perf_counter: Fix cpu migration counter
[deliverable/linux.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/hardirq.h>
24 #include <linux/rculist.h>
25 #include <linux/uaccess.h>
26 #include <linux/syscalls.h>
27 #include <linux/anon_inodes.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/perf_counter.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34 * Each CPU has a list of per CPU counters:
35 */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_tracking __read_mostly;
44 static atomic_t nr_munmap_tracking __read_mostly;
45 static atomic_t nr_comm_tracking __read_mostly;
46
47 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
49 int sysctl_perf_counter_limit __read_mostly = 100000; /* max NMIs per second */
50
51 /*
52 * Lock for (sysadmin-configurable) counter reservations:
53 */
54 static DEFINE_SPINLOCK(perf_resource_lock);
55
56 /*
57 * Architecture provided APIs - weak aliases:
58 */
59 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
60 {
61 return NULL;
62 }
63
64 void __weak hw_perf_disable(void) { barrier(); }
65 void __weak hw_perf_enable(void) { barrier(); }
66
67 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
68
69 int __weak
70 hw_perf_group_sched_in(struct perf_counter *group_leader,
71 struct perf_cpu_context *cpuctx,
72 struct perf_counter_context *ctx, int cpu)
73 {
74 return 0;
75 }
76
77 void __weak perf_counter_print_debug(void) { }
78
79 static DEFINE_PER_CPU(int, disable_count);
80
81 void __perf_disable(void)
82 {
83 __get_cpu_var(disable_count)++;
84 }
85
86 bool __perf_enable(void)
87 {
88 return !--__get_cpu_var(disable_count);
89 }
90
91 void perf_disable(void)
92 {
93 __perf_disable();
94 hw_perf_disable();
95 }
96
97 void perf_enable(void)
98 {
99 if (__perf_enable())
100 hw_perf_enable();
101 }
102
103 static void get_ctx(struct perf_counter_context *ctx)
104 {
105 atomic_inc(&ctx->refcount);
106 }
107
108 static void free_ctx(struct rcu_head *head)
109 {
110 struct perf_counter_context *ctx;
111
112 ctx = container_of(head, struct perf_counter_context, rcu_head);
113 kfree(ctx);
114 }
115
116 static void put_ctx(struct perf_counter_context *ctx)
117 {
118 if (atomic_dec_and_test(&ctx->refcount)) {
119 if (ctx->parent_ctx)
120 put_ctx(ctx->parent_ctx);
121 if (ctx->task)
122 put_task_struct(ctx->task);
123 call_rcu(&ctx->rcu_head, free_ctx);
124 }
125 }
126
127 /*
128 * Get the perf_counter_context for a task and lock it.
129 * This has to cope with with the fact that until it is locked,
130 * the context could get moved to another task.
131 */
132 static struct perf_counter_context *
133 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
134 {
135 struct perf_counter_context *ctx;
136
137 rcu_read_lock();
138 retry:
139 ctx = rcu_dereference(task->perf_counter_ctxp);
140 if (ctx) {
141 /*
142 * If this context is a clone of another, it might
143 * get swapped for another underneath us by
144 * perf_counter_task_sched_out, though the
145 * rcu_read_lock() protects us from any context
146 * getting freed. Lock the context and check if it
147 * got swapped before we could get the lock, and retry
148 * if so. If we locked the right context, then it
149 * can't get swapped on us any more.
150 */
151 spin_lock_irqsave(&ctx->lock, *flags);
152 if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
153 spin_unlock_irqrestore(&ctx->lock, *flags);
154 goto retry;
155 }
156 }
157 rcu_read_unlock();
158 return ctx;
159 }
160
161 /*
162 * Get the context for a task and increment its pin_count so it
163 * can't get swapped to another task. This also increments its
164 * reference count so that the context can't get freed.
165 */
166 static struct perf_counter_context *perf_pin_task_context(struct task_struct *task)
167 {
168 struct perf_counter_context *ctx;
169 unsigned long flags;
170
171 ctx = perf_lock_task_context(task, &flags);
172 if (ctx) {
173 ++ctx->pin_count;
174 get_ctx(ctx);
175 spin_unlock_irqrestore(&ctx->lock, flags);
176 }
177 return ctx;
178 }
179
180 static void perf_unpin_context(struct perf_counter_context *ctx)
181 {
182 unsigned long flags;
183
184 spin_lock_irqsave(&ctx->lock, flags);
185 --ctx->pin_count;
186 spin_unlock_irqrestore(&ctx->lock, flags);
187 put_ctx(ctx);
188 }
189
190 /*
191 * Add a counter from the lists for its context.
192 * Must be called with ctx->mutex and ctx->lock held.
193 */
194 static void
195 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
196 {
197 struct perf_counter *group_leader = counter->group_leader;
198
199 /*
200 * Depending on whether it is a standalone or sibling counter,
201 * add it straight to the context's counter list, or to the group
202 * leader's sibling list:
203 */
204 if (group_leader == counter)
205 list_add_tail(&counter->list_entry, &ctx->counter_list);
206 else {
207 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
208 group_leader->nr_siblings++;
209 }
210
211 list_add_rcu(&counter->event_entry, &ctx->event_list);
212 ctx->nr_counters++;
213 }
214
215 /*
216 * Remove a counter from the lists for its context.
217 * Must be called with ctx->mutex and ctx->lock held.
218 */
219 static void
220 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
221 {
222 struct perf_counter *sibling, *tmp;
223
224 if (list_empty(&counter->list_entry))
225 return;
226 ctx->nr_counters--;
227
228 list_del_init(&counter->list_entry);
229 list_del_rcu(&counter->event_entry);
230
231 if (counter->group_leader != counter)
232 counter->group_leader->nr_siblings--;
233
234 /*
235 * If this was a group counter with sibling counters then
236 * upgrade the siblings to singleton counters by adding them
237 * to the context list directly:
238 */
239 list_for_each_entry_safe(sibling, tmp,
240 &counter->sibling_list, list_entry) {
241
242 list_move_tail(&sibling->list_entry, &ctx->counter_list);
243 sibling->group_leader = sibling;
244 }
245 }
246
247 static void
248 counter_sched_out(struct perf_counter *counter,
249 struct perf_cpu_context *cpuctx,
250 struct perf_counter_context *ctx)
251 {
252 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
253 return;
254
255 counter->state = PERF_COUNTER_STATE_INACTIVE;
256 counter->tstamp_stopped = ctx->time;
257 counter->pmu->disable(counter);
258 counter->oncpu = -1;
259
260 if (!is_software_counter(counter))
261 cpuctx->active_oncpu--;
262 ctx->nr_active--;
263 if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
264 cpuctx->exclusive = 0;
265 }
266
267 static void
268 group_sched_out(struct perf_counter *group_counter,
269 struct perf_cpu_context *cpuctx,
270 struct perf_counter_context *ctx)
271 {
272 struct perf_counter *counter;
273
274 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
275 return;
276
277 counter_sched_out(group_counter, cpuctx, ctx);
278
279 /*
280 * Schedule out siblings (if any):
281 */
282 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
283 counter_sched_out(counter, cpuctx, ctx);
284
285 if (group_counter->hw_event.exclusive)
286 cpuctx->exclusive = 0;
287 }
288
289 /*
290 * Cross CPU call to remove a performance counter
291 *
292 * We disable the counter on the hardware level first. After that we
293 * remove it from the context list.
294 */
295 static void __perf_counter_remove_from_context(void *info)
296 {
297 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
298 struct perf_counter *counter = info;
299 struct perf_counter_context *ctx = counter->ctx;
300
301 /*
302 * If this is a task context, we need to check whether it is
303 * the current task context of this cpu. If not it has been
304 * scheduled out before the smp call arrived.
305 */
306 if (ctx->task && cpuctx->task_ctx != ctx)
307 return;
308
309 spin_lock(&ctx->lock);
310 /*
311 * Protect the list operation against NMI by disabling the
312 * counters on a global level.
313 */
314 perf_disable();
315
316 counter_sched_out(counter, cpuctx, ctx);
317
318 list_del_counter(counter, ctx);
319
320 if (!ctx->task) {
321 /*
322 * Allow more per task counters with respect to the
323 * reservation:
324 */
325 cpuctx->max_pertask =
326 min(perf_max_counters - ctx->nr_counters,
327 perf_max_counters - perf_reserved_percpu);
328 }
329
330 perf_enable();
331 spin_unlock(&ctx->lock);
332 }
333
334
335 /*
336 * Remove the counter from a task's (or a CPU's) list of counters.
337 *
338 * Must be called with ctx->mutex held.
339 *
340 * CPU counters are removed with a smp call. For task counters we only
341 * call when the task is on a CPU.
342 *
343 * If counter->ctx is a cloned context, callers must make sure that
344 * every task struct that counter->ctx->task could possibly point to
345 * remains valid. This is OK when called from perf_release since
346 * that only calls us on the top-level context, which can't be a clone.
347 * When called from perf_counter_exit_task, it's OK because the
348 * context has been detached from its task.
349 */
350 static void perf_counter_remove_from_context(struct perf_counter *counter)
351 {
352 struct perf_counter_context *ctx = counter->ctx;
353 struct task_struct *task = ctx->task;
354
355 if (!task) {
356 /*
357 * Per cpu counters are removed via an smp call and
358 * the removal is always sucessful.
359 */
360 smp_call_function_single(counter->cpu,
361 __perf_counter_remove_from_context,
362 counter, 1);
363 return;
364 }
365
366 retry:
367 task_oncpu_function_call(task, __perf_counter_remove_from_context,
368 counter);
369
370 spin_lock_irq(&ctx->lock);
371 /*
372 * If the context is active we need to retry the smp call.
373 */
374 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
375 spin_unlock_irq(&ctx->lock);
376 goto retry;
377 }
378
379 /*
380 * The lock prevents that this context is scheduled in so we
381 * can remove the counter safely, if the call above did not
382 * succeed.
383 */
384 if (!list_empty(&counter->list_entry)) {
385 list_del_counter(counter, ctx);
386 }
387 spin_unlock_irq(&ctx->lock);
388 }
389
390 static inline u64 perf_clock(void)
391 {
392 return cpu_clock(smp_processor_id());
393 }
394
395 /*
396 * Update the record of the current time in a context.
397 */
398 static void update_context_time(struct perf_counter_context *ctx)
399 {
400 u64 now = perf_clock();
401
402 ctx->time += now - ctx->timestamp;
403 ctx->timestamp = now;
404 }
405
406 /*
407 * Update the total_time_enabled and total_time_running fields for a counter.
408 */
409 static void update_counter_times(struct perf_counter *counter)
410 {
411 struct perf_counter_context *ctx = counter->ctx;
412 u64 run_end;
413
414 if (counter->state < PERF_COUNTER_STATE_INACTIVE)
415 return;
416
417 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
418
419 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
420 run_end = counter->tstamp_stopped;
421 else
422 run_end = ctx->time;
423
424 counter->total_time_running = run_end - counter->tstamp_running;
425 }
426
427 /*
428 * Update total_time_enabled and total_time_running for all counters in a group.
429 */
430 static void update_group_times(struct perf_counter *leader)
431 {
432 struct perf_counter *counter;
433
434 update_counter_times(leader);
435 list_for_each_entry(counter, &leader->sibling_list, list_entry)
436 update_counter_times(counter);
437 }
438
439 /*
440 * Cross CPU call to disable a performance counter
441 */
442 static void __perf_counter_disable(void *info)
443 {
444 struct perf_counter *counter = info;
445 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
446 struct perf_counter_context *ctx = counter->ctx;
447
448 /*
449 * If this is a per-task counter, need to check whether this
450 * counter's task is the current task on this cpu.
451 */
452 if (ctx->task && cpuctx->task_ctx != ctx)
453 return;
454
455 spin_lock(&ctx->lock);
456
457 /*
458 * If the counter is on, turn it off.
459 * If it is in error state, leave it in error state.
460 */
461 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
462 update_context_time(ctx);
463 update_counter_times(counter);
464 if (counter == counter->group_leader)
465 group_sched_out(counter, cpuctx, ctx);
466 else
467 counter_sched_out(counter, cpuctx, ctx);
468 counter->state = PERF_COUNTER_STATE_OFF;
469 }
470
471 spin_unlock(&ctx->lock);
472 }
473
474 /*
475 * Disable a counter.
476 *
477 * If counter->ctx is a cloned context, callers must make sure that
478 * every task struct that counter->ctx->task could possibly point to
479 * remains valid. This condition is satisifed when called through
480 * perf_counter_for_each_child or perf_counter_for_each because they
481 * hold the top-level counter's child_mutex, so any descendant that
482 * goes to exit will block in sync_child_counter.
483 * When called from perf_pending_counter it's OK because counter->ctx
484 * is the current context on this CPU and preemption is disabled,
485 * hence we can't get into perf_counter_task_sched_out for this context.
486 */
487 static void perf_counter_disable(struct perf_counter *counter)
488 {
489 struct perf_counter_context *ctx = counter->ctx;
490 struct task_struct *task = ctx->task;
491
492 if (!task) {
493 /*
494 * Disable the counter on the cpu that it's on
495 */
496 smp_call_function_single(counter->cpu, __perf_counter_disable,
497 counter, 1);
498 return;
499 }
500
501 retry:
502 task_oncpu_function_call(task, __perf_counter_disable, counter);
503
504 spin_lock_irq(&ctx->lock);
505 /*
506 * If the counter is still active, we need to retry the cross-call.
507 */
508 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
509 spin_unlock_irq(&ctx->lock);
510 goto retry;
511 }
512
513 /*
514 * Since we have the lock this context can't be scheduled
515 * in, so we can change the state safely.
516 */
517 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
518 update_counter_times(counter);
519 counter->state = PERF_COUNTER_STATE_OFF;
520 }
521
522 spin_unlock_irq(&ctx->lock);
523 }
524
525 static int
526 counter_sched_in(struct perf_counter *counter,
527 struct perf_cpu_context *cpuctx,
528 struct perf_counter_context *ctx,
529 int cpu)
530 {
531 if (counter->state <= PERF_COUNTER_STATE_OFF)
532 return 0;
533
534 counter->state = PERF_COUNTER_STATE_ACTIVE;
535 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
536 /*
537 * The new state must be visible before we turn it on in the hardware:
538 */
539 smp_wmb();
540
541 if (counter->pmu->enable(counter)) {
542 counter->state = PERF_COUNTER_STATE_INACTIVE;
543 counter->oncpu = -1;
544 return -EAGAIN;
545 }
546
547 counter->tstamp_running += ctx->time - counter->tstamp_stopped;
548
549 if (!is_software_counter(counter))
550 cpuctx->active_oncpu++;
551 ctx->nr_active++;
552
553 if (counter->hw_event.exclusive)
554 cpuctx->exclusive = 1;
555
556 return 0;
557 }
558
559 static int
560 group_sched_in(struct perf_counter *group_counter,
561 struct perf_cpu_context *cpuctx,
562 struct perf_counter_context *ctx,
563 int cpu)
564 {
565 struct perf_counter *counter, *partial_group;
566 int ret;
567
568 if (group_counter->state == PERF_COUNTER_STATE_OFF)
569 return 0;
570
571 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
572 if (ret)
573 return ret < 0 ? ret : 0;
574
575 group_counter->prev_state = group_counter->state;
576 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
577 return -EAGAIN;
578
579 /*
580 * Schedule in siblings as one group (if any):
581 */
582 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
583 counter->prev_state = counter->state;
584 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
585 partial_group = counter;
586 goto group_error;
587 }
588 }
589
590 return 0;
591
592 group_error:
593 /*
594 * Groups can be scheduled in as one unit only, so undo any
595 * partial group before returning:
596 */
597 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
598 if (counter == partial_group)
599 break;
600 counter_sched_out(counter, cpuctx, ctx);
601 }
602 counter_sched_out(group_counter, cpuctx, ctx);
603
604 return -EAGAIN;
605 }
606
607 /*
608 * Return 1 for a group consisting entirely of software counters,
609 * 0 if the group contains any hardware counters.
610 */
611 static int is_software_only_group(struct perf_counter *leader)
612 {
613 struct perf_counter *counter;
614
615 if (!is_software_counter(leader))
616 return 0;
617
618 list_for_each_entry(counter, &leader->sibling_list, list_entry)
619 if (!is_software_counter(counter))
620 return 0;
621
622 return 1;
623 }
624
625 /*
626 * Work out whether we can put this counter group on the CPU now.
627 */
628 static int group_can_go_on(struct perf_counter *counter,
629 struct perf_cpu_context *cpuctx,
630 int can_add_hw)
631 {
632 /*
633 * Groups consisting entirely of software counters can always go on.
634 */
635 if (is_software_only_group(counter))
636 return 1;
637 /*
638 * If an exclusive group is already on, no other hardware
639 * counters can go on.
640 */
641 if (cpuctx->exclusive)
642 return 0;
643 /*
644 * If this group is exclusive and there are already
645 * counters on the CPU, it can't go on.
646 */
647 if (counter->hw_event.exclusive && cpuctx->active_oncpu)
648 return 0;
649 /*
650 * Otherwise, try to add it if all previous groups were able
651 * to go on.
652 */
653 return can_add_hw;
654 }
655
656 static void add_counter_to_ctx(struct perf_counter *counter,
657 struct perf_counter_context *ctx)
658 {
659 list_add_counter(counter, ctx);
660 counter->prev_state = PERF_COUNTER_STATE_OFF;
661 counter->tstamp_enabled = ctx->time;
662 counter->tstamp_running = ctx->time;
663 counter->tstamp_stopped = ctx->time;
664 }
665
666 /*
667 * Cross CPU call to install and enable a performance counter
668 *
669 * Must be called with ctx->mutex held
670 */
671 static void __perf_install_in_context(void *info)
672 {
673 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
674 struct perf_counter *counter = info;
675 struct perf_counter_context *ctx = counter->ctx;
676 struct perf_counter *leader = counter->group_leader;
677 int cpu = smp_processor_id();
678 int err;
679
680 /*
681 * If this is a task context, we need to check whether it is
682 * the current task context of this cpu. If not it has been
683 * scheduled out before the smp call arrived.
684 * Or possibly this is the right context but it isn't
685 * on this cpu because it had no counters.
686 */
687 if (ctx->task && cpuctx->task_ctx != ctx) {
688 if (cpuctx->task_ctx || ctx->task != current)
689 return;
690 cpuctx->task_ctx = ctx;
691 }
692
693 spin_lock(&ctx->lock);
694 ctx->is_active = 1;
695 update_context_time(ctx);
696
697 /*
698 * Protect the list operation against NMI by disabling the
699 * counters on a global level. NOP for non NMI based counters.
700 */
701 perf_disable();
702
703 add_counter_to_ctx(counter, ctx);
704
705 /*
706 * Don't put the counter on if it is disabled or if
707 * it is in a group and the group isn't on.
708 */
709 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
710 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
711 goto unlock;
712
713 /*
714 * An exclusive counter can't go on if there are already active
715 * hardware counters, and no hardware counter can go on if there
716 * is already an exclusive counter on.
717 */
718 if (!group_can_go_on(counter, cpuctx, 1))
719 err = -EEXIST;
720 else
721 err = counter_sched_in(counter, cpuctx, ctx, cpu);
722
723 if (err) {
724 /*
725 * This counter couldn't go on. If it is in a group
726 * then we have to pull the whole group off.
727 * If the counter group is pinned then put it in error state.
728 */
729 if (leader != counter)
730 group_sched_out(leader, cpuctx, ctx);
731 if (leader->hw_event.pinned) {
732 update_group_times(leader);
733 leader->state = PERF_COUNTER_STATE_ERROR;
734 }
735 }
736
737 if (!err && !ctx->task && cpuctx->max_pertask)
738 cpuctx->max_pertask--;
739
740 unlock:
741 perf_enable();
742
743 spin_unlock(&ctx->lock);
744 }
745
746 /*
747 * Attach a performance counter to a context
748 *
749 * First we add the counter to the list with the hardware enable bit
750 * in counter->hw_config cleared.
751 *
752 * If the counter is attached to a task which is on a CPU we use a smp
753 * call to enable it in the task context. The task might have been
754 * scheduled away, but we check this in the smp call again.
755 *
756 * Must be called with ctx->mutex held.
757 */
758 static void
759 perf_install_in_context(struct perf_counter_context *ctx,
760 struct perf_counter *counter,
761 int cpu)
762 {
763 struct task_struct *task = ctx->task;
764
765 if (!task) {
766 /*
767 * Per cpu counters are installed via an smp call and
768 * the install is always sucessful.
769 */
770 smp_call_function_single(cpu, __perf_install_in_context,
771 counter, 1);
772 return;
773 }
774
775 retry:
776 task_oncpu_function_call(task, __perf_install_in_context,
777 counter);
778
779 spin_lock_irq(&ctx->lock);
780 /*
781 * we need to retry the smp call.
782 */
783 if (ctx->is_active && list_empty(&counter->list_entry)) {
784 spin_unlock_irq(&ctx->lock);
785 goto retry;
786 }
787
788 /*
789 * The lock prevents that this context is scheduled in so we
790 * can add the counter safely, if it the call above did not
791 * succeed.
792 */
793 if (list_empty(&counter->list_entry))
794 add_counter_to_ctx(counter, ctx);
795 spin_unlock_irq(&ctx->lock);
796 }
797
798 /*
799 * Cross CPU call to enable a performance counter
800 */
801 static void __perf_counter_enable(void *info)
802 {
803 struct perf_counter *counter = info;
804 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
805 struct perf_counter_context *ctx = counter->ctx;
806 struct perf_counter *leader = counter->group_leader;
807 int err;
808
809 /*
810 * If this is a per-task counter, need to check whether this
811 * counter's task is the current task on this cpu.
812 */
813 if (ctx->task && cpuctx->task_ctx != ctx) {
814 if (cpuctx->task_ctx || ctx->task != current)
815 return;
816 cpuctx->task_ctx = ctx;
817 }
818
819 spin_lock(&ctx->lock);
820 ctx->is_active = 1;
821 update_context_time(ctx);
822
823 counter->prev_state = counter->state;
824 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
825 goto unlock;
826 counter->state = PERF_COUNTER_STATE_INACTIVE;
827 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
828
829 /*
830 * If the counter is in a group and isn't the group leader,
831 * then don't put it on unless the group is on.
832 */
833 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
834 goto unlock;
835
836 if (!group_can_go_on(counter, cpuctx, 1)) {
837 err = -EEXIST;
838 } else {
839 perf_disable();
840 if (counter == leader)
841 err = group_sched_in(counter, cpuctx, ctx,
842 smp_processor_id());
843 else
844 err = counter_sched_in(counter, cpuctx, ctx,
845 smp_processor_id());
846 perf_enable();
847 }
848
849 if (err) {
850 /*
851 * If this counter can't go on and it's part of a
852 * group, then the whole group has to come off.
853 */
854 if (leader != counter)
855 group_sched_out(leader, cpuctx, ctx);
856 if (leader->hw_event.pinned) {
857 update_group_times(leader);
858 leader->state = PERF_COUNTER_STATE_ERROR;
859 }
860 }
861
862 unlock:
863 spin_unlock(&ctx->lock);
864 }
865
866 /*
867 * Enable a counter.
868 *
869 * If counter->ctx is a cloned context, callers must make sure that
870 * every task struct that counter->ctx->task could possibly point to
871 * remains valid. This condition is satisfied when called through
872 * perf_counter_for_each_child or perf_counter_for_each as described
873 * for perf_counter_disable.
874 */
875 static void perf_counter_enable(struct perf_counter *counter)
876 {
877 struct perf_counter_context *ctx = counter->ctx;
878 struct task_struct *task = ctx->task;
879
880 if (!task) {
881 /*
882 * Enable the counter on the cpu that it's on
883 */
884 smp_call_function_single(counter->cpu, __perf_counter_enable,
885 counter, 1);
886 return;
887 }
888
889 spin_lock_irq(&ctx->lock);
890 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
891 goto out;
892
893 /*
894 * If the counter is in error state, clear that first.
895 * That way, if we see the counter in error state below, we
896 * know that it has gone back into error state, as distinct
897 * from the task having been scheduled away before the
898 * cross-call arrived.
899 */
900 if (counter->state == PERF_COUNTER_STATE_ERROR)
901 counter->state = PERF_COUNTER_STATE_OFF;
902
903 retry:
904 spin_unlock_irq(&ctx->lock);
905 task_oncpu_function_call(task, __perf_counter_enable, counter);
906
907 spin_lock_irq(&ctx->lock);
908
909 /*
910 * If the context is active and the counter is still off,
911 * we need to retry the cross-call.
912 */
913 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
914 goto retry;
915
916 /*
917 * Since we have the lock this context can't be scheduled
918 * in, so we can change the state safely.
919 */
920 if (counter->state == PERF_COUNTER_STATE_OFF) {
921 counter->state = PERF_COUNTER_STATE_INACTIVE;
922 counter->tstamp_enabled =
923 ctx->time - counter->total_time_enabled;
924 }
925 out:
926 spin_unlock_irq(&ctx->lock);
927 }
928
929 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
930 {
931 /*
932 * not supported on inherited counters
933 */
934 if (counter->hw_event.inherit)
935 return -EINVAL;
936
937 atomic_add(refresh, &counter->event_limit);
938 perf_counter_enable(counter);
939
940 return 0;
941 }
942
943 void __perf_counter_sched_out(struct perf_counter_context *ctx,
944 struct perf_cpu_context *cpuctx)
945 {
946 struct perf_counter *counter;
947
948 spin_lock(&ctx->lock);
949 ctx->is_active = 0;
950 if (likely(!ctx->nr_counters))
951 goto out;
952 update_context_time(ctx);
953
954 perf_disable();
955 if (ctx->nr_active) {
956 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
957 if (counter != counter->group_leader)
958 counter_sched_out(counter, cpuctx, ctx);
959 else
960 group_sched_out(counter, cpuctx, ctx);
961 }
962 }
963 perf_enable();
964 out:
965 spin_unlock(&ctx->lock);
966 }
967
968 /*
969 * Test whether two contexts are equivalent, i.e. whether they
970 * have both been cloned from the same version of the same context
971 * and they both have the same number of enabled counters.
972 * If the number of enabled counters is the same, then the set
973 * of enabled counters should be the same, because these are both
974 * inherited contexts, therefore we can't access individual counters
975 * in them directly with an fd; we can only enable/disable all
976 * counters via prctl, or enable/disable all counters in a family
977 * via ioctl, which will have the same effect on both contexts.
978 */
979 static int context_equiv(struct perf_counter_context *ctx1,
980 struct perf_counter_context *ctx2)
981 {
982 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
983 && ctx1->parent_gen == ctx2->parent_gen
984 && !ctx1->pin_count && !ctx2->pin_count;
985 }
986
987 /*
988 * Called from scheduler to remove the counters of the current task,
989 * with interrupts disabled.
990 *
991 * We stop each counter and update the counter value in counter->count.
992 *
993 * This does not protect us against NMI, but disable()
994 * sets the disabled bit in the control field of counter _before_
995 * accessing the counter control register. If a NMI hits, then it will
996 * not restart the counter.
997 */
998 void perf_counter_task_sched_out(struct task_struct *task,
999 struct task_struct *next, int cpu)
1000 {
1001 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1002 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1003 struct perf_counter_context *next_ctx;
1004 struct perf_counter_context *parent;
1005 struct pt_regs *regs;
1006 int do_switch = 1;
1007
1008 regs = task_pt_regs(task);
1009 perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
1010
1011 if (likely(!ctx || !cpuctx->task_ctx))
1012 return;
1013
1014 update_context_time(ctx);
1015
1016 rcu_read_lock();
1017 parent = rcu_dereference(ctx->parent_ctx);
1018 next_ctx = next->perf_counter_ctxp;
1019 if (parent && next_ctx &&
1020 rcu_dereference(next_ctx->parent_ctx) == parent) {
1021 /*
1022 * Looks like the two contexts are clones, so we might be
1023 * able to optimize the context switch. We lock both
1024 * contexts and check that they are clones under the
1025 * lock (including re-checking that neither has been
1026 * uncloned in the meantime). It doesn't matter which
1027 * order we take the locks because no other cpu could
1028 * be trying to lock both of these tasks.
1029 */
1030 spin_lock(&ctx->lock);
1031 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1032 if (context_equiv(ctx, next_ctx)) {
1033 /*
1034 * XXX do we need a memory barrier of sorts
1035 * wrt to rcu_dereference() of perf_counter_ctxp
1036 */
1037 task->perf_counter_ctxp = next_ctx;
1038 next->perf_counter_ctxp = ctx;
1039 ctx->task = next;
1040 next_ctx->task = task;
1041 do_switch = 0;
1042 }
1043 spin_unlock(&next_ctx->lock);
1044 spin_unlock(&ctx->lock);
1045 }
1046 rcu_read_unlock();
1047
1048 if (do_switch) {
1049 __perf_counter_sched_out(ctx, cpuctx);
1050 cpuctx->task_ctx = NULL;
1051 }
1052 }
1053
1054 /*
1055 * Called with IRQs disabled
1056 */
1057 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
1058 {
1059 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1060
1061 if (!cpuctx->task_ctx)
1062 return;
1063
1064 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1065 return;
1066
1067 __perf_counter_sched_out(ctx, cpuctx);
1068 cpuctx->task_ctx = NULL;
1069 }
1070
1071 /*
1072 * Called with IRQs disabled
1073 */
1074 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1075 {
1076 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1077 }
1078
1079 static void
1080 __perf_counter_sched_in(struct perf_counter_context *ctx,
1081 struct perf_cpu_context *cpuctx, int cpu)
1082 {
1083 struct perf_counter *counter;
1084 int can_add_hw = 1;
1085
1086 spin_lock(&ctx->lock);
1087 ctx->is_active = 1;
1088 if (likely(!ctx->nr_counters))
1089 goto out;
1090
1091 ctx->timestamp = perf_clock();
1092
1093 perf_disable();
1094
1095 /*
1096 * First go through the list and put on any pinned groups
1097 * in order to give them the best chance of going on.
1098 */
1099 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1100 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1101 !counter->hw_event.pinned)
1102 continue;
1103 if (counter->cpu != -1 && counter->cpu != cpu)
1104 continue;
1105
1106 if (counter != counter->group_leader)
1107 counter_sched_in(counter, cpuctx, ctx, cpu);
1108 else {
1109 if (group_can_go_on(counter, cpuctx, 1))
1110 group_sched_in(counter, cpuctx, ctx, cpu);
1111 }
1112
1113 /*
1114 * If this pinned group hasn't been scheduled,
1115 * put it in error state.
1116 */
1117 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1118 update_group_times(counter);
1119 counter->state = PERF_COUNTER_STATE_ERROR;
1120 }
1121 }
1122
1123 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1124 /*
1125 * Ignore counters in OFF or ERROR state, and
1126 * ignore pinned counters since we did them already.
1127 */
1128 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1129 counter->hw_event.pinned)
1130 continue;
1131
1132 /*
1133 * Listen to the 'cpu' scheduling filter constraint
1134 * of counters:
1135 */
1136 if (counter->cpu != -1 && counter->cpu != cpu)
1137 continue;
1138
1139 if (counter != counter->group_leader) {
1140 if (counter_sched_in(counter, cpuctx, ctx, cpu))
1141 can_add_hw = 0;
1142 } else {
1143 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1144 if (group_sched_in(counter, cpuctx, ctx, cpu))
1145 can_add_hw = 0;
1146 }
1147 }
1148 }
1149 perf_enable();
1150 out:
1151 spin_unlock(&ctx->lock);
1152 }
1153
1154 /*
1155 * Called from scheduler to add the counters of the current task
1156 * with interrupts disabled.
1157 *
1158 * We restore the counter value and then enable it.
1159 *
1160 * This does not protect us against NMI, but enable()
1161 * sets the enabled bit in the control field of counter _before_
1162 * accessing the counter control register. If a NMI hits, then it will
1163 * keep the counter running.
1164 */
1165 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1166 {
1167 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1168 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1169
1170 if (likely(!ctx))
1171 return;
1172 if (cpuctx->task_ctx == ctx)
1173 return;
1174 __perf_counter_sched_in(ctx, cpuctx, cpu);
1175 cpuctx->task_ctx = ctx;
1176 }
1177
1178 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1179 {
1180 struct perf_counter_context *ctx = &cpuctx->ctx;
1181
1182 __perf_counter_sched_in(ctx, cpuctx, cpu);
1183 }
1184
1185 #define MAX_INTERRUPTS (~0ULL)
1186
1187 static void perf_log_throttle(struct perf_counter *counter, int enable);
1188 static void perf_log_period(struct perf_counter *counter, u64 period);
1189
1190 static void perf_adjust_freq(struct perf_counter_context *ctx)
1191 {
1192 struct perf_counter *counter;
1193 u64 interrupts, irq_period;
1194 u64 events, period;
1195 s64 delta;
1196
1197 spin_lock(&ctx->lock);
1198 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1199 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1200 continue;
1201
1202 interrupts = counter->hw.interrupts;
1203 counter->hw.interrupts = 0;
1204
1205 if (interrupts == MAX_INTERRUPTS) {
1206 perf_log_throttle(counter, 1);
1207 counter->pmu->unthrottle(counter);
1208 interrupts = 2*sysctl_perf_counter_limit/HZ;
1209 }
1210
1211 if (!counter->hw_event.freq || !counter->hw_event.irq_freq)
1212 continue;
1213
1214 events = HZ * interrupts * counter->hw.irq_period;
1215 period = div64_u64(events, counter->hw_event.irq_freq);
1216
1217 delta = (s64)(1 + period - counter->hw.irq_period);
1218 delta >>= 1;
1219
1220 irq_period = counter->hw.irq_period + delta;
1221
1222 if (!irq_period)
1223 irq_period = 1;
1224
1225 perf_log_period(counter, irq_period);
1226
1227 counter->hw.irq_period = irq_period;
1228 }
1229 spin_unlock(&ctx->lock);
1230 }
1231
1232 /*
1233 * Round-robin a context's counters:
1234 */
1235 static void rotate_ctx(struct perf_counter_context *ctx)
1236 {
1237 struct perf_counter *counter;
1238
1239 if (!ctx->nr_counters)
1240 return;
1241
1242 spin_lock(&ctx->lock);
1243 /*
1244 * Rotate the first entry last (works just fine for group counters too):
1245 */
1246 perf_disable();
1247 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1248 list_move_tail(&counter->list_entry, &ctx->counter_list);
1249 break;
1250 }
1251 perf_enable();
1252
1253 spin_unlock(&ctx->lock);
1254 }
1255
1256 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1257 {
1258 struct perf_cpu_context *cpuctx;
1259 struct perf_counter_context *ctx;
1260
1261 if (!atomic_read(&nr_counters))
1262 return;
1263
1264 cpuctx = &per_cpu(perf_cpu_context, cpu);
1265 ctx = curr->perf_counter_ctxp;
1266
1267 perf_adjust_freq(&cpuctx->ctx);
1268 if (ctx)
1269 perf_adjust_freq(ctx);
1270
1271 perf_counter_cpu_sched_out(cpuctx);
1272 if (ctx)
1273 __perf_counter_task_sched_out(ctx);
1274
1275 rotate_ctx(&cpuctx->ctx);
1276 if (ctx)
1277 rotate_ctx(ctx);
1278
1279 perf_counter_cpu_sched_in(cpuctx, cpu);
1280 if (ctx)
1281 perf_counter_task_sched_in(curr, cpu);
1282 }
1283
1284 /*
1285 * Cross CPU call to read the hardware counter
1286 */
1287 static void __read(void *info)
1288 {
1289 struct perf_counter *counter = info;
1290 struct perf_counter_context *ctx = counter->ctx;
1291 unsigned long flags;
1292
1293 local_irq_save(flags);
1294 if (ctx->is_active)
1295 update_context_time(ctx);
1296 counter->pmu->read(counter);
1297 update_counter_times(counter);
1298 local_irq_restore(flags);
1299 }
1300
1301 static u64 perf_counter_read(struct perf_counter *counter)
1302 {
1303 /*
1304 * If counter is enabled and currently active on a CPU, update the
1305 * value in the counter structure:
1306 */
1307 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1308 smp_call_function_single(counter->oncpu,
1309 __read, counter, 1);
1310 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1311 update_counter_times(counter);
1312 }
1313
1314 return atomic64_read(&counter->count);
1315 }
1316
1317 /*
1318 * Initialize the perf_counter context in a task_struct:
1319 */
1320 static void
1321 __perf_counter_init_context(struct perf_counter_context *ctx,
1322 struct task_struct *task)
1323 {
1324 memset(ctx, 0, sizeof(*ctx));
1325 spin_lock_init(&ctx->lock);
1326 mutex_init(&ctx->mutex);
1327 INIT_LIST_HEAD(&ctx->counter_list);
1328 INIT_LIST_HEAD(&ctx->event_list);
1329 atomic_set(&ctx->refcount, 1);
1330 ctx->task = task;
1331 }
1332
1333 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1334 {
1335 struct perf_counter_context *parent_ctx;
1336 struct perf_counter_context *ctx;
1337 struct perf_cpu_context *cpuctx;
1338 struct task_struct *task;
1339 unsigned long flags;
1340 int err;
1341
1342 /*
1343 * If cpu is not a wildcard then this is a percpu counter:
1344 */
1345 if (cpu != -1) {
1346 /* Must be root to operate on a CPU counter: */
1347 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1348 return ERR_PTR(-EACCES);
1349
1350 if (cpu < 0 || cpu > num_possible_cpus())
1351 return ERR_PTR(-EINVAL);
1352
1353 /*
1354 * We could be clever and allow to attach a counter to an
1355 * offline CPU and activate it when the CPU comes up, but
1356 * that's for later.
1357 */
1358 if (!cpu_isset(cpu, cpu_online_map))
1359 return ERR_PTR(-ENODEV);
1360
1361 cpuctx = &per_cpu(perf_cpu_context, cpu);
1362 ctx = &cpuctx->ctx;
1363 get_ctx(ctx);
1364
1365 return ctx;
1366 }
1367
1368 rcu_read_lock();
1369 if (!pid)
1370 task = current;
1371 else
1372 task = find_task_by_vpid(pid);
1373 if (task)
1374 get_task_struct(task);
1375 rcu_read_unlock();
1376
1377 if (!task)
1378 return ERR_PTR(-ESRCH);
1379
1380 /*
1381 * Can't attach counters to a dying task.
1382 */
1383 err = -ESRCH;
1384 if (task->flags & PF_EXITING)
1385 goto errout;
1386
1387 /* Reuse ptrace permission checks for now. */
1388 err = -EACCES;
1389 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1390 goto errout;
1391
1392 retry:
1393 ctx = perf_lock_task_context(task, &flags);
1394 if (ctx) {
1395 parent_ctx = ctx->parent_ctx;
1396 if (parent_ctx) {
1397 put_ctx(parent_ctx);
1398 ctx->parent_ctx = NULL; /* no longer a clone */
1399 }
1400 /*
1401 * Get an extra reference before dropping the lock so that
1402 * this context won't get freed if the task exits.
1403 */
1404 get_ctx(ctx);
1405 spin_unlock_irqrestore(&ctx->lock, flags);
1406 }
1407
1408 if (!ctx) {
1409 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1410 err = -ENOMEM;
1411 if (!ctx)
1412 goto errout;
1413 __perf_counter_init_context(ctx, task);
1414 get_ctx(ctx);
1415 if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1416 /*
1417 * We raced with some other task; use
1418 * the context they set.
1419 */
1420 kfree(ctx);
1421 goto retry;
1422 }
1423 get_task_struct(task);
1424 }
1425
1426 put_task_struct(task);
1427 return ctx;
1428
1429 errout:
1430 put_task_struct(task);
1431 return ERR_PTR(err);
1432 }
1433
1434 static void free_counter_rcu(struct rcu_head *head)
1435 {
1436 struct perf_counter *counter;
1437
1438 counter = container_of(head, struct perf_counter, rcu_head);
1439 kfree(counter);
1440 }
1441
1442 static void perf_pending_sync(struct perf_counter *counter);
1443
1444 static void free_counter(struct perf_counter *counter)
1445 {
1446 perf_pending_sync(counter);
1447
1448 atomic_dec(&nr_counters);
1449 if (counter->hw_event.mmap)
1450 atomic_dec(&nr_mmap_tracking);
1451 if (counter->hw_event.munmap)
1452 atomic_dec(&nr_munmap_tracking);
1453 if (counter->hw_event.comm)
1454 atomic_dec(&nr_comm_tracking);
1455
1456 if (counter->destroy)
1457 counter->destroy(counter);
1458
1459 put_ctx(counter->ctx);
1460 call_rcu(&counter->rcu_head, free_counter_rcu);
1461 }
1462
1463 /*
1464 * Called when the last reference to the file is gone.
1465 */
1466 static int perf_release(struct inode *inode, struct file *file)
1467 {
1468 struct perf_counter *counter = file->private_data;
1469 struct perf_counter_context *ctx = counter->ctx;
1470
1471 file->private_data = NULL;
1472
1473 WARN_ON_ONCE(ctx->parent_ctx);
1474 mutex_lock(&ctx->mutex);
1475 perf_counter_remove_from_context(counter);
1476 mutex_unlock(&ctx->mutex);
1477
1478 mutex_lock(&counter->owner->perf_counter_mutex);
1479 list_del_init(&counter->owner_entry);
1480 mutex_unlock(&counter->owner->perf_counter_mutex);
1481 put_task_struct(counter->owner);
1482
1483 free_counter(counter);
1484
1485 return 0;
1486 }
1487
1488 /*
1489 * Read the performance counter - simple non blocking version for now
1490 */
1491 static ssize_t
1492 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1493 {
1494 u64 values[3];
1495 int n;
1496
1497 /*
1498 * Return end-of-file for a read on a counter that is in
1499 * error state (i.e. because it was pinned but it couldn't be
1500 * scheduled on to the CPU at some point).
1501 */
1502 if (counter->state == PERF_COUNTER_STATE_ERROR)
1503 return 0;
1504
1505 WARN_ON_ONCE(counter->ctx->parent_ctx);
1506 mutex_lock(&counter->child_mutex);
1507 values[0] = perf_counter_read(counter);
1508 n = 1;
1509 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1510 values[n++] = counter->total_time_enabled +
1511 atomic64_read(&counter->child_total_time_enabled);
1512 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1513 values[n++] = counter->total_time_running +
1514 atomic64_read(&counter->child_total_time_running);
1515 mutex_unlock(&counter->child_mutex);
1516
1517 if (count < n * sizeof(u64))
1518 return -EINVAL;
1519 count = n * sizeof(u64);
1520
1521 if (copy_to_user(buf, values, count))
1522 return -EFAULT;
1523
1524 return count;
1525 }
1526
1527 static ssize_t
1528 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1529 {
1530 struct perf_counter *counter = file->private_data;
1531
1532 return perf_read_hw(counter, buf, count);
1533 }
1534
1535 static unsigned int perf_poll(struct file *file, poll_table *wait)
1536 {
1537 struct perf_counter *counter = file->private_data;
1538 struct perf_mmap_data *data;
1539 unsigned int events = POLL_HUP;
1540
1541 rcu_read_lock();
1542 data = rcu_dereference(counter->data);
1543 if (data)
1544 events = atomic_xchg(&data->poll, 0);
1545 rcu_read_unlock();
1546
1547 poll_wait(file, &counter->waitq, wait);
1548
1549 return events;
1550 }
1551
1552 static void perf_counter_reset(struct perf_counter *counter)
1553 {
1554 (void)perf_counter_read(counter);
1555 atomic64_set(&counter->count, 0);
1556 perf_counter_update_userpage(counter);
1557 }
1558
1559 static void perf_counter_for_each_sibling(struct perf_counter *counter,
1560 void (*func)(struct perf_counter *))
1561 {
1562 struct perf_counter_context *ctx = counter->ctx;
1563 struct perf_counter *sibling;
1564
1565 WARN_ON_ONCE(ctx->parent_ctx);
1566 mutex_lock(&ctx->mutex);
1567 counter = counter->group_leader;
1568
1569 func(counter);
1570 list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1571 func(sibling);
1572 mutex_unlock(&ctx->mutex);
1573 }
1574
1575 /*
1576 * Holding the top-level counter's child_mutex means that any
1577 * descendant process that has inherited this counter will block
1578 * in sync_child_counter if it goes to exit, thus satisfying the
1579 * task existence requirements of perf_counter_enable/disable.
1580 */
1581 static void perf_counter_for_each_child(struct perf_counter *counter,
1582 void (*func)(struct perf_counter *))
1583 {
1584 struct perf_counter *child;
1585
1586 WARN_ON_ONCE(counter->ctx->parent_ctx);
1587 mutex_lock(&counter->child_mutex);
1588 func(counter);
1589 list_for_each_entry(child, &counter->child_list, child_list)
1590 func(child);
1591 mutex_unlock(&counter->child_mutex);
1592 }
1593
1594 static void perf_counter_for_each(struct perf_counter *counter,
1595 void (*func)(struct perf_counter *))
1596 {
1597 struct perf_counter *child;
1598
1599 WARN_ON_ONCE(counter->ctx->parent_ctx);
1600 mutex_lock(&counter->child_mutex);
1601 perf_counter_for_each_sibling(counter, func);
1602 list_for_each_entry(child, &counter->child_list, child_list)
1603 perf_counter_for_each_sibling(child, func);
1604 mutex_unlock(&counter->child_mutex);
1605 }
1606
1607 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1608 {
1609 struct perf_counter *counter = file->private_data;
1610 void (*func)(struct perf_counter *);
1611 u32 flags = arg;
1612
1613 switch (cmd) {
1614 case PERF_COUNTER_IOC_ENABLE:
1615 func = perf_counter_enable;
1616 break;
1617 case PERF_COUNTER_IOC_DISABLE:
1618 func = perf_counter_disable;
1619 break;
1620 case PERF_COUNTER_IOC_RESET:
1621 func = perf_counter_reset;
1622 break;
1623
1624 case PERF_COUNTER_IOC_REFRESH:
1625 return perf_counter_refresh(counter, arg);
1626 default:
1627 return -ENOTTY;
1628 }
1629
1630 if (flags & PERF_IOC_FLAG_GROUP)
1631 perf_counter_for_each(counter, func);
1632 else
1633 perf_counter_for_each_child(counter, func);
1634
1635 return 0;
1636 }
1637
1638 int perf_counter_task_enable(void)
1639 {
1640 struct perf_counter *counter;
1641
1642 mutex_lock(&current->perf_counter_mutex);
1643 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1644 perf_counter_for_each_child(counter, perf_counter_enable);
1645 mutex_unlock(&current->perf_counter_mutex);
1646
1647 return 0;
1648 }
1649
1650 int perf_counter_task_disable(void)
1651 {
1652 struct perf_counter *counter;
1653
1654 mutex_lock(&current->perf_counter_mutex);
1655 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1656 perf_counter_for_each_child(counter, perf_counter_disable);
1657 mutex_unlock(&current->perf_counter_mutex);
1658
1659 return 0;
1660 }
1661
1662 /*
1663 * Callers need to ensure there can be no nesting of this function, otherwise
1664 * the seqlock logic goes bad. We can not serialize this because the arch
1665 * code calls this from NMI context.
1666 */
1667 void perf_counter_update_userpage(struct perf_counter *counter)
1668 {
1669 struct perf_counter_mmap_page *userpg;
1670 struct perf_mmap_data *data;
1671
1672 rcu_read_lock();
1673 data = rcu_dereference(counter->data);
1674 if (!data)
1675 goto unlock;
1676
1677 userpg = data->user_page;
1678
1679 /*
1680 * Disable preemption so as to not let the corresponding user-space
1681 * spin too long if we get preempted.
1682 */
1683 preempt_disable();
1684 ++userpg->lock;
1685 barrier();
1686 userpg->index = counter->hw.idx;
1687 userpg->offset = atomic64_read(&counter->count);
1688 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1689 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1690
1691 barrier();
1692 ++userpg->lock;
1693 preempt_enable();
1694 unlock:
1695 rcu_read_unlock();
1696 }
1697
1698 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1699 {
1700 struct perf_counter *counter = vma->vm_file->private_data;
1701 struct perf_mmap_data *data;
1702 int ret = VM_FAULT_SIGBUS;
1703
1704 rcu_read_lock();
1705 data = rcu_dereference(counter->data);
1706 if (!data)
1707 goto unlock;
1708
1709 if (vmf->pgoff == 0) {
1710 vmf->page = virt_to_page(data->user_page);
1711 } else {
1712 int nr = vmf->pgoff - 1;
1713
1714 if ((unsigned)nr > data->nr_pages)
1715 goto unlock;
1716
1717 vmf->page = virt_to_page(data->data_pages[nr]);
1718 }
1719 get_page(vmf->page);
1720 ret = 0;
1721 unlock:
1722 rcu_read_unlock();
1723
1724 return ret;
1725 }
1726
1727 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1728 {
1729 struct perf_mmap_data *data;
1730 unsigned long size;
1731 int i;
1732
1733 WARN_ON(atomic_read(&counter->mmap_count));
1734
1735 size = sizeof(struct perf_mmap_data);
1736 size += nr_pages * sizeof(void *);
1737
1738 data = kzalloc(size, GFP_KERNEL);
1739 if (!data)
1740 goto fail;
1741
1742 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1743 if (!data->user_page)
1744 goto fail_user_page;
1745
1746 for (i = 0; i < nr_pages; i++) {
1747 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1748 if (!data->data_pages[i])
1749 goto fail_data_pages;
1750 }
1751
1752 data->nr_pages = nr_pages;
1753 atomic_set(&data->lock, -1);
1754
1755 rcu_assign_pointer(counter->data, data);
1756
1757 return 0;
1758
1759 fail_data_pages:
1760 for (i--; i >= 0; i--)
1761 free_page((unsigned long)data->data_pages[i]);
1762
1763 free_page((unsigned long)data->user_page);
1764
1765 fail_user_page:
1766 kfree(data);
1767
1768 fail:
1769 return -ENOMEM;
1770 }
1771
1772 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1773 {
1774 struct perf_mmap_data *data;
1775 int i;
1776
1777 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
1778
1779 free_page((unsigned long)data->user_page);
1780 for (i = 0; i < data->nr_pages; i++)
1781 free_page((unsigned long)data->data_pages[i]);
1782 kfree(data);
1783 }
1784
1785 static void perf_mmap_data_free(struct perf_counter *counter)
1786 {
1787 struct perf_mmap_data *data = counter->data;
1788
1789 WARN_ON(atomic_read(&counter->mmap_count));
1790
1791 rcu_assign_pointer(counter->data, NULL);
1792 call_rcu(&data->rcu_head, __perf_mmap_data_free);
1793 }
1794
1795 static void perf_mmap_open(struct vm_area_struct *vma)
1796 {
1797 struct perf_counter *counter = vma->vm_file->private_data;
1798
1799 atomic_inc(&counter->mmap_count);
1800 }
1801
1802 static void perf_mmap_close(struct vm_area_struct *vma)
1803 {
1804 struct perf_counter *counter = vma->vm_file->private_data;
1805
1806 WARN_ON_ONCE(counter->ctx->parent_ctx);
1807 if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) {
1808 struct user_struct *user = current_user();
1809
1810 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1811 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1812 perf_mmap_data_free(counter);
1813 mutex_unlock(&counter->mmap_mutex);
1814 }
1815 }
1816
1817 static struct vm_operations_struct perf_mmap_vmops = {
1818 .open = perf_mmap_open,
1819 .close = perf_mmap_close,
1820 .fault = perf_mmap_fault,
1821 };
1822
1823 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1824 {
1825 struct perf_counter *counter = file->private_data;
1826 unsigned long user_locked, user_lock_limit;
1827 struct user_struct *user = current_user();
1828 unsigned long locked, lock_limit;
1829 unsigned long vma_size;
1830 unsigned long nr_pages;
1831 long user_extra, extra;
1832 int ret = 0;
1833
1834 if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1835 return -EINVAL;
1836
1837 vma_size = vma->vm_end - vma->vm_start;
1838 nr_pages = (vma_size / PAGE_SIZE) - 1;
1839
1840 /*
1841 * If we have data pages ensure they're a power-of-two number, so we
1842 * can do bitmasks instead of modulo.
1843 */
1844 if (nr_pages != 0 && !is_power_of_2(nr_pages))
1845 return -EINVAL;
1846
1847 if (vma_size != PAGE_SIZE * (1 + nr_pages))
1848 return -EINVAL;
1849
1850 if (vma->vm_pgoff != 0)
1851 return -EINVAL;
1852
1853 WARN_ON_ONCE(counter->ctx->parent_ctx);
1854 mutex_lock(&counter->mmap_mutex);
1855 if (atomic_inc_not_zero(&counter->mmap_count)) {
1856 if (nr_pages != counter->data->nr_pages)
1857 ret = -EINVAL;
1858 goto unlock;
1859 }
1860
1861 user_extra = nr_pages + 1;
1862 user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1863
1864 /*
1865 * Increase the limit linearly with more CPUs:
1866 */
1867 user_lock_limit *= num_online_cpus();
1868
1869 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1870
1871 extra = 0;
1872 if (user_locked > user_lock_limit)
1873 extra = user_locked - user_lock_limit;
1874
1875 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1876 lock_limit >>= PAGE_SHIFT;
1877 locked = vma->vm_mm->locked_vm + extra;
1878
1879 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1880 ret = -EPERM;
1881 goto unlock;
1882 }
1883
1884 WARN_ON(counter->data);
1885 ret = perf_mmap_data_alloc(counter, nr_pages);
1886 if (ret)
1887 goto unlock;
1888
1889 atomic_set(&counter->mmap_count, 1);
1890 atomic_long_add(user_extra, &user->locked_vm);
1891 vma->vm_mm->locked_vm += extra;
1892 counter->data->nr_locked = extra;
1893 unlock:
1894 mutex_unlock(&counter->mmap_mutex);
1895
1896 vma->vm_flags &= ~VM_MAYWRITE;
1897 vma->vm_flags |= VM_RESERVED;
1898 vma->vm_ops = &perf_mmap_vmops;
1899
1900 return ret;
1901 }
1902
1903 static int perf_fasync(int fd, struct file *filp, int on)
1904 {
1905 struct inode *inode = filp->f_path.dentry->d_inode;
1906 struct perf_counter *counter = filp->private_data;
1907 int retval;
1908
1909 mutex_lock(&inode->i_mutex);
1910 retval = fasync_helper(fd, filp, on, &counter->fasync);
1911 mutex_unlock(&inode->i_mutex);
1912
1913 if (retval < 0)
1914 return retval;
1915
1916 return 0;
1917 }
1918
1919 static const struct file_operations perf_fops = {
1920 .release = perf_release,
1921 .read = perf_read,
1922 .poll = perf_poll,
1923 .unlocked_ioctl = perf_ioctl,
1924 .compat_ioctl = perf_ioctl,
1925 .mmap = perf_mmap,
1926 .fasync = perf_fasync,
1927 };
1928
1929 /*
1930 * Perf counter wakeup
1931 *
1932 * If there's data, ensure we set the poll() state and publish everything
1933 * to user-space before waking everybody up.
1934 */
1935
1936 void perf_counter_wakeup(struct perf_counter *counter)
1937 {
1938 wake_up_all(&counter->waitq);
1939
1940 if (counter->pending_kill) {
1941 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1942 counter->pending_kill = 0;
1943 }
1944 }
1945
1946 /*
1947 * Pending wakeups
1948 *
1949 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1950 *
1951 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1952 * single linked list and use cmpxchg() to add entries lockless.
1953 */
1954
1955 static void perf_pending_counter(struct perf_pending_entry *entry)
1956 {
1957 struct perf_counter *counter = container_of(entry,
1958 struct perf_counter, pending);
1959
1960 if (counter->pending_disable) {
1961 counter->pending_disable = 0;
1962 perf_counter_disable(counter);
1963 }
1964
1965 if (counter->pending_wakeup) {
1966 counter->pending_wakeup = 0;
1967 perf_counter_wakeup(counter);
1968 }
1969 }
1970
1971 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1972
1973 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1974 PENDING_TAIL,
1975 };
1976
1977 static void perf_pending_queue(struct perf_pending_entry *entry,
1978 void (*func)(struct perf_pending_entry *))
1979 {
1980 struct perf_pending_entry **head;
1981
1982 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1983 return;
1984
1985 entry->func = func;
1986
1987 head = &get_cpu_var(perf_pending_head);
1988
1989 do {
1990 entry->next = *head;
1991 } while (cmpxchg(head, entry->next, entry) != entry->next);
1992
1993 set_perf_counter_pending();
1994
1995 put_cpu_var(perf_pending_head);
1996 }
1997
1998 static int __perf_pending_run(void)
1999 {
2000 struct perf_pending_entry *list;
2001 int nr = 0;
2002
2003 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2004 while (list != PENDING_TAIL) {
2005 void (*func)(struct perf_pending_entry *);
2006 struct perf_pending_entry *entry = list;
2007
2008 list = list->next;
2009
2010 func = entry->func;
2011 entry->next = NULL;
2012 /*
2013 * Ensure we observe the unqueue before we issue the wakeup,
2014 * so that we won't be waiting forever.
2015 * -- see perf_not_pending().
2016 */
2017 smp_wmb();
2018
2019 func(entry);
2020 nr++;
2021 }
2022
2023 return nr;
2024 }
2025
2026 static inline int perf_not_pending(struct perf_counter *counter)
2027 {
2028 /*
2029 * If we flush on whatever cpu we run, there is a chance we don't
2030 * need to wait.
2031 */
2032 get_cpu();
2033 __perf_pending_run();
2034 put_cpu();
2035
2036 /*
2037 * Ensure we see the proper queue state before going to sleep
2038 * so that we do not miss the wakeup. -- see perf_pending_handle()
2039 */
2040 smp_rmb();
2041 return counter->pending.next == NULL;
2042 }
2043
2044 static void perf_pending_sync(struct perf_counter *counter)
2045 {
2046 wait_event(counter->waitq, perf_not_pending(counter));
2047 }
2048
2049 void perf_counter_do_pending(void)
2050 {
2051 __perf_pending_run();
2052 }
2053
2054 /*
2055 * Callchain support -- arch specific
2056 */
2057
2058 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2059 {
2060 return NULL;
2061 }
2062
2063 /*
2064 * Output
2065 */
2066
2067 struct perf_output_handle {
2068 struct perf_counter *counter;
2069 struct perf_mmap_data *data;
2070 unsigned int offset;
2071 unsigned int head;
2072 int nmi;
2073 int overflow;
2074 int locked;
2075 unsigned long flags;
2076 };
2077
2078 static void perf_output_wakeup(struct perf_output_handle *handle)
2079 {
2080 atomic_set(&handle->data->poll, POLL_IN);
2081
2082 if (handle->nmi) {
2083 handle->counter->pending_wakeup = 1;
2084 perf_pending_queue(&handle->counter->pending,
2085 perf_pending_counter);
2086 } else
2087 perf_counter_wakeup(handle->counter);
2088 }
2089
2090 /*
2091 * Curious locking construct.
2092 *
2093 * We need to ensure a later event doesn't publish a head when a former
2094 * event isn't done writing. However since we need to deal with NMIs we
2095 * cannot fully serialize things.
2096 *
2097 * What we do is serialize between CPUs so we only have to deal with NMI
2098 * nesting on a single CPU.
2099 *
2100 * We only publish the head (and generate a wakeup) when the outer-most
2101 * event completes.
2102 */
2103 static void perf_output_lock(struct perf_output_handle *handle)
2104 {
2105 struct perf_mmap_data *data = handle->data;
2106 int cpu;
2107
2108 handle->locked = 0;
2109
2110 local_irq_save(handle->flags);
2111 cpu = smp_processor_id();
2112
2113 if (in_nmi() && atomic_read(&data->lock) == cpu)
2114 return;
2115
2116 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2117 cpu_relax();
2118
2119 handle->locked = 1;
2120 }
2121
2122 static void perf_output_unlock(struct perf_output_handle *handle)
2123 {
2124 struct perf_mmap_data *data = handle->data;
2125 int head, cpu;
2126
2127 data->done_head = data->head;
2128
2129 if (!handle->locked)
2130 goto out;
2131
2132 again:
2133 /*
2134 * The xchg implies a full barrier that ensures all writes are done
2135 * before we publish the new head, matched by a rmb() in userspace when
2136 * reading this position.
2137 */
2138 while ((head = atomic_xchg(&data->done_head, 0)))
2139 data->user_page->data_head = head;
2140
2141 /*
2142 * NMI can happen here, which means we can miss a done_head update.
2143 */
2144
2145 cpu = atomic_xchg(&data->lock, -1);
2146 WARN_ON_ONCE(cpu != smp_processor_id());
2147
2148 /*
2149 * Therefore we have to validate we did not indeed do so.
2150 */
2151 if (unlikely(atomic_read(&data->done_head))) {
2152 /*
2153 * Since we had it locked, we can lock it again.
2154 */
2155 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2156 cpu_relax();
2157
2158 goto again;
2159 }
2160
2161 if (atomic_xchg(&data->wakeup, 0))
2162 perf_output_wakeup(handle);
2163 out:
2164 local_irq_restore(handle->flags);
2165 }
2166
2167 static int perf_output_begin(struct perf_output_handle *handle,
2168 struct perf_counter *counter, unsigned int size,
2169 int nmi, int overflow)
2170 {
2171 struct perf_mmap_data *data;
2172 unsigned int offset, head;
2173
2174 /*
2175 * For inherited counters we send all the output towards the parent.
2176 */
2177 if (counter->parent)
2178 counter = counter->parent;
2179
2180 rcu_read_lock();
2181 data = rcu_dereference(counter->data);
2182 if (!data)
2183 goto out;
2184
2185 handle->data = data;
2186 handle->counter = counter;
2187 handle->nmi = nmi;
2188 handle->overflow = overflow;
2189
2190 if (!data->nr_pages)
2191 goto fail;
2192
2193 perf_output_lock(handle);
2194
2195 do {
2196 offset = head = atomic_read(&data->head);
2197 head += size;
2198 } while (atomic_cmpxchg(&data->head, offset, head) != offset);
2199
2200 handle->offset = offset;
2201 handle->head = head;
2202
2203 if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2204 atomic_set(&data->wakeup, 1);
2205
2206 return 0;
2207
2208 fail:
2209 perf_output_wakeup(handle);
2210 out:
2211 rcu_read_unlock();
2212
2213 return -ENOSPC;
2214 }
2215
2216 static void perf_output_copy(struct perf_output_handle *handle,
2217 void *buf, unsigned int len)
2218 {
2219 unsigned int pages_mask;
2220 unsigned int offset;
2221 unsigned int size;
2222 void **pages;
2223
2224 offset = handle->offset;
2225 pages_mask = handle->data->nr_pages - 1;
2226 pages = handle->data->data_pages;
2227
2228 do {
2229 unsigned int page_offset;
2230 int nr;
2231
2232 nr = (offset >> PAGE_SHIFT) & pages_mask;
2233 page_offset = offset & (PAGE_SIZE - 1);
2234 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2235
2236 memcpy(pages[nr] + page_offset, buf, size);
2237
2238 len -= size;
2239 buf += size;
2240 offset += size;
2241 } while (len);
2242
2243 handle->offset = offset;
2244
2245 /*
2246 * Check we didn't copy past our reservation window, taking the
2247 * possible unsigned int wrap into account.
2248 */
2249 WARN_ON_ONCE(((int)(handle->head - handle->offset)) < 0);
2250 }
2251
2252 #define perf_output_put(handle, x) \
2253 perf_output_copy((handle), &(x), sizeof(x))
2254
2255 static void perf_output_end(struct perf_output_handle *handle)
2256 {
2257 struct perf_counter *counter = handle->counter;
2258 struct perf_mmap_data *data = handle->data;
2259
2260 int wakeup_events = counter->hw_event.wakeup_events;
2261
2262 if (handle->overflow && wakeup_events) {
2263 int events = atomic_inc_return(&data->events);
2264 if (events >= wakeup_events) {
2265 atomic_sub(wakeup_events, &data->events);
2266 atomic_set(&data->wakeup, 1);
2267 }
2268 }
2269
2270 perf_output_unlock(handle);
2271 rcu_read_unlock();
2272 }
2273
2274 static void perf_counter_output(struct perf_counter *counter,
2275 int nmi, struct pt_regs *regs, u64 addr)
2276 {
2277 int ret;
2278 u64 record_type = counter->hw_event.record_type;
2279 struct perf_output_handle handle;
2280 struct perf_event_header header;
2281 u64 ip;
2282 struct {
2283 u32 pid, tid;
2284 } tid_entry;
2285 struct {
2286 u64 event;
2287 u64 counter;
2288 } group_entry;
2289 struct perf_callchain_entry *callchain = NULL;
2290 int callchain_size = 0;
2291 u64 time;
2292 struct {
2293 u32 cpu, reserved;
2294 } cpu_entry;
2295
2296 header.type = 0;
2297 header.size = sizeof(header);
2298
2299 header.misc = PERF_EVENT_MISC_OVERFLOW;
2300 header.misc |= perf_misc_flags(regs);
2301
2302 if (record_type & PERF_RECORD_IP) {
2303 ip = perf_instruction_pointer(regs);
2304 header.type |= PERF_RECORD_IP;
2305 header.size += sizeof(ip);
2306 }
2307
2308 if (record_type & PERF_RECORD_TID) {
2309 /* namespace issues */
2310 tid_entry.pid = current->group_leader->pid;
2311 tid_entry.tid = current->pid;
2312
2313 header.type |= PERF_RECORD_TID;
2314 header.size += sizeof(tid_entry);
2315 }
2316
2317 if (record_type & PERF_RECORD_TIME) {
2318 /*
2319 * Maybe do better on x86 and provide cpu_clock_nmi()
2320 */
2321 time = sched_clock();
2322
2323 header.type |= PERF_RECORD_TIME;
2324 header.size += sizeof(u64);
2325 }
2326
2327 if (record_type & PERF_RECORD_ADDR) {
2328 header.type |= PERF_RECORD_ADDR;
2329 header.size += sizeof(u64);
2330 }
2331
2332 if (record_type & PERF_RECORD_CONFIG) {
2333 header.type |= PERF_RECORD_CONFIG;
2334 header.size += sizeof(u64);
2335 }
2336
2337 if (record_type & PERF_RECORD_CPU) {
2338 header.type |= PERF_RECORD_CPU;
2339 header.size += sizeof(cpu_entry);
2340
2341 cpu_entry.cpu = raw_smp_processor_id();
2342 }
2343
2344 if (record_type & PERF_RECORD_GROUP) {
2345 header.type |= PERF_RECORD_GROUP;
2346 header.size += sizeof(u64) +
2347 counter->nr_siblings * sizeof(group_entry);
2348 }
2349
2350 if (record_type & PERF_RECORD_CALLCHAIN) {
2351 callchain = perf_callchain(regs);
2352
2353 if (callchain) {
2354 callchain_size = (1 + callchain->nr) * sizeof(u64);
2355
2356 header.type |= PERF_RECORD_CALLCHAIN;
2357 header.size += callchain_size;
2358 }
2359 }
2360
2361 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2362 if (ret)
2363 return;
2364
2365 perf_output_put(&handle, header);
2366
2367 if (record_type & PERF_RECORD_IP)
2368 perf_output_put(&handle, ip);
2369
2370 if (record_type & PERF_RECORD_TID)
2371 perf_output_put(&handle, tid_entry);
2372
2373 if (record_type & PERF_RECORD_TIME)
2374 perf_output_put(&handle, time);
2375
2376 if (record_type & PERF_RECORD_ADDR)
2377 perf_output_put(&handle, addr);
2378
2379 if (record_type & PERF_RECORD_CONFIG)
2380 perf_output_put(&handle, counter->hw_event.config);
2381
2382 if (record_type & PERF_RECORD_CPU)
2383 perf_output_put(&handle, cpu_entry);
2384
2385 /*
2386 * XXX PERF_RECORD_GROUP vs inherited counters seems difficult.
2387 */
2388 if (record_type & PERF_RECORD_GROUP) {
2389 struct perf_counter *leader, *sub;
2390 u64 nr = counter->nr_siblings;
2391
2392 perf_output_put(&handle, nr);
2393
2394 leader = counter->group_leader;
2395 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2396 if (sub != counter)
2397 sub->pmu->read(sub);
2398
2399 group_entry.event = sub->hw_event.config;
2400 group_entry.counter = atomic64_read(&sub->count);
2401
2402 perf_output_put(&handle, group_entry);
2403 }
2404 }
2405
2406 if (callchain)
2407 perf_output_copy(&handle, callchain, callchain_size);
2408
2409 perf_output_end(&handle);
2410 }
2411
2412 /*
2413 * comm tracking
2414 */
2415
2416 struct perf_comm_event {
2417 struct task_struct *task;
2418 char *comm;
2419 int comm_size;
2420
2421 struct {
2422 struct perf_event_header header;
2423
2424 u32 pid;
2425 u32 tid;
2426 } event;
2427 };
2428
2429 static void perf_counter_comm_output(struct perf_counter *counter,
2430 struct perf_comm_event *comm_event)
2431 {
2432 struct perf_output_handle handle;
2433 int size = comm_event->event.header.size;
2434 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2435
2436 if (ret)
2437 return;
2438
2439 perf_output_put(&handle, comm_event->event);
2440 perf_output_copy(&handle, comm_event->comm,
2441 comm_event->comm_size);
2442 perf_output_end(&handle);
2443 }
2444
2445 static int perf_counter_comm_match(struct perf_counter *counter,
2446 struct perf_comm_event *comm_event)
2447 {
2448 if (counter->hw_event.comm &&
2449 comm_event->event.header.type == PERF_EVENT_COMM)
2450 return 1;
2451
2452 return 0;
2453 }
2454
2455 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2456 struct perf_comm_event *comm_event)
2457 {
2458 struct perf_counter *counter;
2459
2460 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2461 return;
2462
2463 rcu_read_lock();
2464 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2465 if (perf_counter_comm_match(counter, comm_event))
2466 perf_counter_comm_output(counter, comm_event);
2467 }
2468 rcu_read_unlock();
2469 }
2470
2471 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2472 {
2473 struct perf_cpu_context *cpuctx;
2474 struct perf_counter_context *ctx;
2475 unsigned int size;
2476 char *comm = comm_event->task->comm;
2477
2478 size = ALIGN(strlen(comm)+1, sizeof(u64));
2479
2480 comm_event->comm = comm;
2481 comm_event->comm_size = size;
2482
2483 comm_event->event.header.size = sizeof(comm_event->event) + size;
2484
2485 cpuctx = &get_cpu_var(perf_cpu_context);
2486 perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2487 put_cpu_var(perf_cpu_context);
2488
2489 rcu_read_lock();
2490 /*
2491 * doesn't really matter which of the child contexts the
2492 * events ends up in.
2493 */
2494 ctx = rcu_dereference(current->perf_counter_ctxp);
2495 if (ctx)
2496 perf_counter_comm_ctx(ctx, comm_event);
2497 rcu_read_unlock();
2498 }
2499
2500 void perf_counter_comm(struct task_struct *task)
2501 {
2502 struct perf_comm_event comm_event;
2503
2504 if (!atomic_read(&nr_comm_tracking))
2505 return;
2506
2507 comm_event = (struct perf_comm_event){
2508 .task = task,
2509 .event = {
2510 .header = { .type = PERF_EVENT_COMM, },
2511 .pid = task->group_leader->pid,
2512 .tid = task->pid,
2513 },
2514 };
2515
2516 perf_counter_comm_event(&comm_event);
2517 }
2518
2519 /*
2520 * mmap tracking
2521 */
2522
2523 struct perf_mmap_event {
2524 struct file *file;
2525 char *file_name;
2526 int file_size;
2527
2528 struct {
2529 struct perf_event_header header;
2530
2531 u32 pid;
2532 u32 tid;
2533 u64 start;
2534 u64 len;
2535 u64 pgoff;
2536 } event;
2537 };
2538
2539 static void perf_counter_mmap_output(struct perf_counter *counter,
2540 struct perf_mmap_event *mmap_event)
2541 {
2542 struct perf_output_handle handle;
2543 int size = mmap_event->event.header.size;
2544 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2545
2546 if (ret)
2547 return;
2548
2549 perf_output_put(&handle, mmap_event->event);
2550 perf_output_copy(&handle, mmap_event->file_name,
2551 mmap_event->file_size);
2552 perf_output_end(&handle);
2553 }
2554
2555 static int perf_counter_mmap_match(struct perf_counter *counter,
2556 struct perf_mmap_event *mmap_event)
2557 {
2558 if (counter->hw_event.mmap &&
2559 mmap_event->event.header.type == PERF_EVENT_MMAP)
2560 return 1;
2561
2562 if (counter->hw_event.munmap &&
2563 mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2564 return 1;
2565
2566 return 0;
2567 }
2568
2569 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2570 struct perf_mmap_event *mmap_event)
2571 {
2572 struct perf_counter *counter;
2573
2574 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2575 return;
2576
2577 rcu_read_lock();
2578 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2579 if (perf_counter_mmap_match(counter, mmap_event))
2580 perf_counter_mmap_output(counter, mmap_event);
2581 }
2582 rcu_read_unlock();
2583 }
2584
2585 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2586 {
2587 struct perf_cpu_context *cpuctx;
2588 struct perf_counter_context *ctx;
2589 struct file *file = mmap_event->file;
2590 unsigned int size;
2591 char tmp[16];
2592 char *buf = NULL;
2593 char *name;
2594
2595 if (file) {
2596 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2597 if (!buf) {
2598 name = strncpy(tmp, "//enomem", sizeof(tmp));
2599 goto got_name;
2600 }
2601 name = d_path(&file->f_path, buf, PATH_MAX);
2602 if (IS_ERR(name)) {
2603 name = strncpy(tmp, "//toolong", sizeof(tmp));
2604 goto got_name;
2605 }
2606 } else {
2607 name = strncpy(tmp, "//anon", sizeof(tmp));
2608 goto got_name;
2609 }
2610
2611 got_name:
2612 size = ALIGN(strlen(name)+1, sizeof(u64));
2613
2614 mmap_event->file_name = name;
2615 mmap_event->file_size = size;
2616
2617 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2618
2619 cpuctx = &get_cpu_var(perf_cpu_context);
2620 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2621 put_cpu_var(perf_cpu_context);
2622
2623 rcu_read_lock();
2624 /*
2625 * doesn't really matter which of the child contexts the
2626 * events ends up in.
2627 */
2628 ctx = rcu_dereference(current->perf_counter_ctxp);
2629 if (ctx)
2630 perf_counter_mmap_ctx(ctx, mmap_event);
2631 rcu_read_unlock();
2632
2633 kfree(buf);
2634 }
2635
2636 void perf_counter_mmap(unsigned long addr, unsigned long len,
2637 unsigned long pgoff, struct file *file)
2638 {
2639 struct perf_mmap_event mmap_event;
2640
2641 if (!atomic_read(&nr_mmap_tracking))
2642 return;
2643
2644 mmap_event = (struct perf_mmap_event){
2645 .file = file,
2646 .event = {
2647 .header = { .type = PERF_EVENT_MMAP, },
2648 .pid = current->group_leader->pid,
2649 .tid = current->pid,
2650 .start = addr,
2651 .len = len,
2652 .pgoff = pgoff,
2653 },
2654 };
2655
2656 perf_counter_mmap_event(&mmap_event);
2657 }
2658
2659 void perf_counter_munmap(unsigned long addr, unsigned long len,
2660 unsigned long pgoff, struct file *file)
2661 {
2662 struct perf_mmap_event mmap_event;
2663
2664 if (!atomic_read(&nr_munmap_tracking))
2665 return;
2666
2667 mmap_event = (struct perf_mmap_event){
2668 .file = file,
2669 .event = {
2670 .header = { .type = PERF_EVENT_MUNMAP, },
2671 .pid = current->group_leader->pid,
2672 .tid = current->pid,
2673 .start = addr,
2674 .len = len,
2675 .pgoff = pgoff,
2676 },
2677 };
2678
2679 perf_counter_mmap_event(&mmap_event);
2680 }
2681
2682 /*
2683 * Log irq_period changes so that analyzing tools can re-normalize the
2684 * event flow.
2685 */
2686
2687 static void perf_log_period(struct perf_counter *counter, u64 period)
2688 {
2689 struct perf_output_handle handle;
2690 int ret;
2691
2692 struct {
2693 struct perf_event_header header;
2694 u64 time;
2695 u64 period;
2696 } freq_event = {
2697 .header = {
2698 .type = PERF_EVENT_PERIOD,
2699 .misc = 0,
2700 .size = sizeof(freq_event),
2701 },
2702 .time = sched_clock(),
2703 .period = period,
2704 };
2705
2706 if (counter->hw.irq_period == period)
2707 return;
2708
2709 ret = perf_output_begin(&handle, counter, sizeof(freq_event), 0, 0);
2710 if (ret)
2711 return;
2712
2713 perf_output_put(&handle, freq_event);
2714 perf_output_end(&handle);
2715 }
2716
2717 /*
2718 * IRQ throttle logging
2719 */
2720
2721 static void perf_log_throttle(struct perf_counter *counter, int enable)
2722 {
2723 struct perf_output_handle handle;
2724 int ret;
2725
2726 struct {
2727 struct perf_event_header header;
2728 u64 time;
2729 } throttle_event = {
2730 .header = {
2731 .type = PERF_EVENT_THROTTLE + 1,
2732 .misc = 0,
2733 .size = sizeof(throttle_event),
2734 },
2735 .time = sched_clock(),
2736 };
2737
2738 ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
2739 if (ret)
2740 return;
2741
2742 perf_output_put(&handle, throttle_event);
2743 perf_output_end(&handle);
2744 }
2745
2746 /*
2747 * Generic counter overflow handling.
2748 */
2749
2750 int perf_counter_overflow(struct perf_counter *counter,
2751 int nmi, struct pt_regs *regs, u64 addr)
2752 {
2753 int events = atomic_read(&counter->event_limit);
2754 int throttle = counter->pmu->unthrottle != NULL;
2755 int ret = 0;
2756
2757 if (!throttle) {
2758 counter->hw.interrupts++;
2759 } else if (counter->hw.interrupts != MAX_INTERRUPTS) {
2760 counter->hw.interrupts++;
2761 if (HZ*counter->hw.interrupts > (u64)sysctl_perf_counter_limit) {
2762 counter->hw.interrupts = MAX_INTERRUPTS;
2763 perf_log_throttle(counter, 0);
2764 ret = 1;
2765 }
2766 }
2767
2768 /*
2769 * XXX event_limit might not quite work as expected on inherited
2770 * counters
2771 */
2772
2773 counter->pending_kill = POLL_IN;
2774 if (events && atomic_dec_and_test(&counter->event_limit)) {
2775 ret = 1;
2776 counter->pending_kill = POLL_HUP;
2777 if (nmi) {
2778 counter->pending_disable = 1;
2779 perf_pending_queue(&counter->pending,
2780 perf_pending_counter);
2781 } else
2782 perf_counter_disable(counter);
2783 }
2784
2785 perf_counter_output(counter, nmi, regs, addr);
2786 return ret;
2787 }
2788
2789 /*
2790 * Generic software counter infrastructure
2791 */
2792
2793 static void perf_swcounter_update(struct perf_counter *counter)
2794 {
2795 struct hw_perf_counter *hwc = &counter->hw;
2796 u64 prev, now;
2797 s64 delta;
2798
2799 again:
2800 prev = atomic64_read(&hwc->prev_count);
2801 now = atomic64_read(&hwc->count);
2802 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2803 goto again;
2804
2805 delta = now - prev;
2806
2807 atomic64_add(delta, &counter->count);
2808 atomic64_sub(delta, &hwc->period_left);
2809 }
2810
2811 static void perf_swcounter_set_period(struct perf_counter *counter)
2812 {
2813 struct hw_perf_counter *hwc = &counter->hw;
2814 s64 left = atomic64_read(&hwc->period_left);
2815 s64 period = hwc->irq_period;
2816
2817 if (unlikely(left <= -period)) {
2818 left = period;
2819 atomic64_set(&hwc->period_left, left);
2820 }
2821
2822 if (unlikely(left <= 0)) {
2823 left += period;
2824 atomic64_add(period, &hwc->period_left);
2825 }
2826
2827 atomic64_set(&hwc->prev_count, -left);
2828 atomic64_set(&hwc->count, -left);
2829 }
2830
2831 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2832 {
2833 enum hrtimer_restart ret = HRTIMER_RESTART;
2834 struct perf_counter *counter;
2835 struct pt_regs *regs;
2836 u64 period;
2837
2838 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2839 counter->pmu->read(counter);
2840
2841 regs = get_irq_regs();
2842 /*
2843 * In case we exclude kernel IPs or are somehow not in interrupt
2844 * context, provide the next best thing, the user IP.
2845 */
2846 if ((counter->hw_event.exclude_kernel || !regs) &&
2847 !counter->hw_event.exclude_user)
2848 regs = task_pt_regs(current);
2849
2850 if (regs) {
2851 if (perf_counter_overflow(counter, 0, regs, 0))
2852 ret = HRTIMER_NORESTART;
2853 }
2854
2855 period = max_t(u64, 10000, counter->hw.irq_period);
2856 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
2857
2858 return ret;
2859 }
2860
2861 static void perf_swcounter_overflow(struct perf_counter *counter,
2862 int nmi, struct pt_regs *regs, u64 addr)
2863 {
2864 perf_swcounter_update(counter);
2865 perf_swcounter_set_period(counter);
2866 if (perf_counter_overflow(counter, nmi, regs, addr))
2867 /* soft-disable the counter */
2868 ;
2869
2870 }
2871
2872 static int perf_swcounter_is_counting(struct perf_counter *counter)
2873 {
2874 struct perf_counter_context *ctx;
2875 unsigned long flags;
2876 int count;
2877
2878 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
2879 return 1;
2880
2881 if (counter->state != PERF_COUNTER_STATE_INACTIVE)
2882 return 0;
2883
2884 /*
2885 * If the counter is inactive, it could be just because
2886 * its task is scheduled out, or because it's in a group
2887 * which could not go on the PMU. We want to count in
2888 * the first case but not the second. If the context is
2889 * currently active then an inactive software counter must
2890 * be the second case. If it's not currently active then
2891 * we need to know whether the counter was active when the
2892 * context was last active, which we can determine by
2893 * comparing counter->tstamp_stopped with ctx->time.
2894 *
2895 * We are within an RCU read-side critical section,
2896 * which protects the existence of *ctx.
2897 */
2898 ctx = counter->ctx;
2899 spin_lock_irqsave(&ctx->lock, flags);
2900 count = 1;
2901 /* Re-check state now we have the lock */
2902 if (counter->state < PERF_COUNTER_STATE_INACTIVE ||
2903 counter->ctx->is_active ||
2904 counter->tstamp_stopped < ctx->time)
2905 count = 0;
2906 spin_unlock_irqrestore(&ctx->lock, flags);
2907 return count;
2908 }
2909
2910 static int perf_swcounter_match(struct perf_counter *counter,
2911 enum perf_event_types type,
2912 u32 event, struct pt_regs *regs)
2913 {
2914 u64 event_config;
2915
2916 event_config = ((u64) type << PERF_COUNTER_TYPE_SHIFT) | event;
2917
2918 if (!perf_swcounter_is_counting(counter))
2919 return 0;
2920
2921 if (counter->hw_event.config != event_config)
2922 return 0;
2923
2924 if (regs) {
2925 if (counter->hw_event.exclude_user && user_mode(regs))
2926 return 0;
2927
2928 if (counter->hw_event.exclude_kernel && !user_mode(regs))
2929 return 0;
2930 }
2931
2932 return 1;
2933 }
2934
2935 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2936 int nmi, struct pt_regs *regs, u64 addr)
2937 {
2938 int neg = atomic64_add_negative(nr, &counter->hw.count);
2939
2940 if (counter->hw.irq_period && !neg && regs)
2941 perf_swcounter_overflow(counter, nmi, regs, addr);
2942 }
2943
2944 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2945 enum perf_event_types type, u32 event,
2946 u64 nr, int nmi, struct pt_regs *regs,
2947 u64 addr)
2948 {
2949 struct perf_counter *counter;
2950
2951 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2952 return;
2953
2954 rcu_read_lock();
2955 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2956 if (perf_swcounter_match(counter, type, event, regs))
2957 perf_swcounter_add(counter, nr, nmi, regs, addr);
2958 }
2959 rcu_read_unlock();
2960 }
2961
2962 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2963 {
2964 if (in_nmi())
2965 return &cpuctx->recursion[3];
2966
2967 if (in_irq())
2968 return &cpuctx->recursion[2];
2969
2970 if (in_softirq())
2971 return &cpuctx->recursion[1];
2972
2973 return &cpuctx->recursion[0];
2974 }
2975
2976 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2977 u64 nr, int nmi, struct pt_regs *regs,
2978 u64 addr)
2979 {
2980 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2981 int *recursion = perf_swcounter_recursion_context(cpuctx);
2982 struct perf_counter_context *ctx;
2983
2984 if (*recursion)
2985 goto out;
2986
2987 (*recursion)++;
2988 barrier();
2989
2990 perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
2991 nr, nmi, regs, addr);
2992 rcu_read_lock();
2993 /*
2994 * doesn't really matter which of the child contexts the
2995 * events ends up in.
2996 */
2997 ctx = rcu_dereference(current->perf_counter_ctxp);
2998 if (ctx)
2999 perf_swcounter_ctx_event(ctx, type, event, nr, nmi, regs, addr);
3000 rcu_read_unlock();
3001
3002 barrier();
3003 (*recursion)--;
3004
3005 out:
3006 put_cpu_var(perf_cpu_context);
3007 }
3008
3009 void
3010 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
3011 {
3012 __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
3013 }
3014
3015 static void perf_swcounter_read(struct perf_counter *counter)
3016 {
3017 perf_swcounter_update(counter);
3018 }
3019
3020 static int perf_swcounter_enable(struct perf_counter *counter)
3021 {
3022 perf_swcounter_set_period(counter);
3023 return 0;
3024 }
3025
3026 static void perf_swcounter_disable(struct perf_counter *counter)
3027 {
3028 perf_swcounter_update(counter);
3029 }
3030
3031 static const struct pmu perf_ops_generic = {
3032 .enable = perf_swcounter_enable,
3033 .disable = perf_swcounter_disable,
3034 .read = perf_swcounter_read,
3035 };
3036
3037 /*
3038 * Software counter: cpu wall time clock
3039 */
3040
3041 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
3042 {
3043 int cpu = raw_smp_processor_id();
3044 s64 prev;
3045 u64 now;
3046
3047 now = cpu_clock(cpu);
3048 prev = atomic64_read(&counter->hw.prev_count);
3049 atomic64_set(&counter->hw.prev_count, now);
3050 atomic64_add(now - prev, &counter->count);
3051 }
3052
3053 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
3054 {
3055 struct hw_perf_counter *hwc = &counter->hw;
3056 int cpu = raw_smp_processor_id();
3057
3058 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3059 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3060 hwc->hrtimer.function = perf_swcounter_hrtimer;
3061 if (hwc->irq_period) {
3062 u64 period = max_t(u64, 10000, hwc->irq_period);
3063 __hrtimer_start_range_ns(&hwc->hrtimer,
3064 ns_to_ktime(period), 0,
3065 HRTIMER_MODE_REL, 0);
3066 }
3067
3068 return 0;
3069 }
3070
3071 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
3072 {
3073 if (counter->hw.irq_period)
3074 hrtimer_cancel(&counter->hw.hrtimer);
3075 cpu_clock_perf_counter_update(counter);
3076 }
3077
3078 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
3079 {
3080 cpu_clock_perf_counter_update(counter);
3081 }
3082
3083 static const struct pmu perf_ops_cpu_clock = {
3084 .enable = cpu_clock_perf_counter_enable,
3085 .disable = cpu_clock_perf_counter_disable,
3086 .read = cpu_clock_perf_counter_read,
3087 };
3088
3089 /*
3090 * Software counter: task time clock
3091 */
3092
3093 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
3094 {
3095 u64 prev;
3096 s64 delta;
3097
3098 prev = atomic64_xchg(&counter->hw.prev_count, now);
3099 delta = now - prev;
3100 atomic64_add(delta, &counter->count);
3101 }
3102
3103 static int task_clock_perf_counter_enable(struct perf_counter *counter)
3104 {
3105 struct hw_perf_counter *hwc = &counter->hw;
3106 u64 now;
3107
3108 now = counter->ctx->time;
3109
3110 atomic64_set(&hwc->prev_count, now);
3111 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3112 hwc->hrtimer.function = perf_swcounter_hrtimer;
3113 if (hwc->irq_period) {
3114 u64 period = max_t(u64, 10000, hwc->irq_period);
3115 __hrtimer_start_range_ns(&hwc->hrtimer,
3116 ns_to_ktime(period), 0,
3117 HRTIMER_MODE_REL, 0);
3118 }
3119
3120 return 0;
3121 }
3122
3123 static void task_clock_perf_counter_disable(struct perf_counter *counter)
3124 {
3125 if (counter->hw.irq_period)
3126 hrtimer_cancel(&counter->hw.hrtimer);
3127 task_clock_perf_counter_update(counter, counter->ctx->time);
3128
3129 }
3130
3131 static void task_clock_perf_counter_read(struct perf_counter *counter)
3132 {
3133 u64 time;
3134
3135 if (!in_nmi()) {
3136 update_context_time(counter->ctx);
3137 time = counter->ctx->time;
3138 } else {
3139 u64 now = perf_clock();
3140 u64 delta = now - counter->ctx->timestamp;
3141 time = counter->ctx->time + delta;
3142 }
3143
3144 task_clock_perf_counter_update(counter, time);
3145 }
3146
3147 static const struct pmu perf_ops_task_clock = {
3148 .enable = task_clock_perf_counter_enable,
3149 .disable = task_clock_perf_counter_disable,
3150 .read = task_clock_perf_counter_read,
3151 };
3152
3153 /*
3154 * Software counter: cpu migrations
3155 */
3156 void perf_counter_task_migration(struct task_struct *task, int cpu)
3157 {
3158 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3159 struct perf_counter_context *ctx;
3160
3161 perf_swcounter_ctx_event(&cpuctx->ctx, PERF_TYPE_SOFTWARE,
3162 PERF_COUNT_CPU_MIGRATIONS,
3163 1, 1, NULL, 0);
3164
3165 ctx = perf_pin_task_context(task);
3166 if (ctx) {
3167 perf_swcounter_ctx_event(ctx, PERF_TYPE_SOFTWARE,
3168 PERF_COUNT_CPU_MIGRATIONS,
3169 1, 1, NULL, 0);
3170 perf_unpin_context(ctx);
3171 }
3172 }
3173
3174 #ifdef CONFIG_EVENT_PROFILE
3175 void perf_tpcounter_event(int event_id)
3176 {
3177 struct pt_regs *regs = get_irq_regs();
3178
3179 if (!regs)
3180 regs = task_pt_regs(current);
3181
3182 __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
3183 }
3184 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3185
3186 extern int ftrace_profile_enable(int);
3187 extern void ftrace_profile_disable(int);
3188
3189 static void tp_perf_counter_destroy(struct perf_counter *counter)
3190 {
3191 ftrace_profile_disable(perf_event_id(&counter->hw_event));
3192 }
3193
3194 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3195 {
3196 int event_id = perf_event_id(&counter->hw_event);
3197 int ret;
3198
3199 ret = ftrace_profile_enable(event_id);
3200 if (ret)
3201 return NULL;
3202
3203 counter->destroy = tp_perf_counter_destroy;
3204 counter->hw.irq_period = counter->hw_event.irq_period;
3205
3206 return &perf_ops_generic;
3207 }
3208 #else
3209 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3210 {
3211 return NULL;
3212 }
3213 #endif
3214
3215 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3216 {
3217 const struct pmu *pmu = NULL;
3218
3219 /*
3220 * Software counters (currently) can't in general distinguish
3221 * between user, kernel and hypervisor events.
3222 * However, context switches and cpu migrations are considered
3223 * to be kernel events, and page faults are never hypervisor
3224 * events.
3225 */
3226 switch (perf_event_id(&counter->hw_event)) {
3227 case PERF_COUNT_CPU_CLOCK:
3228 pmu = &perf_ops_cpu_clock;
3229
3230 break;
3231 case PERF_COUNT_TASK_CLOCK:
3232 /*
3233 * If the user instantiates this as a per-cpu counter,
3234 * use the cpu_clock counter instead.
3235 */
3236 if (counter->ctx->task)
3237 pmu = &perf_ops_task_clock;
3238 else
3239 pmu = &perf_ops_cpu_clock;
3240
3241 break;
3242 case PERF_COUNT_PAGE_FAULTS:
3243 case PERF_COUNT_PAGE_FAULTS_MIN:
3244 case PERF_COUNT_PAGE_FAULTS_MAJ:
3245 case PERF_COUNT_CONTEXT_SWITCHES:
3246 case PERF_COUNT_CPU_MIGRATIONS:
3247 pmu = &perf_ops_generic;
3248 break;
3249 }
3250
3251 return pmu;
3252 }
3253
3254 /*
3255 * Allocate and initialize a counter structure
3256 */
3257 static struct perf_counter *
3258 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
3259 int cpu,
3260 struct perf_counter_context *ctx,
3261 struct perf_counter *group_leader,
3262 gfp_t gfpflags)
3263 {
3264 const struct pmu *pmu;
3265 struct perf_counter *counter;
3266 struct hw_perf_counter *hwc;
3267 long err;
3268
3269 counter = kzalloc(sizeof(*counter), gfpflags);
3270 if (!counter)
3271 return ERR_PTR(-ENOMEM);
3272
3273 /*
3274 * Single counters are their own group leaders, with an
3275 * empty sibling list:
3276 */
3277 if (!group_leader)
3278 group_leader = counter;
3279
3280 mutex_init(&counter->child_mutex);
3281 INIT_LIST_HEAD(&counter->child_list);
3282
3283 INIT_LIST_HEAD(&counter->list_entry);
3284 INIT_LIST_HEAD(&counter->event_entry);
3285 INIT_LIST_HEAD(&counter->sibling_list);
3286 init_waitqueue_head(&counter->waitq);
3287
3288 mutex_init(&counter->mmap_mutex);
3289
3290 counter->cpu = cpu;
3291 counter->hw_event = *hw_event;
3292 counter->group_leader = group_leader;
3293 counter->pmu = NULL;
3294 counter->ctx = ctx;
3295 counter->oncpu = -1;
3296
3297 counter->state = PERF_COUNTER_STATE_INACTIVE;
3298 if (hw_event->disabled)
3299 counter->state = PERF_COUNTER_STATE_OFF;
3300
3301 pmu = NULL;
3302
3303 hwc = &counter->hw;
3304 if (hw_event->freq && hw_event->irq_freq)
3305 hwc->irq_period = div64_u64(TICK_NSEC, hw_event->irq_freq);
3306 else
3307 hwc->irq_period = hw_event->irq_period;
3308
3309 /*
3310 * we currently do not support PERF_RECORD_GROUP on inherited counters
3311 */
3312 if (hw_event->inherit && (hw_event->record_type & PERF_RECORD_GROUP))
3313 goto done;
3314
3315 if (perf_event_raw(hw_event)) {
3316 pmu = hw_perf_counter_init(counter);
3317 goto done;
3318 }
3319
3320 switch (perf_event_type(hw_event)) {
3321 case PERF_TYPE_HARDWARE:
3322 pmu = hw_perf_counter_init(counter);
3323 break;
3324
3325 case PERF_TYPE_SOFTWARE:
3326 pmu = sw_perf_counter_init(counter);
3327 break;
3328
3329 case PERF_TYPE_TRACEPOINT:
3330 pmu = tp_perf_counter_init(counter);
3331 break;
3332 }
3333 done:
3334 err = 0;
3335 if (!pmu)
3336 err = -EINVAL;
3337 else if (IS_ERR(pmu))
3338 err = PTR_ERR(pmu);
3339
3340 if (err) {
3341 kfree(counter);
3342 return ERR_PTR(err);
3343 }
3344
3345 counter->pmu = pmu;
3346
3347 atomic_inc(&nr_counters);
3348 if (counter->hw_event.mmap)
3349 atomic_inc(&nr_mmap_tracking);
3350 if (counter->hw_event.munmap)
3351 atomic_inc(&nr_munmap_tracking);
3352 if (counter->hw_event.comm)
3353 atomic_inc(&nr_comm_tracking);
3354
3355 return counter;
3356 }
3357
3358 /**
3359 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
3360 *
3361 * @hw_event_uptr: event type attributes for monitoring/sampling
3362 * @pid: target pid
3363 * @cpu: target cpu
3364 * @group_fd: group leader counter fd
3365 */
3366 SYSCALL_DEFINE5(perf_counter_open,
3367 const struct perf_counter_hw_event __user *, hw_event_uptr,
3368 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
3369 {
3370 struct perf_counter *counter, *group_leader;
3371 struct perf_counter_hw_event hw_event;
3372 struct perf_counter_context *ctx;
3373 struct file *counter_file = NULL;
3374 struct file *group_file = NULL;
3375 int fput_needed = 0;
3376 int fput_needed2 = 0;
3377 int ret;
3378
3379 /* for future expandability... */
3380 if (flags)
3381 return -EINVAL;
3382
3383 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
3384 return -EFAULT;
3385
3386 /*
3387 * Get the target context (task or percpu):
3388 */
3389 ctx = find_get_context(pid, cpu);
3390 if (IS_ERR(ctx))
3391 return PTR_ERR(ctx);
3392
3393 /*
3394 * Look up the group leader (we will attach this counter to it):
3395 */
3396 group_leader = NULL;
3397 if (group_fd != -1) {
3398 ret = -EINVAL;
3399 group_file = fget_light(group_fd, &fput_needed);
3400 if (!group_file)
3401 goto err_put_context;
3402 if (group_file->f_op != &perf_fops)
3403 goto err_put_context;
3404
3405 group_leader = group_file->private_data;
3406 /*
3407 * Do not allow a recursive hierarchy (this new sibling
3408 * becoming part of another group-sibling):
3409 */
3410 if (group_leader->group_leader != group_leader)
3411 goto err_put_context;
3412 /*
3413 * Do not allow to attach to a group in a different
3414 * task or CPU context:
3415 */
3416 if (group_leader->ctx != ctx)
3417 goto err_put_context;
3418 /*
3419 * Only a group leader can be exclusive or pinned
3420 */
3421 if (hw_event.exclusive || hw_event.pinned)
3422 goto err_put_context;
3423 }
3424
3425 counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
3426 GFP_KERNEL);
3427 ret = PTR_ERR(counter);
3428 if (IS_ERR(counter))
3429 goto err_put_context;
3430
3431 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
3432 if (ret < 0)
3433 goto err_free_put_context;
3434
3435 counter_file = fget_light(ret, &fput_needed2);
3436 if (!counter_file)
3437 goto err_free_put_context;
3438
3439 counter->filp = counter_file;
3440 WARN_ON_ONCE(ctx->parent_ctx);
3441 mutex_lock(&ctx->mutex);
3442 perf_install_in_context(ctx, counter, cpu);
3443 ++ctx->generation;
3444 mutex_unlock(&ctx->mutex);
3445
3446 counter->owner = current;
3447 get_task_struct(current);
3448 mutex_lock(&current->perf_counter_mutex);
3449 list_add_tail(&counter->owner_entry, &current->perf_counter_list);
3450 mutex_unlock(&current->perf_counter_mutex);
3451
3452 fput_light(counter_file, fput_needed2);
3453
3454 out_fput:
3455 fput_light(group_file, fput_needed);
3456
3457 return ret;
3458
3459 err_free_put_context:
3460 kfree(counter);
3461
3462 err_put_context:
3463 put_ctx(ctx);
3464
3465 goto out_fput;
3466 }
3467
3468 /*
3469 * inherit a counter from parent task to child task:
3470 */
3471 static struct perf_counter *
3472 inherit_counter(struct perf_counter *parent_counter,
3473 struct task_struct *parent,
3474 struct perf_counter_context *parent_ctx,
3475 struct task_struct *child,
3476 struct perf_counter *group_leader,
3477 struct perf_counter_context *child_ctx)
3478 {
3479 struct perf_counter *child_counter;
3480
3481 /*
3482 * Instead of creating recursive hierarchies of counters,
3483 * we link inherited counters back to the original parent,
3484 * which has a filp for sure, which we use as the reference
3485 * count:
3486 */
3487 if (parent_counter->parent)
3488 parent_counter = parent_counter->parent;
3489
3490 child_counter = perf_counter_alloc(&parent_counter->hw_event,
3491 parent_counter->cpu, child_ctx,
3492 group_leader, GFP_KERNEL);
3493 if (IS_ERR(child_counter))
3494 return child_counter;
3495 get_ctx(child_ctx);
3496
3497 /*
3498 * Make the child state follow the state of the parent counter,
3499 * not its hw_event.disabled bit. We hold the parent's mutex,
3500 * so we won't race with perf_counter_{en, dis}able_family.
3501 */
3502 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3503 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3504 else
3505 child_counter->state = PERF_COUNTER_STATE_OFF;
3506
3507 /*
3508 * Link it up in the child's context:
3509 */
3510 add_counter_to_ctx(child_counter, child_ctx);
3511
3512 child_counter->parent = parent_counter;
3513 /*
3514 * inherit into child's child as well:
3515 */
3516 child_counter->hw_event.inherit = 1;
3517
3518 /*
3519 * Get a reference to the parent filp - we will fput it
3520 * when the child counter exits. This is safe to do because
3521 * we are in the parent and we know that the filp still
3522 * exists and has a nonzero count:
3523 */
3524 atomic_long_inc(&parent_counter->filp->f_count);
3525
3526 /*
3527 * Link this into the parent counter's child list
3528 */
3529 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3530 mutex_lock(&parent_counter->child_mutex);
3531 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3532 mutex_unlock(&parent_counter->child_mutex);
3533
3534 return child_counter;
3535 }
3536
3537 static int inherit_group(struct perf_counter *parent_counter,
3538 struct task_struct *parent,
3539 struct perf_counter_context *parent_ctx,
3540 struct task_struct *child,
3541 struct perf_counter_context *child_ctx)
3542 {
3543 struct perf_counter *leader;
3544 struct perf_counter *sub;
3545 struct perf_counter *child_ctr;
3546
3547 leader = inherit_counter(parent_counter, parent, parent_ctx,
3548 child, NULL, child_ctx);
3549 if (IS_ERR(leader))
3550 return PTR_ERR(leader);
3551 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3552 child_ctr = inherit_counter(sub, parent, parent_ctx,
3553 child, leader, child_ctx);
3554 if (IS_ERR(child_ctr))
3555 return PTR_ERR(child_ctr);
3556 }
3557 return 0;
3558 }
3559
3560 static void sync_child_counter(struct perf_counter *child_counter,
3561 struct perf_counter *parent_counter)
3562 {
3563 u64 child_val;
3564
3565 child_val = atomic64_read(&child_counter->count);
3566
3567 /*
3568 * Add back the child's count to the parent's count:
3569 */
3570 atomic64_add(child_val, &parent_counter->count);
3571 atomic64_add(child_counter->total_time_enabled,
3572 &parent_counter->child_total_time_enabled);
3573 atomic64_add(child_counter->total_time_running,
3574 &parent_counter->child_total_time_running);
3575
3576 /*
3577 * Remove this counter from the parent's list
3578 */
3579 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3580 mutex_lock(&parent_counter->child_mutex);
3581 list_del_init(&child_counter->child_list);
3582 mutex_unlock(&parent_counter->child_mutex);
3583
3584 /*
3585 * Release the parent counter, if this was the last
3586 * reference to it.
3587 */
3588 fput(parent_counter->filp);
3589 }
3590
3591 static void
3592 __perf_counter_exit_task(struct perf_counter *child_counter,
3593 struct perf_counter_context *child_ctx)
3594 {
3595 struct perf_counter *parent_counter;
3596
3597 update_counter_times(child_counter);
3598 perf_counter_remove_from_context(child_counter);
3599
3600 parent_counter = child_counter->parent;
3601 /*
3602 * It can happen that parent exits first, and has counters
3603 * that are still around due to the child reference. These
3604 * counters need to be zapped - but otherwise linger.
3605 */
3606 if (parent_counter) {
3607 sync_child_counter(child_counter, parent_counter);
3608 free_counter(child_counter);
3609 }
3610 }
3611
3612 /*
3613 * When a child task exits, feed back counter values to parent counters.
3614 */
3615 void perf_counter_exit_task(struct task_struct *child)
3616 {
3617 struct perf_counter *child_counter, *tmp;
3618 struct perf_counter_context *child_ctx;
3619 unsigned long flags;
3620
3621 if (likely(!child->perf_counter_ctxp))
3622 return;
3623
3624 local_irq_save(flags);
3625 /*
3626 * We can't reschedule here because interrupts are disabled,
3627 * and either child is current or it is a task that can't be
3628 * scheduled, so we are now safe from rescheduling changing
3629 * our context.
3630 */
3631 child_ctx = child->perf_counter_ctxp;
3632 __perf_counter_task_sched_out(child_ctx);
3633
3634 /*
3635 * Take the context lock here so that if find_get_context is
3636 * reading child->perf_counter_ctxp, we wait until it has
3637 * incremented the context's refcount before we do put_ctx below.
3638 */
3639 spin_lock(&child_ctx->lock);
3640 child->perf_counter_ctxp = NULL;
3641 if (child_ctx->parent_ctx) {
3642 /*
3643 * This context is a clone; unclone it so it can't get
3644 * swapped to another process while we're removing all
3645 * the counters from it.
3646 */
3647 put_ctx(child_ctx->parent_ctx);
3648 child_ctx->parent_ctx = NULL;
3649 }
3650 spin_unlock(&child_ctx->lock);
3651 local_irq_restore(flags);
3652
3653 mutex_lock(&child_ctx->mutex);
3654
3655 again:
3656 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3657 list_entry)
3658 __perf_counter_exit_task(child_counter, child_ctx);
3659
3660 /*
3661 * If the last counter was a group counter, it will have appended all
3662 * its siblings to the list, but we obtained 'tmp' before that which
3663 * will still point to the list head terminating the iteration.
3664 */
3665 if (!list_empty(&child_ctx->counter_list))
3666 goto again;
3667
3668 mutex_unlock(&child_ctx->mutex);
3669
3670 put_ctx(child_ctx);
3671 }
3672
3673 /*
3674 * free an unexposed, unused context as created by inheritance by
3675 * init_task below, used by fork() in case of fail.
3676 */
3677 void perf_counter_free_task(struct task_struct *task)
3678 {
3679 struct perf_counter_context *ctx = task->perf_counter_ctxp;
3680 struct perf_counter *counter, *tmp;
3681
3682 if (!ctx)
3683 return;
3684
3685 mutex_lock(&ctx->mutex);
3686 again:
3687 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) {
3688 struct perf_counter *parent = counter->parent;
3689
3690 if (WARN_ON_ONCE(!parent))
3691 continue;
3692
3693 mutex_lock(&parent->child_mutex);
3694 list_del_init(&counter->child_list);
3695 mutex_unlock(&parent->child_mutex);
3696
3697 fput(parent->filp);
3698
3699 list_del_counter(counter, ctx);
3700 free_counter(counter);
3701 }
3702
3703 if (!list_empty(&ctx->counter_list))
3704 goto again;
3705
3706 mutex_unlock(&ctx->mutex);
3707
3708 put_ctx(ctx);
3709 }
3710
3711 /*
3712 * Initialize the perf_counter context in task_struct
3713 */
3714 int perf_counter_init_task(struct task_struct *child)
3715 {
3716 struct perf_counter_context *child_ctx, *parent_ctx;
3717 struct perf_counter_context *cloned_ctx;
3718 struct perf_counter *counter;
3719 struct task_struct *parent = current;
3720 int inherited_all = 1;
3721 int ret = 0;
3722
3723 child->perf_counter_ctxp = NULL;
3724
3725 mutex_init(&child->perf_counter_mutex);
3726 INIT_LIST_HEAD(&child->perf_counter_list);
3727
3728 if (likely(!parent->perf_counter_ctxp))
3729 return 0;
3730
3731 /*
3732 * This is executed from the parent task context, so inherit
3733 * counters that have been marked for cloning.
3734 * First allocate and initialize a context for the child.
3735 */
3736
3737 child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
3738 if (!child_ctx)
3739 return -ENOMEM;
3740
3741 __perf_counter_init_context(child_ctx, child);
3742 child->perf_counter_ctxp = child_ctx;
3743 get_task_struct(child);
3744
3745 /*
3746 * If the parent's context is a clone, pin it so it won't get
3747 * swapped under us.
3748 */
3749 parent_ctx = perf_pin_task_context(parent);
3750
3751 /*
3752 * No need to check if parent_ctx != NULL here; since we saw
3753 * it non-NULL earlier, the only reason for it to become NULL
3754 * is if we exit, and since we're currently in the middle of
3755 * a fork we can't be exiting at the same time.
3756 */
3757
3758 /*
3759 * Lock the parent list. No need to lock the child - not PID
3760 * hashed yet and not running, so nobody can access it.
3761 */
3762 mutex_lock(&parent_ctx->mutex);
3763
3764 /*
3765 * We dont have to disable NMIs - we are only looking at
3766 * the list, not manipulating it:
3767 */
3768 list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
3769 if (counter != counter->group_leader)
3770 continue;
3771
3772 if (!counter->hw_event.inherit) {
3773 inherited_all = 0;
3774 continue;
3775 }
3776
3777 ret = inherit_group(counter, parent, parent_ctx,
3778 child, child_ctx);
3779 if (ret) {
3780 inherited_all = 0;
3781 break;
3782 }
3783 }
3784
3785 if (inherited_all) {
3786 /*
3787 * Mark the child context as a clone of the parent
3788 * context, or of whatever the parent is a clone of.
3789 * Note that if the parent is a clone, it could get
3790 * uncloned at any point, but that doesn't matter
3791 * because the list of counters and the generation
3792 * count can't have changed since we took the mutex.
3793 */
3794 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
3795 if (cloned_ctx) {
3796 child_ctx->parent_ctx = cloned_ctx;
3797 child_ctx->parent_gen = parent_ctx->parent_gen;
3798 } else {
3799 child_ctx->parent_ctx = parent_ctx;
3800 child_ctx->parent_gen = parent_ctx->generation;
3801 }
3802 get_ctx(child_ctx->parent_ctx);
3803 }
3804
3805 mutex_unlock(&parent_ctx->mutex);
3806
3807 perf_unpin_context(parent_ctx);
3808
3809 return ret;
3810 }
3811
3812 static void __cpuinit perf_counter_init_cpu(int cpu)
3813 {
3814 struct perf_cpu_context *cpuctx;
3815
3816 cpuctx = &per_cpu(perf_cpu_context, cpu);
3817 __perf_counter_init_context(&cpuctx->ctx, NULL);
3818
3819 spin_lock(&perf_resource_lock);
3820 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3821 spin_unlock(&perf_resource_lock);
3822
3823 hw_perf_counter_setup(cpu);
3824 }
3825
3826 #ifdef CONFIG_HOTPLUG_CPU
3827 static void __perf_counter_exit_cpu(void *info)
3828 {
3829 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3830 struct perf_counter_context *ctx = &cpuctx->ctx;
3831 struct perf_counter *counter, *tmp;
3832
3833 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3834 __perf_counter_remove_from_context(counter);
3835 }
3836 static void perf_counter_exit_cpu(int cpu)
3837 {
3838 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3839 struct perf_counter_context *ctx = &cpuctx->ctx;
3840
3841 mutex_lock(&ctx->mutex);
3842 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3843 mutex_unlock(&ctx->mutex);
3844 }
3845 #else
3846 static inline void perf_counter_exit_cpu(int cpu) { }
3847 #endif
3848
3849 static int __cpuinit
3850 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3851 {
3852 unsigned int cpu = (long)hcpu;
3853
3854 switch (action) {
3855
3856 case CPU_UP_PREPARE:
3857 case CPU_UP_PREPARE_FROZEN:
3858 perf_counter_init_cpu(cpu);
3859 break;
3860
3861 case CPU_DOWN_PREPARE:
3862 case CPU_DOWN_PREPARE_FROZEN:
3863 perf_counter_exit_cpu(cpu);
3864 break;
3865
3866 default:
3867 break;
3868 }
3869
3870 return NOTIFY_OK;
3871 }
3872
3873 /*
3874 * This has to have a higher priority than migration_notifier in sched.c.
3875 */
3876 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3877 .notifier_call = perf_cpu_notify,
3878 .priority = 20,
3879 };
3880
3881 void __init perf_counter_init(void)
3882 {
3883 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3884 (void *)(long)smp_processor_id());
3885 register_cpu_notifier(&perf_cpu_nb);
3886 }
3887
3888 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3889 {
3890 return sprintf(buf, "%d\n", perf_reserved_percpu);
3891 }
3892
3893 static ssize_t
3894 perf_set_reserve_percpu(struct sysdev_class *class,
3895 const char *buf,
3896 size_t count)
3897 {
3898 struct perf_cpu_context *cpuctx;
3899 unsigned long val;
3900 int err, cpu, mpt;
3901
3902 err = strict_strtoul(buf, 10, &val);
3903 if (err)
3904 return err;
3905 if (val > perf_max_counters)
3906 return -EINVAL;
3907
3908 spin_lock(&perf_resource_lock);
3909 perf_reserved_percpu = val;
3910 for_each_online_cpu(cpu) {
3911 cpuctx = &per_cpu(perf_cpu_context, cpu);
3912 spin_lock_irq(&cpuctx->ctx.lock);
3913 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3914 perf_max_counters - perf_reserved_percpu);
3915 cpuctx->max_pertask = mpt;
3916 spin_unlock_irq(&cpuctx->ctx.lock);
3917 }
3918 spin_unlock(&perf_resource_lock);
3919
3920 return count;
3921 }
3922
3923 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3924 {
3925 return sprintf(buf, "%d\n", perf_overcommit);
3926 }
3927
3928 static ssize_t
3929 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3930 {
3931 unsigned long val;
3932 int err;
3933
3934 err = strict_strtoul(buf, 10, &val);
3935 if (err)
3936 return err;
3937 if (val > 1)
3938 return -EINVAL;
3939
3940 spin_lock(&perf_resource_lock);
3941 perf_overcommit = val;
3942 spin_unlock(&perf_resource_lock);
3943
3944 return count;
3945 }
3946
3947 static SYSDEV_CLASS_ATTR(
3948 reserve_percpu,
3949 0644,
3950 perf_show_reserve_percpu,
3951 perf_set_reserve_percpu
3952 );
3953
3954 static SYSDEV_CLASS_ATTR(
3955 overcommit,
3956 0644,
3957 perf_show_overcommit,
3958 perf_set_overcommit
3959 );
3960
3961 static struct attribute *perfclass_attrs[] = {
3962 &attr_reserve_percpu.attr,
3963 &attr_overcommit.attr,
3964 NULL
3965 };
3966
3967 static struct attribute_group perfclass_attr_group = {
3968 .attrs = perfclass_attrs,
3969 .name = "perf_counters",
3970 };
3971
3972 static int __init perf_counter_sysfs_init(void)
3973 {
3974 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3975 &perfclass_attr_group);
3976 }
3977 device_initcall(perf_counter_sysfs_init);
This page took 0.115228 seconds and 6 git commands to generate.