perf_counter: Fix cpuctx->task_ctx races
[deliverable/linux.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/ptrace.h>
20 #include <linux/percpu.h>
21 #include <linux/vmstat.h>
22 #include <linux/hardirq.h>
23 #include <linux/rculist.h>
24 #include <linux/uaccess.h>
25 #include <linux/syscalls.h>
26 #include <linux/anon_inodes.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/perf_counter.h>
29 #include <linux/dcache.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34 * Each CPU has a list of per CPU counters:
35 */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_tracking __read_mostly;
44 static atomic_t nr_munmap_tracking __read_mostly;
45 static atomic_t nr_comm_tracking __read_mostly;
46
47 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
49 int sysctl_perf_counter_limit __read_mostly = 100000; /* max NMIs per second */
50
51 /*
52 * Lock for (sysadmin-configurable) counter reservations:
53 */
54 static DEFINE_SPINLOCK(perf_resource_lock);
55
56 /*
57 * Architecture provided APIs - weak aliases:
58 */
59 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
60 {
61 return NULL;
62 }
63
64 void __weak hw_perf_disable(void) { barrier(); }
65 void __weak hw_perf_enable(void) { barrier(); }
66
67 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
68 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
69 struct perf_cpu_context *cpuctx,
70 struct perf_counter_context *ctx, int cpu)
71 {
72 return 0;
73 }
74
75 void __weak perf_counter_print_debug(void) { }
76
77 static DEFINE_PER_CPU(int, disable_count);
78
79 void __perf_disable(void)
80 {
81 __get_cpu_var(disable_count)++;
82 }
83
84 bool __perf_enable(void)
85 {
86 return !--__get_cpu_var(disable_count);
87 }
88
89 void perf_disable(void)
90 {
91 __perf_disable();
92 hw_perf_disable();
93 }
94
95 void perf_enable(void)
96 {
97 if (__perf_enable())
98 hw_perf_enable();
99 }
100
101 static void get_ctx(struct perf_counter_context *ctx)
102 {
103 atomic_inc(&ctx->refcount);
104 }
105
106 static void free_ctx(struct rcu_head *head)
107 {
108 struct perf_counter_context *ctx;
109
110 ctx = container_of(head, struct perf_counter_context, rcu_head);
111 kfree(ctx);
112 }
113
114 static void put_ctx(struct perf_counter_context *ctx)
115 {
116 if (atomic_dec_and_test(&ctx->refcount)) {
117 if (ctx->parent_ctx)
118 put_ctx(ctx->parent_ctx);
119 if (ctx->task)
120 put_task_struct(ctx->task);
121 call_rcu(&ctx->rcu_head, free_ctx);
122 }
123 }
124
125 /*
126 * Add a counter from the lists for its context.
127 * Must be called with ctx->mutex and ctx->lock held.
128 */
129 static void
130 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
131 {
132 struct perf_counter *group_leader = counter->group_leader;
133
134 /*
135 * Depending on whether it is a standalone or sibling counter,
136 * add it straight to the context's counter list, or to the group
137 * leader's sibling list:
138 */
139 if (group_leader == counter)
140 list_add_tail(&counter->list_entry, &ctx->counter_list);
141 else {
142 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
143 group_leader->nr_siblings++;
144 }
145
146 list_add_rcu(&counter->event_entry, &ctx->event_list);
147 ctx->nr_counters++;
148 }
149
150 /*
151 * Remove a counter from the lists for its context.
152 * Must be called with ctx->mutex and ctx->lock held.
153 */
154 static void
155 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
156 {
157 struct perf_counter *sibling, *tmp;
158
159 if (list_empty(&counter->list_entry))
160 return;
161 ctx->nr_counters--;
162
163 list_del_init(&counter->list_entry);
164 list_del_rcu(&counter->event_entry);
165
166 if (counter->group_leader != counter)
167 counter->group_leader->nr_siblings--;
168
169 /*
170 * If this was a group counter with sibling counters then
171 * upgrade the siblings to singleton counters by adding them
172 * to the context list directly:
173 */
174 list_for_each_entry_safe(sibling, tmp,
175 &counter->sibling_list, list_entry) {
176
177 list_move_tail(&sibling->list_entry, &ctx->counter_list);
178 sibling->group_leader = sibling;
179 }
180 }
181
182 static void
183 counter_sched_out(struct perf_counter *counter,
184 struct perf_cpu_context *cpuctx,
185 struct perf_counter_context *ctx)
186 {
187 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
188 return;
189
190 counter->state = PERF_COUNTER_STATE_INACTIVE;
191 counter->tstamp_stopped = ctx->time;
192 counter->pmu->disable(counter);
193 counter->oncpu = -1;
194
195 if (!is_software_counter(counter))
196 cpuctx->active_oncpu--;
197 ctx->nr_active--;
198 if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
199 cpuctx->exclusive = 0;
200 }
201
202 static void
203 group_sched_out(struct perf_counter *group_counter,
204 struct perf_cpu_context *cpuctx,
205 struct perf_counter_context *ctx)
206 {
207 struct perf_counter *counter;
208
209 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
210 return;
211
212 counter_sched_out(group_counter, cpuctx, ctx);
213
214 /*
215 * Schedule out siblings (if any):
216 */
217 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
218 counter_sched_out(counter, cpuctx, ctx);
219
220 if (group_counter->hw_event.exclusive)
221 cpuctx->exclusive = 0;
222 }
223
224 /*
225 * Cross CPU call to remove a performance counter
226 *
227 * We disable the counter on the hardware level first. After that we
228 * remove it from the context list.
229 */
230 static void __perf_counter_remove_from_context(void *info)
231 {
232 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
233 struct perf_counter *counter = info;
234 struct perf_counter_context *ctx = counter->ctx;
235 unsigned long flags;
236
237 local_irq_save(flags);
238 /*
239 * If this is a task context, we need to check whether it is
240 * the current task context of this cpu. If not it has been
241 * scheduled out before the smp call arrived.
242 */
243 if (ctx->task && cpuctx->task_ctx != ctx) {
244 local_irq_restore(flags);
245 return;
246 }
247
248 spin_lock(&ctx->lock);
249 /*
250 * Protect the list operation against NMI by disabling the
251 * counters on a global level.
252 */
253 perf_disable();
254
255 counter_sched_out(counter, cpuctx, ctx);
256
257 list_del_counter(counter, ctx);
258
259 if (!ctx->task) {
260 /*
261 * Allow more per task counters with respect to the
262 * reservation:
263 */
264 cpuctx->max_pertask =
265 min(perf_max_counters - ctx->nr_counters,
266 perf_max_counters - perf_reserved_percpu);
267 }
268
269 perf_enable();
270 spin_unlock_irqrestore(&ctx->lock, flags);
271 }
272
273
274 /*
275 * Remove the counter from a task's (or a CPU's) list of counters.
276 *
277 * Must be called with ctx->mutex held.
278 *
279 * CPU counters are removed with a smp call. For task counters we only
280 * call when the task is on a CPU.
281 *
282 * If counter->ctx is a cloned context, callers must make sure that
283 * every task struct that counter->ctx->task could possibly point to
284 * remains valid. This is OK when called from perf_release since
285 * that only calls us on the top-level context, which can't be a clone.
286 * When called from perf_counter_exit_task, it's OK because the
287 * context has been detached from its task.
288 */
289 static void perf_counter_remove_from_context(struct perf_counter *counter)
290 {
291 struct perf_counter_context *ctx = counter->ctx;
292 struct task_struct *task = ctx->task;
293
294 if (!task) {
295 /*
296 * Per cpu counters are removed via an smp call and
297 * the removal is always sucessful.
298 */
299 smp_call_function_single(counter->cpu,
300 __perf_counter_remove_from_context,
301 counter, 1);
302 return;
303 }
304
305 retry:
306 task_oncpu_function_call(task, __perf_counter_remove_from_context,
307 counter);
308
309 spin_lock_irq(&ctx->lock);
310 /*
311 * If the context is active we need to retry the smp call.
312 */
313 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
314 spin_unlock_irq(&ctx->lock);
315 goto retry;
316 }
317
318 /*
319 * The lock prevents that this context is scheduled in so we
320 * can remove the counter safely, if the call above did not
321 * succeed.
322 */
323 if (!list_empty(&counter->list_entry)) {
324 list_del_counter(counter, ctx);
325 }
326 spin_unlock_irq(&ctx->lock);
327 }
328
329 static inline u64 perf_clock(void)
330 {
331 return cpu_clock(smp_processor_id());
332 }
333
334 /*
335 * Update the record of the current time in a context.
336 */
337 static void update_context_time(struct perf_counter_context *ctx)
338 {
339 u64 now = perf_clock();
340
341 ctx->time += now - ctx->timestamp;
342 ctx->timestamp = now;
343 }
344
345 /*
346 * Update the total_time_enabled and total_time_running fields for a counter.
347 */
348 static void update_counter_times(struct perf_counter *counter)
349 {
350 struct perf_counter_context *ctx = counter->ctx;
351 u64 run_end;
352
353 if (counter->state < PERF_COUNTER_STATE_INACTIVE)
354 return;
355
356 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
357
358 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
359 run_end = counter->tstamp_stopped;
360 else
361 run_end = ctx->time;
362
363 counter->total_time_running = run_end - counter->tstamp_running;
364 }
365
366 /*
367 * Update total_time_enabled and total_time_running for all counters in a group.
368 */
369 static void update_group_times(struct perf_counter *leader)
370 {
371 struct perf_counter *counter;
372
373 update_counter_times(leader);
374 list_for_each_entry(counter, &leader->sibling_list, list_entry)
375 update_counter_times(counter);
376 }
377
378 /*
379 * Cross CPU call to disable a performance counter
380 */
381 static void __perf_counter_disable(void *info)
382 {
383 struct perf_counter *counter = info;
384 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
385 struct perf_counter_context *ctx = counter->ctx;
386 unsigned long flags;
387
388 local_irq_save(flags);
389 /*
390 * If this is a per-task counter, need to check whether this
391 * counter's task is the current task on this cpu.
392 */
393 if (ctx->task && cpuctx->task_ctx != ctx) {
394 local_irq_restore(flags);
395 return;
396 }
397
398 spin_lock(&ctx->lock);
399
400 /*
401 * If the counter is on, turn it off.
402 * If it is in error state, leave it in error state.
403 */
404 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
405 update_context_time(ctx);
406 update_counter_times(counter);
407 if (counter == counter->group_leader)
408 group_sched_out(counter, cpuctx, ctx);
409 else
410 counter_sched_out(counter, cpuctx, ctx);
411 counter->state = PERF_COUNTER_STATE_OFF;
412 }
413
414 spin_unlock_irqrestore(&ctx->lock, flags);
415 }
416
417 /*
418 * Disable a counter.
419 *
420 * If counter->ctx is a cloned context, callers must make sure that
421 * every task struct that counter->ctx->task could possibly point to
422 * remains valid. This condition is satisifed when called through
423 * perf_counter_for_each_child or perf_counter_for_each because they
424 * hold the top-level counter's child_mutex, so any descendant that
425 * goes to exit will block in sync_child_counter.
426 * When called from perf_pending_counter it's OK because counter->ctx
427 * is the current context on this CPU and preemption is disabled,
428 * hence we can't get into perf_counter_task_sched_out for this context.
429 */
430 static void perf_counter_disable(struct perf_counter *counter)
431 {
432 struct perf_counter_context *ctx = counter->ctx;
433 struct task_struct *task = ctx->task;
434
435 if (!task) {
436 /*
437 * Disable the counter on the cpu that it's on
438 */
439 smp_call_function_single(counter->cpu, __perf_counter_disable,
440 counter, 1);
441 return;
442 }
443
444 retry:
445 task_oncpu_function_call(task, __perf_counter_disable, counter);
446
447 spin_lock_irq(&ctx->lock);
448 /*
449 * If the counter is still active, we need to retry the cross-call.
450 */
451 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
452 spin_unlock_irq(&ctx->lock);
453 goto retry;
454 }
455
456 /*
457 * Since we have the lock this context can't be scheduled
458 * in, so we can change the state safely.
459 */
460 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
461 update_counter_times(counter);
462 counter->state = PERF_COUNTER_STATE_OFF;
463 }
464
465 spin_unlock_irq(&ctx->lock);
466 }
467
468 static int
469 counter_sched_in(struct perf_counter *counter,
470 struct perf_cpu_context *cpuctx,
471 struct perf_counter_context *ctx,
472 int cpu)
473 {
474 if (counter->state <= PERF_COUNTER_STATE_OFF)
475 return 0;
476
477 counter->state = PERF_COUNTER_STATE_ACTIVE;
478 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
479 /*
480 * The new state must be visible before we turn it on in the hardware:
481 */
482 smp_wmb();
483
484 if (counter->pmu->enable(counter)) {
485 counter->state = PERF_COUNTER_STATE_INACTIVE;
486 counter->oncpu = -1;
487 return -EAGAIN;
488 }
489
490 counter->tstamp_running += ctx->time - counter->tstamp_stopped;
491
492 if (!is_software_counter(counter))
493 cpuctx->active_oncpu++;
494 ctx->nr_active++;
495
496 if (counter->hw_event.exclusive)
497 cpuctx->exclusive = 1;
498
499 return 0;
500 }
501
502 static int
503 group_sched_in(struct perf_counter *group_counter,
504 struct perf_cpu_context *cpuctx,
505 struct perf_counter_context *ctx,
506 int cpu)
507 {
508 struct perf_counter *counter, *partial_group;
509 int ret;
510
511 if (group_counter->state == PERF_COUNTER_STATE_OFF)
512 return 0;
513
514 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
515 if (ret)
516 return ret < 0 ? ret : 0;
517
518 group_counter->prev_state = group_counter->state;
519 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
520 return -EAGAIN;
521
522 /*
523 * Schedule in siblings as one group (if any):
524 */
525 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
526 counter->prev_state = counter->state;
527 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
528 partial_group = counter;
529 goto group_error;
530 }
531 }
532
533 return 0;
534
535 group_error:
536 /*
537 * Groups can be scheduled in as one unit only, so undo any
538 * partial group before returning:
539 */
540 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
541 if (counter == partial_group)
542 break;
543 counter_sched_out(counter, cpuctx, ctx);
544 }
545 counter_sched_out(group_counter, cpuctx, ctx);
546
547 return -EAGAIN;
548 }
549
550 /*
551 * Return 1 for a group consisting entirely of software counters,
552 * 0 if the group contains any hardware counters.
553 */
554 static int is_software_only_group(struct perf_counter *leader)
555 {
556 struct perf_counter *counter;
557
558 if (!is_software_counter(leader))
559 return 0;
560
561 list_for_each_entry(counter, &leader->sibling_list, list_entry)
562 if (!is_software_counter(counter))
563 return 0;
564
565 return 1;
566 }
567
568 /*
569 * Work out whether we can put this counter group on the CPU now.
570 */
571 static int group_can_go_on(struct perf_counter *counter,
572 struct perf_cpu_context *cpuctx,
573 int can_add_hw)
574 {
575 /*
576 * Groups consisting entirely of software counters can always go on.
577 */
578 if (is_software_only_group(counter))
579 return 1;
580 /*
581 * If an exclusive group is already on, no other hardware
582 * counters can go on.
583 */
584 if (cpuctx->exclusive)
585 return 0;
586 /*
587 * If this group is exclusive and there are already
588 * counters on the CPU, it can't go on.
589 */
590 if (counter->hw_event.exclusive && cpuctx->active_oncpu)
591 return 0;
592 /*
593 * Otherwise, try to add it if all previous groups were able
594 * to go on.
595 */
596 return can_add_hw;
597 }
598
599 static void add_counter_to_ctx(struct perf_counter *counter,
600 struct perf_counter_context *ctx)
601 {
602 list_add_counter(counter, ctx);
603 counter->prev_state = PERF_COUNTER_STATE_OFF;
604 counter->tstamp_enabled = ctx->time;
605 counter->tstamp_running = ctx->time;
606 counter->tstamp_stopped = ctx->time;
607 }
608
609 /*
610 * Cross CPU call to install and enable a performance counter
611 *
612 * Must be called with ctx->mutex held
613 */
614 static void __perf_install_in_context(void *info)
615 {
616 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
617 struct perf_counter *counter = info;
618 struct perf_counter_context *ctx = counter->ctx;
619 struct perf_counter *leader = counter->group_leader;
620 int cpu = smp_processor_id();
621 unsigned long flags;
622 int err;
623
624 local_irq_save(flags);
625 /*
626 * If this is a task context, we need to check whether it is
627 * the current task context of this cpu. If not it has been
628 * scheduled out before the smp call arrived.
629 * Or possibly this is the right context but it isn't
630 * on this cpu because it had no counters.
631 */
632 if (ctx->task && cpuctx->task_ctx != ctx) {
633 if (cpuctx->task_ctx || ctx->task != current) {
634 local_irq_restore(flags);
635 return;
636 }
637 cpuctx->task_ctx = ctx;
638 }
639
640 spin_lock(&ctx->lock);
641 ctx->is_active = 1;
642 update_context_time(ctx);
643
644 /*
645 * Protect the list operation against NMI by disabling the
646 * counters on a global level. NOP for non NMI based counters.
647 */
648 perf_disable();
649
650 add_counter_to_ctx(counter, ctx);
651
652 /*
653 * Don't put the counter on if it is disabled or if
654 * it is in a group and the group isn't on.
655 */
656 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
657 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
658 goto unlock;
659
660 /*
661 * An exclusive counter can't go on if there are already active
662 * hardware counters, and no hardware counter can go on if there
663 * is already an exclusive counter on.
664 */
665 if (!group_can_go_on(counter, cpuctx, 1))
666 err = -EEXIST;
667 else
668 err = counter_sched_in(counter, cpuctx, ctx, cpu);
669
670 if (err) {
671 /*
672 * This counter couldn't go on. If it is in a group
673 * then we have to pull the whole group off.
674 * If the counter group is pinned then put it in error state.
675 */
676 if (leader != counter)
677 group_sched_out(leader, cpuctx, ctx);
678 if (leader->hw_event.pinned) {
679 update_group_times(leader);
680 leader->state = PERF_COUNTER_STATE_ERROR;
681 }
682 }
683
684 if (!err && !ctx->task && cpuctx->max_pertask)
685 cpuctx->max_pertask--;
686
687 unlock:
688 perf_enable();
689
690 spin_unlock_irqrestore(&ctx->lock, flags);
691 }
692
693 /*
694 * Attach a performance counter to a context
695 *
696 * First we add the counter to the list with the hardware enable bit
697 * in counter->hw_config cleared.
698 *
699 * If the counter is attached to a task which is on a CPU we use a smp
700 * call to enable it in the task context. The task might have been
701 * scheduled away, but we check this in the smp call again.
702 *
703 * Must be called with ctx->mutex held.
704 */
705 static void
706 perf_install_in_context(struct perf_counter_context *ctx,
707 struct perf_counter *counter,
708 int cpu)
709 {
710 struct task_struct *task = ctx->task;
711
712 if (!task) {
713 /*
714 * Per cpu counters are installed via an smp call and
715 * the install is always sucessful.
716 */
717 smp_call_function_single(cpu, __perf_install_in_context,
718 counter, 1);
719 return;
720 }
721
722 retry:
723 task_oncpu_function_call(task, __perf_install_in_context,
724 counter);
725
726 spin_lock_irq(&ctx->lock);
727 /*
728 * we need to retry the smp call.
729 */
730 if (ctx->is_active && list_empty(&counter->list_entry)) {
731 spin_unlock_irq(&ctx->lock);
732 goto retry;
733 }
734
735 /*
736 * The lock prevents that this context is scheduled in so we
737 * can add the counter safely, if it the call above did not
738 * succeed.
739 */
740 if (list_empty(&counter->list_entry))
741 add_counter_to_ctx(counter, ctx);
742 spin_unlock_irq(&ctx->lock);
743 }
744
745 /*
746 * Cross CPU call to enable a performance counter
747 */
748 static void __perf_counter_enable(void *info)
749 {
750 struct perf_counter *counter = info;
751 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
752 struct perf_counter_context *ctx = counter->ctx;
753 struct perf_counter *leader = counter->group_leader;
754 unsigned long flags;
755 int err;
756
757 local_irq_save(flags);
758 /*
759 * If this is a per-task counter, need to check whether this
760 * counter's task is the current task on this cpu.
761 */
762 if (ctx->task && cpuctx->task_ctx != ctx) {
763 if (cpuctx->task_ctx || ctx->task != current) {
764 local_irq_restore(flags);
765 return;
766 }
767 cpuctx->task_ctx = ctx;
768 }
769
770 spin_lock(&ctx->lock);
771 ctx->is_active = 1;
772 update_context_time(ctx);
773
774 counter->prev_state = counter->state;
775 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
776 goto unlock;
777 counter->state = PERF_COUNTER_STATE_INACTIVE;
778 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
779
780 /*
781 * If the counter is in a group and isn't the group leader,
782 * then don't put it on unless the group is on.
783 */
784 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
785 goto unlock;
786
787 if (!group_can_go_on(counter, cpuctx, 1)) {
788 err = -EEXIST;
789 } else {
790 perf_disable();
791 if (counter == leader)
792 err = group_sched_in(counter, cpuctx, ctx,
793 smp_processor_id());
794 else
795 err = counter_sched_in(counter, cpuctx, ctx,
796 smp_processor_id());
797 perf_enable();
798 }
799
800 if (err) {
801 /*
802 * If this counter can't go on and it's part of a
803 * group, then the whole group has to come off.
804 */
805 if (leader != counter)
806 group_sched_out(leader, cpuctx, ctx);
807 if (leader->hw_event.pinned) {
808 update_group_times(leader);
809 leader->state = PERF_COUNTER_STATE_ERROR;
810 }
811 }
812
813 unlock:
814 spin_unlock_irqrestore(&ctx->lock, flags);
815 }
816
817 /*
818 * Enable a counter.
819 *
820 * If counter->ctx is a cloned context, callers must make sure that
821 * every task struct that counter->ctx->task could possibly point to
822 * remains valid. This condition is satisfied when called through
823 * perf_counter_for_each_child or perf_counter_for_each as described
824 * for perf_counter_disable.
825 */
826 static void perf_counter_enable(struct perf_counter *counter)
827 {
828 struct perf_counter_context *ctx = counter->ctx;
829 struct task_struct *task = ctx->task;
830
831 if (!task) {
832 /*
833 * Enable the counter on the cpu that it's on
834 */
835 smp_call_function_single(counter->cpu, __perf_counter_enable,
836 counter, 1);
837 return;
838 }
839
840 spin_lock_irq(&ctx->lock);
841 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
842 goto out;
843
844 /*
845 * If the counter is in error state, clear that first.
846 * That way, if we see the counter in error state below, we
847 * know that it has gone back into error state, as distinct
848 * from the task having been scheduled away before the
849 * cross-call arrived.
850 */
851 if (counter->state == PERF_COUNTER_STATE_ERROR)
852 counter->state = PERF_COUNTER_STATE_OFF;
853
854 retry:
855 spin_unlock_irq(&ctx->lock);
856 task_oncpu_function_call(task, __perf_counter_enable, counter);
857
858 spin_lock_irq(&ctx->lock);
859
860 /*
861 * If the context is active and the counter is still off,
862 * we need to retry the cross-call.
863 */
864 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
865 goto retry;
866
867 /*
868 * Since we have the lock this context can't be scheduled
869 * in, so we can change the state safely.
870 */
871 if (counter->state == PERF_COUNTER_STATE_OFF) {
872 counter->state = PERF_COUNTER_STATE_INACTIVE;
873 counter->tstamp_enabled =
874 ctx->time - counter->total_time_enabled;
875 }
876 out:
877 spin_unlock_irq(&ctx->lock);
878 }
879
880 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
881 {
882 /*
883 * not supported on inherited counters
884 */
885 if (counter->hw_event.inherit)
886 return -EINVAL;
887
888 atomic_add(refresh, &counter->event_limit);
889 perf_counter_enable(counter);
890
891 return 0;
892 }
893
894 void __perf_counter_sched_out(struct perf_counter_context *ctx,
895 struct perf_cpu_context *cpuctx)
896 {
897 struct perf_counter *counter;
898
899 spin_lock(&ctx->lock);
900 ctx->is_active = 0;
901 if (likely(!ctx->nr_counters))
902 goto out;
903 update_context_time(ctx);
904
905 perf_disable();
906 if (ctx->nr_active) {
907 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
908 if (counter != counter->group_leader)
909 counter_sched_out(counter, cpuctx, ctx);
910 else
911 group_sched_out(counter, cpuctx, ctx);
912 }
913 }
914 perf_enable();
915 out:
916 spin_unlock(&ctx->lock);
917 }
918
919 /*
920 * Test whether two contexts are equivalent, i.e. whether they
921 * have both been cloned from the same version of the same context
922 * and they both have the same number of enabled counters.
923 * If the number of enabled counters is the same, then the set
924 * of enabled counters should be the same, because these are both
925 * inherited contexts, therefore we can't access individual counters
926 * in them directly with an fd; we can only enable/disable all
927 * counters via prctl, or enable/disable all counters in a family
928 * via ioctl, which will have the same effect on both contexts.
929 */
930 static int context_equiv(struct perf_counter_context *ctx1,
931 struct perf_counter_context *ctx2)
932 {
933 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
934 && ctx1->parent_gen == ctx2->parent_gen
935 && ctx1->parent_gen != ~0ull;
936 }
937
938 /*
939 * Called from scheduler to remove the counters of the current task,
940 * with interrupts disabled.
941 *
942 * We stop each counter and update the counter value in counter->count.
943 *
944 * This does not protect us against NMI, but disable()
945 * sets the disabled bit in the control field of counter _before_
946 * accessing the counter control register. If a NMI hits, then it will
947 * not restart the counter.
948 */
949 void perf_counter_task_sched_out(struct task_struct *task,
950 struct task_struct *next, int cpu)
951 {
952 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
953 struct perf_counter_context *ctx = task->perf_counter_ctxp;
954 struct perf_counter_context *next_ctx;
955 struct perf_counter_context *parent;
956 struct pt_regs *regs;
957 int do_switch = 1;
958
959 regs = task_pt_regs(task);
960 perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
961
962 if (likely(!ctx || !cpuctx->task_ctx))
963 return;
964
965 update_context_time(ctx);
966
967 rcu_read_lock();
968 parent = rcu_dereference(ctx->parent_ctx);
969 next_ctx = next->perf_counter_ctxp;
970 if (parent && next_ctx &&
971 rcu_dereference(next_ctx->parent_ctx) == parent) {
972 /*
973 * Looks like the two contexts are clones, so we might be
974 * able to optimize the context switch. We lock both
975 * contexts and check that they are clones under the
976 * lock (including re-checking that neither has been
977 * uncloned in the meantime). It doesn't matter which
978 * order we take the locks because no other cpu could
979 * be trying to lock both of these tasks.
980 */
981 spin_lock(&ctx->lock);
982 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
983 if (context_equiv(ctx, next_ctx)) {
984 task->perf_counter_ctxp = next_ctx;
985 next->perf_counter_ctxp = ctx;
986 ctx->task = next;
987 next_ctx->task = task;
988 do_switch = 0;
989 }
990 spin_unlock(&next_ctx->lock);
991 spin_unlock(&ctx->lock);
992 }
993 rcu_read_unlock();
994
995 if (do_switch) {
996 __perf_counter_sched_out(ctx, cpuctx);
997 cpuctx->task_ctx = NULL;
998 }
999 }
1000
1001 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
1002 {
1003 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1004
1005 if (!cpuctx->task_ctx)
1006 return;
1007 __perf_counter_sched_out(ctx, cpuctx);
1008 cpuctx->task_ctx = NULL;
1009 }
1010
1011 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1012 {
1013 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1014 }
1015
1016 static void
1017 __perf_counter_sched_in(struct perf_counter_context *ctx,
1018 struct perf_cpu_context *cpuctx, int cpu)
1019 {
1020 struct perf_counter *counter;
1021 int can_add_hw = 1;
1022
1023 spin_lock(&ctx->lock);
1024 ctx->is_active = 1;
1025 if (likely(!ctx->nr_counters))
1026 goto out;
1027
1028 ctx->timestamp = perf_clock();
1029
1030 perf_disable();
1031
1032 /*
1033 * First go through the list and put on any pinned groups
1034 * in order to give them the best chance of going on.
1035 */
1036 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1037 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1038 !counter->hw_event.pinned)
1039 continue;
1040 if (counter->cpu != -1 && counter->cpu != cpu)
1041 continue;
1042
1043 if (counter != counter->group_leader)
1044 counter_sched_in(counter, cpuctx, ctx, cpu);
1045 else {
1046 if (group_can_go_on(counter, cpuctx, 1))
1047 group_sched_in(counter, cpuctx, ctx, cpu);
1048 }
1049
1050 /*
1051 * If this pinned group hasn't been scheduled,
1052 * put it in error state.
1053 */
1054 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1055 update_group_times(counter);
1056 counter->state = PERF_COUNTER_STATE_ERROR;
1057 }
1058 }
1059
1060 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1061 /*
1062 * Ignore counters in OFF or ERROR state, and
1063 * ignore pinned counters since we did them already.
1064 */
1065 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1066 counter->hw_event.pinned)
1067 continue;
1068
1069 /*
1070 * Listen to the 'cpu' scheduling filter constraint
1071 * of counters:
1072 */
1073 if (counter->cpu != -1 && counter->cpu != cpu)
1074 continue;
1075
1076 if (counter != counter->group_leader) {
1077 if (counter_sched_in(counter, cpuctx, ctx, cpu))
1078 can_add_hw = 0;
1079 } else {
1080 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1081 if (group_sched_in(counter, cpuctx, ctx, cpu))
1082 can_add_hw = 0;
1083 }
1084 }
1085 }
1086 perf_enable();
1087 out:
1088 spin_unlock(&ctx->lock);
1089 }
1090
1091 /*
1092 * Called from scheduler to add the counters of the current task
1093 * with interrupts disabled.
1094 *
1095 * We restore the counter value and then enable it.
1096 *
1097 * This does not protect us against NMI, but enable()
1098 * sets the enabled bit in the control field of counter _before_
1099 * accessing the counter control register. If a NMI hits, then it will
1100 * keep the counter running.
1101 */
1102 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1103 {
1104 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1105 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1106
1107 if (likely(!ctx))
1108 return;
1109 if (cpuctx->task_ctx == ctx)
1110 return;
1111 __perf_counter_sched_in(ctx, cpuctx, cpu);
1112 cpuctx->task_ctx = ctx;
1113 }
1114
1115 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1116 {
1117 struct perf_counter_context *ctx = &cpuctx->ctx;
1118
1119 __perf_counter_sched_in(ctx, cpuctx, cpu);
1120 }
1121
1122 #define MAX_INTERRUPTS (~0ULL)
1123
1124 static void perf_log_throttle(struct perf_counter *counter, int enable);
1125 static void perf_log_period(struct perf_counter *counter, u64 period);
1126
1127 static void perf_adjust_freq(struct perf_counter_context *ctx)
1128 {
1129 struct perf_counter *counter;
1130 u64 interrupts, irq_period;
1131 u64 events, period;
1132 s64 delta;
1133
1134 spin_lock(&ctx->lock);
1135 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1136 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1137 continue;
1138
1139 interrupts = counter->hw.interrupts;
1140 counter->hw.interrupts = 0;
1141
1142 if (interrupts == MAX_INTERRUPTS) {
1143 perf_log_throttle(counter, 1);
1144 counter->pmu->unthrottle(counter);
1145 interrupts = 2*sysctl_perf_counter_limit/HZ;
1146 }
1147
1148 if (!counter->hw_event.freq || !counter->hw_event.irq_freq)
1149 continue;
1150
1151 events = HZ * interrupts * counter->hw.irq_period;
1152 period = div64_u64(events, counter->hw_event.irq_freq);
1153
1154 delta = (s64)(1 + period - counter->hw.irq_period);
1155 delta >>= 1;
1156
1157 irq_period = counter->hw.irq_period + delta;
1158
1159 if (!irq_period)
1160 irq_period = 1;
1161
1162 perf_log_period(counter, irq_period);
1163
1164 counter->hw.irq_period = irq_period;
1165 }
1166 spin_unlock(&ctx->lock);
1167 }
1168
1169 /*
1170 * Round-robin a context's counters:
1171 */
1172 static void rotate_ctx(struct perf_counter_context *ctx)
1173 {
1174 struct perf_counter *counter;
1175
1176 if (!ctx->nr_counters)
1177 return;
1178
1179 spin_lock(&ctx->lock);
1180 /*
1181 * Rotate the first entry last (works just fine for group counters too):
1182 */
1183 perf_disable();
1184 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1185 list_move_tail(&counter->list_entry, &ctx->counter_list);
1186 break;
1187 }
1188 perf_enable();
1189
1190 spin_unlock(&ctx->lock);
1191 }
1192
1193 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1194 {
1195 struct perf_cpu_context *cpuctx;
1196 struct perf_counter_context *ctx;
1197
1198 if (!atomic_read(&nr_counters))
1199 return;
1200
1201 cpuctx = &per_cpu(perf_cpu_context, cpu);
1202 ctx = curr->perf_counter_ctxp;
1203
1204 perf_adjust_freq(&cpuctx->ctx);
1205 if (ctx)
1206 perf_adjust_freq(ctx);
1207
1208 perf_counter_cpu_sched_out(cpuctx);
1209 if (ctx)
1210 __perf_counter_task_sched_out(ctx);
1211
1212 rotate_ctx(&cpuctx->ctx);
1213 if (ctx)
1214 rotate_ctx(ctx);
1215
1216 perf_counter_cpu_sched_in(cpuctx, cpu);
1217 if (ctx)
1218 perf_counter_task_sched_in(curr, cpu);
1219 }
1220
1221 /*
1222 * Cross CPU call to read the hardware counter
1223 */
1224 static void __read(void *info)
1225 {
1226 struct perf_counter *counter = info;
1227 struct perf_counter_context *ctx = counter->ctx;
1228 unsigned long flags;
1229
1230 local_irq_save(flags);
1231 if (ctx->is_active)
1232 update_context_time(ctx);
1233 counter->pmu->read(counter);
1234 update_counter_times(counter);
1235 local_irq_restore(flags);
1236 }
1237
1238 static u64 perf_counter_read(struct perf_counter *counter)
1239 {
1240 /*
1241 * If counter is enabled and currently active on a CPU, update the
1242 * value in the counter structure:
1243 */
1244 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1245 smp_call_function_single(counter->oncpu,
1246 __read, counter, 1);
1247 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1248 update_counter_times(counter);
1249 }
1250
1251 return atomic64_read(&counter->count);
1252 }
1253
1254 /*
1255 * Initialize the perf_counter context in a task_struct:
1256 */
1257 static void
1258 __perf_counter_init_context(struct perf_counter_context *ctx,
1259 struct task_struct *task)
1260 {
1261 memset(ctx, 0, sizeof(*ctx));
1262 spin_lock_init(&ctx->lock);
1263 mutex_init(&ctx->mutex);
1264 INIT_LIST_HEAD(&ctx->counter_list);
1265 INIT_LIST_HEAD(&ctx->event_list);
1266 atomic_set(&ctx->refcount, 1);
1267 ctx->task = task;
1268 }
1269
1270 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1271 {
1272 struct perf_cpu_context *cpuctx;
1273 struct perf_counter_context *ctx;
1274 struct perf_counter_context *parent_ctx;
1275 struct task_struct *task;
1276 int err;
1277
1278 /*
1279 * If cpu is not a wildcard then this is a percpu counter:
1280 */
1281 if (cpu != -1) {
1282 /* Must be root to operate on a CPU counter: */
1283 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1284 return ERR_PTR(-EACCES);
1285
1286 if (cpu < 0 || cpu > num_possible_cpus())
1287 return ERR_PTR(-EINVAL);
1288
1289 /*
1290 * We could be clever and allow to attach a counter to an
1291 * offline CPU and activate it when the CPU comes up, but
1292 * that's for later.
1293 */
1294 if (!cpu_isset(cpu, cpu_online_map))
1295 return ERR_PTR(-ENODEV);
1296
1297 cpuctx = &per_cpu(perf_cpu_context, cpu);
1298 ctx = &cpuctx->ctx;
1299 get_ctx(ctx);
1300
1301 return ctx;
1302 }
1303
1304 rcu_read_lock();
1305 if (!pid)
1306 task = current;
1307 else
1308 task = find_task_by_vpid(pid);
1309 if (task)
1310 get_task_struct(task);
1311 rcu_read_unlock();
1312
1313 if (!task)
1314 return ERR_PTR(-ESRCH);
1315
1316 /*
1317 * Can't attach counters to a dying task.
1318 */
1319 err = -ESRCH;
1320 if (task->flags & PF_EXITING)
1321 goto errout;
1322
1323 /* Reuse ptrace permission checks for now. */
1324 err = -EACCES;
1325 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1326 goto errout;
1327
1328 retry_lock:
1329 rcu_read_lock();
1330 retry:
1331 ctx = rcu_dereference(task->perf_counter_ctxp);
1332 if (ctx) {
1333 /*
1334 * If this context is a clone of another, it might
1335 * get swapped for another underneath us by
1336 * perf_counter_task_sched_out, though the
1337 * rcu_read_lock() protects us from any context
1338 * getting freed. Lock the context and check if it
1339 * got swapped before we could get the lock, and retry
1340 * if so. If we locked the right context, then it
1341 * can't get swapped on us any more and we can
1342 * unclone it if necessary.
1343 * Once it's not a clone things will be stable.
1344 */
1345 spin_lock_irq(&ctx->lock);
1346 if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
1347 spin_unlock_irq(&ctx->lock);
1348 goto retry;
1349 }
1350 parent_ctx = ctx->parent_ctx;
1351 if (parent_ctx) {
1352 put_ctx(parent_ctx);
1353 ctx->parent_ctx = NULL; /* no longer a clone */
1354 }
1355 /*
1356 * Get an extra reference before dropping the lock so that
1357 * this context won't get freed if the task exits.
1358 */
1359 get_ctx(ctx);
1360 spin_unlock_irq(&ctx->lock);
1361 }
1362 rcu_read_unlock();
1363
1364 if (!ctx) {
1365 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1366 err = -ENOMEM;
1367 if (!ctx)
1368 goto errout;
1369 __perf_counter_init_context(ctx, task);
1370 get_ctx(ctx);
1371 if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1372 /*
1373 * We raced with some other task; use
1374 * the context they set.
1375 */
1376 kfree(ctx);
1377 goto retry_lock;
1378 }
1379 get_task_struct(task);
1380 }
1381
1382 put_task_struct(task);
1383 return ctx;
1384
1385 errout:
1386 put_task_struct(task);
1387 return ERR_PTR(err);
1388 }
1389
1390 static void free_counter_rcu(struct rcu_head *head)
1391 {
1392 struct perf_counter *counter;
1393
1394 counter = container_of(head, struct perf_counter, rcu_head);
1395 kfree(counter);
1396 }
1397
1398 static void perf_pending_sync(struct perf_counter *counter);
1399
1400 static void free_counter(struct perf_counter *counter)
1401 {
1402 perf_pending_sync(counter);
1403
1404 atomic_dec(&nr_counters);
1405 if (counter->hw_event.mmap)
1406 atomic_dec(&nr_mmap_tracking);
1407 if (counter->hw_event.munmap)
1408 atomic_dec(&nr_munmap_tracking);
1409 if (counter->hw_event.comm)
1410 atomic_dec(&nr_comm_tracking);
1411
1412 if (counter->destroy)
1413 counter->destroy(counter);
1414
1415 put_ctx(counter->ctx);
1416 call_rcu(&counter->rcu_head, free_counter_rcu);
1417 }
1418
1419 /*
1420 * Called when the last reference to the file is gone.
1421 */
1422 static int perf_release(struct inode *inode, struct file *file)
1423 {
1424 struct perf_counter *counter = file->private_data;
1425 struct perf_counter_context *ctx = counter->ctx;
1426
1427 file->private_data = NULL;
1428
1429 WARN_ON_ONCE(ctx->parent_ctx);
1430 mutex_lock(&ctx->mutex);
1431 perf_counter_remove_from_context(counter);
1432 mutex_unlock(&ctx->mutex);
1433
1434 mutex_lock(&counter->owner->perf_counter_mutex);
1435 list_del_init(&counter->owner_entry);
1436 mutex_unlock(&counter->owner->perf_counter_mutex);
1437 put_task_struct(counter->owner);
1438
1439 free_counter(counter);
1440
1441 return 0;
1442 }
1443
1444 /*
1445 * Read the performance counter - simple non blocking version for now
1446 */
1447 static ssize_t
1448 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1449 {
1450 u64 values[3];
1451 int n;
1452
1453 /*
1454 * Return end-of-file for a read on a counter that is in
1455 * error state (i.e. because it was pinned but it couldn't be
1456 * scheduled on to the CPU at some point).
1457 */
1458 if (counter->state == PERF_COUNTER_STATE_ERROR)
1459 return 0;
1460
1461 WARN_ON_ONCE(counter->ctx->parent_ctx);
1462 mutex_lock(&counter->child_mutex);
1463 values[0] = perf_counter_read(counter);
1464 n = 1;
1465 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1466 values[n++] = counter->total_time_enabled +
1467 atomic64_read(&counter->child_total_time_enabled);
1468 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1469 values[n++] = counter->total_time_running +
1470 atomic64_read(&counter->child_total_time_running);
1471 mutex_unlock(&counter->child_mutex);
1472
1473 if (count < n * sizeof(u64))
1474 return -EINVAL;
1475 count = n * sizeof(u64);
1476
1477 if (copy_to_user(buf, values, count))
1478 return -EFAULT;
1479
1480 return count;
1481 }
1482
1483 static ssize_t
1484 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1485 {
1486 struct perf_counter *counter = file->private_data;
1487
1488 return perf_read_hw(counter, buf, count);
1489 }
1490
1491 static unsigned int perf_poll(struct file *file, poll_table *wait)
1492 {
1493 struct perf_counter *counter = file->private_data;
1494 struct perf_mmap_data *data;
1495 unsigned int events = POLL_HUP;
1496
1497 rcu_read_lock();
1498 data = rcu_dereference(counter->data);
1499 if (data)
1500 events = atomic_xchg(&data->poll, 0);
1501 rcu_read_unlock();
1502
1503 poll_wait(file, &counter->waitq, wait);
1504
1505 return events;
1506 }
1507
1508 static void perf_counter_reset(struct perf_counter *counter)
1509 {
1510 (void)perf_counter_read(counter);
1511 atomic64_set(&counter->count, 0);
1512 perf_counter_update_userpage(counter);
1513 }
1514
1515 static void perf_counter_for_each_sibling(struct perf_counter *counter,
1516 void (*func)(struct perf_counter *))
1517 {
1518 struct perf_counter_context *ctx = counter->ctx;
1519 struct perf_counter *sibling;
1520
1521 WARN_ON_ONCE(ctx->parent_ctx);
1522 mutex_lock(&ctx->mutex);
1523 counter = counter->group_leader;
1524
1525 func(counter);
1526 list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1527 func(sibling);
1528 mutex_unlock(&ctx->mutex);
1529 }
1530
1531 /*
1532 * Holding the top-level counter's child_mutex means that any
1533 * descendant process that has inherited this counter will block
1534 * in sync_child_counter if it goes to exit, thus satisfying the
1535 * task existence requirements of perf_counter_enable/disable.
1536 */
1537 static void perf_counter_for_each_child(struct perf_counter *counter,
1538 void (*func)(struct perf_counter *))
1539 {
1540 struct perf_counter *child;
1541
1542 WARN_ON_ONCE(counter->ctx->parent_ctx);
1543 mutex_lock(&counter->child_mutex);
1544 func(counter);
1545 list_for_each_entry(child, &counter->child_list, child_list)
1546 func(child);
1547 mutex_unlock(&counter->child_mutex);
1548 }
1549
1550 static void perf_counter_for_each(struct perf_counter *counter,
1551 void (*func)(struct perf_counter *))
1552 {
1553 struct perf_counter *child;
1554
1555 WARN_ON_ONCE(counter->ctx->parent_ctx);
1556 mutex_lock(&counter->child_mutex);
1557 perf_counter_for_each_sibling(counter, func);
1558 list_for_each_entry(child, &counter->child_list, child_list)
1559 perf_counter_for_each_sibling(child, func);
1560 mutex_unlock(&counter->child_mutex);
1561 }
1562
1563 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1564 {
1565 struct perf_counter *counter = file->private_data;
1566 void (*func)(struct perf_counter *);
1567 u32 flags = arg;
1568
1569 switch (cmd) {
1570 case PERF_COUNTER_IOC_ENABLE:
1571 func = perf_counter_enable;
1572 break;
1573 case PERF_COUNTER_IOC_DISABLE:
1574 func = perf_counter_disable;
1575 break;
1576 case PERF_COUNTER_IOC_RESET:
1577 func = perf_counter_reset;
1578 break;
1579
1580 case PERF_COUNTER_IOC_REFRESH:
1581 return perf_counter_refresh(counter, arg);
1582 default:
1583 return -ENOTTY;
1584 }
1585
1586 if (flags & PERF_IOC_FLAG_GROUP)
1587 perf_counter_for_each(counter, func);
1588 else
1589 perf_counter_for_each_child(counter, func);
1590
1591 return 0;
1592 }
1593
1594 int perf_counter_task_enable(void)
1595 {
1596 struct perf_counter *counter;
1597
1598 mutex_lock(&current->perf_counter_mutex);
1599 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1600 perf_counter_for_each_child(counter, perf_counter_enable);
1601 mutex_unlock(&current->perf_counter_mutex);
1602
1603 return 0;
1604 }
1605
1606 int perf_counter_task_disable(void)
1607 {
1608 struct perf_counter *counter;
1609
1610 mutex_lock(&current->perf_counter_mutex);
1611 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1612 perf_counter_for_each_child(counter, perf_counter_disable);
1613 mutex_unlock(&current->perf_counter_mutex);
1614
1615 return 0;
1616 }
1617
1618 /*
1619 * Callers need to ensure there can be no nesting of this function, otherwise
1620 * the seqlock logic goes bad. We can not serialize this because the arch
1621 * code calls this from NMI context.
1622 */
1623 void perf_counter_update_userpage(struct perf_counter *counter)
1624 {
1625 struct perf_mmap_data *data;
1626 struct perf_counter_mmap_page *userpg;
1627
1628 rcu_read_lock();
1629 data = rcu_dereference(counter->data);
1630 if (!data)
1631 goto unlock;
1632
1633 userpg = data->user_page;
1634
1635 /*
1636 * Disable preemption so as to not let the corresponding user-space
1637 * spin too long if we get preempted.
1638 */
1639 preempt_disable();
1640 ++userpg->lock;
1641 barrier();
1642 userpg->index = counter->hw.idx;
1643 userpg->offset = atomic64_read(&counter->count);
1644 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1645 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1646
1647 barrier();
1648 ++userpg->lock;
1649 preempt_enable();
1650 unlock:
1651 rcu_read_unlock();
1652 }
1653
1654 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1655 {
1656 struct perf_counter *counter = vma->vm_file->private_data;
1657 struct perf_mmap_data *data;
1658 int ret = VM_FAULT_SIGBUS;
1659
1660 rcu_read_lock();
1661 data = rcu_dereference(counter->data);
1662 if (!data)
1663 goto unlock;
1664
1665 if (vmf->pgoff == 0) {
1666 vmf->page = virt_to_page(data->user_page);
1667 } else {
1668 int nr = vmf->pgoff - 1;
1669
1670 if ((unsigned)nr > data->nr_pages)
1671 goto unlock;
1672
1673 vmf->page = virt_to_page(data->data_pages[nr]);
1674 }
1675 get_page(vmf->page);
1676 ret = 0;
1677 unlock:
1678 rcu_read_unlock();
1679
1680 return ret;
1681 }
1682
1683 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1684 {
1685 struct perf_mmap_data *data;
1686 unsigned long size;
1687 int i;
1688
1689 WARN_ON(atomic_read(&counter->mmap_count));
1690
1691 size = sizeof(struct perf_mmap_data);
1692 size += nr_pages * sizeof(void *);
1693
1694 data = kzalloc(size, GFP_KERNEL);
1695 if (!data)
1696 goto fail;
1697
1698 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1699 if (!data->user_page)
1700 goto fail_user_page;
1701
1702 for (i = 0; i < nr_pages; i++) {
1703 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1704 if (!data->data_pages[i])
1705 goto fail_data_pages;
1706 }
1707
1708 data->nr_pages = nr_pages;
1709 atomic_set(&data->lock, -1);
1710
1711 rcu_assign_pointer(counter->data, data);
1712
1713 return 0;
1714
1715 fail_data_pages:
1716 for (i--; i >= 0; i--)
1717 free_page((unsigned long)data->data_pages[i]);
1718
1719 free_page((unsigned long)data->user_page);
1720
1721 fail_user_page:
1722 kfree(data);
1723
1724 fail:
1725 return -ENOMEM;
1726 }
1727
1728 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1729 {
1730 struct perf_mmap_data *data = container_of(rcu_head,
1731 struct perf_mmap_data, rcu_head);
1732 int i;
1733
1734 free_page((unsigned long)data->user_page);
1735 for (i = 0; i < data->nr_pages; i++)
1736 free_page((unsigned long)data->data_pages[i]);
1737 kfree(data);
1738 }
1739
1740 static void perf_mmap_data_free(struct perf_counter *counter)
1741 {
1742 struct perf_mmap_data *data = counter->data;
1743
1744 WARN_ON(atomic_read(&counter->mmap_count));
1745
1746 rcu_assign_pointer(counter->data, NULL);
1747 call_rcu(&data->rcu_head, __perf_mmap_data_free);
1748 }
1749
1750 static void perf_mmap_open(struct vm_area_struct *vma)
1751 {
1752 struct perf_counter *counter = vma->vm_file->private_data;
1753
1754 atomic_inc(&counter->mmap_count);
1755 }
1756
1757 static void perf_mmap_close(struct vm_area_struct *vma)
1758 {
1759 struct perf_counter *counter = vma->vm_file->private_data;
1760
1761 WARN_ON_ONCE(counter->ctx->parent_ctx);
1762 if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1763 &counter->mmap_mutex)) {
1764 struct user_struct *user = current_user();
1765
1766 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1767 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1768 perf_mmap_data_free(counter);
1769 mutex_unlock(&counter->mmap_mutex);
1770 }
1771 }
1772
1773 static struct vm_operations_struct perf_mmap_vmops = {
1774 .open = perf_mmap_open,
1775 .close = perf_mmap_close,
1776 .fault = perf_mmap_fault,
1777 };
1778
1779 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1780 {
1781 struct perf_counter *counter = file->private_data;
1782 struct user_struct *user = current_user();
1783 unsigned long vma_size;
1784 unsigned long nr_pages;
1785 unsigned long user_locked, user_lock_limit;
1786 unsigned long locked, lock_limit;
1787 long user_extra, extra;
1788 int ret = 0;
1789
1790 if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1791 return -EINVAL;
1792
1793 vma_size = vma->vm_end - vma->vm_start;
1794 nr_pages = (vma_size / PAGE_SIZE) - 1;
1795
1796 /*
1797 * If we have data pages ensure they're a power-of-two number, so we
1798 * can do bitmasks instead of modulo.
1799 */
1800 if (nr_pages != 0 && !is_power_of_2(nr_pages))
1801 return -EINVAL;
1802
1803 if (vma_size != PAGE_SIZE * (1 + nr_pages))
1804 return -EINVAL;
1805
1806 if (vma->vm_pgoff != 0)
1807 return -EINVAL;
1808
1809 WARN_ON_ONCE(counter->ctx->parent_ctx);
1810 mutex_lock(&counter->mmap_mutex);
1811 if (atomic_inc_not_zero(&counter->mmap_count)) {
1812 if (nr_pages != counter->data->nr_pages)
1813 ret = -EINVAL;
1814 goto unlock;
1815 }
1816
1817 user_extra = nr_pages + 1;
1818 user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1819
1820 /*
1821 * Increase the limit linearly with more CPUs:
1822 */
1823 user_lock_limit *= num_online_cpus();
1824
1825 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1826
1827 extra = 0;
1828 if (user_locked > user_lock_limit)
1829 extra = user_locked - user_lock_limit;
1830
1831 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1832 lock_limit >>= PAGE_SHIFT;
1833 locked = vma->vm_mm->locked_vm + extra;
1834
1835 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1836 ret = -EPERM;
1837 goto unlock;
1838 }
1839
1840 WARN_ON(counter->data);
1841 ret = perf_mmap_data_alloc(counter, nr_pages);
1842 if (ret)
1843 goto unlock;
1844
1845 atomic_set(&counter->mmap_count, 1);
1846 atomic_long_add(user_extra, &user->locked_vm);
1847 vma->vm_mm->locked_vm += extra;
1848 counter->data->nr_locked = extra;
1849 unlock:
1850 mutex_unlock(&counter->mmap_mutex);
1851
1852 vma->vm_flags &= ~VM_MAYWRITE;
1853 vma->vm_flags |= VM_RESERVED;
1854 vma->vm_ops = &perf_mmap_vmops;
1855
1856 return ret;
1857 }
1858
1859 static int perf_fasync(int fd, struct file *filp, int on)
1860 {
1861 struct perf_counter *counter = filp->private_data;
1862 struct inode *inode = filp->f_path.dentry->d_inode;
1863 int retval;
1864
1865 mutex_lock(&inode->i_mutex);
1866 retval = fasync_helper(fd, filp, on, &counter->fasync);
1867 mutex_unlock(&inode->i_mutex);
1868
1869 if (retval < 0)
1870 return retval;
1871
1872 return 0;
1873 }
1874
1875 static const struct file_operations perf_fops = {
1876 .release = perf_release,
1877 .read = perf_read,
1878 .poll = perf_poll,
1879 .unlocked_ioctl = perf_ioctl,
1880 .compat_ioctl = perf_ioctl,
1881 .mmap = perf_mmap,
1882 .fasync = perf_fasync,
1883 };
1884
1885 /*
1886 * Perf counter wakeup
1887 *
1888 * If there's data, ensure we set the poll() state and publish everything
1889 * to user-space before waking everybody up.
1890 */
1891
1892 void perf_counter_wakeup(struct perf_counter *counter)
1893 {
1894 wake_up_all(&counter->waitq);
1895
1896 if (counter->pending_kill) {
1897 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1898 counter->pending_kill = 0;
1899 }
1900 }
1901
1902 /*
1903 * Pending wakeups
1904 *
1905 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1906 *
1907 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1908 * single linked list and use cmpxchg() to add entries lockless.
1909 */
1910
1911 static void perf_pending_counter(struct perf_pending_entry *entry)
1912 {
1913 struct perf_counter *counter = container_of(entry,
1914 struct perf_counter, pending);
1915
1916 if (counter->pending_disable) {
1917 counter->pending_disable = 0;
1918 perf_counter_disable(counter);
1919 }
1920
1921 if (counter->pending_wakeup) {
1922 counter->pending_wakeup = 0;
1923 perf_counter_wakeup(counter);
1924 }
1925 }
1926
1927 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1928
1929 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1930 PENDING_TAIL,
1931 };
1932
1933 static void perf_pending_queue(struct perf_pending_entry *entry,
1934 void (*func)(struct perf_pending_entry *))
1935 {
1936 struct perf_pending_entry **head;
1937
1938 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1939 return;
1940
1941 entry->func = func;
1942
1943 head = &get_cpu_var(perf_pending_head);
1944
1945 do {
1946 entry->next = *head;
1947 } while (cmpxchg(head, entry->next, entry) != entry->next);
1948
1949 set_perf_counter_pending();
1950
1951 put_cpu_var(perf_pending_head);
1952 }
1953
1954 static int __perf_pending_run(void)
1955 {
1956 struct perf_pending_entry *list;
1957 int nr = 0;
1958
1959 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1960 while (list != PENDING_TAIL) {
1961 void (*func)(struct perf_pending_entry *);
1962 struct perf_pending_entry *entry = list;
1963
1964 list = list->next;
1965
1966 func = entry->func;
1967 entry->next = NULL;
1968 /*
1969 * Ensure we observe the unqueue before we issue the wakeup,
1970 * so that we won't be waiting forever.
1971 * -- see perf_not_pending().
1972 */
1973 smp_wmb();
1974
1975 func(entry);
1976 nr++;
1977 }
1978
1979 return nr;
1980 }
1981
1982 static inline int perf_not_pending(struct perf_counter *counter)
1983 {
1984 /*
1985 * If we flush on whatever cpu we run, there is a chance we don't
1986 * need to wait.
1987 */
1988 get_cpu();
1989 __perf_pending_run();
1990 put_cpu();
1991
1992 /*
1993 * Ensure we see the proper queue state before going to sleep
1994 * so that we do not miss the wakeup. -- see perf_pending_handle()
1995 */
1996 smp_rmb();
1997 return counter->pending.next == NULL;
1998 }
1999
2000 static void perf_pending_sync(struct perf_counter *counter)
2001 {
2002 wait_event(counter->waitq, perf_not_pending(counter));
2003 }
2004
2005 void perf_counter_do_pending(void)
2006 {
2007 __perf_pending_run();
2008 }
2009
2010 /*
2011 * Callchain support -- arch specific
2012 */
2013
2014 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2015 {
2016 return NULL;
2017 }
2018
2019 /*
2020 * Output
2021 */
2022
2023 struct perf_output_handle {
2024 struct perf_counter *counter;
2025 struct perf_mmap_data *data;
2026 unsigned int offset;
2027 unsigned int head;
2028 int nmi;
2029 int overflow;
2030 int locked;
2031 unsigned long flags;
2032 };
2033
2034 static void perf_output_wakeup(struct perf_output_handle *handle)
2035 {
2036 atomic_set(&handle->data->poll, POLL_IN);
2037
2038 if (handle->nmi) {
2039 handle->counter->pending_wakeup = 1;
2040 perf_pending_queue(&handle->counter->pending,
2041 perf_pending_counter);
2042 } else
2043 perf_counter_wakeup(handle->counter);
2044 }
2045
2046 /*
2047 * Curious locking construct.
2048 *
2049 * We need to ensure a later event doesn't publish a head when a former
2050 * event isn't done writing. However since we need to deal with NMIs we
2051 * cannot fully serialize things.
2052 *
2053 * What we do is serialize between CPUs so we only have to deal with NMI
2054 * nesting on a single CPU.
2055 *
2056 * We only publish the head (and generate a wakeup) when the outer-most
2057 * event completes.
2058 */
2059 static void perf_output_lock(struct perf_output_handle *handle)
2060 {
2061 struct perf_mmap_data *data = handle->data;
2062 int cpu;
2063
2064 handle->locked = 0;
2065
2066 local_irq_save(handle->flags);
2067 cpu = smp_processor_id();
2068
2069 if (in_nmi() && atomic_read(&data->lock) == cpu)
2070 return;
2071
2072 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2073 cpu_relax();
2074
2075 handle->locked = 1;
2076 }
2077
2078 static void perf_output_unlock(struct perf_output_handle *handle)
2079 {
2080 struct perf_mmap_data *data = handle->data;
2081 int head, cpu;
2082
2083 data->done_head = data->head;
2084
2085 if (!handle->locked)
2086 goto out;
2087
2088 again:
2089 /*
2090 * The xchg implies a full barrier that ensures all writes are done
2091 * before we publish the new head, matched by a rmb() in userspace when
2092 * reading this position.
2093 */
2094 while ((head = atomic_xchg(&data->done_head, 0)))
2095 data->user_page->data_head = head;
2096
2097 /*
2098 * NMI can happen here, which means we can miss a done_head update.
2099 */
2100
2101 cpu = atomic_xchg(&data->lock, -1);
2102 WARN_ON_ONCE(cpu != smp_processor_id());
2103
2104 /*
2105 * Therefore we have to validate we did not indeed do so.
2106 */
2107 if (unlikely(atomic_read(&data->done_head))) {
2108 /*
2109 * Since we had it locked, we can lock it again.
2110 */
2111 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2112 cpu_relax();
2113
2114 goto again;
2115 }
2116
2117 if (atomic_xchg(&data->wakeup, 0))
2118 perf_output_wakeup(handle);
2119 out:
2120 local_irq_restore(handle->flags);
2121 }
2122
2123 static int perf_output_begin(struct perf_output_handle *handle,
2124 struct perf_counter *counter, unsigned int size,
2125 int nmi, int overflow)
2126 {
2127 struct perf_mmap_data *data;
2128 unsigned int offset, head;
2129
2130 /*
2131 * For inherited counters we send all the output towards the parent.
2132 */
2133 if (counter->parent)
2134 counter = counter->parent;
2135
2136 rcu_read_lock();
2137 data = rcu_dereference(counter->data);
2138 if (!data)
2139 goto out;
2140
2141 handle->data = data;
2142 handle->counter = counter;
2143 handle->nmi = nmi;
2144 handle->overflow = overflow;
2145
2146 if (!data->nr_pages)
2147 goto fail;
2148
2149 perf_output_lock(handle);
2150
2151 do {
2152 offset = head = atomic_read(&data->head);
2153 head += size;
2154 } while (atomic_cmpxchg(&data->head, offset, head) != offset);
2155
2156 handle->offset = offset;
2157 handle->head = head;
2158
2159 if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2160 atomic_set(&data->wakeup, 1);
2161
2162 return 0;
2163
2164 fail:
2165 perf_output_wakeup(handle);
2166 out:
2167 rcu_read_unlock();
2168
2169 return -ENOSPC;
2170 }
2171
2172 static void perf_output_copy(struct perf_output_handle *handle,
2173 void *buf, unsigned int len)
2174 {
2175 unsigned int pages_mask;
2176 unsigned int offset;
2177 unsigned int size;
2178 void **pages;
2179
2180 offset = handle->offset;
2181 pages_mask = handle->data->nr_pages - 1;
2182 pages = handle->data->data_pages;
2183
2184 do {
2185 unsigned int page_offset;
2186 int nr;
2187
2188 nr = (offset >> PAGE_SHIFT) & pages_mask;
2189 page_offset = offset & (PAGE_SIZE - 1);
2190 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2191
2192 memcpy(pages[nr] + page_offset, buf, size);
2193
2194 len -= size;
2195 buf += size;
2196 offset += size;
2197 } while (len);
2198
2199 handle->offset = offset;
2200
2201 /*
2202 * Check we didn't copy past our reservation window, taking the
2203 * possible unsigned int wrap into account.
2204 */
2205 WARN_ON_ONCE(((int)(handle->head - handle->offset)) < 0);
2206 }
2207
2208 #define perf_output_put(handle, x) \
2209 perf_output_copy((handle), &(x), sizeof(x))
2210
2211 static void perf_output_end(struct perf_output_handle *handle)
2212 {
2213 struct perf_counter *counter = handle->counter;
2214 struct perf_mmap_data *data = handle->data;
2215
2216 int wakeup_events = counter->hw_event.wakeup_events;
2217
2218 if (handle->overflow && wakeup_events) {
2219 int events = atomic_inc_return(&data->events);
2220 if (events >= wakeup_events) {
2221 atomic_sub(wakeup_events, &data->events);
2222 atomic_set(&data->wakeup, 1);
2223 }
2224 }
2225
2226 perf_output_unlock(handle);
2227 rcu_read_unlock();
2228 }
2229
2230 static void perf_counter_output(struct perf_counter *counter,
2231 int nmi, struct pt_regs *regs, u64 addr)
2232 {
2233 int ret;
2234 u64 record_type = counter->hw_event.record_type;
2235 struct perf_output_handle handle;
2236 struct perf_event_header header;
2237 u64 ip;
2238 struct {
2239 u32 pid, tid;
2240 } tid_entry;
2241 struct {
2242 u64 event;
2243 u64 counter;
2244 } group_entry;
2245 struct perf_callchain_entry *callchain = NULL;
2246 int callchain_size = 0;
2247 u64 time;
2248 struct {
2249 u32 cpu, reserved;
2250 } cpu_entry;
2251
2252 header.type = 0;
2253 header.size = sizeof(header);
2254
2255 header.misc = PERF_EVENT_MISC_OVERFLOW;
2256 header.misc |= perf_misc_flags(regs);
2257
2258 if (record_type & PERF_RECORD_IP) {
2259 ip = perf_instruction_pointer(regs);
2260 header.type |= PERF_RECORD_IP;
2261 header.size += sizeof(ip);
2262 }
2263
2264 if (record_type & PERF_RECORD_TID) {
2265 /* namespace issues */
2266 tid_entry.pid = current->group_leader->pid;
2267 tid_entry.tid = current->pid;
2268
2269 header.type |= PERF_RECORD_TID;
2270 header.size += sizeof(tid_entry);
2271 }
2272
2273 if (record_type & PERF_RECORD_TIME) {
2274 /*
2275 * Maybe do better on x86 and provide cpu_clock_nmi()
2276 */
2277 time = sched_clock();
2278
2279 header.type |= PERF_RECORD_TIME;
2280 header.size += sizeof(u64);
2281 }
2282
2283 if (record_type & PERF_RECORD_ADDR) {
2284 header.type |= PERF_RECORD_ADDR;
2285 header.size += sizeof(u64);
2286 }
2287
2288 if (record_type & PERF_RECORD_CONFIG) {
2289 header.type |= PERF_RECORD_CONFIG;
2290 header.size += sizeof(u64);
2291 }
2292
2293 if (record_type & PERF_RECORD_CPU) {
2294 header.type |= PERF_RECORD_CPU;
2295 header.size += sizeof(cpu_entry);
2296
2297 cpu_entry.cpu = raw_smp_processor_id();
2298 }
2299
2300 if (record_type & PERF_RECORD_GROUP) {
2301 header.type |= PERF_RECORD_GROUP;
2302 header.size += sizeof(u64) +
2303 counter->nr_siblings * sizeof(group_entry);
2304 }
2305
2306 if (record_type & PERF_RECORD_CALLCHAIN) {
2307 callchain = perf_callchain(regs);
2308
2309 if (callchain) {
2310 callchain_size = (1 + callchain->nr) * sizeof(u64);
2311
2312 header.type |= PERF_RECORD_CALLCHAIN;
2313 header.size += callchain_size;
2314 }
2315 }
2316
2317 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2318 if (ret)
2319 return;
2320
2321 perf_output_put(&handle, header);
2322
2323 if (record_type & PERF_RECORD_IP)
2324 perf_output_put(&handle, ip);
2325
2326 if (record_type & PERF_RECORD_TID)
2327 perf_output_put(&handle, tid_entry);
2328
2329 if (record_type & PERF_RECORD_TIME)
2330 perf_output_put(&handle, time);
2331
2332 if (record_type & PERF_RECORD_ADDR)
2333 perf_output_put(&handle, addr);
2334
2335 if (record_type & PERF_RECORD_CONFIG)
2336 perf_output_put(&handle, counter->hw_event.config);
2337
2338 if (record_type & PERF_RECORD_CPU)
2339 perf_output_put(&handle, cpu_entry);
2340
2341 /*
2342 * XXX PERF_RECORD_GROUP vs inherited counters seems difficult.
2343 */
2344 if (record_type & PERF_RECORD_GROUP) {
2345 struct perf_counter *leader, *sub;
2346 u64 nr = counter->nr_siblings;
2347
2348 perf_output_put(&handle, nr);
2349
2350 leader = counter->group_leader;
2351 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2352 if (sub != counter)
2353 sub->pmu->read(sub);
2354
2355 group_entry.event = sub->hw_event.config;
2356 group_entry.counter = atomic64_read(&sub->count);
2357
2358 perf_output_put(&handle, group_entry);
2359 }
2360 }
2361
2362 if (callchain)
2363 perf_output_copy(&handle, callchain, callchain_size);
2364
2365 perf_output_end(&handle);
2366 }
2367
2368 /*
2369 * comm tracking
2370 */
2371
2372 struct perf_comm_event {
2373 struct task_struct *task;
2374 char *comm;
2375 int comm_size;
2376
2377 struct {
2378 struct perf_event_header header;
2379
2380 u32 pid;
2381 u32 tid;
2382 } event;
2383 };
2384
2385 static void perf_counter_comm_output(struct perf_counter *counter,
2386 struct perf_comm_event *comm_event)
2387 {
2388 struct perf_output_handle handle;
2389 int size = comm_event->event.header.size;
2390 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2391
2392 if (ret)
2393 return;
2394
2395 perf_output_put(&handle, comm_event->event);
2396 perf_output_copy(&handle, comm_event->comm,
2397 comm_event->comm_size);
2398 perf_output_end(&handle);
2399 }
2400
2401 static int perf_counter_comm_match(struct perf_counter *counter,
2402 struct perf_comm_event *comm_event)
2403 {
2404 if (counter->hw_event.comm &&
2405 comm_event->event.header.type == PERF_EVENT_COMM)
2406 return 1;
2407
2408 return 0;
2409 }
2410
2411 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2412 struct perf_comm_event *comm_event)
2413 {
2414 struct perf_counter *counter;
2415
2416 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2417 return;
2418
2419 rcu_read_lock();
2420 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2421 if (perf_counter_comm_match(counter, comm_event))
2422 perf_counter_comm_output(counter, comm_event);
2423 }
2424 rcu_read_unlock();
2425 }
2426
2427 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2428 {
2429 struct perf_cpu_context *cpuctx;
2430 unsigned int size;
2431 char *comm = comm_event->task->comm;
2432
2433 size = ALIGN(strlen(comm)+1, sizeof(u64));
2434
2435 comm_event->comm = comm;
2436 comm_event->comm_size = size;
2437
2438 comm_event->event.header.size = sizeof(comm_event->event) + size;
2439
2440 cpuctx = &get_cpu_var(perf_cpu_context);
2441 perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2442 put_cpu_var(perf_cpu_context);
2443
2444 perf_counter_comm_ctx(current->perf_counter_ctxp, comm_event);
2445 }
2446
2447 void perf_counter_comm(struct task_struct *task)
2448 {
2449 struct perf_comm_event comm_event;
2450
2451 if (!atomic_read(&nr_comm_tracking))
2452 return;
2453 if (!current->perf_counter_ctxp)
2454 return;
2455
2456 comm_event = (struct perf_comm_event){
2457 .task = task,
2458 .event = {
2459 .header = { .type = PERF_EVENT_COMM, },
2460 .pid = task->group_leader->pid,
2461 .tid = task->pid,
2462 },
2463 };
2464
2465 perf_counter_comm_event(&comm_event);
2466 }
2467
2468 /*
2469 * mmap tracking
2470 */
2471
2472 struct perf_mmap_event {
2473 struct file *file;
2474 char *file_name;
2475 int file_size;
2476
2477 struct {
2478 struct perf_event_header header;
2479
2480 u32 pid;
2481 u32 tid;
2482 u64 start;
2483 u64 len;
2484 u64 pgoff;
2485 } event;
2486 };
2487
2488 static void perf_counter_mmap_output(struct perf_counter *counter,
2489 struct perf_mmap_event *mmap_event)
2490 {
2491 struct perf_output_handle handle;
2492 int size = mmap_event->event.header.size;
2493 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2494
2495 if (ret)
2496 return;
2497
2498 perf_output_put(&handle, mmap_event->event);
2499 perf_output_copy(&handle, mmap_event->file_name,
2500 mmap_event->file_size);
2501 perf_output_end(&handle);
2502 }
2503
2504 static int perf_counter_mmap_match(struct perf_counter *counter,
2505 struct perf_mmap_event *mmap_event)
2506 {
2507 if (counter->hw_event.mmap &&
2508 mmap_event->event.header.type == PERF_EVENT_MMAP)
2509 return 1;
2510
2511 if (counter->hw_event.munmap &&
2512 mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2513 return 1;
2514
2515 return 0;
2516 }
2517
2518 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2519 struct perf_mmap_event *mmap_event)
2520 {
2521 struct perf_counter *counter;
2522
2523 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2524 return;
2525
2526 rcu_read_lock();
2527 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2528 if (perf_counter_mmap_match(counter, mmap_event))
2529 perf_counter_mmap_output(counter, mmap_event);
2530 }
2531 rcu_read_unlock();
2532 }
2533
2534 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2535 {
2536 struct perf_cpu_context *cpuctx;
2537 struct file *file = mmap_event->file;
2538 unsigned int size;
2539 char tmp[16];
2540 char *buf = NULL;
2541 char *name;
2542
2543 if (file) {
2544 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2545 if (!buf) {
2546 name = strncpy(tmp, "//enomem", sizeof(tmp));
2547 goto got_name;
2548 }
2549 name = d_path(&file->f_path, buf, PATH_MAX);
2550 if (IS_ERR(name)) {
2551 name = strncpy(tmp, "//toolong", sizeof(tmp));
2552 goto got_name;
2553 }
2554 } else {
2555 name = strncpy(tmp, "//anon", sizeof(tmp));
2556 goto got_name;
2557 }
2558
2559 got_name:
2560 size = ALIGN(strlen(name)+1, sizeof(u64));
2561
2562 mmap_event->file_name = name;
2563 mmap_event->file_size = size;
2564
2565 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2566
2567 cpuctx = &get_cpu_var(perf_cpu_context);
2568 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2569 put_cpu_var(perf_cpu_context);
2570
2571 perf_counter_mmap_ctx(current->perf_counter_ctxp, mmap_event);
2572
2573 kfree(buf);
2574 }
2575
2576 void perf_counter_mmap(unsigned long addr, unsigned long len,
2577 unsigned long pgoff, struct file *file)
2578 {
2579 struct perf_mmap_event mmap_event;
2580
2581 if (!atomic_read(&nr_mmap_tracking))
2582 return;
2583 if (!current->perf_counter_ctxp)
2584 return;
2585
2586 mmap_event = (struct perf_mmap_event){
2587 .file = file,
2588 .event = {
2589 .header = { .type = PERF_EVENT_MMAP, },
2590 .pid = current->group_leader->pid,
2591 .tid = current->pid,
2592 .start = addr,
2593 .len = len,
2594 .pgoff = pgoff,
2595 },
2596 };
2597
2598 perf_counter_mmap_event(&mmap_event);
2599 }
2600
2601 void perf_counter_munmap(unsigned long addr, unsigned long len,
2602 unsigned long pgoff, struct file *file)
2603 {
2604 struct perf_mmap_event mmap_event;
2605
2606 if (!atomic_read(&nr_munmap_tracking))
2607 return;
2608
2609 mmap_event = (struct perf_mmap_event){
2610 .file = file,
2611 .event = {
2612 .header = { .type = PERF_EVENT_MUNMAP, },
2613 .pid = current->group_leader->pid,
2614 .tid = current->pid,
2615 .start = addr,
2616 .len = len,
2617 .pgoff = pgoff,
2618 },
2619 };
2620
2621 perf_counter_mmap_event(&mmap_event);
2622 }
2623
2624 /*
2625 * Log irq_period changes so that analyzing tools can re-normalize the
2626 * event flow.
2627 */
2628
2629 static void perf_log_period(struct perf_counter *counter, u64 period)
2630 {
2631 struct perf_output_handle handle;
2632 int ret;
2633
2634 struct {
2635 struct perf_event_header header;
2636 u64 time;
2637 u64 period;
2638 } freq_event = {
2639 .header = {
2640 .type = PERF_EVENT_PERIOD,
2641 .misc = 0,
2642 .size = sizeof(freq_event),
2643 },
2644 .time = sched_clock(),
2645 .period = period,
2646 };
2647
2648 if (counter->hw.irq_period == period)
2649 return;
2650
2651 ret = perf_output_begin(&handle, counter, sizeof(freq_event), 0, 0);
2652 if (ret)
2653 return;
2654
2655 perf_output_put(&handle, freq_event);
2656 perf_output_end(&handle);
2657 }
2658
2659 /*
2660 * IRQ throttle logging
2661 */
2662
2663 static void perf_log_throttle(struct perf_counter *counter, int enable)
2664 {
2665 struct perf_output_handle handle;
2666 int ret;
2667
2668 struct {
2669 struct perf_event_header header;
2670 u64 time;
2671 } throttle_event = {
2672 .header = {
2673 .type = PERF_EVENT_THROTTLE + 1,
2674 .misc = 0,
2675 .size = sizeof(throttle_event),
2676 },
2677 .time = sched_clock(),
2678 };
2679
2680 ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
2681 if (ret)
2682 return;
2683
2684 perf_output_put(&handle, throttle_event);
2685 perf_output_end(&handle);
2686 }
2687
2688 /*
2689 * Generic counter overflow handling.
2690 */
2691
2692 int perf_counter_overflow(struct perf_counter *counter,
2693 int nmi, struct pt_regs *regs, u64 addr)
2694 {
2695 int events = atomic_read(&counter->event_limit);
2696 int throttle = counter->pmu->unthrottle != NULL;
2697 int ret = 0;
2698
2699 if (!throttle) {
2700 counter->hw.interrupts++;
2701 } else if (counter->hw.interrupts != MAX_INTERRUPTS) {
2702 counter->hw.interrupts++;
2703 if (HZ*counter->hw.interrupts > (u64)sysctl_perf_counter_limit) {
2704 counter->hw.interrupts = MAX_INTERRUPTS;
2705 perf_log_throttle(counter, 0);
2706 ret = 1;
2707 }
2708 }
2709
2710 /*
2711 * XXX event_limit might not quite work as expected on inherited
2712 * counters
2713 */
2714
2715 counter->pending_kill = POLL_IN;
2716 if (events && atomic_dec_and_test(&counter->event_limit)) {
2717 ret = 1;
2718 counter->pending_kill = POLL_HUP;
2719 if (nmi) {
2720 counter->pending_disable = 1;
2721 perf_pending_queue(&counter->pending,
2722 perf_pending_counter);
2723 } else
2724 perf_counter_disable(counter);
2725 }
2726
2727 perf_counter_output(counter, nmi, regs, addr);
2728 return ret;
2729 }
2730
2731 /*
2732 * Generic software counter infrastructure
2733 */
2734
2735 static void perf_swcounter_update(struct perf_counter *counter)
2736 {
2737 struct hw_perf_counter *hwc = &counter->hw;
2738 u64 prev, now;
2739 s64 delta;
2740
2741 again:
2742 prev = atomic64_read(&hwc->prev_count);
2743 now = atomic64_read(&hwc->count);
2744 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2745 goto again;
2746
2747 delta = now - prev;
2748
2749 atomic64_add(delta, &counter->count);
2750 atomic64_sub(delta, &hwc->period_left);
2751 }
2752
2753 static void perf_swcounter_set_period(struct perf_counter *counter)
2754 {
2755 struct hw_perf_counter *hwc = &counter->hw;
2756 s64 left = atomic64_read(&hwc->period_left);
2757 s64 period = hwc->irq_period;
2758
2759 if (unlikely(left <= -period)) {
2760 left = period;
2761 atomic64_set(&hwc->period_left, left);
2762 }
2763
2764 if (unlikely(left <= 0)) {
2765 left += period;
2766 atomic64_add(period, &hwc->period_left);
2767 }
2768
2769 atomic64_set(&hwc->prev_count, -left);
2770 atomic64_set(&hwc->count, -left);
2771 }
2772
2773 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2774 {
2775 enum hrtimer_restart ret = HRTIMER_RESTART;
2776 struct perf_counter *counter;
2777 struct pt_regs *regs;
2778 u64 period;
2779
2780 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2781 counter->pmu->read(counter);
2782
2783 regs = get_irq_regs();
2784 /*
2785 * In case we exclude kernel IPs or are somehow not in interrupt
2786 * context, provide the next best thing, the user IP.
2787 */
2788 if ((counter->hw_event.exclude_kernel || !regs) &&
2789 !counter->hw_event.exclude_user)
2790 regs = task_pt_regs(current);
2791
2792 if (regs) {
2793 if (perf_counter_overflow(counter, 0, regs, 0))
2794 ret = HRTIMER_NORESTART;
2795 }
2796
2797 period = max_t(u64, 10000, counter->hw.irq_period);
2798 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
2799
2800 return ret;
2801 }
2802
2803 static void perf_swcounter_overflow(struct perf_counter *counter,
2804 int nmi, struct pt_regs *regs, u64 addr)
2805 {
2806 perf_swcounter_update(counter);
2807 perf_swcounter_set_period(counter);
2808 if (perf_counter_overflow(counter, nmi, regs, addr))
2809 /* soft-disable the counter */
2810 ;
2811
2812 }
2813
2814 static int perf_swcounter_match(struct perf_counter *counter,
2815 enum perf_event_types type,
2816 u32 event, struct pt_regs *regs)
2817 {
2818 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2819 return 0;
2820
2821 if (perf_event_raw(&counter->hw_event))
2822 return 0;
2823
2824 if (perf_event_type(&counter->hw_event) != type)
2825 return 0;
2826
2827 if (perf_event_id(&counter->hw_event) != event)
2828 return 0;
2829
2830 if (counter->hw_event.exclude_user && user_mode(regs))
2831 return 0;
2832
2833 if (counter->hw_event.exclude_kernel && !user_mode(regs))
2834 return 0;
2835
2836 return 1;
2837 }
2838
2839 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2840 int nmi, struct pt_regs *regs, u64 addr)
2841 {
2842 int neg = atomic64_add_negative(nr, &counter->hw.count);
2843 if (counter->hw.irq_period && !neg)
2844 perf_swcounter_overflow(counter, nmi, regs, addr);
2845 }
2846
2847 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2848 enum perf_event_types type, u32 event,
2849 u64 nr, int nmi, struct pt_regs *regs,
2850 u64 addr)
2851 {
2852 struct perf_counter *counter;
2853
2854 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2855 return;
2856
2857 rcu_read_lock();
2858 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2859 if (perf_swcounter_match(counter, type, event, regs))
2860 perf_swcounter_add(counter, nr, nmi, regs, addr);
2861 }
2862 rcu_read_unlock();
2863 }
2864
2865 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2866 {
2867 if (in_nmi())
2868 return &cpuctx->recursion[3];
2869
2870 if (in_irq())
2871 return &cpuctx->recursion[2];
2872
2873 if (in_softirq())
2874 return &cpuctx->recursion[1];
2875
2876 return &cpuctx->recursion[0];
2877 }
2878
2879 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2880 u64 nr, int nmi, struct pt_regs *regs,
2881 u64 addr)
2882 {
2883 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2884 int *recursion = perf_swcounter_recursion_context(cpuctx);
2885
2886 if (*recursion)
2887 goto out;
2888
2889 (*recursion)++;
2890 barrier();
2891
2892 perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
2893 nr, nmi, regs, addr);
2894 if (cpuctx->task_ctx) {
2895 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2896 nr, nmi, regs, addr);
2897 }
2898
2899 barrier();
2900 (*recursion)--;
2901
2902 out:
2903 put_cpu_var(perf_cpu_context);
2904 }
2905
2906 void
2907 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2908 {
2909 __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2910 }
2911
2912 static void perf_swcounter_read(struct perf_counter *counter)
2913 {
2914 perf_swcounter_update(counter);
2915 }
2916
2917 static int perf_swcounter_enable(struct perf_counter *counter)
2918 {
2919 perf_swcounter_set_period(counter);
2920 return 0;
2921 }
2922
2923 static void perf_swcounter_disable(struct perf_counter *counter)
2924 {
2925 perf_swcounter_update(counter);
2926 }
2927
2928 static const struct pmu perf_ops_generic = {
2929 .enable = perf_swcounter_enable,
2930 .disable = perf_swcounter_disable,
2931 .read = perf_swcounter_read,
2932 };
2933
2934 /*
2935 * Software counter: cpu wall time clock
2936 */
2937
2938 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2939 {
2940 int cpu = raw_smp_processor_id();
2941 s64 prev;
2942 u64 now;
2943
2944 now = cpu_clock(cpu);
2945 prev = atomic64_read(&counter->hw.prev_count);
2946 atomic64_set(&counter->hw.prev_count, now);
2947 atomic64_add(now - prev, &counter->count);
2948 }
2949
2950 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2951 {
2952 struct hw_perf_counter *hwc = &counter->hw;
2953 int cpu = raw_smp_processor_id();
2954
2955 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2956 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2957 hwc->hrtimer.function = perf_swcounter_hrtimer;
2958 if (hwc->irq_period) {
2959 u64 period = max_t(u64, 10000, hwc->irq_period);
2960 __hrtimer_start_range_ns(&hwc->hrtimer,
2961 ns_to_ktime(period), 0,
2962 HRTIMER_MODE_REL, 0);
2963 }
2964
2965 return 0;
2966 }
2967
2968 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2969 {
2970 if (counter->hw.irq_period)
2971 hrtimer_cancel(&counter->hw.hrtimer);
2972 cpu_clock_perf_counter_update(counter);
2973 }
2974
2975 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2976 {
2977 cpu_clock_perf_counter_update(counter);
2978 }
2979
2980 static const struct pmu perf_ops_cpu_clock = {
2981 .enable = cpu_clock_perf_counter_enable,
2982 .disable = cpu_clock_perf_counter_disable,
2983 .read = cpu_clock_perf_counter_read,
2984 };
2985
2986 /*
2987 * Software counter: task time clock
2988 */
2989
2990 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2991 {
2992 u64 prev;
2993 s64 delta;
2994
2995 prev = atomic64_xchg(&counter->hw.prev_count, now);
2996 delta = now - prev;
2997 atomic64_add(delta, &counter->count);
2998 }
2999
3000 static int task_clock_perf_counter_enable(struct perf_counter *counter)
3001 {
3002 struct hw_perf_counter *hwc = &counter->hw;
3003 u64 now;
3004
3005 now = counter->ctx->time;
3006
3007 atomic64_set(&hwc->prev_count, now);
3008 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3009 hwc->hrtimer.function = perf_swcounter_hrtimer;
3010 if (hwc->irq_period) {
3011 u64 period = max_t(u64, 10000, hwc->irq_period);
3012 __hrtimer_start_range_ns(&hwc->hrtimer,
3013 ns_to_ktime(period), 0,
3014 HRTIMER_MODE_REL, 0);
3015 }
3016
3017 return 0;
3018 }
3019
3020 static void task_clock_perf_counter_disable(struct perf_counter *counter)
3021 {
3022 if (counter->hw.irq_period)
3023 hrtimer_cancel(&counter->hw.hrtimer);
3024 task_clock_perf_counter_update(counter, counter->ctx->time);
3025
3026 }
3027
3028 static void task_clock_perf_counter_read(struct perf_counter *counter)
3029 {
3030 u64 time;
3031
3032 if (!in_nmi()) {
3033 update_context_time(counter->ctx);
3034 time = counter->ctx->time;
3035 } else {
3036 u64 now = perf_clock();
3037 u64 delta = now - counter->ctx->timestamp;
3038 time = counter->ctx->time + delta;
3039 }
3040
3041 task_clock_perf_counter_update(counter, time);
3042 }
3043
3044 static const struct pmu perf_ops_task_clock = {
3045 .enable = task_clock_perf_counter_enable,
3046 .disable = task_clock_perf_counter_disable,
3047 .read = task_clock_perf_counter_read,
3048 };
3049
3050 /*
3051 * Software counter: cpu migrations
3052 */
3053
3054 static inline u64 get_cpu_migrations(struct perf_counter *counter)
3055 {
3056 struct task_struct *curr = counter->ctx->task;
3057
3058 if (curr)
3059 return curr->se.nr_migrations;
3060 return cpu_nr_migrations(smp_processor_id());
3061 }
3062
3063 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
3064 {
3065 u64 prev, now;
3066 s64 delta;
3067
3068 prev = atomic64_read(&counter->hw.prev_count);
3069 now = get_cpu_migrations(counter);
3070
3071 atomic64_set(&counter->hw.prev_count, now);
3072
3073 delta = now - prev;
3074
3075 atomic64_add(delta, &counter->count);
3076 }
3077
3078 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
3079 {
3080 cpu_migrations_perf_counter_update(counter);
3081 }
3082
3083 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
3084 {
3085 if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
3086 atomic64_set(&counter->hw.prev_count,
3087 get_cpu_migrations(counter));
3088 return 0;
3089 }
3090
3091 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
3092 {
3093 cpu_migrations_perf_counter_update(counter);
3094 }
3095
3096 static const struct pmu perf_ops_cpu_migrations = {
3097 .enable = cpu_migrations_perf_counter_enable,
3098 .disable = cpu_migrations_perf_counter_disable,
3099 .read = cpu_migrations_perf_counter_read,
3100 };
3101
3102 #ifdef CONFIG_EVENT_PROFILE
3103 void perf_tpcounter_event(int event_id)
3104 {
3105 struct pt_regs *regs = get_irq_regs();
3106
3107 if (!regs)
3108 regs = task_pt_regs(current);
3109
3110 __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
3111 }
3112 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3113
3114 extern int ftrace_profile_enable(int);
3115 extern void ftrace_profile_disable(int);
3116
3117 static void tp_perf_counter_destroy(struct perf_counter *counter)
3118 {
3119 ftrace_profile_disable(perf_event_id(&counter->hw_event));
3120 }
3121
3122 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3123 {
3124 int event_id = perf_event_id(&counter->hw_event);
3125 int ret;
3126
3127 ret = ftrace_profile_enable(event_id);
3128 if (ret)
3129 return NULL;
3130
3131 counter->destroy = tp_perf_counter_destroy;
3132 counter->hw.irq_period = counter->hw_event.irq_period;
3133
3134 return &perf_ops_generic;
3135 }
3136 #else
3137 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3138 {
3139 return NULL;
3140 }
3141 #endif
3142
3143 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3144 {
3145 const struct pmu *pmu = NULL;
3146
3147 /*
3148 * Software counters (currently) can't in general distinguish
3149 * between user, kernel and hypervisor events.
3150 * However, context switches and cpu migrations are considered
3151 * to be kernel events, and page faults are never hypervisor
3152 * events.
3153 */
3154 switch (perf_event_id(&counter->hw_event)) {
3155 case PERF_COUNT_CPU_CLOCK:
3156 pmu = &perf_ops_cpu_clock;
3157
3158 break;
3159 case PERF_COUNT_TASK_CLOCK:
3160 /*
3161 * If the user instantiates this as a per-cpu counter,
3162 * use the cpu_clock counter instead.
3163 */
3164 if (counter->ctx->task)
3165 pmu = &perf_ops_task_clock;
3166 else
3167 pmu = &perf_ops_cpu_clock;
3168
3169 break;
3170 case PERF_COUNT_PAGE_FAULTS:
3171 case PERF_COUNT_PAGE_FAULTS_MIN:
3172 case PERF_COUNT_PAGE_FAULTS_MAJ:
3173 case PERF_COUNT_CONTEXT_SWITCHES:
3174 pmu = &perf_ops_generic;
3175 break;
3176 case PERF_COUNT_CPU_MIGRATIONS:
3177 if (!counter->hw_event.exclude_kernel)
3178 pmu = &perf_ops_cpu_migrations;
3179 break;
3180 }
3181
3182 return pmu;
3183 }
3184
3185 /*
3186 * Allocate and initialize a counter structure
3187 */
3188 static struct perf_counter *
3189 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
3190 int cpu,
3191 struct perf_counter_context *ctx,
3192 struct perf_counter *group_leader,
3193 gfp_t gfpflags)
3194 {
3195 const struct pmu *pmu;
3196 struct perf_counter *counter;
3197 struct hw_perf_counter *hwc;
3198 long err;
3199
3200 counter = kzalloc(sizeof(*counter), gfpflags);
3201 if (!counter)
3202 return ERR_PTR(-ENOMEM);
3203
3204 /*
3205 * Single counters are their own group leaders, with an
3206 * empty sibling list:
3207 */
3208 if (!group_leader)
3209 group_leader = counter;
3210
3211 mutex_init(&counter->child_mutex);
3212 INIT_LIST_HEAD(&counter->child_list);
3213
3214 INIT_LIST_HEAD(&counter->list_entry);
3215 INIT_LIST_HEAD(&counter->event_entry);
3216 INIT_LIST_HEAD(&counter->sibling_list);
3217 init_waitqueue_head(&counter->waitq);
3218
3219 mutex_init(&counter->mmap_mutex);
3220
3221 counter->cpu = cpu;
3222 counter->hw_event = *hw_event;
3223 counter->group_leader = group_leader;
3224 counter->pmu = NULL;
3225 counter->ctx = ctx;
3226 counter->oncpu = -1;
3227
3228 counter->state = PERF_COUNTER_STATE_INACTIVE;
3229 if (hw_event->disabled)
3230 counter->state = PERF_COUNTER_STATE_OFF;
3231
3232 pmu = NULL;
3233
3234 hwc = &counter->hw;
3235 if (hw_event->freq && hw_event->irq_freq)
3236 hwc->irq_period = div64_u64(TICK_NSEC, hw_event->irq_freq);
3237 else
3238 hwc->irq_period = hw_event->irq_period;
3239
3240 /*
3241 * we currently do not support PERF_RECORD_GROUP on inherited counters
3242 */
3243 if (hw_event->inherit && (hw_event->record_type & PERF_RECORD_GROUP))
3244 goto done;
3245
3246 if (perf_event_raw(hw_event)) {
3247 pmu = hw_perf_counter_init(counter);
3248 goto done;
3249 }
3250
3251 switch (perf_event_type(hw_event)) {
3252 case PERF_TYPE_HARDWARE:
3253 pmu = hw_perf_counter_init(counter);
3254 break;
3255
3256 case PERF_TYPE_SOFTWARE:
3257 pmu = sw_perf_counter_init(counter);
3258 break;
3259
3260 case PERF_TYPE_TRACEPOINT:
3261 pmu = tp_perf_counter_init(counter);
3262 break;
3263 }
3264 done:
3265 err = 0;
3266 if (!pmu)
3267 err = -EINVAL;
3268 else if (IS_ERR(pmu))
3269 err = PTR_ERR(pmu);
3270
3271 if (err) {
3272 kfree(counter);
3273 return ERR_PTR(err);
3274 }
3275
3276 counter->pmu = pmu;
3277
3278 atomic_inc(&nr_counters);
3279 if (counter->hw_event.mmap)
3280 atomic_inc(&nr_mmap_tracking);
3281 if (counter->hw_event.munmap)
3282 atomic_inc(&nr_munmap_tracking);
3283 if (counter->hw_event.comm)
3284 atomic_inc(&nr_comm_tracking);
3285
3286 return counter;
3287 }
3288
3289 /**
3290 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
3291 *
3292 * @hw_event_uptr: event type attributes for monitoring/sampling
3293 * @pid: target pid
3294 * @cpu: target cpu
3295 * @group_fd: group leader counter fd
3296 */
3297 SYSCALL_DEFINE5(perf_counter_open,
3298 const struct perf_counter_hw_event __user *, hw_event_uptr,
3299 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
3300 {
3301 struct perf_counter *counter, *group_leader;
3302 struct perf_counter_hw_event hw_event;
3303 struct perf_counter_context *ctx;
3304 struct file *counter_file = NULL;
3305 struct file *group_file = NULL;
3306 int fput_needed = 0;
3307 int fput_needed2 = 0;
3308 int ret;
3309
3310 /* for future expandability... */
3311 if (flags)
3312 return -EINVAL;
3313
3314 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
3315 return -EFAULT;
3316
3317 /*
3318 * Get the target context (task or percpu):
3319 */
3320 ctx = find_get_context(pid, cpu);
3321 if (IS_ERR(ctx))
3322 return PTR_ERR(ctx);
3323
3324 /*
3325 * Look up the group leader (we will attach this counter to it):
3326 */
3327 group_leader = NULL;
3328 if (group_fd != -1) {
3329 ret = -EINVAL;
3330 group_file = fget_light(group_fd, &fput_needed);
3331 if (!group_file)
3332 goto err_put_context;
3333 if (group_file->f_op != &perf_fops)
3334 goto err_put_context;
3335
3336 group_leader = group_file->private_data;
3337 /*
3338 * Do not allow a recursive hierarchy (this new sibling
3339 * becoming part of another group-sibling):
3340 */
3341 if (group_leader->group_leader != group_leader)
3342 goto err_put_context;
3343 /*
3344 * Do not allow to attach to a group in a different
3345 * task or CPU context:
3346 */
3347 if (group_leader->ctx != ctx)
3348 goto err_put_context;
3349 /*
3350 * Only a group leader can be exclusive or pinned
3351 */
3352 if (hw_event.exclusive || hw_event.pinned)
3353 goto err_put_context;
3354 }
3355
3356 counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
3357 GFP_KERNEL);
3358 ret = PTR_ERR(counter);
3359 if (IS_ERR(counter))
3360 goto err_put_context;
3361
3362 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
3363 if (ret < 0)
3364 goto err_free_put_context;
3365
3366 counter_file = fget_light(ret, &fput_needed2);
3367 if (!counter_file)
3368 goto err_free_put_context;
3369
3370 counter->filp = counter_file;
3371 WARN_ON_ONCE(ctx->parent_ctx);
3372 mutex_lock(&ctx->mutex);
3373 perf_install_in_context(ctx, counter, cpu);
3374 ++ctx->generation;
3375 mutex_unlock(&ctx->mutex);
3376
3377 counter->owner = current;
3378 get_task_struct(current);
3379 mutex_lock(&current->perf_counter_mutex);
3380 list_add_tail(&counter->owner_entry, &current->perf_counter_list);
3381 mutex_unlock(&current->perf_counter_mutex);
3382
3383 fput_light(counter_file, fput_needed2);
3384
3385 out_fput:
3386 fput_light(group_file, fput_needed);
3387
3388 return ret;
3389
3390 err_free_put_context:
3391 kfree(counter);
3392
3393 err_put_context:
3394 put_ctx(ctx);
3395
3396 goto out_fput;
3397 }
3398
3399 /*
3400 * inherit a counter from parent task to child task:
3401 */
3402 static struct perf_counter *
3403 inherit_counter(struct perf_counter *parent_counter,
3404 struct task_struct *parent,
3405 struct perf_counter_context *parent_ctx,
3406 struct task_struct *child,
3407 struct perf_counter *group_leader,
3408 struct perf_counter_context *child_ctx)
3409 {
3410 struct perf_counter *child_counter;
3411
3412 /*
3413 * Instead of creating recursive hierarchies of counters,
3414 * we link inherited counters back to the original parent,
3415 * which has a filp for sure, which we use as the reference
3416 * count:
3417 */
3418 if (parent_counter->parent)
3419 parent_counter = parent_counter->parent;
3420
3421 child_counter = perf_counter_alloc(&parent_counter->hw_event,
3422 parent_counter->cpu, child_ctx,
3423 group_leader, GFP_KERNEL);
3424 if (IS_ERR(child_counter))
3425 return child_counter;
3426 get_ctx(child_ctx);
3427
3428 /*
3429 * Make the child state follow the state of the parent counter,
3430 * not its hw_event.disabled bit. We hold the parent's mutex,
3431 * so we won't race with perf_counter_{en,dis}able_family.
3432 */
3433 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3434 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3435 else
3436 child_counter->state = PERF_COUNTER_STATE_OFF;
3437
3438 /*
3439 * Link it up in the child's context:
3440 */
3441 add_counter_to_ctx(child_counter, child_ctx);
3442
3443 child_counter->parent = parent_counter;
3444 /*
3445 * inherit into child's child as well:
3446 */
3447 child_counter->hw_event.inherit = 1;
3448
3449 /*
3450 * Get a reference to the parent filp - we will fput it
3451 * when the child counter exits. This is safe to do because
3452 * we are in the parent and we know that the filp still
3453 * exists and has a nonzero count:
3454 */
3455 atomic_long_inc(&parent_counter->filp->f_count);
3456
3457 /*
3458 * Link this into the parent counter's child list
3459 */
3460 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3461 mutex_lock(&parent_counter->child_mutex);
3462 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3463 mutex_unlock(&parent_counter->child_mutex);
3464
3465 return child_counter;
3466 }
3467
3468 static int inherit_group(struct perf_counter *parent_counter,
3469 struct task_struct *parent,
3470 struct perf_counter_context *parent_ctx,
3471 struct task_struct *child,
3472 struct perf_counter_context *child_ctx)
3473 {
3474 struct perf_counter *leader;
3475 struct perf_counter *sub;
3476 struct perf_counter *child_ctr;
3477
3478 leader = inherit_counter(parent_counter, parent, parent_ctx,
3479 child, NULL, child_ctx);
3480 if (IS_ERR(leader))
3481 return PTR_ERR(leader);
3482 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3483 child_ctr = inherit_counter(sub, parent, parent_ctx,
3484 child, leader, child_ctx);
3485 if (IS_ERR(child_ctr))
3486 return PTR_ERR(child_ctr);
3487 }
3488 return 0;
3489 }
3490
3491 static void sync_child_counter(struct perf_counter *child_counter,
3492 struct perf_counter *parent_counter)
3493 {
3494 u64 child_val;
3495
3496 child_val = atomic64_read(&child_counter->count);
3497
3498 /*
3499 * Add back the child's count to the parent's count:
3500 */
3501 atomic64_add(child_val, &parent_counter->count);
3502 atomic64_add(child_counter->total_time_enabled,
3503 &parent_counter->child_total_time_enabled);
3504 atomic64_add(child_counter->total_time_running,
3505 &parent_counter->child_total_time_running);
3506
3507 /*
3508 * Remove this counter from the parent's list
3509 */
3510 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3511 mutex_lock(&parent_counter->child_mutex);
3512 list_del_init(&child_counter->child_list);
3513 mutex_unlock(&parent_counter->child_mutex);
3514
3515 /*
3516 * Release the parent counter, if this was the last
3517 * reference to it.
3518 */
3519 fput(parent_counter->filp);
3520 }
3521
3522 static void
3523 __perf_counter_exit_task(struct task_struct *child,
3524 struct perf_counter *child_counter,
3525 struct perf_counter_context *child_ctx)
3526 {
3527 struct perf_counter *parent_counter;
3528
3529 update_counter_times(child_counter);
3530 perf_counter_remove_from_context(child_counter);
3531
3532 parent_counter = child_counter->parent;
3533 /*
3534 * It can happen that parent exits first, and has counters
3535 * that are still around due to the child reference. These
3536 * counters need to be zapped - but otherwise linger.
3537 */
3538 if (parent_counter) {
3539 sync_child_counter(child_counter, parent_counter);
3540 free_counter(child_counter);
3541 }
3542 }
3543
3544 /*
3545 * When a child task exits, feed back counter values to parent counters.
3546 */
3547 void perf_counter_exit_task(struct task_struct *child)
3548 {
3549 struct perf_counter *child_counter, *tmp;
3550 struct perf_counter_context *child_ctx;
3551 unsigned long flags;
3552
3553 if (likely(!child->perf_counter_ctxp))
3554 return;
3555
3556 local_irq_save(flags);
3557 /*
3558 * We can't reschedule here because interrupts are disabled,
3559 * and either child is current or it is a task that can't be
3560 * scheduled, so we are now safe from rescheduling changing
3561 * our context.
3562 */
3563 child_ctx = child->perf_counter_ctxp;
3564 __perf_counter_task_sched_out(child_ctx);
3565
3566 /*
3567 * Take the context lock here so that if find_get_context is
3568 * reading child->perf_counter_ctxp, we wait until it has
3569 * incremented the context's refcount before we do put_ctx below.
3570 */
3571 spin_lock(&child_ctx->lock);
3572 child->perf_counter_ctxp = NULL;
3573 if (child_ctx->parent_ctx) {
3574 /*
3575 * This context is a clone; unclone it so it can't get
3576 * swapped to another process while we're removing all
3577 * the counters from it.
3578 */
3579 put_ctx(child_ctx->parent_ctx);
3580 child_ctx->parent_ctx = NULL;
3581 }
3582 spin_unlock(&child_ctx->lock);
3583 local_irq_restore(flags);
3584
3585 mutex_lock(&child_ctx->mutex);
3586
3587 again:
3588 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3589 list_entry)
3590 __perf_counter_exit_task(child, child_counter, child_ctx);
3591
3592 /*
3593 * If the last counter was a group counter, it will have appended all
3594 * its siblings to the list, but we obtained 'tmp' before that which
3595 * will still point to the list head terminating the iteration.
3596 */
3597 if (!list_empty(&child_ctx->counter_list))
3598 goto again;
3599
3600 mutex_unlock(&child_ctx->mutex);
3601
3602 put_ctx(child_ctx);
3603 }
3604
3605 /*
3606 * Initialize the perf_counter context in task_struct
3607 */
3608 int perf_counter_init_task(struct task_struct *child)
3609 {
3610 struct perf_counter_context *child_ctx, *parent_ctx;
3611 struct perf_counter_context *cloned_ctx;
3612 struct perf_counter *counter;
3613 struct task_struct *parent = current;
3614 int inherited_all = 1;
3615 u64 cloned_gen;
3616 int ret = 0;
3617
3618 child->perf_counter_ctxp = NULL;
3619
3620 mutex_init(&child->perf_counter_mutex);
3621 INIT_LIST_HEAD(&child->perf_counter_list);
3622
3623 if (likely(!parent->perf_counter_ctxp))
3624 return 0;
3625
3626 /*
3627 * This is executed from the parent task context, so inherit
3628 * counters that have been marked for cloning.
3629 * First allocate and initialize a context for the child.
3630 */
3631
3632 child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
3633 if (!child_ctx)
3634 return -ENOMEM;
3635
3636 __perf_counter_init_context(child_ctx, child);
3637 child->perf_counter_ctxp = child_ctx;
3638 get_task_struct(child);
3639
3640 /*
3641 * If the parent's context is a clone, temporarily set its
3642 * parent_gen to an impossible value (all 1s) so it won't get
3643 * swapped under us. The rcu_read_lock makes sure that
3644 * parent_ctx continues to exist even if it gets swapped to
3645 * another process and then freed while we are trying to get
3646 * its lock.
3647 */
3648 rcu_read_lock();
3649 retry:
3650 parent_ctx = rcu_dereference(parent->perf_counter_ctxp);
3651 /*
3652 * No need to check if parent_ctx != NULL here; since we saw
3653 * it non-NULL earlier, the only reason for it to become NULL
3654 * is if we exit, and since we're currently in the middle of
3655 * a fork we can't be exiting at the same time.
3656 */
3657 spin_lock_irq(&parent_ctx->lock);
3658 if (parent_ctx != rcu_dereference(parent->perf_counter_ctxp)) {
3659 spin_unlock_irq(&parent_ctx->lock);
3660 goto retry;
3661 }
3662 cloned_gen = parent_ctx->parent_gen;
3663 if (parent_ctx->parent_ctx)
3664 parent_ctx->parent_gen = ~0ull;
3665 spin_unlock_irq(&parent_ctx->lock);
3666 rcu_read_unlock();
3667
3668 /*
3669 * Lock the parent list. No need to lock the child - not PID
3670 * hashed yet and not running, so nobody can access it.
3671 */
3672 mutex_lock(&parent_ctx->mutex);
3673
3674 /*
3675 * We dont have to disable NMIs - we are only looking at
3676 * the list, not manipulating it:
3677 */
3678 list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
3679 if (counter != counter->group_leader)
3680 continue;
3681
3682 if (!counter->hw_event.inherit) {
3683 inherited_all = 0;
3684 continue;
3685 }
3686
3687 ret = inherit_group(counter, parent, parent_ctx,
3688 child, child_ctx);
3689 if (ret) {
3690 inherited_all = 0;
3691 break;
3692 }
3693 }
3694
3695 if (inherited_all) {
3696 /*
3697 * Mark the child context as a clone of the parent
3698 * context, or of whatever the parent is a clone of.
3699 * Note that if the parent is a clone, it could get
3700 * uncloned at any point, but that doesn't matter
3701 * because the list of counters and the generation
3702 * count can't have changed since we took the mutex.
3703 */
3704 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
3705 if (cloned_ctx) {
3706 child_ctx->parent_ctx = cloned_ctx;
3707 child_ctx->parent_gen = cloned_gen;
3708 } else {
3709 child_ctx->parent_ctx = parent_ctx;
3710 child_ctx->parent_gen = parent_ctx->generation;
3711 }
3712 get_ctx(child_ctx->parent_ctx);
3713 }
3714
3715 mutex_unlock(&parent_ctx->mutex);
3716
3717 /*
3718 * Restore the clone status of the parent.
3719 */
3720 if (parent_ctx->parent_ctx) {
3721 spin_lock_irq(&parent_ctx->lock);
3722 if (parent_ctx->parent_ctx)
3723 parent_ctx->parent_gen = cloned_gen;
3724 spin_unlock_irq(&parent_ctx->lock);
3725 }
3726
3727 return ret;
3728 }
3729
3730 static void __cpuinit perf_counter_init_cpu(int cpu)
3731 {
3732 struct perf_cpu_context *cpuctx;
3733
3734 cpuctx = &per_cpu(perf_cpu_context, cpu);
3735 __perf_counter_init_context(&cpuctx->ctx, NULL);
3736
3737 spin_lock(&perf_resource_lock);
3738 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3739 spin_unlock(&perf_resource_lock);
3740
3741 hw_perf_counter_setup(cpu);
3742 }
3743
3744 #ifdef CONFIG_HOTPLUG_CPU
3745 static void __perf_counter_exit_cpu(void *info)
3746 {
3747 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3748 struct perf_counter_context *ctx = &cpuctx->ctx;
3749 struct perf_counter *counter, *tmp;
3750
3751 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3752 __perf_counter_remove_from_context(counter);
3753 }
3754 static void perf_counter_exit_cpu(int cpu)
3755 {
3756 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3757 struct perf_counter_context *ctx = &cpuctx->ctx;
3758
3759 mutex_lock(&ctx->mutex);
3760 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3761 mutex_unlock(&ctx->mutex);
3762 }
3763 #else
3764 static inline void perf_counter_exit_cpu(int cpu) { }
3765 #endif
3766
3767 static int __cpuinit
3768 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3769 {
3770 unsigned int cpu = (long)hcpu;
3771
3772 switch (action) {
3773
3774 case CPU_UP_PREPARE:
3775 case CPU_UP_PREPARE_FROZEN:
3776 perf_counter_init_cpu(cpu);
3777 break;
3778
3779 case CPU_DOWN_PREPARE:
3780 case CPU_DOWN_PREPARE_FROZEN:
3781 perf_counter_exit_cpu(cpu);
3782 break;
3783
3784 default:
3785 break;
3786 }
3787
3788 return NOTIFY_OK;
3789 }
3790
3791 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3792 .notifier_call = perf_cpu_notify,
3793 };
3794
3795 void __init perf_counter_init(void)
3796 {
3797 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3798 (void *)(long)smp_processor_id());
3799 register_cpu_notifier(&perf_cpu_nb);
3800 }
3801
3802 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3803 {
3804 return sprintf(buf, "%d\n", perf_reserved_percpu);
3805 }
3806
3807 static ssize_t
3808 perf_set_reserve_percpu(struct sysdev_class *class,
3809 const char *buf,
3810 size_t count)
3811 {
3812 struct perf_cpu_context *cpuctx;
3813 unsigned long val;
3814 int err, cpu, mpt;
3815
3816 err = strict_strtoul(buf, 10, &val);
3817 if (err)
3818 return err;
3819 if (val > perf_max_counters)
3820 return -EINVAL;
3821
3822 spin_lock(&perf_resource_lock);
3823 perf_reserved_percpu = val;
3824 for_each_online_cpu(cpu) {
3825 cpuctx = &per_cpu(perf_cpu_context, cpu);
3826 spin_lock_irq(&cpuctx->ctx.lock);
3827 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3828 perf_max_counters - perf_reserved_percpu);
3829 cpuctx->max_pertask = mpt;
3830 spin_unlock_irq(&cpuctx->ctx.lock);
3831 }
3832 spin_unlock(&perf_resource_lock);
3833
3834 return count;
3835 }
3836
3837 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3838 {
3839 return sprintf(buf, "%d\n", perf_overcommit);
3840 }
3841
3842 static ssize_t
3843 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3844 {
3845 unsigned long val;
3846 int err;
3847
3848 err = strict_strtoul(buf, 10, &val);
3849 if (err)
3850 return err;
3851 if (val > 1)
3852 return -EINVAL;
3853
3854 spin_lock(&perf_resource_lock);
3855 perf_overcommit = val;
3856 spin_unlock(&perf_resource_lock);
3857
3858 return count;
3859 }
3860
3861 static SYSDEV_CLASS_ATTR(
3862 reserve_percpu,
3863 0644,
3864 perf_show_reserve_percpu,
3865 perf_set_reserve_percpu
3866 );
3867
3868 static SYSDEV_CLASS_ATTR(
3869 overcommit,
3870 0644,
3871 perf_show_overcommit,
3872 perf_set_overcommit
3873 );
3874
3875 static struct attribute *perfclass_attrs[] = {
3876 &attr_reserve_percpu.attr,
3877 &attr_overcommit.attr,
3878 NULL
3879 };
3880
3881 static struct attribute_group perfclass_attr_group = {
3882 .attrs = perfclass_attrs,
3883 .name = "perf_counters",
3884 };
3885
3886 static int __init perf_counter_sysfs_init(void)
3887 {
3888 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3889 &perfclass_attr_group);
3890 }
3891 device_initcall(perf_counter_sysfs_init);
This page took 0.106061 seconds and 6 git commands to generate.