Merge branch 'for-linus' of git://neil.brown.name/md
[deliverable/linux.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/hardirq.h>
24 #include <linux/rculist.h>
25 #include <linux/uaccess.h>
26 #include <linux/syscalls.h>
27 #include <linux/anon_inodes.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/perf_counter.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34 * Each CPU has a list of per CPU counters:
35 */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_counters __read_mostly;
44 static atomic_t nr_comm_counters __read_mostly;
45 static atomic_t nr_task_counters __read_mostly;
46
47 /*
48 * perf counter paranoia level:
49 * 0 - not paranoid
50 * 1 - disallow cpu counters to unpriv
51 * 2 - disallow kernel profiling to unpriv
52 */
53 int sysctl_perf_counter_paranoid __read_mostly;
54
55 static inline bool perf_paranoid_cpu(void)
56 {
57 return sysctl_perf_counter_paranoid > 0;
58 }
59
60 static inline bool perf_paranoid_kernel(void)
61 {
62 return sysctl_perf_counter_paranoid > 1;
63 }
64
65 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
66
67 /*
68 * max perf counter sample rate
69 */
70 int sysctl_perf_counter_sample_rate __read_mostly = 100000;
71
72 static atomic64_t perf_counter_id;
73
74 /*
75 * Lock for (sysadmin-configurable) counter reservations:
76 */
77 static DEFINE_SPINLOCK(perf_resource_lock);
78
79 /*
80 * Architecture provided APIs - weak aliases:
81 */
82 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
83 {
84 return NULL;
85 }
86
87 void __weak hw_perf_disable(void) { barrier(); }
88 void __weak hw_perf_enable(void) { barrier(); }
89
90 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
91 void __weak hw_perf_counter_setup_online(int cpu) { barrier(); }
92
93 int __weak
94 hw_perf_group_sched_in(struct perf_counter *group_leader,
95 struct perf_cpu_context *cpuctx,
96 struct perf_counter_context *ctx, int cpu)
97 {
98 return 0;
99 }
100
101 void __weak perf_counter_print_debug(void) { }
102
103 static DEFINE_PER_CPU(int, disable_count);
104
105 void __perf_disable(void)
106 {
107 __get_cpu_var(disable_count)++;
108 }
109
110 bool __perf_enable(void)
111 {
112 return !--__get_cpu_var(disable_count);
113 }
114
115 void perf_disable(void)
116 {
117 __perf_disable();
118 hw_perf_disable();
119 }
120
121 void perf_enable(void)
122 {
123 if (__perf_enable())
124 hw_perf_enable();
125 }
126
127 static void get_ctx(struct perf_counter_context *ctx)
128 {
129 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
130 }
131
132 static void free_ctx(struct rcu_head *head)
133 {
134 struct perf_counter_context *ctx;
135
136 ctx = container_of(head, struct perf_counter_context, rcu_head);
137 kfree(ctx);
138 }
139
140 static void put_ctx(struct perf_counter_context *ctx)
141 {
142 if (atomic_dec_and_test(&ctx->refcount)) {
143 if (ctx->parent_ctx)
144 put_ctx(ctx->parent_ctx);
145 if (ctx->task)
146 put_task_struct(ctx->task);
147 call_rcu(&ctx->rcu_head, free_ctx);
148 }
149 }
150
151 static void unclone_ctx(struct perf_counter_context *ctx)
152 {
153 if (ctx->parent_ctx) {
154 put_ctx(ctx->parent_ctx);
155 ctx->parent_ctx = NULL;
156 }
157 }
158
159 /*
160 * If we inherit counters we want to return the parent counter id
161 * to userspace.
162 */
163 static u64 primary_counter_id(struct perf_counter *counter)
164 {
165 u64 id = counter->id;
166
167 if (counter->parent)
168 id = counter->parent->id;
169
170 return id;
171 }
172
173 /*
174 * Get the perf_counter_context for a task and lock it.
175 * This has to cope with with the fact that until it is locked,
176 * the context could get moved to another task.
177 */
178 static struct perf_counter_context *
179 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
180 {
181 struct perf_counter_context *ctx;
182
183 rcu_read_lock();
184 retry:
185 ctx = rcu_dereference(task->perf_counter_ctxp);
186 if (ctx) {
187 /*
188 * If this context is a clone of another, it might
189 * get swapped for another underneath us by
190 * perf_counter_task_sched_out, though the
191 * rcu_read_lock() protects us from any context
192 * getting freed. Lock the context and check if it
193 * got swapped before we could get the lock, and retry
194 * if so. If we locked the right context, then it
195 * can't get swapped on us any more.
196 */
197 spin_lock_irqsave(&ctx->lock, *flags);
198 if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
199 spin_unlock_irqrestore(&ctx->lock, *flags);
200 goto retry;
201 }
202
203 if (!atomic_inc_not_zero(&ctx->refcount)) {
204 spin_unlock_irqrestore(&ctx->lock, *flags);
205 ctx = NULL;
206 }
207 }
208 rcu_read_unlock();
209 return ctx;
210 }
211
212 /*
213 * Get the context for a task and increment its pin_count so it
214 * can't get swapped to another task. This also increments its
215 * reference count so that the context can't get freed.
216 */
217 static struct perf_counter_context *perf_pin_task_context(struct task_struct *task)
218 {
219 struct perf_counter_context *ctx;
220 unsigned long flags;
221
222 ctx = perf_lock_task_context(task, &flags);
223 if (ctx) {
224 ++ctx->pin_count;
225 spin_unlock_irqrestore(&ctx->lock, flags);
226 }
227 return ctx;
228 }
229
230 static void perf_unpin_context(struct perf_counter_context *ctx)
231 {
232 unsigned long flags;
233
234 spin_lock_irqsave(&ctx->lock, flags);
235 --ctx->pin_count;
236 spin_unlock_irqrestore(&ctx->lock, flags);
237 put_ctx(ctx);
238 }
239
240 /*
241 * Add a counter from the lists for its context.
242 * Must be called with ctx->mutex and ctx->lock held.
243 */
244 static void
245 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
246 {
247 struct perf_counter *group_leader = counter->group_leader;
248
249 /*
250 * Depending on whether it is a standalone or sibling counter,
251 * add it straight to the context's counter list, or to the group
252 * leader's sibling list:
253 */
254 if (group_leader == counter)
255 list_add_tail(&counter->list_entry, &ctx->counter_list);
256 else {
257 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
258 group_leader->nr_siblings++;
259 }
260
261 list_add_rcu(&counter->event_entry, &ctx->event_list);
262 ctx->nr_counters++;
263 if (counter->attr.inherit_stat)
264 ctx->nr_stat++;
265 }
266
267 /*
268 * Remove a counter from the lists for its context.
269 * Must be called with ctx->mutex and ctx->lock held.
270 */
271 static void
272 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
273 {
274 struct perf_counter *sibling, *tmp;
275
276 if (list_empty(&counter->list_entry))
277 return;
278 ctx->nr_counters--;
279 if (counter->attr.inherit_stat)
280 ctx->nr_stat--;
281
282 list_del_init(&counter->list_entry);
283 list_del_rcu(&counter->event_entry);
284
285 if (counter->group_leader != counter)
286 counter->group_leader->nr_siblings--;
287
288 /*
289 * If this was a group counter with sibling counters then
290 * upgrade the siblings to singleton counters by adding them
291 * to the context list directly:
292 */
293 list_for_each_entry_safe(sibling, tmp,
294 &counter->sibling_list, list_entry) {
295
296 list_move_tail(&sibling->list_entry, &ctx->counter_list);
297 sibling->group_leader = sibling;
298 }
299 }
300
301 static void
302 counter_sched_out(struct perf_counter *counter,
303 struct perf_cpu_context *cpuctx,
304 struct perf_counter_context *ctx)
305 {
306 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
307 return;
308
309 counter->state = PERF_COUNTER_STATE_INACTIVE;
310 if (counter->pending_disable) {
311 counter->pending_disable = 0;
312 counter->state = PERF_COUNTER_STATE_OFF;
313 }
314 counter->tstamp_stopped = ctx->time;
315 counter->pmu->disable(counter);
316 counter->oncpu = -1;
317
318 if (!is_software_counter(counter))
319 cpuctx->active_oncpu--;
320 ctx->nr_active--;
321 if (counter->attr.exclusive || !cpuctx->active_oncpu)
322 cpuctx->exclusive = 0;
323 }
324
325 static void
326 group_sched_out(struct perf_counter *group_counter,
327 struct perf_cpu_context *cpuctx,
328 struct perf_counter_context *ctx)
329 {
330 struct perf_counter *counter;
331
332 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
333 return;
334
335 counter_sched_out(group_counter, cpuctx, ctx);
336
337 /*
338 * Schedule out siblings (if any):
339 */
340 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
341 counter_sched_out(counter, cpuctx, ctx);
342
343 if (group_counter->attr.exclusive)
344 cpuctx->exclusive = 0;
345 }
346
347 /*
348 * Cross CPU call to remove a performance counter
349 *
350 * We disable the counter on the hardware level first. After that we
351 * remove it from the context list.
352 */
353 static void __perf_counter_remove_from_context(void *info)
354 {
355 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
356 struct perf_counter *counter = info;
357 struct perf_counter_context *ctx = counter->ctx;
358
359 /*
360 * If this is a task context, we need to check whether it is
361 * the current task context of this cpu. If not it has been
362 * scheduled out before the smp call arrived.
363 */
364 if (ctx->task && cpuctx->task_ctx != ctx)
365 return;
366
367 spin_lock(&ctx->lock);
368 /*
369 * Protect the list operation against NMI by disabling the
370 * counters on a global level.
371 */
372 perf_disable();
373
374 counter_sched_out(counter, cpuctx, ctx);
375
376 list_del_counter(counter, ctx);
377
378 if (!ctx->task) {
379 /*
380 * Allow more per task counters with respect to the
381 * reservation:
382 */
383 cpuctx->max_pertask =
384 min(perf_max_counters - ctx->nr_counters,
385 perf_max_counters - perf_reserved_percpu);
386 }
387
388 perf_enable();
389 spin_unlock(&ctx->lock);
390 }
391
392
393 /*
394 * Remove the counter from a task's (or a CPU's) list of counters.
395 *
396 * Must be called with ctx->mutex held.
397 *
398 * CPU counters are removed with a smp call. For task counters we only
399 * call when the task is on a CPU.
400 *
401 * If counter->ctx is a cloned context, callers must make sure that
402 * every task struct that counter->ctx->task could possibly point to
403 * remains valid. This is OK when called from perf_release since
404 * that only calls us on the top-level context, which can't be a clone.
405 * When called from perf_counter_exit_task, it's OK because the
406 * context has been detached from its task.
407 */
408 static void perf_counter_remove_from_context(struct perf_counter *counter)
409 {
410 struct perf_counter_context *ctx = counter->ctx;
411 struct task_struct *task = ctx->task;
412
413 if (!task) {
414 /*
415 * Per cpu counters are removed via an smp call and
416 * the removal is always sucessful.
417 */
418 smp_call_function_single(counter->cpu,
419 __perf_counter_remove_from_context,
420 counter, 1);
421 return;
422 }
423
424 retry:
425 task_oncpu_function_call(task, __perf_counter_remove_from_context,
426 counter);
427
428 spin_lock_irq(&ctx->lock);
429 /*
430 * If the context is active we need to retry the smp call.
431 */
432 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
433 spin_unlock_irq(&ctx->lock);
434 goto retry;
435 }
436
437 /*
438 * The lock prevents that this context is scheduled in so we
439 * can remove the counter safely, if the call above did not
440 * succeed.
441 */
442 if (!list_empty(&counter->list_entry)) {
443 list_del_counter(counter, ctx);
444 }
445 spin_unlock_irq(&ctx->lock);
446 }
447
448 static inline u64 perf_clock(void)
449 {
450 return cpu_clock(smp_processor_id());
451 }
452
453 /*
454 * Update the record of the current time in a context.
455 */
456 static void update_context_time(struct perf_counter_context *ctx)
457 {
458 u64 now = perf_clock();
459
460 ctx->time += now - ctx->timestamp;
461 ctx->timestamp = now;
462 }
463
464 /*
465 * Update the total_time_enabled and total_time_running fields for a counter.
466 */
467 static void update_counter_times(struct perf_counter *counter)
468 {
469 struct perf_counter_context *ctx = counter->ctx;
470 u64 run_end;
471
472 if (counter->state < PERF_COUNTER_STATE_INACTIVE)
473 return;
474
475 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
476
477 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
478 run_end = counter->tstamp_stopped;
479 else
480 run_end = ctx->time;
481
482 counter->total_time_running = run_end - counter->tstamp_running;
483 }
484
485 /*
486 * Update total_time_enabled and total_time_running for all counters in a group.
487 */
488 static void update_group_times(struct perf_counter *leader)
489 {
490 struct perf_counter *counter;
491
492 update_counter_times(leader);
493 list_for_each_entry(counter, &leader->sibling_list, list_entry)
494 update_counter_times(counter);
495 }
496
497 /*
498 * Cross CPU call to disable a performance counter
499 */
500 static void __perf_counter_disable(void *info)
501 {
502 struct perf_counter *counter = info;
503 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
504 struct perf_counter_context *ctx = counter->ctx;
505
506 /*
507 * If this is a per-task counter, need to check whether this
508 * counter's task is the current task on this cpu.
509 */
510 if (ctx->task && cpuctx->task_ctx != ctx)
511 return;
512
513 spin_lock(&ctx->lock);
514
515 /*
516 * If the counter is on, turn it off.
517 * If it is in error state, leave it in error state.
518 */
519 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
520 update_context_time(ctx);
521 update_counter_times(counter);
522 if (counter == counter->group_leader)
523 group_sched_out(counter, cpuctx, ctx);
524 else
525 counter_sched_out(counter, cpuctx, ctx);
526 counter->state = PERF_COUNTER_STATE_OFF;
527 }
528
529 spin_unlock(&ctx->lock);
530 }
531
532 /*
533 * Disable a counter.
534 *
535 * If counter->ctx is a cloned context, callers must make sure that
536 * every task struct that counter->ctx->task could possibly point to
537 * remains valid. This condition is satisifed when called through
538 * perf_counter_for_each_child or perf_counter_for_each because they
539 * hold the top-level counter's child_mutex, so any descendant that
540 * goes to exit will block in sync_child_counter.
541 * When called from perf_pending_counter it's OK because counter->ctx
542 * is the current context on this CPU and preemption is disabled,
543 * hence we can't get into perf_counter_task_sched_out for this context.
544 */
545 static void perf_counter_disable(struct perf_counter *counter)
546 {
547 struct perf_counter_context *ctx = counter->ctx;
548 struct task_struct *task = ctx->task;
549
550 if (!task) {
551 /*
552 * Disable the counter on the cpu that it's on
553 */
554 smp_call_function_single(counter->cpu, __perf_counter_disable,
555 counter, 1);
556 return;
557 }
558
559 retry:
560 task_oncpu_function_call(task, __perf_counter_disable, counter);
561
562 spin_lock_irq(&ctx->lock);
563 /*
564 * If the counter is still active, we need to retry the cross-call.
565 */
566 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
567 spin_unlock_irq(&ctx->lock);
568 goto retry;
569 }
570
571 /*
572 * Since we have the lock this context can't be scheduled
573 * in, so we can change the state safely.
574 */
575 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
576 update_counter_times(counter);
577 counter->state = PERF_COUNTER_STATE_OFF;
578 }
579
580 spin_unlock_irq(&ctx->lock);
581 }
582
583 static int
584 counter_sched_in(struct perf_counter *counter,
585 struct perf_cpu_context *cpuctx,
586 struct perf_counter_context *ctx,
587 int cpu)
588 {
589 if (counter->state <= PERF_COUNTER_STATE_OFF)
590 return 0;
591
592 counter->state = PERF_COUNTER_STATE_ACTIVE;
593 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
594 /*
595 * The new state must be visible before we turn it on in the hardware:
596 */
597 smp_wmb();
598
599 if (counter->pmu->enable(counter)) {
600 counter->state = PERF_COUNTER_STATE_INACTIVE;
601 counter->oncpu = -1;
602 return -EAGAIN;
603 }
604
605 counter->tstamp_running += ctx->time - counter->tstamp_stopped;
606
607 if (!is_software_counter(counter))
608 cpuctx->active_oncpu++;
609 ctx->nr_active++;
610
611 if (counter->attr.exclusive)
612 cpuctx->exclusive = 1;
613
614 return 0;
615 }
616
617 static int
618 group_sched_in(struct perf_counter *group_counter,
619 struct perf_cpu_context *cpuctx,
620 struct perf_counter_context *ctx,
621 int cpu)
622 {
623 struct perf_counter *counter, *partial_group;
624 int ret;
625
626 if (group_counter->state == PERF_COUNTER_STATE_OFF)
627 return 0;
628
629 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
630 if (ret)
631 return ret < 0 ? ret : 0;
632
633 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
634 return -EAGAIN;
635
636 /*
637 * Schedule in siblings as one group (if any):
638 */
639 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
640 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
641 partial_group = counter;
642 goto group_error;
643 }
644 }
645
646 return 0;
647
648 group_error:
649 /*
650 * Groups can be scheduled in as one unit only, so undo any
651 * partial group before returning:
652 */
653 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
654 if (counter == partial_group)
655 break;
656 counter_sched_out(counter, cpuctx, ctx);
657 }
658 counter_sched_out(group_counter, cpuctx, ctx);
659
660 return -EAGAIN;
661 }
662
663 /*
664 * Return 1 for a group consisting entirely of software counters,
665 * 0 if the group contains any hardware counters.
666 */
667 static int is_software_only_group(struct perf_counter *leader)
668 {
669 struct perf_counter *counter;
670
671 if (!is_software_counter(leader))
672 return 0;
673
674 list_for_each_entry(counter, &leader->sibling_list, list_entry)
675 if (!is_software_counter(counter))
676 return 0;
677
678 return 1;
679 }
680
681 /*
682 * Work out whether we can put this counter group on the CPU now.
683 */
684 static int group_can_go_on(struct perf_counter *counter,
685 struct perf_cpu_context *cpuctx,
686 int can_add_hw)
687 {
688 /*
689 * Groups consisting entirely of software counters can always go on.
690 */
691 if (is_software_only_group(counter))
692 return 1;
693 /*
694 * If an exclusive group is already on, no other hardware
695 * counters can go on.
696 */
697 if (cpuctx->exclusive)
698 return 0;
699 /*
700 * If this group is exclusive and there are already
701 * counters on the CPU, it can't go on.
702 */
703 if (counter->attr.exclusive && cpuctx->active_oncpu)
704 return 0;
705 /*
706 * Otherwise, try to add it if all previous groups were able
707 * to go on.
708 */
709 return can_add_hw;
710 }
711
712 static void add_counter_to_ctx(struct perf_counter *counter,
713 struct perf_counter_context *ctx)
714 {
715 list_add_counter(counter, ctx);
716 counter->tstamp_enabled = ctx->time;
717 counter->tstamp_running = ctx->time;
718 counter->tstamp_stopped = ctx->time;
719 }
720
721 /*
722 * Cross CPU call to install and enable a performance counter
723 *
724 * Must be called with ctx->mutex held
725 */
726 static void __perf_install_in_context(void *info)
727 {
728 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
729 struct perf_counter *counter = info;
730 struct perf_counter_context *ctx = counter->ctx;
731 struct perf_counter *leader = counter->group_leader;
732 int cpu = smp_processor_id();
733 int err;
734
735 /*
736 * If this is a task context, we need to check whether it is
737 * the current task context of this cpu. If not it has been
738 * scheduled out before the smp call arrived.
739 * Or possibly this is the right context but it isn't
740 * on this cpu because it had no counters.
741 */
742 if (ctx->task && cpuctx->task_ctx != ctx) {
743 if (cpuctx->task_ctx || ctx->task != current)
744 return;
745 cpuctx->task_ctx = ctx;
746 }
747
748 spin_lock(&ctx->lock);
749 ctx->is_active = 1;
750 update_context_time(ctx);
751
752 /*
753 * Protect the list operation against NMI by disabling the
754 * counters on a global level. NOP for non NMI based counters.
755 */
756 perf_disable();
757
758 add_counter_to_ctx(counter, ctx);
759
760 /*
761 * Don't put the counter on if it is disabled or if
762 * it is in a group and the group isn't on.
763 */
764 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
765 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
766 goto unlock;
767
768 /*
769 * An exclusive counter can't go on if there are already active
770 * hardware counters, and no hardware counter can go on if there
771 * is already an exclusive counter on.
772 */
773 if (!group_can_go_on(counter, cpuctx, 1))
774 err = -EEXIST;
775 else
776 err = counter_sched_in(counter, cpuctx, ctx, cpu);
777
778 if (err) {
779 /*
780 * This counter couldn't go on. If it is in a group
781 * then we have to pull the whole group off.
782 * If the counter group is pinned then put it in error state.
783 */
784 if (leader != counter)
785 group_sched_out(leader, cpuctx, ctx);
786 if (leader->attr.pinned) {
787 update_group_times(leader);
788 leader->state = PERF_COUNTER_STATE_ERROR;
789 }
790 }
791
792 if (!err && !ctx->task && cpuctx->max_pertask)
793 cpuctx->max_pertask--;
794
795 unlock:
796 perf_enable();
797
798 spin_unlock(&ctx->lock);
799 }
800
801 /*
802 * Attach a performance counter to a context
803 *
804 * First we add the counter to the list with the hardware enable bit
805 * in counter->hw_config cleared.
806 *
807 * If the counter is attached to a task which is on a CPU we use a smp
808 * call to enable it in the task context. The task might have been
809 * scheduled away, but we check this in the smp call again.
810 *
811 * Must be called with ctx->mutex held.
812 */
813 static void
814 perf_install_in_context(struct perf_counter_context *ctx,
815 struct perf_counter *counter,
816 int cpu)
817 {
818 struct task_struct *task = ctx->task;
819
820 if (!task) {
821 /*
822 * Per cpu counters are installed via an smp call and
823 * the install is always sucessful.
824 */
825 smp_call_function_single(cpu, __perf_install_in_context,
826 counter, 1);
827 return;
828 }
829
830 retry:
831 task_oncpu_function_call(task, __perf_install_in_context,
832 counter);
833
834 spin_lock_irq(&ctx->lock);
835 /*
836 * we need to retry the smp call.
837 */
838 if (ctx->is_active && list_empty(&counter->list_entry)) {
839 spin_unlock_irq(&ctx->lock);
840 goto retry;
841 }
842
843 /*
844 * The lock prevents that this context is scheduled in so we
845 * can add the counter safely, if it the call above did not
846 * succeed.
847 */
848 if (list_empty(&counter->list_entry))
849 add_counter_to_ctx(counter, ctx);
850 spin_unlock_irq(&ctx->lock);
851 }
852
853 /*
854 * Cross CPU call to enable a performance counter
855 */
856 static void __perf_counter_enable(void *info)
857 {
858 struct perf_counter *counter = info;
859 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
860 struct perf_counter_context *ctx = counter->ctx;
861 struct perf_counter *leader = counter->group_leader;
862 int err;
863
864 /*
865 * If this is a per-task counter, need to check whether this
866 * counter's task is the current task on this cpu.
867 */
868 if (ctx->task && cpuctx->task_ctx != ctx) {
869 if (cpuctx->task_ctx || ctx->task != current)
870 return;
871 cpuctx->task_ctx = ctx;
872 }
873
874 spin_lock(&ctx->lock);
875 ctx->is_active = 1;
876 update_context_time(ctx);
877
878 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
879 goto unlock;
880 counter->state = PERF_COUNTER_STATE_INACTIVE;
881 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
882
883 /*
884 * If the counter is in a group and isn't the group leader,
885 * then don't put it on unless the group is on.
886 */
887 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
888 goto unlock;
889
890 if (!group_can_go_on(counter, cpuctx, 1)) {
891 err = -EEXIST;
892 } else {
893 perf_disable();
894 if (counter == leader)
895 err = group_sched_in(counter, cpuctx, ctx,
896 smp_processor_id());
897 else
898 err = counter_sched_in(counter, cpuctx, ctx,
899 smp_processor_id());
900 perf_enable();
901 }
902
903 if (err) {
904 /*
905 * If this counter can't go on and it's part of a
906 * group, then the whole group has to come off.
907 */
908 if (leader != counter)
909 group_sched_out(leader, cpuctx, ctx);
910 if (leader->attr.pinned) {
911 update_group_times(leader);
912 leader->state = PERF_COUNTER_STATE_ERROR;
913 }
914 }
915
916 unlock:
917 spin_unlock(&ctx->lock);
918 }
919
920 /*
921 * Enable a counter.
922 *
923 * If counter->ctx is a cloned context, callers must make sure that
924 * every task struct that counter->ctx->task could possibly point to
925 * remains valid. This condition is satisfied when called through
926 * perf_counter_for_each_child or perf_counter_for_each as described
927 * for perf_counter_disable.
928 */
929 static void perf_counter_enable(struct perf_counter *counter)
930 {
931 struct perf_counter_context *ctx = counter->ctx;
932 struct task_struct *task = ctx->task;
933
934 if (!task) {
935 /*
936 * Enable the counter on the cpu that it's on
937 */
938 smp_call_function_single(counter->cpu, __perf_counter_enable,
939 counter, 1);
940 return;
941 }
942
943 spin_lock_irq(&ctx->lock);
944 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
945 goto out;
946
947 /*
948 * If the counter is in error state, clear that first.
949 * That way, if we see the counter in error state below, we
950 * know that it has gone back into error state, as distinct
951 * from the task having been scheduled away before the
952 * cross-call arrived.
953 */
954 if (counter->state == PERF_COUNTER_STATE_ERROR)
955 counter->state = PERF_COUNTER_STATE_OFF;
956
957 retry:
958 spin_unlock_irq(&ctx->lock);
959 task_oncpu_function_call(task, __perf_counter_enable, counter);
960
961 spin_lock_irq(&ctx->lock);
962
963 /*
964 * If the context is active and the counter is still off,
965 * we need to retry the cross-call.
966 */
967 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
968 goto retry;
969
970 /*
971 * Since we have the lock this context can't be scheduled
972 * in, so we can change the state safely.
973 */
974 if (counter->state == PERF_COUNTER_STATE_OFF) {
975 counter->state = PERF_COUNTER_STATE_INACTIVE;
976 counter->tstamp_enabled =
977 ctx->time - counter->total_time_enabled;
978 }
979 out:
980 spin_unlock_irq(&ctx->lock);
981 }
982
983 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
984 {
985 /*
986 * not supported on inherited counters
987 */
988 if (counter->attr.inherit)
989 return -EINVAL;
990
991 atomic_add(refresh, &counter->event_limit);
992 perf_counter_enable(counter);
993
994 return 0;
995 }
996
997 void __perf_counter_sched_out(struct perf_counter_context *ctx,
998 struct perf_cpu_context *cpuctx)
999 {
1000 struct perf_counter *counter;
1001
1002 spin_lock(&ctx->lock);
1003 ctx->is_active = 0;
1004 if (likely(!ctx->nr_counters))
1005 goto out;
1006 update_context_time(ctx);
1007
1008 perf_disable();
1009 if (ctx->nr_active) {
1010 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1011 if (counter != counter->group_leader)
1012 counter_sched_out(counter, cpuctx, ctx);
1013 else
1014 group_sched_out(counter, cpuctx, ctx);
1015 }
1016 }
1017 perf_enable();
1018 out:
1019 spin_unlock(&ctx->lock);
1020 }
1021
1022 /*
1023 * Test whether two contexts are equivalent, i.e. whether they
1024 * have both been cloned from the same version of the same context
1025 * and they both have the same number of enabled counters.
1026 * If the number of enabled counters is the same, then the set
1027 * of enabled counters should be the same, because these are both
1028 * inherited contexts, therefore we can't access individual counters
1029 * in them directly with an fd; we can only enable/disable all
1030 * counters via prctl, or enable/disable all counters in a family
1031 * via ioctl, which will have the same effect on both contexts.
1032 */
1033 static int context_equiv(struct perf_counter_context *ctx1,
1034 struct perf_counter_context *ctx2)
1035 {
1036 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1037 && ctx1->parent_gen == ctx2->parent_gen
1038 && !ctx1->pin_count && !ctx2->pin_count;
1039 }
1040
1041 static void __perf_counter_read(void *counter);
1042
1043 static void __perf_counter_sync_stat(struct perf_counter *counter,
1044 struct perf_counter *next_counter)
1045 {
1046 u64 value;
1047
1048 if (!counter->attr.inherit_stat)
1049 return;
1050
1051 /*
1052 * Update the counter value, we cannot use perf_counter_read()
1053 * because we're in the middle of a context switch and have IRQs
1054 * disabled, which upsets smp_call_function_single(), however
1055 * we know the counter must be on the current CPU, therefore we
1056 * don't need to use it.
1057 */
1058 switch (counter->state) {
1059 case PERF_COUNTER_STATE_ACTIVE:
1060 __perf_counter_read(counter);
1061 break;
1062
1063 case PERF_COUNTER_STATE_INACTIVE:
1064 update_counter_times(counter);
1065 break;
1066
1067 default:
1068 break;
1069 }
1070
1071 /*
1072 * In order to keep per-task stats reliable we need to flip the counter
1073 * values when we flip the contexts.
1074 */
1075 value = atomic64_read(&next_counter->count);
1076 value = atomic64_xchg(&counter->count, value);
1077 atomic64_set(&next_counter->count, value);
1078
1079 swap(counter->total_time_enabled, next_counter->total_time_enabled);
1080 swap(counter->total_time_running, next_counter->total_time_running);
1081
1082 /*
1083 * Since we swizzled the values, update the user visible data too.
1084 */
1085 perf_counter_update_userpage(counter);
1086 perf_counter_update_userpage(next_counter);
1087 }
1088
1089 #define list_next_entry(pos, member) \
1090 list_entry(pos->member.next, typeof(*pos), member)
1091
1092 static void perf_counter_sync_stat(struct perf_counter_context *ctx,
1093 struct perf_counter_context *next_ctx)
1094 {
1095 struct perf_counter *counter, *next_counter;
1096
1097 if (!ctx->nr_stat)
1098 return;
1099
1100 counter = list_first_entry(&ctx->event_list,
1101 struct perf_counter, event_entry);
1102
1103 next_counter = list_first_entry(&next_ctx->event_list,
1104 struct perf_counter, event_entry);
1105
1106 while (&counter->event_entry != &ctx->event_list &&
1107 &next_counter->event_entry != &next_ctx->event_list) {
1108
1109 __perf_counter_sync_stat(counter, next_counter);
1110
1111 counter = list_next_entry(counter, event_entry);
1112 next_counter = list_next_entry(next_counter, event_entry);
1113 }
1114 }
1115
1116 /*
1117 * Called from scheduler to remove the counters of the current task,
1118 * with interrupts disabled.
1119 *
1120 * We stop each counter and update the counter value in counter->count.
1121 *
1122 * This does not protect us against NMI, but disable()
1123 * sets the disabled bit in the control field of counter _before_
1124 * accessing the counter control register. If a NMI hits, then it will
1125 * not restart the counter.
1126 */
1127 void perf_counter_task_sched_out(struct task_struct *task,
1128 struct task_struct *next, int cpu)
1129 {
1130 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1131 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1132 struct perf_counter_context *next_ctx;
1133 struct perf_counter_context *parent;
1134 struct pt_regs *regs;
1135 int do_switch = 1;
1136
1137 regs = task_pt_regs(task);
1138 perf_swcounter_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1139
1140 if (likely(!ctx || !cpuctx->task_ctx))
1141 return;
1142
1143 update_context_time(ctx);
1144
1145 rcu_read_lock();
1146 parent = rcu_dereference(ctx->parent_ctx);
1147 next_ctx = next->perf_counter_ctxp;
1148 if (parent && next_ctx &&
1149 rcu_dereference(next_ctx->parent_ctx) == parent) {
1150 /*
1151 * Looks like the two contexts are clones, so we might be
1152 * able to optimize the context switch. We lock both
1153 * contexts and check that they are clones under the
1154 * lock (including re-checking that neither has been
1155 * uncloned in the meantime). It doesn't matter which
1156 * order we take the locks because no other cpu could
1157 * be trying to lock both of these tasks.
1158 */
1159 spin_lock(&ctx->lock);
1160 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1161 if (context_equiv(ctx, next_ctx)) {
1162 /*
1163 * XXX do we need a memory barrier of sorts
1164 * wrt to rcu_dereference() of perf_counter_ctxp
1165 */
1166 task->perf_counter_ctxp = next_ctx;
1167 next->perf_counter_ctxp = ctx;
1168 ctx->task = next;
1169 next_ctx->task = task;
1170 do_switch = 0;
1171
1172 perf_counter_sync_stat(ctx, next_ctx);
1173 }
1174 spin_unlock(&next_ctx->lock);
1175 spin_unlock(&ctx->lock);
1176 }
1177 rcu_read_unlock();
1178
1179 if (do_switch) {
1180 __perf_counter_sched_out(ctx, cpuctx);
1181 cpuctx->task_ctx = NULL;
1182 }
1183 }
1184
1185 /*
1186 * Called with IRQs disabled
1187 */
1188 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
1189 {
1190 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1191
1192 if (!cpuctx->task_ctx)
1193 return;
1194
1195 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1196 return;
1197
1198 __perf_counter_sched_out(ctx, cpuctx);
1199 cpuctx->task_ctx = NULL;
1200 }
1201
1202 /*
1203 * Called with IRQs disabled
1204 */
1205 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1206 {
1207 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1208 }
1209
1210 static void
1211 __perf_counter_sched_in(struct perf_counter_context *ctx,
1212 struct perf_cpu_context *cpuctx, int cpu)
1213 {
1214 struct perf_counter *counter;
1215 int can_add_hw = 1;
1216
1217 spin_lock(&ctx->lock);
1218 ctx->is_active = 1;
1219 if (likely(!ctx->nr_counters))
1220 goto out;
1221
1222 ctx->timestamp = perf_clock();
1223
1224 perf_disable();
1225
1226 /*
1227 * First go through the list and put on any pinned groups
1228 * in order to give them the best chance of going on.
1229 */
1230 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1231 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1232 !counter->attr.pinned)
1233 continue;
1234 if (counter->cpu != -1 && counter->cpu != cpu)
1235 continue;
1236
1237 if (counter != counter->group_leader)
1238 counter_sched_in(counter, cpuctx, ctx, cpu);
1239 else {
1240 if (group_can_go_on(counter, cpuctx, 1))
1241 group_sched_in(counter, cpuctx, ctx, cpu);
1242 }
1243
1244 /*
1245 * If this pinned group hasn't been scheduled,
1246 * put it in error state.
1247 */
1248 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1249 update_group_times(counter);
1250 counter->state = PERF_COUNTER_STATE_ERROR;
1251 }
1252 }
1253
1254 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1255 /*
1256 * Ignore counters in OFF or ERROR state, and
1257 * ignore pinned counters since we did them already.
1258 */
1259 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1260 counter->attr.pinned)
1261 continue;
1262
1263 /*
1264 * Listen to the 'cpu' scheduling filter constraint
1265 * of counters:
1266 */
1267 if (counter->cpu != -1 && counter->cpu != cpu)
1268 continue;
1269
1270 if (counter != counter->group_leader) {
1271 if (counter_sched_in(counter, cpuctx, ctx, cpu))
1272 can_add_hw = 0;
1273 } else {
1274 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1275 if (group_sched_in(counter, cpuctx, ctx, cpu))
1276 can_add_hw = 0;
1277 }
1278 }
1279 }
1280 perf_enable();
1281 out:
1282 spin_unlock(&ctx->lock);
1283 }
1284
1285 /*
1286 * Called from scheduler to add the counters of the current task
1287 * with interrupts disabled.
1288 *
1289 * We restore the counter value and then enable it.
1290 *
1291 * This does not protect us against NMI, but enable()
1292 * sets the enabled bit in the control field of counter _before_
1293 * accessing the counter control register. If a NMI hits, then it will
1294 * keep the counter running.
1295 */
1296 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1297 {
1298 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1299 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1300
1301 if (likely(!ctx))
1302 return;
1303 if (cpuctx->task_ctx == ctx)
1304 return;
1305 __perf_counter_sched_in(ctx, cpuctx, cpu);
1306 cpuctx->task_ctx = ctx;
1307 }
1308
1309 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1310 {
1311 struct perf_counter_context *ctx = &cpuctx->ctx;
1312
1313 __perf_counter_sched_in(ctx, cpuctx, cpu);
1314 }
1315
1316 #define MAX_INTERRUPTS (~0ULL)
1317
1318 static void perf_log_throttle(struct perf_counter *counter, int enable);
1319
1320 static void perf_adjust_period(struct perf_counter *counter, u64 events)
1321 {
1322 struct hw_perf_counter *hwc = &counter->hw;
1323 u64 period, sample_period;
1324 s64 delta;
1325
1326 events *= hwc->sample_period;
1327 period = div64_u64(events, counter->attr.sample_freq);
1328
1329 delta = (s64)(period - hwc->sample_period);
1330 delta = (delta + 7) / 8; /* low pass filter */
1331
1332 sample_period = hwc->sample_period + delta;
1333
1334 if (!sample_period)
1335 sample_period = 1;
1336
1337 hwc->sample_period = sample_period;
1338 }
1339
1340 static void perf_ctx_adjust_freq(struct perf_counter_context *ctx)
1341 {
1342 struct perf_counter *counter;
1343 struct hw_perf_counter *hwc;
1344 u64 interrupts, freq;
1345
1346 spin_lock(&ctx->lock);
1347 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1348 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1349 continue;
1350
1351 hwc = &counter->hw;
1352
1353 interrupts = hwc->interrupts;
1354 hwc->interrupts = 0;
1355
1356 /*
1357 * unthrottle counters on the tick
1358 */
1359 if (interrupts == MAX_INTERRUPTS) {
1360 perf_log_throttle(counter, 1);
1361 counter->pmu->unthrottle(counter);
1362 interrupts = 2*sysctl_perf_counter_sample_rate/HZ;
1363 }
1364
1365 if (!counter->attr.freq || !counter->attr.sample_freq)
1366 continue;
1367
1368 /*
1369 * if the specified freq < HZ then we need to skip ticks
1370 */
1371 if (counter->attr.sample_freq < HZ) {
1372 freq = counter->attr.sample_freq;
1373
1374 hwc->freq_count += freq;
1375 hwc->freq_interrupts += interrupts;
1376
1377 if (hwc->freq_count < HZ)
1378 continue;
1379
1380 interrupts = hwc->freq_interrupts;
1381 hwc->freq_interrupts = 0;
1382 hwc->freq_count -= HZ;
1383 } else
1384 freq = HZ;
1385
1386 perf_adjust_period(counter, freq * interrupts);
1387
1388 /*
1389 * In order to avoid being stalled by an (accidental) huge
1390 * sample period, force reset the sample period if we didn't
1391 * get any events in this freq period.
1392 */
1393 if (!interrupts) {
1394 perf_disable();
1395 counter->pmu->disable(counter);
1396 atomic64_set(&hwc->period_left, 0);
1397 counter->pmu->enable(counter);
1398 perf_enable();
1399 }
1400 }
1401 spin_unlock(&ctx->lock);
1402 }
1403
1404 /*
1405 * Round-robin a context's counters:
1406 */
1407 static void rotate_ctx(struct perf_counter_context *ctx)
1408 {
1409 struct perf_counter *counter;
1410
1411 if (!ctx->nr_counters)
1412 return;
1413
1414 spin_lock(&ctx->lock);
1415 /*
1416 * Rotate the first entry last (works just fine for group counters too):
1417 */
1418 perf_disable();
1419 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1420 list_move_tail(&counter->list_entry, &ctx->counter_list);
1421 break;
1422 }
1423 perf_enable();
1424
1425 spin_unlock(&ctx->lock);
1426 }
1427
1428 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1429 {
1430 struct perf_cpu_context *cpuctx;
1431 struct perf_counter_context *ctx;
1432
1433 if (!atomic_read(&nr_counters))
1434 return;
1435
1436 cpuctx = &per_cpu(perf_cpu_context, cpu);
1437 ctx = curr->perf_counter_ctxp;
1438
1439 perf_ctx_adjust_freq(&cpuctx->ctx);
1440 if (ctx)
1441 perf_ctx_adjust_freq(ctx);
1442
1443 perf_counter_cpu_sched_out(cpuctx);
1444 if (ctx)
1445 __perf_counter_task_sched_out(ctx);
1446
1447 rotate_ctx(&cpuctx->ctx);
1448 if (ctx)
1449 rotate_ctx(ctx);
1450
1451 perf_counter_cpu_sched_in(cpuctx, cpu);
1452 if (ctx)
1453 perf_counter_task_sched_in(curr, cpu);
1454 }
1455
1456 /*
1457 * Enable all of a task's counters that have been marked enable-on-exec.
1458 * This expects task == current.
1459 */
1460 static void perf_counter_enable_on_exec(struct task_struct *task)
1461 {
1462 struct perf_counter_context *ctx;
1463 struct perf_counter *counter;
1464 unsigned long flags;
1465 int enabled = 0;
1466
1467 local_irq_save(flags);
1468 ctx = task->perf_counter_ctxp;
1469 if (!ctx || !ctx->nr_counters)
1470 goto out;
1471
1472 __perf_counter_task_sched_out(ctx);
1473
1474 spin_lock(&ctx->lock);
1475
1476 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1477 if (!counter->attr.enable_on_exec)
1478 continue;
1479 counter->attr.enable_on_exec = 0;
1480 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
1481 continue;
1482 counter->state = PERF_COUNTER_STATE_INACTIVE;
1483 counter->tstamp_enabled =
1484 ctx->time - counter->total_time_enabled;
1485 enabled = 1;
1486 }
1487
1488 /*
1489 * Unclone this context if we enabled any counter.
1490 */
1491 if (enabled)
1492 unclone_ctx(ctx);
1493
1494 spin_unlock(&ctx->lock);
1495
1496 perf_counter_task_sched_in(task, smp_processor_id());
1497 out:
1498 local_irq_restore(flags);
1499 }
1500
1501 /*
1502 * Cross CPU call to read the hardware counter
1503 */
1504 static void __perf_counter_read(void *info)
1505 {
1506 struct perf_counter *counter = info;
1507 struct perf_counter_context *ctx = counter->ctx;
1508 unsigned long flags;
1509
1510 local_irq_save(flags);
1511 if (ctx->is_active)
1512 update_context_time(ctx);
1513 counter->pmu->read(counter);
1514 update_counter_times(counter);
1515 local_irq_restore(flags);
1516 }
1517
1518 static u64 perf_counter_read(struct perf_counter *counter)
1519 {
1520 /*
1521 * If counter is enabled and currently active on a CPU, update the
1522 * value in the counter structure:
1523 */
1524 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1525 smp_call_function_single(counter->oncpu,
1526 __perf_counter_read, counter, 1);
1527 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1528 update_counter_times(counter);
1529 }
1530
1531 return atomic64_read(&counter->count);
1532 }
1533
1534 /*
1535 * Initialize the perf_counter context in a task_struct:
1536 */
1537 static void
1538 __perf_counter_init_context(struct perf_counter_context *ctx,
1539 struct task_struct *task)
1540 {
1541 memset(ctx, 0, sizeof(*ctx));
1542 spin_lock_init(&ctx->lock);
1543 mutex_init(&ctx->mutex);
1544 INIT_LIST_HEAD(&ctx->counter_list);
1545 INIT_LIST_HEAD(&ctx->event_list);
1546 atomic_set(&ctx->refcount, 1);
1547 ctx->task = task;
1548 }
1549
1550 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1551 {
1552 struct perf_counter_context *ctx;
1553 struct perf_cpu_context *cpuctx;
1554 struct task_struct *task;
1555 unsigned long flags;
1556 int err;
1557
1558 /*
1559 * If cpu is not a wildcard then this is a percpu counter:
1560 */
1561 if (cpu != -1) {
1562 /* Must be root to operate on a CPU counter: */
1563 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1564 return ERR_PTR(-EACCES);
1565
1566 if (cpu < 0 || cpu > num_possible_cpus())
1567 return ERR_PTR(-EINVAL);
1568
1569 /*
1570 * We could be clever and allow to attach a counter to an
1571 * offline CPU and activate it when the CPU comes up, but
1572 * that's for later.
1573 */
1574 if (!cpu_isset(cpu, cpu_online_map))
1575 return ERR_PTR(-ENODEV);
1576
1577 cpuctx = &per_cpu(perf_cpu_context, cpu);
1578 ctx = &cpuctx->ctx;
1579 get_ctx(ctx);
1580
1581 return ctx;
1582 }
1583
1584 rcu_read_lock();
1585 if (!pid)
1586 task = current;
1587 else
1588 task = find_task_by_vpid(pid);
1589 if (task)
1590 get_task_struct(task);
1591 rcu_read_unlock();
1592
1593 if (!task)
1594 return ERR_PTR(-ESRCH);
1595
1596 /*
1597 * Can't attach counters to a dying task.
1598 */
1599 err = -ESRCH;
1600 if (task->flags & PF_EXITING)
1601 goto errout;
1602
1603 /* Reuse ptrace permission checks for now. */
1604 err = -EACCES;
1605 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1606 goto errout;
1607
1608 retry:
1609 ctx = perf_lock_task_context(task, &flags);
1610 if (ctx) {
1611 unclone_ctx(ctx);
1612 spin_unlock_irqrestore(&ctx->lock, flags);
1613 }
1614
1615 if (!ctx) {
1616 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1617 err = -ENOMEM;
1618 if (!ctx)
1619 goto errout;
1620 __perf_counter_init_context(ctx, task);
1621 get_ctx(ctx);
1622 if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1623 /*
1624 * We raced with some other task; use
1625 * the context they set.
1626 */
1627 kfree(ctx);
1628 goto retry;
1629 }
1630 get_task_struct(task);
1631 }
1632
1633 put_task_struct(task);
1634 return ctx;
1635
1636 errout:
1637 put_task_struct(task);
1638 return ERR_PTR(err);
1639 }
1640
1641 static void free_counter_rcu(struct rcu_head *head)
1642 {
1643 struct perf_counter *counter;
1644
1645 counter = container_of(head, struct perf_counter, rcu_head);
1646 if (counter->ns)
1647 put_pid_ns(counter->ns);
1648 kfree(counter);
1649 }
1650
1651 static void perf_pending_sync(struct perf_counter *counter);
1652
1653 static void free_counter(struct perf_counter *counter)
1654 {
1655 perf_pending_sync(counter);
1656
1657 if (!counter->parent) {
1658 atomic_dec(&nr_counters);
1659 if (counter->attr.mmap)
1660 atomic_dec(&nr_mmap_counters);
1661 if (counter->attr.comm)
1662 atomic_dec(&nr_comm_counters);
1663 if (counter->attr.task)
1664 atomic_dec(&nr_task_counters);
1665 }
1666
1667 if (counter->destroy)
1668 counter->destroy(counter);
1669
1670 put_ctx(counter->ctx);
1671 call_rcu(&counter->rcu_head, free_counter_rcu);
1672 }
1673
1674 /*
1675 * Called when the last reference to the file is gone.
1676 */
1677 static int perf_release(struct inode *inode, struct file *file)
1678 {
1679 struct perf_counter *counter = file->private_data;
1680 struct perf_counter_context *ctx = counter->ctx;
1681
1682 file->private_data = NULL;
1683
1684 WARN_ON_ONCE(ctx->parent_ctx);
1685 mutex_lock(&ctx->mutex);
1686 perf_counter_remove_from_context(counter);
1687 mutex_unlock(&ctx->mutex);
1688
1689 mutex_lock(&counter->owner->perf_counter_mutex);
1690 list_del_init(&counter->owner_entry);
1691 mutex_unlock(&counter->owner->perf_counter_mutex);
1692 put_task_struct(counter->owner);
1693
1694 free_counter(counter);
1695
1696 return 0;
1697 }
1698
1699 static int perf_counter_read_size(struct perf_counter *counter)
1700 {
1701 int entry = sizeof(u64); /* value */
1702 int size = 0;
1703 int nr = 1;
1704
1705 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1706 size += sizeof(u64);
1707
1708 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1709 size += sizeof(u64);
1710
1711 if (counter->attr.read_format & PERF_FORMAT_ID)
1712 entry += sizeof(u64);
1713
1714 if (counter->attr.read_format & PERF_FORMAT_GROUP) {
1715 nr += counter->group_leader->nr_siblings;
1716 size += sizeof(u64);
1717 }
1718
1719 size += entry * nr;
1720
1721 return size;
1722 }
1723
1724 static u64 perf_counter_read_value(struct perf_counter *counter)
1725 {
1726 struct perf_counter *child;
1727 u64 total = 0;
1728
1729 total += perf_counter_read(counter);
1730 list_for_each_entry(child, &counter->child_list, child_list)
1731 total += perf_counter_read(child);
1732
1733 return total;
1734 }
1735
1736 static int perf_counter_read_entry(struct perf_counter *counter,
1737 u64 read_format, char __user *buf)
1738 {
1739 int n = 0, count = 0;
1740 u64 values[2];
1741
1742 values[n++] = perf_counter_read_value(counter);
1743 if (read_format & PERF_FORMAT_ID)
1744 values[n++] = primary_counter_id(counter);
1745
1746 count = n * sizeof(u64);
1747
1748 if (copy_to_user(buf, values, count))
1749 return -EFAULT;
1750
1751 return count;
1752 }
1753
1754 static int perf_counter_read_group(struct perf_counter *counter,
1755 u64 read_format, char __user *buf)
1756 {
1757 struct perf_counter *leader = counter->group_leader, *sub;
1758 int n = 0, size = 0, err = -EFAULT;
1759 u64 values[3];
1760
1761 values[n++] = 1 + leader->nr_siblings;
1762 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1763 values[n++] = leader->total_time_enabled +
1764 atomic64_read(&leader->child_total_time_enabled);
1765 }
1766 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1767 values[n++] = leader->total_time_running +
1768 atomic64_read(&leader->child_total_time_running);
1769 }
1770
1771 size = n * sizeof(u64);
1772
1773 if (copy_to_user(buf, values, size))
1774 return -EFAULT;
1775
1776 err = perf_counter_read_entry(leader, read_format, buf + size);
1777 if (err < 0)
1778 return err;
1779
1780 size += err;
1781
1782 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
1783 err = perf_counter_read_entry(counter, read_format,
1784 buf + size);
1785 if (err < 0)
1786 return err;
1787
1788 size += err;
1789 }
1790
1791 return size;
1792 }
1793
1794 static int perf_counter_read_one(struct perf_counter *counter,
1795 u64 read_format, char __user *buf)
1796 {
1797 u64 values[4];
1798 int n = 0;
1799
1800 values[n++] = perf_counter_read_value(counter);
1801 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1802 values[n++] = counter->total_time_enabled +
1803 atomic64_read(&counter->child_total_time_enabled);
1804 }
1805 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1806 values[n++] = counter->total_time_running +
1807 atomic64_read(&counter->child_total_time_running);
1808 }
1809 if (read_format & PERF_FORMAT_ID)
1810 values[n++] = primary_counter_id(counter);
1811
1812 if (copy_to_user(buf, values, n * sizeof(u64)))
1813 return -EFAULT;
1814
1815 return n * sizeof(u64);
1816 }
1817
1818 /*
1819 * Read the performance counter - simple non blocking version for now
1820 */
1821 static ssize_t
1822 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1823 {
1824 u64 read_format = counter->attr.read_format;
1825 int ret;
1826
1827 /*
1828 * Return end-of-file for a read on a counter that is in
1829 * error state (i.e. because it was pinned but it couldn't be
1830 * scheduled on to the CPU at some point).
1831 */
1832 if (counter->state == PERF_COUNTER_STATE_ERROR)
1833 return 0;
1834
1835 if (count < perf_counter_read_size(counter))
1836 return -ENOSPC;
1837
1838 WARN_ON_ONCE(counter->ctx->parent_ctx);
1839 mutex_lock(&counter->child_mutex);
1840 if (read_format & PERF_FORMAT_GROUP)
1841 ret = perf_counter_read_group(counter, read_format, buf);
1842 else
1843 ret = perf_counter_read_one(counter, read_format, buf);
1844 mutex_unlock(&counter->child_mutex);
1845
1846 return ret;
1847 }
1848
1849 static ssize_t
1850 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1851 {
1852 struct perf_counter *counter = file->private_data;
1853
1854 return perf_read_hw(counter, buf, count);
1855 }
1856
1857 static unsigned int perf_poll(struct file *file, poll_table *wait)
1858 {
1859 struct perf_counter *counter = file->private_data;
1860 struct perf_mmap_data *data;
1861 unsigned int events = POLL_HUP;
1862
1863 rcu_read_lock();
1864 data = rcu_dereference(counter->data);
1865 if (data)
1866 events = atomic_xchg(&data->poll, 0);
1867 rcu_read_unlock();
1868
1869 poll_wait(file, &counter->waitq, wait);
1870
1871 return events;
1872 }
1873
1874 static void perf_counter_reset(struct perf_counter *counter)
1875 {
1876 (void)perf_counter_read(counter);
1877 atomic64_set(&counter->count, 0);
1878 perf_counter_update_userpage(counter);
1879 }
1880
1881 /*
1882 * Holding the top-level counter's child_mutex means that any
1883 * descendant process that has inherited this counter will block
1884 * in sync_child_counter if it goes to exit, thus satisfying the
1885 * task existence requirements of perf_counter_enable/disable.
1886 */
1887 static void perf_counter_for_each_child(struct perf_counter *counter,
1888 void (*func)(struct perf_counter *))
1889 {
1890 struct perf_counter *child;
1891
1892 WARN_ON_ONCE(counter->ctx->parent_ctx);
1893 mutex_lock(&counter->child_mutex);
1894 func(counter);
1895 list_for_each_entry(child, &counter->child_list, child_list)
1896 func(child);
1897 mutex_unlock(&counter->child_mutex);
1898 }
1899
1900 static void perf_counter_for_each(struct perf_counter *counter,
1901 void (*func)(struct perf_counter *))
1902 {
1903 struct perf_counter_context *ctx = counter->ctx;
1904 struct perf_counter *sibling;
1905
1906 WARN_ON_ONCE(ctx->parent_ctx);
1907 mutex_lock(&ctx->mutex);
1908 counter = counter->group_leader;
1909
1910 perf_counter_for_each_child(counter, func);
1911 func(counter);
1912 list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1913 perf_counter_for_each_child(counter, func);
1914 mutex_unlock(&ctx->mutex);
1915 }
1916
1917 static int perf_counter_period(struct perf_counter *counter, u64 __user *arg)
1918 {
1919 struct perf_counter_context *ctx = counter->ctx;
1920 unsigned long size;
1921 int ret = 0;
1922 u64 value;
1923
1924 if (!counter->attr.sample_period)
1925 return -EINVAL;
1926
1927 size = copy_from_user(&value, arg, sizeof(value));
1928 if (size != sizeof(value))
1929 return -EFAULT;
1930
1931 if (!value)
1932 return -EINVAL;
1933
1934 spin_lock_irq(&ctx->lock);
1935 if (counter->attr.freq) {
1936 if (value > sysctl_perf_counter_sample_rate) {
1937 ret = -EINVAL;
1938 goto unlock;
1939 }
1940
1941 counter->attr.sample_freq = value;
1942 } else {
1943 counter->attr.sample_period = value;
1944 counter->hw.sample_period = value;
1945 }
1946 unlock:
1947 spin_unlock_irq(&ctx->lock);
1948
1949 return ret;
1950 }
1951
1952 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1953 {
1954 struct perf_counter *counter = file->private_data;
1955 void (*func)(struct perf_counter *);
1956 u32 flags = arg;
1957
1958 switch (cmd) {
1959 case PERF_COUNTER_IOC_ENABLE:
1960 func = perf_counter_enable;
1961 break;
1962 case PERF_COUNTER_IOC_DISABLE:
1963 func = perf_counter_disable;
1964 break;
1965 case PERF_COUNTER_IOC_RESET:
1966 func = perf_counter_reset;
1967 break;
1968
1969 case PERF_COUNTER_IOC_REFRESH:
1970 return perf_counter_refresh(counter, arg);
1971
1972 case PERF_COUNTER_IOC_PERIOD:
1973 return perf_counter_period(counter, (u64 __user *)arg);
1974
1975 default:
1976 return -ENOTTY;
1977 }
1978
1979 if (flags & PERF_IOC_FLAG_GROUP)
1980 perf_counter_for_each(counter, func);
1981 else
1982 perf_counter_for_each_child(counter, func);
1983
1984 return 0;
1985 }
1986
1987 int perf_counter_task_enable(void)
1988 {
1989 struct perf_counter *counter;
1990
1991 mutex_lock(&current->perf_counter_mutex);
1992 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1993 perf_counter_for_each_child(counter, perf_counter_enable);
1994 mutex_unlock(&current->perf_counter_mutex);
1995
1996 return 0;
1997 }
1998
1999 int perf_counter_task_disable(void)
2000 {
2001 struct perf_counter *counter;
2002
2003 mutex_lock(&current->perf_counter_mutex);
2004 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
2005 perf_counter_for_each_child(counter, perf_counter_disable);
2006 mutex_unlock(&current->perf_counter_mutex);
2007
2008 return 0;
2009 }
2010
2011 static int perf_counter_index(struct perf_counter *counter)
2012 {
2013 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2014 return 0;
2015
2016 return counter->hw.idx + 1 - PERF_COUNTER_INDEX_OFFSET;
2017 }
2018
2019 /*
2020 * Callers need to ensure there can be no nesting of this function, otherwise
2021 * the seqlock logic goes bad. We can not serialize this because the arch
2022 * code calls this from NMI context.
2023 */
2024 void perf_counter_update_userpage(struct perf_counter *counter)
2025 {
2026 struct perf_counter_mmap_page *userpg;
2027 struct perf_mmap_data *data;
2028
2029 rcu_read_lock();
2030 data = rcu_dereference(counter->data);
2031 if (!data)
2032 goto unlock;
2033
2034 userpg = data->user_page;
2035
2036 /*
2037 * Disable preemption so as to not let the corresponding user-space
2038 * spin too long if we get preempted.
2039 */
2040 preempt_disable();
2041 ++userpg->lock;
2042 barrier();
2043 userpg->index = perf_counter_index(counter);
2044 userpg->offset = atomic64_read(&counter->count);
2045 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
2046 userpg->offset -= atomic64_read(&counter->hw.prev_count);
2047
2048 userpg->time_enabled = counter->total_time_enabled +
2049 atomic64_read(&counter->child_total_time_enabled);
2050
2051 userpg->time_running = counter->total_time_running +
2052 atomic64_read(&counter->child_total_time_running);
2053
2054 barrier();
2055 ++userpg->lock;
2056 preempt_enable();
2057 unlock:
2058 rcu_read_unlock();
2059 }
2060
2061 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2062 {
2063 struct perf_counter *counter = vma->vm_file->private_data;
2064 struct perf_mmap_data *data;
2065 int ret = VM_FAULT_SIGBUS;
2066
2067 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2068 if (vmf->pgoff == 0)
2069 ret = 0;
2070 return ret;
2071 }
2072
2073 rcu_read_lock();
2074 data = rcu_dereference(counter->data);
2075 if (!data)
2076 goto unlock;
2077
2078 if (vmf->pgoff == 0) {
2079 vmf->page = virt_to_page(data->user_page);
2080 } else {
2081 int nr = vmf->pgoff - 1;
2082
2083 if ((unsigned)nr > data->nr_pages)
2084 goto unlock;
2085
2086 if (vmf->flags & FAULT_FLAG_WRITE)
2087 goto unlock;
2088
2089 vmf->page = virt_to_page(data->data_pages[nr]);
2090 }
2091
2092 get_page(vmf->page);
2093 vmf->page->mapping = vma->vm_file->f_mapping;
2094 vmf->page->index = vmf->pgoff;
2095
2096 ret = 0;
2097 unlock:
2098 rcu_read_unlock();
2099
2100 return ret;
2101 }
2102
2103 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
2104 {
2105 struct perf_mmap_data *data;
2106 unsigned long size;
2107 int i;
2108
2109 WARN_ON(atomic_read(&counter->mmap_count));
2110
2111 size = sizeof(struct perf_mmap_data);
2112 size += nr_pages * sizeof(void *);
2113
2114 data = kzalloc(size, GFP_KERNEL);
2115 if (!data)
2116 goto fail;
2117
2118 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2119 if (!data->user_page)
2120 goto fail_user_page;
2121
2122 for (i = 0; i < nr_pages; i++) {
2123 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2124 if (!data->data_pages[i])
2125 goto fail_data_pages;
2126 }
2127
2128 data->nr_pages = nr_pages;
2129 atomic_set(&data->lock, -1);
2130
2131 rcu_assign_pointer(counter->data, data);
2132
2133 return 0;
2134
2135 fail_data_pages:
2136 for (i--; i >= 0; i--)
2137 free_page((unsigned long)data->data_pages[i]);
2138
2139 free_page((unsigned long)data->user_page);
2140
2141 fail_user_page:
2142 kfree(data);
2143
2144 fail:
2145 return -ENOMEM;
2146 }
2147
2148 static void perf_mmap_free_page(unsigned long addr)
2149 {
2150 struct page *page = virt_to_page((void *)addr);
2151
2152 page->mapping = NULL;
2153 __free_page(page);
2154 }
2155
2156 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
2157 {
2158 struct perf_mmap_data *data;
2159 int i;
2160
2161 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2162
2163 perf_mmap_free_page((unsigned long)data->user_page);
2164 for (i = 0; i < data->nr_pages; i++)
2165 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2166
2167 kfree(data);
2168 }
2169
2170 static void perf_mmap_data_free(struct perf_counter *counter)
2171 {
2172 struct perf_mmap_data *data = counter->data;
2173
2174 WARN_ON(atomic_read(&counter->mmap_count));
2175
2176 rcu_assign_pointer(counter->data, NULL);
2177 call_rcu(&data->rcu_head, __perf_mmap_data_free);
2178 }
2179
2180 static void perf_mmap_open(struct vm_area_struct *vma)
2181 {
2182 struct perf_counter *counter = vma->vm_file->private_data;
2183
2184 atomic_inc(&counter->mmap_count);
2185 }
2186
2187 static void perf_mmap_close(struct vm_area_struct *vma)
2188 {
2189 struct perf_counter *counter = vma->vm_file->private_data;
2190
2191 WARN_ON_ONCE(counter->ctx->parent_ctx);
2192 if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) {
2193 struct user_struct *user = current_user();
2194
2195 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
2196 vma->vm_mm->locked_vm -= counter->data->nr_locked;
2197 perf_mmap_data_free(counter);
2198 mutex_unlock(&counter->mmap_mutex);
2199 }
2200 }
2201
2202 static struct vm_operations_struct perf_mmap_vmops = {
2203 .open = perf_mmap_open,
2204 .close = perf_mmap_close,
2205 .fault = perf_mmap_fault,
2206 .page_mkwrite = perf_mmap_fault,
2207 };
2208
2209 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2210 {
2211 struct perf_counter *counter = file->private_data;
2212 unsigned long user_locked, user_lock_limit;
2213 struct user_struct *user = current_user();
2214 unsigned long locked, lock_limit;
2215 unsigned long vma_size;
2216 unsigned long nr_pages;
2217 long user_extra, extra;
2218 int ret = 0;
2219
2220 if (!(vma->vm_flags & VM_SHARED))
2221 return -EINVAL;
2222
2223 vma_size = vma->vm_end - vma->vm_start;
2224 nr_pages = (vma_size / PAGE_SIZE) - 1;
2225
2226 /*
2227 * If we have data pages ensure they're a power-of-two number, so we
2228 * can do bitmasks instead of modulo.
2229 */
2230 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2231 return -EINVAL;
2232
2233 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2234 return -EINVAL;
2235
2236 if (vma->vm_pgoff != 0)
2237 return -EINVAL;
2238
2239 WARN_ON_ONCE(counter->ctx->parent_ctx);
2240 mutex_lock(&counter->mmap_mutex);
2241 if (atomic_inc_not_zero(&counter->mmap_count)) {
2242 if (nr_pages != counter->data->nr_pages)
2243 ret = -EINVAL;
2244 goto unlock;
2245 }
2246
2247 user_extra = nr_pages + 1;
2248 user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
2249
2250 /*
2251 * Increase the limit linearly with more CPUs:
2252 */
2253 user_lock_limit *= num_online_cpus();
2254
2255 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2256
2257 extra = 0;
2258 if (user_locked > user_lock_limit)
2259 extra = user_locked - user_lock_limit;
2260
2261 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2262 lock_limit >>= PAGE_SHIFT;
2263 locked = vma->vm_mm->locked_vm + extra;
2264
2265 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
2266 ret = -EPERM;
2267 goto unlock;
2268 }
2269
2270 WARN_ON(counter->data);
2271 ret = perf_mmap_data_alloc(counter, nr_pages);
2272 if (ret)
2273 goto unlock;
2274
2275 atomic_set(&counter->mmap_count, 1);
2276 atomic_long_add(user_extra, &user->locked_vm);
2277 vma->vm_mm->locked_vm += extra;
2278 counter->data->nr_locked = extra;
2279 if (vma->vm_flags & VM_WRITE)
2280 counter->data->writable = 1;
2281
2282 unlock:
2283 mutex_unlock(&counter->mmap_mutex);
2284
2285 vma->vm_flags |= VM_RESERVED;
2286 vma->vm_ops = &perf_mmap_vmops;
2287
2288 return ret;
2289 }
2290
2291 static int perf_fasync(int fd, struct file *filp, int on)
2292 {
2293 struct inode *inode = filp->f_path.dentry->d_inode;
2294 struct perf_counter *counter = filp->private_data;
2295 int retval;
2296
2297 mutex_lock(&inode->i_mutex);
2298 retval = fasync_helper(fd, filp, on, &counter->fasync);
2299 mutex_unlock(&inode->i_mutex);
2300
2301 if (retval < 0)
2302 return retval;
2303
2304 return 0;
2305 }
2306
2307 static const struct file_operations perf_fops = {
2308 .release = perf_release,
2309 .read = perf_read,
2310 .poll = perf_poll,
2311 .unlocked_ioctl = perf_ioctl,
2312 .compat_ioctl = perf_ioctl,
2313 .mmap = perf_mmap,
2314 .fasync = perf_fasync,
2315 };
2316
2317 /*
2318 * Perf counter wakeup
2319 *
2320 * If there's data, ensure we set the poll() state and publish everything
2321 * to user-space before waking everybody up.
2322 */
2323
2324 void perf_counter_wakeup(struct perf_counter *counter)
2325 {
2326 wake_up_all(&counter->waitq);
2327
2328 if (counter->pending_kill) {
2329 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
2330 counter->pending_kill = 0;
2331 }
2332 }
2333
2334 /*
2335 * Pending wakeups
2336 *
2337 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2338 *
2339 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2340 * single linked list and use cmpxchg() to add entries lockless.
2341 */
2342
2343 static void perf_pending_counter(struct perf_pending_entry *entry)
2344 {
2345 struct perf_counter *counter = container_of(entry,
2346 struct perf_counter, pending);
2347
2348 if (counter->pending_disable) {
2349 counter->pending_disable = 0;
2350 __perf_counter_disable(counter);
2351 }
2352
2353 if (counter->pending_wakeup) {
2354 counter->pending_wakeup = 0;
2355 perf_counter_wakeup(counter);
2356 }
2357 }
2358
2359 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2360
2361 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2362 PENDING_TAIL,
2363 };
2364
2365 static void perf_pending_queue(struct perf_pending_entry *entry,
2366 void (*func)(struct perf_pending_entry *))
2367 {
2368 struct perf_pending_entry **head;
2369
2370 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2371 return;
2372
2373 entry->func = func;
2374
2375 head = &get_cpu_var(perf_pending_head);
2376
2377 do {
2378 entry->next = *head;
2379 } while (cmpxchg(head, entry->next, entry) != entry->next);
2380
2381 set_perf_counter_pending();
2382
2383 put_cpu_var(perf_pending_head);
2384 }
2385
2386 static int __perf_pending_run(void)
2387 {
2388 struct perf_pending_entry *list;
2389 int nr = 0;
2390
2391 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2392 while (list != PENDING_TAIL) {
2393 void (*func)(struct perf_pending_entry *);
2394 struct perf_pending_entry *entry = list;
2395
2396 list = list->next;
2397
2398 func = entry->func;
2399 entry->next = NULL;
2400 /*
2401 * Ensure we observe the unqueue before we issue the wakeup,
2402 * so that we won't be waiting forever.
2403 * -- see perf_not_pending().
2404 */
2405 smp_wmb();
2406
2407 func(entry);
2408 nr++;
2409 }
2410
2411 return nr;
2412 }
2413
2414 static inline int perf_not_pending(struct perf_counter *counter)
2415 {
2416 /*
2417 * If we flush on whatever cpu we run, there is a chance we don't
2418 * need to wait.
2419 */
2420 get_cpu();
2421 __perf_pending_run();
2422 put_cpu();
2423
2424 /*
2425 * Ensure we see the proper queue state before going to sleep
2426 * so that we do not miss the wakeup. -- see perf_pending_handle()
2427 */
2428 smp_rmb();
2429 return counter->pending.next == NULL;
2430 }
2431
2432 static void perf_pending_sync(struct perf_counter *counter)
2433 {
2434 wait_event(counter->waitq, perf_not_pending(counter));
2435 }
2436
2437 void perf_counter_do_pending(void)
2438 {
2439 __perf_pending_run();
2440 }
2441
2442 /*
2443 * Callchain support -- arch specific
2444 */
2445
2446 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2447 {
2448 return NULL;
2449 }
2450
2451 /*
2452 * Output
2453 */
2454
2455 struct perf_output_handle {
2456 struct perf_counter *counter;
2457 struct perf_mmap_data *data;
2458 unsigned long head;
2459 unsigned long offset;
2460 int nmi;
2461 int sample;
2462 int locked;
2463 unsigned long flags;
2464 };
2465
2466 static bool perf_output_space(struct perf_mmap_data *data,
2467 unsigned int offset, unsigned int head)
2468 {
2469 unsigned long tail;
2470 unsigned long mask;
2471
2472 if (!data->writable)
2473 return true;
2474
2475 mask = (data->nr_pages << PAGE_SHIFT) - 1;
2476 /*
2477 * Userspace could choose to issue a mb() before updating the tail
2478 * pointer. So that all reads will be completed before the write is
2479 * issued.
2480 */
2481 tail = ACCESS_ONCE(data->user_page->data_tail);
2482 smp_rmb();
2483
2484 offset = (offset - tail) & mask;
2485 head = (head - tail) & mask;
2486
2487 if ((int)(head - offset) < 0)
2488 return false;
2489
2490 return true;
2491 }
2492
2493 static void perf_output_wakeup(struct perf_output_handle *handle)
2494 {
2495 atomic_set(&handle->data->poll, POLL_IN);
2496
2497 if (handle->nmi) {
2498 handle->counter->pending_wakeup = 1;
2499 perf_pending_queue(&handle->counter->pending,
2500 perf_pending_counter);
2501 } else
2502 perf_counter_wakeup(handle->counter);
2503 }
2504
2505 /*
2506 * Curious locking construct.
2507 *
2508 * We need to ensure a later event doesn't publish a head when a former
2509 * event isn't done writing. However since we need to deal with NMIs we
2510 * cannot fully serialize things.
2511 *
2512 * What we do is serialize between CPUs so we only have to deal with NMI
2513 * nesting on a single CPU.
2514 *
2515 * We only publish the head (and generate a wakeup) when the outer-most
2516 * event completes.
2517 */
2518 static void perf_output_lock(struct perf_output_handle *handle)
2519 {
2520 struct perf_mmap_data *data = handle->data;
2521 int cpu;
2522
2523 handle->locked = 0;
2524
2525 local_irq_save(handle->flags);
2526 cpu = smp_processor_id();
2527
2528 if (in_nmi() && atomic_read(&data->lock) == cpu)
2529 return;
2530
2531 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2532 cpu_relax();
2533
2534 handle->locked = 1;
2535 }
2536
2537 static void perf_output_unlock(struct perf_output_handle *handle)
2538 {
2539 struct perf_mmap_data *data = handle->data;
2540 unsigned long head;
2541 int cpu;
2542
2543 data->done_head = data->head;
2544
2545 if (!handle->locked)
2546 goto out;
2547
2548 again:
2549 /*
2550 * The xchg implies a full barrier that ensures all writes are done
2551 * before we publish the new head, matched by a rmb() in userspace when
2552 * reading this position.
2553 */
2554 while ((head = atomic_long_xchg(&data->done_head, 0)))
2555 data->user_page->data_head = head;
2556
2557 /*
2558 * NMI can happen here, which means we can miss a done_head update.
2559 */
2560
2561 cpu = atomic_xchg(&data->lock, -1);
2562 WARN_ON_ONCE(cpu != smp_processor_id());
2563
2564 /*
2565 * Therefore we have to validate we did not indeed do so.
2566 */
2567 if (unlikely(atomic_long_read(&data->done_head))) {
2568 /*
2569 * Since we had it locked, we can lock it again.
2570 */
2571 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2572 cpu_relax();
2573
2574 goto again;
2575 }
2576
2577 if (atomic_xchg(&data->wakeup, 0))
2578 perf_output_wakeup(handle);
2579 out:
2580 local_irq_restore(handle->flags);
2581 }
2582
2583 static void perf_output_copy(struct perf_output_handle *handle,
2584 const void *buf, unsigned int len)
2585 {
2586 unsigned int pages_mask;
2587 unsigned int offset;
2588 unsigned int size;
2589 void **pages;
2590
2591 offset = handle->offset;
2592 pages_mask = handle->data->nr_pages - 1;
2593 pages = handle->data->data_pages;
2594
2595 do {
2596 unsigned int page_offset;
2597 int nr;
2598
2599 nr = (offset >> PAGE_SHIFT) & pages_mask;
2600 page_offset = offset & (PAGE_SIZE - 1);
2601 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2602
2603 memcpy(pages[nr] + page_offset, buf, size);
2604
2605 len -= size;
2606 buf += size;
2607 offset += size;
2608 } while (len);
2609
2610 handle->offset = offset;
2611
2612 /*
2613 * Check we didn't copy past our reservation window, taking the
2614 * possible unsigned int wrap into account.
2615 */
2616 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2617 }
2618
2619 #define perf_output_put(handle, x) \
2620 perf_output_copy((handle), &(x), sizeof(x))
2621
2622 static int perf_output_begin(struct perf_output_handle *handle,
2623 struct perf_counter *counter, unsigned int size,
2624 int nmi, int sample)
2625 {
2626 struct perf_mmap_data *data;
2627 unsigned int offset, head;
2628 int have_lost;
2629 struct {
2630 struct perf_event_header header;
2631 u64 id;
2632 u64 lost;
2633 } lost_event;
2634
2635 /*
2636 * For inherited counters we send all the output towards the parent.
2637 */
2638 if (counter->parent)
2639 counter = counter->parent;
2640
2641 rcu_read_lock();
2642 data = rcu_dereference(counter->data);
2643 if (!data)
2644 goto out;
2645
2646 handle->data = data;
2647 handle->counter = counter;
2648 handle->nmi = nmi;
2649 handle->sample = sample;
2650
2651 if (!data->nr_pages)
2652 goto fail;
2653
2654 have_lost = atomic_read(&data->lost);
2655 if (have_lost)
2656 size += sizeof(lost_event);
2657
2658 perf_output_lock(handle);
2659
2660 do {
2661 offset = head = atomic_long_read(&data->head);
2662 head += size;
2663 if (unlikely(!perf_output_space(data, offset, head)))
2664 goto fail;
2665 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2666
2667 handle->offset = offset;
2668 handle->head = head;
2669
2670 if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2671 atomic_set(&data->wakeup, 1);
2672
2673 if (have_lost) {
2674 lost_event.header.type = PERF_EVENT_LOST;
2675 lost_event.header.misc = 0;
2676 lost_event.header.size = sizeof(lost_event);
2677 lost_event.id = counter->id;
2678 lost_event.lost = atomic_xchg(&data->lost, 0);
2679
2680 perf_output_put(handle, lost_event);
2681 }
2682
2683 return 0;
2684
2685 fail:
2686 atomic_inc(&data->lost);
2687 perf_output_unlock(handle);
2688 out:
2689 rcu_read_unlock();
2690
2691 return -ENOSPC;
2692 }
2693
2694 static void perf_output_end(struct perf_output_handle *handle)
2695 {
2696 struct perf_counter *counter = handle->counter;
2697 struct perf_mmap_data *data = handle->data;
2698
2699 int wakeup_events = counter->attr.wakeup_events;
2700
2701 if (handle->sample && wakeup_events) {
2702 int events = atomic_inc_return(&data->events);
2703 if (events >= wakeup_events) {
2704 atomic_sub(wakeup_events, &data->events);
2705 atomic_set(&data->wakeup, 1);
2706 }
2707 }
2708
2709 perf_output_unlock(handle);
2710 rcu_read_unlock();
2711 }
2712
2713 static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p)
2714 {
2715 /*
2716 * only top level counters have the pid namespace they were created in
2717 */
2718 if (counter->parent)
2719 counter = counter->parent;
2720
2721 return task_tgid_nr_ns(p, counter->ns);
2722 }
2723
2724 static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p)
2725 {
2726 /*
2727 * only top level counters have the pid namespace they were created in
2728 */
2729 if (counter->parent)
2730 counter = counter->parent;
2731
2732 return task_pid_nr_ns(p, counter->ns);
2733 }
2734
2735 static void perf_output_read_one(struct perf_output_handle *handle,
2736 struct perf_counter *counter)
2737 {
2738 u64 read_format = counter->attr.read_format;
2739 u64 values[4];
2740 int n = 0;
2741
2742 values[n++] = atomic64_read(&counter->count);
2743 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2744 values[n++] = counter->total_time_enabled +
2745 atomic64_read(&counter->child_total_time_enabled);
2746 }
2747 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2748 values[n++] = counter->total_time_running +
2749 atomic64_read(&counter->child_total_time_running);
2750 }
2751 if (read_format & PERF_FORMAT_ID)
2752 values[n++] = primary_counter_id(counter);
2753
2754 perf_output_copy(handle, values, n * sizeof(u64));
2755 }
2756
2757 /*
2758 * XXX PERF_FORMAT_GROUP vs inherited counters seems difficult.
2759 */
2760 static void perf_output_read_group(struct perf_output_handle *handle,
2761 struct perf_counter *counter)
2762 {
2763 struct perf_counter *leader = counter->group_leader, *sub;
2764 u64 read_format = counter->attr.read_format;
2765 u64 values[5];
2766 int n = 0;
2767
2768 values[n++] = 1 + leader->nr_siblings;
2769
2770 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2771 values[n++] = leader->total_time_enabled;
2772
2773 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2774 values[n++] = leader->total_time_running;
2775
2776 if (leader != counter)
2777 leader->pmu->read(leader);
2778
2779 values[n++] = atomic64_read(&leader->count);
2780 if (read_format & PERF_FORMAT_ID)
2781 values[n++] = primary_counter_id(leader);
2782
2783 perf_output_copy(handle, values, n * sizeof(u64));
2784
2785 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2786 n = 0;
2787
2788 if (sub != counter)
2789 sub->pmu->read(sub);
2790
2791 values[n++] = atomic64_read(&sub->count);
2792 if (read_format & PERF_FORMAT_ID)
2793 values[n++] = primary_counter_id(sub);
2794
2795 perf_output_copy(handle, values, n * sizeof(u64));
2796 }
2797 }
2798
2799 static void perf_output_read(struct perf_output_handle *handle,
2800 struct perf_counter *counter)
2801 {
2802 if (counter->attr.read_format & PERF_FORMAT_GROUP)
2803 perf_output_read_group(handle, counter);
2804 else
2805 perf_output_read_one(handle, counter);
2806 }
2807
2808 void perf_counter_output(struct perf_counter *counter, int nmi,
2809 struct perf_sample_data *data)
2810 {
2811 int ret;
2812 u64 sample_type = counter->attr.sample_type;
2813 struct perf_output_handle handle;
2814 struct perf_event_header header;
2815 u64 ip;
2816 struct {
2817 u32 pid, tid;
2818 } tid_entry;
2819 struct perf_callchain_entry *callchain = NULL;
2820 int callchain_size = 0;
2821 u64 time;
2822 struct {
2823 u32 cpu, reserved;
2824 } cpu_entry;
2825
2826 header.type = PERF_EVENT_SAMPLE;
2827 header.size = sizeof(header);
2828
2829 header.misc = 0;
2830 header.misc |= perf_misc_flags(data->regs);
2831
2832 if (sample_type & PERF_SAMPLE_IP) {
2833 ip = perf_instruction_pointer(data->regs);
2834 header.size += sizeof(ip);
2835 }
2836
2837 if (sample_type & PERF_SAMPLE_TID) {
2838 /* namespace issues */
2839 tid_entry.pid = perf_counter_pid(counter, current);
2840 tid_entry.tid = perf_counter_tid(counter, current);
2841
2842 header.size += sizeof(tid_entry);
2843 }
2844
2845 if (sample_type & PERF_SAMPLE_TIME) {
2846 /*
2847 * Maybe do better on x86 and provide cpu_clock_nmi()
2848 */
2849 time = sched_clock();
2850
2851 header.size += sizeof(u64);
2852 }
2853
2854 if (sample_type & PERF_SAMPLE_ADDR)
2855 header.size += sizeof(u64);
2856
2857 if (sample_type & PERF_SAMPLE_ID)
2858 header.size += sizeof(u64);
2859
2860 if (sample_type & PERF_SAMPLE_STREAM_ID)
2861 header.size += sizeof(u64);
2862
2863 if (sample_type & PERF_SAMPLE_CPU) {
2864 header.size += sizeof(cpu_entry);
2865
2866 cpu_entry.cpu = raw_smp_processor_id();
2867 cpu_entry.reserved = 0;
2868 }
2869
2870 if (sample_type & PERF_SAMPLE_PERIOD)
2871 header.size += sizeof(u64);
2872
2873 if (sample_type & PERF_SAMPLE_READ)
2874 header.size += perf_counter_read_size(counter);
2875
2876 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2877 callchain = perf_callchain(data->regs);
2878
2879 if (callchain) {
2880 callchain_size = (1 + callchain->nr) * sizeof(u64);
2881 header.size += callchain_size;
2882 } else
2883 header.size += sizeof(u64);
2884 }
2885
2886 if (sample_type & PERF_SAMPLE_RAW) {
2887 int size = sizeof(u32);
2888
2889 if (data->raw)
2890 size += data->raw->size;
2891 else
2892 size += sizeof(u32);
2893
2894 WARN_ON_ONCE(size & (sizeof(u64)-1));
2895 header.size += size;
2896 }
2897
2898 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2899 if (ret)
2900 return;
2901
2902 perf_output_put(&handle, header);
2903
2904 if (sample_type & PERF_SAMPLE_IP)
2905 perf_output_put(&handle, ip);
2906
2907 if (sample_type & PERF_SAMPLE_TID)
2908 perf_output_put(&handle, tid_entry);
2909
2910 if (sample_type & PERF_SAMPLE_TIME)
2911 perf_output_put(&handle, time);
2912
2913 if (sample_type & PERF_SAMPLE_ADDR)
2914 perf_output_put(&handle, data->addr);
2915
2916 if (sample_type & PERF_SAMPLE_ID) {
2917 u64 id = primary_counter_id(counter);
2918
2919 perf_output_put(&handle, id);
2920 }
2921
2922 if (sample_type & PERF_SAMPLE_STREAM_ID)
2923 perf_output_put(&handle, counter->id);
2924
2925 if (sample_type & PERF_SAMPLE_CPU)
2926 perf_output_put(&handle, cpu_entry);
2927
2928 if (sample_type & PERF_SAMPLE_PERIOD)
2929 perf_output_put(&handle, data->period);
2930
2931 if (sample_type & PERF_SAMPLE_READ)
2932 perf_output_read(&handle, counter);
2933
2934 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2935 if (callchain)
2936 perf_output_copy(&handle, callchain, callchain_size);
2937 else {
2938 u64 nr = 0;
2939 perf_output_put(&handle, nr);
2940 }
2941 }
2942
2943 if (sample_type & PERF_SAMPLE_RAW) {
2944 if (data->raw) {
2945 perf_output_put(&handle, data->raw->size);
2946 perf_output_copy(&handle, data->raw->data, data->raw->size);
2947 } else {
2948 struct {
2949 u32 size;
2950 u32 data;
2951 } raw = {
2952 .size = sizeof(u32),
2953 .data = 0,
2954 };
2955 perf_output_put(&handle, raw);
2956 }
2957 }
2958
2959 perf_output_end(&handle);
2960 }
2961
2962 /*
2963 * read event
2964 */
2965
2966 struct perf_read_event {
2967 struct perf_event_header header;
2968
2969 u32 pid;
2970 u32 tid;
2971 };
2972
2973 static void
2974 perf_counter_read_event(struct perf_counter *counter,
2975 struct task_struct *task)
2976 {
2977 struct perf_output_handle handle;
2978 struct perf_read_event event = {
2979 .header = {
2980 .type = PERF_EVENT_READ,
2981 .misc = 0,
2982 .size = sizeof(event) + perf_counter_read_size(counter),
2983 },
2984 .pid = perf_counter_pid(counter, task),
2985 .tid = perf_counter_tid(counter, task),
2986 };
2987 int ret;
2988
2989 ret = perf_output_begin(&handle, counter, event.header.size, 0, 0);
2990 if (ret)
2991 return;
2992
2993 perf_output_put(&handle, event);
2994 perf_output_read(&handle, counter);
2995
2996 perf_output_end(&handle);
2997 }
2998
2999 /*
3000 * task tracking -- fork/exit
3001 *
3002 * enabled by: attr.comm | attr.mmap | attr.task
3003 */
3004
3005 struct perf_task_event {
3006 struct task_struct *task;
3007 struct perf_counter_context *task_ctx;
3008
3009 struct {
3010 struct perf_event_header header;
3011
3012 u32 pid;
3013 u32 ppid;
3014 u32 tid;
3015 u32 ptid;
3016 } event;
3017 };
3018
3019 static void perf_counter_task_output(struct perf_counter *counter,
3020 struct perf_task_event *task_event)
3021 {
3022 struct perf_output_handle handle;
3023 int size = task_event->event.header.size;
3024 struct task_struct *task = task_event->task;
3025 int ret = perf_output_begin(&handle, counter, size, 0, 0);
3026
3027 if (ret)
3028 return;
3029
3030 task_event->event.pid = perf_counter_pid(counter, task);
3031 task_event->event.ppid = perf_counter_pid(counter, current);
3032
3033 task_event->event.tid = perf_counter_tid(counter, task);
3034 task_event->event.ptid = perf_counter_tid(counter, current);
3035
3036 perf_output_put(&handle, task_event->event);
3037 perf_output_end(&handle);
3038 }
3039
3040 static int perf_counter_task_match(struct perf_counter *counter)
3041 {
3042 if (counter->attr.comm || counter->attr.mmap || counter->attr.task)
3043 return 1;
3044
3045 return 0;
3046 }
3047
3048 static void perf_counter_task_ctx(struct perf_counter_context *ctx,
3049 struct perf_task_event *task_event)
3050 {
3051 struct perf_counter *counter;
3052
3053 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3054 return;
3055
3056 rcu_read_lock();
3057 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3058 if (perf_counter_task_match(counter))
3059 perf_counter_task_output(counter, task_event);
3060 }
3061 rcu_read_unlock();
3062 }
3063
3064 static void perf_counter_task_event(struct perf_task_event *task_event)
3065 {
3066 struct perf_cpu_context *cpuctx;
3067 struct perf_counter_context *ctx = task_event->task_ctx;
3068
3069 cpuctx = &get_cpu_var(perf_cpu_context);
3070 perf_counter_task_ctx(&cpuctx->ctx, task_event);
3071 put_cpu_var(perf_cpu_context);
3072
3073 rcu_read_lock();
3074 if (!ctx)
3075 ctx = rcu_dereference(task_event->task->perf_counter_ctxp);
3076 if (ctx)
3077 perf_counter_task_ctx(ctx, task_event);
3078 rcu_read_unlock();
3079 }
3080
3081 static void perf_counter_task(struct task_struct *task,
3082 struct perf_counter_context *task_ctx,
3083 int new)
3084 {
3085 struct perf_task_event task_event;
3086
3087 if (!atomic_read(&nr_comm_counters) &&
3088 !atomic_read(&nr_mmap_counters) &&
3089 !atomic_read(&nr_task_counters))
3090 return;
3091
3092 task_event = (struct perf_task_event){
3093 .task = task,
3094 .task_ctx = task_ctx,
3095 .event = {
3096 .header = {
3097 .type = new ? PERF_EVENT_FORK : PERF_EVENT_EXIT,
3098 .misc = 0,
3099 .size = sizeof(task_event.event),
3100 },
3101 /* .pid */
3102 /* .ppid */
3103 /* .tid */
3104 /* .ptid */
3105 },
3106 };
3107
3108 perf_counter_task_event(&task_event);
3109 }
3110
3111 void perf_counter_fork(struct task_struct *task)
3112 {
3113 perf_counter_task(task, NULL, 1);
3114 }
3115
3116 /*
3117 * comm tracking
3118 */
3119
3120 struct perf_comm_event {
3121 struct task_struct *task;
3122 char *comm;
3123 int comm_size;
3124
3125 struct {
3126 struct perf_event_header header;
3127
3128 u32 pid;
3129 u32 tid;
3130 } event;
3131 };
3132
3133 static void perf_counter_comm_output(struct perf_counter *counter,
3134 struct perf_comm_event *comm_event)
3135 {
3136 struct perf_output_handle handle;
3137 int size = comm_event->event.header.size;
3138 int ret = perf_output_begin(&handle, counter, size, 0, 0);
3139
3140 if (ret)
3141 return;
3142
3143 comm_event->event.pid = perf_counter_pid(counter, comm_event->task);
3144 comm_event->event.tid = perf_counter_tid(counter, comm_event->task);
3145
3146 perf_output_put(&handle, comm_event->event);
3147 perf_output_copy(&handle, comm_event->comm,
3148 comm_event->comm_size);
3149 perf_output_end(&handle);
3150 }
3151
3152 static int perf_counter_comm_match(struct perf_counter *counter)
3153 {
3154 if (counter->attr.comm)
3155 return 1;
3156
3157 return 0;
3158 }
3159
3160 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
3161 struct perf_comm_event *comm_event)
3162 {
3163 struct perf_counter *counter;
3164
3165 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3166 return;
3167
3168 rcu_read_lock();
3169 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3170 if (perf_counter_comm_match(counter))
3171 perf_counter_comm_output(counter, comm_event);
3172 }
3173 rcu_read_unlock();
3174 }
3175
3176 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
3177 {
3178 struct perf_cpu_context *cpuctx;
3179 struct perf_counter_context *ctx;
3180 unsigned int size;
3181 char comm[TASK_COMM_LEN];
3182
3183 memset(comm, 0, sizeof(comm));
3184 strncpy(comm, comm_event->task->comm, sizeof(comm));
3185 size = ALIGN(strlen(comm)+1, sizeof(u64));
3186
3187 comm_event->comm = comm;
3188 comm_event->comm_size = size;
3189
3190 comm_event->event.header.size = sizeof(comm_event->event) + size;
3191
3192 cpuctx = &get_cpu_var(perf_cpu_context);
3193 perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
3194 put_cpu_var(perf_cpu_context);
3195
3196 rcu_read_lock();
3197 /*
3198 * doesn't really matter which of the child contexts the
3199 * events ends up in.
3200 */
3201 ctx = rcu_dereference(current->perf_counter_ctxp);
3202 if (ctx)
3203 perf_counter_comm_ctx(ctx, comm_event);
3204 rcu_read_unlock();
3205 }
3206
3207 void perf_counter_comm(struct task_struct *task)
3208 {
3209 struct perf_comm_event comm_event;
3210
3211 if (task->perf_counter_ctxp)
3212 perf_counter_enable_on_exec(task);
3213
3214 if (!atomic_read(&nr_comm_counters))
3215 return;
3216
3217 comm_event = (struct perf_comm_event){
3218 .task = task,
3219 /* .comm */
3220 /* .comm_size */
3221 .event = {
3222 .header = {
3223 .type = PERF_EVENT_COMM,
3224 .misc = 0,
3225 /* .size */
3226 },
3227 /* .pid */
3228 /* .tid */
3229 },
3230 };
3231
3232 perf_counter_comm_event(&comm_event);
3233 }
3234
3235 /*
3236 * mmap tracking
3237 */
3238
3239 struct perf_mmap_event {
3240 struct vm_area_struct *vma;
3241
3242 const char *file_name;
3243 int file_size;
3244
3245 struct {
3246 struct perf_event_header header;
3247
3248 u32 pid;
3249 u32 tid;
3250 u64 start;
3251 u64 len;
3252 u64 pgoff;
3253 } event;
3254 };
3255
3256 static void perf_counter_mmap_output(struct perf_counter *counter,
3257 struct perf_mmap_event *mmap_event)
3258 {
3259 struct perf_output_handle handle;
3260 int size = mmap_event->event.header.size;
3261 int ret = perf_output_begin(&handle, counter, size, 0, 0);
3262
3263 if (ret)
3264 return;
3265
3266 mmap_event->event.pid = perf_counter_pid(counter, current);
3267 mmap_event->event.tid = perf_counter_tid(counter, current);
3268
3269 perf_output_put(&handle, mmap_event->event);
3270 perf_output_copy(&handle, mmap_event->file_name,
3271 mmap_event->file_size);
3272 perf_output_end(&handle);
3273 }
3274
3275 static int perf_counter_mmap_match(struct perf_counter *counter,
3276 struct perf_mmap_event *mmap_event)
3277 {
3278 if (counter->attr.mmap)
3279 return 1;
3280
3281 return 0;
3282 }
3283
3284 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
3285 struct perf_mmap_event *mmap_event)
3286 {
3287 struct perf_counter *counter;
3288
3289 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3290 return;
3291
3292 rcu_read_lock();
3293 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3294 if (perf_counter_mmap_match(counter, mmap_event))
3295 perf_counter_mmap_output(counter, mmap_event);
3296 }
3297 rcu_read_unlock();
3298 }
3299
3300 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
3301 {
3302 struct perf_cpu_context *cpuctx;
3303 struct perf_counter_context *ctx;
3304 struct vm_area_struct *vma = mmap_event->vma;
3305 struct file *file = vma->vm_file;
3306 unsigned int size;
3307 char tmp[16];
3308 char *buf = NULL;
3309 const char *name;
3310
3311 memset(tmp, 0, sizeof(tmp));
3312
3313 if (file) {
3314 /*
3315 * d_path works from the end of the buffer backwards, so we
3316 * need to add enough zero bytes after the string to handle
3317 * the 64bit alignment we do later.
3318 */
3319 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3320 if (!buf) {
3321 name = strncpy(tmp, "//enomem", sizeof(tmp));
3322 goto got_name;
3323 }
3324 name = d_path(&file->f_path, buf, PATH_MAX);
3325 if (IS_ERR(name)) {
3326 name = strncpy(tmp, "//toolong", sizeof(tmp));
3327 goto got_name;
3328 }
3329 } else {
3330 if (arch_vma_name(mmap_event->vma)) {
3331 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3332 sizeof(tmp));
3333 goto got_name;
3334 }
3335
3336 if (!vma->vm_mm) {
3337 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3338 goto got_name;
3339 }
3340
3341 name = strncpy(tmp, "//anon", sizeof(tmp));
3342 goto got_name;
3343 }
3344
3345 got_name:
3346 size = ALIGN(strlen(name)+1, sizeof(u64));
3347
3348 mmap_event->file_name = name;
3349 mmap_event->file_size = size;
3350
3351 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
3352
3353 cpuctx = &get_cpu_var(perf_cpu_context);
3354 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
3355 put_cpu_var(perf_cpu_context);
3356
3357 rcu_read_lock();
3358 /*
3359 * doesn't really matter which of the child contexts the
3360 * events ends up in.
3361 */
3362 ctx = rcu_dereference(current->perf_counter_ctxp);
3363 if (ctx)
3364 perf_counter_mmap_ctx(ctx, mmap_event);
3365 rcu_read_unlock();
3366
3367 kfree(buf);
3368 }
3369
3370 void __perf_counter_mmap(struct vm_area_struct *vma)
3371 {
3372 struct perf_mmap_event mmap_event;
3373
3374 if (!atomic_read(&nr_mmap_counters))
3375 return;
3376
3377 mmap_event = (struct perf_mmap_event){
3378 .vma = vma,
3379 /* .file_name */
3380 /* .file_size */
3381 .event = {
3382 .header = {
3383 .type = PERF_EVENT_MMAP,
3384 .misc = 0,
3385 /* .size */
3386 },
3387 /* .pid */
3388 /* .tid */
3389 .start = vma->vm_start,
3390 .len = vma->vm_end - vma->vm_start,
3391 .pgoff = vma->vm_pgoff,
3392 },
3393 };
3394
3395 perf_counter_mmap_event(&mmap_event);
3396 }
3397
3398 /*
3399 * IRQ throttle logging
3400 */
3401
3402 static void perf_log_throttle(struct perf_counter *counter, int enable)
3403 {
3404 struct perf_output_handle handle;
3405 int ret;
3406
3407 struct {
3408 struct perf_event_header header;
3409 u64 time;
3410 u64 id;
3411 u64 stream_id;
3412 } throttle_event = {
3413 .header = {
3414 .type = PERF_EVENT_THROTTLE,
3415 .misc = 0,
3416 .size = sizeof(throttle_event),
3417 },
3418 .time = sched_clock(),
3419 .id = primary_counter_id(counter),
3420 .stream_id = counter->id,
3421 };
3422
3423 if (enable)
3424 throttle_event.header.type = PERF_EVENT_UNTHROTTLE;
3425
3426 ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
3427 if (ret)
3428 return;
3429
3430 perf_output_put(&handle, throttle_event);
3431 perf_output_end(&handle);
3432 }
3433
3434 /*
3435 * Generic counter overflow handling, sampling.
3436 */
3437
3438 int perf_counter_overflow(struct perf_counter *counter, int nmi,
3439 struct perf_sample_data *data)
3440 {
3441 int events = atomic_read(&counter->event_limit);
3442 int throttle = counter->pmu->unthrottle != NULL;
3443 struct hw_perf_counter *hwc = &counter->hw;
3444 int ret = 0;
3445
3446 if (!throttle) {
3447 hwc->interrupts++;
3448 } else {
3449 if (hwc->interrupts != MAX_INTERRUPTS) {
3450 hwc->interrupts++;
3451 if (HZ * hwc->interrupts >
3452 (u64)sysctl_perf_counter_sample_rate) {
3453 hwc->interrupts = MAX_INTERRUPTS;
3454 perf_log_throttle(counter, 0);
3455 ret = 1;
3456 }
3457 } else {
3458 /*
3459 * Keep re-disabling counters even though on the previous
3460 * pass we disabled it - just in case we raced with a
3461 * sched-in and the counter got enabled again:
3462 */
3463 ret = 1;
3464 }
3465 }
3466
3467 if (counter->attr.freq) {
3468 u64 now = sched_clock();
3469 s64 delta = now - hwc->freq_stamp;
3470
3471 hwc->freq_stamp = now;
3472
3473 if (delta > 0 && delta < TICK_NSEC)
3474 perf_adjust_period(counter, NSEC_PER_SEC / (int)delta);
3475 }
3476
3477 /*
3478 * XXX event_limit might not quite work as expected on inherited
3479 * counters
3480 */
3481
3482 counter->pending_kill = POLL_IN;
3483 if (events && atomic_dec_and_test(&counter->event_limit)) {
3484 ret = 1;
3485 counter->pending_kill = POLL_HUP;
3486 if (nmi) {
3487 counter->pending_disable = 1;
3488 perf_pending_queue(&counter->pending,
3489 perf_pending_counter);
3490 } else
3491 perf_counter_disable(counter);
3492 }
3493
3494 perf_counter_output(counter, nmi, data);
3495 return ret;
3496 }
3497
3498 /*
3499 * Generic software counter infrastructure
3500 */
3501
3502 /*
3503 * We directly increment counter->count and keep a second value in
3504 * counter->hw.period_left to count intervals. This period counter
3505 * is kept in the range [-sample_period, 0] so that we can use the
3506 * sign as trigger.
3507 */
3508
3509 static u64 perf_swcounter_set_period(struct perf_counter *counter)
3510 {
3511 struct hw_perf_counter *hwc = &counter->hw;
3512 u64 period = hwc->last_period;
3513 u64 nr, offset;
3514 s64 old, val;
3515
3516 hwc->last_period = hwc->sample_period;
3517
3518 again:
3519 old = val = atomic64_read(&hwc->period_left);
3520 if (val < 0)
3521 return 0;
3522
3523 nr = div64_u64(period + val, period);
3524 offset = nr * period;
3525 val -= offset;
3526 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3527 goto again;
3528
3529 return nr;
3530 }
3531
3532 static void perf_swcounter_overflow(struct perf_counter *counter,
3533 int nmi, struct perf_sample_data *data)
3534 {
3535 struct hw_perf_counter *hwc = &counter->hw;
3536 u64 overflow;
3537
3538 data->period = counter->hw.last_period;
3539 overflow = perf_swcounter_set_period(counter);
3540
3541 if (hwc->interrupts == MAX_INTERRUPTS)
3542 return;
3543
3544 for (; overflow; overflow--) {
3545 if (perf_counter_overflow(counter, nmi, data)) {
3546 /*
3547 * We inhibit the overflow from happening when
3548 * hwc->interrupts == MAX_INTERRUPTS.
3549 */
3550 break;
3551 }
3552 }
3553 }
3554
3555 static void perf_swcounter_unthrottle(struct perf_counter *counter)
3556 {
3557 /*
3558 * Nothing to do, we already reset hwc->interrupts.
3559 */
3560 }
3561
3562 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
3563 int nmi, struct perf_sample_data *data)
3564 {
3565 struct hw_perf_counter *hwc = &counter->hw;
3566
3567 atomic64_add(nr, &counter->count);
3568
3569 if (!hwc->sample_period)
3570 return;
3571
3572 if (!data->regs)
3573 return;
3574
3575 if (!atomic64_add_negative(nr, &hwc->period_left))
3576 perf_swcounter_overflow(counter, nmi, data);
3577 }
3578
3579 static int perf_swcounter_is_counting(struct perf_counter *counter)
3580 {
3581 /*
3582 * The counter is active, we're good!
3583 */
3584 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
3585 return 1;
3586
3587 /*
3588 * The counter is off/error, not counting.
3589 */
3590 if (counter->state != PERF_COUNTER_STATE_INACTIVE)
3591 return 0;
3592
3593 /*
3594 * The counter is inactive, if the context is active
3595 * we're part of a group that didn't make it on the 'pmu',
3596 * not counting.
3597 */
3598 if (counter->ctx->is_active)
3599 return 0;
3600
3601 /*
3602 * We're inactive and the context is too, this means the
3603 * task is scheduled out, we're counting events that happen
3604 * to us, like migration events.
3605 */
3606 return 1;
3607 }
3608
3609 static int perf_swcounter_match(struct perf_counter *counter,
3610 enum perf_type_id type,
3611 u32 event, struct pt_regs *regs)
3612 {
3613 if (!perf_swcounter_is_counting(counter))
3614 return 0;
3615
3616 if (counter->attr.type != type)
3617 return 0;
3618 if (counter->attr.config != event)
3619 return 0;
3620
3621 if (regs) {
3622 if (counter->attr.exclude_user && user_mode(regs))
3623 return 0;
3624
3625 if (counter->attr.exclude_kernel && !user_mode(regs))
3626 return 0;
3627 }
3628
3629 return 1;
3630 }
3631
3632 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
3633 enum perf_type_id type,
3634 u32 event, u64 nr, int nmi,
3635 struct perf_sample_data *data)
3636 {
3637 struct perf_counter *counter;
3638
3639 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3640 return;
3641
3642 rcu_read_lock();
3643 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3644 if (perf_swcounter_match(counter, type, event, data->regs))
3645 perf_swcounter_add(counter, nr, nmi, data);
3646 }
3647 rcu_read_unlock();
3648 }
3649
3650 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
3651 {
3652 if (in_nmi())
3653 return &cpuctx->recursion[3];
3654
3655 if (in_irq())
3656 return &cpuctx->recursion[2];
3657
3658 if (in_softirq())
3659 return &cpuctx->recursion[1];
3660
3661 return &cpuctx->recursion[0];
3662 }
3663
3664 static void do_perf_swcounter_event(enum perf_type_id type, u32 event,
3665 u64 nr, int nmi,
3666 struct perf_sample_data *data)
3667 {
3668 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3669 int *recursion = perf_swcounter_recursion_context(cpuctx);
3670 struct perf_counter_context *ctx;
3671
3672 if (*recursion)
3673 goto out;
3674
3675 (*recursion)++;
3676 barrier();
3677
3678 perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
3679 nr, nmi, data);
3680 rcu_read_lock();
3681 /*
3682 * doesn't really matter which of the child contexts the
3683 * events ends up in.
3684 */
3685 ctx = rcu_dereference(current->perf_counter_ctxp);
3686 if (ctx)
3687 perf_swcounter_ctx_event(ctx, type, event, nr, nmi, data);
3688 rcu_read_unlock();
3689
3690 barrier();
3691 (*recursion)--;
3692
3693 out:
3694 put_cpu_var(perf_cpu_context);
3695 }
3696
3697 void __perf_swcounter_event(u32 event, u64 nr, int nmi,
3698 struct pt_regs *regs, u64 addr)
3699 {
3700 struct perf_sample_data data = {
3701 .regs = regs,
3702 .addr = addr,
3703 };
3704
3705 do_perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, &data);
3706 }
3707
3708 static void perf_swcounter_read(struct perf_counter *counter)
3709 {
3710 }
3711
3712 static int perf_swcounter_enable(struct perf_counter *counter)
3713 {
3714 struct hw_perf_counter *hwc = &counter->hw;
3715
3716 if (hwc->sample_period) {
3717 hwc->last_period = hwc->sample_period;
3718 perf_swcounter_set_period(counter);
3719 }
3720 return 0;
3721 }
3722
3723 static void perf_swcounter_disable(struct perf_counter *counter)
3724 {
3725 }
3726
3727 static const struct pmu perf_ops_generic = {
3728 .enable = perf_swcounter_enable,
3729 .disable = perf_swcounter_disable,
3730 .read = perf_swcounter_read,
3731 .unthrottle = perf_swcounter_unthrottle,
3732 };
3733
3734 /*
3735 * hrtimer based swcounter callback
3736 */
3737
3738 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
3739 {
3740 enum hrtimer_restart ret = HRTIMER_RESTART;
3741 struct perf_sample_data data;
3742 struct perf_counter *counter;
3743 u64 period;
3744
3745 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
3746 counter->pmu->read(counter);
3747
3748 data.addr = 0;
3749 data.regs = get_irq_regs();
3750 /*
3751 * In case we exclude kernel IPs or are somehow not in interrupt
3752 * context, provide the next best thing, the user IP.
3753 */
3754 if ((counter->attr.exclude_kernel || !data.regs) &&
3755 !counter->attr.exclude_user)
3756 data.regs = task_pt_regs(current);
3757
3758 if (data.regs) {
3759 if (perf_counter_overflow(counter, 0, &data))
3760 ret = HRTIMER_NORESTART;
3761 }
3762
3763 period = max_t(u64, 10000, counter->hw.sample_period);
3764 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3765
3766 return ret;
3767 }
3768
3769 /*
3770 * Software counter: cpu wall time clock
3771 */
3772
3773 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
3774 {
3775 int cpu = raw_smp_processor_id();
3776 s64 prev;
3777 u64 now;
3778
3779 now = cpu_clock(cpu);
3780 prev = atomic64_read(&counter->hw.prev_count);
3781 atomic64_set(&counter->hw.prev_count, now);
3782 atomic64_add(now - prev, &counter->count);
3783 }
3784
3785 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
3786 {
3787 struct hw_perf_counter *hwc = &counter->hw;
3788 int cpu = raw_smp_processor_id();
3789
3790 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3791 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3792 hwc->hrtimer.function = perf_swcounter_hrtimer;
3793 if (hwc->sample_period) {
3794 u64 period = max_t(u64, 10000, hwc->sample_period);
3795 __hrtimer_start_range_ns(&hwc->hrtimer,
3796 ns_to_ktime(period), 0,
3797 HRTIMER_MODE_REL, 0);
3798 }
3799
3800 return 0;
3801 }
3802
3803 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
3804 {
3805 if (counter->hw.sample_period)
3806 hrtimer_cancel(&counter->hw.hrtimer);
3807 cpu_clock_perf_counter_update(counter);
3808 }
3809
3810 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
3811 {
3812 cpu_clock_perf_counter_update(counter);
3813 }
3814
3815 static const struct pmu perf_ops_cpu_clock = {
3816 .enable = cpu_clock_perf_counter_enable,
3817 .disable = cpu_clock_perf_counter_disable,
3818 .read = cpu_clock_perf_counter_read,
3819 };
3820
3821 /*
3822 * Software counter: task time clock
3823 */
3824
3825 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
3826 {
3827 u64 prev;
3828 s64 delta;
3829
3830 prev = atomic64_xchg(&counter->hw.prev_count, now);
3831 delta = now - prev;
3832 atomic64_add(delta, &counter->count);
3833 }
3834
3835 static int task_clock_perf_counter_enable(struct perf_counter *counter)
3836 {
3837 struct hw_perf_counter *hwc = &counter->hw;
3838 u64 now;
3839
3840 now = counter->ctx->time;
3841
3842 atomic64_set(&hwc->prev_count, now);
3843 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3844 hwc->hrtimer.function = perf_swcounter_hrtimer;
3845 if (hwc->sample_period) {
3846 u64 period = max_t(u64, 10000, hwc->sample_period);
3847 __hrtimer_start_range_ns(&hwc->hrtimer,
3848 ns_to_ktime(period), 0,
3849 HRTIMER_MODE_REL, 0);
3850 }
3851
3852 return 0;
3853 }
3854
3855 static void task_clock_perf_counter_disable(struct perf_counter *counter)
3856 {
3857 if (counter->hw.sample_period)
3858 hrtimer_cancel(&counter->hw.hrtimer);
3859 task_clock_perf_counter_update(counter, counter->ctx->time);
3860
3861 }
3862
3863 static void task_clock_perf_counter_read(struct perf_counter *counter)
3864 {
3865 u64 time;
3866
3867 if (!in_nmi()) {
3868 update_context_time(counter->ctx);
3869 time = counter->ctx->time;
3870 } else {
3871 u64 now = perf_clock();
3872 u64 delta = now - counter->ctx->timestamp;
3873 time = counter->ctx->time + delta;
3874 }
3875
3876 task_clock_perf_counter_update(counter, time);
3877 }
3878
3879 static const struct pmu perf_ops_task_clock = {
3880 .enable = task_clock_perf_counter_enable,
3881 .disable = task_clock_perf_counter_disable,
3882 .read = task_clock_perf_counter_read,
3883 };
3884
3885 #ifdef CONFIG_EVENT_PROFILE
3886 void perf_tpcounter_event(int event_id, u64 addr, u64 count, void *record,
3887 int entry_size)
3888 {
3889 struct perf_raw_record raw = {
3890 .size = entry_size,
3891 .data = record,
3892 };
3893
3894 struct perf_sample_data data = {
3895 .regs = get_irq_regs(),
3896 .addr = addr,
3897 .raw = &raw,
3898 };
3899
3900 if (!data.regs)
3901 data.regs = task_pt_regs(current);
3902
3903 do_perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, count, 1, &data);
3904 }
3905 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3906
3907 extern int ftrace_profile_enable(int);
3908 extern void ftrace_profile_disable(int);
3909
3910 static void tp_perf_counter_destroy(struct perf_counter *counter)
3911 {
3912 ftrace_profile_disable(counter->attr.config);
3913 }
3914
3915 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3916 {
3917 /*
3918 * Raw tracepoint data is a severe data leak, only allow root to
3919 * have these.
3920 */
3921 if ((counter->attr.sample_type & PERF_SAMPLE_RAW) &&
3922 !capable(CAP_SYS_ADMIN))
3923 return ERR_PTR(-EPERM);
3924
3925 if (ftrace_profile_enable(counter->attr.config))
3926 return NULL;
3927
3928 counter->destroy = tp_perf_counter_destroy;
3929
3930 return &perf_ops_generic;
3931 }
3932 #else
3933 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3934 {
3935 return NULL;
3936 }
3937 #endif
3938
3939 atomic_t perf_swcounter_enabled[PERF_COUNT_SW_MAX];
3940
3941 static void sw_perf_counter_destroy(struct perf_counter *counter)
3942 {
3943 u64 event = counter->attr.config;
3944
3945 WARN_ON(counter->parent);
3946
3947 atomic_dec(&perf_swcounter_enabled[event]);
3948 }
3949
3950 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3951 {
3952 const struct pmu *pmu = NULL;
3953 u64 event = counter->attr.config;
3954
3955 /*
3956 * Software counters (currently) can't in general distinguish
3957 * between user, kernel and hypervisor events.
3958 * However, context switches and cpu migrations are considered
3959 * to be kernel events, and page faults are never hypervisor
3960 * events.
3961 */
3962 switch (event) {
3963 case PERF_COUNT_SW_CPU_CLOCK:
3964 pmu = &perf_ops_cpu_clock;
3965
3966 break;
3967 case PERF_COUNT_SW_TASK_CLOCK:
3968 /*
3969 * If the user instantiates this as a per-cpu counter,
3970 * use the cpu_clock counter instead.
3971 */
3972 if (counter->ctx->task)
3973 pmu = &perf_ops_task_clock;
3974 else
3975 pmu = &perf_ops_cpu_clock;
3976
3977 break;
3978 case PERF_COUNT_SW_PAGE_FAULTS:
3979 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
3980 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
3981 case PERF_COUNT_SW_CONTEXT_SWITCHES:
3982 case PERF_COUNT_SW_CPU_MIGRATIONS:
3983 if (!counter->parent) {
3984 atomic_inc(&perf_swcounter_enabled[event]);
3985 counter->destroy = sw_perf_counter_destroy;
3986 }
3987 pmu = &perf_ops_generic;
3988 break;
3989 }
3990
3991 return pmu;
3992 }
3993
3994 /*
3995 * Allocate and initialize a counter structure
3996 */
3997 static struct perf_counter *
3998 perf_counter_alloc(struct perf_counter_attr *attr,
3999 int cpu,
4000 struct perf_counter_context *ctx,
4001 struct perf_counter *group_leader,
4002 struct perf_counter *parent_counter,
4003 gfp_t gfpflags)
4004 {
4005 const struct pmu *pmu;
4006 struct perf_counter *counter;
4007 struct hw_perf_counter *hwc;
4008 long err;
4009
4010 counter = kzalloc(sizeof(*counter), gfpflags);
4011 if (!counter)
4012 return ERR_PTR(-ENOMEM);
4013
4014 /*
4015 * Single counters are their own group leaders, with an
4016 * empty sibling list:
4017 */
4018 if (!group_leader)
4019 group_leader = counter;
4020
4021 mutex_init(&counter->child_mutex);
4022 INIT_LIST_HEAD(&counter->child_list);
4023
4024 INIT_LIST_HEAD(&counter->list_entry);
4025 INIT_LIST_HEAD(&counter->event_entry);
4026 INIT_LIST_HEAD(&counter->sibling_list);
4027 init_waitqueue_head(&counter->waitq);
4028
4029 mutex_init(&counter->mmap_mutex);
4030
4031 counter->cpu = cpu;
4032 counter->attr = *attr;
4033 counter->group_leader = group_leader;
4034 counter->pmu = NULL;
4035 counter->ctx = ctx;
4036 counter->oncpu = -1;
4037
4038 counter->parent = parent_counter;
4039
4040 counter->ns = get_pid_ns(current->nsproxy->pid_ns);
4041 counter->id = atomic64_inc_return(&perf_counter_id);
4042
4043 counter->state = PERF_COUNTER_STATE_INACTIVE;
4044
4045 if (attr->disabled)
4046 counter->state = PERF_COUNTER_STATE_OFF;
4047
4048 pmu = NULL;
4049
4050 hwc = &counter->hw;
4051 hwc->sample_period = attr->sample_period;
4052 if (attr->freq && attr->sample_freq)
4053 hwc->sample_period = 1;
4054
4055 atomic64_set(&hwc->period_left, hwc->sample_period);
4056
4057 /*
4058 * we currently do not support PERF_FORMAT_GROUP on inherited counters
4059 */
4060 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4061 goto done;
4062
4063 switch (attr->type) {
4064 case PERF_TYPE_RAW:
4065 case PERF_TYPE_HARDWARE:
4066 case PERF_TYPE_HW_CACHE:
4067 pmu = hw_perf_counter_init(counter);
4068 break;
4069
4070 case PERF_TYPE_SOFTWARE:
4071 pmu = sw_perf_counter_init(counter);
4072 break;
4073
4074 case PERF_TYPE_TRACEPOINT:
4075 pmu = tp_perf_counter_init(counter);
4076 break;
4077
4078 default:
4079 break;
4080 }
4081 done:
4082 err = 0;
4083 if (!pmu)
4084 err = -EINVAL;
4085 else if (IS_ERR(pmu))
4086 err = PTR_ERR(pmu);
4087
4088 if (err) {
4089 if (counter->ns)
4090 put_pid_ns(counter->ns);
4091 kfree(counter);
4092 return ERR_PTR(err);
4093 }
4094
4095 counter->pmu = pmu;
4096
4097 if (!counter->parent) {
4098 atomic_inc(&nr_counters);
4099 if (counter->attr.mmap)
4100 atomic_inc(&nr_mmap_counters);
4101 if (counter->attr.comm)
4102 atomic_inc(&nr_comm_counters);
4103 if (counter->attr.task)
4104 atomic_inc(&nr_task_counters);
4105 }
4106
4107 return counter;
4108 }
4109
4110 static int perf_copy_attr(struct perf_counter_attr __user *uattr,
4111 struct perf_counter_attr *attr)
4112 {
4113 int ret;
4114 u32 size;
4115
4116 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4117 return -EFAULT;
4118
4119 /*
4120 * zero the full structure, so that a short copy will be nice.
4121 */
4122 memset(attr, 0, sizeof(*attr));
4123
4124 ret = get_user(size, &uattr->size);
4125 if (ret)
4126 return ret;
4127
4128 if (size > PAGE_SIZE) /* silly large */
4129 goto err_size;
4130
4131 if (!size) /* abi compat */
4132 size = PERF_ATTR_SIZE_VER0;
4133
4134 if (size < PERF_ATTR_SIZE_VER0)
4135 goto err_size;
4136
4137 /*
4138 * If we're handed a bigger struct than we know of,
4139 * ensure all the unknown bits are 0.
4140 */
4141 if (size > sizeof(*attr)) {
4142 unsigned long val;
4143 unsigned long __user *addr;
4144 unsigned long __user *end;
4145
4146 addr = PTR_ALIGN((void __user *)uattr + sizeof(*attr),
4147 sizeof(unsigned long));
4148 end = PTR_ALIGN((void __user *)uattr + size,
4149 sizeof(unsigned long));
4150
4151 for (; addr < end; addr += sizeof(unsigned long)) {
4152 ret = get_user(val, addr);
4153 if (ret)
4154 return ret;
4155 if (val)
4156 goto err_size;
4157 }
4158 }
4159
4160 ret = copy_from_user(attr, uattr, size);
4161 if (ret)
4162 return -EFAULT;
4163
4164 /*
4165 * If the type exists, the corresponding creation will verify
4166 * the attr->config.
4167 */
4168 if (attr->type >= PERF_TYPE_MAX)
4169 return -EINVAL;
4170
4171 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
4172 return -EINVAL;
4173
4174 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4175 return -EINVAL;
4176
4177 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4178 return -EINVAL;
4179
4180 out:
4181 return ret;
4182
4183 err_size:
4184 put_user(sizeof(*attr), &uattr->size);
4185 ret = -E2BIG;
4186 goto out;
4187 }
4188
4189 /**
4190 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
4191 *
4192 * @attr_uptr: event type attributes for monitoring/sampling
4193 * @pid: target pid
4194 * @cpu: target cpu
4195 * @group_fd: group leader counter fd
4196 */
4197 SYSCALL_DEFINE5(perf_counter_open,
4198 struct perf_counter_attr __user *, attr_uptr,
4199 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4200 {
4201 struct perf_counter *counter, *group_leader;
4202 struct perf_counter_attr attr;
4203 struct perf_counter_context *ctx;
4204 struct file *counter_file = NULL;
4205 struct file *group_file = NULL;
4206 int fput_needed = 0;
4207 int fput_needed2 = 0;
4208 int ret;
4209
4210 /* for future expandability... */
4211 if (flags)
4212 return -EINVAL;
4213
4214 ret = perf_copy_attr(attr_uptr, &attr);
4215 if (ret)
4216 return ret;
4217
4218 if (!attr.exclude_kernel) {
4219 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4220 return -EACCES;
4221 }
4222
4223 if (attr.freq) {
4224 if (attr.sample_freq > sysctl_perf_counter_sample_rate)
4225 return -EINVAL;
4226 }
4227
4228 /*
4229 * Get the target context (task or percpu):
4230 */
4231 ctx = find_get_context(pid, cpu);
4232 if (IS_ERR(ctx))
4233 return PTR_ERR(ctx);
4234
4235 /*
4236 * Look up the group leader (we will attach this counter to it):
4237 */
4238 group_leader = NULL;
4239 if (group_fd != -1) {
4240 ret = -EINVAL;
4241 group_file = fget_light(group_fd, &fput_needed);
4242 if (!group_file)
4243 goto err_put_context;
4244 if (group_file->f_op != &perf_fops)
4245 goto err_put_context;
4246
4247 group_leader = group_file->private_data;
4248 /*
4249 * Do not allow a recursive hierarchy (this new sibling
4250 * becoming part of another group-sibling):
4251 */
4252 if (group_leader->group_leader != group_leader)
4253 goto err_put_context;
4254 /*
4255 * Do not allow to attach to a group in a different
4256 * task or CPU context:
4257 */
4258 if (group_leader->ctx != ctx)
4259 goto err_put_context;
4260 /*
4261 * Only a group leader can be exclusive or pinned
4262 */
4263 if (attr.exclusive || attr.pinned)
4264 goto err_put_context;
4265 }
4266
4267 counter = perf_counter_alloc(&attr, cpu, ctx, group_leader,
4268 NULL, GFP_KERNEL);
4269 ret = PTR_ERR(counter);
4270 if (IS_ERR(counter))
4271 goto err_put_context;
4272
4273 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
4274 if (ret < 0)
4275 goto err_free_put_context;
4276
4277 counter_file = fget_light(ret, &fput_needed2);
4278 if (!counter_file)
4279 goto err_free_put_context;
4280
4281 counter->filp = counter_file;
4282 WARN_ON_ONCE(ctx->parent_ctx);
4283 mutex_lock(&ctx->mutex);
4284 perf_install_in_context(ctx, counter, cpu);
4285 ++ctx->generation;
4286 mutex_unlock(&ctx->mutex);
4287
4288 counter->owner = current;
4289 get_task_struct(current);
4290 mutex_lock(&current->perf_counter_mutex);
4291 list_add_tail(&counter->owner_entry, &current->perf_counter_list);
4292 mutex_unlock(&current->perf_counter_mutex);
4293
4294 fput_light(counter_file, fput_needed2);
4295
4296 out_fput:
4297 fput_light(group_file, fput_needed);
4298
4299 return ret;
4300
4301 err_free_put_context:
4302 kfree(counter);
4303
4304 err_put_context:
4305 put_ctx(ctx);
4306
4307 goto out_fput;
4308 }
4309
4310 /*
4311 * inherit a counter from parent task to child task:
4312 */
4313 static struct perf_counter *
4314 inherit_counter(struct perf_counter *parent_counter,
4315 struct task_struct *parent,
4316 struct perf_counter_context *parent_ctx,
4317 struct task_struct *child,
4318 struct perf_counter *group_leader,
4319 struct perf_counter_context *child_ctx)
4320 {
4321 struct perf_counter *child_counter;
4322
4323 /*
4324 * Instead of creating recursive hierarchies of counters,
4325 * we link inherited counters back to the original parent,
4326 * which has a filp for sure, which we use as the reference
4327 * count:
4328 */
4329 if (parent_counter->parent)
4330 parent_counter = parent_counter->parent;
4331
4332 child_counter = perf_counter_alloc(&parent_counter->attr,
4333 parent_counter->cpu, child_ctx,
4334 group_leader, parent_counter,
4335 GFP_KERNEL);
4336 if (IS_ERR(child_counter))
4337 return child_counter;
4338 get_ctx(child_ctx);
4339
4340 /*
4341 * Make the child state follow the state of the parent counter,
4342 * not its attr.disabled bit. We hold the parent's mutex,
4343 * so we won't race with perf_counter_{en, dis}able_family.
4344 */
4345 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
4346 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
4347 else
4348 child_counter->state = PERF_COUNTER_STATE_OFF;
4349
4350 if (parent_counter->attr.freq)
4351 child_counter->hw.sample_period = parent_counter->hw.sample_period;
4352
4353 /*
4354 * Link it up in the child's context:
4355 */
4356 add_counter_to_ctx(child_counter, child_ctx);
4357
4358 /*
4359 * Get a reference to the parent filp - we will fput it
4360 * when the child counter exits. This is safe to do because
4361 * we are in the parent and we know that the filp still
4362 * exists and has a nonzero count:
4363 */
4364 atomic_long_inc(&parent_counter->filp->f_count);
4365
4366 /*
4367 * Link this into the parent counter's child list
4368 */
4369 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
4370 mutex_lock(&parent_counter->child_mutex);
4371 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
4372 mutex_unlock(&parent_counter->child_mutex);
4373
4374 return child_counter;
4375 }
4376
4377 static int inherit_group(struct perf_counter *parent_counter,
4378 struct task_struct *parent,
4379 struct perf_counter_context *parent_ctx,
4380 struct task_struct *child,
4381 struct perf_counter_context *child_ctx)
4382 {
4383 struct perf_counter *leader;
4384 struct perf_counter *sub;
4385 struct perf_counter *child_ctr;
4386
4387 leader = inherit_counter(parent_counter, parent, parent_ctx,
4388 child, NULL, child_ctx);
4389 if (IS_ERR(leader))
4390 return PTR_ERR(leader);
4391 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
4392 child_ctr = inherit_counter(sub, parent, parent_ctx,
4393 child, leader, child_ctx);
4394 if (IS_ERR(child_ctr))
4395 return PTR_ERR(child_ctr);
4396 }
4397 return 0;
4398 }
4399
4400 static void sync_child_counter(struct perf_counter *child_counter,
4401 struct task_struct *child)
4402 {
4403 struct perf_counter *parent_counter = child_counter->parent;
4404 u64 child_val;
4405
4406 if (child_counter->attr.inherit_stat)
4407 perf_counter_read_event(child_counter, child);
4408
4409 child_val = atomic64_read(&child_counter->count);
4410
4411 /*
4412 * Add back the child's count to the parent's count:
4413 */
4414 atomic64_add(child_val, &parent_counter->count);
4415 atomic64_add(child_counter->total_time_enabled,
4416 &parent_counter->child_total_time_enabled);
4417 atomic64_add(child_counter->total_time_running,
4418 &parent_counter->child_total_time_running);
4419
4420 /*
4421 * Remove this counter from the parent's list
4422 */
4423 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
4424 mutex_lock(&parent_counter->child_mutex);
4425 list_del_init(&child_counter->child_list);
4426 mutex_unlock(&parent_counter->child_mutex);
4427
4428 /*
4429 * Release the parent counter, if this was the last
4430 * reference to it.
4431 */
4432 fput(parent_counter->filp);
4433 }
4434
4435 static void
4436 __perf_counter_exit_task(struct perf_counter *child_counter,
4437 struct perf_counter_context *child_ctx,
4438 struct task_struct *child)
4439 {
4440 struct perf_counter *parent_counter;
4441
4442 update_counter_times(child_counter);
4443 perf_counter_remove_from_context(child_counter);
4444
4445 parent_counter = child_counter->parent;
4446 /*
4447 * It can happen that parent exits first, and has counters
4448 * that are still around due to the child reference. These
4449 * counters need to be zapped - but otherwise linger.
4450 */
4451 if (parent_counter) {
4452 sync_child_counter(child_counter, child);
4453 free_counter(child_counter);
4454 }
4455 }
4456
4457 /*
4458 * When a child task exits, feed back counter values to parent counters.
4459 */
4460 void perf_counter_exit_task(struct task_struct *child)
4461 {
4462 struct perf_counter *child_counter, *tmp;
4463 struct perf_counter_context *child_ctx;
4464 unsigned long flags;
4465
4466 if (likely(!child->perf_counter_ctxp)) {
4467 perf_counter_task(child, NULL, 0);
4468 return;
4469 }
4470
4471 local_irq_save(flags);
4472 /*
4473 * We can't reschedule here because interrupts are disabled,
4474 * and either child is current or it is a task that can't be
4475 * scheduled, so we are now safe from rescheduling changing
4476 * our context.
4477 */
4478 child_ctx = child->perf_counter_ctxp;
4479 __perf_counter_task_sched_out(child_ctx);
4480
4481 /*
4482 * Take the context lock here so that if find_get_context is
4483 * reading child->perf_counter_ctxp, we wait until it has
4484 * incremented the context's refcount before we do put_ctx below.
4485 */
4486 spin_lock(&child_ctx->lock);
4487 child->perf_counter_ctxp = NULL;
4488 /*
4489 * If this context is a clone; unclone it so it can't get
4490 * swapped to another process while we're removing all
4491 * the counters from it.
4492 */
4493 unclone_ctx(child_ctx);
4494 spin_unlock_irqrestore(&child_ctx->lock, flags);
4495
4496 /*
4497 * Report the task dead after unscheduling the counters so that we
4498 * won't get any samples after PERF_EVENT_EXIT. We can however still
4499 * get a few PERF_EVENT_READ events.
4500 */
4501 perf_counter_task(child, child_ctx, 0);
4502
4503 /*
4504 * We can recurse on the same lock type through:
4505 *
4506 * __perf_counter_exit_task()
4507 * sync_child_counter()
4508 * fput(parent_counter->filp)
4509 * perf_release()
4510 * mutex_lock(&ctx->mutex)
4511 *
4512 * But since its the parent context it won't be the same instance.
4513 */
4514 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4515
4516 again:
4517 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
4518 list_entry)
4519 __perf_counter_exit_task(child_counter, child_ctx, child);
4520
4521 /*
4522 * If the last counter was a group counter, it will have appended all
4523 * its siblings to the list, but we obtained 'tmp' before that which
4524 * will still point to the list head terminating the iteration.
4525 */
4526 if (!list_empty(&child_ctx->counter_list))
4527 goto again;
4528
4529 mutex_unlock(&child_ctx->mutex);
4530
4531 put_ctx(child_ctx);
4532 }
4533
4534 /*
4535 * free an unexposed, unused context as created by inheritance by
4536 * init_task below, used by fork() in case of fail.
4537 */
4538 void perf_counter_free_task(struct task_struct *task)
4539 {
4540 struct perf_counter_context *ctx = task->perf_counter_ctxp;
4541 struct perf_counter *counter, *tmp;
4542
4543 if (!ctx)
4544 return;
4545
4546 mutex_lock(&ctx->mutex);
4547 again:
4548 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) {
4549 struct perf_counter *parent = counter->parent;
4550
4551 if (WARN_ON_ONCE(!parent))
4552 continue;
4553
4554 mutex_lock(&parent->child_mutex);
4555 list_del_init(&counter->child_list);
4556 mutex_unlock(&parent->child_mutex);
4557
4558 fput(parent->filp);
4559
4560 list_del_counter(counter, ctx);
4561 free_counter(counter);
4562 }
4563
4564 if (!list_empty(&ctx->counter_list))
4565 goto again;
4566
4567 mutex_unlock(&ctx->mutex);
4568
4569 put_ctx(ctx);
4570 }
4571
4572 /*
4573 * Initialize the perf_counter context in task_struct
4574 */
4575 int perf_counter_init_task(struct task_struct *child)
4576 {
4577 struct perf_counter_context *child_ctx, *parent_ctx;
4578 struct perf_counter_context *cloned_ctx;
4579 struct perf_counter *counter;
4580 struct task_struct *parent = current;
4581 int inherited_all = 1;
4582 int ret = 0;
4583
4584 child->perf_counter_ctxp = NULL;
4585
4586 mutex_init(&child->perf_counter_mutex);
4587 INIT_LIST_HEAD(&child->perf_counter_list);
4588
4589 if (likely(!parent->perf_counter_ctxp))
4590 return 0;
4591
4592 /*
4593 * This is executed from the parent task context, so inherit
4594 * counters that have been marked for cloning.
4595 * First allocate and initialize a context for the child.
4596 */
4597
4598 child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
4599 if (!child_ctx)
4600 return -ENOMEM;
4601
4602 __perf_counter_init_context(child_ctx, child);
4603 child->perf_counter_ctxp = child_ctx;
4604 get_task_struct(child);
4605
4606 /*
4607 * If the parent's context is a clone, pin it so it won't get
4608 * swapped under us.
4609 */
4610 parent_ctx = perf_pin_task_context(parent);
4611
4612 /*
4613 * No need to check if parent_ctx != NULL here; since we saw
4614 * it non-NULL earlier, the only reason for it to become NULL
4615 * is if we exit, and since we're currently in the middle of
4616 * a fork we can't be exiting at the same time.
4617 */
4618
4619 /*
4620 * Lock the parent list. No need to lock the child - not PID
4621 * hashed yet and not running, so nobody can access it.
4622 */
4623 mutex_lock(&parent_ctx->mutex);
4624
4625 /*
4626 * We dont have to disable NMIs - we are only looking at
4627 * the list, not manipulating it:
4628 */
4629 list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
4630 if (counter != counter->group_leader)
4631 continue;
4632
4633 if (!counter->attr.inherit) {
4634 inherited_all = 0;
4635 continue;
4636 }
4637
4638 ret = inherit_group(counter, parent, parent_ctx,
4639 child, child_ctx);
4640 if (ret) {
4641 inherited_all = 0;
4642 break;
4643 }
4644 }
4645
4646 if (inherited_all) {
4647 /*
4648 * Mark the child context as a clone of the parent
4649 * context, or of whatever the parent is a clone of.
4650 * Note that if the parent is a clone, it could get
4651 * uncloned at any point, but that doesn't matter
4652 * because the list of counters and the generation
4653 * count can't have changed since we took the mutex.
4654 */
4655 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
4656 if (cloned_ctx) {
4657 child_ctx->parent_ctx = cloned_ctx;
4658 child_ctx->parent_gen = parent_ctx->parent_gen;
4659 } else {
4660 child_ctx->parent_ctx = parent_ctx;
4661 child_ctx->parent_gen = parent_ctx->generation;
4662 }
4663 get_ctx(child_ctx->parent_ctx);
4664 }
4665
4666 mutex_unlock(&parent_ctx->mutex);
4667
4668 perf_unpin_context(parent_ctx);
4669
4670 return ret;
4671 }
4672
4673 static void __cpuinit perf_counter_init_cpu(int cpu)
4674 {
4675 struct perf_cpu_context *cpuctx;
4676
4677 cpuctx = &per_cpu(perf_cpu_context, cpu);
4678 __perf_counter_init_context(&cpuctx->ctx, NULL);
4679
4680 spin_lock(&perf_resource_lock);
4681 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
4682 spin_unlock(&perf_resource_lock);
4683
4684 hw_perf_counter_setup(cpu);
4685 }
4686
4687 #ifdef CONFIG_HOTPLUG_CPU
4688 static void __perf_counter_exit_cpu(void *info)
4689 {
4690 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4691 struct perf_counter_context *ctx = &cpuctx->ctx;
4692 struct perf_counter *counter, *tmp;
4693
4694 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
4695 __perf_counter_remove_from_context(counter);
4696 }
4697 static void perf_counter_exit_cpu(int cpu)
4698 {
4699 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4700 struct perf_counter_context *ctx = &cpuctx->ctx;
4701
4702 mutex_lock(&ctx->mutex);
4703 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
4704 mutex_unlock(&ctx->mutex);
4705 }
4706 #else
4707 static inline void perf_counter_exit_cpu(int cpu) { }
4708 #endif
4709
4710 static int __cpuinit
4711 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
4712 {
4713 unsigned int cpu = (long)hcpu;
4714
4715 switch (action) {
4716
4717 case CPU_UP_PREPARE:
4718 case CPU_UP_PREPARE_FROZEN:
4719 perf_counter_init_cpu(cpu);
4720 break;
4721
4722 case CPU_ONLINE:
4723 case CPU_ONLINE_FROZEN:
4724 hw_perf_counter_setup_online(cpu);
4725 break;
4726
4727 case CPU_DOWN_PREPARE:
4728 case CPU_DOWN_PREPARE_FROZEN:
4729 perf_counter_exit_cpu(cpu);
4730 break;
4731
4732 default:
4733 break;
4734 }
4735
4736 return NOTIFY_OK;
4737 }
4738
4739 /*
4740 * This has to have a higher priority than migration_notifier in sched.c.
4741 */
4742 static struct notifier_block __cpuinitdata perf_cpu_nb = {
4743 .notifier_call = perf_cpu_notify,
4744 .priority = 20,
4745 };
4746
4747 void __init perf_counter_init(void)
4748 {
4749 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
4750 (void *)(long)smp_processor_id());
4751 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
4752 (void *)(long)smp_processor_id());
4753 register_cpu_notifier(&perf_cpu_nb);
4754 }
4755
4756 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
4757 {
4758 return sprintf(buf, "%d\n", perf_reserved_percpu);
4759 }
4760
4761 static ssize_t
4762 perf_set_reserve_percpu(struct sysdev_class *class,
4763 const char *buf,
4764 size_t count)
4765 {
4766 struct perf_cpu_context *cpuctx;
4767 unsigned long val;
4768 int err, cpu, mpt;
4769
4770 err = strict_strtoul(buf, 10, &val);
4771 if (err)
4772 return err;
4773 if (val > perf_max_counters)
4774 return -EINVAL;
4775
4776 spin_lock(&perf_resource_lock);
4777 perf_reserved_percpu = val;
4778 for_each_online_cpu(cpu) {
4779 cpuctx = &per_cpu(perf_cpu_context, cpu);
4780 spin_lock_irq(&cpuctx->ctx.lock);
4781 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
4782 perf_max_counters - perf_reserved_percpu);
4783 cpuctx->max_pertask = mpt;
4784 spin_unlock_irq(&cpuctx->ctx.lock);
4785 }
4786 spin_unlock(&perf_resource_lock);
4787
4788 return count;
4789 }
4790
4791 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
4792 {
4793 return sprintf(buf, "%d\n", perf_overcommit);
4794 }
4795
4796 static ssize_t
4797 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
4798 {
4799 unsigned long val;
4800 int err;
4801
4802 err = strict_strtoul(buf, 10, &val);
4803 if (err)
4804 return err;
4805 if (val > 1)
4806 return -EINVAL;
4807
4808 spin_lock(&perf_resource_lock);
4809 perf_overcommit = val;
4810 spin_unlock(&perf_resource_lock);
4811
4812 return count;
4813 }
4814
4815 static SYSDEV_CLASS_ATTR(
4816 reserve_percpu,
4817 0644,
4818 perf_show_reserve_percpu,
4819 perf_set_reserve_percpu
4820 );
4821
4822 static SYSDEV_CLASS_ATTR(
4823 overcommit,
4824 0644,
4825 perf_show_overcommit,
4826 perf_set_overcommit
4827 );
4828
4829 static struct attribute *perfclass_attrs[] = {
4830 &attr_reserve_percpu.attr,
4831 &attr_overcommit.attr,
4832 NULL
4833 };
4834
4835 static struct attribute_group perfclass_attr_group = {
4836 .attrs = perfclass_attrs,
4837 .name = "perf_counters",
4838 };
4839
4840 static int __init perf_counter_sysfs_init(void)
4841 {
4842 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
4843 &perfclass_attr_group);
4844 }
4845 device_initcall(perf_counter_sysfs_init);
This page took 0.150017 seconds and 6 git commands to generate.