perf_counter: rework ioctl()s
[deliverable/linux.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/ptrace.h>
20 #include <linux/percpu.h>
21 #include <linux/vmstat.h>
22 #include <linux/hardirq.h>
23 #include <linux/rculist.h>
24 #include <linux/uaccess.h>
25 #include <linux/syscalls.h>
26 #include <linux/anon_inodes.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/perf_counter.h>
29 #include <linux/dcache.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34 * Each CPU has a list of per CPU counters:
35 */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_tracking __read_mostly;
44 static atomic_t nr_munmap_tracking __read_mostly;
45 static atomic_t nr_comm_tracking __read_mostly;
46
47 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48 int sysctl_perf_counter_mlock __read_mostly = 128; /* 'free' kb per counter */
49
50 /*
51 * Lock for (sysadmin-configurable) counter reservations:
52 */
53 static DEFINE_SPINLOCK(perf_resource_lock);
54
55 /*
56 * Architecture provided APIs - weak aliases:
57 */
58 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
59 {
60 return NULL;
61 }
62
63 u64 __weak hw_perf_save_disable(void) { return 0; }
64 void __weak hw_perf_restore(u64 ctrl) { barrier(); }
65 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
66 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
67 struct perf_cpu_context *cpuctx,
68 struct perf_counter_context *ctx, int cpu)
69 {
70 return 0;
71 }
72
73 void __weak perf_counter_print_debug(void) { }
74
75 static void
76 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
77 {
78 struct perf_counter *group_leader = counter->group_leader;
79
80 /*
81 * Depending on whether it is a standalone or sibling counter,
82 * add it straight to the context's counter list, or to the group
83 * leader's sibling list:
84 */
85 if (group_leader == counter)
86 list_add_tail(&counter->list_entry, &ctx->counter_list);
87 else {
88 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
89 group_leader->nr_siblings++;
90 }
91
92 list_add_rcu(&counter->event_entry, &ctx->event_list);
93 }
94
95 static void
96 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
97 {
98 struct perf_counter *sibling, *tmp;
99
100 list_del_init(&counter->list_entry);
101 list_del_rcu(&counter->event_entry);
102
103 if (counter->group_leader != counter)
104 counter->group_leader->nr_siblings--;
105
106 /*
107 * If this was a group counter with sibling counters then
108 * upgrade the siblings to singleton counters by adding them
109 * to the context list directly:
110 */
111 list_for_each_entry_safe(sibling, tmp,
112 &counter->sibling_list, list_entry) {
113
114 list_move_tail(&sibling->list_entry, &ctx->counter_list);
115 sibling->group_leader = sibling;
116 }
117 }
118
119 static void
120 counter_sched_out(struct perf_counter *counter,
121 struct perf_cpu_context *cpuctx,
122 struct perf_counter_context *ctx)
123 {
124 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
125 return;
126
127 counter->state = PERF_COUNTER_STATE_INACTIVE;
128 counter->tstamp_stopped = ctx->time;
129 counter->pmu->disable(counter);
130 counter->oncpu = -1;
131
132 if (!is_software_counter(counter))
133 cpuctx->active_oncpu--;
134 ctx->nr_active--;
135 if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
136 cpuctx->exclusive = 0;
137 }
138
139 static void
140 group_sched_out(struct perf_counter *group_counter,
141 struct perf_cpu_context *cpuctx,
142 struct perf_counter_context *ctx)
143 {
144 struct perf_counter *counter;
145
146 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
147 return;
148
149 counter_sched_out(group_counter, cpuctx, ctx);
150
151 /*
152 * Schedule out siblings (if any):
153 */
154 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
155 counter_sched_out(counter, cpuctx, ctx);
156
157 if (group_counter->hw_event.exclusive)
158 cpuctx->exclusive = 0;
159 }
160
161 /*
162 * Cross CPU call to remove a performance counter
163 *
164 * We disable the counter on the hardware level first. After that we
165 * remove it from the context list.
166 */
167 static void __perf_counter_remove_from_context(void *info)
168 {
169 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
170 struct perf_counter *counter = info;
171 struct perf_counter_context *ctx = counter->ctx;
172 unsigned long flags;
173 u64 perf_flags;
174
175 /*
176 * If this is a task context, we need to check whether it is
177 * the current task context of this cpu. If not it has been
178 * scheduled out before the smp call arrived.
179 */
180 if (ctx->task && cpuctx->task_ctx != ctx)
181 return;
182
183 spin_lock_irqsave(&ctx->lock, flags);
184
185 counter_sched_out(counter, cpuctx, ctx);
186
187 counter->task = NULL;
188 ctx->nr_counters--;
189
190 /*
191 * Protect the list operation against NMI by disabling the
192 * counters on a global level. NOP for non NMI based counters.
193 */
194 perf_flags = hw_perf_save_disable();
195 list_del_counter(counter, ctx);
196 hw_perf_restore(perf_flags);
197
198 if (!ctx->task) {
199 /*
200 * Allow more per task counters with respect to the
201 * reservation:
202 */
203 cpuctx->max_pertask =
204 min(perf_max_counters - ctx->nr_counters,
205 perf_max_counters - perf_reserved_percpu);
206 }
207
208 spin_unlock_irqrestore(&ctx->lock, flags);
209 }
210
211
212 /*
213 * Remove the counter from a task's (or a CPU's) list of counters.
214 *
215 * Must be called with counter->mutex and ctx->mutex held.
216 *
217 * CPU counters are removed with a smp call. For task counters we only
218 * call when the task is on a CPU.
219 */
220 static void perf_counter_remove_from_context(struct perf_counter *counter)
221 {
222 struct perf_counter_context *ctx = counter->ctx;
223 struct task_struct *task = ctx->task;
224
225 if (!task) {
226 /*
227 * Per cpu counters are removed via an smp call and
228 * the removal is always sucessful.
229 */
230 smp_call_function_single(counter->cpu,
231 __perf_counter_remove_from_context,
232 counter, 1);
233 return;
234 }
235
236 retry:
237 task_oncpu_function_call(task, __perf_counter_remove_from_context,
238 counter);
239
240 spin_lock_irq(&ctx->lock);
241 /*
242 * If the context is active we need to retry the smp call.
243 */
244 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
245 spin_unlock_irq(&ctx->lock);
246 goto retry;
247 }
248
249 /*
250 * The lock prevents that this context is scheduled in so we
251 * can remove the counter safely, if the call above did not
252 * succeed.
253 */
254 if (!list_empty(&counter->list_entry)) {
255 ctx->nr_counters--;
256 list_del_counter(counter, ctx);
257 counter->task = NULL;
258 }
259 spin_unlock_irq(&ctx->lock);
260 }
261
262 static inline u64 perf_clock(void)
263 {
264 return cpu_clock(smp_processor_id());
265 }
266
267 /*
268 * Update the record of the current time in a context.
269 */
270 static void update_context_time(struct perf_counter_context *ctx)
271 {
272 u64 now = perf_clock();
273
274 ctx->time += now - ctx->timestamp;
275 ctx->timestamp = now;
276 }
277
278 /*
279 * Update the total_time_enabled and total_time_running fields for a counter.
280 */
281 static void update_counter_times(struct perf_counter *counter)
282 {
283 struct perf_counter_context *ctx = counter->ctx;
284 u64 run_end;
285
286 if (counter->state < PERF_COUNTER_STATE_INACTIVE)
287 return;
288
289 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
290
291 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
292 run_end = counter->tstamp_stopped;
293 else
294 run_end = ctx->time;
295
296 counter->total_time_running = run_end - counter->tstamp_running;
297 }
298
299 /*
300 * Update total_time_enabled and total_time_running for all counters in a group.
301 */
302 static void update_group_times(struct perf_counter *leader)
303 {
304 struct perf_counter *counter;
305
306 update_counter_times(leader);
307 list_for_each_entry(counter, &leader->sibling_list, list_entry)
308 update_counter_times(counter);
309 }
310
311 /*
312 * Cross CPU call to disable a performance counter
313 */
314 static void __perf_counter_disable(void *info)
315 {
316 struct perf_counter *counter = info;
317 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
318 struct perf_counter_context *ctx = counter->ctx;
319 unsigned long flags;
320
321 /*
322 * If this is a per-task counter, need to check whether this
323 * counter's task is the current task on this cpu.
324 */
325 if (ctx->task && cpuctx->task_ctx != ctx)
326 return;
327
328 spin_lock_irqsave(&ctx->lock, flags);
329
330 /*
331 * If the counter is on, turn it off.
332 * If it is in error state, leave it in error state.
333 */
334 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
335 update_context_time(ctx);
336 update_counter_times(counter);
337 if (counter == counter->group_leader)
338 group_sched_out(counter, cpuctx, ctx);
339 else
340 counter_sched_out(counter, cpuctx, ctx);
341 counter->state = PERF_COUNTER_STATE_OFF;
342 }
343
344 spin_unlock_irqrestore(&ctx->lock, flags);
345 }
346
347 /*
348 * Disable a counter.
349 */
350 static void perf_counter_disable(struct perf_counter *counter)
351 {
352 struct perf_counter_context *ctx = counter->ctx;
353 struct task_struct *task = ctx->task;
354
355 if (!task) {
356 /*
357 * Disable the counter on the cpu that it's on
358 */
359 smp_call_function_single(counter->cpu, __perf_counter_disable,
360 counter, 1);
361 return;
362 }
363
364 retry:
365 task_oncpu_function_call(task, __perf_counter_disable, counter);
366
367 spin_lock_irq(&ctx->lock);
368 /*
369 * If the counter is still active, we need to retry the cross-call.
370 */
371 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
372 spin_unlock_irq(&ctx->lock);
373 goto retry;
374 }
375
376 /*
377 * Since we have the lock this context can't be scheduled
378 * in, so we can change the state safely.
379 */
380 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
381 update_counter_times(counter);
382 counter->state = PERF_COUNTER_STATE_OFF;
383 }
384
385 spin_unlock_irq(&ctx->lock);
386 }
387
388 static int
389 counter_sched_in(struct perf_counter *counter,
390 struct perf_cpu_context *cpuctx,
391 struct perf_counter_context *ctx,
392 int cpu)
393 {
394 if (counter->state <= PERF_COUNTER_STATE_OFF)
395 return 0;
396
397 counter->state = PERF_COUNTER_STATE_ACTIVE;
398 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
399 /*
400 * The new state must be visible before we turn it on in the hardware:
401 */
402 smp_wmb();
403
404 if (counter->pmu->enable(counter)) {
405 counter->state = PERF_COUNTER_STATE_INACTIVE;
406 counter->oncpu = -1;
407 return -EAGAIN;
408 }
409
410 counter->tstamp_running += ctx->time - counter->tstamp_stopped;
411
412 if (!is_software_counter(counter))
413 cpuctx->active_oncpu++;
414 ctx->nr_active++;
415
416 if (counter->hw_event.exclusive)
417 cpuctx->exclusive = 1;
418
419 return 0;
420 }
421
422 /*
423 * Return 1 for a group consisting entirely of software counters,
424 * 0 if the group contains any hardware counters.
425 */
426 static int is_software_only_group(struct perf_counter *leader)
427 {
428 struct perf_counter *counter;
429
430 if (!is_software_counter(leader))
431 return 0;
432
433 list_for_each_entry(counter, &leader->sibling_list, list_entry)
434 if (!is_software_counter(counter))
435 return 0;
436
437 return 1;
438 }
439
440 /*
441 * Work out whether we can put this counter group on the CPU now.
442 */
443 static int group_can_go_on(struct perf_counter *counter,
444 struct perf_cpu_context *cpuctx,
445 int can_add_hw)
446 {
447 /*
448 * Groups consisting entirely of software counters can always go on.
449 */
450 if (is_software_only_group(counter))
451 return 1;
452 /*
453 * If an exclusive group is already on, no other hardware
454 * counters can go on.
455 */
456 if (cpuctx->exclusive)
457 return 0;
458 /*
459 * If this group is exclusive and there are already
460 * counters on the CPU, it can't go on.
461 */
462 if (counter->hw_event.exclusive && cpuctx->active_oncpu)
463 return 0;
464 /*
465 * Otherwise, try to add it if all previous groups were able
466 * to go on.
467 */
468 return can_add_hw;
469 }
470
471 static void add_counter_to_ctx(struct perf_counter *counter,
472 struct perf_counter_context *ctx)
473 {
474 list_add_counter(counter, ctx);
475 ctx->nr_counters++;
476 counter->prev_state = PERF_COUNTER_STATE_OFF;
477 counter->tstamp_enabled = ctx->time;
478 counter->tstamp_running = ctx->time;
479 counter->tstamp_stopped = ctx->time;
480 }
481
482 /*
483 * Cross CPU call to install and enable a performance counter
484 */
485 static void __perf_install_in_context(void *info)
486 {
487 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
488 struct perf_counter *counter = info;
489 struct perf_counter_context *ctx = counter->ctx;
490 struct perf_counter *leader = counter->group_leader;
491 int cpu = smp_processor_id();
492 unsigned long flags;
493 u64 perf_flags;
494 int err;
495
496 /*
497 * If this is a task context, we need to check whether it is
498 * the current task context of this cpu. If not it has been
499 * scheduled out before the smp call arrived.
500 */
501 if (ctx->task && cpuctx->task_ctx != ctx)
502 return;
503
504 spin_lock_irqsave(&ctx->lock, flags);
505 update_context_time(ctx);
506
507 /*
508 * Protect the list operation against NMI by disabling the
509 * counters on a global level. NOP for non NMI based counters.
510 */
511 perf_flags = hw_perf_save_disable();
512
513 add_counter_to_ctx(counter, ctx);
514
515 /*
516 * Don't put the counter on if it is disabled or if
517 * it is in a group and the group isn't on.
518 */
519 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
520 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
521 goto unlock;
522
523 /*
524 * An exclusive counter can't go on if there are already active
525 * hardware counters, and no hardware counter can go on if there
526 * is already an exclusive counter on.
527 */
528 if (!group_can_go_on(counter, cpuctx, 1))
529 err = -EEXIST;
530 else
531 err = counter_sched_in(counter, cpuctx, ctx, cpu);
532
533 if (err) {
534 /*
535 * This counter couldn't go on. If it is in a group
536 * then we have to pull the whole group off.
537 * If the counter group is pinned then put it in error state.
538 */
539 if (leader != counter)
540 group_sched_out(leader, cpuctx, ctx);
541 if (leader->hw_event.pinned) {
542 update_group_times(leader);
543 leader->state = PERF_COUNTER_STATE_ERROR;
544 }
545 }
546
547 if (!err && !ctx->task && cpuctx->max_pertask)
548 cpuctx->max_pertask--;
549
550 unlock:
551 hw_perf_restore(perf_flags);
552
553 spin_unlock_irqrestore(&ctx->lock, flags);
554 }
555
556 /*
557 * Attach a performance counter to a context
558 *
559 * First we add the counter to the list with the hardware enable bit
560 * in counter->hw_config cleared.
561 *
562 * If the counter is attached to a task which is on a CPU we use a smp
563 * call to enable it in the task context. The task might have been
564 * scheduled away, but we check this in the smp call again.
565 *
566 * Must be called with ctx->mutex held.
567 */
568 static void
569 perf_install_in_context(struct perf_counter_context *ctx,
570 struct perf_counter *counter,
571 int cpu)
572 {
573 struct task_struct *task = ctx->task;
574
575 if (!task) {
576 /*
577 * Per cpu counters are installed via an smp call and
578 * the install is always sucessful.
579 */
580 smp_call_function_single(cpu, __perf_install_in_context,
581 counter, 1);
582 return;
583 }
584
585 counter->task = task;
586 retry:
587 task_oncpu_function_call(task, __perf_install_in_context,
588 counter);
589
590 spin_lock_irq(&ctx->lock);
591 /*
592 * we need to retry the smp call.
593 */
594 if (ctx->is_active && list_empty(&counter->list_entry)) {
595 spin_unlock_irq(&ctx->lock);
596 goto retry;
597 }
598
599 /*
600 * The lock prevents that this context is scheduled in so we
601 * can add the counter safely, if it the call above did not
602 * succeed.
603 */
604 if (list_empty(&counter->list_entry))
605 add_counter_to_ctx(counter, ctx);
606 spin_unlock_irq(&ctx->lock);
607 }
608
609 /*
610 * Cross CPU call to enable a performance counter
611 */
612 static void __perf_counter_enable(void *info)
613 {
614 struct perf_counter *counter = info;
615 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
616 struct perf_counter_context *ctx = counter->ctx;
617 struct perf_counter *leader = counter->group_leader;
618 unsigned long flags;
619 int err;
620
621 /*
622 * If this is a per-task counter, need to check whether this
623 * counter's task is the current task on this cpu.
624 */
625 if (ctx->task && cpuctx->task_ctx != ctx)
626 return;
627
628 spin_lock_irqsave(&ctx->lock, flags);
629 update_context_time(ctx);
630
631 counter->prev_state = counter->state;
632 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
633 goto unlock;
634 counter->state = PERF_COUNTER_STATE_INACTIVE;
635 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
636
637 /*
638 * If the counter is in a group and isn't the group leader,
639 * then don't put it on unless the group is on.
640 */
641 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
642 goto unlock;
643
644 if (!group_can_go_on(counter, cpuctx, 1))
645 err = -EEXIST;
646 else
647 err = counter_sched_in(counter, cpuctx, ctx,
648 smp_processor_id());
649
650 if (err) {
651 /*
652 * If this counter can't go on and it's part of a
653 * group, then the whole group has to come off.
654 */
655 if (leader != counter)
656 group_sched_out(leader, cpuctx, ctx);
657 if (leader->hw_event.pinned) {
658 update_group_times(leader);
659 leader->state = PERF_COUNTER_STATE_ERROR;
660 }
661 }
662
663 unlock:
664 spin_unlock_irqrestore(&ctx->lock, flags);
665 }
666
667 /*
668 * Enable a counter.
669 */
670 static void perf_counter_enable(struct perf_counter *counter)
671 {
672 struct perf_counter_context *ctx = counter->ctx;
673 struct task_struct *task = ctx->task;
674
675 if (!task) {
676 /*
677 * Enable the counter on the cpu that it's on
678 */
679 smp_call_function_single(counter->cpu, __perf_counter_enable,
680 counter, 1);
681 return;
682 }
683
684 spin_lock_irq(&ctx->lock);
685 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
686 goto out;
687
688 /*
689 * If the counter is in error state, clear that first.
690 * That way, if we see the counter in error state below, we
691 * know that it has gone back into error state, as distinct
692 * from the task having been scheduled away before the
693 * cross-call arrived.
694 */
695 if (counter->state == PERF_COUNTER_STATE_ERROR)
696 counter->state = PERF_COUNTER_STATE_OFF;
697
698 retry:
699 spin_unlock_irq(&ctx->lock);
700 task_oncpu_function_call(task, __perf_counter_enable, counter);
701
702 spin_lock_irq(&ctx->lock);
703
704 /*
705 * If the context is active and the counter is still off,
706 * we need to retry the cross-call.
707 */
708 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
709 goto retry;
710
711 /*
712 * Since we have the lock this context can't be scheduled
713 * in, so we can change the state safely.
714 */
715 if (counter->state == PERF_COUNTER_STATE_OFF) {
716 counter->state = PERF_COUNTER_STATE_INACTIVE;
717 counter->tstamp_enabled =
718 ctx->time - counter->total_time_enabled;
719 }
720 out:
721 spin_unlock_irq(&ctx->lock);
722 }
723
724 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
725 {
726 /*
727 * not supported on inherited counters
728 */
729 if (counter->hw_event.inherit)
730 return -EINVAL;
731
732 atomic_add(refresh, &counter->event_limit);
733 perf_counter_enable(counter);
734
735 return 0;
736 }
737
738 void __perf_counter_sched_out(struct perf_counter_context *ctx,
739 struct perf_cpu_context *cpuctx)
740 {
741 struct perf_counter *counter;
742 u64 flags;
743
744 spin_lock(&ctx->lock);
745 ctx->is_active = 0;
746 if (likely(!ctx->nr_counters))
747 goto out;
748 update_context_time(ctx);
749
750 flags = hw_perf_save_disable();
751 if (ctx->nr_active) {
752 list_for_each_entry(counter, &ctx->counter_list, list_entry)
753 group_sched_out(counter, cpuctx, ctx);
754 }
755 hw_perf_restore(flags);
756 out:
757 spin_unlock(&ctx->lock);
758 }
759
760 /*
761 * Called from scheduler to remove the counters of the current task,
762 * with interrupts disabled.
763 *
764 * We stop each counter and update the counter value in counter->count.
765 *
766 * This does not protect us against NMI, but disable()
767 * sets the disabled bit in the control field of counter _before_
768 * accessing the counter control register. If a NMI hits, then it will
769 * not restart the counter.
770 */
771 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
772 {
773 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
774 struct perf_counter_context *ctx = &task->perf_counter_ctx;
775 struct pt_regs *regs;
776
777 if (likely(!cpuctx->task_ctx))
778 return;
779
780 update_context_time(ctx);
781
782 regs = task_pt_regs(task);
783 perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
784 __perf_counter_sched_out(ctx, cpuctx);
785
786 cpuctx->task_ctx = NULL;
787 }
788
789 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
790 {
791 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
792 }
793
794 static int
795 group_sched_in(struct perf_counter *group_counter,
796 struct perf_cpu_context *cpuctx,
797 struct perf_counter_context *ctx,
798 int cpu)
799 {
800 struct perf_counter *counter, *partial_group;
801 int ret;
802
803 if (group_counter->state == PERF_COUNTER_STATE_OFF)
804 return 0;
805
806 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
807 if (ret)
808 return ret < 0 ? ret : 0;
809
810 group_counter->prev_state = group_counter->state;
811 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
812 return -EAGAIN;
813
814 /*
815 * Schedule in siblings as one group (if any):
816 */
817 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
818 counter->prev_state = counter->state;
819 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
820 partial_group = counter;
821 goto group_error;
822 }
823 }
824
825 return 0;
826
827 group_error:
828 /*
829 * Groups can be scheduled in as one unit only, so undo any
830 * partial group before returning:
831 */
832 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
833 if (counter == partial_group)
834 break;
835 counter_sched_out(counter, cpuctx, ctx);
836 }
837 counter_sched_out(group_counter, cpuctx, ctx);
838
839 return -EAGAIN;
840 }
841
842 static void
843 __perf_counter_sched_in(struct perf_counter_context *ctx,
844 struct perf_cpu_context *cpuctx, int cpu)
845 {
846 struct perf_counter *counter;
847 u64 flags;
848 int can_add_hw = 1;
849
850 spin_lock(&ctx->lock);
851 ctx->is_active = 1;
852 if (likely(!ctx->nr_counters))
853 goto out;
854
855 ctx->timestamp = perf_clock();
856
857 flags = hw_perf_save_disable();
858
859 /*
860 * First go through the list and put on any pinned groups
861 * in order to give them the best chance of going on.
862 */
863 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
864 if (counter->state <= PERF_COUNTER_STATE_OFF ||
865 !counter->hw_event.pinned)
866 continue;
867 if (counter->cpu != -1 && counter->cpu != cpu)
868 continue;
869
870 if (group_can_go_on(counter, cpuctx, 1))
871 group_sched_in(counter, cpuctx, ctx, cpu);
872
873 /*
874 * If this pinned group hasn't been scheduled,
875 * put it in error state.
876 */
877 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
878 update_group_times(counter);
879 counter->state = PERF_COUNTER_STATE_ERROR;
880 }
881 }
882
883 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
884 /*
885 * Ignore counters in OFF or ERROR state, and
886 * ignore pinned counters since we did them already.
887 */
888 if (counter->state <= PERF_COUNTER_STATE_OFF ||
889 counter->hw_event.pinned)
890 continue;
891
892 /*
893 * Listen to the 'cpu' scheduling filter constraint
894 * of counters:
895 */
896 if (counter->cpu != -1 && counter->cpu != cpu)
897 continue;
898
899 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
900 if (group_sched_in(counter, cpuctx, ctx, cpu))
901 can_add_hw = 0;
902 }
903 }
904 hw_perf_restore(flags);
905 out:
906 spin_unlock(&ctx->lock);
907 }
908
909 /*
910 * Called from scheduler to add the counters of the current task
911 * with interrupts disabled.
912 *
913 * We restore the counter value and then enable it.
914 *
915 * This does not protect us against NMI, but enable()
916 * sets the enabled bit in the control field of counter _before_
917 * accessing the counter control register. If a NMI hits, then it will
918 * keep the counter running.
919 */
920 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
921 {
922 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
923 struct perf_counter_context *ctx = &task->perf_counter_ctx;
924
925 __perf_counter_sched_in(ctx, cpuctx, cpu);
926 cpuctx->task_ctx = ctx;
927 }
928
929 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
930 {
931 struct perf_counter_context *ctx = &cpuctx->ctx;
932
933 __perf_counter_sched_in(ctx, cpuctx, cpu);
934 }
935
936 int perf_counter_task_disable(void)
937 {
938 struct task_struct *curr = current;
939 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
940 struct perf_counter *counter;
941 unsigned long flags;
942 u64 perf_flags;
943 int cpu;
944
945 if (likely(!ctx->nr_counters))
946 return 0;
947
948 local_irq_save(flags);
949 cpu = smp_processor_id();
950
951 perf_counter_task_sched_out(curr, cpu);
952
953 spin_lock(&ctx->lock);
954
955 /*
956 * Disable all the counters:
957 */
958 perf_flags = hw_perf_save_disable();
959
960 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
961 if (counter->state != PERF_COUNTER_STATE_ERROR) {
962 update_group_times(counter);
963 counter->state = PERF_COUNTER_STATE_OFF;
964 }
965 }
966
967 hw_perf_restore(perf_flags);
968
969 spin_unlock_irqrestore(&ctx->lock, flags);
970
971 return 0;
972 }
973
974 int perf_counter_task_enable(void)
975 {
976 struct task_struct *curr = current;
977 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
978 struct perf_counter *counter;
979 unsigned long flags;
980 u64 perf_flags;
981 int cpu;
982
983 if (likely(!ctx->nr_counters))
984 return 0;
985
986 local_irq_save(flags);
987 cpu = smp_processor_id();
988
989 perf_counter_task_sched_out(curr, cpu);
990
991 spin_lock(&ctx->lock);
992
993 /*
994 * Disable all the counters:
995 */
996 perf_flags = hw_perf_save_disable();
997
998 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
999 if (counter->state > PERF_COUNTER_STATE_OFF)
1000 continue;
1001 counter->state = PERF_COUNTER_STATE_INACTIVE;
1002 counter->tstamp_enabled =
1003 ctx->time - counter->total_time_enabled;
1004 counter->hw_event.disabled = 0;
1005 }
1006 hw_perf_restore(perf_flags);
1007
1008 spin_unlock(&ctx->lock);
1009
1010 perf_counter_task_sched_in(curr, cpu);
1011
1012 local_irq_restore(flags);
1013
1014 return 0;
1015 }
1016
1017 /*
1018 * Round-robin a context's counters:
1019 */
1020 static void rotate_ctx(struct perf_counter_context *ctx)
1021 {
1022 struct perf_counter *counter;
1023 u64 perf_flags;
1024
1025 if (!ctx->nr_counters)
1026 return;
1027
1028 spin_lock(&ctx->lock);
1029 /*
1030 * Rotate the first entry last (works just fine for group counters too):
1031 */
1032 perf_flags = hw_perf_save_disable();
1033 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1034 list_move_tail(&counter->list_entry, &ctx->counter_list);
1035 break;
1036 }
1037 hw_perf_restore(perf_flags);
1038
1039 spin_unlock(&ctx->lock);
1040 }
1041
1042 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1043 {
1044 struct perf_cpu_context *cpuctx;
1045 struct perf_counter_context *ctx;
1046
1047 if (!atomic_read(&nr_counters))
1048 return;
1049
1050 cpuctx = &per_cpu(perf_cpu_context, cpu);
1051 ctx = &curr->perf_counter_ctx;
1052
1053 perf_counter_cpu_sched_out(cpuctx);
1054 perf_counter_task_sched_out(curr, cpu);
1055
1056 rotate_ctx(&cpuctx->ctx);
1057 rotate_ctx(ctx);
1058
1059 perf_counter_cpu_sched_in(cpuctx, cpu);
1060 perf_counter_task_sched_in(curr, cpu);
1061 }
1062
1063 /*
1064 * Cross CPU call to read the hardware counter
1065 */
1066 static void __read(void *info)
1067 {
1068 struct perf_counter *counter = info;
1069 struct perf_counter_context *ctx = counter->ctx;
1070 unsigned long flags;
1071
1072 local_irq_save(flags);
1073 if (ctx->is_active)
1074 update_context_time(ctx);
1075 counter->pmu->read(counter);
1076 update_counter_times(counter);
1077 local_irq_restore(flags);
1078 }
1079
1080 static u64 perf_counter_read(struct perf_counter *counter)
1081 {
1082 /*
1083 * If counter is enabled and currently active on a CPU, update the
1084 * value in the counter structure:
1085 */
1086 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1087 smp_call_function_single(counter->oncpu,
1088 __read, counter, 1);
1089 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1090 update_counter_times(counter);
1091 }
1092
1093 return atomic64_read(&counter->count);
1094 }
1095
1096 static void put_context(struct perf_counter_context *ctx)
1097 {
1098 if (ctx->task)
1099 put_task_struct(ctx->task);
1100 }
1101
1102 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1103 {
1104 struct perf_cpu_context *cpuctx;
1105 struct perf_counter_context *ctx;
1106 struct task_struct *task;
1107
1108 /*
1109 * If cpu is not a wildcard then this is a percpu counter:
1110 */
1111 if (cpu != -1) {
1112 /* Must be root to operate on a CPU counter: */
1113 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1114 return ERR_PTR(-EACCES);
1115
1116 if (cpu < 0 || cpu > num_possible_cpus())
1117 return ERR_PTR(-EINVAL);
1118
1119 /*
1120 * We could be clever and allow to attach a counter to an
1121 * offline CPU and activate it when the CPU comes up, but
1122 * that's for later.
1123 */
1124 if (!cpu_isset(cpu, cpu_online_map))
1125 return ERR_PTR(-ENODEV);
1126
1127 cpuctx = &per_cpu(perf_cpu_context, cpu);
1128 ctx = &cpuctx->ctx;
1129
1130 return ctx;
1131 }
1132
1133 rcu_read_lock();
1134 if (!pid)
1135 task = current;
1136 else
1137 task = find_task_by_vpid(pid);
1138 if (task)
1139 get_task_struct(task);
1140 rcu_read_unlock();
1141
1142 if (!task)
1143 return ERR_PTR(-ESRCH);
1144
1145 ctx = &task->perf_counter_ctx;
1146 ctx->task = task;
1147
1148 /* Reuse ptrace permission checks for now. */
1149 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1150 put_context(ctx);
1151 return ERR_PTR(-EACCES);
1152 }
1153
1154 return ctx;
1155 }
1156
1157 static void free_counter_rcu(struct rcu_head *head)
1158 {
1159 struct perf_counter *counter;
1160
1161 counter = container_of(head, struct perf_counter, rcu_head);
1162 kfree(counter);
1163 }
1164
1165 static void perf_pending_sync(struct perf_counter *counter);
1166
1167 static void free_counter(struct perf_counter *counter)
1168 {
1169 perf_pending_sync(counter);
1170
1171 atomic_dec(&nr_counters);
1172 if (counter->hw_event.mmap)
1173 atomic_dec(&nr_mmap_tracking);
1174 if (counter->hw_event.munmap)
1175 atomic_dec(&nr_munmap_tracking);
1176 if (counter->hw_event.comm)
1177 atomic_dec(&nr_comm_tracking);
1178
1179 if (counter->destroy)
1180 counter->destroy(counter);
1181
1182 call_rcu(&counter->rcu_head, free_counter_rcu);
1183 }
1184
1185 /*
1186 * Called when the last reference to the file is gone.
1187 */
1188 static int perf_release(struct inode *inode, struct file *file)
1189 {
1190 struct perf_counter *counter = file->private_data;
1191 struct perf_counter_context *ctx = counter->ctx;
1192
1193 file->private_data = NULL;
1194
1195 mutex_lock(&ctx->mutex);
1196 mutex_lock(&counter->mutex);
1197
1198 perf_counter_remove_from_context(counter);
1199
1200 mutex_unlock(&counter->mutex);
1201 mutex_unlock(&ctx->mutex);
1202
1203 free_counter(counter);
1204 put_context(ctx);
1205
1206 return 0;
1207 }
1208
1209 /*
1210 * Read the performance counter - simple non blocking version for now
1211 */
1212 static ssize_t
1213 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1214 {
1215 u64 values[3];
1216 int n;
1217
1218 /*
1219 * Return end-of-file for a read on a counter that is in
1220 * error state (i.e. because it was pinned but it couldn't be
1221 * scheduled on to the CPU at some point).
1222 */
1223 if (counter->state == PERF_COUNTER_STATE_ERROR)
1224 return 0;
1225
1226 mutex_lock(&counter->mutex);
1227 values[0] = perf_counter_read(counter);
1228 n = 1;
1229 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1230 values[n++] = counter->total_time_enabled +
1231 atomic64_read(&counter->child_total_time_enabled);
1232 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1233 values[n++] = counter->total_time_running +
1234 atomic64_read(&counter->child_total_time_running);
1235 mutex_unlock(&counter->mutex);
1236
1237 if (count < n * sizeof(u64))
1238 return -EINVAL;
1239 count = n * sizeof(u64);
1240
1241 if (copy_to_user(buf, values, count))
1242 return -EFAULT;
1243
1244 return count;
1245 }
1246
1247 static ssize_t
1248 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1249 {
1250 struct perf_counter *counter = file->private_data;
1251
1252 return perf_read_hw(counter, buf, count);
1253 }
1254
1255 static unsigned int perf_poll(struct file *file, poll_table *wait)
1256 {
1257 struct perf_counter *counter = file->private_data;
1258 struct perf_mmap_data *data;
1259 unsigned int events = POLL_HUP;
1260
1261 rcu_read_lock();
1262 data = rcu_dereference(counter->data);
1263 if (data)
1264 events = atomic_xchg(&data->poll, 0);
1265 rcu_read_unlock();
1266
1267 poll_wait(file, &counter->waitq, wait);
1268
1269 return events;
1270 }
1271
1272 static void perf_counter_reset(struct perf_counter *counter)
1273 {
1274 (void)perf_counter_read(counter);
1275 atomic_set(&counter->count, 0);
1276 perf_counter_update_userpage(counter);
1277 }
1278
1279 static void perf_counter_for_each_sibling(struct perf_counter *counter,
1280 void (*func)(struct perf_counter *))
1281 {
1282 struct perf_counter_context *ctx = counter->ctx;
1283 struct perf_counter *sibling;
1284
1285 spin_lock_irq(&ctx->lock);
1286 counter = counter->group_leader;
1287
1288 func(counter);
1289 list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1290 func(sibling);
1291 spin_unlock_irq(&ctx->lock);
1292 }
1293
1294 static void perf_counter_for_each_child(struct perf_counter *counter,
1295 void (*func)(struct perf_counter *))
1296 {
1297 struct perf_counter *child;
1298
1299 mutex_lock(&counter->mutex);
1300 func(counter);
1301 list_for_each_entry(child, &counter->child_list, child_list)
1302 func(child);
1303 mutex_unlock(&counter->mutex);
1304 }
1305
1306 static void perf_counter_for_each(struct perf_counter *counter,
1307 void (*func)(struct perf_counter *))
1308 {
1309 struct perf_counter *child;
1310
1311 mutex_lock(&counter->mutex);
1312 perf_counter_for_each_sibling(counter, func);
1313 list_for_each_entry(child, &counter->child_list, child_list)
1314 perf_counter_for_each_sibling(child, func);
1315 mutex_unlock(&counter->mutex);
1316 }
1317
1318 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1319 {
1320 struct perf_counter *counter = file->private_data;
1321 void (*func)(struct perf_counter *);
1322 u32 flags = arg;
1323
1324 switch (cmd) {
1325 case PERF_COUNTER_IOC_ENABLE:
1326 func = perf_counter_enable;
1327 break;
1328 case PERF_COUNTER_IOC_DISABLE:
1329 func = perf_counter_disable;
1330 break;
1331 case PERF_COUNTER_IOC_RESET:
1332 func = perf_counter_reset;
1333 break;
1334
1335 case PERF_COUNTER_IOC_REFRESH:
1336 return perf_counter_refresh(counter, arg);
1337 default:
1338 return -ENOTTY;
1339 }
1340
1341 if (flags & PERF_IOC_FLAG_GROUP)
1342 perf_counter_for_each(counter, func);
1343 else
1344 perf_counter_for_each_child(counter, func);
1345
1346 return 0;
1347 }
1348
1349 /*
1350 * Callers need to ensure there can be no nesting of this function, otherwise
1351 * the seqlock logic goes bad. We can not serialize this because the arch
1352 * code calls this from NMI context.
1353 */
1354 void perf_counter_update_userpage(struct perf_counter *counter)
1355 {
1356 struct perf_mmap_data *data;
1357 struct perf_counter_mmap_page *userpg;
1358
1359 rcu_read_lock();
1360 data = rcu_dereference(counter->data);
1361 if (!data)
1362 goto unlock;
1363
1364 userpg = data->user_page;
1365
1366 /*
1367 * Disable preemption so as to not let the corresponding user-space
1368 * spin too long if we get preempted.
1369 */
1370 preempt_disable();
1371 ++userpg->lock;
1372 barrier();
1373 userpg->index = counter->hw.idx;
1374 userpg->offset = atomic64_read(&counter->count);
1375 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1376 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1377
1378 barrier();
1379 ++userpg->lock;
1380 preempt_enable();
1381 unlock:
1382 rcu_read_unlock();
1383 }
1384
1385 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1386 {
1387 struct perf_counter *counter = vma->vm_file->private_data;
1388 struct perf_mmap_data *data;
1389 int ret = VM_FAULT_SIGBUS;
1390
1391 rcu_read_lock();
1392 data = rcu_dereference(counter->data);
1393 if (!data)
1394 goto unlock;
1395
1396 if (vmf->pgoff == 0) {
1397 vmf->page = virt_to_page(data->user_page);
1398 } else {
1399 int nr = vmf->pgoff - 1;
1400
1401 if ((unsigned)nr > data->nr_pages)
1402 goto unlock;
1403
1404 vmf->page = virt_to_page(data->data_pages[nr]);
1405 }
1406 get_page(vmf->page);
1407 ret = 0;
1408 unlock:
1409 rcu_read_unlock();
1410
1411 return ret;
1412 }
1413
1414 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1415 {
1416 struct perf_mmap_data *data;
1417 unsigned long size;
1418 int i;
1419
1420 WARN_ON(atomic_read(&counter->mmap_count));
1421
1422 size = sizeof(struct perf_mmap_data);
1423 size += nr_pages * sizeof(void *);
1424
1425 data = kzalloc(size, GFP_KERNEL);
1426 if (!data)
1427 goto fail;
1428
1429 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1430 if (!data->user_page)
1431 goto fail_user_page;
1432
1433 for (i = 0; i < nr_pages; i++) {
1434 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1435 if (!data->data_pages[i])
1436 goto fail_data_pages;
1437 }
1438
1439 data->nr_pages = nr_pages;
1440 atomic_set(&data->lock, -1);
1441
1442 rcu_assign_pointer(counter->data, data);
1443
1444 return 0;
1445
1446 fail_data_pages:
1447 for (i--; i >= 0; i--)
1448 free_page((unsigned long)data->data_pages[i]);
1449
1450 free_page((unsigned long)data->user_page);
1451
1452 fail_user_page:
1453 kfree(data);
1454
1455 fail:
1456 return -ENOMEM;
1457 }
1458
1459 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1460 {
1461 struct perf_mmap_data *data = container_of(rcu_head,
1462 struct perf_mmap_data, rcu_head);
1463 int i;
1464
1465 free_page((unsigned long)data->user_page);
1466 for (i = 0; i < data->nr_pages; i++)
1467 free_page((unsigned long)data->data_pages[i]);
1468 kfree(data);
1469 }
1470
1471 static void perf_mmap_data_free(struct perf_counter *counter)
1472 {
1473 struct perf_mmap_data *data = counter->data;
1474
1475 WARN_ON(atomic_read(&counter->mmap_count));
1476
1477 rcu_assign_pointer(counter->data, NULL);
1478 call_rcu(&data->rcu_head, __perf_mmap_data_free);
1479 }
1480
1481 static void perf_mmap_open(struct vm_area_struct *vma)
1482 {
1483 struct perf_counter *counter = vma->vm_file->private_data;
1484
1485 atomic_inc(&counter->mmap_count);
1486 }
1487
1488 static void perf_mmap_close(struct vm_area_struct *vma)
1489 {
1490 struct perf_counter *counter = vma->vm_file->private_data;
1491
1492 if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1493 &counter->mmap_mutex)) {
1494 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1495 perf_mmap_data_free(counter);
1496 mutex_unlock(&counter->mmap_mutex);
1497 }
1498 }
1499
1500 static struct vm_operations_struct perf_mmap_vmops = {
1501 .open = perf_mmap_open,
1502 .close = perf_mmap_close,
1503 .fault = perf_mmap_fault,
1504 };
1505
1506 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1507 {
1508 struct perf_counter *counter = file->private_data;
1509 unsigned long vma_size;
1510 unsigned long nr_pages;
1511 unsigned long locked, lock_limit;
1512 int ret = 0;
1513 long extra;
1514
1515 if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1516 return -EINVAL;
1517
1518 vma_size = vma->vm_end - vma->vm_start;
1519 nr_pages = (vma_size / PAGE_SIZE) - 1;
1520
1521 /*
1522 * If we have data pages ensure they're a power-of-two number, so we
1523 * can do bitmasks instead of modulo.
1524 */
1525 if (nr_pages != 0 && !is_power_of_2(nr_pages))
1526 return -EINVAL;
1527
1528 if (vma_size != PAGE_SIZE * (1 + nr_pages))
1529 return -EINVAL;
1530
1531 if (vma->vm_pgoff != 0)
1532 return -EINVAL;
1533
1534 mutex_lock(&counter->mmap_mutex);
1535 if (atomic_inc_not_zero(&counter->mmap_count)) {
1536 if (nr_pages != counter->data->nr_pages)
1537 ret = -EINVAL;
1538 goto unlock;
1539 }
1540
1541 extra = nr_pages /* + 1 only account the data pages */;
1542 extra -= sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1543 if (extra < 0)
1544 extra = 0;
1545
1546 locked = vma->vm_mm->locked_vm + extra;
1547
1548 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1549 lock_limit >>= PAGE_SHIFT;
1550
1551 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1552 ret = -EPERM;
1553 goto unlock;
1554 }
1555
1556 WARN_ON(counter->data);
1557 ret = perf_mmap_data_alloc(counter, nr_pages);
1558 if (ret)
1559 goto unlock;
1560
1561 atomic_set(&counter->mmap_count, 1);
1562 vma->vm_mm->locked_vm += extra;
1563 counter->data->nr_locked = extra;
1564 unlock:
1565 mutex_unlock(&counter->mmap_mutex);
1566
1567 vma->vm_flags &= ~VM_MAYWRITE;
1568 vma->vm_flags |= VM_RESERVED;
1569 vma->vm_ops = &perf_mmap_vmops;
1570
1571 return ret;
1572 }
1573
1574 static int perf_fasync(int fd, struct file *filp, int on)
1575 {
1576 struct perf_counter *counter = filp->private_data;
1577 struct inode *inode = filp->f_path.dentry->d_inode;
1578 int retval;
1579
1580 mutex_lock(&inode->i_mutex);
1581 retval = fasync_helper(fd, filp, on, &counter->fasync);
1582 mutex_unlock(&inode->i_mutex);
1583
1584 if (retval < 0)
1585 return retval;
1586
1587 return 0;
1588 }
1589
1590 static const struct file_operations perf_fops = {
1591 .release = perf_release,
1592 .read = perf_read,
1593 .poll = perf_poll,
1594 .unlocked_ioctl = perf_ioctl,
1595 .compat_ioctl = perf_ioctl,
1596 .mmap = perf_mmap,
1597 .fasync = perf_fasync,
1598 };
1599
1600 /*
1601 * Perf counter wakeup
1602 *
1603 * If there's data, ensure we set the poll() state and publish everything
1604 * to user-space before waking everybody up.
1605 */
1606
1607 void perf_counter_wakeup(struct perf_counter *counter)
1608 {
1609 wake_up_all(&counter->waitq);
1610
1611 if (counter->pending_kill) {
1612 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1613 counter->pending_kill = 0;
1614 }
1615 }
1616
1617 /*
1618 * Pending wakeups
1619 *
1620 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1621 *
1622 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1623 * single linked list and use cmpxchg() to add entries lockless.
1624 */
1625
1626 static void perf_pending_counter(struct perf_pending_entry *entry)
1627 {
1628 struct perf_counter *counter = container_of(entry,
1629 struct perf_counter, pending);
1630
1631 if (counter->pending_disable) {
1632 counter->pending_disable = 0;
1633 perf_counter_disable(counter);
1634 }
1635
1636 if (counter->pending_wakeup) {
1637 counter->pending_wakeup = 0;
1638 perf_counter_wakeup(counter);
1639 }
1640 }
1641
1642 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1643
1644 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1645 PENDING_TAIL,
1646 };
1647
1648 static void perf_pending_queue(struct perf_pending_entry *entry,
1649 void (*func)(struct perf_pending_entry *))
1650 {
1651 struct perf_pending_entry **head;
1652
1653 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1654 return;
1655
1656 entry->func = func;
1657
1658 head = &get_cpu_var(perf_pending_head);
1659
1660 do {
1661 entry->next = *head;
1662 } while (cmpxchg(head, entry->next, entry) != entry->next);
1663
1664 set_perf_counter_pending();
1665
1666 put_cpu_var(perf_pending_head);
1667 }
1668
1669 static int __perf_pending_run(void)
1670 {
1671 struct perf_pending_entry *list;
1672 int nr = 0;
1673
1674 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1675 while (list != PENDING_TAIL) {
1676 void (*func)(struct perf_pending_entry *);
1677 struct perf_pending_entry *entry = list;
1678
1679 list = list->next;
1680
1681 func = entry->func;
1682 entry->next = NULL;
1683 /*
1684 * Ensure we observe the unqueue before we issue the wakeup,
1685 * so that we won't be waiting forever.
1686 * -- see perf_not_pending().
1687 */
1688 smp_wmb();
1689
1690 func(entry);
1691 nr++;
1692 }
1693
1694 return nr;
1695 }
1696
1697 static inline int perf_not_pending(struct perf_counter *counter)
1698 {
1699 /*
1700 * If we flush on whatever cpu we run, there is a chance we don't
1701 * need to wait.
1702 */
1703 get_cpu();
1704 __perf_pending_run();
1705 put_cpu();
1706
1707 /*
1708 * Ensure we see the proper queue state before going to sleep
1709 * so that we do not miss the wakeup. -- see perf_pending_handle()
1710 */
1711 smp_rmb();
1712 return counter->pending.next == NULL;
1713 }
1714
1715 static void perf_pending_sync(struct perf_counter *counter)
1716 {
1717 wait_event(counter->waitq, perf_not_pending(counter));
1718 }
1719
1720 void perf_counter_do_pending(void)
1721 {
1722 __perf_pending_run();
1723 }
1724
1725 /*
1726 * Callchain support -- arch specific
1727 */
1728
1729 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1730 {
1731 return NULL;
1732 }
1733
1734 /*
1735 * Output
1736 */
1737
1738 struct perf_output_handle {
1739 struct perf_counter *counter;
1740 struct perf_mmap_data *data;
1741 unsigned int offset;
1742 unsigned int head;
1743 int nmi;
1744 int overflow;
1745 int locked;
1746 unsigned long flags;
1747 };
1748
1749 static void perf_output_wakeup(struct perf_output_handle *handle)
1750 {
1751 atomic_set(&handle->data->poll, POLL_IN);
1752
1753 if (handle->nmi) {
1754 handle->counter->pending_wakeup = 1;
1755 perf_pending_queue(&handle->counter->pending,
1756 perf_pending_counter);
1757 } else
1758 perf_counter_wakeup(handle->counter);
1759 }
1760
1761 /*
1762 * Curious locking construct.
1763 *
1764 * We need to ensure a later event doesn't publish a head when a former
1765 * event isn't done writing. However since we need to deal with NMIs we
1766 * cannot fully serialize things.
1767 *
1768 * What we do is serialize between CPUs so we only have to deal with NMI
1769 * nesting on a single CPU.
1770 *
1771 * We only publish the head (and generate a wakeup) when the outer-most
1772 * event completes.
1773 */
1774 static void perf_output_lock(struct perf_output_handle *handle)
1775 {
1776 struct perf_mmap_data *data = handle->data;
1777 int cpu;
1778
1779 handle->locked = 0;
1780
1781 local_irq_save(handle->flags);
1782 cpu = smp_processor_id();
1783
1784 if (in_nmi() && atomic_read(&data->lock) == cpu)
1785 return;
1786
1787 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1788 cpu_relax();
1789
1790 handle->locked = 1;
1791 }
1792
1793 static void perf_output_unlock(struct perf_output_handle *handle)
1794 {
1795 struct perf_mmap_data *data = handle->data;
1796 int head, cpu;
1797
1798 data->done_head = data->head;
1799
1800 if (!handle->locked)
1801 goto out;
1802
1803 again:
1804 /*
1805 * The xchg implies a full barrier that ensures all writes are done
1806 * before we publish the new head, matched by a rmb() in userspace when
1807 * reading this position.
1808 */
1809 while ((head = atomic_xchg(&data->done_head, 0)))
1810 data->user_page->data_head = head;
1811
1812 /*
1813 * NMI can happen here, which means we can miss a done_head update.
1814 */
1815
1816 cpu = atomic_xchg(&data->lock, -1);
1817 WARN_ON_ONCE(cpu != smp_processor_id());
1818
1819 /*
1820 * Therefore we have to validate we did not indeed do so.
1821 */
1822 if (unlikely(atomic_read(&data->done_head))) {
1823 /*
1824 * Since we had it locked, we can lock it again.
1825 */
1826 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1827 cpu_relax();
1828
1829 goto again;
1830 }
1831
1832 if (atomic_xchg(&data->wakeup, 0))
1833 perf_output_wakeup(handle);
1834 out:
1835 local_irq_restore(handle->flags);
1836 }
1837
1838 static int perf_output_begin(struct perf_output_handle *handle,
1839 struct perf_counter *counter, unsigned int size,
1840 int nmi, int overflow)
1841 {
1842 struct perf_mmap_data *data;
1843 unsigned int offset, head;
1844
1845 /*
1846 * For inherited counters we send all the output towards the parent.
1847 */
1848 if (counter->parent)
1849 counter = counter->parent;
1850
1851 rcu_read_lock();
1852 data = rcu_dereference(counter->data);
1853 if (!data)
1854 goto out;
1855
1856 handle->data = data;
1857 handle->counter = counter;
1858 handle->nmi = nmi;
1859 handle->overflow = overflow;
1860
1861 if (!data->nr_pages)
1862 goto fail;
1863
1864 perf_output_lock(handle);
1865
1866 do {
1867 offset = head = atomic_read(&data->head);
1868 head += size;
1869 } while (atomic_cmpxchg(&data->head, offset, head) != offset);
1870
1871 handle->offset = offset;
1872 handle->head = head;
1873
1874 if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
1875 atomic_set(&data->wakeup, 1);
1876
1877 return 0;
1878
1879 fail:
1880 perf_output_wakeup(handle);
1881 out:
1882 rcu_read_unlock();
1883
1884 return -ENOSPC;
1885 }
1886
1887 static void perf_output_copy(struct perf_output_handle *handle,
1888 void *buf, unsigned int len)
1889 {
1890 unsigned int pages_mask;
1891 unsigned int offset;
1892 unsigned int size;
1893 void **pages;
1894
1895 offset = handle->offset;
1896 pages_mask = handle->data->nr_pages - 1;
1897 pages = handle->data->data_pages;
1898
1899 do {
1900 unsigned int page_offset;
1901 int nr;
1902
1903 nr = (offset >> PAGE_SHIFT) & pages_mask;
1904 page_offset = offset & (PAGE_SIZE - 1);
1905 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
1906
1907 memcpy(pages[nr] + page_offset, buf, size);
1908
1909 len -= size;
1910 buf += size;
1911 offset += size;
1912 } while (len);
1913
1914 handle->offset = offset;
1915
1916 WARN_ON_ONCE(handle->offset > handle->head);
1917 }
1918
1919 #define perf_output_put(handle, x) \
1920 perf_output_copy((handle), &(x), sizeof(x))
1921
1922 static void perf_output_end(struct perf_output_handle *handle)
1923 {
1924 struct perf_counter *counter = handle->counter;
1925 struct perf_mmap_data *data = handle->data;
1926
1927 int wakeup_events = counter->hw_event.wakeup_events;
1928
1929 if (handle->overflow && wakeup_events) {
1930 int events = atomic_inc_return(&data->events);
1931 if (events >= wakeup_events) {
1932 atomic_sub(wakeup_events, &data->events);
1933 atomic_set(&data->wakeup, 1);
1934 }
1935 }
1936
1937 perf_output_unlock(handle);
1938 rcu_read_unlock();
1939 }
1940
1941 static void perf_counter_output(struct perf_counter *counter,
1942 int nmi, struct pt_regs *regs, u64 addr)
1943 {
1944 int ret;
1945 u64 record_type = counter->hw_event.record_type;
1946 struct perf_output_handle handle;
1947 struct perf_event_header header;
1948 u64 ip;
1949 struct {
1950 u32 pid, tid;
1951 } tid_entry;
1952 struct {
1953 u64 event;
1954 u64 counter;
1955 } group_entry;
1956 struct perf_callchain_entry *callchain = NULL;
1957 int callchain_size = 0;
1958 u64 time;
1959
1960 header.type = 0;
1961 header.size = sizeof(header);
1962
1963 header.misc = PERF_EVENT_MISC_OVERFLOW;
1964 header.misc |= user_mode(regs) ?
1965 PERF_EVENT_MISC_USER : PERF_EVENT_MISC_KERNEL;
1966
1967 if (record_type & PERF_RECORD_IP) {
1968 ip = instruction_pointer(regs);
1969 header.type |= PERF_RECORD_IP;
1970 header.size += sizeof(ip);
1971 }
1972
1973 if (record_type & PERF_RECORD_TID) {
1974 /* namespace issues */
1975 tid_entry.pid = current->group_leader->pid;
1976 tid_entry.tid = current->pid;
1977
1978 header.type |= PERF_RECORD_TID;
1979 header.size += sizeof(tid_entry);
1980 }
1981
1982 if (record_type & PERF_RECORD_TIME) {
1983 /*
1984 * Maybe do better on x86 and provide cpu_clock_nmi()
1985 */
1986 time = sched_clock();
1987
1988 header.type |= PERF_RECORD_TIME;
1989 header.size += sizeof(u64);
1990 }
1991
1992 if (record_type & PERF_RECORD_ADDR) {
1993 header.type |= PERF_RECORD_ADDR;
1994 header.size += sizeof(u64);
1995 }
1996
1997 if (record_type & PERF_RECORD_GROUP) {
1998 header.type |= PERF_RECORD_GROUP;
1999 header.size += sizeof(u64) +
2000 counter->nr_siblings * sizeof(group_entry);
2001 }
2002
2003 if (record_type & PERF_RECORD_CALLCHAIN) {
2004 callchain = perf_callchain(regs);
2005
2006 if (callchain) {
2007 callchain_size = (1 + callchain->nr) * sizeof(u64);
2008
2009 header.type |= PERF_RECORD_CALLCHAIN;
2010 header.size += callchain_size;
2011 }
2012 }
2013
2014 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2015 if (ret)
2016 return;
2017
2018 perf_output_put(&handle, header);
2019
2020 if (record_type & PERF_RECORD_IP)
2021 perf_output_put(&handle, ip);
2022
2023 if (record_type & PERF_RECORD_TID)
2024 perf_output_put(&handle, tid_entry);
2025
2026 if (record_type & PERF_RECORD_TIME)
2027 perf_output_put(&handle, time);
2028
2029 if (record_type & PERF_RECORD_ADDR)
2030 perf_output_put(&handle, addr);
2031
2032 /*
2033 * XXX PERF_RECORD_GROUP vs inherited counters seems difficult.
2034 */
2035 if (record_type & PERF_RECORD_GROUP) {
2036 struct perf_counter *leader, *sub;
2037 u64 nr = counter->nr_siblings;
2038
2039 perf_output_put(&handle, nr);
2040
2041 leader = counter->group_leader;
2042 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2043 if (sub != counter)
2044 sub->pmu->read(sub);
2045
2046 group_entry.event = sub->hw_event.config;
2047 group_entry.counter = atomic64_read(&sub->count);
2048
2049 perf_output_put(&handle, group_entry);
2050 }
2051 }
2052
2053 if (callchain)
2054 perf_output_copy(&handle, callchain, callchain_size);
2055
2056 perf_output_end(&handle);
2057 }
2058
2059 /*
2060 * comm tracking
2061 */
2062
2063 struct perf_comm_event {
2064 struct task_struct *task;
2065 char *comm;
2066 int comm_size;
2067
2068 struct {
2069 struct perf_event_header header;
2070
2071 u32 pid;
2072 u32 tid;
2073 } event;
2074 };
2075
2076 static void perf_counter_comm_output(struct perf_counter *counter,
2077 struct perf_comm_event *comm_event)
2078 {
2079 struct perf_output_handle handle;
2080 int size = comm_event->event.header.size;
2081 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2082
2083 if (ret)
2084 return;
2085
2086 perf_output_put(&handle, comm_event->event);
2087 perf_output_copy(&handle, comm_event->comm,
2088 comm_event->comm_size);
2089 perf_output_end(&handle);
2090 }
2091
2092 static int perf_counter_comm_match(struct perf_counter *counter,
2093 struct perf_comm_event *comm_event)
2094 {
2095 if (counter->hw_event.comm &&
2096 comm_event->event.header.type == PERF_EVENT_COMM)
2097 return 1;
2098
2099 return 0;
2100 }
2101
2102 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2103 struct perf_comm_event *comm_event)
2104 {
2105 struct perf_counter *counter;
2106
2107 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2108 return;
2109
2110 rcu_read_lock();
2111 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2112 if (perf_counter_comm_match(counter, comm_event))
2113 perf_counter_comm_output(counter, comm_event);
2114 }
2115 rcu_read_unlock();
2116 }
2117
2118 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2119 {
2120 struct perf_cpu_context *cpuctx;
2121 unsigned int size;
2122 char *comm = comm_event->task->comm;
2123
2124 size = ALIGN(strlen(comm)+1, sizeof(u64));
2125
2126 comm_event->comm = comm;
2127 comm_event->comm_size = size;
2128
2129 comm_event->event.header.size = sizeof(comm_event->event) + size;
2130
2131 cpuctx = &get_cpu_var(perf_cpu_context);
2132 perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2133 put_cpu_var(perf_cpu_context);
2134
2135 perf_counter_comm_ctx(&current->perf_counter_ctx, comm_event);
2136 }
2137
2138 void perf_counter_comm(struct task_struct *task)
2139 {
2140 struct perf_comm_event comm_event;
2141
2142 if (!atomic_read(&nr_comm_tracking))
2143 return;
2144
2145 comm_event = (struct perf_comm_event){
2146 .task = task,
2147 .event = {
2148 .header = { .type = PERF_EVENT_COMM, },
2149 .pid = task->group_leader->pid,
2150 .tid = task->pid,
2151 },
2152 };
2153
2154 perf_counter_comm_event(&comm_event);
2155 }
2156
2157 /*
2158 * mmap tracking
2159 */
2160
2161 struct perf_mmap_event {
2162 struct file *file;
2163 char *file_name;
2164 int file_size;
2165
2166 struct {
2167 struct perf_event_header header;
2168
2169 u32 pid;
2170 u32 tid;
2171 u64 start;
2172 u64 len;
2173 u64 pgoff;
2174 } event;
2175 };
2176
2177 static void perf_counter_mmap_output(struct perf_counter *counter,
2178 struct perf_mmap_event *mmap_event)
2179 {
2180 struct perf_output_handle handle;
2181 int size = mmap_event->event.header.size;
2182 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2183
2184 if (ret)
2185 return;
2186
2187 perf_output_put(&handle, mmap_event->event);
2188 perf_output_copy(&handle, mmap_event->file_name,
2189 mmap_event->file_size);
2190 perf_output_end(&handle);
2191 }
2192
2193 static int perf_counter_mmap_match(struct perf_counter *counter,
2194 struct perf_mmap_event *mmap_event)
2195 {
2196 if (counter->hw_event.mmap &&
2197 mmap_event->event.header.type == PERF_EVENT_MMAP)
2198 return 1;
2199
2200 if (counter->hw_event.munmap &&
2201 mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2202 return 1;
2203
2204 return 0;
2205 }
2206
2207 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2208 struct perf_mmap_event *mmap_event)
2209 {
2210 struct perf_counter *counter;
2211
2212 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2213 return;
2214
2215 rcu_read_lock();
2216 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2217 if (perf_counter_mmap_match(counter, mmap_event))
2218 perf_counter_mmap_output(counter, mmap_event);
2219 }
2220 rcu_read_unlock();
2221 }
2222
2223 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2224 {
2225 struct perf_cpu_context *cpuctx;
2226 struct file *file = mmap_event->file;
2227 unsigned int size;
2228 char tmp[16];
2229 char *buf = NULL;
2230 char *name;
2231
2232 if (file) {
2233 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2234 if (!buf) {
2235 name = strncpy(tmp, "//enomem", sizeof(tmp));
2236 goto got_name;
2237 }
2238 name = d_path(&file->f_path, buf, PATH_MAX);
2239 if (IS_ERR(name)) {
2240 name = strncpy(tmp, "//toolong", sizeof(tmp));
2241 goto got_name;
2242 }
2243 } else {
2244 name = strncpy(tmp, "//anon", sizeof(tmp));
2245 goto got_name;
2246 }
2247
2248 got_name:
2249 size = ALIGN(strlen(name)+1, sizeof(u64));
2250
2251 mmap_event->file_name = name;
2252 mmap_event->file_size = size;
2253
2254 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2255
2256 cpuctx = &get_cpu_var(perf_cpu_context);
2257 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2258 put_cpu_var(perf_cpu_context);
2259
2260 perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);
2261
2262 kfree(buf);
2263 }
2264
2265 void perf_counter_mmap(unsigned long addr, unsigned long len,
2266 unsigned long pgoff, struct file *file)
2267 {
2268 struct perf_mmap_event mmap_event;
2269
2270 if (!atomic_read(&nr_mmap_tracking))
2271 return;
2272
2273 mmap_event = (struct perf_mmap_event){
2274 .file = file,
2275 .event = {
2276 .header = { .type = PERF_EVENT_MMAP, },
2277 .pid = current->group_leader->pid,
2278 .tid = current->pid,
2279 .start = addr,
2280 .len = len,
2281 .pgoff = pgoff,
2282 },
2283 };
2284
2285 perf_counter_mmap_event(&mmap_event);
2286 }
2287
2288 void perf_counter_munmap(unsigned long addr, unsigned long len,
2289 unsigned long pgoff, struct file *file)
2290 {
2291 struct perf_mmap_event mmap_event;
2292
2293 if (!atomic_read(&nr_munmap_tracking))
2294 return;
2295
2296 mmap_event = (struct perf_mmap_event){
2297 .file = file,
2298 .event = {
2299 .header = { .type = PERF_EVENT_MUNMAP, },
2300 .pid = current->group_leader->pid,
2301 .tid = current->pid,
2302 .start = addr,
2303 .len = len,
2304 .pgoff = pgoff,
2305 },
2306 };
2307
2308 perf_counter_mmap_event(&mmap_event);
2309 }
2310
2311 /*
2312 * Generic counter overflow handling.
2313 */
2314
2315 int perf_counter_overflow(struct perf_counter *counter,
2316 int nmi, struct pt_regs *regs, u64 addr)
2317 {
2318 int events = atomic_read(&counter->event_limit);
2319 int ret = 0;
2320
2321 /*
2322 * XXX event_limit might not quite work as expected on inherited
2323 * counters
2324 */
2325
2326 counter->pending_kill = POLL_IN;
2327 if (events && atomic_dec_and_test(&counter->event_limit)) {
2328 ret = 1;
2329 counter->pending_kill = POLL_HUP;
2330 if (nmi) {
2331 counter->pending_disable = 1;
2332 perf_pending_queue(&counter->pending,
2333 perf_pending_counter);
2334 } else
2335 perf_counter_disable(counter);
2336 }
2337
2338 perf_counter_output(counter, nmi, regs, addr);
2339 return ret;
2340 }
2341
2342 /*
2343 * Generic software counter infrastructure
2344 */
2345
2346 static void perf_swcounter_update(struct perf_counter *counter)
2347 {
2348 struct hw_perf_counter *hwc = &counter->hw;
2349 u64 prev, now;
2350 s64 delta;
2351
2352 again:
2353 prev = atomic64_read(&hwc->prev_count);
2354 now = atomic64_read(&hwc->count);
2355 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2356 goto again;
2357
2358 delta = now - prev;
2359
2360 atomic64_add(delta, &counter->count);
2361 atomic64_sub(delta, &hwc->period_left);
2362 }
2363
2364 static void perf_swcounter_set_period(struct perf_counter *counter)
2365 {
2366 struct hw_perf_counter *hwc = &counter->hw;
2367 s64 left = atomic64_read(&hwc->period_left);
2368 s64 period = hwc->irq_period;
2369
2370 if (unlikely(left <= -period)) {
2371 left = period;
2372 atomic64_set(&hwc->period_left, left);
2373 }
2374
2375 if (unlikely(left <= 0)) {
2376 left += period;
2377 atomic64_add(period, &hwc->period_left);
2378 }
2379
2380 atomic64_set(&hwc->prev_count, -left);
2381 atomic64_set(&hwc->count, -left);
2382 }
2383
2384 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2385 {
2386 enum hrtimer_restart ret = HRTIMER_RESTART;
2387 struct perf_counter *counter;
2388 struct pt_regs *regs;
2389
2390 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2391 counter->pmu->read(counter);
2392
2393 regs = get_irq_regs();
2394 /*
2395 * In case we exclude kernel IPs or are somehow not in interrupt
2396 * context, provide the next best thing, the user IP.
2397 */
2398 if ((counter->hw_event.exclude_kernel || !regs) &&
2399 !counter->hw_event.exclude_user)
2400 regs = task_pt_regs(current);
2401
2402 if (regs) {
2403 if (perf_counter_overflow(counter, 0, regs, 0))
2404 ret = HRTIMER_NORESTART;
2405 }
2406
2407 hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
2408
2409 return ret;
2410 }
2411
2412 static void perf_swcounter_overflow(struct perf_counter *counter,
2413 int nmi, struct pt_regs *regs, u64 addr)
2414 {
2415 perf_swcounter_update(counter);
2416 perf_swcounter_set_period(counter);
2417 if (perf_counter_overflow(counter, nmi, regs, addr))
2418 /* soft-disable the counter */
2419 ;
2420
2421 }
2422
2423 static int perf_swcounter_match(struct perf_counter *counter,
2424 enum perf_event_types type,
2425 u32 event, struct pt_regs *regs)
2426 {
2427 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2428 return 0;
2429
2430 if (perf_event_raw(&counter->hw_event))
2431 return 0;
2432
2433 if (perf_event_type(&counter->hw_event) != type)
2434 return 0;
2435
2436 if (perf_event_id(&counter->hw_event) != event)
2437 return 0;
2438
2439 if (counter->hw_event.exclude_user && user_mode(regs))
2440 return 0;
2441
2442 if (counter->hw_event.exclude_kernel && !user_mode(regs))
2443 return 0;
2444
2445 return 1;
2446 }
2447
2448 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2449 int nmi, struct pt_regs *regs, u64 addr)
2450 {
2451 int neg = atomic64_add_negative(nr, &counter->hw.count);
2452 if (counter->hw.irq_period && !neg)
2453 perf_swcounter_overflow(counter, nmi, regs, addr);
2454 }
2455
2456 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2457 enum perf_event_types type, u32 event,
2458 u64 nr, int nmi, struct pt_regs *regs,
2459 u64 addr)
2460 {
2461 struct perf_counter *counter;
2462
2463 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2464 return;
2465
2466 rcu_read_lock();
2467 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2468 if (perf_swcounter_match(counter, type, event, regs))
2469 perf_swcounter_add(counter, nr, nmi, regs, addr);
2470 }
2471 rcu_read_unlock();
2472 }
2473
2474 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2475 {
2476 if (in_nmi())
2477 return &cpuctx->recursion[3];
2478
2479 if (in_irq())
2480 return &cpuctx->recursion[2];
2481
2482 if (in_softirq())
2483 return &cpuctx->recursion[1];
2484
2485 return &cpuctx->recursion[0];
2486 }
2487
2488 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2489 u64 nr, int nmi, struct pt_regs *regs,
2490 u64 addr)
2491 {
2492 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2493 int *recursion = perf_swcounter_recursion_context(cpuctx);
2494
2495 if (*recursion)
2496 goto out;
2497
2498 (*recursion)++;
2499 barrier();
2500
2501 perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
2502 nr, nmi, regs, addr);
2503 if (cpuctx->task_ctx) {
2504 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2505 nr, nmi, regs, addr);
2506 }
2507
2508 barrier();
2509 (*recursion)--;
2510
2511 out:
2512 put_cpu_var(perf_cpu_context);
2513 }
2514
2515 void
2516 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2517 {
2518 __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2519 }
2520
2521 static void perf_swcounter_read(struct perf_counter *counter)
2522 {
2523 perf_swcounter_update(counter);
2524 }
2525
2526 static int perf_swcounter_enable(struct perf_counter *counter)
2527 {
2528 perf_swcounter_set_period(counter);
2529 return 0;
2530 }
2531
2532 static void perf_swcounter_disable(struct perf_counter *counter)
2533 {
2534 perf_swcounter_update(counter);
2535 }
2536
2537 static const struct pmu perf_ops_generic = {
2538 .enable = perf_swcounter_enable,
2539 .disable = perf_swcounter_disable,
2540 .read = perf_swcounter_read,
2541 };
2542
2543 /*
2544 * Software counter: cpu wall time clock
2545 */
2546
2547 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2548 {
2549 int cpu = raw_smp_processor_id();
2550 s64 prev;
2551 u64 now;
2552
2553 now = cpu_clock(cpu);
2554 prev = atomic64_read(&counter->hw.prev_count);
2555 atomic64_set(&counter->hw.prev_count, now);
2556 atomic64_add(now - prev, &counter->count);
2557 }
2558
2559 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2560 {
2561 struct hw_perf_counter *hwc = &counter->hw;
2562 int cpu = raw_smp_processor_id();
2563
2564 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2565 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2566 hwc->hrtimer.function = perf_swcounter_hrtimer;
2567 if (hwc->irq_period) {
2568 __hrtimer_start_range_ns(&hwc->hrtimer,
2569 ns_to_ktime(hwc->irq_period), 0,
2570 HRTIMER_MODE_REL, 0);
2571 }
2572
2573 return 0;
2574 }
2575
2576 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2577 {
2578 hrtimer_cancel(&counter->hw.hrtimer);
2579 cpu_clock_perf_counter_update(counter);
2580 }
2581
2582 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2583 {
2584 cpu_clock_perf_counter_update(counter);
2585 }
2586
2587 static const struct pmu perf_ops_cpu_clock = {
2588 .enable = cpu_clock_perf_counter_enable,
2589 .disable = cpu_clock_perf_counter_disable,
2590 .read = cpu_clock_perf_counter_read,
2591 };
2592
2593 /*
2594 * Software counter: task time clock
2595 */
2596
2597 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2598 {
2599 u64 prev;
2600 s64 delta;
2601
2602 prev = atomic64_xchg(&counter->hw.prev_count, now);
2603 delta = now - prev;
2604 atomic64_add(delta, &counter->count);
2605 }
2606
2607 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2608 {
2609 struct hw_perf_counter *hwc = &counter->hw;
2610 u64 now;
2611
2612 now = counter->ctx->time;
2613
2614 atomic64_set(&hwc->prev_count, now);
2615 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2616 hwc->hrtimer.function = perf_swcounter_hrtimer;
2617 if (hwc->irq_period) {
2618 __hrtimer_start_range_ns(&hwc->hrtimer,
2619 ns_to_ktime(hwc->irq_period), 0,
2620 HRTIMER_MODE_REL, 0);
2621 }
2622
2623 return 0;
2624 }
2625
2626 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2627 {
2628 hrtimer_cancel(&counter->hw.hrtimer);
2629 task_clock_perf_counter_update(counter, counter->ctx->time);
2630
2631 }
2632
2633 static void task_clock_perf_counter_read(struct perf_counter *counter)
2634 {
2635 u64 time;
2636
2637 if (!in_nmi()) {
2638 update_context_time(counter->ctx);
2639 time = counter->ctx->time;
2640 } else {
2641 u64 now = perf_clock();
2642 u64 delta = now - counter->ctx->timestamp;
2643 time = counter->ctx->time + delta;
2644 }
2645
2646 task_clock_perf_counter_update(counter, time);
2647 }
2648
2649 static const struct pmu perf_ops_task_clock = {
2650 .enable = task_clock_perf_counter_enable,
2651 .disable = task_clock_perf_counter_disable,
2652 .read = task_clock_perf_counter_read,
2653 };
2654
2655 /*
2656 * Software counter: cpu migrations
2657 */
2658
2659 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2660 {
2661 struct task_struct *curr = counter->ctx->task;
2662
2663 if (curr)
2664 return curr->se.nr_migrations;
2665 return cpu_nr_migrations(smp_processor_id());
2666 }
2667
2668 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2669 {
2670 u64 prev, now;
2671 s64 delta;
2672
2673 prev = atomic64_read(&counter->hw.prev_count);
2674 now = get_cpu_migrations(counter);
2675
2676 atomic64_set(&counter->hw.prev_count, now);
2677
2678 delta = now - prev;
2679
2680 atomic64_add(delta, &counter->count);
2681 }
2682
2683 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2684 {
2685 cpu_migrations_perf_counter_update(counter);
2686 }
2687
2688 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2689 {
2690 if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2691 atomic64_set(&counter->hw.prev_count,
2692 get_cpu_migrations(counter));
2693 return 0;
2694 }
2695
2696 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2697 {
2698 cpu_migrations_perf_counter_update(counter);
2699 }
2700
2701 static const struct pmu perf_ops_cpu_migrations = {
2702 .enable = cpu_migrations_perf_counter_enable,
2703 .disable = cpu_migrations_perf_counter_disable,
2704 .read = cpu_migrations_perf_counter_read,
2705 };
2706
2707 #ifdef CONFIG_EVENT_PROFILE
2708 void perf_tpcounter_event(int event_id)
2709 {
2710 struct pt_regs *regs = get_irq_regs();
2711
2712 if (!regs)
2713 regs = task_pt_regs(current);
2714
2715 __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
2716 }
2717 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
2718
2719 extern int ftrace_profile_enable(int);
2720 extern void ftrace_profile_disable(int);
2721
2722 static void tp_perf_counter_destroy(struct perf_counter *counter)
2723 {
2724 ftrace_profile_disable(perf_event_id(&counter->hw_event));
2725 }
2726
2727 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2728 {
2729 int event_id = perf_event_id(&counter->hw_event);
2730 int ret;
2731
2732 ret = ftrace_profile_enable(event_id);
2733 if (ret)
2734 return NULL;
2735
2736 counter->destroy = tp_perf_counter_destroy;
2737 counter->hw.irq_period = counter->hw_event.irq_period;
2738
2739 return &perf_ops_generic;
2740 }
2741 #else
2742 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2743 {
2744 return NULL;
2745 }
2746 #endif
2747
2748 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
2749 {
2750 struct perf_counter_hw_event *hw_event = &counter->hw_event;
2751 const struct pmu *pmu = NULL;
2752 struct hw_perf_counter *hwc = &counter->hw;
2753
2754 /*
2755 * Software counters (currently) can't in general distinguish
2756 * between user, kernel and hypervisor events.
2757 * However, context switches and cpu migrations are considered
2758 * to be kernel events, and page faults are never hypervisor
2759 * events.
2760 */
2761 switch (perf_event_id(&counter->hw_event)) {
2762 case PERF_COUNT_CPU_CLOCK:
2763 pmu = &perf_ops_cpu_clock;
2764
2765 if (hw_event->irq_period && hw_event->irq_period < 10000)
2766 hw_event->irq_period = 10000;
2767 break;
2768 case PERF_COUNT_TASK_CLOCK:
2769 /*
2770 * If the user instantiates this as a per-cpu counter,
2771 * use the cpu_clock counter instead.
2772 */
2773 if (counter->ctx->task)
2774 pmu = &perf_ops_task_clock;
2775 else
2776 pmu = &perf_ops_cpu_clock;
2777
2778 if (hw_event->irq_period && hw_event->irq_period < 10000)
2779 hw_event->irq_period = 10000;
2780 break;
2781 case PERF_COUNT_PAGE_FAULTS:
2782 case PERF_COUNT_PAGE_FAULTS_MIN:
2783 case PERF_COUNT_PAGE_FAULTS_MAJ:
2784 case PERF_COUNT_CONTEXT_SWITCHES:
2785 pmu = &perf_ops_generic;
2786 break;
2787 case PERF_COUNT_CPU_MIGRATIONS:
2788 if (!counter->hw_event.exclude_kernel)
2789 pmu = &perf_ops_cpu_migrations;
2790 break;
2791 }
2792
2793 if (pmu)
2794 hwc->irq_period = hw_event->irq_period;
2795
2796 return pmu;
2797 }
2798
2799 /*
2800 * Allocate and initialize a counter structure
2801 */
2802 static struct perf_counter *
2803 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
2804 int cpu,
2805 struct perf_counter_context *ctx,
2806 struct perf_counter *group_leader,
2807 gfp_t gfpflags)
2808 {
2809 const struct pmu *pmu;
2810 struct perf_counter *counter;
2811 long err;
2812
2813 counter = kzalloc(sizeof(*counter), gfpflags);
2814 if (!counter)
2815 return ERR_PTR(-ENOMEM);
2816
2817 /*
2818 * Single counters are their own group leaders, with an
2819 * empty sibling list:
2820 */
2821 if (!group_leader)
2822 group_leader = counter;
2823
2824 mutex_init(&counter->mutex);
2825 INIT_LIST_HEAD(&counter->list_entry);
2826 INIT_LIST_HEAD(&counter->event_entry);
2827 INIT_LIST_HEAD(&counter->sibling_list);
2828 init_waitqueue_head(&counter->waitq);
2829
2830 mutex_init(&counter->mmap_mutex);
2831
2832 INIT_LIST_HEAD(&counter->child_list);
2833
2834 counter->cpu = cpu;
2835 counter->hw_event = *hw_event;
2836 counter->group_leader = group_leader;
2837 counter->pmu = NULL;
2838 counter->ctx = ctx;
2839
2840 counter->state = PERF_COUNTER_STATE_INACTIVE;
2841 if (hw_event->disabled)
2842 counter->state = PERF_COUNTER_STATE_OFF;
2843
2844 pmu = NULL;
2845
2846 /*
2847 * we currently do not support PERF_RECORD_GROUP on inherited counters
2848 */
2849 if (hw_event->inherit && (hw_event->record_type & PERF_RECORD_GROUP))
2850 goto done;
2851
2852 if (perf_event_raw(hw_event)) {
2853 pmu = hw_perf_counter_init(counter);
2854 goto done;
2855 }
2856
2857 switch (perf_event_type(hw_event)) {
2858 case PERF_TYPE_HARDWARE:
2859 pmu = hw_perf_counter_init(counter);
2860 break;
2861
2862 case PERF_TYPE_SOFTWARE:
2863 pmu = sw_perf_counter_init(counter);
2864 break;
2865
2866 case PERF_TYPE_TRACEPOINT:
2867 pmu = tp_perf_counter_init(counter);
2868 break;
2869 }
2870 done:
2871 err = 0;
2872 if (!pmu)
2873 err = -EINVAL;
2874 else if (IS_ERR(pmu))
2875 err = PTR_ERR(pmu);
2876
2877 if (err) {
2878 kfree(counter);
2879 return ERR_PTR(err);
2880 }
2881
2882 counter->pmu = pmu;
2883
2884 atomic_inc(&nr_counters);
2885 if (counter->hw_event.mmap)
2886 atomic_inc(&nr_mmap_tracking);
2887 if (counter->hw_event.munmap)
2888 atomic_inc(&nr_munmap_tracking);
2889 if (counter->hw_event.comm)
2890 atomic_inc(&nr_comm_tracking);
2891
2892 return counter;
2893 }
2894
2895 /**
2896 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
2897 *
2898 * @hw_event_uptr: event type attributes for monitoring/sampling
2899 * @pid: target pid
2900 * @cpu: target cpu
2901 * @group_fd: group leader counter fd
2902 */
2903 SYSCALL_DEFINE5(perf_counter_open,
2904 const struct perf_counter_hw_event __user *, hw_event_uptr,
2905 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
2906 {
2907 struct perf_counter *counter, *group_leader;
2908 struct perf_counter_hw_event hw_event;
2909 struct perf_counter_context *ctx;
2910 struct file *counter_file = NULL;
2911 struct file *group_file = NULL;
2912 int fput_needed = 0;
2913 int fput_needed2 = 0;
2914 int ret;
2915
2916 /* for future expandability... */
2917 if (flags)
2918 return -EINVAL;
2919
2920 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2921 return -EFAULT;
2922
2923 /*
2924 * Get the target context (task or percpu):
2925 */
2926 ctx = find_get_context(pid, cpu);
2927 if (IS_ERR(ctx))
2928 return PTR_ERR(ctx);
2929
2930 /*
2931 * Look up the group leader (we will attach this counter to it):
2932 */
2933 group_leader = NULL;
2934 if (group_fd != -1) {
2935 ret = -EINVAL;
2936 group_file = fget_light(group_fd, &fput_needed);
2937 if (!group_file)
2938 goto err_put_context;
2939 if (group_file->f_op != &perf_fops)
2940 goto err_put_context;
2941
2942 group_leader = group_file->private_data;
2943 /*
2944 * Do not allow a recursive hierarchy (this new sibling
2945 * becoming part of another group-sibling):
2946 */
2947 if (group_leader->group_leader != group_leader)
2948 goto err_put_context;
2949 /*
2950 * Do not allow to attach to a group in a different
2951 * task or CPU context:
2952 */
2953 if (group_leader->ctx != ctx)
2954 goto err_put_context;
2955 /*
2956 * Only a group leader can be exclusive or pinned
2957 */
2958 if (hw_event.exclusive || hw_event.pinned)
2959 goto err_put_context;
2960 }
2961
2962 counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
2963 GFP_KERNEL);
2964 ret = PTR_ERR(counter);
2965 if (IS_ERR(counter))
2966 goto err_put_context;
2967
2968 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
2969 if (ret < 0)
2970 goto err_free_put_context;
2971
2972 counter_file = fget_light(ret, &fput_needed2);
2973 if (!counter_file)
2974 goto err_free_put_context;
2975
2976 counter->filp = counter_file;
2977 mutex_lock(&ctx->mutex);
2978 perf_install_in_context(ctx, counter, cpu);
2979 mutex_unlock(&ctx->mutex);
2980
2981 fput_light(counter_file, fput_needed2);
2982
2983 out_fput:
2984 fput_light(group_file, fput_needed);
2985
2986 return ret;
2987
2988 err_free_put_context:
2989 kfree(counter);
2990
2991 err_put_context:
2992 put_context(ctx);
2993
2994 goto out_fput;
2995 }
2996
2997 /*
2998 * Initialize the perf_counter context in a task_struct:
2999 */
3000 static void
3001 __perf_counter_init_context(struct perf_counter_context *ctx,
3002 struct task_struct *task)
3003 {
3004 memset(ctx, 0, sizeof(*ctx));
3005 spin_lock_init(&ctx->lock);
3006 mutex_init(&ctx->mutex);
3007 INIT_LIST_HEAD(&ctx->counter_list);
3008 INIT_LIST_HEAD(&ctx->event_list);
3009 ctx->task = task;
3010 }
3011
3012 /*
3013 * inherit a counter from parent task to child task:
3014 */
3015 static struct perf_counter *
3016 inherit_counter(struct perf_counter *parent_counter,
3017 struct task_struct *parent,
3018 struct perf_counter_context *parent_ctx,
3019 struct task_struct *child,
3020 struct perf_counter *group_leader,
3021 struct perf_counter_context *child_ctx)
3022 {
3023 struct perf_counter *child_counter;
3024
3025 /*
3026 * Instead of creating recursive hierarchies of counters,
3027 * we link inherited counters back to the original parent,
3028 * which has a filp for sure, which we use as the reference
3029 * count:
3030 */
3031 if (parent_counter->parent)
3032 parent_counter = parent_counter->parent;
3033
3034 child_counter = perf_counter_alloc(&parent_counter->hw_event,
3035 parent_counter->cpu, child_ctx,
3036 group_leader, GFP_KERNEL);
3037 if (IS_ERR(child_counter))
3038 return child_counter;
3039
3040 /*
3041 * Link it up in the child's context:
3042 */
3043 child_counter->task = child;
3044 add_counter_to_ctx(child_counter, child_ctx);
3045
3046 child_counter->parent = parent_counter;
3047 /*
3048 * inherit into child's child as well:
3049 */
3050 child_counter->hw_event.inherit = 1;
3051
3052 /*
3053 * Get a reference to the parent filp - we will fput it
3054 * when the child counter exits. This is safe to do because
3055 * we are in the parent and we know that the filp still
3056 * exists and has a nonzero count:
3057 */
3058 atomic_long_inc(&parent_counter->filp->f_count);
3059
3060 /*
3061 * Link this into the parent counter's child list
3062 */
3063 mutex_lock(&parent_counter->mutex);
3064 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3065
3066 /*
3067 * Make the child state follow the state of the parent counter,
3068 * not its hw_event.disabled bit. We hold the parent's mutex,
3069 * so we won't race with perf_counter_{en,dis}able_family.
3070 */
3071 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3072 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3073 else
3074 child_counter->state = PERF_COUNTER_STATE_OFF;
3075
3076 mutex_unlock(&parent_counter->mutex);
3077
3078 return child_counter;
3079 }
3080
3081 static int inherit_group(struct perf_counter *parent_counter,
3082 struct task_struct *parent,
3083 struct perf_counter_context *parent_ctx,
3084 struct task_struct *child,
3085 struct perf_counter_context *child_ctx)
3086 {
3087 struct perf_counter *leader;
3088 struct perf_counter *sub;
3089 struct perf_counter *child_ctr;
3090
3091 leader = inherit_counter(parent_counter, parent, parent_ctx,
3092 child, NULL, child_ctx);
3093 if (IS_ERR(leader))
3094 return PTR_ERR(leader);
3095 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3096 child_ctr = inherit_counter(sub, parent, parent_ctx,
3097 child, leader, child_ctx);
3098 if (IS_ERR(child_ctr))
3099 return PTR_ERR(child_ctr);
3100 }
3101 return 0;
3102 }
3103
3104 static void sync_child_counter(struct perf_counter *child_counter,
3105 struct perf_counter *parent_counter)
3106 {
3107 u64 parent_val, child_val;
3108
3109 parent_val = atomic64_read(&parent_counter->count);
3110 child_val = atomic64_read(&child_counter->count);
3111
3112 /*
3113 * Add back the child's count to the parent's count:
3114 */
3115 atomic64_add(child_val, &parent_counter->count);
3116 atomic64_add(child_counter->total_time_enabled,
3117 &parent_counter->child_total_time_enabled);
3118 atomic64_add(child_counter->total_time_running,
3119 &parent_counter->child_total_time_running);
3120
3121 /*
3122 * Remove this counter from the parent's list
3123 */
3124 mutex_lock(&parent_counter->mutex);
3125 list_del_init(&child_counter->child_list);
3126 mutex_unlock(&parent_counter->mutex);
3127
3128 /*
3129 * Release the parent counter, if this was the last
3130 * reference to it.
3131 */
3132 fput(parent_counter->filp);
3133 }
3134
3135 static void
3136 __perf_counter_exit_task(struct task_struct *child,
3137 struct perf_counter *child_counter,
3138 struct perf_counter_context *child_ctx)
3139 {
3140 struct perf_counter *parent_counter;
3141 struct perf_counter *sub, *tmp;
3142
3143 /*
3144 * If we do not self-reap then we have to wait for the
3145 * child task to unschedule (it will happen for sure),
3146 * so that its counter is at its final count. (This
3147 * condition triggers rarely - child tasks usually get
3148 * off their CPU before the parent has a chance to
3149 * get this far into the reaping action)
3150 */
3151 if (child != current) {
3152 wait_task_inactive(child, 0);
3153 list_del_init(&child_counter->list_entry);
3154 update_counter_times(child_counter);
3155 } else {
3156 struct perf_cpu_context *cpuctx;
3157 unsigned long flags;
3158 u64 perf_flags;
3159
3160 /*
3161 * Disable and unlink this counter.
3162 *
3163 * Be careful about zapping the list - IRQ/NMI context
3164 * could still be processing it:
3165 */
3166 local_irq_save(flags);
3167 perf_flags = hw_perf_save_disable();
3168
3169 cpuctx = &__get_cpu_var(perf_cpu_context);
3170
3171 group_sched_out(child_counter, cpuctx, child_ctx);
3172 update_counter_times(child_counter);
3173
3174 list_del_init(&child_counter->list_entry);
3175
3176 child_ctx->nr_counters--;
3177
3178 hw_perf_restore(perf_flags);
3179 local_irq_restore(flags);
3180 }
3181
3182 parent_counter = child_counter->parent;
3183 /*
3184 * It can happen that parent exits first, and has counters
3185 * that are still around due to the child reference. These
3186 * counters need to be zapped - but otherwise linger.
3187 */
3188 if (parent_counter) {
3189 sync_child_counter(child_counter, parent_counter);
3190 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
3191 list_entry) {
3192 if (sub->parent) {
3193 sync_child_counter(sub, sub->parent);
3194 free_counter(sub);
3195 }
3196 }
3197 free_counter(child_counter);
3198 }
3199 }
3200
3201 /*
3202 * When a child task exits, feed back counter values to parent counters.
3203 *
3204 * Note: we may be running in child context, but the PID is not hashed
3205 * anymore so new counters will not be added.
3206 */
3207 void perf_counter_exit_task(struct task_struct *child)
3208 {
3209 struct perf_counter *child_counter, *tmp;
3210 struct perf_counter_context *child_ctx;
3211
3212 child_ctx = &child->perf_counter_ctx;
3213
3214 if (likely(!child_ctx->nr_counters))
3215 return;
3216
3217 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3218 list_entry)
3219 __perf_counter_exit_task(child, child_counter, child_ctx);
3220 }
3221
3222 /*
3223 * Initialize the perf_counter context in task_struct
3224 */
3225 void perf_counter_init_task(struct task_struct *child)
3226 {
3227 struct perf_counter_context *child_ctx, *parent_ctx;
3228 struct perf_counter *counter;
3229 struct task_struct *parent = current;
3230
3231 child_ctx = &child->perf_counter_ctx;
3232 parent_ctx = &parent->perf_counter_ctx;
3233
3234 __perf_counter_init_context(child_ctx, child);
3235
3236 /*
3237 * This is executed from the parent task context, so inherit
3238 * counters that have been marked for cloning:
3239 */
3240
3241 if (likely(!parent_ctx->nr_counters))
3242 return;
3243
3244 /*
3245 * Lock the parent list. No need to lock the child - not PID
3246 * hashed yet and not running, so nobody can access it.
3247 */
3248 mutex_lock(&parent_ctx->mutex);
3249
3250 /*
3251 * We dont have to disable NMIs - we are only looking at
3252 * the list, not manipulating it:
3253 */
3254 list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
3255 if (!counter->hw_event.inherit)
3256 continue;
3257
3258 if (inherit_group(counter, parent,
3259 parent_ctx, child, child_ctx))
3260 break;
3261 }
3262
3263 mutex_unlock(&parent_ctx->mutex);
3264 }
3265
3266 static void __cpuinit perf_counter_init_cpu(int cpu)
3267 {
3268 struct perf_cpu_context *cpuctx;
3269
3270 cpuctx = &per_cpu(perf_cpu_context, cpu);
3271 __perf_counter_init_context(&cpuctx->ctx, NULL);
3272
3273 spin_lock(&perf_resource_lock);
3274 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3275 spin_unlock(&perf_resource_lock);
3276
3277 hw_perf_counter_setup(cpu);
3278 }
3279
3280 #ifdef CONFIG_HOTPLUG_CPU
3281 static void __perf_counter_exit_cpu(void *info)
3282 {
3283 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3284 struct perf_counter_context *ctx = &cpuctx->ctx;
3285 struct perf_counter *counter, *tmp;
3286
3287 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3288 __perf_counter_remove_from_context(counter);
3289 }
3290 static void perf_counter_exit_cpu(int cpu)
3291 {
3292 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3293 struct perf_counter_context *ctx = &cpuctx->ctx;
3294
3295 mutex_lock(&ctx->mutex);
3296 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3297 mutex_unlock(&ctx->mutex);
3298 }
3299 #else
3300 static inline void perf_counter_exit_cpu(int cpu) { }
3301 #endif
3302
3303 static int __cpuinit
3304 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3305 {
3306 unsigned int cpu = (long)hcpu;
3307
3308 switch (action) {
3309
3310 case CPU_UP_PREPARE:
3311 case CPU_UP_PREPARE_FROZEN:
3312 perf_counter_init_cpu(cpu);
3313 break;
3314
3315 case CPU_DOWN_PREPARE:
3316 case CPU_DOWN_PREPARE_FROZEN:
3317 perf_counter_exit_cpu(cpu);
3318 break;
3319
3320 default:
3321 break;
3322 }
3323
3324 return NOTIFY_OK;
3325 }
3326
3327 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3328 .notifier_call = perf_cpu_notify,
3329 };
3330
3331 void __init perf_counter_init(void)
3332 {
3333 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3334 (void *)(long)smp_processor_id());
3335 register_cpu_notifier(&perf_cpu_nb);
3336 }
3337
3338 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3339 {
3340 return sprintf(buf, "%d\n", perf_reserved_percpu);
3341 }
3342
3343 static ssize_t
3344 perf_set_reserve_percpu(struct sysdev_class *class,
3345 const char *buf,
3346 size_t count)
3347 {
3348 struct perf_cpu_context *cpuctx;
3349 unsigned long val;
3350 int err, cpu, mpt;
3351
3352 err = strict_strtoul(buf, 10, &val);
3353 if (err)
3354 return err;
3355 if (val > perf_max_counters)
3356 return -EINVAL;
3357
3358 spin_lock(&perf_resource_lock);
3359 perf_reserved_percpu = val;
3360 for_each_online_cpu(cpu) {
3361 cpuctx = &per_cpu(perf_cpu_context, cpu);
3362 spin_lock_irq(&cpuctx->ctx.lock);
3363 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3364 perf_max_counters - perf_reserved_percpu);
3365 cpuctx->max_pertask = mpt;
3366 spin_unlock_irq(&cpuctx->ctx.lock);
3367 }
3368 spin_unlock(&perf_resource_lock);
3369
3370 return count;
3371 }
3372
3373 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3374 {
3375 return sprintf(buf, "%d\n", perf_overcommit);
3376 }
3377
3378 static ssize_t
3379 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3380 {
3381 unsigned long val;
3382 int err;
3383
3384 err = strict_strtoul(buf, 10, &val);
3385 if (err)
3386 return err;
3387 if (val > 1)
3388 return -EINVAL;
3389
3390 spin_lock(&perf_resource_lock);
3391 perf_overcommit = val;
3392 spin_unlock(&perf_resource_lock);
3393
3394 return count;
3395 }
3396
3397 static SYSDEV_CLASS_ATTR(
3398 reserve_percpu,
3399 0644,
3400 perf_show_reserve_percpu,
3401 perf_set_reserve_percpu
3402 );
3403
3404 static SYSDEV_CLASS_ATTR(
3405 overcommit,
3406 0644,
3407 perf_show_overcommit,
3408 perf_set_overcommit
3409 );
3410
3411 static struct attribute *perfclass_attrs[] = {
3412 &attr_reserve_percpu.attr,
3413 &attr_overcommit.attr,
3414 NULL
3415 };
3416
3417 static struct attribute_group perfclass_attr_group = {
3418 .attrs = perfclass_attrs,
3419 .name = "perf_counters",
3420 };
3421
3422 static int __init perf_counter_sysfs_init(void)
3423 {
3424 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3425 &perfclass_attr_group);
3426 }
3427 device_initcall(perf_counter_sysfs_init);
This page took 0.12629 seconds and 6 git commands to generate.