf_pending_run();
1801 }
1802
1803 /*
1804 * Callchain support -- arch specific
1805 */
1806
1807 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1808 {
1809 return NULL;
1810 }
1811
1812 /*
1813 * Output
1814 */
1815
1816 struct perf_output_handle {
1817 struct perf_counter *counter;
1818 struct perf_mmap_data *data;
1819 unsigned int offset;
1820 unsigned int head;
1821 int nmi;
1822 int overflow;
1823 int locked;
1824 unsigned long flags;
1825 };
1826
1827 static void perf_output_wakeup(struct perf_output_handle *handle)
1828 {
1829 atomic_set(&handle->data->poll, POLL_IN);
1830
1831 if (handle->nmi) {
1832 handle->counter->pending_wakeup = 1;
1833 perf_pending_queue(&handle->counter->pending,
1834 perf_pending_counter);
1835 } else
1836 perf_counter_wakeup(handle->counter);
1837 }
1838
1839 /*
1840 * Curious locking construct.
1841 *
1842 * We need to ensure a later event doesn't publish a head when a former
1843 * event isn't done writing. However since we need to deal with NMIs we
1844 * cannot fully serialize things.
1845 *
1846 * What we do is serialize between CPUs so we only have to deal with NMI
1847 * nesting on a single CPU.
1848 *
1849 * We only publish the head (and generate a wakeup) when the outer-most
1850 * event completes.
1851 */
1852 static void perf_output_lock(struct perf_output_handle *handle)
1853 {
1854 struct perf_mmap_data *data = handle->data;
1855 int cpu;
1856
1857 handle->locked = 0;
1858
1859 local_irq_save(handle->flags);
1860 cpu = smp_processor_id();
1861
1862 if (in_nmi() && atomic_read(&data->lock) == cpu)
1863 return;
1864
1865 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1866 cpu_relax();
1867
1868 handle->locked = 1;
1869 }
1870
1871 static void perf_output_unlock(struct perf_output_handle *handle)
1872 {
1873 struct perf_mmap_data *data = handle->data;
1874 int head, cpu;
1875
1876 data->done_head = data->head;
1877
1878 if (!handle->locked)
1879 goto out;
1880
1881 again:
1882 /*
1883 * The xchg implies a full barrier that ensures all writes are done
1884 * before we publish the new head, matched by a rmb() in userspace when
1885 * reading this position.
1886 */
1887 while ((head = atomic_xchg(&data->done_head, 0)))
1888 data->user_page->data_head = head;
1889
1890 /*
1891 * NMI can happen here, which means we can miss a done_head update.
1892 */
1893
1894 cpu = atomic_xchg(&data->lock, -1);
1895 WARN_ON_ONCE(cpu != smp_processor_id());
1896
1897 /*
1898 * Therefore we have to validate we did not indeed do so.
1899 */
1900 if (unlikely(atomic_read(&data->done_head))) {
1901 /*
1902 * Since we had it locked, we can lock it again.
1903 */
1904 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1905 cpu_relax();
1906
1907 goto again;
1908 }
1909
1910 if (atomic_xchg(&data->wakeup, 0))
1911 perf_output_wakeup(handle);
1912 out:
1913 local_irq_restore(handle->flags);
1914 }
1915
1916 static int perf_output_begin(struct perf_output_handle *handle,
1917 struct perf_counter *counter, unsigned int size,
1918 int nmi, int overflow)
1919 {
1920 struct perf_mmap_data *data;
1921 unsigned int offset, head;
1922
1923 /*
1924 * For inherited counters we send all the output towards the parent.
1925 */
1926 if (counter->parent)
1927 counter = counter->parent;
1928
1929 rcu_read_lock();
1930 data = rcu_dereference(counter->data);
1931 if (!data)
1932 goto out;
1933
1934 handle->data = data;
1935 handle->counter = counter;
1936 handle->nmi = nmi;
1937 handle->overflow = overflow;
1938
1939 if (!data->nr_pages)
1940 goto fail;
1941
1942 perf_output_lock(handle);
1943
1944 do {
1945 offset = head = atomic_read(&data->head);
1946 head += size;
1947 } while (atomic_cmpxchg(&data->head, offset, head) != offset);
1948
1949 handle->offset = offset;
1950 handle->head = head;
1951
1952 if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
1953 atomic_set(&data->wakeup, 1);
1954
1955 return 0;
1956
1957 fail:
1958 perf_output_wakeup(handle);
1959 out:
1960 rcu_read_unlock();
1961
1962 return -ENOSPC;
1963 }
1964
1965 static void perf_output_copy(struct perf_output_handle *handle,
1966 void *buf, unsigned int len)
1967 {
1968 unsigned int pages_mask;
1969 unsigned int offset;
1970 unsigned int size;
1971 void **pages;
1972
1973 offset = handle->offset;
1974 pages_mask = handle->data->nr_pages - 1;
1975 pages = handle->data->data_pages;
1976
1977 do {
1978 unsigned int page_offset;
1979 int nr;
1980
1981 nr = (offset >> PAGE_SHIFT) & pages_mask;
1982 page_offset = offset & (PAGE_SIZE - 1);
1983 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
1984
1985 memcpy(pages[nr] + page_offset, buf, size);
1986
1987 len -= size;
1988 buf += size;
1989 offset += size;
1990 } while (len);
1991
1992 handle->offset = offset;
1993
1994 /*
1995 * Check we didn't copy past our reservation window, taking the
1996 * possible unsigned int wrap into account.
1997 */
1998 WARN_ON_ONCE(((int)(handle->head - handle->offset)) < 0);
1999 }
2000
2001 #define perf_output_put(handle, x) \
2002 perf_output_copy((handle), &(x), sizeof(x))
2003
2004 static void perf_output_end(struct perf_output_handle *handle)
2005 {
2006 struct perf_counter *counter = handle->counter;
2007 struct perf_mmap_data *data = handle->data;
2008
2009 int wakeup_events = counter->hw_event.wakeup_events;
2010
2011 if (handle->overflow && wakeup_events) {
2012 int events = atomic_inc_return(&data->events);
2013 if (events >= wakeup_events) {
2014 atomic_sub(wakeup_events, &data->events);
2015 atomic_set(&data->wakeup, 1);
2016 }
2017 }
2018
2019 perf_output_unlock(handle);
2020 rcu_read_unlock();
2021 }
2022
2023 static void perf_counter_output(struct perf_counter *counter,
2024 int nmi, struct pt_regs *regs, u64 addr)
2025 {
2026 int ret;
2027 u64 record_type = counter->hw_event.record_type;
2028 struct perf_output_handle handle;
2029 struct perf_event_header header;
2030 u64 ip;
2031 struct {
2032 u32 pid, tid;
2033 } tid_entry;
2034 struct {
2035 u64 event;
2036 u64 counter;
2037 } group_entry;
2038 struct perf_callchain_entry *callchain = NULL;
2039 int callchain_size = 0;
2040 u64 time;
2041 struct {
2042 u32 cpu, reserved;
2043 } cpu_entry;
2044
2045 header.type = 0;
2046 header.size = sizeof(header);
2047
2048 header.misc = PERF_EVENT_MISC_OVERFLOW;
2049 header.misc |= perf_misc_flags(regs);
2050
2051 if (record_type & PERF_RECORD_IP) {
2052 ip = perf_instruction_pointer(regs);
2053 header.type |= PERF_RECORD_IP;
2054 header.size += sizeof(ip);
2055 }
2056
2057 if (record_type & PERF_RECORD_TID) {
2058 /* namespace issues */
2059 tid_entry.pid = current->group_leader->pid;
2060 tid_entry.tid = current->pid;
2061
2062 header.type |= PERF_RECORD_TID;
2063 header.size += sizeof(tid_entry);
2064 }
2065
2066 if (record_type & PERF_RECORD_TIME) {
2067 /*
2068 * Maybe do better on x86 and provide cpu_clock_nmi()
2069 */
2070 time = sched_clock();
2071
2072 header.type |= PERF_RECORD_TIME;
2073 header.size += sizeof(u64);
2074 }
2075
2076 if (record_type & PERF_RECORD_ADDR) {
2077 header.type |= PERF_RECORD_ADDR;
2078 header.size += sizeof(u64);
2079 }
2080
2081 if (record_type & PERF_RECORD_CONFIG) {
2082 header.type |= PERF_RECORD_CONFIG;
2083 header.size += sizeof(u64);
2084 }
2085
2086 if (record_type & PERF_RECORD_CPU) {
2087 header.type |= PERF_RECORD_CPU;
2088 header.size += sizeof(cpu_entry);
2089
2090 cpu_entry.cpu = raw_smp_processor_id();
2091 }
2092
2093 if (record_type & PERF_RECORD_GROUP) {
2094 header.type |= PERF_RECORD_GROUP;
2095 header.size += sizeof(u64) +
2096 counter->nr_siblings * sizeof(group_entry);
2097 }
2098
2099 if (record_type & PERF_RECORD_CALLCHAIN) {
2100 callchain = perf_callchain(regs);
2101
2102 if (callchain) {
2103 callchain_size = (1 + callchain->nr) * sizeof(u64);
2104
2105 header.type |= PERF_RECORD_CALLCHAIN;
2106 header.size += callchain_size;
2107 }
2108 }
2109
2110 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2111 if (ret)
2112 return;
2113
2114 perf_output_put(&handle, header);
2115
2116 if (record_type & PERF_RECORD_IP)
2117 perf_output_put(&handle, ip);
2118
2119 if (record_type & PERF_RECORD_TID)
2120 perf_output_put(&handle, tid_entry);
2121
2122 if (record_type & PERF_RECORD_TIME)
2123 perf_output_put(&handle, time);
2124
2125 if (record_type & PERF_RECORD_ADDR)
2126 perf_output_put(&handle, addr);
2127
2128 if (record_type & PERF_RECORD_CONFIG)
2129 perf_output_put(&handle, counter->hw_event.config);
2130
2131 if (record_type & PERF_RECORD_CPU)
2132 perf_output_put(&handle, cpu_entry);
2133
2134 /*
2135 * XXX PERF_RECORD_GROUP vs inherited counters seems difficult.
2136 */
2137 if (record_type & PERF_RECORD_GROUP) {
2138 struct perf_counter *leader, *sub;
2139 u64 nr = counter->nr_siblings;
2140
2141 perf_output_put(&handle, nr);
2142
2143 leader = counter->group_leader;
2144 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2145 if (sub != counter)
2146 sub->pmu->read(sub);
2147
2148 group_entry.event = sub->hw_event.config;
2149 group_entry.counter = atomic64_read(&sub->count);
2150
2151 perf_output_put(&handle, group_entry);
2152 }
2153 }
2154
2155 if (callchain)
2156 perf_output_copy(&handle, callchain, callchain_size);
2157
2158 perf_output_end(&handle);
2159 }
2160
2161 /*
2162 * comm tracking
2163 */
2164
2165 struct perf_comm_event {
2166 struct task_struct *task;
2167 char *comm;
2168 int comm_size;
2169
2170 struct {
2171 struct perf_event_header header;
2172
2173 u32 pid;
2174 u32 tid;
2175 } event;
2176 };
2177
2178 static void perf_counter_comm_output(struct perf_counter *counter,
2179 struct perf_comm_event *comm_event)
2180 {
2181 struct perf_output_handle handle;
2182 int size = comm_event->event.header.size;
2183 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2184
2185 if (ret)
2186 return;
2187
2188 perf_output_put(&handle, comm_event->event);
2189 perf_output_copy(&handle, comm_event->comm,
2190 comm_event->comm_size);
2191 perf_output_end(&handle);
2192 }
2193
2194 static int perf_counter_comm_match(struct perf_counter *counter,
2195 struct perf_comm_event *comm_event)
2196 {
2197 if (counter->hw_event.comm &&
2198 comm_event->event.header.type == PERF_EVENT_COMM)
2199 return 1;
2200
2201 return 0;
2202 }
2203
2204 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2205 struct perf_comm_event *comm_event)
2206 {
2207 struct perf_counter *counter;
2208
2209 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2210 return;
2211
2212 rcu_read_lock();
2213 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2214 if (perf_counter_comm_match(counter, comm_event))
2215 perf_counter_comm_output(counter, comm_event);
2216 }
2217 rcu_read_unlock();
2218 }
2219
2220 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2221 {
2222 struct perf_cpu_context *cpuctx;
2223 unsigned int size;
2224 char *comm = comm_event->task->comm;
2225
2226 size = ALIGN(strlen(comm)+1, sizeof(u64));
2227
2228 comm_event->comm = comm;
2229 comm_event->comm_size = size;
2230
2231 comm_event->event.header.size = sizeof(comm_event->event) + size;
2232
2233 cpuctx = &get_cpu_var(perf_cpu_context);
2234 perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2235 put_cpu_var(perf_cpu_context);
2236
2237 perf_counter_comm_ctx(&current->perf_counter_ctx, comm_event);
2238 }
2239
2240 void perf_counter_comm(struct task_struct *task)
2241 {
2242 struct perf_comm_event comm_event;
2243
2244 if (!atomic_read(&nr_comm_tracking))
2245 return;
2246
2247 comm_event = (struct perf_comm_event){
2248 .task = task,
2249 .event = {
2250 .header = { .type = PERF_EVENT_COMM, },
2251 .pid = task->group_leader->pid,
2252 .tid = task->pid,
2253 },
2254 };
2255
2256 perf_counter_comm_event(&comm_event);
2257 }
2258
2259 /*
2260 * mmap tracking
2261 */
2262
2263 struct perf_mmap_event {
2264 struct file *file;
2265 char *file_name;
2266 int file_size;
2267
2268 struct {
2269 struct perf_event_header header;
2270
2271 u32 pid;
2272 u32 tid;
2273 u64 start;
2274 u64 len;
2275 u64 pgoff;
2276 } event;
2277 };
2278
2279 static void perf_counter_mmap_output(struct perf_counter *counter,
2280 struct perf_mmap_event *mmap_event)
2281 {
2282 struct perf_output_handle handle;
2283 int size = mmap_event->event.header.size;
2284 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2285
2286 if (ret)
2287 return;
2288
2289 perf_output_put(&handle, mmap_event->event);
2290 perf_output_copy(&handle, mmap_event->file_name,
2291 mmap_event->file_size);
2292 perf_output_end(&handle);
2293 }
2294
2295 static int perf_counter_mmap_match(struct perf_counter *counter,
2296 struct perf_mmap_event *mmap_event)
2297 {
2298 if (counter->hw_event.mmap &&
2299 mmap_event->event.header.type == PERF_EVENT_MMAP)
2300 return 1;
2301
2302 if (counter->hw_event.munmap &&
2303 mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2304 return 1;
2305
2306 return 0;
2307 }
2308
2309 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2310 struct perf_mmap_event *mmap_event)
2311 {
2312 struct perf_counter *counter;
2313
2314 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2315 return;
2316
2317 rcu_read_lock();
2318 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2319 if (perf_counter_mmap_match(counter, mmap_event))
2320 perf_counter_mmap_output(counter, mmap_event);
2321 }
2322 rcu_read_unlock();
2323 }
2324
2325 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2326 {
2327 struct perf_cpu_context *cpuctx;
2328 struct file *file = mmap_event->file;
2329 unsigned int size;
2330 char tmp[16];
2331 char *buf = NULL;
2332 char *name;
2333
2334 if (file) {
2335 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2336 if (!buf) {
2337 name = strncpy(tmp, "//enomem", sizeof(tmp));
2338 goto got_name;
2339 }
2340 name = d_path(&file->f_path, buf, PATH_MAX);
2341 if (IS_ERR(name)) {
2342 name = strncpy(tmp, "//toolong", sizeof(tmp));
2343 goto got_name;
2344 }
2345 } else {
2346 name = strncpy(tmp, "//anon", sizeof(tmp));
2347 goto got_name;
2348 }
2349
2350 got_name:
2351 size = ALIGN(strlen(name)+1, sizeof(u64));
2352
2353 mmap_event->file_name = name;
2354 mmap_event->file_size = size;
2355
2356 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2357
2358 cpuctx = &get_cpu_var(perf_cpu_context);
2359 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2360 put_cpu_var(perf_cpu_context);
2361
2362 perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);
2363
2364 kfree(buf);
2365 }
2366
2367 void perf_counter_mmap(unsigned long addr, unsigned long len,
2368 unsigned long pgoff, struct file *file)
2369 {
2370 struct perf_mmap_event mmap_event;
2371
2372 if (!atomic_read(&nr_mmap_tracking))
2373 return;
2374
2375 mmap_event = (struct perf_mmap_event){
2376 .file = file,
2377 .event = {
2378 .header = { .type = PERF_EVENT_MMAP, },
2379 .pid = current->group_leader->pid,
2380 .tid = current->pid,
2381 .start = addr,
2382 .len = len,
2383 .pgoff = pgoff,
2384 },
2385 };
2386
2387 perf_counter_mmap_event(&mmap_event);
2388 }
2389
2390 void perf_counter_munmap(unsigned long addr, unsigned long len,
2391 unsigned long pgoff, struct file *file)
2392 {
2393 struct perf_mmap_event mmap_event;
2394
2395 if (!atomic_read(&nr_munmap_tracking))
2396 return;
2397
2398 mmap_event = (struct perf_mmap_event){
2399 .file = file,
2400 .event = {
2401 .header = { .type = PERF_EVENT_MUNMAP, },
2402 .pid = current->group_leader->pid,
2403 .tid = current->pid,
2404 .start = addr,
2405 .len = len,
2406 .pgoff = pgoff,
2407 },
2408 };
2409
2410 perf_counter_mmap_event(&mmap_event);
2411 }
2412
2413 /*
2414 *
2415 */
2416
2417 static void perf_log_period(struct perf_counter *counter, u64 period)
2418 {
2419 struct perf_output_handle handle;
2420 int ret;
2421
2422 struct {
2423 struct perf_event_header header;
2424 u64 time;
2425 u64 period;
2426 } freq_event = {
2427 .header = {
2428 .type = PERF_EVENT_PERIOD,
2429 .misc = 0,
2430 .size = sizeof(freq_event),
2431 },
2432 .time = sched_clock(),
2433 .period = period,
2434 };
2435
2436 if (counter->hw.irq_period == period)
2437 return;
2438
2439 ret = perf_output_begin(&handle, counter, sizeof(freq_event), 0, 0);
2440 if (ret)
2441 return;
2442
2443 perf_output_put(&handle, freq_event);
2444 perf_output_end(&handle);
2445 }
2446
2447 /*
2448 * Generic counter overflow handling.
2449 */
2450
2451 int perf_counter_overflow(struct perf_counter *counter,
2452 int nmi, struct pt_regs *regs, u64 addr)
2453 {
2454 int events = atomic_read(&counter->event_limit);
2455 int ret = 0;
2456
2457 counter->hw.interrupts++;
2458
2459 /*
2460 * XXX event_limit might not quite work as expected on inherited
2461 * counters
2462 */
2463
2464 counter->pending_kill = POLL_IN;
2465 if (events && atomic_dec_and_test(&counter->event_limit)) {
2466 ret = 1;
2467 counter->pending_kill = POLL_HUP;
2468 if (nmi) {
2469 counter->pending_disable = 1;
2470 perf_pending_queue(&counter->pending,
2471 perf_pending_counter);
2472 } else
2473 perf_counter_disable(counter);
2474 }
2475
2476 perf_counter_output(counter, nmi, regs, addr);
2477 return ret;
2478 }
2479
2480 /*
2481 * Generic software counter infrastructure
2482 */
2483
2484 static void perf_swcounter_update(struct perf_counter *counter)
2485 {
2486 struct hw_perf_counter *hwc = &counter->hw;
2487 u64 prev, now;
2488 s64 delta;
2489
2490 again:
2491 prev = atomic64_read(&hwc->prev_count);
2492 now = atomic64_read(&hwc->count);
2493 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2494 goto again;
2495
2496 delta = now - prev;
2497
2498 atomic64_add(delta, &counter->count);
2499 atomic64_sub(delta, &hwc->period_left);
2500 }
2501
2502 static void perf_swcounter_set_period(struct perf_counter *counter)
2503 {
2504 struct hw_perf_counter *hwc = &counter->hw;
2505 s64 left = atomic64_read(&hwc->period_left);
2506 s64 period = hwc->irq_period;
2507
2508 if (unlikely(left <= -period)) {
2509 left = period;
2510 atomic64_set(&hwc->period_left, left);
2511 }
2512
2513 if (unlikely(left <= 0)) {
2514 left += period;
2515 atomic64_add(period, &hwc->period_left);
2516 }
2517
2518 atomic64_set(&hwc->prev_count, -left);
2519 atomic64_set(&hwc->count, -left);
2520 }
2521
2522 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2523 {
2524 enum hrtimer_restart ret = HRTIMER_RESTART;
2525 struct perf_counter *counter;
2526 struct pt_regs *regs;
2527 u64 period;
2528
2529 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2530 counter->pmu->read(counter);
2531
2532 regs = get_irq_regs();
2533 /*
2534 * In case we exclude kernel IPs or are somehow not in interrupt
2535 * context, provide the next best thing, the user IP.
2536 */
2537 if ((counter->hw_event.exclude_kernel || !regs) &&
2538 !counter->hw_event.exclude_user)
2539 regs = task_pt_regs(current);
2540
2541 if (regs) {
2542 if (perf_counter_overflow(counter, 0, regs, 0))
2543 ret = HRTIMER_NORESTART;
2544 }
2545
2546 period = max_t(u64, 10000, counter->hw.irq_period);
2547 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
2548
2549 return ret;
2550 }
2551
2552 static void perf_swcounter_overflow(struct perf_counter *counter,
2553 int nmi, struct pt_regs *regs, u64 addr)
2554 {
2555 perf_swcounter_update(counter);
2556 perf_swcounter_set_period(counter);
2557 if (perf_counter_overflow(counter, nmi, regs, addr))
2558 /* soft-disable the counter */
2559 ;
2560
2561 }
2562
2563 static int perf_swcounter_match(struct perf_counter *counter,
2564 enum perf_event_types type,
2565 u32 event, struct pt_regs *regs)
2566 {
2567 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2568 return 0;
2569
2570 if (perf_event_raw(&counter->hw_event))
2571 return 0;
2572
2573 if (perf_event_type(&counter->hw_event) != type)
2574 return 0;
2575
2576 if (perf_event_id(&counter->hw_event) != event)
2577 return 0;
2578
2579 if (counter->hw_event.exclude_user && user_mode(regs))
2580 return 0;
2581
2582 if (counter->hw_event.exclude_kernel && !user_mode(regs))
2583 return 0;
2584
2585 return 1;
2586 }
2587
2588 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2589 int nmi, struct pt_regs *regs, u64 addr)
2590 {
2591 int neg = atomic64_add_negative(nr, &counter->hw.count);
2592 if (counter->hw.irq_period && !neg)
2593 perf_swcounter_overflow(counter, nmi, regs, addr);
2594 }
2595
2596 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2597 enum perf_event_types type, u32 event,
2598 u64 nr, int nmi, struct pt_regs *regs,
2599 u64 addr)
2600 {
2601 struct perf_counter *counter;
2602
2603 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2604 return;
2605
2606 rcu_read_lock();
2607 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2608 if (perf_swcounter_match(counter, type, event, regs))
2609 perf_swcounter_add(counter, nr, nmi, regs, addr);
2610 }
2611 rcu_read_unlock();
2612 }
2613
2614 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2615 {
2616 if (in_nmi())
2617 return &cpuctx->recursion[3];
2618
2619 if (in_irq())
2620 return &cpuctx->recursion[2];
2621
2622 if (in_softirq())
2623 return &cpuctx->recursion[1];
2624
2625 return &cpuctx->recursion[0];
2626 }
2627
2628 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2629 u64 nr, int nmi, struct pt_regs *regs,
2630 u64 addr)
2631 {
2632 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2633 int *recursion = perf_swcounter_recursion_context(cpuctx);
2634
2635 if (*recursion)
2636 goto out;
2637
2638 (*recursion)++;
2639 barrier();
2640
2641 perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
2642 nr, nmi, regs, addr);
2643 if (cpuctx->task_ctx) {
2644 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2645 nr, nmi, regs, addr);
2646 }
2647
2648 barrier();
2649 (*recursion)--;
2650
2651 out:
2652 put_cpu_var(perf_cpu_context);
2653 }
2654
2655 void
2656 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2657 {
2658 __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2659 }
2660
2661 static void perf_swcounter_read(struct perf_counter *counter)
2662 {
2663 perf_swcounter_update(counter);
2664 }
2665
2666 static int perf_swcounter_enable(struct perf_counter *counter)
2667 {
2668 perf_swcounter_set_period(counter);
2669 return 0;
2670 }
2671
2672 static void perf_swcounter_disable(struct perf_counter *counter)
2673 {
2674 perf_swcounter_update(counter);
2675 }
2676
2677 static const struct pmu perf_ops_generic = {
2678 .enable = perf_swcounter_enable,
2679 .disable = perf_swcounter_disable,
2680 .read = perf_swcounter_read,
2681 };
2682
2683 /*
2684 * Software counter: cpu wall time clock
2685 */
2686
2687 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2688 {
2689 int cpu = raw_smp_processor_id();
2690 s64 prev;
2691 u64 now;
2692
2693 now = cpu_clock(cpu);
2694 prev = atomic64_read(&counter->hw.prev_count);
2695 atomic64_set(&counter->hw.prev_count, now);
2696 atomic64_add(now - prev, &counter->count);
2697 }
2698
2699 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2700 {
2701 struct hw_perf_counter *hwc = &counter->hw;
2702 int cpu = raw_smp_processor_id();
2703
2704 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2705 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2706 hwc->hrtimer.function = perf_swcounter_hrtimer;
2707 if (hwc->irq_period) {
2708 u64 period = max_t(u64, 10000, hwc->irq_period);
2709 __hrtimer_start_range_ns(&hwc->hrtimer,
2710 ns_to_ktime(period), 0,
2711 HRTIMER_MODE_REL, 0);
2712 }
2713
2714 return 0;
2715 }
2716
2717 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2718 {
2719 hrtimer_cancel(&counter->hw.hrtimer);
2720 cpu_clock_perf_counter_update(counter);
2721 }
2722
2723 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2724 {
2725 cpu_clock_perf_counter_update(counter);
2726 }
2727
2728 static const struct pmu perf_ops_cpu_clock = {
2729 .enable = cpu_clock_perf_counter_enable,
2730 .disable = cpu_clock_perf_counter_disable,
2731 .read = cpu_clock_perf_counter_read,
2732 };
2733
2734 /*
2735 * Software counter: task time clock
2736 */
2737
2738 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2739 {
2740 u64 prev;
2741 s64 delta;
2742
2743 prev = atomic64_xchg(&counter->hw.prev_count, now);
2744 delta = now - prev;
2745 atomic64_add(delta, &counter->count);
2746 }
2747
2748 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2749 {
2750 struct hw_perf_counter *hwc = &counter->hw;
2751 u64 now;
2752
2753 now = counter->ctx->time;
2754
2755 atomic64_set(&hwc->prev_count, now);
2756 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2757 hwc->hrtimer.function = perf_swcounter_hrtimer;
2758 if (hwc->irq_period) {
2759 u64 period = max_t(u64, 10000, hwc->irq_period);
2760 __hrtimer_start_range_ns(&hwc->hrtimer,
2761 ns_to_ktime(period), 0,
2762 HRTIMER_MODE_REL, 0);
2763 }
2764
2765 return 0;
2766 }
2767
2768 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2769 {
2770 hrtimer_cancel(&counter->hw.hrtimer);
2771 task_clock_perf_counter_update(counter, counter->ctx->time);
2772
2773 }
2774
2775 static void task_clock_perf_counter_read(struct perf_counter *counter)
2776 {
2777 u64 time;
2778
2779 if (!in_nmi()) {
2780 update_context_time(counter->ctx);
2781 time = counter->ctx->time;
2782 } else {
2783 u64 now = perf_clock();
2784 u64 delta = now - counter->ctx->timestamp;
2785 time = counter->ctx->time + delta;
2786 }
2787
2788 task_clock_perf_counter_update(counter, time);
2789 }
2790
2791 static const struct pmu perf_ops_task_clock = {
2792 .enable = task_clock_perf_counter_enable,
2793 .disable = task_clock_perf_counter_disable,
2794 .read = task_clock_perf_counter_read,
2795 };
2796
2797 /*
2798 * Software counter: cpu migrations
2799 */
2800
2801 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2802 {
2803 struct task_struct *curr = counter->ctx->task;
2804
2805 if (curr)
2806 return curr->se.nr_migrations;
2807 return cpu_nr_migrations(smp_processor_id());
2808 }
2809
2810 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2811 {
2812 u64 prev, now;
2813 s64 delta;
2814
2815 prev = atomic64_read(&counter->hw.prev_count);
2816 now = get_cpu_migrations(counter);
2817
2818 atomic64_set(&counter->hw.prev_count, now);
2819
2820 delta = now - prev;
2821
2822 atomic64_add(delta, &counter->count);
2823 }
2824
2825 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2826 {
2827 cpu_migrations_perf_counter_update(counter);
2828 }
2829
2830 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2831 {
2832 if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2833 atomic64_set(&counter->hw.prev_count,
2834 get_cpu_migrations(counter));
2835 return 0;
2836 }
2837
2838 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2839 {
2840 cpu_migrations_perf_counter_update(counter);
2841 }
2842
2843 static const struct pmu perf_ops_cpu_migrations = {
2844 .enable = cpu_migrations_perf_counter_enable,
2845 .disable = cpu_migrations_perf_counter_disable,
2846 .read = cpu_migrations_perf_counter_read,
2847 };
2848
2849 #ifdef CONFIG_EVENT_PROFILE
2850 void perf_tpcounter_event(int event_id)
2851 {
2852 struct pt_regs *regs = get_irq_regs();
2853
2854 if (!regs)
2855 regs = task_pt_regs(current);
2856
2857 __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
2858 }
2859 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
2860
2861 extern int ftrace_profile_enable(int);
2862 extern void ftrace_profile_disable(int);
2863
2864 static void tp_perf_counter_destroy(struct perf_counter *counter)
2865 {
2866 ftrace_profile_disable(perf_event_id(&counter->hw_event));
2867 }
2868
2869 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2870 {
2871 int event_id = perf_event_id(&counter->hw_event);
2872 int ret;
2873
2874 ret = ftrace_profile_enable(event_id);
2875 if (ret)
2876 return NULL;
2877
2878 counter->destroy = tp_perf_counter_destroy;
2879 counter->hw.irq_period = counter->hw_event.irq_period;
2880
2881 return &perf_ops_generic;
2882 }
2883 #else
2884 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2885 {
2886 return NULL;
2887 }
2888 #endif
2889
2890 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
2891 {
2892 const struct pmu *pmu = NULL;
2893
2894 /*
2895 * Software counters (currently) can't in general distinguish
2896 * between user, kernel and hypervisor events.
2897 * However, context switches and cpu migrations are considered
2898 * to be kernel events, and page faults are never hypervisor
2899 * events.
2900 */
2901 switch (perf_event_id(&counter->hw_event)) {
2902 case PERF_COUNT_CPU_CLOCK:
2903 pmu = &perf_ops_cpu_clock;
2904
2905 break;
2906 case PERF_COUNT_TASK_CLOCK:
2907 /*
2908 * If the user instantiates this as a per-cpu counter,
2909 * use the cpu_clock counter instead.
2910 */
2911 if (counter->ctx->task)
2912 pmu = &perf_ops_task_clock;
2913 else
2914 pmu = &perf_ops_cpu_clock;
2915
2916 break;
2917 case PERF_COUNT_PAGE_FAULTS:
2918 case PERF_COUNT_PAGE_FAULTS_MIN:
2919 case PERF_COUNT_PAGE_FAULTS_MAJ:
2920 case PERF_COUNT_CONTEXT_SWITCHES:
2921 pmu = &perf_ops_generic;
2922 break;
2923 case PERF_COUNT_CPU_MIGRATIONS:
2924 if (!counter->hw_event.exclude_kernel)
2925 pmu = &perf_ops_cpu_migrations;
2926 break;
2927 }
2928
2929 return pmu;
2930 }
2931
2932 /*
2933 * Allocate and initialize a counter structure
2934 */
2935 static struct perf_counter *
2936 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
2937 int cpu,
2938 struct perf_counter_context *ctx,
2939 struct perf_counter *group_leader,
2940 gfp_t gfpflags)
2941 {
2942 const struct pmu *pmu;
2943 struct perf_counter *counter;
2944 struct hw_perf_counter *hwc;
2945 long err;
2946
2947 counter = kzalloc(sizeof(*counter), gfpflags);
2948 if (!counter)
2949 return ERR_PTR(-ENOMEM);
2950
2951 /*
2952 * Single counters are their own group leaders, with an
2953 * empty sibling list:
2954 */
2955 if (!group_leader)
2956 group_leader = counter;
2957
2958 mutex_init(&counter->mutex);
2959 INIT_LIST_HEAD(&counter->list_entry);
2960 INIT_LIST_HEAD(&counter->event_entry);
2961 INIT_LIST_HEAD(&counter->sibling_list);
2962 init_waitqueue_head(&counter->waitq);
2963
2964 mutex_init(&counter->mmap_mutex);
2965
2966 INIT_LIST_HEAD(&counter->child_list);
2967
2968 counter->cpu = cpu;
2969 counter->hw_event = *hw_event;
2970 counter->group_leader = group_leader;
2971 counter->pmu = NULL;
2972 counter->ctx = ctx;
2973
2974 counter->state = PERF_COUNTER_STATE_INACTIVE;
2975 if (hw_event->disabled)
2976 counter->state = PERF_COUNTER_STATE_OFF;
2977
2978 pmu = NULL;
2979
2980 hwc = &counter->hw;
2981 if (hw_event->freq && hw_event->irq_freq)
2982 hwc->irq_period = div64_u64(TICK_NSEC, hw_event->irq_freq);
2983 else
2984 hwc->irq_period = hw_event->irq_period;
2985
2986 /*
2987 * we currently do not support PERF_RECORD_GROUP on inherited counters
2988 */
2989 if (hw_event->inherit && (hw_event->record_type & PERF_RECORD_GROUP))
2990 goto done;
2991
2992 if (perf_event_raw(hw_event)) {
2993 pmu = hw_perf_counter_init(counter);
2994 goto done;
2995 }
2996
2997 switch (perf_event_type(hw_event)) {
2998 case PERF_TYPE_HARDWARE:
2999 pmu = hw_perf_counter_init(counter);
3000 break;
3001
3002 case PERF_TYPE_SOFTWARE:
3003 pmu = sw_perf_counter_init(counter);
3004 break;
3005
3006 case PERF_TYPE_TRACEPOINT:
3007 pmu = tp_perf_counter_init(counter);
3008 break;
3009 }
3010 done:
3011 err = 0;
3012 if (!pmu)
3013 err = -EINVAL;
3014 else if (IS_ERR(pmu))
3015 err = PTR_ERR(pmu);
3016
3017 if (err) {
3018 kfree(counter);
3019 return ERR_PTR(err);
3020 }
3021
3022 counter->pmu = pmu;
3023
3024 atomic_inc(&nr_counters);
3025 if (counter->hw_event.mmap)
3026 atomic_inc(&nr_mmap_tracking);
3027 if (counter->hw_event.munmap)
3028 atomic_inc(&nr_munmap_tracking);
3029 if (counter->hw_event.comm)
3030 atomic_inc(&nr_comm_tracking);
3031
3032 return counter;
3033 }
3034
3035 /**
3036 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
3037 *
3038 * @hw_event_uptr: event type attributes for monitoring/sampling
3039 * @pid: target pid
3040 * @cpu: target cpu
3041 * @group_fd: group leader counter fd
3042 */
3043 SYSCALL_DEFINE5(perf_counter_open,
3044 const struct perf_counter_hw_event __user *, hw_event_uptr,
3045 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
3046 {
3047 struct perf_counter *counter, *group_leader;
3048 struct perf_counter_hw_event hw_event;
3049 struct perf_counter_context *ctx;
3050 struct file *counter_file = NULL;
3051 struct file *group_file = NULL;
3052 int fput_needed = 0;
3053 int fput_needed2 = 0;
3054 int ret;
3055
3056 /* for future expandability... */
3057 if (flags)
3058 return -EINVAL;
3059
3060 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
3061 return -EFAULT;
3062
3063 /*
3064 * Get the target context (task or percpu):
3065 */
3066 ctx = find_get_context(pid, cpu);
3067 if (IS_ERR(ctx))
3068 return PTR_ERR(ctx);
3069
3070 /*
3071 * Look up the group leader (we will attach this counter to it):
3072 */
3073 group_leader = NULL;
3074 if (group_fd != -1) {
3075 ret = -EINVAL;
3076 group_file = fget_light(group_fd, &fput_needed);
3077 if (!group_file)
3078 goto err_put_context;
3079 if (group_file->f_op != &perf_fops)
3080 goto err_put_context;
3081
3082 group_leader = group_file->private_data;
3083 /*
3084 * Do not allow a recursive hierarchy (this new sibling
3085 * becoming part of another group-sibling):
3086 */
3087 if (group_leader->group_leader != group_leader)
3088 goto err_put_context;
3089 /*
3090 * Do not allow to attach to a group in a different
3091 * task or CPU context:
3092 */
3093 if (group_leader->ctx != ctx)
3094 goto err_put_context;
3095 /*
3096 * Only a group leader can be exclusive or pinned
3097 */
3098 if (hw_event.exclusive || hw_event.pinned)
3099 goto err_put_context;
3100 }
3101
3102 counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
3103 GFP_KERNEL);
3104 ret = PTR_ERR(counter);
3105 if (IS_ERR(counter))
3106 goto err_put_context;
3107
3108 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
3109 if (ret < 0)
3110 goto err_free_put_context;
3111
3112 counter_file = fget_light(ret, &fput_needed2);
3113 if (!counter_file)
3114 goto err_free_put_context;
3115
3116 counter->filp = counter_file;
3117 mutex_lock(&ctx->mutex);
3118 perf_install_in_context(ctx, counter, cpu);
3119 mutex_unlock(&ctx->mutex);
3120
3121 fput_light(counter_file, fput_needed2);
3122
3123 out_fput:
3124 fput_light(group_file, fput_needed);
3125
3126 return ret;
3127
3128 err_free_put_context:
3129 kfree(counter);
3130
3131 err_put_context:
3132 put_context(ctx);
3133
3134 goto out_fput;
3135 }
3136
3137 /*
3138 * Initialize the perf_counter context in a task_struct:
3139 */
3140 static void
3141 __perf_counter_init_context(struct perf_counter_context *ctx,
3142 struct task_struct *task)
3143 {
3144 memset(ctx, 0, sizeof(*ctx));
3145 spin_lock_init(&ctx->lock);
3146 mutex_init(&ctx->mutex);
3147 INIT_LIST_HEAD(&ctx->counter_list);
3148 INIT_LIST_HEAD(&ctx->event_list);
3149 ctx->task = task;
3150 }
3151
3152 /*
3153 * inherit a counter from parent task to child task:
3154 */
3155 static struct perf_counter *
3156 inherit_counter(struct perf_counter *parent_counter,
3157 struct task_struct *parent,
3158 struct perf_counter_context *parent_ctx,
3159 struct task_struct *child,
3160 struct perf_counter *group_leader,
3161 struct perf_counter_context *child_ctx)
3162 {
3163 struct perf_counter *child_counter;
3164
3165 /*
3166 * Instead of creating recursive hierarchies of counters,
3167 * we link inherited counters back to the original parent,
3168 * which has a filp for sure, which we use as the reference
3169 * count:
3170 */
3171 if (parent_counter->parent)
3172 parent_counter = parent_counter->parent;
3173
3174 child_counter = perf_counter_alloc(&parent_counter->hw_event,
3175 parent_counter->cpu, child_ctx,
3176 group_leader, GFP_KERNEL);
3177 if (IS_ERR(child_counter))
3178 return child_counter;
3179
3180 /*
3181 * Link it up in the child's context:
3182 */
3183 child_counter->task = child;
3184 add_counter_to_ctx(child_counter, child_ctx);
3185
3186 child_counter->parent = parent_counter;
3187 /*
3188 * inherit into child's child as well:
3189 */
3190 child_counter->hw_event.inherit = 1;
3191
3192 /*
3193 * Get a reference to the parent filp - we will fput it
3194 * when the child counter exits. This is safe to do because
3195 * we are in the parent and we know that the filp still
3196 * exists and has a nonzero count:
3197 */
3198 atomic_long_inc(&parent_counter->filp->f_count);
3199
3200 /*
3201 * Link this into the parent counter's child list
3202 */
3203 mutex_lock(&parent_counter->mutex);
3204 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3205
3206 /*
3207 * Make the child state follow the state of the parent counter,
3208 * not its hw_event.disabled bit. We hold the parent's mutex,
3209 * so we won't race with perf_counter_{en,dis}able_family.
3210 */
3211 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3212 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3213 else
3214 child_counter->state = PERF_COUNTER_STATE_OFF;
3215
3216 mutex_unlock(&parent_counter->mutex);
3217
3218 return child_counter;
3219 }
3220
3221 static int inherit_group(struct perf_counter *parent_counter,
3222 struct task_struct *parent,
3223 struct perf_counter_context *parent_ctx,
3224 struct task_struct *child,
3225 struct perf_counter_context *child_ctx)
3226 {
3227 struct perf_counter *leader;
3228 struct perf_counter *sub;
3229 struct perf_counter *child_ctr;
3230
3231 leader = inherit_counter(parent_counter, parent, parent_ctx,
3232 child, NULL, child_ctx);
3233 if (IS_ERR(leader))
3234 return PTR_ERR(leader);
3235 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3236 child_ctr = inherit_counter(sub, parent, parent_ctx,
3237 child, leader, child_ctx);
3238 if (IS_ERR(child_ctr))
3239 return PTR_ERR(child_ctr);
3240 }
3241 return 0;
3242 }
3243
3244 static void sync_child_counter(struct perf_counter *child_counter,
3245 struct perf_counter *parent_counter)
3246 {
3247 u64 child_val;
3248
3249 child_val = atomic64_read(&child_counter->count);
3250
3251 /*
3252 * Add back the child's count to the parent's count:
3253 */
3254 atomic64_add(child_val, &parent_counter->count);
3255 atomic64_add(child_counter->total_time_enabled,
3256 &parent_counter->child_total_time_enabled);
3257 atomic64_add(child_counter->total_time_running,
3258 &parent_counter->child_total_time_running);
3259
3260 /*
3261 * Remove this counter from the parent's list
3262 */
3263 mutex_lock(&parent_counter->mutex);
3264 list_del_init(&child_counter->child_list);
3265 mutex_unlock(&parent_counter->mutex);
3266
3267 /*
3268 * Release the parent counter, if this was the last
3269 * reference to it.
3270 */
3271 fput(parent_counter->filp);
3272 }
3273
3274 static void
3275 __perf_counter_exit_task(struct task_struct *child,
3276 struct perf_counter *child_counter,
3277 struct perf_counter_context *child_ctx)
3278 {
3279 struct perf_counter *parent_counter;
3280
3281 /*
3282 * If we do not self-reap then we have to wait for the
3283 * child task to unschedule (it will happen for sure),
3284 * so that its counter is at its final count. (This
3285 * condition triggers rarely - child tasks usually get
3286 * off their CPU before the parent has a chance to
3287 * get this far into the reaping action)
3288 */
3289 if (child != current) {
3290 wait_task_inactive(child, 0);
3291 update_counter_times(child_counter);
3292 list_del_counter(child_counter, child_ctx);
3293 } else {
3294 struct perf_cpu_context *cpuctx;
3295 unsigned long flags;
3296
3297 /*
3298 * Disable and unlink this counter.
3299 *
3300 * Be careful about zapping the list - IRQ/NMI context
3301 * could still be processing it:
3302 */
3303 local_irq_save(flags);
3304 perf_disable();
3305
3306 cpuctx = &__get_cpu_var(perf_cpu_context);
3307
3308 group_sched_out(child_counter, cpuctx, child_ctx);
3309 update_counter_times(child_counter);
3310
3311 list_del_counter(child_counter, child_ctx);
3312
3313 perf_enable();
3314 local_irq_restore(flags);
3315 }
3316
3317 parent_counter = child_counter->parent;
3318 /*
3319 * It can happen that parent exits first, and has counters
3320 * that are still around due to the child reference. These
3321 * counters need to be zapped - but otherwise linger.
3322 */
3323 if (parent_counter) {
3324 sync_child_counter(child_counter, parent_counter);
3325 free_counter(child_counter);
3326 }
3327 }
3328
3329 /*
3330 * When a child task exits, feed back counter values to parent counters.
3331 *
3332 * Note: we may be running in child context, but the PID is not hashed
3333 * anymore so new counters will not be added.
3334 */
3335 void perf_counter_exit_task(struct task_struct *child)
3336 {
3337 struct perf_counter *child_counter, *tmp;
3338 struct perf_counter_context *child_ctx;
3339
3340 WARN_ON_ONCE(child != current);
3341
3342 child_ctx = &child->perf_counter_ctx;
3343
3344 if (likely(!child_ctx->nr_counters))
3345 return;
3346
3347 again:
3348 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3349 list_entry)
3350 __perf_counter_exit_task(child, child_counter, child_ctx);
3351
3352 /*
3353 * If the last counter was a group counter, it will have appended all
3354 * its siblings to the list, but we obtained 'tmp' before that which
3355 * will still point to the list head terminating the iteration.
3356 */
3357 if (!list_empty(&child_ctx->counter_list))
3358 goto again;
3359 }
3360
3361 /*
3362 * Initialize the perf_counter context in task_struct
3363 */
3364 void perf_counter_init_task(struct task_struct *child)
3365 {
3366 struct perf_counter_context *child_ctx, *parent_ctx;
3367 struct perf_counter *counter;
3368 struct task_struct *parent = current;
3369
3370 child_ctx = &child->perf_counter_ctx;
3371 parent_ctx = &parent->perf_counter_ctx;
3372
3373 __perf_counter_init_context(child_ctx, child);
3374
3375 /*
3376 * This is executed from the parent task context, so inherit
3377 * counters that have been marked for cloning:
3378 */
3379
3380 if (likely(!parent_ctx->nr_counters))
3381 return;
3382
3383 /*
3384 * Lock the parent list. No need to lock the child - not PID
3385 * hashed yet and not running, so nobody can access it.
3386 */
3387 mutex_lock(&parent_ctx->mutex);
3388
3389 /*
3390 * We dont have to disable NMIs - we are only looking at
3391 * the list, not manipulating it:
3392 */
3393 list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
3394 if (counter != counter->group_leader)
3395 continue;
3396
3397 if (!counter->hw_event.inherit)
3398 continue;
3399
3400 if (inherit_group(counter, parent,
3401 parent_ctx, child, child_ctx))
3402 break;
3403 }
3404
3405 mutex_unlock(&parent_ctx->mutex);
3406 }
3407
3408 static void __cpuinit perf_counter_init_cpu(int cpu)
3409 {
3410 struct perf_cpu_context *cpuctx;
3411
3412 cpuctx = &per_cpu(perf_cpu_context, cpu);
3413 __perf_counter_init_context(&cpuctx->ctx, NULL);
3414
3415 spin_lock(&perf_resource_lock);
3416 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3417 spin_unlock(&perf_resource_lock);
3418
3419 hw_perf_counter_setup(cpu);
3420 }
3421
3422 #ifdef CONFIG_HOTPLUG_CPU
3423 static void __perf_counter_exit_cpu(void *info)
3424 {
3425 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3426 struct perf_counter_context *ctx = &cpuctx->ctx;
3427 struct perf_counter *counter, *tmp;
3428
3429 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3430 __perf_counter_remove_from_context(counter);
3431 }
3432 static void perf_counter_exit_cpu(int cpu)
3433 {
3434 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3435 struct perf_counter_context *ctx = &cpuctx->ctx;
3436
3437 mutex_lock(&ctx->mutex);
3438 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3439 mutex_unlock(&ctx->mutex);
3440 }
3441 #else
3442 static inline void perf_counter_exit_cpu(int cpu) { }
3443 #endif
3444
3445 static int __cpuinit
3446 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3447 {
3448 unsigned int cpu = (long)hcpu;
3449
3450 switch (action) {
3451
3452 case CPU_UP_PREPARE:
3453 case CPU_UP_PREPARE_FROZEN:
3454 perf_counter_init_cpu(cpu);
3455 break;
3456
3457 case CPU_DOWN_PREPARE:
3458 case CPU_DOWN_PREPARE_FROZEN:
3459 perf_counter_exit_cpu(cpu);
3460 break;
3461
3462 default:
3463 break;
3464 }
3465
3466 return NOTIFY_OK;
3467 }
3468
3469 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3470 .notifier_call = perf_cpu_notify,
3471 };
3472
3473 void __init perf_counter_init(void)
3474 {
3475 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3476 (void *)(long)smp_processor_id());
3477 register_cpu_notifier(&perf_cpu_nb);
3478 }
3479
3480 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3481 {
3482 return sprintf(buf, "%d\n", perf_reserved_percpu);
3483 }
3484
3485 static ssize_t
3486 perf_set_reserve_percpu(struct sysdev_class *class,
3487 const char *buf,
3488 size_t count)
3489 {
3490 struct perf_cpu_context *cpuctx;
3491 unsigned long val;
3492 int err, cpu, mpt;
3493
3494 err = strict_strtoul(buf, 10, &val);
3495 if (err)
3496 return err;
3497 if (val > perf_max_counters)
3498 return -EINVAL;
3499
3500 spin_lock(&perf_resource_lock);
3501 perf_reserved_percpu = val;
3502 for_each_online_cpu(cpu) {
3503 cpuctx = &per_cpu(perf_cpu_context, cpu);
3504 spin_lock_irq(&cpuctx->ctx.lock);
3505 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3506 perf_max_counters - perf_reserved_percpu);
3507 cpuctx->max_pertask = mpt;
3508 spin_unlock_irq(&cpuctx->ctx.lock);
3509 }
3510 spin_unlock(&perf_resource_lock);
3511
3512 return count;
3513 }
3514
3515 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3516 {
3517 return sprintf(buf, "%d\n", perf_overcommit);
3518 }
3519
3520 static ssize_t
3521 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3522 {
3523 unsigned long val;
3524 int err;
3525
3526 err = strict_strtoul(buf, 10, &val);
3527 if (err)
3528 return err;
3529 if (val > 1)
3530 return -EINVAL;
3531
3532 spin_lock(&perf_resource_lock);
3533 perf_overcommit = val;
3534 spin_unlock(&perf_resource_lock);
3535
3536 return count;
3537 }
3538
3539 static SYSDEV_CLASS_ATTR(
3540 reserve_percpu,
3541 0644,
3542 perf_show_reserve_percpu,
3543 perf_set_reserve_percpu
3544 );
3545
3546 static SYSDEV_CLASS_ATTR(
3547 overcommit,
3548 0644,
3549 perf_show_overcommit,
3550 perf_set_overcommit
3551 );
3552
3553 static struct attribute *perfclass_attrs[] = {
3554 &attr_reserve_percpu.attr,
3555 &attr_overcommit.attr,
3556 NULL
3557 };
3558
3559 static struct attribute_group perfclass_attr_group = {
3560 .attrs = perfclass_attrs,
3561 .name = "perf_counters",
3562 };
3563
3564 static int __init perf_counter_sysfs_init(void)
3565 {
3566 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3567 &perfclass_attr_group);
3568 }
3569 device_initcall(perf_counter_sysfs_init);
This page took 0.102834 seconds and 6 git commands to generate.