perf_counter: Fix a race on perf_counter_ctx
[deliverable/linux.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/hardirq.h>
24 #include <linux/rculist.h>
25 #include <linux/uaccess.h>
26 #include <linux/syscalls.h>
27 #include <linux/anon_inodes.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/perf_counter.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34 * Each CPU has a list of per CPU counters:
35 */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_counters __read_mostly;
44 static atomic_t nr_comm_counters __read_mostly;
45 static atomic_t nr_task_counters __read_mostly;
46
47 /*
48 * perf counter paranoia level:
49 * 0 - not paranoid
50 * 1 - disallow cpu counters to unpriv
51 * 2 - disallow kernel profiling to unpriv
52 */
53 int sysctl_perf_counter_paranoid __read_mostly;
54
55 static inline bool perf_paranoid_cpu(void)
56 {
57 return sysctl_perf_counter_paranoid > 0;
58 }
59
60 static inline bool perf_paranoid_kernel(void)
61 {
62 return sysctl_perf_counter_paranoid > 1;
63 }
64
65 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
66
67 /*
68 * max perf counter sample rate
69 */
70 int sysctl_perf_counter_sample_rate __read_mostly = 100000;
71
72 static atomic64_t perf_counter_id;
73
74 /*
75 * Lock for (sysadmin-configurable) counter reservations:
76 */
77 static DEFINE_SPINLOCK(perf_resource_lock);
78
79 /*
80 * Architecture provided APIs - weak aliases:
81 */
82 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
83 {
84 return NULL;
85 }
86
87 void __weak hw_perf_disable(void) { barrier(); }
88 void __weak hw_perf_enable(void) { barrier(); }
89
90 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
91
92 int __weak
93 hw_perf_group_sched_in(struct perf_counter *group_leader,
94 struct perf_cpu_context *cpuctx,
95 struct perf_counter_context *ctx, int cpu)
96 {
97 return 0;
98 }
99
100 void __weak perf_counter_print_debug(void) { }
101
102 static DEFINE_PER_CPU(int, disable_count);
103
104 void __perf_disable(void)
105 {
106 __get_cpu_var(disable_count)++;
107 }
108
109 bool __perf_enable(void)
110 {
111 return !--__get_cpu_var(disable_count);
112 }
113
114 void perf_disable(void)
115 {
116 __perf_disable();
117 hw_perf_disable();
118 }
119
120 void perf_enable(void)
121 {
122 if (__perf_enable())
123 hw_perf_enable();
124 }
125
126 static void get_ctx(struct perf_counter_context *ctx)
127 {
128 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
129 }
130
131 static void free_ctx(struct rcu_head *head)
132 {
133 struct perf_counter_context *ctx;
134
135 ctx = container_of(head, struct perf_counter_context, rcu_head);
136 kfree(ctx);
137 }
138
139 static void put_ctx(struct perf_counter_context *ctx)
140 {
141 if (atomic_dec_and_test(&ctx->refcount)) {
142 if (ctx->parent_ctx)
143 put_ctx(ctx->parent_ctx);
144 if (ctx->task)
145 put_task_struct(ctx->task);
146 call_rcu(&ctx->rcu_head, free_ctx);
147 }
148 }
149
150 static void unclone_ctx(struct perf_counter_context *ctx)
151 {
152 if (ctx->parent_ctx) {
153 put_ctx(ctx->parent_ctx);
154 ctx->parent_ctx = NULL;
155 }
156 }
157
158 /*
159 * If we inherit counters we want to return the parent counter id
160 * to userspace.
161 */
162 static u64 primary_counter_id(struct perf_counter *counter)
163 {
164 u64 id = counter->id;
165
166 if (counter->parent)
167 id = counter->parent->id;
168
169 return id;
170 }
171
172 /*
173 * Get the perf_counter_context for a task and lock it.
174 * This has to cope with with the fact that until it is locked,
175 * the context could get moved to another task.
176 */
177 static struct perf_counter_context *
178 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
179 {
180 struct perf_counter_context *ctx;
181
182 rcu_read_lock();
183 retry:
184 ctx = rcu_dereference(task->perf_counter_ctxp);
185 if (ctx) {
186 /*
187 * If this context is a clone of another, it might
188 * get swapped for another underneath us by
189 * perf_counter_task_sched_out, though the
190 * rcu_read_lock() protects us from any context
191 * getting freed. Lock the context and check if it
192 * got swapped before we could get the lock, and retry
193 * if so. If we locked the right context, then it
194 * can't get swapped on us any more.
195 */
196 spin_lock_irqsave(&ctx->lock, *flags);
197 if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
198 spin_unlock_irqrestore(&ctx->lock, *flags);
199 goto retry;
200 }
201
202 if (!atomic_inc_not_zero(&ctx->refcount)) {
203 spin_unlock_irqrestore(&ctx->lock, *flags);
204 ctx = NULL;
205 }
206 }
207 rcu_read_unlock();
208 return ctx;
209 }
210
211 /*
212 * Get the context for a task and increment its pin_count so it
213 * can't get swapped to another task. This also increments its
214 * reference count so that the context can't get freed.
215 */
216 static struct perf_counter_context *perf_pin_task_context(struct task_struct *task)
217 {
218 struct perf_counter_context *ctx;
219 unsigned long flags;
220
221 ctx = perf_lock_task_context(task, &flags);
222 if (ctx) {
223 ++ctx->pin_count;
224 spin_unlock_irqrestore(&ctx->lock, flags);
225 }
226 return ctx;
227 }
228
229 static void perf_unpin_context(struct perf_counter_context *ctx)
230 {
231 unsigned long flags;
232
233 spin_lock_irqsave(&ctx->lock, flags);
234 --ctx->pin_count;
235 spin_unlock_irqrestore(&ctx->lock, flags);
236 put_ctx(ctx);
237 }
238
239 /*
240 * Add a counter from the lists for its context.
241 * Must be called with ctx->mutex and ctx->lock held.
242 */
243 static void
244 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
245 {
246 struct perf_counter *group_leader = counter->group_leader;
247
248 /*
249 * Depending on whether it is a standalone or sibling counter,
250 * add it straight to the context's counter list, or to the group
251 * leader's sibling list:
252 */
253 if (group_leader == counter)
254 list_add_tail(&counter->list_entry, &ctx->counter_list);
255 else {
256 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
257 group_leader->nr_siblings++;
258 }
259
260 list_add_rcu(&counter->event_entry, &ctx->event_list);
261 ctx->nr_counters++;
262 if (counter->attr.inherit_stat)
263 ctx->nr_stat++;
264 }
265
266 /*
267 * Remove a counter from the lists for its context.
268 * Must be called with ctx->mutex and ctx->lock held.
269 */
270 static void
271 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
272 {
273 struct perf_counter *sibling, *tmp;
274
275 if (list_empty(&counter->list_entry))
276 return;
277 ctx->nr_counters--;
278 if (counter->attr.inherit_stat)
279 ctx->nr_stat--;
280
281 list_del_init(&counter->list_entry);
282 list_del_rcu(&counter->event_entry);
283
284 if (counter->group_leader != counter)
285 counter->group_leader->nr_siblings--;
286
287 /*
288 * If this was a group counter with sibling counters then
289 * upgrade the siblings to singleton counters by adding them
290 * to the context list directly:
291 */
292 list_for_each_entry_safe(sibling, tmp,
293 &counter->sibling_list, list_entry) {
294
295 list_move_tail(&sibling->list_entry, &ctx->counter_list);
296 sibling->group_leader = sibling;
297 }
298 }
299
300 static void
301 counter_sched_out(struct perf_counter *counter,
302 struct perf_cpu_context *cpuctx,
303 struct perf_counter_context *ctx)
304 {
305 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
306 return;
307
308 counter->state = PERF_COUNTER_STATE_INACTIVE;
309 counter->tstamp_stopped = ctx->time;
310 counter->pmu->disable(counter);
311 counter->oncpu = -1;
312
313 if (!is_software_counter(counter))
314 cpuctx->active_oncpu--;
315 ctx->nr_active--;
316 if (counter->attr.exclusive || !cpuctx->active_oncpu)
317 cpuctx->exclusive = 0;
318 }
319
320 static void
321 group_sched_out(struct perf_counter *group_counter,
322 struct perf_cpu_context *cpuctx,
323 struct perf_counter_context *ctx)
324 {
325 struct perf_counter *counter;
326
327 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
328 return;
329
330 counter_sched_out(group_counter, cpuctx, ctx);
331
332 /*
333 * Schedule out siblings (if any):
334 */
335 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
336 counter_sched_out(counter, cpuctx, ctx);
337
338 if (group_counter->attr.exclusive)
339 cpuctx->exclusive = 0;
340 }
341
342 /*
343 * Cross CPU call to remove a performance counter
344 *
345 * We disable the counter on the hardware level first. After that we
346 * remove it from the context list.
347 */
348 static void __perf_counter_remove_from_context(void *info)
349 {
350 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
351 struct perf_counter *counter = info;
352 struct perf_counter_context *ctx = counter->ctx;
353
354 /*
355 * If this is a task context, we need to check whether it is
356 * the current task context of this cpu. If not it has been
357 * scheduled out before the smp call arrived.
358 */
359 if (ctx->task && cpuctx->task_ctx != ctx)
360 return;
361
362 spin_lock(&ctx->lock);
363 /*
364 * Protect the list operation against NMI by disabling the
365 * counters on a global level.
366 */
367 perf_disable();
368
369 counter_sched_out(counter, cpuctx, ctx);
370
371 list_del_counter(counter, ctx);
372
373 if (!ctx->task) {
374 /*
375 * Allow more per task counters with respect to the
376 * reservation:
377 */
378 cpuctx->max_pertask =
379 min(perf_max_counters - ctx->nr_counters,
380 perf_max_counters - perf_reserved_percpu);
381 }
382
383 perf_enable();
384 spin_unlock(&ctx->lock);
385 }
386
387
388 /*
389 * Remove the counter from a task's (or a CPU's) list of counters.
390 *
391 * Must be called with ctx->mutex held.
392 *
393 * CPU counters are removed with a smp call. For task counters we only
394 * call when the task is on a CPU.
395 *
396 * If counter->ctx is a cloned context, callers must make sure that
397 * every task struct that counter->ctx->task could possibly point to
398 * remains valid. This is OK when called from perf_release since
399 * that only calls us on the top-level context, which can't be a clone.
400 * When called from perf_counter_exit_task, it's OK because the
401 * context has been detached from its task.
402 */
403 static void perf_counter_remove_from_context(struct perf_counter *counter)
404 {
405 struct perf_counter_context *ctx = counter->ctx;
406 struct task_struct *task = ctx->task;
407
408 if (!task) {
409 /*
410 * Per cpu counters are removed via an smp call and
411 * the removal is always sucessful.
412 */
413 smp_call_function_single(counter->cpu,
414 __perf_counter_remove_from_context,
415 counter, 1);
416 return;
417 }
418
419 retry:
420 task_oncpu_function_call(task, __perf_counter_remove_from_context,
421 counter);
422
423 spin_lock_irq(&ctx->lock);
424 /*
425 * If the context is active we need to retry the smp call.
426 */
427 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
428 spin_unlock_irq(&ctx->lock);
429 goto retry;
430 }
431
432 /*
433 * The lock prevents that this context is scheduled in so we
434 * can remove the counter safely, if the call above did not
435 * succeed.
436 */
437 if (!list_empty(&counter->list_entry)) {
438 list_del_counter(counter, ctx);
439 }
440 spin_unlock_irq(&ctx->lock);
441 }
442
443 static inline u64 perf_clock(void)
444 {
445 return cpu_clock(smp_processor_id());
446 }
447
448 /*
449 * Update the record of the current time in a context.
450 */
451 static void update_context_time(struct perf_counter_context *ctx)
452 {
453 u64 now = perf_clock();
454
455 ctx->time += now - ctx->timestamp;
456 ctx->timestamp = now;
457 }
458
459 /*
460 * Update the total_time_enabled and total_time_running fields for a counter.
461 */
462 static void update_counter_times(struct perf_counter *counter)
463 {
464 struct perf_counter_context *ctx = counter->ctx;
465 u64 run_end;
466
467 if (counter->state < PERF_COUNTER_STATE_INACTIVE)
468 return;
469
470 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
471
472 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
473 run_end = counter->tstamp_stopped;
474 else
475 run_end = ctx->time;
476
477 counter->total_time_running = run_end - counter->tstamp_running;
478 }
479
480 /*
481 * Update total_time_enabled and total_time_running for all counters in a group.
482 */
483 static void update_group_times(struct perf_counter *leader)
484 {
485 struct perf_counter *counter;
486
487 update_counter_times(leader);
488 list_for_each_entry(counter, &leader->sibling_list, list_entry)
489 update_counter_times(counter);
490 }
491
492 /*
493 * Cross CPU call to disable a performance counter
494 */
495 static void __perf_counter_disable(void *info)
496 {
497 struct perf_counter *counter = info;
498 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
499 struct perf_counter_context *ctx = counter->ctx;
500
501 /*
502 * If this is a per-task counter, need to check whether this
503 * counter's task is the current task on this cpu.
504 */
505 if (ctx->task && cpuctx->task_ctx != ctx)
506 return;
507
508 spin_lock(&ctx->lock);
509
510 /*
511 * If the counter is on, turn it off.
512 * If it is in error state, leave it in error state.
513 */
514 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
515 update_context_time(ctx);
516 update_counter_times(counter);
517 if (counter == counter->group_leader)
518 group_sched_out(counter, cpuctx, ctx);
519 else
520 counter_sched_out(counter, cpuctx, ctx);
521 counter->state = PERF_COUNTER_STATE_OFF;
522 }
523
524 spin_unlock(&ctx->lock);
525 }
526
527 /*
528 * Disable a counter.
529 *
530 * If counter->ctx is a cloned context, callers must make sure that
531 * every task struct that counter->ctx->task could possibly point to
532 * remains valid. This condition is satisifed when called through
533 * perf_counter_for_each_child or perf_counter_for_each because they
534 * hold the top-level counter's child_mutex, so any descendant that
535 * goes to exit will block in sync_child_counter.
536 * When called from perf_pending_counter it's OK because counter->ctx
537 * is the current context on this CPU and preemption is disabled,
538 * hence we can't get into perf_counter_task_sched_out for this context.
539 */
540 static void perf_counter_disable(struct perf_counter *counter)
541 {
542 struct perf_counter_context *ctx = counter->ctx;
543 struct task_struct *task = ctx->task;
544
545 if (!task) {
546 /*
547 * Disable the counter on the cpu that it's on
548 */
549 smp_call_function_single(counter->cpu, __perf_counter_disable,
550 counter, 1);
551 return;
552 }
553
554 retry:
555 task_oncpu_function_call(task, __perf_counter_disable, counter);
556
557 spin_lock_irq(&ctx->lock);
558 /*
559 * If the counter is still active, we need to retry the cross-call.
560 */
561 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
562 spin_unlock_irq(&ctx->lock);
563 goto retry;
564 }
565
566 /*
567 * Since we have the lock this context can't be scheduled
568 * in, so we can change the state safely.
569 */
570 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
571 update_counter_times(counter);
572 counter->state = PERF_COUNTER_STATE_OFF;
573 }
574
575 spin_unlock_irq(&ctx->lock);
576 }
577
578 static int
579 counter_sched_in(struct perf_counter *counter,
580 struct perf_cpu_context *cpuctx,
581 struct perf_counter_context *ctx,
582 int cpu)
583 {
584 if (counter->state <= PERF_COUNTER_STATE_OFF)
585 return 0;
586
587 counter->state = PERF_COUNTER_STATE_ACTIVE;
588 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
589 /*
590 * The new state must be visible before we turn it on in the hardware:
591 */
592 smp_wmb();
593
594 if (counter->pmu->enable(counter)) {
595 counter->state = PERF_COUNTER_STATE_INACTIVE;
596 counter->oncpu = -1;
597 return -EAGAIN;
598 }
599
600 counter->tstamp_running += ctx->time - counter->tstamp_stopped;
601
602 if (!is_software_counter(counter))
603 cpuctx->active_oncpu++;
604 ctx->nr_active++;
605
606 if (counter->attr.exclusive)
607 cpuctx->exclusive = 1;
608
609 return 0;
610 }
611
612 static int
613 group_sched_in(struct perf_counter *group_counter,
614 struct perf_cpu_context *cpuctx,
615 struct perf_counter_context *ctx,
616 int cpu)
617 {
618 struct perf_counter *counter, *partial_group;
619 int ret;
620
621 if (group_counter->state == PERF_COUNTER_STATE_OFF)
622 return 0;
623
624 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
625 if (ret)
626 return ret < 0 ? ret : 0;
627
628 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
629 return -EAGAIN;
630
631 /*
632 * Schedule in siblings as one group (if any):
633 */
634 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
635 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
636 partial_group = counter;
637 goto group_error;
638 }
639 }
640
641 return 0;
642
643 group_error:
644 /*
645 * Groups can be scheduled in as one unit only, so undo any
646 * partial group before returning:
647 */
648 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
649 if (counter == partial_group)
650 break;
651 counter_sched_out(counter, cpuctx, ctx);
652 }
653 counter_sched_out(group_counter, cpuctx, ctx);
654
655 return -EAGAIN;
656 }
657
658 /*
659 * Return 1 for a group consisting entirely of software counters,
660 * 0 if the group contains any hardware counters.
661 */
662 static int is_software_only_group(struct perf_counter *leader)
663 {
664 struct perf_counter *counter;
665
666 if (!is_software_counter(leader))
667 return 0;
668
669 list_for_each_entry(counter, &leader->sibling_list, list_entry)
670 if (!is_software_counter(counter))
671 return 0;
672
673 return 1;
674 }
675
676 /*
677 * Work out whether we can put this counter group on the CPU now.
678 */
679 static int group_can_go_on(struct perf_counter *counter,
680 struct perf_cpu_context *cpuctx,
681 int can_add_hw)
682 {
683 /*
684 * Groups consisting entirely of software counters can always go on.
685 */
686 if (is_software_only_group(counter))
687 return 1;
688 /*
689 * If an exclusive group is already on, no other hardware
690 * counters can go on.
691 */
692 if (cpuctx->exclusive)
693 return 0;
694 /*
695 * If this group is exclusive and there are already
696 * counters on the CPU, it can't go on.
697 */
698 if (counter->attr.exclusive && cpuctx->active_oncpu)
699 return 0;
700 /*
701 * Otherwise, try to add it if all previous groups were able
702 * to go on.
703 */
704 return can_add_hw;
705 }
706
707 static void add_counter_to_ctx(struct perf_counter *counter,
708 struct perf_counter_context *ctx)
709 {
710 list_add_counter(counter, ctx);
711 counter->tstamp_enabled = ctx->time;
712 counter->tstamp_running = ctx->time;
713 counter->tstamp_stopped = ctx->time;
714 }
715
716 /*
717 * Cross CPU call to install and enable a performance counter
718 *
719 * Must be called with ctx->mutex held
720 */
721 static void __perf_install_in_context(void *info)
722 {
723 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
724 struct perf_counter *counter = info;
725 struct perf_counter_context *ctx = counter->ctx;
726 struct perf_counter *leader = counter->group_leader;
727 int cpu = smp_processor_id();
728 int err;
729
730 /*
731 * If this is a task context, we need to check whether it is
732 * the current task context of this cpu. If not it has been
733 * scheduled out before the smp call arrived.
734 * Or possibly this is the right context but it isn't
735 * on this cpu because it had no counters.
736 */
737 if (ctx->task && cpuctx->task_ctx != ctx) {
738 if (cpuctx->task_ctx || ctx->task != current)
739 return;
740 cpuctx->task_ctx = ctx;
741 }
742
743 spin_lock(&ctx->lock);
744 ctx->is_active = 1;
745 update_context_time(ctx);
746
747 /*
748 * Protect the list operation against NMI by disabling the
749 * counters on a global level. NOP for non NMI based counters.
750 */
751 perf_disable();
752
753 add_counter_to_ctx(counter, ctx);
754
755 /*
756 * Don't put the counter on if it is disabled or if
757 * it is in a group and the group isn't on.
758 */
759 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
760 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
761 goto unlock;
762
763 /*
764 * An exclusive counter can't go on if there are already active
765 * hardware counters, and no hardware counter can go on if there
766 * is already an exclusive counter on.
767 */
768 if (!group_can_go_on(counter, cpuctx, 1))
769 err = -EEXIST;
770 else
771 err = counter_sched_in(counter, cpuctx, ctx, cpu);
772
773 if (err) {
774 /*
775 * This counter couldn't go on. If it is in a group
776 * then we have to pull the whole group off.
777 * If the counter group is pinned then put it in error state.
778 */
779 if (leader != counter)
780 group_sched_out(leader, cpuctx, ctx);
781 if (leader->attr.pinned) {
782 update_group_times(leader);
783 leader->state = PERF_COUNTER_STATE_ERROR;
784 }
785 }
786
787 if (!err && !ctx->task && cpuctx->max_pertask)
788 cpuctx->max_pertask--;
789
790 unlock:
791 perf_enable();
792
793 spin_unlock(&ctx->lock);
794 }
795
796 /*
797 * Attach a performance counter to a context
798 *
799 * First we add the counter to the list with the hardware enable bit
800 * in counter->hw_config cleared.
801 *
802 * If the counter is attached to a task which is on a CPU we use a smp
803 * call to enable it in the task context. The task might have been
804 * scheduled away, but we check this in the smp call again.
805 *
806 * Must be called with ctx->mutex held.
807 */
808 static void
809 perf_install_in_context(struct perf_counter_context *ctx,
810 struct perf_counter *counter,
811 int cpu)
812 {
813 struct task_struct *task = ctx->task;
814
815 if (!task) {
816 /*
817 * Per cpu counters are installed via an smp call and
818 * the install is always sucessful.
819 */
820 smp_call_function_single(cpu, __perf_install_in_context,
821 counter, 1);
822 return;
823 }
824
825 retry:
826 task_oncpu_function_call(task, __perf_install_in_context,
827 counter);
828
829 spin_lock_irq(&ctx->lock);
830 /*
831 * we need to retry the smp call.
832 */
833 if (ctx->is_active && list_empty(&counter->list_entry)) {
834 spin_unlock_irq(&ctx->lock);
835 goto retry;
836 }
837
838 /*
839 * The lock prevents that this context is scheduled in so we
840 * can add the counter safely, if it the call above did not
841 * succeed.
842 */
843 if (list_empty(&counter->list_entry))
844 add_counter_to_ctx(counter, ctx);
845 spin_unlock_irq(&ctx->lock);
846 }
847
848 /*
849 * Cross CPU call to enable a performance counter
850 */
851 static void __perf_counter_enable(void *info)
852 {
853 struct perf_counter *counter = info;
854 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
855 struct perf_counter_context *ctx = counter->ctx;
856 struct perf_counter *leader = counter->group_leader;
857 int err;
858
859 /*
860 * If this is a per-task counter, need to check whether this
861 * counter's task is the current task on this cpu.
862 */
863 if (ctx->task && cpuctx->task_ctx != ctx) {
864 if (cpuctx->task_ctx || ctx->task != current)
865 return;
866 cpuctx->task_ctx = ctx;
867 }
868
869 spin_lock(&ctx->lock);
870 ctx->is_active = 1;
871 update_context_time(ctx);
872
873 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
874 goto unlock;
875 counter->state = PERF_COUNTER_STATE_INACTIVE;
876 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
877
878 /*
879 * If the counter is in a group and isn't the group leader,
880 * then don't put it on unless the group is on.
881 */
882 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
883 goto unlock;
884
885 if (!group_can_go_on(counter, cpuctx, 1)) {
886 err = -EEXIST;
887 } else {
888 perf_disable();
889 if (counter == leader)
890 err = group_sched_in(counter, cpuctx, ctx,
891 smp_processor_id());
892 else
893 err = counter_sched_in(counter, cpuctx, ctx,
894 smp_processor_id());
895 perf_enable();
896 }
897
898 if (err) {
899 /*
900 * If this counter can't go on and it's part of a
901 * group, then the whole group has to come off.
902 */
903 if (leader != counter)
904 group_sched_out(leader, cpuctx, ctx);
905 if (leader->attr.pinned) {
906 update_group_times(leader);
907 leader->state = PERF_COUNTER_STATE_ERROR;
908 }
909 }
910
911 unlock:
912 spin_unlock(&ctx->lock);
913 }
914
915 /*
916 * Enable a counter.
917 *
918 * If counter->ctx is a cloned context, callers must make sure that
919 * every task struct that counter->ctx->task could possibly point to
920 * remains valid. This condition is satisfied when called through
921 * perf_counter_for_each_child or perf_counter_for_each as described
922 * for perf_counter_disable.
923 */
924 static void perf_counter_enable(struct perf_counter *counter)
925 {
926 struct perf_counter_context *ctx = counter->ctx;
927 struct task_struct *task = ctx->task;
928
929 if (!task) {
930 /*
931 * Enable the counter on the cpu that it's on
932 */
933 smp_call_function_single(counter->cpu, __perf_counter_enable,
934 counter, 1);
935 return;
936 }
937
938 spin_lock_irq(&ctx->lock);
939 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
940 goto out;
941
942 /*
943 * If the counter is in error state, clear that first.
944 * That way, if we see the counter in error state below, we
945 * know that it has gone back into error state, as distinct
946 * from the task having been scheduled away before the
947 * cross-call arrived.
948 */
949 if (counter->state == PERF_COUNTER_STATE_ERROR)
950 counter->state = PERF_COUNTER_STATE_OFF;
951
952 retry:
953 spin_unlock_irq(&ctx->lock);
954 task_oncpu_function_call(task, __perf_counter_enable, counter);
955
956 spin_lock_irq(&ctx->lock);
957
958 /*
959 * If the context is active and the counter is still off,
960 * we need to retry the cross-call.
961 */
962 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
963 goto retry;
964
965 /*
966 * Since we have the lock this context can't be scheduled
967 * in, so we can change the state safely.
968 */
969 if (counter->state == PERF_COUNTER_STATE_OFF) {
970 counter->state = PERF_COUNTER_STATE_INACTIVE;
971 counter->tstamp_enabled =
972 ctx->time - counter->total_time_enabled;
973 }
974 out:
975 spin_unlock_irq(&ctx->lock);
976 }
977
978 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
979 {
980 /*
981 * not supported on inherited counters
982 */
983 if (counter->attr.inherit)
984 return -EINVAL;
985
986 atomic_add(refresh, &counter->event_limit);
987 perf_counter_enable(counter);
988
989 return 0;
990 }
991
992 void __perf_counter_sched_out(struct perf_counter_context *ctx,
993 struct perf_cpu_context *cpuctx)
994 {
995 struct perf_counter *counter;
996
997 spin_lock(&ctx->lock);
998 ctx->is_active = 0;
999 if (likely(!ctx->nr_counters))
1000 goto out;
1001 update_context_time(ctx);
1002
1003 perf_disable();
1004 if (ctx->nr_active) {
1005 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1006 if (counter != counter->group_leader)
1007 counter_sched_out(counter, cpuctx, ctx);
1008 else
1009 group_sched_out(counter, cpuctx, ctx);
1010 }
1011 }
1012 perf_enable();
1013 out:
1014 spin_unlock(&ctx->lock);
1015 }
1016
1017 /*
1018 * Test whether two contexts are equivalent, i.e. whether they
1019 * have both been cloned from the same version of the same context
1020 * and they both have the same number of enabled counters.
1021 * If the number of enabled counters is the same, then the set
1022 * of enabled counters should be the same, because these are both
1023 * inherited contexts, therefore we can't access individual counters
1024 * in them directly with an fd; we can only enable/disable all
1025 * counters via prctl, or enable/disable all counters in a family
1026 * via ioctl, which will have the same effect on both contexts.
1027 */
1028 static int context_equiv(struct perf_counter_context *ctx1,
1029 struct perf_counter_context *ctx2)
1030 {
1031 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1032 && ctx1->parent_gen == ctx2->parent_gen
1033 && !ctx1->pin_count && !ctx2->pin_count;
1034 }
1035
1036 static void __perf_counter_read(void *counter);
1037
1038 static void __perf_counter_sync_stat(struct perf_counter *counter,
1039 struct perf_counter *next_counter)
1040 {
1041 u64 value;
1042
1043 if (!counter->attr.inherit_stat)
1044 return;
1045
1046 /*
1047 * Update the counter value, we cannot use perf_counter_read()
1048 * because we're in the middle of a context switch and have IRQs
1049 * disabled, which upsets smp_call_function_single(), however
1050 * we know the counter must be on the current CPU, therefore we
1051 * don't need to use it.
1052 */
1053 switch (counter->state) {
1054 case PERF_COUNTER_STATE_ACTIVE:
1055 __perf_counter_read(counter);
1056 break;
1057
1058 case PERF_COUNTER_STATE_INACTIVE:
1059 update_counter_times(counter);
1060 break;
1061
1062 default:
1063 break;
1064 }
1065
1066 /*
1067 * In order to keep per-task stats reliable we need to flip the counter
1068 * values when we flip the contexts.
1069 */
1070 value = atomic64_read(&next_counter->count);
1071 value = atomic64_xchg(&counter->count, value);
1072 atomic64_set(&next_counter->count, value);
1073
1074 swap(counter->total_time_enabled, next_counter->total_time_enabled);
1075 swap(counter->total_time_running, next_counter->total_time_running);
1076
1077 /*
1078 * Since we swizzled the values, update the user visible data too.
1079 */
1080 perf_counter_update_userpage(counter);
1081 perf_counter_update_userpage(next_counter);
1082 }
1083
1084 #define list_next_entry(pos, member) \
1085 list_entry(pos->member.next, typeof(*pos), member)
1086
1087 static void perf_counter_sync_stat(struct perf_counter_context *ctx,
1088 struct perf_counter_context *next_ctx)
1089 {
1090 struct perf_counter *counter, *next_counter;
1091
1092 if (!ctx->nr_stat)
1093 return;
1094
1095 counter = list_first_entry(&ctx->event_list,
1096 struct perf_counter, event_entry);
1097
1098 next_counter = list_first_entry(&next_ctx->event_list,
1099 struct perf_counter, event_entry);
1100
1101 while (&counter->event_entry != &ctx->event_list &&
1102 &next_counter->event_entry != &next_ctx->event_list) {
1103
1104 __perf_counter_sync_stat(counter, next_counter);
1105
1106 counter = list_next_entry(counter, event_entry);
1107 next_counter = list_next_entry(next_counter, event_entry);
1108 }
1109 }
1110
1111 /*
1112 * Called from scheduler to remove the counters of the current task,
1113 * with interrupts disabled.
1114 *
1115 * We stop each counter and update the counter value in counter->count.
1116 *
1117 * This does not protect us against NMI, but disable()
1118 * sets the disabled bit in the control field of counter _before_
1119 * accessing the counter control register. If a NMI hits, then it will
1120 * not restart the counter.
1121 */
1122 void perf_counter_task_sched_out(struct task_struct *task,
1123 struct task_struct *next, int cpu)
1124 {
1125 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1126 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1127 struct perf_counter_context *next_ctx;
1128 struct perf_counter_context *parent;
1129 struct pt_regs *regs;
1130 int do_switch = 1;
1131
1132 regs = task_pt_regs(task);
1133 perf_swcounter_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1134
1135 if (likely(!ctx || !cpuctx->task_ctx))
1136 return;
1137
1138 update_context_time(ctx);
1139
1140 rcu_read_lock();
1141 parent = rcu_dereference(ctx->parent_ctx);
1142 next_ctx = next->perf_counter_ctxp;
1143 if (parent && next_ctx &&
1144 rcu_dereference(next_ctx->parent_ctx) == parent) {
1145 /*
1146 * Looks like the two contexts are clones, so we might be
1147 * able to optimize the context switch. We lock both
1148 * contexts and check that they are clones under the
1149 * lock (including re-checking that neither has been
1150 * uncloned in the meantime). It doesn't matter which
1151 * order we take the locks because no other cpu could
1152 * be trying to lock both of these tasks.
1153 */
1154 spin_lock(&ctx->lock);
1155 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1156 if (context_equiv(ctx, next_ctx)) {
1157 /*
1158 * XXX do we need a memory barrier of sorts
1159 * wrt to rcu_dereference() of perf_counter_ctxp
1160 */
1161 task->perf_counter_ctxp = next_ctx;
1162 next->perf_counter_ctxp = ctx;
1163 ctx->task = next;
1164 next_ctx->task = task;
1165 do_switch = 0;
1166
1167 perf_counter_sync_stat(ctx, next_ctx);
1168 }
1169 spin_unlock(&next_ctx->lock);
1170 spin_unlock(&ctx->lock);
1171 }
1172 rcu_read_unlock();
1173
1174 if (do_switch) {
1175 __perf_counter_sched_out(ctx, cpuctx);
1176 cpuctx->task_ctx = NULL;
1177 }
1178 }
1179
1180 /*
1181 * Called with IRQs disabled
1182 */
1183 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
1184 {
1185 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1186
1187 if (!cpuctx->task_ctx)
1188 return;
1189
1190 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1191 return;
1192
1193 __perf_counter_sched_out(ctx, cpuctx);
1194 cpuctx->task_ctx = NULL;
1195 }
1196
1197 /*
1198 * Called with IRQs disabled
1199 */
1200 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1201 {
1202 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1203 }
1204
1205 static void
1206 __perf_counter_sched_in(struct perf_counter_context *ctx,
1207 struct perf_cpu_context *cpuctx, int cpu)
1208 {
1209 struct perf_counter *counter;
1210 int can_add_hw = 1;
1211
1212 spin_lock(&ctx->lock);
1213 ctx->is_active = 1;
1214 if (likely(!ctx->nr_counters))
1215 goto out;
1216
1217 ctx->timestamp = perf_clock();
1218
1219 perf_disable();
1220
1221 /*
1222 * First go through the list and put on any pinned groups
1223 * in order to give them the best chance of going on.
1224 */
1225 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1226 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1227 !counter->attr.pinned)
1228 continue;
1229 if (counter->cpu != -1 && counter->cpu != cpu)
1230 continue;
1231
1232 if (counter != counter->group_leader)
1233 counter_sched_in(counter, cpuctx, ctx, cpu);
1234 else {
1235 if (group_can_go_on(counter, cpuctx, 1))
1236 group_sched_in(counter, cpuctx, ctx, cpu);
1237 }
1238
1239 /*
1240 * If this pinned group hasn't been scheduled,
1241 * put it in error state.
1242 */
1243 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1244 update_group_times(counter);
1245 counter->state = PERF_COUNTER_STATE_ERROR;
1246 }
1247 }
1248
1249 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1250 /*
1251 * Ignore counters in OFF or ERROR state, and
1252 * ignore pinned counters since we did them already.
1253 */
1254 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1255 counter->attr.pinned)
1256 continue;
1257
1258 /*
1259 * Listen to the 'cpu' scheduling filter constraint
1260 * of counters:
1261 */
1262 if (counter->cpu != -1 && counter->cpu != cpu)
1263 continue;
1264
1265 if (counter != counter->group_leader) {
1266 if (counter_sched_in(counter, cpuctx, ctx, cpu))
1267 can_add_hw = 0;
1268 } else {
1269 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1270 if (group_sched_in(counter, cpuctx, ctx, cpu))
1271 can_add_hw = 0;
1272 }
1273 }
1274 }
1275 perf_enable();
1276 out:
1277 spin_unlock(&ctx->lock);
1278 }
1279
1280 /*
1281 * Called from scheduler to add the counters of the current task
1282 * with interrupts disabled.
1283 *
1284 * We restore the counter value and then enable it.
1285 *
1286 * This does not protect us against NMI, but enable()
1287 * sets the enabled bit in the control field of counter _before_
1288 * accessing the counter control register. If a NMI hits, then it will
1289 * keep the counter running.
1290 */
1291 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1292 {
1293 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1294 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1295
1296 if (likely(!ctx))
1297 return;
1298 if (cpuctx->task_ctx == ctx)
1299 return;
1300 __perf_counter_sched_in(ctx, cpuctx, cpu);
1301 cpuctx->task_ctx = ctx;
1302 }
1303
1304 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1305 {
1306 struct perf_counter_context *ctx = &cpuctx->ctx;
1307
1308 __perf_counter_sched_in(ctx, cpuctx, cpu);
1309 }
1310
1311 #define MAX_INTERRUPTS (~0ULL)
1312
1313 static void perf_log_throttle(struct perf_counter *counter, int enable);
1314
1315 static void perf_adjust_period(struct perf_counter *counter, u64 events)
1316 {
1317 struct hw_perf_counter *hwc = &counter->hw;
1318 u64 period, sample_period;
1319 s64 delta;
1320
1321 events *= hwc->sample_period;
1322 period = div64_u64(events, counter->attr.sample_freq);
1323
1324 delta = (s64)(period - hwc->sample_period);
1325 delta = (delta + 7) / 8; /* low pass filter */
1326
1327 sample_period = hwc->sample_period + delta;
1328
1329 if (!sample_period)
1330 sample_period = 1;
1331
1332 hwc->sample_period = sample_period;
1333 }
1334
1335 static void perf_ctx_adjust_freq(struct perf_counter_context *ctx)
1336 {
1337 struct perf_counter *counter;
1338 struct hw_perf_counter *hwc;
1339 u64 interrupts, freq;
1340
1341 spin_lock(&ctx->lock);
1342 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1343 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1344 continue;
1345
1346 hwc = &counter->hw;
1347
1348 interrupts = hwc->interrupts;
1349 hwc->interrupts = 0;
1350
1351 /*
1352 * unthrottle counters on the tick
1353 */
1354 if (interrupts == MAX_INTERRUPTS) {
1355 perf_log_throttle(counter, 1);
1356 counter->pmu->unthrottle(counter);
1357 interrupts = 2*sysctl_perf_counter_sample_rate/HZ;
1358 }
1359
1360 if (!counter->attr.freq || !counter->attr.sample_freq)
1361 continue;
1362
1363 /*
1364 * if the specified freq < HZ then we need to skip ticks
1365 */
1366 if (counter->attr.sample_freq < HZ) {
1367 freq = counter->attr.sample_freq;
1368
1369 hwc->freq_count += freq;
1370 hwc->freq_interrupts += interrupts;
1371
1372 if (hwc->freq_count < HZ)
1373 continue;
1374
1375 interrupts = hwc->freq_interrupts;
1376 hwc->freq_interrupts = 0;
1377 hwc->freq_count -= HZ;
1378 } else
1379 freq = HZ;
1380
1381 perf_adjust_period(counter, freq * interrupts);
1382
1383 /*
1384 * In order to avoid being stalled by an (accidental) huge
1385 * sample period, force reset the sample period if we didn't
1386 * get any events in this freq period.
1387 */
1388 if (!interrupts) {
1389 perf_disable();
1390 counter->pmu->disable(counter);
1391 atomic64_set(&hwc->period_left, 0);
1392 counter->pmu->enable(counter);
1393 perf_enable();
1394 }
1395 }
1396 spin_unlock(&ctx->lock);
1397 }
1398
1399 /*
1400 * Round-robin a context's counters:
1401 */
1402 static void rotate_ctx(struct perf_counter_context *ctx)
1403 {
1404 struct perf_counter *counter;
1405
1406 if (!ctx->nr_counters)
1407 return;
1408
1409 spin_lock(&ctx->lock);
1410 /*
1411 * Rotate the first entry last (works just fine for group counters too):
1412 */
1413 perf_disable();
1414 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1415 list_move_tail(&counter->list_entry, &ctx->counter_list);
1416 break;
1417 }
1418 perf_enable();
1419
1420 spin_unlock(&ctx->lock);
1421 }
1422
1423 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1424 {
1425 struct perf_cpu_context *cpuctx;
1426 struct perf_counter_context *ctx;
1427
1428 if (!atomic_read(&nr_counters))
1429 return;
1430
1431 cpuctx = &per_cpu(perf_cpu_context, cpu);
1432 ctx = curr->perf_counter_ctxp;
1433
1434 perf_ctx_adjust_freq(&cpuctx->ctx);
1435 if (ctx)
1436 perf_ctx_adjust_freq(ctx);
1437
1438 perf_counter_cpu_sched_out(cpuctx);
1439 if (ctx)
1440 __perf_counter_task_sched_out(ctx);
1441
1442 rotate_ctx(&cpuctx->ctx);
1443 if (ctx)
1444 rotate_ctx(ctx);
1445
1446 perf_counter_cpu_sched_in(cpuctx, cpu);
1447 if (ctx)
1448 perf_counter_task_sched_in(curr, cpu);
1449 }
1450
1451 /*
1452 * Enable all of a task's counters that have been marked enable-on-exec.
1453 * This expects task == current.
1454 */
1455 static void perf_counter_enable_on_exec(struct task_struct *task)
1456 {
1457 struct perf_counter_context *ctx;
1458 struct perf_counter *counter;
1459 unsigned long flags;
1460 int enabled = 0;
1461
1462 local_irq_save(flags);
1463 ctx = task->perf_counter_ctxp;
1464 if (!ctx || !ctx->nr_counters)
1465 goto out;
1466
1467 __perf_counter_task_sched_out(ctx);
1468
1469 spin_lock(&ctx->lock);
1470
1471 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1472 if (!counter->attr.enable_on_exec)
1473 continue;
1474 counter->attr.enable_on_exec = 0;
1475 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
1476 continue;
1477 counter->state = PERF_COUNTER_STATE_INACTIVE;
1478 counter->tstamp_enabled =
1479 ctx->time - counter->total_time_enabled;
1480 enabled = 1;
1481 }
1482
1483 /*
1484 * Unclone this context if we enabled any counter.
1485 */
1486 if (enabled)
1487 unclone_ctx(ctx);
1488
1489 spin_unlock(&ctx->lock);
1490
1491 perf_counter_task_sched_in(task, smp_processor_id());
1492 out:
1493 local_irq_restore(flags);
1494 }
1495
1496 /*
1497 * Cross CPU call to read the hardware counter
1498 */
1499 static void __perf_counter_read(void *info)
1500 {
1501 struct perf_counter *counter = info;
1502 struct perf_counter_context *ctx = counter->ctx;
1503 unsigned long flags;
1504
1505 local_irq_save(flags);
1506 if (ctx->is_active)
1507 update_context_time(ctx);
1508 counter->pmu->read(counter);
1509 update_counter_times(counter);
1510 local_irq_restore(flags);
1511 }
1512
1513 static u64 perf_counter_read(struct perf_counter *counter)
1514 {
1515 /*
1516 * If counter is enabled and currently active on a CPU, update the
1517 * value in the counter structure:
1518 */
1519 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1520 smp_call_function_single(counter->oncpu,
1521 __perf_counter_read, counter, 1);
1522 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1523 update_counter_times(counter);
1524 }
1525
1526 return atomic64_read(&counter->count);
1527 }
1528
1529 /*
1530 * Initialize the perf_counter context in a task_struct:
1531 */
1532 static void
1533 __perf_counter_init_context(struct perf_counter_context *ctx,
1534 struct task_struct *task)
1535 {
1536 memset(ctx, 0, sizeof(*ctx));
1537 spin_lock_init(&ctx->lock);
1538 mutex_init(&ctx->mutex);
1539 INIT_LIST_HEAD(&ctx->counter_list);
1540 INIT_LIST_HEAD(&ctx->event_list);
1541 atomic_set(&ctx->refcount, 1);
1542 ctx->task = task;
1543 }
1544
1545 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1546 {
1547 struct perf_counter_context *ctx;
1548 struct perf_cpu_context *cpuctx;
1549 struct task_struct *task;
1550 unsigned long flags;
1551 int err;
1552
1553 /*
1554 * If cpu is not a wildcard then this is a percpu counter:
1555 */
1556 if (cpu != -1) {
1557 /* Must be root to operate on a CPU counter: */
1558 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1559 return ERR_PTR(-EACCES);
1560
1561 if (cpu < 0 || cpu > num_possible_cpus())
1562 return ERR_PTR(-EINVAL);
1563
1564 /*
1565 * We could be clever and allow to attach a counter to an
1566 * offline CPU and activate it when the CPU comes up, but
1567 * that's for later.
1568 */
1569 if (!cpu_isset(cpu, cpu_online_map))
1570 return ERR_PTR(-ENODEV);
1571
1572 cpuctx = &per_cpu(perf_cpu_context, cpu);
1573 ctx = &cpuctx->ctx;
1574 get_ctx(ctx);
1575
1576 return ctx;
1577 }
1578
1579 rcu_read_lock();
1580 if (!pid)
1581 task = current;
1582 else
1583 task = find_task_by_vpid(pid);
1584 if (task)
1585 get_task_struct(task);
1586 rcu_read_unlock();
1587
1588 if (!task)
1589 return ERR_PTR(-ESRCH);
1590
1591 /*
1592 * Can't attach counters to a dying task.
1593 */
1594 err = -ESRCH;
1595 if (task->flags & PF_EXITING)
1596 goto errout;
1597
1598 /* Reuse ptrace permission checks for now. */
1599 err = -EACCES;
1600 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1601 goto errout;
1602
1603 retry:
1604 ctx = perf_lock_task_context(task, &flags);
1605 if (ctx) {
1606 unclone_ctx(ctx);
1607 spin_unlock_irqrestore(&ctx->lock, flags);
1608 }
1609
1610 if (!ctx) {
1611 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1612 err = -ENOMEM;
1613 if (!ctx)
1614 goto errout;
1615 __perf_counter_init_context(ctx, task);
1616 get_ctx(ctx);
1617 if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1618 /*
1619 * We raced with some other task; use
1620 * the context they set.
1621 */
1622 kfree(ctx);
1623 goto retry;
1624 }
1625 get_task_struct(task);
1626 }
1627
1628 put_task_struct(task);
1629 return ctx;
1630
1631 errout:
1632 put_task_struct(task);
1633 return ERR_PTR(err);
1634 }
1635
1636 static void free_counter_rcu(struct rcu_head *head)
1637 {
1638 struct perf_counter *counter;
1639
1640 counter = container_of(head, struct perf_counter, rcu_head);
1641 if (counter->ns)
1642 put_pid_ns(counter->ns);
1643 kfree(counter);
1644 }
1645
1646 static void perf_pending_sync(struct perf_counter *counter);
1647
1648 static void free_counter(struct perf_counter *counter)
1649 {
1650 perf_pending_sync(counter);
1651
1652 if (!counter->parent) {
1653 atomic_dec(&nr_counters);
1654 if (counter->attr.mmap)
1655 atomic_dec(&nr_mmap_counters);
1656 if (counter->attr.comm)
1657 atomic_dec(&nr_comm_counters);
1658 if (counter->attr.task)
1659 atomic_dec(&nr_task_counters);
1660 }
1661
1662 if (counter->destroy)
1663 counter->destroy(counter);
1664
1665 put_ctx(counter->ctx);
1666 call_rcu(&counter->rcu_head, free_counter_rcu);
1667 }
1668
1669 /*
1670 * Called when the last reference to the file is gone.
1671 */
1672 static int perf_release(struct inode *inode, struct file *file)
1673 {
1674 struct perf_counter *counter = file->private_data;
1675 struct perf_counter_context *ctx = counter->ctx;
1676
1677 file->private_data = NULL;
1678
1679 WARN_ON_ONCE(ctx->parent_ctx);
1680 mutex_lock(&ctx->mutex);
1681 perf_counter_remove_from_context(counter);
1682 mutex_unlock(&ctx->mutex);
1683
1684 mutex_lock(&counter->owner->perf_counter_mutex);
1685 list_del_init(&counter->owner_entry);
1686 mutex_unlock(&counter->owner->perf_counter_mutex);
1687 put_task_struct(counter->owner);
1688
1689 free_counter(counter);
1690
1691 return 0;
1692 }
1693
1694 static u64 perf_counter_read_tree(struct perf_counter *counter)
1695 {
1696 struct perf_counter *child;
1697 u64 total = 0;
1698
1699 total += perf_counter_read(counter);
1700 list_for_each_entry(child, &counter->child_list, child_list)
1701 total += perf_counter_read(child);
1702
1703 return total;
1704 }
1705
1706 /*
1707 * Read the performance counter - simple non blocking version for now
1708 */
1709 static ssize_t
1710 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1711 {
1712 u64 values[4];
1713 int n;
1714
1715 /*
1716 * Return end-of-file for a read on a counter that is in
1717 * error state (i.e. because it was pinned but it couldn't be
1718 * scheduled on to the CPU at some point).
1719 */
1720 if (counter->state == PERF_COUNTER_STATE_ERROR)
1721 return 0;
1722
1723 WARN_ON_ONCE(counter->ctx->parent_ctx);
1724 mutex_lock(&counter->child_mutex);
1725 values[0] = perf_counter_read_tree(counter);
1726 n = 1;
1727 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1728 values[n++] = counter->total_time_enabled +
1729 atomic64_read(&counter->child_total_time_enabled);
1730 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1731 values[n++] = counter->total_time_running +
1732 atomic64_read(&counter->child_total_time_running);
1733 if (counter->attr.read_format & PERF_FORMAT_ID)
1734 values[n++] = primary_counter_id(counter);
1735 mutex_unlock(&counter->child_mutex);
1736
1737 if (count < n * sizeof(u64))
1738 return -EINVAL;
1739 count = n * sizeof(u64);
1740
1741 if (copy_to_user(buf, values, count))
1742 return -EFAULT;
1743
1744 return count;
1745 }
1746
1747 static ssize_t
1748 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1749 {
1750 struct perf_counter *counter = file->private_data;
1751
1752 return perf_read_hw(counter, buf, count);
1753 }
1754
1755 static unsigned int perf_poll(struct file *file, poll_table *wait)
1756 {
1757 struct perf_counter *counter = file->private_data;
1758 struct perf_mmap_data *data;
1759 unsigned int events = POLL_HUP;
1760
1761 rcu_read_lock();
1762 data = rcu_dereference(counter->data);
1763 if (data)
1764 events = atomic_xchg(&data->poll, 0);
1765 rcu_read_unlock();
1766
1767 poll_wait(file, &counter->waitq, wait);
1768
1769 return events;
1770 }
1771
1772 static void perf_counter_reset(struct perf_counter *counter)
1773 {
1774 (void)perf_counter_read(counter);
1775 atomic64_set(&counter->count, 0);
1776 perf_counter_update_userpage(counter);
1777 }
1778
1779 /*
1780 * Holding the top-level counter's child_mutex means that any
1781 * descendant process that has inherited this counter will block
1782 * in sync_child_counter if it goes to exit, thus satisfying the
1783 * task existence requirements of perf_counter_enable/disable.
1784 */
1785 static void perf_counter_for_each_child(struct perf_counter *counter,
1786 void (*func)(struct perf_counter *))
1787 {
1788 struct perf_counter *child;
1789
1790 WARN_ON_ONCE(counter->ctx->parent_ctx);
1791 mutex_lock(&counter->child_mutex);
1792 func(counter);
1793 list_for_each_entry(child, &counter->child_list, child_list)
1794 func(child);
1795 mutex_unlock(&counter->child_mutex);
1796 }
1797
1798 static void perf_counter_for_each(struct perf_counter *counter,
1799 void (*func)(struct perf_counter *))
1800 {
1801 struct perf_counter_context *ctx = counter->ctx;
1802 struct perf_counter *sibling;
1803
1804 WARN_ON_ONCE(ctx->parent_ctx);
1805 mutex_lock(&ctx->mutex);
1806 counter = counter->group_leader;
1807
1808 perf_counter_for_each_child(counter, func);
1809 func(counter);
1810 list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1811 perf_counter_for_each_child(counter, func);
1812 mutex_unlock(&ctx->mutex);
1813 }
1814
1815 static int perf_counter_period(struct perf_counter *counter, u64 __user *arg)
1816 {
1817 struct perf_counter_context *ctx = counter->ctx;
1818 unsigned long size;
1819 int ret = 0;
1820 u64 value;
1821
1822 if (!counter->attr.sample_period)
1823 return -EINVAL;
1824
1825 size = copy_from_user(&value, arg, sizeof(value));
1826 if (size != sizeof(value))
1827 return -EFAULT;
1828
1829 if (!value)
1830 return -EINVAL;
1831
1832 spin_lock_irq(&ctx->lock);
1833 if (counter->attr.freq) {
1834 if (value > sysctl_perf_counter_sample_rate) {
1835 ret = -EINVAL;
1836 goto unlock;
1837 }
1838
1839 counter->attr.sample_freq = value;
1840 } else {
1841 counter->attr.sample_period = value;
1842 counter->hw.sample_period = value;
1843 }
1844 unlock:
1845 spin_unlock_irq(&ctx->lock);
1846
1847 return ret;
1848 }
1849
1850 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1851 {
1852 struct perf_counter *counter = file->private_data;
1853 void (*func)(struct perf_counter *);
1854 u32 flags = arg;
1855
1856 switch (cmd) {
1857 case PERF_COUNTER_IOC_ENABLE:
1858 func = perf_counter_enable;
1859 break;
1860 case PERF_COUNTER_IOC_DISABLE:
1861 func = perf_counter_disable;
1862 break;
1863 case PERF_COUNTER_IOC_RESET:
1864 func = perf_counter_reset;
1865 break;
1866
1867 case PERF_COUNTER_IOC_REFRESH:
1868 return perf_counter_refresh(counter, arg);
1869
1870 case PERF_COUNTER_IOC_PERIOD:
1871 return perf_counter_period(counter, (u64 __user *)arg);
1872
1873 default:
1874 return -ENOTTY;
1875 }
1876
1877 if (flags & PERF_IOC_FLAG_GROUP)
1878 perf_counter_for_each(counter, func);
1879 else
1880 perf_counter_for_each_child(counter, func);
1881
1882 return 0;
1883 }
1884
1885 int perf_counter_task_enable(void)
1886 {
1887 struct perf_counter *counter;
1888
1889 mutex_lock(&current->perf_counter_mutex);
1890 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1891 perf_counter_for_each_child(counter, perf_counter_enable);
1892 mutex_unlock(&current->perf_counter_mutex);
1893
1894 return 0;
1895 }
1896
1897 int perf_counter_task_disable(void)
1898 {
1899 struct perf_counter *counter;
1900
1901 mutex_lock(&current->perf_counter_mutex);
1902 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1903 perf_counter_for_each_child(counter, perf_counter_disable);
1904 mutex_unlock(&current->perf_counter_mutex);
1905
1906 return 0;
1907 }
1908
1909 static int perf_counter_index(struct perf_counter *counter)
1910 {
1911 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1912 return 0;
1913
1914 return counter->hw.idx + 1 - PERF_COUNTER_INDEX_OFFSET;
1915 }
1916
1917 /*
1918 * Callers need to ensure there can be no nesting of this function, otherwise
1919 * the seqlock logic goes bad. We can not serialize this because the arch
1920 * code calls this from NMI context.
1921 */
1922 void perf_counter_update_userpage(struct perf_counter *counter)
1923 {
1924 struct perf_counter_mmap_page *userpg;
1925 struct perf_mmap_data *data;
1926
1927 rcu_read_lock();
1928 data = rcu_dereference(counter->data);
1929 if (!data)
1930 goto unlock;
1931
1932 userpg = data->user_page;
1933
1934 /*
1935 * Disable preemption so as to not let the corresponding user-space
1936 * spin too long if we get preempted.
1937 */
1938 preempt_disable();
1939 ++userpg->lock;
1940 barrier();
1941 userpg->index = perf_counter_index(counter);
1942 userpg->offset = atomic64_read(&counter->count);
1943 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1944 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1945
1946 userpg->time_enabled = counter->total_time_enabled +
1947 atomic64_read(&counter->child_total_time_enabled);
1948
1949 userpg->time_running = counter->total_time_running +
1950 atomic64_read(&counter->child_total_time_running);
1951
1952 barrier();
1953 ++userpg->lock;
1954 preempt_enable();
1955 unlock:
1956 rcu_read_unlock();
1957 }
1958
1959 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1960 {
1961 struct perf_counter *counter = vma->vm_file->private_data;
1962 struct perf_mmap_data *data;
1963 int ret = VM_FAULT_SIGBUS;
1964
1965 if (vmf->flags & FAULT_FLAG_MKWRITE) {
1966 if (vmf->pgoff == 0)
1967 ret = 0;
1968 return ret;
1969 }
1970
1971 rcu_read_lock();
1972 data = rcu_dereference(counter->data);
1973 if (!data)
1974 goto unlock;
1975
1976 if (vmf->pgoff == 0) {
1977 vmf->page = virt_to_page(data->user_page);
1978 } else {
1979 int nr = vmf->pgoff - 1;
1980
1981 if ((unsigned)nr > data->nr_pages)
1982 goto unlock;
1983
1984 if (vmf->flags & FAULT_FLAG_WRITE)
1985 goto unlock;
1986
1987 vmf->page = virt_to_page(data->data_pages[nr]);
1988 }
1989
1990 get_page(vmf->page);
1991 vmf->page->mapping = vma->vm_file->f_mapping;
1992 vmf->page->index = vmf->pgoff;
1993
1994 ret = 0;
1995 unlock:
1996 rcu_read_unlock();
1997
1998 return ret;
1999 }
2000
2001 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
2002 {
2003 struct perf_mmap_data *data;
2004 unsigned long size;
2005 int i;
2006
2007 WARN_ON(atomic_read(&counter->mmap_count));
2008
2009 size = sizeof(struct perf_mmap_data);
2010 size += nr_pages * sizeof(void *);
2011
2012 data = kzalloc(size, GFP_KERNEL);
2013 if (!data)
2014 goto fail;
2015
2016 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2017 if (!data->user_page)
2018 goto fail_user_page;
2019
2020 for (i = 0; i < nr_pages; i++) {
2021 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2022 if (!data->data_pages[i])
2023 goto fail_data_pages;
2024 }
2025
2026 data->nr_pages = nr_pages;
2027 atomic_set(&data->lock, -1);
2028
2029 rcu_assign_pointer(counter->data, data);
2030
2031 return 0;
2032
2033 fail_data_pages:
2034 for (i--; i >= 0; i--)
2035 free_page((unsigned long)data->data_pages[i]);
2036
2037 free_page((unsigned long)data->user_page);
2038
2039 fail_user_page:
2040 kfree(data);
2041
2042 fail:
2043 return -ENOMEM;
2044 }
2045
2046 static void perf_mmap_free_page(unsigned long addr)
2047 {
2048 struct page *page = virt_to_page((void *)addr);
2049
2050 page->mapping = NULL;
2051 __free_page(page);
2052 }
2053
2054 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
2055 {
2056 struct perf_mmap_data *data;
2057 int i;
2058
2059 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2060
2061 perf_mmap_free_page((unsigned long)data->user_page);
2062 for (i = 0; i < data->nr_pages; i++)
2063 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2064
2065 kfree(data);
2066 }
2067
2068 static void perf_mmap_data_free(struct perf_counter *counter)
2069 {
2070 struct perf_mmap_data *data = counter->data;
2071
2072 WARN_ON(atomic_read(&counter->mmap_count));
2073
2074 rcu_assign_pointer(counter->data, NULL);
2075 call_rcu(&data->rcu_head, __perf_mmap_data_free);
2076 }
2077
2078 static void perf_mmap_open(struct vm_area_struct *vma)
2079 {
2080 struct perf_counter *counter = vma->vm_file->private_data;
2081
2082 atomic_inc(&counter->mmap_count);
2083 }
2084
2085 static void perf_mmap_close(struct vm_area_struct *vma)
2086 {
2087 struct perf_counter *counter = vma->vm_file->private_data;
2088
2089 WARN_ON_ONCE(counter->ctx->parent_ctx);
2090 if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) {
2091 struct user_struct *user = current_user();
2092
2093 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
2094 vma->vm_mm->locked_vm -= counter->data->nr_locked;
2095 perf_mmap_data_free(counter);
2096 mutex_unlock(&counter->mmap_mutex);
2097 }
2098 }
2099
2100 static struct vm_operations_struct perf_mmap_vmops = {
2101 .open = perf_mmap_open,
2102 .close = perf_mmap_close,
2103 .fault = perf_mmap_fault,
2104 .page_mkwrite = perf_mmap_fault,
2105 };
2106
2107 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2108 {
2109 struct perf_counter *counter = file->private_data;
2110 unsigned long user_locked, user_lock_limit;
2111 struct user_struct *user = current_user();
2112 unsigned long locked, lock_limit;
2113 unsigned long vma_size;
2114 unsigned long nr_pages;
2115 long user_extra, extra;
2116 int ret = 0;
2117
2118 if (!(vma->vm_flags & VM_SHARED))
2119 return -EINVAL;
2120
2121 vma_size = vma->vm_end - vma->vm_start;
2122 nr_pages = (vma_size / PAGE_SIZE) - 1;
2123
2124 /*
2125 * If we have data pages ensure they're a power-of-two number, so we
2126 * can do bitmasks instead of modulo.
2127 */
2128 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2129 return -EINVAL;
2130
2131 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2132 return -EINVAL;
2133
2134 if (vma->vm_pgoff != 0)
2135 return -EINVAL;
2136
2137 WARN_ON_ONCE(counter->ctx->parent_ctx);
2138 mutex_lock(&counter->mmap_mutex);
2139 if (atomic_inc_not_zero(&counter->mmap_count)) {
2140 if (nr_pages != counter->data->nr_pages)
2141 ret = -EINVAL;
2142 goto unlock;
2143 }
2144
2145 user_extra = nr_pages + 1;
2146 user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
2147
2148 /*
2149 * Increase the limit linearly with more CPUs:
2150 */
2151 user_lock_limit *= num_online_cpus();
2152
2153 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2154
2155 extra = 0;
2156 if (user_locked > user_lock_limit)
2157 extra = user_locked - user_lock_limit;
2158
2159 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2160 lock_limit >>= PAGE_SHIFT;
2161 locked = vma->vm_mm->locked_vm + extra;
2162
2163 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
2164 ret = -EPERM;
2165 goto unlock;
2166 }
2167
2168 WARN_ON(counter->data);
2169 ret = perf_mmap_data_alloc(counter, nr_pages);
2170 if (ret)
2171 goto unlock;
2172
2173 atomic_set(&counter->mmap_count, 1);
2174 atomic_long_add(user_extra, &user->locked_vm);
2175 vma->vm_mm->locked_vm += extra;
2176 counter->data->nr_locked = extra;
2177 if (vma->vm_flags & VM_WRITE)
2178 counter->data->writable = 1;
2179
2180 unlock:
2181 mutex_unlock(&counter->mmap_mutex);
2182
2183 vma->vm_flags |= VM_RESERVED;
2184 vma->vm_ops = &perf_mmap_vmops;
2185
2186 return ret;
2187 }
2188
2189 static int perf_fasync(int fd, struct file *filp, int on)
2190 {
2191 struct inode *inode = filp->f_path.dentry->d_inode;
2192 struct perf_counter *counter = filp->private_data;
2193 int retval;
2194
2195 mutex_lock(&inode->i_mutex);
2196 retval = fasync_helper(fd, filp, on, &counter->fasync);
2197 mutex_unlock(&inode->i_mutex);
2198
2199 if (retval < 0)
2200 return retval;
2201
2202 return 0;
2203 }
2204
2205 static const struct file_operations perf_fops = {
2206 .release = perf_release,
2207 .read = perf_read,
2208 .poll = perf_poll,
2209 .unlocked_ioctl = perf_ioctl,
2210 .compat_ioctl = perf_ioctl,
2211 .mmap = perf_mmap,
2212 .fasync = perf_fasync,
2213 };
2214
2215 /*
2216 * Perf counter wakeup
2217 *
2218 * If there's data, ensure we set the poll() state and publish everything
2219 * to user-space before waking everybody up.
2220 */
2221
2222 void perf_counter_wakeup(struct perf_counter *counter)
2223 {
2224 wake_up_all(&counter->waitq);
2225
2226 if (counter->pending_kill) {
2227 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
2228 counter->pending_kill = 0;
2229 }
2230 }
2231
2232 /*
2233 * Pending wakeups
2234 *
2235 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2236 *
2237 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2238 * single linked list and use cmpxchg() to add entries lockless.
2239 */
2240
2241 static void perf_pending_counter(struct perf_pending_entry *entry)
2242 {
2243 struct perf_counter *counter = container_of(entry,
2244 struct perf_counter, pending);
2245
2246 if (counter->pending_disable) {
2247 counter->pending_disable = 0;
2248 perf_counter_disable(counter);
2249 }
2250
2251 if (counter->pending_wakeup) {
2252 counter->pending_wakeup = 0;
2253 perf_counter_wakeup(counter);
2254 }
2255 }
2256
2257 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2258
2259 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2260 PENDING_TAIL,
2261 };
2262
2263 static void perf_pending_queue(struct perf_pending_entry *entry,
2264 void (*func)(struct perf_pending_entry *))
2265 {
2266 struct perf_pending_entry **head;
2267
2268 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2269 return;
2270
2271 entry->func = func;
2272
2273 head = &get_cpu_var(perf_pending_head);
2274
2275 do {
2276 entry->next = *head;
2277 } while (cmpxchg(head, entry->next, entry) != entry->next);
2278
2279 set_perf_counter_pending();
2280
2281 put_cpu_var(perf_pending_head);
2282 }
2283
2284 static int __perf_pending_run(void)
2285 {
2286 struct perf_pending_entry *list;
2287 int nr = 0;
2288
2289 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2290 while (list != PENDING_TAIL) {
2291 void (*func)(struct perf_pending_entry *);
2292 struct perf_pending_entry *entry = list;
2293
2294 list = list->next;
2295
2296 func = entry->func;
2297 entry->next = NULL;
2298 /*
2299 * Ensure we observe the unqueue before we issue the wakeup,
2300 * so that we won't be waiting forever.
2301 * -- see perf_not_pending().
2302 */
2303 smp_wmb();
2304
2305 func(entry);
2306 nr++;
2307 }
2308
2309 return nr;
2310 }
2311
2312 static inline int perf_not_pending(struct perf_counter *counter)
2313 {
2314 /*
2315 * If we flush on whatever cpu we run, there is a chance we don't
2316 * need to wait.
2317 */
2318 get_cpu();
2319 __perf_pending_run();
2320 put_cpu();
2321
2322 /*
2323 * Ensure we see the proper queue state before going to sleep
2324 * so that we do not miss the wakeup. -- see perf_pending_handle()
2325 */
2326 smp_rmb();
2327 return counter->pending.next == NULL;
2328 }
2329
2330 static void perf_pending_sync(struct perf_counter *counter)
2331 {
2332 wait_event(counter->waitq, perf_not_pending(counter));
2333 }
2334
2335 void perf_counter_do_pending(void)
2336 {
2337 __perf_pending_run();
2338 }
2339
2340 /*
2341 * Callchain support -- arch specific
2342 */
2343
2344 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2345 {
2346 return NULL;
2347 }
2348
2349 /*
2350 * Output
2351 */
2352
2353 struct perf_output_handle {
2354 struct perf_counter *counter;
2355 struct perf_mmap_data *data;
2356 unsigned long head;
2357 unsigned long offset;
2358 int nmi;
2359 int sample;
2360 int locked;
2361 unsigned long flags;
2362 };
2363
2364 static bool perf_output_space(struct perf_mmap_data *data,
2365 unsigned int offset, unsigned int head)
2366 {
2367 unsigned long tail;
2368 unsigned long mask;
2369
2370 if (!data->writable)
2371 return true;
2372
2373 mask = (data->nr_pages << PAGE_SHIFT) - 1;
2374 /*
2375 * Userspace could choose to issue a mb() before updating the tail
2376 * pointer. So that all reads will be completed before the write is
2377 * issued.
2378 */
2379 tail = ACCESS_ONCE(data->user_page->data_tail);
2380 smp_rmb();
2381
2382 offset = (offset - tail) & mask;
2383 head = (head - tail) & mask;
2384
2385 if ((int)(head - offset) < 0)
2386 return false;
2387
2388 return true;
2389 }
2390
2391 static void perf_output_wakeup(struct perf_output_handle *handle)
2392 {
2393 atomic_set(&handle->data->poll, POLL_IN);
2394
2395 if (handle->nmi) {
2396 handle->counter->pending_wakeup = 1;
2397 perf_pending_queue(&handle->counter->pending,
2398 perf_pending_counter);
2399 } else
2400 perf_counter_wakeup(handle->counter);
2401 }
2402
2403 /*
2404 * Curious locking construct.
2405 *
2406 * We need to ensure a later event doesn't publish a head when a former
2407 * event isn't done writing. However since we need to deal with NMIs we
2408 * cannot fully serialize things.
2409 *
2410 * What we do is serialize between CPUs so we only have to deal with NMI
2411 * nesting on a single CPU.
2412 *
2413 * We only publish the head (and generate a wakeup) when the outer-most
2414 * event completes.
2415 */
2416 static void perf_output_lock(struct perf_output_handle *handle)
2417 {
2418 struct perf_mmap_data *data = handle->data;
2419 int cpu;
2420
2421 handle->locked = 0;
2422
2423 local_irq_save(handle->flags);
2424 cpu = smp_processor_id();
2425
2426 if (in_nmi() && atomic_read(&data->lock) == cpu)
2427 return;
2428
2429 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2430 cpu_relax();
2431
2432 handle->locked = 1;
2433 }
2434
2435 static void perf_output_unlock(struct perf_output_handle *handle)
2436 {
2437 struct perf_mmap_data *data = handle->data;
2438 unsigned long head;
2439 int cpu;
2440
2441 data->done_head = data->head;
2442
2443 if (!handle->locked)
2444 goto out;
2445
2446 again:
2447 /*
2448 * The xchg implies a full barrier that ensures all writes are done
2449 * before we publish the new head, matched by a rmb() in userspace when
2450 * reading this position.
2451 */
2452 while ((head = atomic_long_xchg(&data->done_head, 0)))
2453 data->user_page->data_head = head;
2454
2455 /*
2456 * NMI can happen here, which means we can miss a done_head update.
2457 */
2458
2459 cpu = atomic_xchg(&data->lock, -1);
2460 WARN_ON_ONCE(cpu != smp_processor_id());
2461
2462 /*
2463 * Therefore we have to validate we did not indeed do so.
2464 */
2465 if (unlikely(atomic_long_read(&data->done_head))) {
2466 /*
2467 * Since we had it locked, we can lock it again.
2468 */
2469 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2470 cpu_relax();
2471
2472 goto again;
2473 }
2474
2475 if (atomic_xchg(&data->wakeup, 0))
2476 perf_output_wakeup(handle);
2477 out:
2478 local_irq_restore(handle->flags);
2479 }
2480
2481 static void perf_output_copy(struct perf_output_handle *handle,
2482 const void *buf, unsigned int len)
2483 {
2484 unsigned int pages_mask;
2485 unsigned int offset;
2486 unsigned int size;
2487 void **pages;
2488
2489 offset = handle->offset;
2490 pages_mask = handle->data->nr_pages - 1;
2491 pages = handle->data->data_pages;
2492
2493 do {
2494 unsigned int page_offset;
2495 int nr;
2496
2497 nr = (offset >> PAGE_SHIFT) & pages_mask;
2498 page_offset = offset & (PAGE_SIZE - 1);
2499 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2500
2501 memcpy(pages[nr] + page_offset, buf, size);
2502
2503 len -= size;
2504 buf += size;
2505 offset += size;
2506 } while (len);
2507
2508 handle->offset = offset;
2509
2510 /*
2511 * Check we didn't copy past our reservation window, taking the
2512 * possible unsigned int wrap into account.
2513 */
2514 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2515 }
2516
2517 #define perf_output_put(handle, x) \
2518 perf_output_copy((handle), &(x), sizeof(x))
2519
2520 static int perf_output_begin(struct perf_output_handle *handle,
2521 struct perf_counter *counter, unsigned int size,
2522 int nmi, int sample)
2523 {
2524 struct perf_mmap_data *data;
2525 unsigned int offset, head;
2526 int have_lost;
2527 struct {
2528 struct perf_event_header header;
2529 u64 id;
2530 u64 lost;
2531 } lost_event;
2532
2533 /*
2534 * For inherited counters we send all the output towards the parent.
2535 */
2536 if (counter->parent)
2537 counter = counter->parent;
2538
2539 rcu_read_lock();
2540 data = rcu_dereference(counter->data);
2541 if (!data)
2542 goto out;
2543
2544 handle->data = data;
2545 handle->counter = counter;
2546 handle->nmi = nmi;
2547 handle->sample = sample;
2548
2549 if (!data->nr_pages)
2550 goto fail;
2551
2552 have_lost = atomic_read(&data->lost);
2553 if (have_lost)
2554 size += sizeof(lost_event);
2555
2556 perf_output_lock(handle);
2557
2558 do {
2559 offset = head = atomic_long_read(&data->head);
2560 head += size;
2561 if (unlikely(!perf_output_space(data, offset, head)))
2562 goto fail;
2563 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2564
2565 handle->offset = offset;
2566 handle->head = head;
2567
2568 if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2569 atomic_set(&data->wakeup, 1);
2570
2571 if (have_lost) {
2572 lost_event.header.type = PERF_EVENT_LOST;
2573 lost_event.header.misc = 0;
2574 lost_event.header.size = sizeof(lost_event);
2575 lost_event.id = counter->id;
2576 lost_event.lost = atomic_xchg(&data->lost, 0);
2577
2578 perf_output_put(handle, lost_event);
2579 }
2580
2581 return 0;
2582
2583 fail:
2584 atomic_inc(&data->lost);
2585 perf_output_unlock(handle);
2586 out:
2587 rcu_read_unlock();
2588
2589 return -ENOSPC;
2590 }
2591
2592 static void perf_output_end(struct perf_output_handle *handle)
2593 {
2594 struct perf_counter *counter = handle->counter;
2595 struct perf_mmap_data *data = handle->data;
2596
2597 int wakeup_events = counter->attr.wakeup_events;
2598
2599 if (handle->sample && wakeup_events) {
2600 int events = atomic_inc_return(&data->events);
2601 if (events >= wakeup_events) {
2602 atomic_sub(wakeup_events, &data->events);
2603 atomic_set(&data->wakeup, 1);
2604 }
2605 }
2606
2607 perf_output_unlock(handle);
2608 rcu_read_unlock();
2609 }
2610
2611 static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p)
2612 {
2613 /*
2614 * only top level counters have the pid namespace they were created in
2615 */
2616 if (counter->parent)
2617 counter = counter->parent;
2618
2619 return task_tgid_nr_ns(p, counter->ns);
2620 }
2621
2622 static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p)
2623 {
2624 /*
2625 * only top level counters have the pid namespace they were created in
2626 */
2627 if (counter->parent)
2628 counter = counter->parent;
2629
2630 return task_pid_nr_ns(p, counter->ns);
2631 }
2632
2633 static void perf_counter_output(struct perf_counter *counter, int nmi,
2634 struct perf_sample_data *data)
2635 {
2636 int ret;
2637 u64 sample_type = counter->attr.sample_type;
2638 struct perf_output_handle handle;
2639 struct perf_event_header header;
2640 u64 ip;
2641 struct {
2642 u32 pid, tid;
2643 } tid_entry;
2644 struct {
2645 u64 id;
2646 u64 counter;
2647 } group_entry;
2648 struct perf_callchain_entry *callchain = NULL;
2649 struct perf_raw_record *raw = NULL;
2650 int callchain_size = 0;
2651 u64 time;
2652 struct {
2653 u32 cpu, reserved;
2654 } cpu_entry;
2655
2656 header.type = PERF_EVENT_SAMPLE;
2657 header.size = sizeof(header);
2658
2659 header.misc = 0;
2660 header.misc |= perf_misc_flags(data->regs);
2661
2662 if (sample_type & PERF_SAMPLE_IP) {
2663 ip = perf_instruction_pointer(data->regs);
2664 header.size += sizeof(ip);
2665 }
2666
2667 if (sample_type & PERF_SAMPLE_TID) {
2668 /* namespace issues */
2669 tid_entry.pid = perf_counter_pid(counter, current);
2670 tid_entry.tid = perf_counter_tid(counter, current);
2671
2672 header.size += sizeof(tid_entry);
2673 }
2674
2675 if (sample_type & PERF_SAMPLE_TIME) {
2676 /*
2677 * Maybe do better on x86 and provide cpu_clock_nmi()
2678 */
2679 time = sched_clock();
2680
2681 header.size += sizeof(u64);
2682 }
2683
2684 if (sample_type & PERF_SAMPLE_ADDR)
2685 header.size += sizeof(u64);
2686
2687 if (sample_type & PERF_SAMPLE_ID)
2688 header.size += sizeof(u64);
2689
2690 if (sample_type & PERF_SAMPLE_STREAM_ID)
2691 header.size += sizeof(u64);
2692
2693 if (sample_type & PERF_SAMPLE_CPU) {
2694 header.size += sizeof(cpu_entry);
2695
2696 cpu_entry.cpu = raw_smp_processor_id();
2697 cpu_entry.reserved = 0;
2698 }
2699
2700 if (sample_type & PERF_SAMPLE_PERIOD)
2701 header.size += sizeof(u64);
2702
2703 if (sample_type & PERF_SAMPLE_GROUP) {
2704 header.size += sizeof(u64) +
2705 counter->nr_siblings * sizeof(group_entry);
2706 }
2707
2708 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2709 callchain = perf_callchain(data->regs);
2710
2711 if (callchain) {
2712 callchain_size = (1 + callchain->nr) * sizeof(u64);
2713 header.size += callchain_size;
2714 } else
2715 header.size += sizeof(u64);
2716 }
2717
2718 if (sample_type & PERF_SAMPLE_RAW) {
2719 raw = data->raw;
2720 if (raw)
2721 header.size += raw->size;
2722 }
2723
2724 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2725 if (ret)
2726 return;
2727
2728 perf_output_put(&handle, header);
2729
2730 if (sample_type & PERF_SAMPLE_IP)
2731 perf_output_put(&handle, ip);
2732
2733 if (sample_type & PERF_SAMPLE_TID)
2734 perf_output_put(&handle, tid_entry);
2735
2736 if (sample_type & PERF_SAMPLE_TIME)
2737 perf_output_put(&handle, time);
2738
2739 if (sample_type & PERF_SAMPLE_ADDR)
2740 perf_output_put(&handle, data->addr);
2741
2742 if (sample_type & PERF_SAMPLE_ID) {
2743 u64 id = primary_counter_id(counter);
2744
2745 perf_output_put(&handle, id);
2746 }
2747
2748 if (sample_type & PERF_SAMPLE_STREAM_ID)
2749 perf_output_put(&handle, counter->id);
2750
2751 if (sample_type & PERF_SAMPLE_CPU)
2752 perf_output_put(&handle, cpu_entry);
2753
2754 if (sample_type & PERF_SAMPLE_PERIOD)
2755 perf_output_put(&handle, data->period);
2756
2757 /*
2758 * XXX PERF_SAMPLE_GROUP vs inherited counters seems difficult.
2759 */
2760 if (sample_type & PERF_SAMPLE_GROUP) {
2761 struct perf_counter *leader, *sub;
2762 u64 nr = counter->nr_siblings;
2763
2764 perf_output_put(&handle, nr);
2765
2766 leader = counter->group_leader;
2767 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2768 if (sub != counter)
2769 sub->pmu->read(sub);
2770
2771 group_entry.id = primary_counter_id(sub);
2772 group_entry.counter = atomic64_read(&sub->count);
2773
2774 perf_output_put(&handle, group_entry);
2775 }
2776 }
2777
2778 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2779 if (callchain)
2780 perf_output_copy(&handle, callchain, callchain_size);
2781 else {
2782 u64 nr = 0;
2783 perf_output_put(&handle, nr);
2784 }
2785 }
2786
2787 if ((sample_type & PERF_SAMPLE_RAW) && raw)
2788 perf_output_copy(&handle, raw->data, raw->size);
2789
2790 perf_output_end(&handle);
2791 }
2792
2793 /*
2794 * read event
2795 */
2796
2797 struct perf_read_event {
2798 struct perf_event_header header;
2799
2800 u32 pid;
2801 u32 tid;
2802 u64 value;
2803 u64 format[3];
2804 };
2805
2806 static void
2807 perf_counter_read_event(struct perf_counter *counter,
2808 struct task_struct *task)
2809 {
2810 struct perf_output_handle handle;
2811 struct perf_read_event event = {
2812 .header = {
2813 .type = PERF_EVENT_READ,
2814 .misc = 0,
2815 .size = sizeof(event) - sizeof(event.format),
2816 },
2817 .pid = perf_counter_pid(counter, task),
2818 .tid = perf_counter_tid(counter, task),
2819 .value = atomic64_read(&counter->count),
2820 };
2821 int ret, i = 0;
2822
2823 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2824 event.header.size += sizeof(u64);
2825 event.format[i++] = counter->total_time_enabled;
2826 }
2827
2828 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2829 event.header.size += sizeof(u64);
2830 event.format[i++] = counter->total_time_running;
2831 }
2832
2833 if (counter->attr.read_format & PERF_FORMAT_ID) {
2834 event.header.size += sizeof(u64);
2835 event.format[i++] = primary_counter_id(counter);
2836 }
2837
2838 ret = perf_output_begin(&handle, counter, event.header.size, 0, 0);
2839 if (ret)
2840 return;
2841
2842 perf_output_copy(&handle, &event, event.header.size);
2843 perf_output_end(&handle);
2844 }
2845
2846 /*
2847 * task tracking -- fork/exit
2848 *
2849 * enabled by: attr.comm | attr.mmap | attr.task
2850 */
2851
2852 struct perf_task_event {
2853 struct task_struct *task;
2854 struct perf_counter_context *task_ctx;
2855
2856 struct {
2857 struct perf_event_header header;
2858
2859 u32 pid;
2860 u32 ppid;
2861 u32 tid;
2862 u32 ptid;
2863 } event;
2864 };
2865
2866 static void perf_counter_task_output(struct perf_counter *counter,
2867 struct perf_task_event *task_event)
2868 {
2869 struct perf_output_handle handle;
2870 int size = task_event->event.header.size;
2871 struct task_struct *task = task_event->task;
2872 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2873
2874 if (ret)
2875 return;
2876
2877 task_event->event.pid = perf_counter_pid(counter, task);
2878 task_event->event.ppid = perf_counter_pid(counter, task->real_parent);
2879
2880 task_event->event.tid = perf_counter_tid(counter, task);
2881 task_event->event.ptid = perf_counter_tid(counter, task->real_parent);
2882
2883 perf_output_put(&handle, task_event->event);
2884 perf_output_end(&handle);
2885 }
2886
2887 static int perf_counter_task_match(struct perf_counter *counter)
2888 {
2889 if (counter->attr.comm || counter->attr.mmap || counter->attr.task)
2890 return 1;
2891
2892 return 0;
2893 }
2894
2895 static void perf_counter_task_ctx(struct perf_counter_context *ctx,
2896 struct perf_task_event *task_event)
2897 {
2898 struct perf_counter *counter;
2899
2900 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2901 return;
2902
2903 rcu_read_lock();
2904 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2905 if (perf_counter_task_match(counter))
2906 perf_counter_task_output(counter, task_event);
2907 }
2908 rcu_read_unlock();
2909 }
2910
2911 static void perf_counter_task_event(struct perf_task_event *task_event)
2912 {
2913 struct perf_cpu_context *cpuctx;
2914 struct perf_counter_context *ctx = task_event->task_ctx;
2915
2916 cpuctx = &get_cpu_var(perf_cpu_context);
2917 perf_counter_task_ctx(&cpuctx->ctx, task_event);
2918 put_cpu_var(perf_cpu_context);
2919
2920 rcu_read_lock();
2921 if (!ctx)
2922 ctx = rcu_dereference(task_event->task->perf_counter_ctxp);
2923 if (ctx)
2924 perf_counter_task_ctx(ctx, task_event);
2925 rcu_read_unlock();
2926 }
2927
2928 static void perf_counter_task(struct task_struct *task,
2929 struct perf_counter_context *task_ctx,
2930 int new)
2931 {
2932 struct perf_task_event task_event;
2933
2934 if (!atomic_read(&nr_comm_counters) &&
2935 !atomic_read(&nr_mmap_counters) &&
2936 !atomic_read(&nr_task_counters))
2937 return;
2938
2939 task_event = (struct perf_task_event){
2940 .task = task,
2941 .task_ctx = task_ctx,
2942 .event = {
2943 .header = {
2944 .type = new ? PERF_EVENT_FORK : PERF_EVENT_EXIT,
2945 .misc = 0,
2946 .size = sizeof(task_event.event),
2947 },
2948 /* .pid */
2949 /* .ppid */
2950 /* .tid */
2951 /* .ptid */
2952 },
2953 };
2954
2955 perf_counter_task_event(&task_event);
2956 }
2957
2958 void perf_counter_fork(struct task_struct *task)
2959 {
2960 perf_counter_task(task, NULL, 1);
2961 }
2962
2963 /*
2964 * comm tracking
2965 */
2966
2967 struct perf_comm_event {
2968 struct task_struct *task;
2969 char *comm;
2970 int comm_size;
2971
2972 struct {
2973 struct perf_event_header header;
2974
2975 u32 pid;
2976 u32 tid;
2977 } event;
2978 };
2979
2980 static void perf_counter_comm_output(struct perf_counter *counter,
2981 struct perf_comm_event *comm_event)
2982 {
2983 struct perf_output_handle handle;
2984 int size = comm_event->event.header.size;
2985 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2986
2987 if (ret)
2988 return;
2989
2990 comm_event->event.pid = perf_counter_pid(counter, comm_event->task);
2991 comm_event->event.tid = perf_counter_tid(counter, comm_event->task);
2992
2993 perf_output_put(&handle, comm_event->event);
2994 perf_output_copy(&handle, comm_event->comm,
2995 comm_event->comm_size);
2996 perf_output_end(&handle);
2997 }
2998
2999 static int perf_counter_comm_match(struct perf_counter *counter)
3000 {
3001 if (counter->attr.comm)
3002 return 1;
3003
3004 return 0;
3005 }
3006
3007 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
3008 struct perf_comm_event *comm_event)
3009 {
3010 struct perf_counter *counter;
3011
3012 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3013 return;
3014
3015 rcu_read_lock();
3016 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3017 if (perf_counter_comm_match(counter))
3018 perf_counter_comm_output(counter, comm_event);
3019 }
3020 rcu_read_unlock();
3021 }
3022
3023 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
3024 {
3025 struct perf_cpu_context *cpuctx;
3026 struct perf_counter_context *ctx;
3027 unsigned int size;
3028 char comm[TASK_COMM_LEN];
3029
3030 memset(comm, 0, sizeof(comm));
3031 strncpy(comm, comm_event->task->comm, sizeof(comm));
3032 size = ALIGN(strlen(comm)+1, sizeof(u64));
3033
3034 comm_event->comm = comm;
3035 comm_event->comm_size = size;
3036
3037 comm_event->event.header.size = sizeof(comm_event->event) + size;
3038
3039 cpuctx = &get_cpu_var(perf_cpu_context);
3040 perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
3041 put_cpu_var(perf_cpu_context);
3042
3043 rcu_read_lock();
3044 /*
3045 * doesn't really matter which of the child contexts the
3046 * events ends up in.
3047 */
3048 ctx = rcu_dereference(current->perf_counter_ctxp);
3049 if (ctx)
3050 perf_counter_comm_ctx(ctx, comm_event);
3051 rcu_read_unlock();
3052 }
3053
3054 void perf_counter_comm(struct task_struct *task)
3055 {
3056 struct perf_comm_event comm_event;
3057
3058 if (task->perf_counter_ctxp)
3059 perf_counter_enable_on_exec(task);
3060
3061 if (!atomic_read(&nr_comm_counters))
3062 return;
3063
3064 comm_event = (struct perf_comm_event){
3065 .task = task,
3066 /* .comm */
3067 /* .comm_size */
3068 .event = {
3069 .header = {
3070 .type = PERF_EVENT_COMM,
3071 .misc = 0,
3072 /* .size */
3073 },
3074 /* .pid */
3075 /* .tid */
3076 },
3077 };
3078
3079 perf_counter_comm_event(&comm_event);
3080 }
3081
3082 /*
3083 * mmap tracking
3084 */
3085
3086 struct perf_mmap_event {
3087 struct vm_area_struct *vma;
3088
3089 const char *file_name;
3090 int file_size;
3091
3092 struct {
3093 struct perf_event_header header;
3094
3095 u32 pid;
3096 u32 tid;
3097 u64 start;
3098 u64 len;
3099 u64 pgoff;
3100 } event;
3101 };
3102
3103 static void perf_counter_mmap_output(struct perf_counter *counter,
3104 struct perf_mmap_event *mmap_event)
3105 {
3106 struct perf_output_handle handle;
3107 int size = mmap_event->event.header.size;
3108 int ret = perf_output_begin(&handle, counter, size, 0, 0);
3109
3110 if (ret)
3111 return;
3112
3113 mmap_event->event.pid = perf_counter_pid(counter, current);
3114 mmap_event->event.tid = perf_counter_tid(counter, current);
3115
3116 perf_output_put(&handle, mmap_event->event);
3117 perf_output_copy(&handle, mmap_event->file_name,
3118 mmap_event->file_size);
3119 perf_output_end(&handle);
3120 }
3121
3122 static int perf_counter_mmap_match(struct perf_counter *counter,
3123 struct perf_mmap_event *mmap_event)
3124 {
3125 if (counter->attr.mmap)
3126 return 1;
3127
3128 return 0;
3129 }
3130
3131 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
3132 struct perf_mmap_event *mmap_event)
3133 {
3134 struct perf_counter *counter;
3135
3136 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3137 return;
3138
3139 rcu_read_lock();
3140 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3141 if (perf_counter_mmap_match(counter, mmap_event))
3142 perf_counter_mmap_output(counter, mmap_event);
3143 }
3144 rcu_read_unlock();
3145 }
3146
3147 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
3148 {
3149 struct perf_cpu_context *cpuctx;
3150 struct perf_counter_context *ctx;
3151 struct vm_area_struct *vma = mmap_event->vma;
3152 struct file *file = vma->vm_file;
3153 unsigned int size;
3154 char tmp[16];
3155 char *buf = NULL;
3156 const char *name;
3157
3158 memset(tmp, 0, sizeof(tmp));
3159
3160 if (file) {
3161 /*
3162 * d_path works from the end of the buffer backwards, so we
3163 * need to add enough zero bytes after the string to handle
3164 * the 64bit alignment we do later.
3165 */
3166 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3167 if (!buf) {
3168 name = strncpy(tmp, "//enomem", sizeof(tmp));
3169 goto got_name;
3170 }
3171 name = d_path(&file->f_path, buf, PATH_MAX);
3172 if (IS_ERR(name)) {
3173 name = strncpy(tmp, "//toolong", sizeof(tmp));
3174 goto got_name;
3175 }
3176 } else {
3177 if (arch_vma_name(mmap_event->vma)) {
3178 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3179 sizeof(tmp));
3180 goto got_name;
3181 }
3182
3183 if (!vma->vm_mm) {
3184 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3185 goto got_name;
3186 }
3187
3188 name = strncpy(tmp, "//anon", sizeof(tmp));
3189 goto got_name;
3190 }
3191
3192 got_name:
3193 size = ALIGN(strlen(name)+1, sizeof(u64));
3194
3195 mmap_event->file_name = name;
3196 mmap_event->file_size = size;
3197
3198 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
3199
3200 cpuctx = &get_cpu_var(perf_cpu_context);
3201 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
3202 put_cpu_var(perf_cpu_context);
3203
3204 rcu_read_lock();
3205 /*
3206 * doesn't really matter which of the child contexts the
3207 * events ends up in.
3208 */
3209 ctx = rcu_dereference(current->perf_counter_ctxp);
3210 if (ctx)
3211 perf_counter_mmap_ctx(ctx, mmap_event);
3212 rcu_read_unlock();
3213
3214 kfree(buf);
3215 }
3216
3217 void __perf_counter_mmap(struct vm_area_struct *vma)
3218 {
3219 struct perf_mmap_event mmap_event;
3220
3221 if (!atomic_read(&nr_mmap_counters))
3222 return;
3223
3224 mmap_event = (struct perf_mmap_event){
3225 .vma = vma,
3226 /* .file_name */
3227 /* .file_size */
3228 .event = {
3229 .header = {
3230 .type = PERF_EVENT_MMAP,
3231 .misc = 0,
3232 /* .size */
3233 },
3234 /* .pid */
3235 /* .tid */
3236 .start = vma->vm_start,
3237 .len = vma->vm_end - vma->vm_start,
3238 .pgoff = vma->vm_pgoff,
3239 },
3240 };
3241
3242 perf_counter_mmap_event(&mmap_event);
3243 }
3244
3245 /*
3246 * IRQ throttle logging
3247 */
3248
3249 static void perf_log_throttle(struct perf_counter *counter, int enable)
3250 {
3251 struct perf_output_handle handle;
3252 int ret;
3253
3254 struct {
3255 struct perf_event_header header;
3256 u64 time;
3257 u64 id;
3258 u64 stream_id;
3259 } throttle_event = {
3260 .header = {
3261 .type = PERF_EVENT_THROTTLE,
3262 .misc = 0,
3263 .size = sizeof(throttle_event),
3264 },
3265 .time = sched_clock(),
3266 .id = primary_counter_id(counter),
3267 .stream_id = counter->id,
3268 };
3269
3270 if (enable)
3271 throttle_event.header.type = PERF_EVENT_UNTHROTTLE;
3272
3273 ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
3274 if (ret)
3275 return;
3276
3277 perf_output_put(&handle, throttle_event);
3278 perf_output_end(&handle);
3279 }
3280
3281 /*
3282 * Generic counter overflow handling, sampling.
3283 */
3284
3285 int perf_counter_overflow(struct perf_counter *counter, int nmi,
3286 struct perf_sample_data *data)
3287 {
3288 int events = atomic_read(&counter->event_limit);
3289 int throttle = counter->pmu->unthrottle != NULL;
3290 struct hw_perf_counter *hwc = &counter->hw;
3291 int ret = 0;
3292
3293 if (!throttle) {
3294 hwc->interrupts++;
3295 } else {
3296 if (hwc->interrupts != MAX_INTERRUPTS) {
3297 hwc->interrupts++;
3298 if (HZ * hwc->interrupts >
3299 (u64)sysctl_perf_counter_sample_rate) {
3300 hwc->interrupts = MAX_INTERRUPTS;
3301 perf_log_throttle(counter, 0);
3302 ret = 1;
3303 }
3304 } else {
3305 /*
3306 * Keep re-disabling counters even though on the previous
3307 * pass we disabled it - just in case we raced with a
3308 * sched-in and the counter got enabled again:
3309 */
3310 ret = 1;
3311 }
3312 }
3313
3314 if (counter->attr.freq) {
3315 u64 now = sched_clock();
3316 s64 delta = now - hwc->freq_stamp;
3317
3318 hwc->freq_stamp = now;
3319
3320 if (delta > 0 && delta < TICK_NSEC)
3321 perf_adjust_period(counter, NSEC_PER_SEC / (int)delta);
3322 }
3323
3324 /*
3325 * XXX event_limit might not quite work as expected on inherited
3326 * counters
3327 */
3328
3329 counter->pending_kill = POLL_IN;
3330 if (events && atomic_dec_and_test(&counter->event_limit)) {
3331 ret = 1;
3332 counter->pending_kill = POLL_HUP;
3333 if (nmi) {
3334 counter->pending_disable = 1;
3335 perf_pending_queue(&counter->pending,
3336 perf_pending_counter);
3337 } else
3338 perf_counter_disable(counter);
3339 }
3340
3341 perf_counter_output(counter, nmi, data);
3342 return ret;
3343 }
3344
3345 /*
3346 * Generic software counter infrastructure
3347 */
3348
3349 /*
3350 * We directly increment counter->count and keep a second value in
3351 * counter->hw.period_left to count intervals. This period counter
3352 * is kept in the range [-sample_period, 0] so that we can use the
3353 * sign as trigger.
3354 */
3355
3356 static u64 perf_swcounter_set_period(struct perf_counter *counter)
3357 {
3358 struct hw_perf_counter *hwc = &counter->hw;
3359 u64 period = hwc->last_period;
3360 u64 nr, offset;
3361 s64 old, val;
3362
3363 hwc->last_period = hwc->sample_period;
3364
3365 again:
3366 old = val = atomic64_read(&hwc->period_left);
3367 if (val < 0)
3368 return 0;
3369
3370 nr = div64_u64(period + val, period);
3371 offset = nr * period;
3372 val -= offset;
3373 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3374 goto again;
3375
3376 return nr;
3377 }
3378
3379 static void perf_swcounter_overflow(struct perf_counter *counter,
3380 int nmi, struct perf_sample_data *data)
3381 {
3382 struct hw_perf_counter *hwc = &counter->hw;
3383 u64 overflow;
3384
3385 data->period = counter->hw.last_period;
3386 overflow = perf_swcounter_set_period(counter);
3387
3388 if (hwc->interrupts == MAX_INTERRUPTS)
3389 return;
3390
3391 for (; overflow; overflow--) {
3392 if (perf_counter_overflow(counter, nmi, data)) {
3393 /*
3394 * We inhibit the overflow from happening when
3395 * hwc->interrupts == MAX_INTERRUPTS.
3396 */
3397 break;
3398 }
3399 }
3400 }
3401
3402 static void perf_swcounter_unthrottle(struct perf_counter *counter)
3403 {
3404 /*
3405 * Nothing to do, we already reset hwc->interrupts.
3406 */
3407 }
3408
3409 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
3410 int nmi, struct perf_sample_data *data)
3411 {
3412 struct hw_perf_counter *hwc = &counter->hw;
3413
3414 atomic64_add(nr, &counter->count);
3415
3416 if (!hwc->sample_period)
3417 return;
3418
3419 if (!data->regs)
3420 return;
3421
3422 if (!atomic64_add_negative(nr, &hwc->period_left))
3423 perf_swcounter_overflow(counter, nmi, data);
3424 }
3425
3426 static int perf_swcounter_is_counting(struct perf_counter *counter)
3427 {
3428 struct perf_counter_context *ctx;
3429 unsigned long flags;
3430 int count;
3431
3432 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
3433 return 1;
3434
3435 if (counter->state != PERF_COUNTER_STATE_INACTIVE)
3436 return 0;
3437
3438 /*
3439 * If the counter is inactive, it could be just because
3440 * its task is scheduled out, or because it's in a group
3441 * which could not go on the PMU. We want to count in
3442 * the first case but not the second. If the context is
3443 * currently active then an inactive software counter must
3444 * be the second case. If it's not currently active then
3445 * we need to know whether the counter was active when the
3446 * context was last active, which we can determine by
3447 * comparing counter->tstamp_stopped with ctx->time.
3448 *
3449 * We are within an RCU read-side critical section,
3450 * which protects the existence of *ctx.
3451 */
3452 ctx = counter->ctx;
3453 spin_lock_irqsave(&ctx->lock, flags);
3454 count = 1;
3455 /* Re-check state now we have the lock */
3456 if (counter->state < PERF_COUNTER_STATE_INACTIVE ||
3457 counter->ctx->is_active ||
3458 counter->tstamp_stopped < ctx->time)
3459 count = 0;
3460 spin_unlock_irqrestore(&ctx->lock, flags);
3461 return count;
3462 }
3463
3464 static int perf_swcounter_match(struct perf_counter *counter,
3465 enum perf_type_id type,
3466 u32 event, struct pt_regs *regs)
3467 {
3468 if (!perf_swcounter_is_counting(counter))
3469 return 0;
3470
3471 if (counter->attr.type != type)
3472 return 0;
3473 if (counter->attr.config != event)
3474 return 0;
3475
3476 if (regs) {
3477 if (counter->attr.exclude_user && user_mode(regs))
3478 return 0;
3479
3480 if (counter->attr.exclude_kernel && !user_mode(regs))
3481 return 0;
3482 }
3483
3484 return 1;
3485 }
3486
3487 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
3488 enum perf_type_id type,
3489 u32 event, u64 nr, int nmi,
3490 struct perf_sample_data *data)
3491 {
3492 struct perf_counter *counter;
3493
3494 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3495 return;
3496
3497 rcu_read_lock();
3498 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3499 if (perf_swcounter_match(counter, type, event, data->regs))
3500 perf_swcounter_add(counter, nr, nmi, data);
3501 }
3502 rcu_read_unlock();
3503 }
3504
3505 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
3506 {
3507 if (in_nmi())
3508 return &cpuctx->recursion[3];
3509
3510 if (in_irq())
3511 return &cpuctx->recursion[2];
3512
3513 if (in_softirq())
3514 return &cpuctx->recursion[1];
3515
3516 return &cpuctx->recursion[0];
3517 }
3518
3519 static void do_perf_swcounter_event(enum perf_type_id type, u32 event,
3520 u64 nr, int nmi,
3521 struct perf_sample_data *data)
3522 {
3523 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3524 int *recursion = perf_swcounter_recursion_context(cpuctx);
3525 struct perf_counter_context *ctx;
3526
3527 if (*recursion)
3528 goto out;
3529
3530 (*recursion)++;
3531 barrier();
3532
3533 perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
3534 nr, nmi, data);
3535 rcu_read_lock();
3536 /*
3537 * doesn't really matter which of the child contexts the
3538 * events ends up in.
3539 */
3540 ctx = rcu_dereference(current->perf_counter_ctxp);
3541 if (ctx)
3542 perf_swcounter_ctx_event(ctx, type, event, nr, nmi, data);
3543 rcu_read_unlock();
3544
3545 barrier();
3546 (*recursion)--;
3547
3548 out:
3549 put_cpu_var(perf_cpu_context);
3550 }
3551
3552 void __perf_swcounter_event(u32 event, u64 nr, int nmi,
3553 struct pt_regs *regs, u64 addr)
3554 {
3555 struct perf_sample_data data = {
3556 .regs = regs,
3557 .addr = addr,
3558 };
3559
3560 do_perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, &data);
3561 }
3562
3563 static void perf_swcounter_read(struct perf_counter *counter)
3564 {
3565 }
3566
3567 static int perf_swcounter_enable(struct perf_counter *counter)
3568 {
3569 struct hw_perf_counter *hwc = &counter->hw;
3570
3571 if (hwc->sample_period) {
3572 hwc->last_period = hwc->sample_period;
3573 perf_swcounter_set_period(counter);
3574 }
3575 return 0;
3576 }
3577
3578 static void perf_swcounter_disable(struct perf_counter *counter)
3579 {
3580 }
3581
3582 static const struct pmu perf_ops_generic = {
3583 .enable = perf_swcounter_enable,
3584 .disable = perf_swcounter_disable,
3585 .read = perf_swcounter_read,
3586 .unthrottle = perf_swcounter_unthrottle,
3587 };
3588
3589 /*
3590 * hrtimer based swcounter callback
3591 */
3592
3593 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
3594 {
3595 enum hrtimer_restart ret = HRTIMER_RESTART;
3596 struct perf_sample_data data;
3597 struct perf_counter *counter;
3598 u64 period;
3599
3600 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
3601 counter->pmu->read(counter);
3602
3603 data.addr = 0;
3604 data.regs = get_irq_regs();
3605 /*
3606 * In case we exclude kernel IPs or are somehow not in interrupt
3607 * context, provide the next best thing, the user IP.
3608 */
3609 if ((counter->attr.exclude_kernel || !data.regs) &&
3610 !counter->attr.exclude_user)
3611 data.regs = task_pt_regs(current);
3612
3613 if (data.regs) {
3614 if (perf_counter_overflow(counter, 0, &data))
3615 ret = HRTIMER_NORESTART;
3616 }
3617
3618 period = max_t(u64, 10000, counter->hw.sample_period);
3619 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3620
3621 return ret;
3622 }
3623
3624 /*
3625 * Software counter: cpu wall time clock
3626 */
3627
3628 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
3629 {
3630 int cpu = raw_smp_processor_id();
3631 s64 prev;
3632 u64 now;
3633
3634 now = cpu_clock(cpu);
3635 prev = atomic64_read(&counter->hw.prev_count);
3636 atomic64_set(&counter->hw.prev_count, now);
3637 atomic64_add(now - prev, &counter->count);
3638 }
3639
3640 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
3641 {
3642 struct hw_perf_counter *hwc = &counter->hw;
3643 int cpu = raw_smp_processor_id();
3644
3645 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3646 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3647 hwc->hrtimer.function = perf_swcounter_hrtimer;
3648 if (hwc->sample_period) {
3649 u64 period = max_t(u64, 10000, hwc->sample_period);
3650 __hrtimer_start_range_ns(&hwc->hrtimer,
3651 ns_to_ktime(period), 0,
3652 HRTIMER_MODE_REL, 0);
3653 }
3654
3655 return 0;
3656 }
3657
3658 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
3659 {
3660 if (counter->hw.sample_period)
3661 hrtimer_cancel(&counter->hw.hrtimer);
3662 cpu_clock_perf_counter_update(counter);
3663 }
3664
3665 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
3666 {
3667 cpu_clock_perf_counter_update(counter);
3668 }
3669
3670 static const struct pmu perf_ops_cpu_clock = {
3671 .enable = cpu_clock_perf_counter_enable,
3672 .disable = cpu_clock_perf_counter_disable,
3673 .read = cpu_clock_perf_counter_read,
3674 };
3675
3676 /*
3677 * Software counter: task time clock
3678 */
3679
3680 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
3681 {
3682 u64 prev;
3683 s64 delta;
3684
3685 prev = atomic64_xchg(&counter->hw.prev_count, now);
3686 delta = now - prev;
3687 atomic64_add(delta, &counter->count);
3688 }
3689
3690 static int task_clock_perf_counter_enable(struct perf_counter *counter)
3691 {
3692 struct hw_perf_counter *hwc = &counter->hw;
3693 u64 now;
3694
3695 now = counter->ctx->time;
3696
3697 atomic64_set(&hwc->prev_count, now);
3698 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3699 hwc->hrtimer.function = perf_swcounter_hrtimer;
3700 if (hwc->sample_period) {
3701 u64 period = max_t(u64, 10000, hwc->sample_period);
3702 __hrtimer_start_range_ns(&hwc->hrtimer,
3703 ns_to_ktime(period), 0,
3704 HRTIMER_MODE_REL, 0);
3705 }
3706
3707 return 0;
3708 }
3709
3710 static void task_clock_perf_counter_disable(struct perf_counter *counter)
3711 {
3712 if (counter->hw.sample_period)
3713 hrtimer_cancel(&counter->hw.hrtimer);
3714 task_clock_perf_counter_update(counter, counter->ctx->time);
3715
3716 }
3717
3718 static void task_clock_perf_counter_read(struct perf_counter *counter)
3719 {
3720 u64 time;
3721
3722 if (!in_nmi()) {
3723 update_context_time(counter->ctx);
3724 time = counter->ctx->time;
3725 } else {
3726 u64 now = perf_clock();
3727 u64 delta = now - counter->ctx->timestamp;
3728 time = counter->ctx->time + delta;
3729 }
3730
3731 task_clock_perf_counter_update(counter, time);
3732 }
3733
3734 static const struct pmu perf_ops_task_clock = {
3735 .enable = task_clock_perf_counter_enable,
3736 .disable = task_clock_perf_counter_disable,
3737 .read = task_clock_perf_counter_read,
3738 };
3739
3740 #ifdef CONFIG_EVENT_PROFILE
3741 void perf_tpcounter_event(int event_id, u64 addr, u64 count, void *record,
3742 int entry_size)
3743 {
3744 struct perf_raw_record raw = {
3745 .size = entry_size,
3746 .data = record,
3747 };
3748
3749 struct perf_sample_data data = {
3750 .regs = get_irq_regs(),
3751 .addr = addr,
3752 .raw = &raw,
3753 };
3754
3755 if (!data.regs)
3756 data.regs = task_pt_regs(current);
3757
3758 do_perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, count, 1, &data);
3759 }
3760 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3761
3762 extern int ftrace_profile_enable(int);
3763 extern void ftrace_profile_disable(int);
3764
3765 static void tp_perf_counter_destroy(struct perf_counter *counter)
3766 {
3767 ftrace_profile_disable(counter->attr.config);
3768 }
3769
3770 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3771 {
3772 if (ftrace_profile_enable(counter->attr.config))
3773 return NULL;
3774
3775 counter->destroy = tp_perf_counter_destroy;
3776
3777 return &perf_ops_generic;
3778 }
3779 #else
3780 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3781 {
3782 return NULL;
3783 }
3784 #endif
3785
3786 atomic_t perf_swcounter_enabled[PERF_COUNT_SW_MAX];
3787
3788 static void sw_perf_counter_destroy(struct perf_counter *counter)
3789 {
3790 u64 event = counter->attr.config;
3791
3792 WARN_ON(counter->parent);
3793
3794 atomic_dec(&perf_swcounter_enabled[event]);
3795 }
3796
3797 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3798 {
3799 const struct pmu *pmu = NULL;
3800 u64 event = counter->attr.config;
3801
3802 /*
3803 * Software counters (currently) can't in general distinguish
3804 * between user, kernel and hypervisor events.
3805 * However, context switches and cpu migrations are considered
3806 * to be kernel events, and page faults are never hypervisor
3807 * events.
3808 */
3809 switch (event) {
3810 case PERF_COUNT_SW_CPU_CLOCK:
3811 pmu = &perf_ops_cpu_clock;
3812
3813 break;
3814 case PERF_COUNT_SW_TASK_CLOCK:
3815 /*
3816 * If the user instantiates this as a per-cpu counter,
3817 * use the cpu_clock counter instead.
3818 */
3819 if (counter->ctx->task)
3820 pmu = &perf_ops_task_clock;
3821 else
3822 pmu = &perf_ops_cpu_clock;
3823
3824 break;
3825 case PERF_COUNT_SW_PAGE_FAULTS:
3826 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
3827 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
3828 case PERF_COUNT_SW_CONTEXT_SWITCHES:
3829 case PERF_COUNT_SW_CPU_MIGRATIONS:
3830 if (!counter->parent) {
3831 atomic_inc(&perf_swcounter_enabled[event]);
3832 counter->destroy = sw_perf_counter_destroy;
3833 }
3834 pmu = &perf_ops_generic;
3835 break;
3836 }
3837
3838 return pmu;
3839 }
3840
3841 /*
3842 * Allocate and initialize a counter structure
3843 */
3844 static struct perf_counter *
3845 perf_counter_alloc(struct perf_counter_attr *attr,
3846 int cpu,
3847 struct perf_counter_context *ctx,
3848 struct perf_counter *group_leader,
3849 struct perf_counter *parent_counter,
3850 gfp_t gfpflags)
3851 {
3852 const struct pmu *pmu;
3853 struct perf_counter *counter;
3854 struct hw_perf_counter *hwc;
3855 long err;
3856
3857 counter = kzalloc(sizeof(*counter), gfpflags);
3858 if (!counter)
3859 return ERR_PTR(-ENOMEM);
3860
3861 /*
3862 * Single counters are their own group leaders, with an
3863 * empty sibling list:
3864 */
3865 if (!group_leader)
3866 group_leader = counter;
3867
3868 mutex_init(&counter->child_mutex);
3869 INIT_LIST_HEAD(&counter->child_list);
3870
3871 INIT_LIST_HEAD(&counter->list_entry);
3872 INIT_LIST_HEAD(&counter->event_entry);
3873 INIT_LIST_HEAD(&counter->sibling_list);
3874 init_waitqueue_head(&counter->waitq);
3875
3876 mutex_init(&counter->mmap_mutex);
3877
3878 counter->cpu = cpu;
3879 counter->attr = *attr;
3880 counter->group_leader = group_leader;
3881 counter->pmu = NULL;
3882 counter->ctx = ctx;
3883 counter->oncpu = -1;
3884
3885 counter->parent = parent_counter;
3886
3887 counter->ns = get_pid_ns(current->nsproxy->pid_ns);
3888 counter->id = atomic64_inc_return(&perf_counter_id);
3889
3890 counter->state = PERF_COUNTER_STATE_INACTIVE;
3891
3892 if (attr->disabled)
3893 counter->state = PERF_COUNTER_STATE_OFF;
3894
3895 pmu = NULL;
3896
3897 hwc = &counter->hw;
3898 hwc->sample_period = attr->sample_period;
3899 if (attr->freq && attr->sample_freq)
3900 hwc->sample_period = 1;
3901
3902 atomic64_set(&hwc->period_left, hwc->sample_period);
3903
3904 /*
3905 * we currently do not support PERF_SAMPLE_GROUP on inherited counters
3906 */
3907 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_GROUP))
3908 goto done;
3909
3910 switch (attr->type) {
3911 case PERF_TYPE_RAW:
3912 case PERF_TYPE_HARDWARE:
3913 case PERF_TYPE_HW_CACHE:
3914 pmu = hw_perf_counter_init(counter);
3915 break;
3916
3917 case PERF_TYPE_SOFTWARE:
3918 pmu = sw_perf_counter_init(counter);
3919 break;
3920
3921 case PERF_TYPE_TRACEPOINT:
3922 pmu = tp_perf_counter_init(counter);
3923 break;
3924
3925 default:
3926 break;
3927 }
3928 done:
3929 err = 0;
3930 if (!pmu)
3931 err = -EINVAL;
3932 else if (IS_ERR(pmu))
3933 err = PTR_ERR(pmu);
3934
3935 if (err) {
3936 if (counter->ns)
3937 put_pid_ns(counter->ns);
3938 kfree(counter);
3939 return ERR_PTR(err);
3940 }
3941
3942 counter->pmu = pmu;
3943
3944 if (!counter->parent) {
3945 atomic_inc(&nr_counters);
3946 if (counter->attr.mmap)
3947 atomic_inc(&nr_mmap_counters);
3948 if (counter->attr.comm)
3949 atomic_inc(&nr_comm_counters);
3950 if (counter->attr.task)
3951 atomic_inc(&nr_task_counters);
3952 }
3953
3954 return counter;
3955 }
3956
3957 static int perf_copy_attr(struct perf_counter_attr __user *uattr,
3958 struct perf_counter_attr *attr)
3959 {
3960 int ret;
3961 u32 size;
3962
3963 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
3964 return -EFAULT;
3965
3966 /*
3967 * zero the full structure, so that a short copy will be nice.
3968 */
3969 memset(attr, 0, sizeof(*attr));
3970
3971 ret = get_user(size, &uattr->size);
3972 if (ret)
3973 return ret;
3974
3975 if (size > PAGE_SIZE) /* silly large */
3976 goto err_size;
3977
3978 if (!size) /* abi compat */
3979 size = PERF_ATTR_SIZE_VER0;
3980
3981 if (size < PERF_ATTR_SIZE_VER0)
3982 goto err_size;
3983
3984 /*
3985 * If we're handed a bigger struct than we know of,
3986 * ensure all the unknown bits are 0.
3987 */
3988 if (size > sizeof(*attr)) {
3989 unsigned long val;
3990 unsigned long __user *addr;
3991 unsigned long __user *end;
3992
3993 addr = PTR_ALIGN((void __user *)uattr + sizeof(*attr),
3994 sizeof(unsigned long));
3995 end = PTR_ALIGN((void __user *)uattr + size,
3996 sizeof(unsigned long));
3997
3998 for (; addr < end; addr += sizeof(unsigned long)) {
3999 ret = get_user(val, addr);
4000 if (ret)
4001 return ret;
4002 if (val)
4003 goto err_size;
4004 }
4005 }
4006
4007 ret = copy_from_user(attr, uattr, size);
4008 if (ret)
4009 return -EFAULT;
4010
4011 /*
4012 * If the type exists, the corresponding creation will verify
4013 * the attr->config.
4014 */
4015 if (attr->type >= PERF_TYPE_MAX)
4016 return -EINVAL;
4017
4018 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
4019 return -EINVAL;
4020
4021 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4022 return -EINVAL;
4023
4024 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4025 return -EINVAL;
4026
4027 out:
4028 return ret;
4029
4030 err_size:
4031 put_user(sizeof(*attr), &uattr->size);
4032 ret = -E2BIG;
4033 goto out;
4034 }
4035
4036 /**
4037 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
4038 *
4039 * @attr_uptr: event type attributes for monitoring/sampling
4040 * @pid: target pid
4041 * @cpu: target cpu
4042 * @group_fd: group leader counter fd
4043 */
4044 SYSCALL_DEFINE5(perf_counter_open,
4045 struct perf_counter_attr __user *, attr_uptr,
4046 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4047 {
4048 struct perf_counter *counter, *group_leader;
4049 struct perf_counter_attr attr;
4050 struct perf_counter_context *ctx;
4051 struct file *counter_file = NULL;
4052 struct file *group_file = NULL;
4053 int fput_needed = 0;
4054 int fput_needed2 = 0;
4055 int ret;
4056
4057 /* for future expandability... */
4058 if (flags)
4059 return -EINVAL;
4060
4061 ret = perf_copy_attr(attr_uptr, &attr);
4062 if (ret)
4063 return ret;
4064
4065 if (!attr.exclude_kernel) {
4066 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4067 return -EACCES;
4068 }
4069
4070 if (attr.freq) {
4071 if (attr.sample_freq > sysctl_perf_counter_sample_rate)
4072 return -EINVAL;
4073 }
4074
4075 /*
4076 * Get the target context (task or percpu):
4077 */
4078 ctx = find_get_context(pid, cpu);
4079 if (IS_ERR(ctx))
4080 return PTR_ERR(ctx);
4081
4082 /*
4083 * Look up the group leader (we will attach this counter to it):
4084 */
4085 group_leader = NULL;
4086 if (group_fd != -1) {
4087 ret = -EINVAL;
4088 group_file = fget_light(group_fd, &fput_needed);
4089 if (!group_file)
4090 goto err_put_context;
4091 if (group_file->f_op != &perf_fops)
4092 goto err_put_context;
4093
4094 group_leader = group_file->private_data;
4095 /*
4096 * Do not allow a recursive hierarchy (this new sibling
4097 * becoming part of another group-sibling):
4098 */
4099 if (group_leader->group_leader != group_leader)
4100 goto err_put_context;
4101 /*
4102 * Do not allow to attach to a group in a different
4103 * task or CPU context:
4104 */
4105 if (group_leader->ctx != ctx)
4106 goto err_put_context;
4107 /*
4108 * Only a group leader can be exclusive or pinned
4109 */
4110 if (attr.exclusive || attr.pinned)
4111 goto err_put_context;
4112 }
4113
4114 counter = perf_counter_alloc(&attr, cpu, ctx, group_leader,
4115 NULL, GFP_KERNEL);
4116 ret = PTR_ERR(counter);
4117 if (IS_ERR(counter))
4118 goto err_put_context;
4119
4120 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
4121 if (ret < 0)
4122 goto err_free_put_context;
4123
4124 counter_file = fget_light(ret, &fput_needed2);
4125 if (!counter_file)
4126 goto err_free_put_context;
4127
4128 counter->filp = counter_file;
4129 WARN_ON_ONCE(ctx->parent_ctx);
4130 mutex_lock(&ctx->mutex);
4131 perf_install_in_context(ctx, counter, cpu);
4132 ++ctx->generation;
4133 mutex_unlock(&ctx->mutex);
4134
4135 counter->owner = current;
4136 get_task_struct(current);
4137 mutex_lock(&current->perf_counter_mutex);
4138 list_add_tail(&counter->owner_entry, &current->perf_counter_list);
4139 mutex_unlock(&current->perf_counter_mutex);
4140
4141 fput_light(counter_file, fput_needed2);
4142
4143 out_fput:
4144 fput_light(group_file, fput_needed);
4145
4146 return ret;
4147
4148 err_free_put_context:
4149 kfree(counter);
4150
4151 err_put_context:
4152 put_ctx(ctx);
4153
4154 goto out_fput;
4155 }
4156
4157 /*
4158 * inherit a counter from parent task to child task:
4159 */
4160 static struct perf_counter *
4161 inherit_counter(struct perf_counter *parent_counter,
4162 struct task_struct *parent,
4163 struct perf_counter_context *parent_ctx,
4164 struct task_struct *child,
4165 struct perf_counter *group_leader,
4166 struct perf_counter_context *child_ctx)
4167 {
4168 struct perf_counter *child_counter;
4169
4170 /*
4171 * Instead of creating recursive hierarchies of counters,
4172 * we link inherited counters back to the original parent,
4173 * which has a filp for sure, which we use as the reference
4174 * count:
4175 */
4176 if (parent_counter->parent)
4177 parent_counter = parent_counter->parent;
4178
4179 child_counter = perf_counter_alloc(&parent_counter->attr,
4180 parent_counter->cpu, child_ctx,
4181 group_leader, parent_counter,
4182 GFP_KERNEL);
4183 if (IS_ERR(child_counter))
4184 return child_counter;
4185 get_ctx(child_ctx);
4186
4187 /*
4188 * Make the child state follow the state of the parent counter,
4189 * not its attr.disabled bit. We hold the parent's mutex,
4190 * so we won't race with perf_counter_{en, dis}able_family.
4191 */
4192 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
4193 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
4194 else
4195 child_counter->state = PERF_COUNTER_STATE_OFF;
4196
4197 if (parent_counter->attr.freq)
4198 child_counter->hw.sample_period = parent_counter->hw.sample_period;
4199
4200 /*
4201 * Link it up in the child's context:
4202 */
4203 add_counter_to_ctx(child_counter, child_ctx);
4204
4205 /*
4206 * Get a reference to the parent filp - we will fput it
4207 * when the child counter exits. This is safe to do because
4208 * we are in the parent and we know that the filp still
4209 * exists and has a nonzero count:
4210 */
4211 atomic_long_inc(&parent_counter->filp->f_count);
4212
4213 /*
4214 * Link this into the parent counter's child list
4215 */
4216 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
4217 mutex_lock(&parent_counter->child_mutex);
4218 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
4219 mutex_unlock(&parent_counter->child_mutex);
4220
4221 return child_counter;
4222 }
4223
4224 static int inherit_group(struct perf_counter *parent_counter,
4225 struct task_struct *parent,
4226 struct perf_counter_context *parent_ctx,
4227 struct task_struct *child,
4228 struct perf_counter_context *child_ctx)
4229 {
4230 struct perf_counter *leader;
4231 struct perf_counter *sub;
4232 struct perf_counter *child_ctr;
4233
4234 leader = inherit_counter(parent_counter, parent, parent_ctx,
4235 child, NULL, child_ctx);
4236 if (IS_ERR(leader))
4237 return PTR_ERR(leader);
4238 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
4239 child_ctr = inherit_counter(sub, parent, parent_ctx,
4240 child, leader, child_ctx);
4241 if (IS_ERR(child_ctr))
4242 return PTR_ERR(child_ctr);
4243 }
4244 return 0;
4245 }
4246
4247 static void sync_child_counter(struct perf_counter *child_counter,
4248 struct task_struct *child)
4249 {
4250 struct perf_counter *parent_counter = child_counter->parent;
4251 u64 child_val;
4252
4253 if (child_counter->attr.inherit_stat)
4254 perf_counter_read_event(child_counter, child);
4255
4256 child_val = atomic64_read(&child_counter->count);
4257
4258 /*
4259 * Add back the child's count to the parent's count:
4260 */
4261 atomic64_add(child_val, &parent_counter->count);
4262 atomic64_add(child_counter->total_time_enabled,
4263 &parent_counter->child_total_time_enabled);
4264 atomic64_add(child_counter->total_time_running,
4265 &parent_counter->child_total_time_running);
4266
4267 /*
4268 * Remove this counter from the parent's list
4269 */
4270 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
4271 mutex_lock(&parent_counter->child_mutex);
4272 list_del_init(&child_counter->child_list);
4273 mutex_unlock(&parent_counter->child_mutex);
4274
4275 /*
4276 * Release the parent counter, if this was the last
4277 * reference to it.
4278 */
4279 fput(parent_counter->filp);
4280 }
4281
4282 static void
4283 __perf_counter_exit_task(struct perf_counter *child_counter,
4284 struct perf_counter_context *child_ctx,
4285 struct task_struct *child)
4286 {
4287 struct perf_counter *parent_counter;
4288
4289 update_counter_times(child_counter);
4290 perf_counter_remove_from_context(child_counter);
4291
4292 parent_counter = child_counter->parent;
4293 /*
4294 * It can happen that parent exits first, and has counters
4295 * that are still around due to the child reference. These
4296 * counters need to be zapped - but otherwise linger.
4297 */
4298 if (parent_counter) {
4299 sync_child_counter(child_counter, child);
4300 free_counter(child_counter);
4301 }
4302 }
4303
4304 /*
4305 * When a child task exits, feed back counter values to parent counters.
4306 */
4307 void perf_counter_exit_task(struct task_struct *child)
4308 {
4309 struct perf_counter *child_counter, *tmp;
4310 struct perf_counter_context *child_ctx;
4311 unsigned long flags;
4312
4313 if (likely(!child->perf_counter_ctxp)) {
4314 perf_counter_task(child, NULL, 0);
4315 return;
4316 }
4317
4318 local_irq_save(flags);
4319 /*
4320 * We can't reschedule here because interrupts are disabled,
4321 * and either child is current or it is a task that can't be
4322 * scheduled, so we are now safe from rescheduling changing
4323 * our context.
4324 */
4325 child_ctx = child->perf_counter_ctxp;
4326 __perf_counter_task_sched_out(child_ctx);
4327
4328 /*
4329 * Take the context lock here so that if find_get_context is
4330 * reading child->perf_counter_ctxp, we wait until it has
4331 * incremented the context's refcount before we do put_ctx below.
4332 */
4333 spin_lock(&child_ctx->lock);
4334 child->perf_counter_ctxp = NULL;
4335 /*
4336 * If this context is a clone; unclone it so it can't get
4337 * swapped to another process while we're removing all
4338 * the counters from it.
4339 */
4340 unclone_ctx(child_ctx);
4341 spin_unlock_irqrestore(&child_ctx->lock, flags);
4342
4343 /*
4344 * Report the task dead after unscheduling the counters so that we
4345 * won't get any samples after PERF_EVENT_EXIT. We can however still
4346 * get a few PERF_EVENT_READ events.
4347 */
4348 perf_counter_task(child, child_ctx, 0);
4349
4350 /*
4351 * We can recurse on the same lock type through:
4352 *
4353 * __perf_counter_exit_task()
4354 * sync_child_counter()
4355 * fput(parent_counter->filp)
4356 * perf_release()
4357 * mutex_lock(&ctx->mutex)
4358 *
4359 * But since its the parent context it won't be the same instance.
4360 */
4361 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4362
4363 again:
4364 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
4365 list_entry)
4366 __perf_counter_exit_task(child_counter, child_ctx, child);
4367
4368 /*
4369 * If the last counter was a group counter, it will have appended all
4370 * its siblings to the list, but we obtained 'tmp' before that which
4371 * will still point to the list head terminating the iteration.
4372 */
4373 if (!list_empty(&child_ctx->counter_list))
4374 goto again;
4375
4376 mutex_unlock(&child_ctx->mutex);
4377
4378 put_ctx(child_ctx);
4379 }
4380
4381 /*
4382 * free an unexposed, unused context as created by inheritance by
4383 * init_task below, used by fork() in case of fail.
4384 */
4385 void perf_counter_free_task(struct task_struct *task)
4386 {
4387 struct perf_counter_context *ctx = task->perf_counter_ctxp;
4388 struct perf_counter *counter, *tmp;
4389
4390 if (!ctx)
4391 return;
4392
4393 mutex_lock(&ctx->mutex);
4394 again:
4395 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) {
4396 struct perf_counter *parent = counter->parent;
4397
4398 if (WARN_ON_ONCE(!parent))
4399 continue;
4400
4401 mutex_lock(&parent->child_mutex);
4402 list_del_init(&counter->child_list);
4403 mutex_unlock(&parent->child_mutex);
4404
4405 fput(parent->filp);
4406
4407 list_del_counter(counter, ctx);
4408 free_counter(counter);
4409 }
4410
4411 if (!list_empty(&ctx->counter_list))
4412 goto again;
4413
4414 mutex_unlock(&ctx->mutex);
4415
4416 put_ctx(ctx);
4417 }
4418
4419 /*
4420 * Initialize the perf_counter context in task_struct
4421 */
4422 int perf_counter_init_task(struct task_struct *child)
4423 {
4424 struct perf_counter_context *child_ctx, *parent_ctx;
4425 struct perf_counter_context *cloned_ctx;
4426 struct perf_counter *counter;
4427 struct task_struct *parent = current;
4428 int inherited_all = 1;
4429 int ret = 0;
4430
4431 child->perf_counter_ctxp = NULL;
4432
4433 mutex_init(&child->perf_counter_mutex);
4434 INIT_LIST_HEAD(&child->perf_counter_list);
4435
4436 if (likely(!parent->perf_counter_ctxp))
4437 return 0;
4438
4439 /*
4440 * This is executed from the parent task context, so inherit
4441 * counters that have been marked for cloning.
4442 * First allocate and initialize a context for the child.
4443 */
4444
4445 child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
4446 if (!child_ctx)
4447 return -ENOMEM;
4448
4449 __perf_counter_init_context(child_ctx, child);
4450 child->perf_counter_ctxp = child_ctx;
4451 get_task_struct(child);
4452
4453 /*
4454 * If the parent's context is a clone, pin it so it won't get
4455 * swapped under us.
4456 */
4457 parent_ctx = perf_pin_task_context(parent);
4458
4459 /*
4460 * No need to check if parent_ctx != NULL here; since we saw
4461 * it non-NULL earlier, the only reason for it to become NULL
4462 * is if we exit, and since we're currently in the middle of
4463 * a fork we can't be exiting at the same time.
4464 */
4465
4466 /*
4467 * Lock the parent list. No need to lock the child - not PID
4468 * hashed yet and not running, so nobody can access it.
4469 */
4470 mutex_lock(&parent_ctx->mutex);
4471
4472 /*
4473 * We dont have to disable NMIs - we are only looking at
4474 * the list, not manipulating it:
4475 */
4476 list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
4477 if (counter != counter->group_leader)
4478 continue;
4479
4480 if (!counter->attr.inherit) {
4481 inherited_all = 0;
4482 continue;
4483 }
4484
4485 ret = inherit_group(counter, parent, parent_ctx,
4486 child, child_ctx);
4487 if (ret) {
4488 inherited_all = 0;
4489 break;
4490 }
4491 }
4492
4493 if (inherited_all) {
4494 /*
4495 * Mark the child context as a clone of the parent
4496 * context, or of whatever the parent is a clone of.
4497 * Note that if the parent is a clone, it could get
4498 * uncloned at any point, but that doesn't matter
4499 * because the list of counters and the generation
4500 * count can't have changed since we took the mutex.
4501 */
4502 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
4503 if (cloned_ctx) {
4504 child_ctx->parent_ctx = cloned_ctx;
4505 child_ctx->parent_gen = parent_ctx->parent_gen;
4506 } else {
4507 child_ctx->parent_ctx = parent_ctx;
4508 child_ctx->parent_gen = parent_ctx->generation;
4509 }
4510 get_ctx(child_ctx->parent_ctx);
4511 }
4512
4513 mutex_unlock(&parent_ctx->mutex);
4514
4515 perf_unpin_context(parent_ctx);
4516
4517 return ret;
4518 }
4519
4520 static void __cpuinit perf_counter_init_cpu(int cpu)
4521 {
4522 struct perf_cpu_context *cpuctx;
4523
4524 cpuctx = &per_cpu(perf_cpu_context, cpu);
4525 __perf_counter_init_context(&cpuctx->ctx, NULL);
4526
4527 spin_lock(&perf_resource_lock);
4528 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
4529 spin_unlock(&perf_resource_lock);
4530
4531 hw_perf_counter_setup(cpu);
4532 }
4533
4534 #ifdef CONFIG_HOTPLUG_CPU
4535 static void __perf_counter_exit_cpu(void *info)
4536 {
4537 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4538 struct perf_counter_context *ctx = &cpuctx->ctx;
4539 struct perf_counter *counter, *tmp;
4540
4541 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
4542 __perf_counter_remove_from_context(counter);
4543 }
4544 static void perf_counter_exit_cpu(int cpu)
4545 {
4546 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4547 struct perf_counter_context *ctx = &cpuctx->ctx;
4548
4549 mutex_lock(&ctx->mutex);
4550 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
4551 mutex_unlock(&ctx->mutex);
4552 }
4553 #else
4554 static inline void perf_counter_exit_cpu(int cpu) { }
4555 #endif
4556
4557 static int __cpuinit
4558 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
4559 {
4560 unsigned int cpu = (long)hcpu;
4561
4562 switch (action) {
4563
4564 case CPU_UP_PREPARE:
4565 case CPU_UP_PREPARE_FROZEN:
4566 perf_counter_init_cpu(cpu);
4567 break;
4568
4569 case CPU_DOWN_PREPARE:
4570 case CPU_DOWN_PREPARE_FROZEN:
4571 perf_counter_exit_cpu(cpu);
4572 break;
4573
4574 default:
4575 break;
4576 }
4577
4578 return NOTIFY_OK;
4579 }
4580
4581 /*
4582 * This has to have a higher priority than migration_notifier in sched.c.
4583 */
4584 static struct notifier_block __cpuinitdata perf_cpu_nb = {
4585 .notifier_call = perf_cpu_notify,
4586 .priority = 20,
4587 };
4588
4589 void __init perf_counter_init(void)
4590 {
4591 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
4592 (void *)(long)smp_processor_id());
4593 register_cpu_notifier(&perf_cpu_nb);
4594 }
4595
4596 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
4597 {
4598 return sprintf(buf, "%d\n", perf_reserved_percpu);
4599 }
4600
4601 static ssize_t
4602 perf_set_reserve_percpu(struct sysdev_class *class,
4603 const char *buf,
4604 size_t count)
4605 {
4606 struct perf_cpu_context *cpuctx;
4607 unsigned long val;
4608 int err, cpu, mpt;
4609
4610 err = strict_strtoul(buf, 10, &val);
4611 if (err)
4612 return err;
4613 if (val > perf_max_counters)
4614 return -EINVAL;
4615
4616 spin_lock(&perf_resource_lock);
4617 perf_reserved_percpu = val;
4618 for_each_online_cpu(cpu) {
4619 cpuctx = &per_cpu(perf_cpu_context, cpu);
4620 spin_lock_irq(&cpuctx->ctx.lock);
4621 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
4622 perf_max_counters - perf_reserved_percpu);
4623 cpuctx->max_pertask = mpt;
4624 spin_unlock_irq(&cpuctx->ctx.lock);
4625 }
4626 spin_unlock(&perf_resource_lock);
4627
4628 return count;
4629 }
4630
4631 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
4632 {
4633 return sprintf(buf, "%d\n", perf_overcommit);
4634 }
4635
4636 static ssize_t
4637 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
4638 {
4639 unsigned long val;
4640 int err;
4641
4642 err = strict_strtoul(buf, 10, &val);
4643 if (err)
4644 return err;
4645 if (val > 1)
4646 return -EINVAL;
4647
4648 spin_lock(&perf_resource_lock);
4649 perf_overcommit = val;
4650 spin_unlock(&perf_resource_lock);
4651
4652 return count;
4653 }
4654
4655 static SYSDEV_CLASS_ATTR(
4656 reserve_percpu,
4657 0644,
4658 perf_show_reserve_percpu,
4659 perf_set_reserve_percpu
4660 );
4661
4662 static SYSDEV_CLASS_ATTR(
4663 overcommit,
4664 0644,
4665 perf_show_overcommit,
4666 perf_set_overcommit
4667 );
4668
4669 static struct attribute *perfclass_attrs[] = {
4670 &attr_reserve_percpu.attr,
4671 &attr_overcommit.attr,
4672 NULL
4673 };
4674
4675 static struct attribute_group perfclass_attr_group = {
4676 .attrs = perfclass_attrs,
4677 .name = "perf_counters",
4678 };
4679
4680 static int __init perf_counter_sysfs_init(void)
4681 {
4682 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
4683 &perfclass_attr_group);
4684 }
4685 device_initcall(perf_counter_sysfs_init);
This page took 0.122437 seconds and 6 git commands to generate.