perf_counter: Allow mmap if paranoid checks are turned off
[deliverable/linux.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/hardirq.h>
24 #include <linux/rculist.h>
25 #include <linux/uaccess.h>
26 #include <linux/syscalls.h>
27 #include <linux/anon_inodes.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/perf_counter.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34 * Each CPU has a list of per CPU counters:
35 */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_counters __read_mostly;
44 static atomic_t nr_comm_counters __read_mostly;
45 static atomic_t nr_task_counters __read_mostly;
46
47 /*
48 * perf counter paranoia level:
49 * -1 - not paranoid at all
50 * 0 - disallow raw tracepoint access for unpriv
51 * 1 - disallow cpu counters for unpriv
52 * 2 - disallow kernel profiling for unpriv
53 */
54 int sysctl_perf_counter_paranoid __read_mostly = 1;
55
56 static inline bool perf_paranoid_tracepoint_raw(void)
57 {
58 return sysctl_perf_counter_paranoid > -1;
59 }
60
61 static inline bool perf_paranoid_cpu(void)
62 {
63 return sysctl_perf_counter_paranoid > 0;
64 }
65
66 static inline bool perf_paranoid_kernel(void)
67 {
68 return sysctl_perf_counter_paranoid > 1;
69 }
70
71 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
72
73 /*
74 * max perf counter sample rate
75 */
76 int sysctl_perf_counter_sample_rate __read_mostly = 100000;
77
78 static atomic64_t perf_counter_id;
79
80 /*
81 * Lock for (sysadmin-configurable) counter reservations:
82 */
83 static DEFINE_SPINLOCK(perf_resource_lock);
84
85 /*
86 * Architecture provided APIs - weak aliases:
87 */
88 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
89 {
90 return NULL;
91 }
92
93 void __weak hw_perf_disable(void) { barrier(); }
94 void __weak hw_perf_enable(void) { barrier(); }
95
96 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
97 void __weak hw_perf_counter_setup_online(int cpu) { barrier(); }
98
99 int __weak
100 hw_perf_group_sched_in(struct perf_counter *group_leader,
101 struct perf_cpu_context *cpuctx,
102 struct perf_counter_context *ctx, int cpu)
103 {
104 return 0;
105 }
106
107 void __weak perf_counter_print_debug(void) { }
108
109 static DEFINE_PER_CPU(int, disable_count);
110
111 void __perf_disable(void)
112 {
113 __get_cpu_var(disable_count)++;
114 }
115
116 bool __perf_enable(void)
117 {
118 return !--__get_cpu_var(disable_count);
119 }
120
121 void perf_disable(void)
122 {
123 __perf_disable();
124 hw_perf_disable();
125 }
126
127 void perf_enable(void)
128 {
129 if (__perf_enable())
130 hw_perf_enable();
131 }
132
133 static void get_ctx(struct perf_counter_context *ctx)
134 {
135 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
136 }
137
138 static void free_ctx(struct rcu_head *head)
139 {
140 struct perf_counter_context *ctx;
141
142 ctx = container_of(head, struct perf_counter_context, rcu_head);
143 kfree(ctx);
144 }
145
146 static void put_ctx(struct perf_counter_context *ctx)
147 {
148 if (atomic_dec_and_test(&ctx->refcount)) {
149 if (ctx->parent_ctx)
150 put_ctx(ctx->parent_ctx);
151 if (ctx->task)
152 put_task_struct(ctx->task);
153 call_rcu(&ctx->rcu_head, free_ctx);
154 }
155 }
156
157 static void unclone_ctx(struct perf_counter_context *ctx)
158 {
159 if (ctx->parent_ctx) {
160 put_ctx(ctx->parent_ctx);
161 ctx->parent_ctx = NULL;
162 }
163 }
164
165 /*
166 * If we inherit counters we want to return the parent counter id
167 * to userspace.
168 */
169 static u64 primary_counter_id(struct perf_counter *counter)
170 {
171 u64 id = counter->id;
172
173 if (counter->parent)
174 id = counter->parent->id;
175
176 return id;
177 }
178
179 /*
180 * Get the perf_counter_context for a task and lock it.
181 * This has to cope with with the fact that until it is locked,
182 * the context could get moved to another task.
183 */
184 static struct perf_counter_context *
185 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
186 {
187 struct perf_counter_context *ctx;
188
189 rcu_read_lock();
190 retry:
191 ctx = rcu_dereference(task->perf_counter_ctxp);
192 if (ctx) {
193 /*
194 * If this context is a clone of another, it might
195 * get swapped for another underneath us by
196 * perf_counter_task_sched_out, though the
197 * rcu_read_lock() protects us from any context
198 * getting freed. Lock the context and check if it
199 * got swapped before we could get the lock, and retry
200 * if so. If we locked the right context, then it
201 * can't get swapped on us any more.
202 */
203 spin_lock_irqsave(&ctx->lock, *flags);
204 if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
205 spin_unlock_irqrestore(&ctx->lock, *flags);
206 goto retry;
207 }
208
209 if (!atomic_inc_not_zero(&ctx->refcount)) {
210 spin_unlock_irqrestore(&ctx->lock, *flags);
211 ctx = NULL;
212 }
213 }
214 rcu_read_unlock();
215 return ctx;
216 }
217
218 /*
219 * Get the context for a task and increment its pin_count so it
220 * can't get swapped to another task. This also increments its
221 * reference count so that the context can't get freed.
222 */
223 static struct perf_counter_context *perf_pin_task_context(struct task_struct *task)
224 {
225 struct perf_counter_context *ctx;
226 unsigned long flags;
227
228 ctx = perf_lock_task_context(task, &flags);
229 if (ctx) {
230 ++ctx->pin_count;
231 spin_unlock_irqrestore(&ctx->lock, flags);
232 }
233 return ctx;
234 }
235
236 static void perf_unpin_context(struct perf_counter_context *ctx)
237 {
238 unsigned long flags;
239
240 spin_lock_irqsave(&ctx->lock, flags);
241 --ctx->pin_count;
242 spin_unlock_irqrestore(&ctx->lock, flags);
243 put_ctx(ctx);
244 }
245
246 /*
247 * Add a counter from the lists for its context.
248 * Must be called with ctx->mutex and ctx->lock held.
249 */
250 static void
251 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
252 {
253 struct perf_counter *group_leader = counter->group_leader;
254
255 /*
256 * Depending on whether it is a standalone or sibling counter,
257 * add it straight to the context's counter list, or to the group
258 * leader's sibling list:
259 */
260 if (group_leader == counter)
261 list_add_tail(&counter->list_entry, &ctx->counter_list);
262 else {
263 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
264 group_leader->nr_siblings++;
265 }
266
267 list_add_rcu(&counter->event_entry, &ctx->event_list);
268 ctx->nr_counters++;
269 if (counter->attr.inherit_stat)
270 ctx->nr_stat++;
271 }
272
273 /*
274 * Remove a counter from the lists for its context.
275 * Must be called with ctx->mutex and ctx->lock held.
276 */
277 static void
278 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
279 {
280 struct perf_counter *sibling, *tmp;
281
282 if (list_empty(&counter->list_entry))
283 return;
284 ctx->nr_counters--;
285 if (counter->attr.inherit_stat)
286 ctx->nr_stat--;
287
288 list_del_init(&counter->list_entry);
289 list_del_rcu(&counter->event_entry);
290
291 if (counter->group_leader != counter)
292 counter->group_leader->nr_siblings--;
293
294 /*
295 * If this was a group counter with sibling counters then
296 * upgrade the siblings to singleton counters by adding them
297 * to the context list directly:
298 */
299 list_for_each_entry_safe(sibling, tmp,
300 &counter->sibling_list, list_entry) {
301
302 list_move_tail(&sibling->list_entry, &ctx->counter_list);
303 sibling->group_leader = sibling;
304 }
305 }
306
307 static void
308 counter_sched_out(struct perf_counter *counter,
309 struct perf_cpu_context *cpuctx,
310 struct perf_counter_context *ctx)
311 {
312 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
313 return;
314
315 counter->state = PERF_COUNTER_STATE_INACTIVE;
316 if (counter->pending_disable) {
317 counter->pending_disable = 0;
318 counter->state = PERF_COUNTER_STATE_OFF;
319 }
320 counter->tstamp_stopped = ctx->time;
321 counter->pmu->disable(counter);
322 counter->oncpu = -1;
323
324 if (!is_software_counter(counter))
325 cpuctx->active_oncpu--;
326 ctx->nr_active--;
327 if (counter->attr.exclusive || !cpuctx->active_oncpu)
328 cpuctx->exclusive = 0;
329 }
330
331 static void
332 group_sched_out(struct perf_counter *group_counter,
333 struct perf_cpu_context *cpuctx,
334 struct perf_counter_context *ctx)
335 {
336 struct perf_counter *counter;
337
338 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
339 return;
340
341 counter_sched_out(group_counter, cpuctx, ctx);
342
343 /*
344 * Schedule out siblings (if any):
345 */
346 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
347 counter_sched_out(counter, cpuctx, ctx);
348
349 if (group_counter->attr.exclusive)
350 cpuctx->exclusive = 0;
351 }
352
353 /*
354 * Cross CPU call to remove a performance counter
355 *
356 * We disable the counter on the hardware level first. After that we
357 * remove it from the context list.
358 */
359 static void __perf_counter_remove_from_context(void *info)
360 {
361 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
362 struct perf_counter *counter = info;
363 struct perf_counter_context *ctx = counter->ctx;
364
365 /*
366 * If this is a task context, we need to check whether it is
367 * the current task context of this cpu. If not it has been
368 * scheduled out before the smp call arrived.
369 */
370 if (ctx->task && cpuctx->task_ctx != ctx)
371 return;
372
373 spin_lock(&ctx->lock);
374 /*
375 * Protect the list operation against NMI by disabling the
376 * counters on a global level.
377 */
378 perf_disable();
379
380 counter_sched_out(counter, cpuctx, ctx);
381
382 list_del_counter(counter, ctx);
383
384 if (!ctx->task) {
385 /*
386 * Allow more per task counters with respect to the
387 * reservation:
388 */
389 cpuctx->max_pertask =
390 min(perf_max_counters - ctx->nr_counters,
391 perf_max_counters - perf_reserved_percpu);
392 }
393
394 perf_enable();
395 spin_unlock(&ctx->lock);
396 }
397
398
399 /*
400 * Remove the counter from a task's (or a CPU's) list of counters.
401 *
402 * Must be called with ctx->mutex held.
403 *
404 * CPU counters are removed with a smp call. For task counters we only
405 * call when the task is on a CPU.
406 *
407 * If counter->ctx is a cloned context, callers must make sure that
408 * every task struct that counter->ctx->task could possibly point to
409 * remains valid. This is OK when called from perf_release since
410 * that only calls us on the top-level context, which can't be a clone.
411 * When called from perf_counter_exit_task, it's OK because the
412 * context has been detached from its task.
413 */
414 static void perf_counter_remove_from_context(struct perf_counter *counter)
415 {
416 struct perf_counter_context *ctx = counter->ctx;
417 struct task_struct *task = ctx->task;
418
419 if (!task) {
420 /*
421 * Per cpu counters are removed via an smp call and
422 * the removal is always sucessful.
423 */
424 smp_call_function_single(counter->cpu,
425 __perf_counter_remove_from_context,
426 counter, 1);
427 return;
428 }
429
430 retry:
431 task_oncpu_function_call(task, __perf_counter_remove_from_context,
432 counter);
433
434 spin_lock_irq(&ctx->lock);
435 /*
436 * If the context is active we need to retry the smp call.
437 */
438 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
439 spin_unlock_irq(&ctx->lock);
440 goto retry;
441 }
442
443 /*
444 * The lock prevents that this context is scheduled in so we
445 * can remove the counter safely, if the call above did not
446 * succeed.
447 */
448 if (!list_empty(&counter->list_entry)) {
449 list_del_counter(counter, ctx);
450 }
451 spin_unlock_irq(&ctx->lock);
452 }
453
454 static inline u64 perf_clock(void)
455 {
456 return cpu_clock(smp_processor_id());
457 }
458
459 /*
460 * Update the record of the current time in a context.
461 */
462 static void update_context_time(struct perf_counter_context *ctx)
463 {
464 u64 now = perf_clock();
465
466 ctx->time += now - ctx->timestamp;
467 ctx->timestamp = now;
468 }
469
470 /*
471 * Update the total_time_enabled and total_time_running fields for a counter.
472 */
473 static void update_counter_times(struct perf_counter *counter)
474 {
475 struct perf_counter_context *ctx = counter->ctx;
476 u64 run_end;
477
478 if (counter->state < PERF_COUNTER_STATE_INACTIVE ||
479 counter->group_leader->state < PERF_COUNTER_STATE_INACTIVE)
480 return;
481
482 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
483
484 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
485 run_end = counter->tstamp_stopped;
486 else
487 run_end = ctx->time;
488
489 counter->total_time_running = run_end - counter->tstamp_running;
490 }
491
492 /*
493 * Update total_time_enabled and total_time_running for all counters in a group.
494 */
495 static void update_group_times(struct perf_counter *leader)
496 {
497 struct perf_counter *counter;
498
499 update_counter_times(leader);
500 list_for_each_entry(counter, &leader->sibling_list, list_entry)
501 update_counter_times(counter);
502 }
503
504 /*
505 * Cross CPU call to disable a performance counter
506 */
507 static void __perf_counter_disable(void *info)
508 {
509 struct perf_counter *counter = info;
510 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
511 struct perf_counter_context *ctx = counter->ctx;
512
513 /*
514 * If this is a per-task counter, need to check whether this
515 * counter's task is the current task on this cpu.
516 */
517 if (ctx->task && cpuctx->task_ctx != ctx)
518 return;
519
520 spin_lock(&ctx->lock);
521
522 /*
523 * If the counter is on, turn it off.
524 * If it is in error state, leave it in error state.
525 */
526 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
527 update_context_time(ctx);
528 update_group_times(counter);
529 if (counter == counter->group_leader)
530 group_sched_out(counter, cpuctx, ctx);
531 else
532 counter_sched_out(counter, cpuctx, ctx);
533 counter->state = PERF_COUNTER_STATE_OFF;
534 }
535
536 spin_unlock(&ctx->lock);
537 }
538
539 /*
540 * Disable a counter.
541 *
542 * If counter->ctx is a cloned context, callers must make sure that
543 * every task struct that counter->ctx->task could possibly point to
544 * remains valid. This condition is satisifed when called through
545 * perf_counter_for_each_child or perf_counter_for_each because they
546 * hold the top-level counter's child_mutex, so any descendant that
547 * goes to exit will block in sync_child_counter.
548 * When called from perf_pending_counter it's OK because counter->ctx
549 * is the current context on this CPU and preemption is disabled,
550 * hence we can't get into perf_counter_task_sched_out for this context.
551 */
552 static void perf_counter_disable(struct perf_counter *counter)
553 {
554 struct perf_counter_context *ctx = counter->ctx;
555 struct task_struct *task = ctx->task;
556
557 if (!task) {
558 /*
559 * Disable the counter on the cpu that it's on
560 */
561 smp_call_function_single(counter->cpu, __perf_counter_disable,
562 counter, 1);
563 return;
564 }
565
566 retry:
567 task_oncpu_function_call(task, __perf_counter_disable, counter);
568
569 spin_lock_irq(&ctx->lock);
570 /*
571 * If the counter is still active, we need to retry the cross-call.
572 */
573 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
574 spin_unlock_irq(&ctx->lock);
575 goto retry;
576 }
577
578 /*
579 * Since we have the lock this context can't be scheduled
580 * in, so we can change the state safely.
581 */
582 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
583 update_group_times(counter);
584 counter->state = PERF_COUNTER_STATE_OFF;
585 }
586
587 spin_unlock_irq(&ctx->lock);
588 }
589
590 static int
591 counter_sched_in(struct perf_counter *counter,
592 struct perf_cpu_context *cpuctx,
593 struct perf_counter_context *ctx,
594 int cpu)
595 {
596 if (counter->state <= PERF_COUNTER_STATE_OFF)
597 return 0;
598
599 counter->state = PERF_COUNTER_STATE_ACTIVE;
600 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
601 /*
602 * The new state must be visible before we turn it on in the hardware:
603 */
604 smp_wmb();
605
606 if (counter->pmu->enable(counter)) {
607 counter->state = PERF_COUNTER_STATE_INACTIVE;
608 counter->oncpu = -1;
609 return -EAGAIN;
610 }
611
612 counter->tstamp_running += ctx->time - counter->tstamp_stopped;
613
614 if (!is_software_counter(counter))
615 cpuctx->active_oncpu++;
616 ctx->nr_active++;
617
618 if (counter->attr.exclusive)
619 cpuctx->exclusive = 1;
620
621 return 0;
622 }
623
624 static int
625 group_sched_in(struct perf_counter *group_counter,
626 struct perf_cpu_context *cpuctx,
627 struct perf_counter_context *ctx,
628 int cpu)
629 {
630 struct perf_counter *counter, *partial_group;
631 int ret;
632
633 if (group_counter->state == PERF_COUNTER_STATE_OFF)
634 return 0;
635
636 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
637 if (ret)
638 return ret < 0 ? ret : 0;
639
640 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
641 return -EAGAIN;
642
643 /*
644 * Schedule in siblings as one group (if any):
645 */
646 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
647 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
648 partial_group = counter;
649 goto group_error;
650 }
651 }
652
653 return 0;
654
655 group_error:
656 /*
657 * Groups can be scheduled in as one unit only, so undo any
658 * partial group before returning:
659 */
660 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
661 if (counter == partial_group)
662 break;
663 counter_sched_out(counter, cpuctx, ctx);
664 }
665 counter_sched_out(group_counter, cpuctx, ctx);
666
667 return -EAGAIN;
668 }
669
670 /*
671 * Return 1 for a group consisting entirely of software counters,
672 * 0 if the group contains any hardware counters.
673 */
674 static int is_software_only_group(struct perf_counter *leader)
675 {
676 struct perf_counter *counter;
677
678 if (!is_software_counter(leader))
679 return 0;
680
681 list_for_each_entry(counter, &leader->sibling_list, list_entry)
682 if (!is_software_counter(counter))
683 return 0;
684
685 return 1;
686 }
687
688 /*
689 * Work out whether we can put this counter group on the CPU now.
690 */
691 static int group_can_go_on(struct perf_counter *counter,
692 struct perf_cpu_context *cpuctx,
693 int can_add_hw)
694 {
695 /*
696 * Groups consisting entirely of software counters can always go on.
697 */
698 if (is_software_only_group(counter))
699 return 1;
700 /*
701 * If an exclusive group is already on, no other hardware
702 * counters can go on.
703 */
704 if (cpuctx->exclusive)
705 return 0;
706 /*
707 * If this group is exclusive and there are already
708 * counters on the CPU, it can't go on.
709 */
710 if (counter->attr.exclusive && cpuctx->active_oncpu)
711 return 0;
712 /*
713 * Otherwise, try to add it if all previous groups were able
714 * to go on.
715 */
716 return can_add_hw;
717 }
718
719 static void add_counter_to_ctx(struct perf_counter *counter,
720 struct perf_counter_context *ctx)
721 {
722 list_add_counter(counter, ctx);
723 counter->tstamp_enabled = ctx->time;
724 counter->tstamp_running = ctx->time;
725 counter->tstamp_stopped = ctx->time;
726 }
727
728 /*
729 * Cross CPU call to install and enable a performance counter
730 *
731 * Must be called with ctx->mutex held
732 */
733 static void __perf_install_in_context(void *info)
734 {
735 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
736 struct perf_counter *counter = info;
737 struct perf_counter_context *ctx = counter->ctx;
738 struct perf_counter *leader = counter->group_leader;
739 int cpu = smp_processor_id();
740 int err;
741
742 /*
743 * If this is a task context, we need to check whether it is
744 * the current task context of this cpu. If not it has been
745 * scheduled out before the smp call arrived.
746 * Or possibly this is the right context but it isn't
747 * on this cpu because it had no counters.
748 */
749 if (ctx->task && cpuctx->task_ctx != ctx) {
750 if (cpuctx->task_ctx || ctx->task != current)
751 return;
752 cpuctx->task_ctx = ctx;
753 }
754
755 spin_lock(&ctx->lock);
756 ctx->is_active = 1;
757 update_context_time(ctx);
758
759 /*
760 * Protect the list operation against NMI by disabling the
761 * counters on a global level. NOP for non NMI based counters.
762 */
763 perf_disable();
764
765 add_counter_to_ctx(counter, ctx);
766
767 /*
768 * Don't put the counter on if it is disabled or if
769 * it is in a group and the group isn't on.
770 */
771 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
772 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
773 goto unlock;
774
775 /*
776 * An exclusive counter can't go on if there are already active
777 * hardware counters, and no hardware counter can go on if there
778 * is already an exclusive counter on.
779 */
780 if (!group_can_go_on(counter, cpuctx, 1))
781 err = -EEXIST;
782 else
783 err = counter_sched_in(counter, cpuctx, ctx, cpu);
784
785 if (err) {
786 /*
787 * This counter couldn't go on. If it is in a group
788 * then we have to pull the whole group off.
789 * If the counter group is pinned then put it in error state.
790 */
791 if (leader != counter)
792 group_sched_out(leader, cpuctx, ctx);
793 if (leader->attr.pinned) {
794 update_group_times(leader);
795 leader->state = PERF_COUNTER_STATE_ERROR;
796 }
797 }
798
799 if (!err && !ctx->task && cpuctx->max_pertask)
800 cpuctx->max_pertask--;
801
802 unlock:
803 perf_enable();
804
805 spin_unlock(&ctx->lock);
806 }
807
808 /*
809 * Attach a performance counter to a context
810 *
811 * First we add the counter to the list with the hardware enable bit
812 * in counter->hw_config cleared.
813 *
814 * If the counter is attached to a task which is on a CPU we use a smp
815 * call to enable it in the task context. The task might have been
816 * scheduled away, but we check this in the smp call again.
817 *
818 * Must be called with ctx->mutex held.
819 */
820 static void
821 perf_install_in_context(struct perf_counter_context *ctx,
822 struct perf_counter *counter,
823 int cpu)
824 {
825 struct task_struct *task = ctx->task;
826
827 if (!task) {
828 /*
829 * Per cpu counters are installed via an smp call and
830 * the install is always sucessful.
831 */
832 smp_call_function_single(cpu, __perf_install_in_context,
833 counter, 1);
834 return;
835 }
836
837 retry:
838 task_oncpu_function_call(task, __perf_install_in_context,
839 counter);
840
841 spin_lock_irq(&ctx->lock);
842 /*
843 * we need to retry the smp call.
844 */
845 if (ctx->is_active && list_empty(&counter->list_entry)) {
846 spin_unlock_irq(&ctx->lock);
847 goto retry;
848 }
849
850 /*
851 * The lock prevents that this context is scheduled in so we
852 * can add the counter safely, if it the call above did not
853 * succeed.
854 */
855 if (list_empty(&counter->list_entry))
856 add_counter_to_ctx(counter, ctx);
857 spin_unlock_irq(&ctx->lock);
858 }
859
860 /*
861 * Put a counter into inactive state and update time fields.
862 * Enabling the leader of a group effectively enables all
863 * the group members that aren't explicitly disabled, so we
864 * have to update their ->tstamp_enabled also.
865 * Note: this works for group members as well as group leaders
866 * since the non-leader members' sibling_lists will be empty.
867 */
868 static void __perf_counter_mark_enabled(struct perf_counter *counter,
869 struct perf_counter_context *ctx)
870 {
871 struct perf_counter *sub;
872
873 counter->state = PERF_COUNTER_STATE_INACTIVE;
874 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
875 list_for_each_entry(sub, &counter->sibling_list, list_entry)
876 if (sub->state >= PERF_COUNTER_STATE_INACTIVE)
877 sub->tstamp_enabled =
878 ctx->time - sub->total_time_enabled;
879 }
880
881 /*
882 * Cross CPU call to enable a performance counter
883 */
884 static void __perf_counter_enable(void *info)
885 {
886 struct perf_counter *counter = info;
887 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
888 struct perf_counter_context *ctx = counter->ctx;
889 struct perf_counter *leader = counter->group_leader;
890 int err;
891
892 /*
893 * If this is a per-task counter, need to check whether this
894 * counter's task is the current task on this cpu.
895 */
896 if (ctx->task && cpuctx->task_ctx != ctx) {
897 if (cpuctx->task_ctx || ctx->task != current)
898 return;
899 cpuctx->task_ctx = ctx;
900 }
901
902 spin_lock(&ctx->lock);
903 ctx->is_active = 1;
904 update_context_time(ctx);
905
906 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
907 goto unlock;
908 __perf_counter_mark_enabled(counter, ctx);
909
910 /*
911 * If the counter is in a group and isn't the group leader,
912 * then don't put it on unless the group is on.
913 */
914 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
915 goto unlock;
916
917 if (!group_can_go_on(counter, cpuctx, 1)) {
918 err = -EEXIST;
919 } else {
920 perf_disable();
921 if (counter == leader)
922 err = group_sched_in(counter, cpuctx, ctx,
923 smp_processor_id());
924 else
925 err = counter_sched_in(counter, cpuctx, ctx,
926 smp_processor_id());
927 perf_enable();
928 }
929
930 if (err) {
931 /*
932 * If this counter can't go on and it's part of a
933 * group, then the whole group has to come off.
934 */
935 if (leader != counter)
936 group_sched_out(leader, cpuctx, ctx);
937 if (leader->attr.pinned) {
938 update_group_times(leader);
939 leader->state = PERF_COUNTER_STATE_ERROR;
940 }
941 }
942
943 unlock:
944 spin_unlock(&ctx->lock);
945 }
946
947 /*
948 * Enable a counter.
949 *
950 * If counter->ctx is a cloned context, callers must make sure that
951 * every task struct that counter->ctx->task could possibly point to
952 * remains valid. This condition is satisfied when called through
953 * perf_counter_for_each_child or perf_counter_for_each as described
954 * for perf_counter_disable.
955 */
956 static void perf_counter_enable(struct perf_counter *counter)
957 {
958 struct perf_counter_context *ctx = counter->ctx;
959 struct task_struct *task = ctx->task;
960
961 if (!task) {
962 /*
963 * Enable the counter on the cpu that it's on
964 */
965 smp_call_function_single(counter->cpu, __perf_counter_enable,
966 counter, 1);
967 return;
968 }
969
970 spin_lock_irq(&ctx->lock);
971 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
972 goto out;
973
974 /*
975 * If the counter is in error state, clear that first.
976 * That way, if we see the counter in error state below, we
977 * know that it has gone back into error state, as distinct
978 * from the task having been scheduled away before the
979 * cross-call arrived.
980 */
981 if (counter->state == PERF_COUNTER_STATE_ERROR)
982 counter->state = PERF_COUNTER_STATE_OFF;
983
984 retry:
985 spin_unlock_irq(&ctx->lock);
986 task_oncpu_function_call(task, __perf_counter_enable, counter);
987
988 spin_lock_irq(&ctx->lock);
989
990 /*
991 * If the context is active and the counter is still off,
992 * we need to retry the cross-call.
993 */
994 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
995 goto retry;
996
997 /*
998 * Since we have the lock this context can't be scheduled
999 * in, so we can change the state safely.
1000 */
1001 if (counter->state == PERF_COUNTER_STATE_OFF)
1002 __perf_counter_mark_enabled(counter, ctx);
1003
1004 out:
1005 spin_unlock_irq(&ctx->lock);
1006 }
1007
1008 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
1009 {
1010 /*
1011 * not supported on inherited counters
1012 */
1013 if (counter->attr.inherit)
1014 return -EINVAL;
1015
1016 atomic_add(refresh, &counter->event_limit);
1017 perf_counter_enable(counter);
1018
1019 return 0;
1020 }
1021
1022 void __perf_counter_sched_out(struct perf_counter_context *ctx,
1023 struct perf_cpu_context *cpuctx)
1024 {
1025 struct perf_counter *counter;
1026
1027 spin_lock(&ctx->lock);
1028 ctx->is_active = 0;
1029 if (likely(!ctx->nr_counters))
1030 goto out;
1031 update_context_time(ctx);
1032
1033 perf_disable();
1034 if (ctx->nr_active) {
1035 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1036 if (counter != counter->group_leader)
1037 counter_sched_out(counter, cpuctx, ctx);
1038 else
1039 group_sched_out(counter, cpuctx, ctx);
1040 }
1041 }
1042 perf_enable();
1043 out:
1044 spin_unlock(&ctx->lock);
1045 }
1046
1047 /*
1048 * Test whether two contexts are equivalent, i.e. whether they
1049 * have both been cloned from the same version of the same context
1050 * and they both have the same number of enabled counters.
1051 * If the number of enabled counters is the same, then the set
1052 * of enabled counters should be the same, because these are both
1053 * inherited contexts, therefore we can't access individual counters
1054 * in them directly with an fd; we can only enable/disable all
1055 * counters via prctl, or enable/disable all counters in a family
1056 * via ioctl, which will have the same effect on both contexts.
1057 */
1058 static int context_equiv(struct perf_counter_context *ctx1,
1059 struct perf_counter_context *ctx2)
1060 {
1061 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1062 && ctx1->parent_gen == ctx2->parent_gen
1063 && !ctx1->pin_count && !ctx2->pin_count;
1064 }
1065
1066 static void __perf_counter_read(void *counter);
1067
1068 static void __perf_counter_sync_stat(struct perf_counter *counter,
1069 struct perf_counter *next_counter)
1070 {
1071 u64 value;
1072
1073 if (!counter->attr.inherit_stat)
1074 return;
1075
1076 /*
1077 * Update the counter value, we cannot use perf_counter_read()
1078 * because we're in the middle of a context switch and have IRQs
1079 * disabled, which upsets smp_call_function_single(), however
1080 * we know the counter must be on the current CPU, therefore we
1081 * don't need to use it.
1082 */
1083 switch (counter->state) {
1084 case PERF_COUNTER_STATE_ACTIVE:
1085 __perf_counter_read(counter);
1086 break;
1087
1088 case PERF_COUNTER_STATE_INACTIVE:
1089 update_counter_times(counter);
1090 break;
1091
1092 default:
1093 break;
1094 }
1095
1096 /*
1097 * In order to keep per-task stats reliable we need to flip the counter
1098 * values when we flip the contexts.
1099 */
1100 value = atomic64_read(&next_counter->count);
1101 value = atomic64_xchg(&counter->count, value);
1102 atomic64_set(&next_counter->count, value);
1103
1104 swap(counter->total_time_enabled, next_counter->total_time_enabled);
1105 swap(counter->total_time_running, next_counter->total_time_running);
1106
1107 /*
1108 * Since we swizzled the values, update the user visible data too.
1109 */
1110 perf_counter_update_userpage(counter);
1111 perf_counter_update_userpage(next_counter);
1112 }
1113
1114 #define list_next_entry(pos, member) \
1115 list_entry(pos->member.next, typeof(*pos), member)
1116
1117 static void perf_counter_sync_stat(struct perf_counter_context *ctx,
1118 struct perf_counter_context *next_ctx)
1119 {
1120 struct perf_counter *counter, *next_counter;
1121
1122 if (!ctx->nr_stat)
1123 return;
1124
1125 counter = list_first_entry(&ctx->event_list,
1126 struct perf_counter, event_entry);
1127
1128 next_counter = list_first_entry(&next_ctx->event_list,
1129 struct perf_counter, event_entry);
1130
1131 while (&counter->event_entry != &ctx->event_list &&
1132 &next_counter->event_entry != &next_ctx->event_list) {
1133
1134 __perf_counter_sync_stat(counter, next_counter);
1135
1136 counter = list_next_entry(counter, event_entry);
1137 next_counter = list_next_entry(next_counter, event_entry);
1138 }
1139 }
1140
1141 /*
1142 * Called from scheduler to remove the counters of the current task,
1143 * with interrupts disabled.
1144 *
1145 * We stop each counter and update the counter value in counter->count.
1146 *
1147 * This does not protect us against NMI, but disable()
1148 * sets the disabled bit in the control field of counter _before_
1149 * accessing the counter control register. If a NMI hits, then it will
1150 * not restart the counter.
1151 */
1152 void perf_counter_task_sched_out(struct task_struct *task,
1153 struct task_struct *next, int cpu)
1154 {
1155 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1156 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1157 struct perf_counter_context *next_ctx;
1158 struct perf_counter_context *parent;
1159 struct pt_regs *regs;
1160 int do_switch = 1;
1161
1162 regs = task_pt_regs(task);
1163 perf_swcounter_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1164
1165 if (likely(!ctx || !cpuctx->task_ctx))
1166 return;
1167
1168 update_context_time(ctx);
1169
1170 rcu_read_lock();
1171 parent = rcu_dereference(ctx->parent_ctx);
1172 next_ctx = next->perf_counter_ctxp;
1173 if (parent && next_ctx &&
1174 rcu_dereference(next_ctx->parent_ctx) == parent) {
1175 /*
1176 * Looks like the two contexts are clones, so we might be
1177 * able to optimize the context switch. We lock both
1178 * contexts and check that they are clones under the
1179 * lock (including re-checking that neither has been
1180 * uncloned in the meantime). It doesn't matter which
1181 * order we take the locks because no other cpu could
1182 * be trying to lock both of these tasks.
1183 */
1184 spin_lock(&ctx->lock);
1185 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1186 if (context_equiv(ctx, next_ctx)) {
1187 /*
1188 * XXX do we need a memory barrier of sorts
1189 * wrt to rcu_dereference() of perf_counter_ctxp
1190 */
1191 task->perf_counter_ctxp = next_ctx;
1192 next->perf_counter_ctxp = ctx;
1193 ctx->task = next;
1194 next_ctx->task = task;
1195 do_switch = 0;
1196
1197 perf_counter_sync_stat(ctx, next_ctx);
1198 }
1199 spin_unlock(&next_ctx->lock);
1200 spin_unlock(&ctx->lock);
1201 }
1202 rcu_read_unlock();
1203
1204 if (do_switch) {
1205 __perf_counter_sched_out(ctx, cpuctx);
1206 cpuctx->task_ctx = NULL;
1207 }
1208 }
1209
1210 /*
1211 * Called with IRQs disabled
1212 */
1213 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
1214 {
1215 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1216
1217 if (!cpuctx->task_ctx)
1218 return;
1219
1220 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1221 return;
1222
1223 __perf_counter_sched_out(ctx, cpuctx);
1224 cpuctx->task_ctx = NULL;
1225 }
1226
1227 /*
1228 * Called with IRQs disabled
1229 */
1230 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1231 {
1232 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1233 }
1234
1235 static void
1236 __perf_counter_sched_in(struct perf_counter_context *ctx,
1237 struct perf_cpu_context *cpuctx, int cpu)
1238 {
1239 struct perf_counter *counter;
1240 int can_add_hw = 1;
1241
1242 spin_lock(&ctx->lock);
1243 ctx->is_active = 1;
1244 if (likely(!ctx->nr_counters))
1245 goto out;
1246
1247 ctx->timestamp = perf_clock();
1248
1249 perf_disable();
1250
1251 /*
1252 * First go through the list and put on any pinned groups
1253 * in order to give them the best chance of going on.
1254 */
1255 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1256 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1257 !counter->attr.pinned)
1258 continue;
1259 if (counter->cpu != -1 && counter->cpu != cpu)
1260 continue;
1261
1262 if (counter != counter->group_leader)
1263 counter_sched_in(counter, cpuctx, ctx, cpu);
1264 else {
1265 if (group_can_go_on(counter, cpuctx, 1))
1266 group_sched_in(counter, cpuctx, ctx, cpu);
1267 }
1268
1269 /*
1270 * If this pinned group hasn't been scheduled,
1271 * put it in error state.
1272 */
1273 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1274 update_group_times(counter);
1275 counter->state = PERF_COUNTER_STATE_ERROR;
1276 }
1277 }
1278
1279 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1280 /*
1281 * Ignore counters in OFF or ERROR state, and
1282 * ignore pinned counters since we did them already.
1283 */
1284 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1285 counter->attr.pinned)
1286 continue;
1287
1288 /*
1289 * Listen to the 'cpu' scheduling filter constraint
1290 * of counters:
1291 */
1292 if (counter->cpu != -1 && counter->cpu != cpu)
1293 continue;
1294
1295 if (counter != counter->group_leader) {
1296 if (counter_sched_in(counter, cpuctx, ctx, cpu))
1297 can_add_hw = 0;
1298 } else {
1299 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1300 if (group_sched_in(counter, cpuctx, ctx, cpu))
1301 can_add_hw = 0;
1302 }
1303 }
1304 }
1305 perf_enable();
1306 out:
1307 spin_unlock(&ctx->lock);
1308 }
1309
1310 /*
1311 * Called from scheduler to add the counters of the current task
1312 * with interrupts disabled.
1313 *
1314 * We restore the counter value and then enable it.
1315 *
1316 * This does not protect us against NMI, but enable()
1317 * sets the enabled bit in the control field of counter _before_
1318 * accessing the counter control register. If a NMI hits, then it will
1319 * keep the counter running.
1320 */
1321 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1322 {
1323 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1324 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1325
1326 if (likely(!ctx))
1327 return;
1328 if (cpuctx->task_ctx == ctx)
1329 return;
1330 __perf_counter_sched_in(ctx, cpuctx, cpu);
1331 cpuctx->task_ctx = ctx;
1332 }
1333
1334 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1335 {
1336 struct perf_counter_context *ctx = &cpuctx->ctx;
1337
1338 __perf_counter_sched_in(ctx, cpuctx, cpu);
1339 }
1340
1341 #define MAX_INTERRUPTS (~0ULL)
1342
1343 static void perf_log_throttle(struct perf_counter *counter, int enable);
1344
1345 static void perf_adjust_period(struct perf_counter *counter, u64 events)
1346 {
1347 struct hw_perf_counter *hwc = &counter->hw;
1348 u64 period, sample_period;
1349 s64 delta;
1350
1351 events *= hwc->sample_period;
1352 period = div64_u64(events, counter->attr.sample_freq);
1353
1354 delta = (s64)(period - hwc->sample_period);
1355 delta = (delta + 7) / 8; /* low pass filter */
1356
1357 sample_period = hwc->sample_period + delta;
1358
1359 if (!sample_period)
1360 sample_period = 1;
1361
1362 hwc->sample_period = sample_period;
1363 }
1364
1365 static void perf_ctx_adjust_freq(struct perf_counter_context *ctx)
1366 {
1367 struct perf_counter *counter;
1368 struct hw_perf_counter *hwc;
1369 u64 interrupts, freq;
1370
1371 spin_lock(&ctx->lock);
1372 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1373 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1374 continue;
1375
1376 hwc = &counter->hw;
1377
1378 interrupts = hwc->interrupts;
1379 hwc->interrupts = 0;
1380
1381 /*
1382 * unthrottle counters on the tick
1383 */
1384 if (interrupts == MAX_INTERRUPTS) {
1385 perf_log_throttle(counter, 1);
1386 counter->pmu->unthrottle(counter);
1387 interrupts = 2*sysctl_perf_counter_sample_rate/HZ;
1388 }
1389
1390 if (!counter->attr.freq || !counter->attr.sample_freq)
1391 continue;
1392
1393 /*
1394 * if the specified freq < HZ then we need to skip ticks
1395 */
1396 if (counter->attr.sample_freq < HZ) {
1397 freq = counter->attr.sample_freq;
1398
1399 hwc->freq_count += freq;
1400 hwc->freq_interrupts += interrupts;
1401
1402 if (hwc->freq_count < HZ)
1403 continue;
1404
1405 interrupts = hwc->freq_interrupts;
1406 hwc->freq_interrupts = 0;
1407 hwc->freq_count -= HZ;
1408 } else
1409 freq = HZ;
1410
1411 perf_adjust_period(counter, freq * interrupts);
1412
1413 /*
1414 * In order to avoid being stalled by an (accidental) huge
1415 * sample period, force reset the sample period if we didn't
1416 * get any events in this freq period.
1417 */
1418 if (!interrupts) {
1419 perf_disable();
1420 counter->pmu->disable(counter);
1421 atomic64_set(&hwc->period_left, 0);
1422 counter->pmu->enable(counter);
1423 perf_enable();
1424 }
1425 }
1426 spin_unlock(&ctx->lock);
1427 }
1428
1429 /*
1430 * Round-robin a context's counters:
1431 */
1432 static void rotate_ctx(struct perf_counter_context *ctx)
1433 {
1434 struct perf_counter *counter;
1435
1436 if (!ctx->nr_counters)
1437 return;
1438
1439 spin_lock(&ctx->lock);
1440 /*
1441 * Rotate the first entry last (works just fine for group counters too):
1442 */
1443 perf_disable();
1444 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1445 list_move_tail(&counter->list_entry, &ctx->counter_list);
1446 break;
1447 }
1448 perf_enable();
1449
1450 spin_unlock(&ctx->lock);
1451 }
1452
1453 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1454 {
1455 struct perf_cpu_context *cpuctx;
1456 struct perf_counter_context *ctx;
1457
1458 if (!atomic_read(&nr_counters))
1459 return;
1460
1461 cpuctx = &per_cpu(perf_cpu_context, cpu);
1462 ctx = curr->perf_counter_ctxp;
1463
1464 perf_ctx_adjust_freq(&cpuctx->ctx);
1465 if (ctx)
1466 perf_ctx_adjust_freq(ctx);
1467
1468 perf_counter_cpu_sched_out(cpuctx);
1469 if (ctx)
1470 __perf_counter_task_sched_out(ctx);
1471
1472 rotate_ctx(&cpuctx->ctx);
1473 if (ctx)
1474 rotate_ctx(ctx);
1475
1476 perf_counter_cpu_sched_in(cpuctx, cpu);
1477 if (ctx)
1478 perf_counter_task_sched_in(curr, cpu);
1479 }
1480
1481 /*
1482 * Enable all of a task's counters that have been marked enable-on-exec.
1483 * This expects task == current.
1484 */
1485 static void perf_counter_enable_on_exec(struct task_struct *task)
1486 {
1487 struct perf_counter_context *ctx;
1488 struct perf_counter *counter;
1489 unsigned long flags;
1490 int enabled = 0;
1491
1492 local_irq_save(flags);
1493 ctx = task->perf_counter_ctxp;
1494 if (!ctx || !ctx->nr_counters)
1495 goto out;
1496
1497 __perf_counter_task_sched_out(ctx);
1498
1499 spin_lock(&ctx->lock);
1500
1501 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1502 if (!counter->attr.enable_on_exec)
1503 continue;
1504 counter->attr.enable_on_exec = 0;
1505 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
1506 continue;
1507 __perf_counter_mark_enabled(counter, ctx);
1508 enabled = 1;
1509 }
1510
1511 /*
1512 * Unclone this context if we enabled any counter.
1513 */
1514 if (enabled)
1515 unclone_ctx(ctx);
1516
1517 spin_unlock(&ctx->lock);
1518
1519 perf_counter_task_sched_in(task, smp_processor_id());
1520 out:
1521 local_irq_restore(flags);
1522 }
1523
1524 /*
1525 * Cross CPU call to read the hardware counter
1526 */
1527 static void __perf_counter_read(void *info)
1528 {
1529 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1530 struct perf_counter *counter = info;
1531 struct perf_counter_context *ctx = counter->ctx;
1532 unsigned long flags;
1533
1534 /*
1535 * If this is a task context, we need to check whether it is
1536 * the current task context of this cpu. If not it has been
1537 * scheduled out before the smp call arrived. In that case
1538 * counter->count would have been updated to a recent sample
1539 * when the counter was scheduled out.
1540 */
1541 if (ctx->task && cpuctx->task_ctx != ctx)
1542 return;
1543
1544 local_irq_save(flags);
1545 if (ctx->is_active)
1546 update_context_time(ctx);
1547 counter->pmu->read(counter);
1548 update_counter_times(counter);
1549 local_irq_restore(flags);
1550 }
1551
1552 static u64 perf_counter_read(struct perf_counter *counter)
1553 {
1554 /*
1555 * If counter is enabled and currently active on a CPU, update the
1556 * value in the counter structure:
1557 */
1558 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1559 smp_call_function_single(counter->oncpu,
1560 __perf_counter_read, counter, 1);
1561 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1562 update_counter_times(counter);
1563 }
1564
1565 return atomic64_read(&counter->count);
1566 }
1567
1568 /*
1569 * Initialize the perf_counter context in a task_struct:
1570 */
1571 static void
1572 __perf_counter_init_context(struct perf_counter_context *ctx,
1573 struct task_struct *task)
1574 {
1575 memset(ctx, 0, sizeof(*ctx));
1576 spin_lock_init(&ctx->lock);
1577 mutex_init(&ctx->mutex);
1578 INIT_LIST_HEAD(&ctx->counter_list);
1579 INIT_LIST_HEAD(&ctx->event_list);
1580 atomic_set(&ctx->refcount, 1);
1581 ctx->task = task;
1582 }
1583
1584 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1585 {
1586 struct perf_counter_context *ctx;
1587 struct perf_cpu_context *cpuctx;
1588 struct task_struct *task;
1589 unsigned long flags;
1590 int err;
1591
1592 /*
1593 * If cpu is not a wildcard then this is a percpu counter:
1594 */
1595 if (cpu != -1) {
1596 /* Must be root to operate on a CPU counter: */
1597 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1598 return ERR_PTR(-EACCES);
1599
1600 if (cpu < 0 || cpu > num_possible_cpus())
1601 return ERR_PTR(-EINVAL);
1602
1603 /*
1604 * We could be clever and allow to attach a counter to an
1605 * offline CPU and activate it when the CPU comes up, but
1606 * that's for later.
1607 */
1608 if (!cpu_isset(cpu, cpu_online_map))
1609 return ERR_PTR(-ENODEV);
1610
1611 cpuctx = &per_cpu(perf_cpu_context, cpu);
1612 ctx = &cpuctx->ctx;
1613 get_ctx(ctx);
1614
1615 return ctx;
1616 }
1617
1618 rcu_read_lock();
1619 if (!pid)
1620 task = current;
1621 else
1622 task = find_task_by_vpid(pid);
1623 if (task)
1624 get_task_struct(task);
1625 rcu_read_unlock();
1626
1627 if (!task)
1628 return ERR_PTR(-ESRCH);
1629
1630 /*
1631 * Can't attach counters to a dying task.
1632 */
1633 err = -ESRCH;
1634 if (task->flags & PF_EXITING)
1635 goto errout;
1636
1637 /* Reuse ptrace permission checks for now. */
1638 err = -EACCES;
1639 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1640 goto errout;
1641
1642 retry:
1643 ctx = perf_lock_task_context(task, &flags);
1644 if (ctx) {
1645 unclone_ctx(ctx);
1646 spin_unlock_irqrestore(&ctx->lock, flags);
1647 }
1648
1649 if (!ctx) {
1650 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1651 err = -ENOMEM;
1652 if (!ctx)
1653 goto errout;
1654 __perf_counter_init_context(ctx, task);
1655 get_ctx(ctx);
1656 if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1657 /*
1658 * We raced with some other task; use
1659 * the context they set.
1660 */
1661 kfree(ctx);
1662 goto retry;
1663 }
1664 get_task_struct(task);
1665 }
1666
1667 put_task_struct(task);
1668 return ctx;
1669
1670 errout:
1671 put_task_struct(task);
1672 return ERR_PTR(err);
1673 }
1674
1675 static void free_counter_rcu(struct rcu_head *head)
1676 {
1677 struct perf_counter *counter;
1678
1679 counter = container_of(head, struct perf_counter, rcu_head);
1680 if (counter->ns)
1681 put_pid_ns(counter->ns);
1682 kfree(counter);
1683 }
1684
1685 static void perf_pending_sync(struct perf_counter *counter);
1686
1687 static void free_counter(struct perf_counter *counter)
1688 {
1689 perf_pending_sync(counter);
1690
1691 if (!counter->parent) {
1692 atomic_dec(&nr_counters);
1693 if (counter->attr.mmap)
1694 atomic_dec(&nr_mmap_counters);
1695 if (counter->attr.comm)
1696 atomic_dec(&nr_comm_counters);
1697 if (counter->attr.task)
1698 atomic_dec(&nr_task_counters);
1699 }
1700
1701 if (counter->output) {
1702 fput(counter->output->filp);
1703 counter->output = NULL;
1704 }
1705
1706 if (counter->destroy)
1707 counter->destroy(counter);
1708
1709 put_ctx(counter->ctx);
1710 call_rcu(&counter->rcu_head, free_counter_rcu);
1711 }
1712
1713 /*
1714 * Called when the last reference to the file is gone.
1715 */
1716 static int perf_release(struct inode *inode, struct file *file)
1717 {
1718 struct perf_counter *counter = file->private_data;
1719 struct perf_counter_context *ctx = counter->ctx;
1720
1721 file->private_data = NULL;
1722
1723 WARN_ON_ONCE(ctx->parent_ctx);
1724 mutex_lock(&ctx->mutex);
1725 perf_counter_remove_from_context(counter);
1726 mutex_unlock(&ctx->mutex);
1727
1728 mutex_lock(&counter->owner->perf_counter_mutex);
1729 list_del_init(&counter->owner_entry);
1730 mutex_unlock(&counter->owner->perf_counter_mutex);
1731 put_task_struct(counter->owner);
1732
1733 free_counter(counter);
1734
1735 return 0;
1736 }
1737
1738 static int perf_counter_read_size(struct perf_counter *counter)
1739 {
1740 int entry = sizeof(u64); /* value */
1741 int size = 0;
1742 int nr = 1;
1743
1744 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1745 size += sizeof(u64);
1746
1747 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1748 size += sizeof(u64);
1749
1750 if (counter->attr.read_format & PERF_FORMAT_ID)
1751 entry += sizeof(u64);
1752
1753 if (counter->attr.read_format & PERF_FORMAT_GROUP) {
1754 nr += counter->group_leader->nr_siblings;
1755 size += sizeof(u64);
1756 }
1757
1758 size += entry * nr;
1759
1760 return size;
1761 }
1762
1763 static u64 perf_counter_read_value(struct perf_counter *counter)
1764 {
1765 struct perf_counter *child;
1766 u64 total = 0;
1767
1768 total += perf_counter_read(counter);
1769 list_for_each_entry(child, &counter->child_list, child_list)
1770 total += perf_counter_read(child);
1771
1772 return total;
1773 }
1774
1775 static int perf_counter_read_entry(struct perf_counter *counter,
1776 u64 read_format, char __user *buf)
1777 {
1778 int n = 0, count = 0;
1779 u64 values[2];
1780
1781 values[n++] = perf_counter_read_value(counter);
1782 if (read_format & PERF_FORMAT_ID)
1783 values[n++] = primary_counter_id(counter);
1784
1785 count = n * sizeof(u64);
1786
1787 if (copy_to_user(buf, values, count))
1788 return -EFAULT;
1789
1790 return count;
1791 }
1792
1793 static int perf_counter_read_group(struct perf_counter *counter,
1794 u64 read_format, char __user *buf)
1795 {
1796 struct perf_counter *leader = counter->group_leader, *sub;
1797 int n = 0, size = 0, err = -EFAULT;
1798 u64 values[3];
1799
1800 values[n++] = 1 + leader->nr_siblings;
1801 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1802 values[n++] = leader->total_time_enabled +
1803 atomic64_read(&leader->child_total_time_enabled);
1804 }
1805 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1806 values[n++] = leader->total_time_running +
1807 atomic64_read(&leader->child_total_time_running);
1808 }
1809
1810 size = n * sizeof(u64);
1811
1812 if (copy_to_user(buf, values, size))
1813 return -EFAULT;
1814
1815 err = perf_counter_read_entry(leader, read_format, buf + size);
1816 if (err < 0)
1817 return err;
1818
1819 size += err;
1820
1821 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
1822 err = perf_counter_read_entry(sub, read_format,
1823 buf + size);
1824 if (err < 0)
1825 return err;
1826
1827 size += err;
1828 }
1829
1830 return size;
1831 }
1832
1833 static int perf_counter_read_one(struct perf_counter *counter,
1834 u64 read_format, char __user *buf)
1835 {
1836 u64 values[4];
1837 int n = 0;
1838
1839 values[n++] = perf_counter_read_value(counter);
1840 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1841 values[n++] = counter->total_time_enabled +
1842 atomic64_read(&counter->child_total_time_enabled);
1843 }
1844 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1845 values[n++] = counter->total_time_running +
1846 atomic64_read(&counter->child_total_time_running);
1847 }
1848 if (read_format & PERF_FORMAT_ID)
1849 values[n++] = primary_counter_id(counter);
1850
1851 if (copy_to_user(buf, values, n * sizeof(u64)))
1852 return -EFAULT;
1853
1854 return n * sizeof(u64);
1855 }
1856
1857 /*
1858 * Read the performance counter - simple non blocking version for now
1859 */
1860 static ssize_t
1861 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1862 {
1863 u64 read_format = counter->attr.read_format;
1864 int ret;
1865
1866 /*
1867 * Return end-of-file for a read on a counter that is in
1868 * error state (i.e. because it was pinned but it couldn't be
1869 * scheduled on to the CPU at some point).
1870 */
1871 if (counter->state == PERF_COUNTER_STATE_ERROR)
1872 return 0;
1873
1874 if (count < perf_counter_read_size(counter))
1875 return -ENOSPC;
1876
1877 WARN_ON_ONCE(counter->ctx->parent_ctx);
1878 mutex_lock(&counter->child_mutex);
1879 if (read_format & PERF_FORMAT_GROUP)
1880 ret = perf_counter_read_group(counter, read_format, buf);
1881 else
1882 ret = perf_counter_read_one(counter, read_format, buf);
1883 mutex_unlock(&counter->child_mutex);
1884
1885 return ret;
1886 }
1887
1888 static ssize_t
1889 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1890 {
1891 struct perf_counter *counter = file->private_data;
1892
1893 return perf_read_hw(counter, buf, count);
1894 }
1895
1896 static unsigned int perf_poll(struct file *file, poll_table *wait)
1897 {
1898 struct perf_counter *counter = file->private_data;
1899 struct perf_mmap_data *data;
1900 unsigned int events = POLL_HUP;
1901
1902 rcu_read_lock();
1903 data = rcu_dereference(counter->data);
1904 if (data)
1905 events = atomic_xchg(&data->poll, 0);
1906 rcu_read_unlock();
1907
1908 poll_wait(file, &counter->waitq, wait);
1909
1910 return events;
1911 }
1912
1913 static void perf_counter_reset(struct perf_counter *counter)
1914 {
1915 (void)perf_counter_read(counter);
1916 atomic64_set(&counter->count, 0);
1917 perf_counter_update_userpage(counter);
1918 }
1919
1920 /*
1921 * Holding the top-level counter's child_mutex means that any
1922 * descendant process that has inherited this counter will block
1923 * in sync_child_counter if it goes to exit, thus satisfying the
1924 * task existence requirements of perf_counter_enable/disable.
1925 */
1926 static void perf_counter_for_each_child(struct perf_counter *counter,
1927 void (*func)(struct perf_counter *))
1928 {
1929 struct perf_counter *child;
1930
1931 WARN_ON_ONCE(counter->ctx->parent_ctx);
1932 mutex_lock(&counter->child_mutex);
1933 func(counter);
1934 list_for_each_entry(child, &counter->child_list, child_list)
1935 func(child);
1936 mutex_unlock(&counter->child_mutex);
1937 }
1938
1939 static void perf_counter_for_each(struct perf_counter *counter,
1940 void (*func)(struct perf_counter *))
1941 {
1942 struct perf_counter_context *ctx = counter->ctx;
1943 struct perf_counter *sibling;
1944
1945 WARN_ON_ONCE(ctx->parent_ctx);
1946 mutex_lock(&ctx->mutex);
1947 counter = counter->group_leader;
1948
1949 perf_counter_for_each_child(counter, func);
1950 func(counter);
1951 list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1952 perf_counter_for_each_child(counter, func);
1953 mutex_unlock(&ctx->mutex);
1954 }
1955
1956 static int perf_counter_period(struct perf_counter *counter, u64 __user *arg)
1957 {
1958 struct perf_counter_context *ctx = counter->ctx;
1959 unsigned long size;
1960 int ret = 0;
1961 u64 value;
1962
1963 if (!counter->attr.sample_period)
1964 return -EINVAL;
1965
1966 size = copy_from_user(&value, arg, sizeof(value));
1967 if (size != sizeof(value))
1968 return -EFAULT;
1969
1970 if (!value)
1971 return -EINVAL;
1972
1973 spin_lock_irq(&ctx->lock);
1974 if (counter->attr.freq) {
1975 if (value > sysctl_perf_counter_sample_rate) {
1976 ret = -EINVAL;
1977 goto unlock;
1978 }
1979
1980 counter->attr.sample_freq = value;
1981 } else {
1982 counter->attr.sample_period = value;
1983 counter->hw.sample_period = value;
1984 }
1985 unlock:
1986 spin_unlock_irq(&ctx->lock);
1987
1988 return ret;
1989 }
1990
1991 int perf_counter_set_output(struct perf_counter *counter, int output_fd);
1992
1993 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1994 {
1995 struct perf_counter *counter = file->private_data;
1996 void (*func)(struct perf_counter *);
1997 u32 flags = arg;
1998
1999 switch (cmd) {
2000 case PERF_COUNTER_IOC_ENABLE:
2001 func = perf_counter_enable;
2002 break;
2003 case PERF_COUNTER_IOC_DISABLE:
2004 func = perf_counter_disable;
2005 break;
2006 case PERF_COUNTER_IOC_RESET:
2007 func = perf_counter_reset;
2008 break;
2009
2010 case PERF_COUNTER_IOC_REFRESH:
2011 return perf_counter_refresh(counter, arg);
2012
2013 case PERF_COUNTER_IOC_PERIOD:
2014 return perf_counter_period(counter, (u64 __user *)arg);
2015
2016 case PERF_COUNTER_IOC_SET_OUTPUT:
2017 return perf_counter_set_output(counter, arg);
2018
2019 default:
2020 return -ENOTTY;
2021 }
2022
2023 if (flags & PERF_IOC_FLAG_GROUP)
2024 perf_counter_for_each(counter, func);
2025 else
2026 perf_counter_for_each_child(counter, func);
2027
2028 return 0;
2029 }
2030
2031 int perf_counter_task_enable(void)
2032 {
2033 struct perf_counter *counter;
2034
2035 mutex_lock(&current->perf_counter_mutex);
2036 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
2037 perf_counter_for_each_child(counter, perf_counter_enable);
2038 mutex_unlock(&current->perf_counter_mutex);
2039
2040 return 0;
2041 }
2042
2043 int perf_counter_task_disable(void)
2044 {
2045 struct perf_counter *counter;
2046
2047 mutex_lock(&current->perf_counter_mutex);
2048 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
2049 perf_counter_for_each_child(counter, perf_counter_disable);
2050 mutex_unlock(&current->perf_counter_mutex);
2051
2052 return 0;
2053 }
2054
2055 #ifndef PERF_COUNTER_INDEX_OFFSET
2056 # define PERF_COUNTER_INDEX_OFFSET 0
2057 #endif
2058
2059 static int perf_counter_index(struct perf_counter *counter)
2060 {
2061 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2062 return 0;
2063
2064 return counter->hw.idx + 1 - PERF_COUNTER_INDEX_OFFSET;
2065 }
2066
2067 /*
2068 * Callers need to ensure there can be no nesting of this function, otherwise
2069 * the seqlock logic goes bad. We can not serialize this because the arch
2070 * code calls this from NMI context.
2071 */
2072 void perf_counter_update_userpage(struct perf_counter *counter)
2073 {
2074 struct perf_counter_mmap_page *userpg;
2075 struct perf_mmap_data *data;
2076
2077 rcu_read_lock();
2078 data = rcu_dereference(counter->data);
2079 if (!data)
2080 goto unlock;
2081
2082 userpg = data->user_page;
2083
2084 /*
2085 * Disable preemption so as to not let the corresponding user-space
2086 * spin too long if we get preempted.
2087 */
2088 preempt_disable();
2089 ++userpg->lock;
2090 barrier();
2091 userpg->index = perf_counter_index(counter);
2092 userpg->offset = atomic64_read(&counter->count);
2093 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
2094 userpg->offset -= atomic64_read(&counter->hw.prev_count);
2095
2096 userpg->time_enabled = counter->total_time_enabled +
2097 atomic64_read(&counter->child_total_time_enabled);
2098
2099 userpg->time_running = counter->total_time_running +
2100 atomic64_read(&counter->child_total_time_running);
2101
2102 barrier();
2103 ++userpg->lock;
2104 preempt_enable();
2105 unlock:
2106 rcu_read_unlock();
2107 }
2108
2109 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2110 {
2111 struct perf_counter *counter = vma->vm_file->private_data;
2112 struct perf_mmap_data *data;
2113 int ret = VM_FAULT_SIGBUS;
2114
2115 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2116 if (vmf->pgoff == 0)
2117 ret = 0;
2118 return ret;
2119 }
2120
2121 rcu_read_lock();
2122 data = rcu_dereference(counter->data);
2123 if (!data)
2124 goto unlock;
2125
2126 if (vmf->pgoff == 0) {
2127 vmf->page = virt_to_page(data->user_page);
2128 } else {
2129 int nr = vmf->pgoff - 1;
2130
2131 if ((unsigned)nr > data->nr_pages)
2132 goto unlock;
2133
2134 if (vmf->flags & FAULT_FLAG_WRITE)
2135 goto unlock;
2136
2137 vmf->page = virt_to_page(data->data_pages[nr]);
2138 }
2139
2140 get_page(vmf->page);
2141 vmf->page->mapping = vma->vm_file->f_mapping;
2142 vmf->page->index = vmf->pgoff;
2143
2144 ret = 0;
2145 unlock:
2146 rcu_read_unlock();
2147
2148 return ret;
2149 }
2150
2151 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
2152 {
2153 struct perf_mmap_data *data;
2154 unsigned long size;
2155 int i;
2156
2157 WARN_ON(atomic_read(&counter->mmap_count));
2158
2159 size = sizeof(struct perf_mmap_data);
2160 size += nr_pages * sizeof(void *);
2161
2162 data = kzalloc(size, GFP_KERNEL);
2163 if (!data)
2164 goto fail;
2165
2166 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2167 if (!data->user_page)
2168 goto fail_user_page;
2169
2170 for (i = 0; i < nr_pages; i++) {
2171 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2172 if (!data->data_pages[i])
2173 goto fail_data_pages;
2174 }
2175
2176 data->nr_pages = nr_pages;
2177 atomic_set(&data->lock, -1);
2178
2179 rcu_assign_pointer(counter->data, data);
2180
2181 return 0;
2182
2183 fail_data_pages:
2184 for (i--; i >= 0; i--)
2185 free_page((unsigned long)data->data_pages[i]);
2186
2187 free_page((unsigned long)data->user_page);
2188
2189 fail_user_page:
2190 kfree(data);
2191
2192 fail:
2193 return -ENOMEM;
2194 }
2195
2196 static void perf_mmap_free_page(unsigned long addr)
2197 {
2198 struct page *page = virt_to_page((void *)addr);
2199
2200 page->mapping = NULL;
2201 __free_page(page);
2202 }
2203
2204 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
2205 {
2206 struct perf_mmap_data *data;
2207 int i;
2208
2209 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2210
2211 perf_mmap_free_page((unsigned long)data->user_page);
2212 for (i = 0; i < data->nr_pages; i++)
2213 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2214
2215 kfree(data);
2216 }
2217
2218 static void perf_mmap_data_free(struct perf_counter *counter)
2219 {
2220 struct perf_mmap_data *data = counter->data;
2221
2222 WARN_ON(atomic_read(&counter->mmap_count));
2223
2224 rcu_assign_pointer(counter->data, NULL);
2225 call_rcu(&data->rcu_head, __perf_mmap_data_free);
2226 }
2227
2228 static void perf_mmap_open(struct vm_area_struct *vma)
2229 {
2230 struct perf_counter *counter = vma->vm_file->private_data;
2231
2232 atomic_inc(&counter->mmap_count);
2233 }
2234
2235 static void perf_mmap_close(struct vm_area_struct *vma)
2236 {
2237 struct perf_counter *counter = vma->vm_file->private_data;
2238
2239 WARN_ON_ONCE(counter->ctx->parent_ctx);
2240 if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) {
2241 struct user_struct *user = current_user();
2242
2243 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
2244 vma->vm_mm->locked_vm -= counter->data->nr_locked;
2245 perf_mmap_data_free(counter);
2246 mutex_unlock(&counter->mmap_mutex);
2247 }
2248 }
2249
2250 static struct vm_operations_struct perf_mmap_vmops = {
2251 .open = perf_mmap_open,
2252 .close = perf_mmap_close,
2253 .fault = perf_mmap_fault,
2254 .page_mkwrite = perf_mmap_fault,
2255 };
2256
2257 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2258 {
2259 struct perf_counter *counter = file->private_data;
2260 unsigned long user_locked, user_lock_limit;
2261 struct user_struct *user = current_user();
2262 unsigned long locked, lock_limit;
2263 unsigned long vma_size;
2264 unsigned long nr_pages;
2265 long user_extra, extra;
2266 int ret = 0;
2267
2268 if (!(vma->vm_flags & VM_SHARED))
2269 return -EINVAL;
2270
2271 vma_size = vma->vm_end - vma->vm_start;
2272 nr_pages = (vma_size / PAGE_SIZE) - 1;
2273
2274 /*
2275 * If we have data pages ensure they're a power-of-two number, so we
2276 * can do bitmasks instead of modulo.
2277 */
2278 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2279 return -EINVAL;
2280
2281 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2282 return -EINVAL;
2283
2284 if (vma->vm_pgoff != 0)
2285 return -EINVAL;
2286
2287 WARN_ON_ONCE(counter->ctx->parent_ctx);
2288 mutex_lock(&counter->mmap_mutex);
2289 if (counter->output) {
2290 ret = -EINVAL;
2291 goto unlock;
2292 }
2293
2294 if (atomic_inc_not_zero(&counter->mmap_count)) {
2295 if (nr_pages != counter->data->nr_pages)
2296 ret = -EINVAL;
2297 goto unlock;
2298 }
2299
2300 user_extra = nr_pages + 1;
2301 user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
2302
2303 /*
2304 * Increase the limit linearly with more CPUs:
2305 */
2306 user_lock_limit *= num_online_cpus();
2307
2308 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2309
2310 extra = 0;
2311 if (user_locked > user_lock_limit)
2312 extra = user_locked - user_lock_limit;
2313
2314 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2315 lock_limit >>= PAGE_SHIFT;
2316 locked = vma->vm_mm->locked_vm + extra;
2317
2318 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2319 !capable(CAP_IPC_LOCK)) {
2320 ret = -EPERM;
2321 goto unlock;
2322 }
2323
2324 WARN_ON(counter->data);
2325 ret = perf_mmap_data_alloc(counter, nr_pages);
2326 if (ret)
2327 goto unlock;
2328
2329 atomic_set(&counter->mmap_count, 1);
2330 atomic_long_add(user_extra, &user->locked_vm);
2331 vma->vm_mm->locked_vm += extra;
2332 counter->data->nr_locked = extra;
2333 if (vma->vm_flags & VM_WRITE)
2334 counter->data->writable = 1;
2335
2336 unlock:
2337 mutex_unlock(&counter->mmap_mutex);
2338
2339 vma->vm_flags |= VM_RESERVED;
2340 vma->vm_ops = &perf_mmap_vmops;
2341
2342 return ret;
2343 }
2344
2345 static int perf_fasync(int fd, struct file *filp, int on)
2346 {
2347 struct inode *inode = filp->f_path.dentry->d_inode;
2348 struct perf_counter *counter = filp->private_data;
2349 int retval;
2350
2351 mutex_lock(&inode->i_mutex);
2352 retval = fasync_helper(fd, filp, on, &counter->fasync);
2353 mutex_unlock(&inode->i_mutex);
2354
2355 if (retval < 0)
2356 return retval;
2357
2358 return 0;
2359 }
2360
2361 static const struct file_operations perf_fops = {
2362 .release = perf_release,
2363 .read = perf_read,
2364 .poll = perf_poll,
2365 .unlocked_ioctl = perf_ioctl,
2366 .compat_ioctl = perf_ioctl,
2367 .mmap = perf_mmap,
2368 .fasync = perf_fasync,
2369 };
2370
2371 /*
2372 * Perf counter wakeup
2373 *
2374 * If there's data, ensure we set the poll() state and publish everything
2375 * to user-space before waking everybody up.
2376 */
2377
2378 void perf_counter_wakeup(struct perf_counter *counter)
2379 {
2380 wake_up_all(&counter->waitq);
2381
2382 if (counter->pending_kill) {
2383 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
2384 counter->pending_kill = 0;
2385 }
2386 }
2387
2388 /*
2389 * Pending wakeups
2390 *
2391 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2392 *
2393 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2394 * single linked list and use cmpxchg() to add entries lockless.
2395 */
2396
2397 static void perf_pending_counter(struct perf_pending_entry *entry)
2398 {
2399 struct perf_counter *counter = container_of(entry,
2400 struct perf_counter, pending);
2401
2402 if (counter->pending_disable) {
2403 counter->pending_disable = 0;
2404 __perf_counter_disable(counter);
2405 }
2406
2407 if (counter->pending_wakeup) {
2408 counter->pending_wakeup = 0;
2409 perf_counter_wakeup(counter);
2410 }
2411 }
2412
2413 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2414
2415 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2416 PENDING_TAIL,
2417 };
2418
2419 static void perf_pending_queue(struct perf_pending_entry *entry,
2420 void (*func)(struct perf_pending_entry *))
2421 {
2422 struct perf_pending_entry **head;
2423
2424 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2425 return;
2426
2427 entry->func = func;
2428
2429 head = &get_cpu_var(perf_pending_head);
2430
2431 do {
2432 entry->next = *head;
2433 } while (cmpxchg(head, entry->next, entry) != entry->next);
2434
2435 set_perf_counter_pending();
2436
2437 put_cpu_var(perf_pending_head);
2438 }
2439
2440 static int __perf_pending_run(void)
2441 {
2442 struct perf_pending_entry *list;
2443 int nr = 0;
2444
2445 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2446 while (list != PENDING_TAIL) {
2447 void (*func)(struct perf_pending_entry *);
2448 struct perf_pending_entry *entry = list;
2449
2450 list = list->next;
2451
2452 func = entry->func;
2453 entry->next = NULL;
2454 /*
2455 * Ensure we observe the unqueue before we issue the wakeup,
2456 * so that we won't be waiting forever.
2457 * -- see perf_not_pending().
2458 */
2459 smp_wmb();
2460
2461 func(entry);
2462 nr++;
2463 }
2464
2465 return nr;
2466 }
2467
2468 static inline int perf_not_pending(struct perf_counter *counter)
2469 {
2470 /*
2471 * If we flush on whatever cpu we run, there is a chance we don't
2472 * need to wait.
2473 */
2474 get_cpu();
2475 __perf_pending_run();
2476 put_cpu();
2477
2478 /*
2479 * Ensure we see the proper queue state before going to sleep
2480 * so that we do not miss the wakeup. -- see perf_pending_handle()
2481 */
2482 smp_rmb();
2483 return counter->pending.next == NULL;
2484 }
2485
2486 static void perf_pending_sync(struct perf_counter *counter)
2487 {
2488 wait_event(counter->waitq, perf_not_pending(counter));
2489 }
2490
2491 void perf_counter_do_pending(void)
2492 {
2493 __perf_pending_run();
2494 }
2495
2496 /*
2497 * Callchain support -- arch specific
2498 */
2499
2500 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2501 {
2502 return NULL;
2503 }
2504
2505 /*
2506 * Output
2507 */
2508
2509 struct perf_output_handle {
2510 struct perf_counter *counter;
2511 struct perf_mmap_data *data;
2512 unsigned long head;
2513 unsigned long offset;
2514 int nmi;
2515 int sample;
2516 int locked;
2517 unsigned long flags;
2518 };
2519
2520 static bool perf_output_space(struct perf_mmap_data *data,
2521 unsigned int offset, unsigned int head)
2522 {
2523 unsigned long tail;
2524 unsigned long mask;
2525
2526 if (!data->writable)
2527 return true;
2528
2529 mask = (data->nr_pages << PAGE_SHIFT) - 1;
2530 /*
2531 * Userspace could choose to issue a mb() before updating the tail
2532 * pointer. So that all reads will be completed before the write is
2533 * issued.
2534 */
2535 tail = ACCESS_ONCE(data->user_page->data_tail);
2536 smp_rmb();
2537
2538 offset = (offset - tail) & mask;
2539 head = (head - tail) & mask;
2540
2541 if ((int)(head - offset) < 0)
2542 return false;
2543
2544 return true;
2545 }
2546
2547 static void perf_output_wakeup(struct perf_output_handle *handle)
2548 {
2549 atomic_set(&handle->data->poll, POLL_IN);
2550
2551 if (handle->nmi) {
2552 handle->counter->pending_wakeup = 1;
2553 perf_pending_queue(&handle->counter->pending,
2554 perf_pending_counter);
2555 } else
2556 perf_counter_wakeup(handle->counter);
2557 }
2558
2559 /*
2560 * Curious locking construct.
2561 *
2562 * We need to ensure a later event doesn't publish a head when a former
2563 * event isn't done writing. However since we need to deal with NMIs we
2564 * cannot fully serialize things.
2565 *
2566 * What we do is serialize between CPUs so we only have to deal with NMI
2567 * nesting on a single CPU.
2568 *
2569 * We only publish the head (and generate a wakeup) when the outer-most
2570 * event completes.
2571 */
2572 static void perf_output_lock(struct perf_output_handle *handle)
2573 {
2574 struct perf_mmap_data *data = handle->data;
2575 int cpu;
2576
2577 handle->locked = 0;
2578
2579 local_irq_save(handle->flags);
2580 cpu = smp_processor_id();
2581
2582 if (in_nmi() && atomic_read(&data->lock) == cpu)
2583 return;
2584
2585 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2586 cpu_relax();
2587
2588 handle->locked = 1;
2589 }
2590
2591 static void perf_output_unlock(struct perf_output_handle *handle)
2592 {
2593 struct perf_mmap_data *data = handle->data;
2594 unsigned long head;
2595 int cpu;
2596
2597 data->done_head = data->head;
2598
2599 if (!handle->locked)
2600 goto out;
2601
2602 again:
2603 /*
2604 * The xchg implies a full barrier that ensures all writes are done
2605 * before we publish the new head, matched by a rmb() in userspace when
2606 * reading this position.
2607 */
2608 while ((head = atomic_long_xchg(&data->done_head, 0)))
2609 data->user_page->data_head = head;
2610
2611 /*
2612 * NMI can happen here, which means we can miss a done_head update.
2613 */
2614
2615 cpu = atomic_xchg(&data->lock, -1);
2616 WARN_ON_ONCE(cpu != smp_processor_id());
2617
2618 /*
2619 * Therefore we have to validate we did not indeed do so.
2620 */
2621 if (unlikely(atomic_long_read(&data->done_head))) {
2622 /*
2623 * Since we had it locked, we can lock it again.
2624 */
2625 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2626 cpu_relax();
2627
2628 goto again;
2629 }
2630
2631 if (atomic_xchg(&data->wakeup, 0))
2632 perf_output_wakeup(handle);
2633 out:
2634 local_irq_restore(handle->flags);
2635 }
2636
2637 static void perf_output_copy(struct perf_output_handle *handle,
2638 const void *buf, unsigned int len)
2639 {
2640 unsigned int pages_mask;
2641 unsigned int offset;
2642 unsigned int size;
2643 void **pages;
2644
2645 offset = handle->offset;
2646 pages_mask = handle->data->nr_pages - 1;
2647 pages = handle->data->data_pages;
2648
2649 do {
2650 unsigned int page_offset;
2651 int nr;
2652
2653 nr = (offset >> PAGE_SHIFT) & pages_mask;
2654 page_offset = offset & (PAGE_SIZE - 1);
2655 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2656
2657 memcpy(pages[nr] + page_offset, buf, size);
2658
2659 len -= size;
2660 buf += size;
2661 offset += size;
2662 } while (len);
2663
2664 handle->offset = offset;
2665
2666 /*
2667 * Check we didn't copy past our reservation window, taking the
2668 * possible unsigned int wrap into account.
2669 */
2670 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2671 }
2672
2673 #define perf_output_put(handle, x) \
2674 perf_output_copy((handle), &(x), sizeof(x))
2675
2676 static int perf_output_begin(struct perf_output_handle *handle,
2677 struct perf_counter *counter, unsigned int size,
2678 int nmi, int sample)
2679 {
2680 struct perf_counter *output_counter;
2681 struct perf_mmap_data *data;
2682 unsigned int offset, head;
2683 int have_lost;
2684 struct {
2685 struct perf_event_header header;
2686 u64 id;
2687 u64 lost;
2688 } lost_event;
2689
2690 rcu_read_lock();
2691 /*
2692 * For inherited counters we send all the output towards the parent.
2693 */
2694 if (counter->parent)
2695 counter = counter->parent;
2696
2697 output_counter = rcu_dereference(counter->output);
2698 if (output_counter)
2699 counter = output_counter;
2700
2701 data = rcu_dereference(counter->data);
2702 if (!data)
2703 goto out;
2704
2705 handle->data = data;
2706 handle->counter = counter;
2707 handle->nmi = nmi;
2708 handle->sample = sample;
2709
2710 if (!data->nr_pages)
2711 goto fail;
2712
2713 have_lost = atomic_read(&data->lost);
2714 if (have_lost)
2715 size += sizeof(lost_event);
2716
2717 perf_output_lock(handle);
2718
2719 do {
2720 offset = head = atomic_long_read(&data->head);
2721 head += size;
2722 if (unlikely(!perf_output_space(data, offset, head)))
2723 goto fail;
2724 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2725
2726 handle->offset = offset;
2727 handle->head = head;
2728
2729 if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2730 atomic_set(&data->wakeup, 1);
2731
2732 if (have_lost) {
2733 lost_event.header.type = PERF_EVENT_LOST;
2734 lost_event.header.misc = 0;
2735 lost_event.header.size = sizeof(lost_event);
2736 lost_event.id = counter->id;
2737 lost_event.lost = atomic_xchg(&data->lost, 0);
2738
2739 perf_output_put(handle, lost_event);
2740 }
2741
2742 return 0;
2743
2744 fail:
2745 atomic_inc(&data->lost);
2746 perf_output_unlock(handle);
2747 out:
2748 rcu_read_unlock();
2749
2750 return -ENOSPC;
2751 }
2752
2753 static void perf_output_end(struct perf_output_handle *handle)
2754 {
2755 struct perf_counter *counter = handle->counter;
2756 struct perf_mmap_data *data = handle->data;
2757
2758 int wakeup_events = counter->attr.wakeup_events;
2759
2760 if (handle->sample && wakeup_events) {
2761 int events = atomic_inc_return(&data->events);
2762 if (events >= wakeup_events) {
2763 atomic_sub(wakeup_events, &data->events);
2764 atomic_set(&data->wakeup, 1);
2765 }
2766 }
2767
2768 perf_output_unlock(handle);
2769 rcu_read_unlock();
2770 }
2771
2772 static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p)
2773 {
2774 /*
2775 * only top level counters have the pid namespace they were created in
2776 */
2777 if (counter->parent)
2778 counter = counter->parent;
2779
2780 return task_tgid_nr_ns(p, counter->ns);
2781 }
2782
2783 static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p)
2784 {
2785 /*
2786 * only top level counters have the pid namespace they were created in
2787 */
2788 if (counter->parent)
2789 counter = counter->parent;
2790
2791 return task_pid_nr_ns(p, counter->ns);
2792 }
2793
2794 static void perf_output_read_one(struct perf_output_handle *handle,
2795 struct perf_counter *counter)
2796 {
2797 u64 read_format = counter->attr.read_format;
2798 u64 values[4];
2799 int n = 0;
2800
2801 values[n++] = atomic64_read(&counter->count);
2802 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2803 values[n++] = counter->total_time_enabled +
2804 atomic64_read(&counter->child_total_time_enabled);
2805 }
2806 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2807 values[n++] = counter->total_time_running +
2808 atomic64_read(&counter->child_total_time_running);
2809 }
2810 if (read_format & PERF_FORMAT_ID)
2811 values[n++] = primary_counter_id(counter);
2812
2813 perf_output_copy(handle, values, n * sizeof(u64));
2814 }
2815
2816 /*
2817 * XXX PERF_FORMAT_GROUP vs inherited counters seems difficult.
2818 */
2819 static void perf_output_read_group(struct perf_output_handle *handle,
2820 struct perf_counter *counter)
2821 {
2822 struct perf_counter *leader = counter->group_leader, *sub;
2823 u64 read_format = counter->attr.read_format;
2824 u64 values[5];
2825 int n = 0;
2826
2827 values[n++] = 1 + leader->nr_siblings;
2828
2829 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2830 values[n++] = leader->total_time_enabled;
2831
2832 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2833 values[n++] = leader->total_time_running;
2834
2835 if (leader != counter)
2836 leader->pmu->read(leader);
2837
2838 values[n++] = atomic64_read(&leader->count);
2839 if (read_format & PERF_FORMAT_ID)
2840 values[n++] = primary_counter_id(leader);
2841
2842 perf_output_copy(handle, values, n * sizeof(u64));
2843
2844 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2845 n = 0;
2846
2847 if (sub != counter)
2848 sub->pmu->read(sub);
2849
2850 values[n++] = atomic64_read(&sub->count);
2851 if (read_format & PERF_FORMAT_ID)
2852 values[n++] = primary_counter_id(sub);
2853
2854 perf_output_copy(handle, values, n * sizeof(u64));
2855 }
2856 }
2857
2858 static void perf_output_read(struct perf_output_handle *handle,
2859 struct perf_counter *counter)
2860 {
2861 if (counter->attr.read_format & PERF_FORMAT_GROUP)
2862 perf_output_read_group(handle, counter);
2863 else
2864 perf_output_read_one(handle, counter);
2865 }
2866
2867 void perf_counter_output(struct perf_counter *counter, int nmi,
2868 struct perf_sample_data *data)
2869 {
2870 int ret;
2871 u64 sample_type = counter->attr.sample_type;
2872 struct perf_output_handle handle;
2873 struct perf_event_header header;
2874 u64 ip;
2875 struct {
2876 u32 pid, tid;
2877 } tid_entry;
2878 struct perf_callchain_entry *callchain = NULL;
2879 int callchain_size = 0;
2880 u64 time;
2881 struct {
2882 u32 cpu, reserved;
2883 } cpu_entry;
2884
2885 header.type = PERF_EVENT_SAMPLE;
2886 header.size = sizeof(header);
2887
2888 header.misc = 0;
2889 header.misc |= perf_misc_flags(data->regs);
2890
2891 if (sample_type & PERF_SAMPLE_IP) {
2892 ip = perf_instruction_pointer(data->regs);
2893 header.size += sizeof(ip);
2894 }
2895
2896 if (sample_type & PERF_SAMPLE_TID) {
2897 /* namespace issues */
2898 tid_entry.pid = perf_counter_pid(counter, current);
2899 tid_entry.tid = perf_counter_tid(counter, current);
2900
2901 header.size += sizeof(tid_entry);
2902 }
2903
2904 if (sample_type & PERF_SAMPLE_TIME) {
2905 /*
2906 * Maybe do better on x86 and provide cpu_clock_nmi()
2907 */
2908 time = sched_clock();
2909
2910 header.size += sizeof(u64);
2911 }
2912
2913 if (sample_type & PERF_SAMPLE_ADDR)
2914 header.size += sizeof(u64);
2915
2916 if (sample_type & PERF_SAMPLE_ID)
2917 header.size += sizeof(u64);
2918
2919 if (sample_type & PERF_SAMPLE_STREAM_ID)
2920 header.size += sizeof(u64);
2921
2922 if (sample_type & PERF_SAMPLE_CPU) {
2923 header.size += sizeof(cpu_entry);
2924
2925 cpu_entry.cpu = raw_smp_processor_id();
2926 cpu_entry.reserved = 0;
2927 }
2928
2929 if (sample_type & PERF_SAMPLE_PERIOD)
2930 header.size += sizeof(u64);
2931
2932 if (sample_type & PERF_SAMPLE_READ)
2933 header.size += perf_counter_read_size(counter);
2934
2935 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2936 callchain = perf_callchain(data->regs);
2937
2938 if (callchain) {
2939 callchain_size = (1 + callchain->nr) * sizeof(u64);
2940 header.size += callchain_size;
2941 } else
2942 header.size += sizeof(u64);
2943 }
2944
2945 if (sample_type & PERF_SAMPLE_RAW) {
2946 int size = sizeof(u32);
2947
2948 if (data->raw)
2949 size += data->raw->size;
2950 else
2951 size += sizeof(u32);
2952
2953 WARN_ON_ONCE(size & (sizeof(u64)-1));
2954 header.size += size;
2955 }
2956
2957 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2958 if (ret)
2959 return;
2960
2961 perf_output_put(&handle, header);
2962
2963 if (sample_type & PERF_SAMPLE_IP)
2964 perf_output_put(&handle, ip);
2965
2966 if (sample_type & PERF_SAMPLE_TID)
2967 perf_output_put(&handle, tid_entry);
2968
2969 if (sample_type & PERF_SAMPLE_TIME)
2970 perf_output_put(&handle, time);
2971
2972 if (sample_type & PERF_SAMPLE_ADDR)
2973 perf_output_put(&handle, data->addr);
2974
2975 if (sample_type & PERF_SAMPLE_ID) {
2976 u64 id = primary_counter_id(counter);
2977
2978 perf_output_put(&handle, id);
2979 }
2980
2981 if (sample_type & PERF_SAMPLE_STREAM_ID)
2982 perf_output_put(&handle, counter->id);
2983
2984 if (sample_type & PERF_SAMPLE_CPU)
2985 perf_output_put(&handle, cpu_entry);
2986
2987 if (sample_type & PERF_SAMPLE_PERIOD)
2988 perf_output_put(&handle, data->period);
2989
2990 if (sample_type & PERF_SAMPLE_READ)
2991 perf_output_read(&handle, counter);
2992
2993 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2994 if (callchain)
2995 perf_output_copy(&handle, callchain, callchain_size);
2996 else {
2997 u64 nr = 0;
2998 perf_output_put(&handle, nr);
2999 }
3000 }
3001
3002 if (sample_type & PERF_SAMPLE_RAW) {
3003 if (data->raw) {
3004 perf_output_put(&handle, data->raw->size);
3005 perf_output_copy(&handle, data->raw->data, data->raw->size);
3006 } else {
3007 struct {
3008 u32 size;
3009 u32 data;
3010 } raw = {
3011 .size = sizeof(u32),
3012 .data = 0,
3013 };
3014 perf_output_put(&handle, raw);
3015 }
3016 }
3017
3018 perf_output_end(&handle);
3019 }
3020
3021 /*
3022 * read event
3023 */
3024
3025 struct perf_read_event {
3026 struct perf_event_header header;
3027
3028 u32 pid;
3029 u32 tid;
3030 };
3031
3032 static void
3033 perf_counter_read_event(struct perf_counter *counter,
3034 struct task_struct *task)
3035 {
3036 struct perf_output_handle handle;
3037 struct perf_read_event event = {
3038 .header = {
3039 .type = PERF_EVENT_READ,
3040 .misc = 0,
3041 .size = sizeof(event) + perf_counter_read_size(counter),
3042 },
3043 .pid = perf_counter_pid(counter, task),
3044 .tid = perf_counter_tid(counter, task),
3045 };
3046 int ret;
3047
3048 ret = perf_output_begin(&handle, counter, event.header.size, 0, 0);
3049 if (ret)
3050 return;
3051
3052 perf_output_put(&handle, event);
3053 perf_output_read(&handle, counter);
3054
3055 perf_output_end(&handle);
3056 }
3057
3058 /*
3059 * task tracking -- fork/exit
3060 *
3061 * enabled by: attr.comm | attr.mmap | attr.task
3062 */
3063
3064 struct perf_task_event {
3065 struct task_struct *task;
3066 struct perf_counter_context *task_ctx;
3067
3068 struct {
3069 struct perf_event_header header;
3070
3071 u32 pid;
3072 u32 ppid;
3073 u32 tid;
3074 u32 ptid;
3075 } event;
3076 };
3077
3078 static void perf_counter_task_output(struct perf_counter *counter,
3079 struct perf_task_event *task_event)
3080 {
3081 struct perf_output_handle handle;
3082 int size = task_event->event.header.size;
3083 struct task_struct *task = task_event->task;
3084 int ret = perf_output_begin(&handle, counter, size, 0, 0);
3085
3086 if (ret)
3087 return;
3088
3089 task_event->event.pid = perf_counter_pid(counter, task);
3090 task_event->event.ppid = perf_counter_pid(counter, current);
3091
3092 task_event->event.tid = perf_counter_tid(counter, task);
3093 task_event->event.ptid = perf_counter_tid(counter, current);
3094
3095 perf_output_put(&handle, task_event->event);
3096 perf_output_end(&handle);
3097 }
3098
3099 static int perf_counter_task_match(struct perf_counter *counter)
3100 {
3101 if (counter->attr.comm || counter->attr.mmap || counter->attr.task)
3102 return 1;
3103
3104 return 0;
3105 }
3106
3107 static void perf_counter_task_ctx(struct perf_counter_context *ctx,
3108 struct perf_task_event *task_event)
3109 {
3110 struct perf_counter *counter;
3111
3112 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3113 return;
3114
3115 rcu_read_lock();
3116 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3117 if (perf_counter_task_match(counter))
3118 perf_counter_task_output(counter, task_event);
3119 }
3120 rcu_read_unlock();
3121 }
3122
3123 static void perf_counter_task_event(struct perf_task_event *task_event)
3124 {
3125 struct perf_cpu_context *cpuctx;
3126 struct perf_counter_context *ctx = task_event->task_ctx;
3127
3128 cpuctx = &get_cpu_var(perf_cpu_context);
3129 perf_counter_task_ctx(&cpuctx->ctx, task_event);
3130 put_cpu_var(perf_cpu_context);
3131
3132 rcu_read_lock();
3133 if (!ctx)
3134 ctx = rcu_dereference(task_event->task->perf_counter_ctxp);
3135 if (ctx)
3136 perf_counter_task_ctx(ctx, task_event);
3137 rcu_read_unlock();
3138 }
3139
3140 static void perf_counter_task(struct task_struct *task,
3141 struct perf_counter_context *task_ctx,
3142 int new)
3143 {
3144 struct perf_task_event task_event;
3145
3146 if (!atomic_read(&nr_comm_counters) &&
3147 !atomic_read(&nr_mmap_counters) &&
3148 !atomic_read(&nr_task_counters))
3149 return;
3150
3151 task_event = (struct perf_task_event){
3152 .task = task,
3153 .task_ctx = task_ctx,
3154 .event = {
3155 .header = {
3156 .type = new ? PERF_EVENT_FORK : PERF_EVENT_EXIT,
3157 .misc = 0,
3158 .size = sizeof(task_event.event),
3159 },
3160 /* .pid */
3161 /* .ppid */
3162 /* .tid */
3163 /* .ptid */
3164 },
3165 };
3166
3167 perf_counter_task_event(&task_event);
3168 }
3169
3170 void perf_counter_fork(struct task_struct *task)
3171 {
3172 perf_counter_task(task, NULL, 1);
3173 }
3174
3175 /*
3176 * comm tracking
3177 */
3178
3179 struct perf_comm_event {
3180 struct task_struct *task;
3181 char *comm;
3182 int comm_size;
3183
3184 struct {
3185 struct perf_event_header header;
3186
3187 u32 pid;
3188 u32 tid;
3189 } event;
3190 };
3191
3192 static void perf_counter_comm_output(struct perf_counter *counter,
3193 struct perf_comm_event *comm_event)
3194 {
3195 struct perf_output_handle handle;
3196 int size = comm_event->event.header.size;
3197 int ret = perf_output_begin(&handle, counter, size, 0, 0);
3198
3199 if (ret)
3200 return;
3201
3202 comm_event->event.pid = perf_counter_pid(counter, comm_event->task);
3203 comm_event->event.tid = perf_counter_tid(counter, comm_event->task);
3204
3205 perf_output_put(&handle, comm_event->event);
3206 perf_output_copy(&handle, comm_event->comm,
3207 comm_event->comm_size);
3208 perf_output_end(&handle);
3209 }
3210
3211 static int perf_counter_comm_match(struct perf_counter *counter)
3212 {
3213 if (counter->attr.comm)
3214 return 1;
3215
3216 return 0;
3217 }
3218
3219 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
3220 struct perf_comm_event *comm_event)
3221 {
3222 struct perf_counter *counter;
3223
3224 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3225 return;
3226
3227 rcu_read_lock();
3228 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3229 if (perf_counter_comm_match(counter))
3230 perf_counter_comm_output(counter, comm_event);
3231 }
3232 rcu_read_unlock();
3233 }
3234
3235 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
3236 {
3237 struct perf_cpu_context *cpuctx;
3238 struct perf_counter_context *ctx;
3239 unsigned int size;
3240 char comm[TASK_COMM_LEN];
3241
3242 memset(comm, 0, sizeof(comm));
3243 strncpy(comm, comm_event->task->comm, sizeof(comm));
3244 size = ALIGN(strlen(comm)+1, sizeof(u64));
3245
3246 comm_event->comm = comm;
3247 comm_event->comm_size = size;
3248
3249 comm_event->event.header.size = sizeof(comm_event->event) + size;
3250
3251 cpuctx = &get_cpu_var(perf_cpu_context);
3252 perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
3253 put_cpu_var(perf_cpu_context);
3254
3255 rcu_read_lock();
3256 /*
3257 * doesn't really matter which of the child contexts the
3258 * events ends up in.
3259 */
3260 ctx = rcu_dereference(current->perf_counter_ctxp);
3261 if (ctx)
3262 perf_counter_comm_ctx(ctx, comm_event);
3263 rcu_read_unlock();
3264 }
3265
3266 void perf_counter_comm(struct task_struct *task)
3267 {
3268 struct perf_comm_event comm_event;
3269
3270 if (task->perf_counter_ctxp)
3271 perf_counter_enable_on_exec(task);
3272
3273 if (!atomic_read(&nr_comm_counters))
3274 return;
3275
3276 comm_event = (struct perf_comm_event){
3277 .task = task,
3278 /* .comm */
3279 /* .comm_size */
3280 .event = {
3281 .header = {
3282 .type = PERF_EVENT_COMM,
3283 .misc = 0,
3284 /* .size */
3285 },
3286 /* .pid */
3287 /* .tid */
3288 },
3289 };
3290
3291 perf_counter_comm_event(&comm_event);
3292 }
3293
3294 /*
3295 * mmap tracking
3296 */
3297
3298 struct perf_mmap_event {
3299 struct vm_area_struct *vma;
3300
3301 const char *file_name;
3302 int file_size;
3303
3304 struct {
3305 struct perf_event_header header;
3306
3307 u32 pid;
3308 u32 tid;
3309 u64 start;
3310 u64 len;
3311 u64 pgoff;
3312 } event;
3313 };
3314
3315 static void perf_counter_mmap_output(struct perf_counter *counter,
3316 struct perf_mmap_event *mmap_event)
3317 {
3318 struct perf_output_handle handle;
3319 int size = mmap_event->event.header.size;
3320 int ret = perf_output_begin(&handle, counter, size, 0, 0);
3321
3322 if (ret)
3323 return;
3324
3325 mmap_event->event.pid = perf_counter_pid(counter, current);
3326 mmap_event->event.tid = perf_counter_tid(counter, current);
3327
3328 perf_output_put(&handle, mmap_event->event);
3329 perf_output_copy(&handle, mmap_event->file_name,
3330 mmap_event->file_size);
3331 perf_output_end(&handle);
3332 }
3333
3334 static int perf_counter_mmap_match(struct perf_counter *counter,
3335 struct perf_mmap_event *mmap_event)
3336 {
3337 if (counter->attr.mmap)
3338 return 1;
3339
3340 return 0;
3341 }
3342
3343 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
3344 struct perf_mmap_event *mmap_event)
3345 {
3346 struct perf_counter *counter;
3347
3348 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3349 return;
3350
3351 rcu_read_lock();
3352 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3353 if (perf_counter_mmap_match(counter, mmap_event))
3354 perf_counter_mmap_output(counter, mmap_event);
3355 }
3356 rcu_read_unlock();
3357 }
3358
3359 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
3360 {
3361 struct perf_cpu_context *cpuctx;
3362 struct perf_counter_context *ctx;
3363 struct vm_area_struct *vma = mmap_event->vma;
3364 struct file *file = vma->vm_file;
3365 unsigned int size;
3366 char tmp[16];
3367 char *buf = NULL;
3368 const char *name;
3369
3370 memset(tmp, 0, sizeof(tmp));
3371
3372 if (file) {
3373 /*
3374 * d_path works from the end of the buffer backwards, so we
3375 * need to add enough zero bytes after the string to handle
3376 * the 64bit alignment we do later.
3377 */
3378 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3379 if (!buf) {
3380 name = strncpy(tmp, "//enomem", sizeof(tmp));
3381 goto got_name;
3382 }
3383 name = d_path(&file->f_path, buf, PATH_MAX);
3384 if (IS_ERR(name)) {
3385 name = strncpy(tmp, "//toolong", sizeof(tmp));
3386 goto got_name;
3387 }
3388 } else {
3389 if (arch_vma_name(mmap_event->vma)) {
3390 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3391 sizeof(tmp));
3392 goto got_name;
3393 }
3394
3395 if (!vma->vm_mm) {
3396 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3397 goto got_name;
3398 }
3399
3400 name = strncpy(tmp, "//anon", sizeof(tmp));
3401 goto got_name;
3402 }
3403
3404 got_name:
3405 size = ALIGN(strlen(name)+1, sizeof(u64));
3406
3407 mmap_event->file_name = name;
3408 mmap_event->file_size = size;
3409
3410 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
3411
3412 cpuctx = &get_cpu_var(perf_cpu_context);
3413 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
3414 put_cpu_var(perf_cpu_context);
3415
3416 rcu_read_lock();
3417 /*
3418 * doesn't really matter which of the child contexts the
3419 * events ends up in.
3420 */
3421 ctx = rcu_dereference(current->perf_counter_ctxp);
3422 if (ctx)
3423 perf_counter_mmap_ctx(ctx, mmap_event);
3424 rcu_read_unlock();
3425
3426 kfree(buf);
3427 }
3428
3429 void __perf_counter_mmap(struct vm_area_struct *vma)
3430 {
3431 struct perf_mmap_event mmap_event;
3432
3433 if (!atomic_read(&nr_mmap_counters))
3434 return;
3435
3436 mmap_event = (struct perf_mmap_event){
3437 .vma = vma,
3438 /* .file_name */
3439 /* .file_size */
3440 .event = {
3441 .header = {
3442 .type = PERF_EVENT_MMAP,
3443 .misc = 0,
3444 /* .size */
3445 },
3446 /* .pid */
3447 /* .tid */
3448 .start = vma->vm_start,
3449 .len = vma->vm_end - vma->vm_start,
3450 .pgoff = vma->vm_pgoff,
3451 },
3452 };
3453
3454 perf_counter_mmap_event(&mmap_event);
3455 }
3456
3457 /*
3458 * IRQ throttle logging
3459 */
3460
3461 static void perf_log_throttle(struct perf_counter *counter, int enable)
3462 {
3463 struct perf_output_handle handle;
3464 int ret;
3465
3466 struct {
3467 struct perf_event_header header;
3468 u64 time;
3469 u64 id;
3470 u64 stream_id;
3471 } throttle_event = {
3472 .header = {
3473 .type = PERF_EVENT_THROTTLE,
3474 .misc = 0,
3475 .size = sizeof(throttle_event),
3476 },
3477 .time = sched_clock(),
3478 .id = primary_counter_id(counter),
3479 .stream_id = counter->id,
3480 };
3481
3482 if (enable)
3483 throttle_event.header.type = PERF_EVENT_UNTHROTTLE;
3484
3485 ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
3486 if (ret)
3487 return;
3488
3489 perf_output_put(&handle, throttle_event);
3490 perf_output_end(&handle);
3491 }
3492
3493 /*
3494 * Generic counter overflow handling, sampling.
3495 */
3496
3497 int perf_counter_overflow(struct perf_counter *counter, int nmi,
3498 struct perf_sample_data *data)
3499 {
3500 int events = atomic_read(&counter->event_limit);
3501 int throttle = counter->pmu->unthrottle != NULL;
3502 struct hw_perf_counter *hwc = &counter->hw;
3503 int ret = 0;
3504
3505 if (!throttle) {
3506 hwc->interrupts++;
3507 } else {
3508 if (hwc->interrupts != MAX_INTERRUPTS) {
3509 hwc->interrupts++;
3510 if (HZ * hwc->interrupts >
3511 (u64)sysctl_perf_counter_sample_rate) {
3512 hwc->interrupts = MAX_INTERRUPTS;
3513 perf_log_throttle(counter, 0);
3514 ret = 1;
3515 }
3516 } else {
3517 /*
3518 * Keep re-disabling counters even though on the previous
3519 * pass we disabled it - just in case we raced with a
3520 * sched-in and the counter got enabled again:
3521 */
3522 ret = 1;
3523 }
3524 }
3525
3526 if (counter->attr.freq) {
3527 u64 now = sched_clock();
3528 s64 delta = now - hwc->freq_stamp;
3529
3530 hwc->freq_stamp = now;
3531
3532 if (delta > 0 && delta < TICK_NSEC)
3533 perf_adjust_period(counter, NSEC_PER_SEC / (int)delta);
3534 }
3535
3536 /*
3537 * XXX event_limit might not quite work as expected on inherited
3538 * counters
3539 */
3540
3541 counter->pending_kill = POLL_IN;
3542 if (events && atomic_dec_and_test(&counter->event_limit)) {
3543 ret = 1;
3544 counter->pending_kill = POLL_HUP;
3545 if (nmi) {
3546 counter->pending_disable = 1;
3547 perf_pending_queue(&counter->pending,
3548 perf_pending_counter);
3549 } else
3550 perf_counter_disable(counter);
3551 }
3552
3553 perf_counter_output(counter, nmi, data);
3554 return ret;
3555 }
3556
3557 /*
3558 * Generic software counter infrastructure
3559 */
3560
3561 /*
3562 * We directly increment counter->count and keep a second value in
3563 * counter->hw.period_left to count intervals. This period counter
3564 * is kept in the range [-sample_period, 0] so that we can use the
3565 * sign as trigger.
3566 */
3567
3568 static u64 perf_swcounter_set_period(struct perf_counter *counter)
3569 {
3570 struct hw_perf_counter *hwc = &counter->hw;
3571 u64 period = hwc->last_period;
3572 u64 nr, offset;
3573 s64 old, val;
3574
3575 hwc->last_period = hwc->sample_period;
3576
3577 again:
3578 old = val = atomic64_read(&hwc->period_left);
3579 if (val < 0)
3580 return 0;
3581
3582 nr = div64_u64(period + val, period);
3583 offset = nr * period;
3584 val -= offset;
3585 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3586 goto again;
3587
3588 return nr;
3589 }
3590
3591 static void perf_swcounter_overflow(struct perf_counter *counter,
3592 int nmi, struct perf_sample_data *data)
3593 {
3594 struct hw_perf_counter *hwc = &counter->hw;
3595 u64 overflow;
3596
3597 data->period = counter->hw.last_period;
3598 overflow = perf_swcounter_set_period(counter);
3599
3600 if (hwc->interrupts == MAX_INTERRUPTS)
3601 return;
3602
3603 for (; overflow; overflow--) {
3604 if (perf_counter_overflow(counter, nmi, data)) {
3605 /*
3606 * We inhibit the overflow from happening when
3607 * hwc->interrupts == MAX_INTERRUPTS.
3608 */
3609 break;
3610 }
3611 }
3612 }
3613
3614 static void perf_swcounter_unthrottle(struct perf_counter *counter)
3615 {
3616 /*
3617 * Nothing to do, we already reset hwc->interrupts.
3618 */
3619 }
3620
3621 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
3622 int nmi, struct perf_sample_data *data)
3623 {
3624 struct hw_perf_counter *hwc = &counter->hw;
3625
3626 atomic64_add(nr, &counter->count);
3627
3628 if (!hwc->sample_period)
3629 return;
3630
3631 if (!data->regs)
3632 return;
3633
3634 if (!atomic64_add_negative(nr, &hwc->period_left))
3635 perf_swcounter_overflow(counter, nmi, data);
3636 }
3637
3638 static int perf_swcounter_is_counting(struct perf_counter *counter)
3639 {
3640 /*
3641 * The counter is active, we're good!
3642 */
3643 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
3644 return 1;
3645
3646 /*
3647 * The counter is off/error, not counting.
3648 */
3649 if (counter->state != PERF_COUNTER_STATE_INACTIVE)
3650 return 0;
3651
3652 /*
3653 * The counter is inactive, if the context is active
3654 * we're part of a group that didn't make it on the 'pmu',
3655 * not counting.
3656 */
3657 if (counter->ctx->is_active)
3658 return 0;
3659
3660 /*
3661 * We're inactive and the context is too, this means the
3662 * task is scheduled out, we're counting events that happen
3663 * to us, like migration events.
3664 */
3665 return 1;
3666 }
3667
3668 static int perf_swcounter_match(struct perf_counter *counter,
3669 enum perf_type_id type,
3670 u32 event, struct pt_regs *regs)
3671 {
3672 if (!perf_swcounter_is_counting(counter))
3673 return 0;
3674
3675 if (counter->attr.type != type)
3676 return 0;
3677 if (counter->attr.config != event)
3678 return 0;
3679
3680 if (regs) {
3681 if (counter->attr.exclude_user && user_mode(regs))
3682 return 0;
3683
3684 if (counter->attr.exclude_kernel && !user_mode(regs))
3685 return 0;
3686 }
3687
3688 return 1;
3689 }
3690
3691 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
3692 enum perf_type_id type,
3693 u32 event, u64 nr, int nmi,
3694 struct perf_sample_data *data)
3695 {
3696 struct perf_counter *counter;
3697
3698 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3699 return;
3700
3701 rcu_read_lock();
3702 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3703 if (perf_swcounter_match(counter, type, event, data->regs))
3704 perf_swcounter_add(counter, nr, nmi, data);
3705 }
3706 rcu_read_unlock();
3707 }
3708
3709 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
3710 {
3711 if (in_nmi())
3712 return &cpuctx->recursion[3];
3713
3714 if (in_irq())
3715 return &cpuctx->recursion[2];
3716
3717 if (in_softirq())
3718 return &cpuctx->recursion[1];
3719
3720 return &cpuctx->recursion[0];
3721 }
3722
3723 static void do_perf_swcounter_event(enum perf_type_id type, u32 event,
3724 u64 nr, int nmi,
3725 struct perf_sample_data *data)
3726 {
3727 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3728 int *recursion = perf_swcounter_recursion_context(cpuctx);
3729 struct perf_counter_context *ctx;
3730
3731 if (*recursion)
3732 goto out;
3733
3734 (*recursion)++;
3735 barrier();
3736
3737 perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
3738 nr, nmi, data);
3739 rcu_read_lock();
3740 /*
3741 * doesn't really matter which of the child contexts the
3742 * events ends up in.
3743 */
3744 ctx = rcu_dereference(current->perf_counter_ctxp);
3745 if (ctx)
3746 perf_swcounter_ctx_event(ctx, type, event, nr, nmi, data);
3747 rcu_read_unlock();
3748
3749 barrier();
3750 (*recursion)--;
3751
3752 out:
3753 put_cpu_var(perf_cpu_context);
3754 }
3755
3756 void __perf_swcounter_event(u32 event, u64 nr, int nmi,
3757 struct pt_regs *regs, u64 addr)
3758 {
3759 struct perf_sample_data data = {
3760 .regs = regs,
3761 .addr = addr,
3762 };
3763
3764 do_perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, &data);
3765 }
3766
3767 static void perf_swcounter_read(struct perf_counter *counter)
3768 {
3769 }
3770
3771 static int perf_swcounter_enable(struct perf_counter *counter)
3772 {
3773 struct hw_perf_counter *hwc = &counter->hw;
3774
3775 if (hwc->sample_period) {
3776 hwc->last_period = hwc->sample_period;
3777 perf_swcounter_set_period(counter);
3778 }
3779 return 0;
3780 }
3781
3782 static void perf_swcounter_disable(struct perf_counter *counter)
3783 {
3784 }
3785
3786 static const struct pmu perf_ops_generic = {
3787 .enable = perf_swcounter_enable,
3788 .disable = perf_swcounter_disable,
3789 .read = perf_swcounter_read,
3790 .unthrottle = perf_swcounter_unthrottle,
3791 };
3792
3793 /*
3794 * hrtimer based swcounter callback
3795 */
3796
3797 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
3798 {
3799 enum hrtimer_restart ret = HRTIMER_RESTART;
3800 struct perf_sample_data data;
3801 struct perf_counter *counter;
3802 u64 period;
3803
3804 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
3805 counter->pmu->read(counter);
3806
3807 data.addr = 0;
3808 data.regs = get_irq_regs();
3809 /*
3810 * In case we exclude kernel IPs or are somehow not in interrupt
3811 * context, provide the next best thing, the user IP.
3812 */
3813 if ((counter->attr.exclude_kernel || !data.regs) &&
3814 !counter->attr.exclude_user)
3815 data.regs = task_pt_regs(current);
3816
3817 if (data.regs) {
3818 if (perf_counter_overflow(counter, 0, &data))
3819 ret = HRTIMER_NORESTART;
3820 }
3821
3822 period = max_t(u64, 10000, counter->hw.sample_period);
3823 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3824
3825 return ret;
3826 }
3827
3828 /*
3829 * Software counter: cpu wall time clock
3830 */
3831
3832 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
3833 {
3834 int cpu = raw_smp_processor_id();
3835 s64 prev;
3836 u64 now;
3837
3838 now = cpu_clock(cpu);
3839 prev = atomic64_read(&counter->hw.prev_count);
3840 atomic64_set(&counter->hw.prev_count, now);
3841 atomic64_add(now - prev, &counter->count);
3842 }
3843
3844 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
3845 {
3846 struct hw_perf_counter *hwc = &counter->hw;
3847 int cpu = raw_smp_processor_id();
3848
3849 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3850 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3851 hwc->hrtimer.function = perf_swcounter_hrtimer;
3852 if (hwc->sample_period) {
3853 u64 period = max_t(u64, 10000, hwc->sample_period);
3854 __hrtimer_start_range_ns(&hwc->hrtimer,
3855 ns_to_ktime(period), 0,
3856 HRTIMER_MODE_REL, 0);
3857 }
3858
3859 return 0;
3860 }
3861
3862 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
3863 {
3864 if (counter->hw.sample_period)
3865 hrtimer_cancel(&counter->hw.hrtimer);
3866 cpu_clock_perf_counter_update(counter);
3867 }
3868
3869 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
3870 {
3871 cpu_clock_perf_counter_update(counter);
3872 }
3873
3874 static const struct pmu perf_ops_cpu_clock = {
3875 .enable = cpu_clock_perf_counter_enable,
3876 .disable = cpu_clock_perf_counter_disable,
3877 .read = cpu_clock_perf_counter_read,
3878 };
3879
3880 /*
3881 * Software counter: task time clock
3882 */
3883
3884 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
3885 {
3886 u64 prev;
3887 s64 delta;
3888
3889 prev = atomic64_xchg(&counter->hw.prev_count, now);
3890 delta = now - prev;
3891 atomic64_add(delta, &counter->count);
3892 }
3893
3894 static int task_clock_perf_counter_enable(struct perf_counter *counter)
3895 {
3896 struct hw_perf_counter *hwc = &counter->hw;
3897 u64 now;
3898
3899 now = counter->ctx->time;
3900
3901 atomic64_set(&hwc->prev_count, now);
3902 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3903 hwc->hrtimer.function = perf_swcounter_hrtimer;
3904 if (hwc->sample_period) {
3905 u64 period = max_t(u64, 10000, hwc->sample_period);
3906 __hrtimer_start_range_ns(&hwc->hrtimer,
3907 ns_to_ktime(period), 0,
3908 HRTIMER_MODE_REL, 0);
3909 }
3910
3911 return 0;
3912 }
3913
3914 static void task_clock_perf_counter_disable(struct perf_counter *counter)
3915 {
3916 if (counter->hw.sample_period)
3917 hrtimer_cancel(&counter->hw.hrtimer);
3918 task_clock_perf_counter_update(counter, counter->ctx->time);
3919
3920 }
3921
3922 static void task_clock_perf_counter_read(struct perf_counter *counter)
3923 {
3924 u64 time;
3925
3926 if (!in_nmi()) {
3927 update_context_time(counter->ctx);
3928 time = counter->ctx->time;
3929 } else {
3930 u64 now = perf_clock();
3931 u64 delta = now - counter->ctx->timestamp;
3932 time = counter->ctx->time + delta;
3933 }
3934
3935 task_clock_perf_counter_update(counter, time);
3936 }
3937
3938 static const struct pmu perf_ops_task_clock = {
3939 .enable = task_clock_perf_counter_enable,
3940 .disable = task_clock_perf_counter_disable,
3941 .read = task_clock_perf_counter_read,
3942 };
3943
3944 #ifdef CONFIG_EVENT_PROFILE
3945 void perf_tpcounter_event(int event_id, u64 addr, u64 count, void *record,
3946 int entry_size)
3947 {
3948 struct perf_raw_record raw = {
3949 .size = entry_size,
3950 .data = record,
3951 };
3952
3953 struct perf_sample_data data = {
3954 .regs = get_irq_regs(),
3955 .addr = addr,
3956 .raw = &raw,
3957 };
3958
3959 if (!data.regs)
3960 data.regs = task_pt_regs(current);
3961
3962 do_perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, count, 1, &data);
3963 }
3964 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3965
3966 extern int ftrace_profile_enable(int);
3967 extern void ftrace_profile_disable(int);
3968
3969 static void tp_perf_counter_destroy(struct perf_counter *counter)
3970 {
3971 ftrace_profile_disable(counter->attr.config);
3972 }
3973
3974 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3975 {
3976 /*
3977 * Raw tracepoint data is a severe data leak, only allow root to
3978 * have these.
3979 */
3980 if ((counter->attr.sample_type & PERF_SAMPLE_RAW) &&
3981 perf_paranoid_tracepoint_raw() &&
3982 !capable(CAP_SYS_ADMIN))
3983 return ERR_PTR(-EPERM);
3984
3985 if (ftrace_profile_enable(counter->attr.config))
3986 return NULL;
3987
3988 counter->destroy = tp_perf_counter_destroy;
3989
3990 return &perf_ops_generic;
3991 }
3992 #else
3993 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3994 {
3995 return NULL;
3996 }
3997 #endif
3998
3999 atomic_t perf_swcounter_enabled[PERF_COUNT_SW_MAX];
4000
4001 static void sw_perf_counter_destroy(struct perf_counter *counter)
4002 {
4003 u64 event = counter->attr.config;
4004
4005 WARN_ON(counter->parent);
4006
4007 atomic_dec(&perf_swcounter_enabled[event]);
4008 }
4009
4010 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
4011 {
4012 const struct pmu *pmu = NULL;
4013 u64 event = counter->attr.config;
4014
4015 /*
4016 * Software counters (currently) can't in general distinguish
4017 * between user, kernel and hypervisor events.
4018 * However, context switches and cpu migrations are considered
4019 * to be kernel events, and page faults are never hypervisor
4020 * events.
4021 */
4022 switch (event) {
4023 case PERF_COUNT_SW_CPU_CLOCK:
4024 pmu = &perf_ops_cpu_clock;
4025
4026 break;
4027 case PERF_COUNT_SW_TASK_CLOCK:
4028 /*
4029 * If the user instantiates this as a per-cpu counter,
4030 * use the cpu_clock counter instead.
4031 */
4032 if (counter->ctx->task)
4033 pmu = &perf_ops_task_clock;
4034 else
4035 pmu = &perf_ops_cpu_clock;
4036
4037 break;
4038 case PERF_COUNT_SW_PAGE_FAULTS:
4039 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4040 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4041 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4042 case PERF_COUNT_SW_CPU_MIGRATIONS:
4043 if (!counter->parent) {
4044 atomic_inc(&perf_swcounter_enabled[event]);
4045 counter->destroy = sw_perf_counter_destroy;
4046 }
4047 pmu = &perf_ops_generic;
4048 break;
4049 }
4050
4051 return pmu;
4052 }
4053
4054 /*
4055 * Allocate and initialize a counter structure
4056 */
4057 static struct perf_counter *
4058 perf_counter_alloc(struct perf_counter_attr *attr,
4059 int cpu,
4060 struct perf_counter_context *ctx,
4061 struct perf_counter *group_leader,
4062 struct perf_counter *parent_counter,
4063 gfp_t gfpflags)
4064 {
4065 const struct pmu *pmu;
4066 struct perf_counter *counter;
4067 struct hw_perf_counter *hwc;
4068 long err;
4069
4070 counter = kzalloc(sizeof(*counter), gfpflags);
4071 if (!counter)
4072 return ERR_PTR(-ENOMEM);
4073
4074 /*
4075 * Single counters are their own group leaders, with an
4076 * empty sibling list:
4077 */
4078 if (!group_leader)
4079 group_leader = counter;
4080
4081 mutex_init(&counter->child_mutex);
4082 INIT_LIST_HEAD(&counter->child_list);
4083
4084 INIT_LIST_HEAD(&counter->list_entry);
4085 INIT_LIST_HEAD(&counter->event_entry);
4086 INIT_LIST_HEAD(&counter->sibling_list);
4087 init_waitqueue_head(&counter->waitq);
4088
4089 mutex_init(&counter->mmap_mutex);
4090
4091 counter->cpu = cpu;
4092 counter->attr = *attr;
4093 counter->group_leader = group_leader;
4094 counter->pmu = NULL;
4095 counter->ctx = ctx;
4096 counter->oncpu = -1;
4097
4098 counter->parent = parent_counter;
4099
4100 counter->ns = get_pid_ns(current->nsproxy->pid_ns);
4101 counter->id = atomic64_inc_return(&perf_counter_id);
4102
4103 counter->state = PERF_COUNTER_STATE_INACTIVE;
4104
4105 if (attr->disabled)
4106 counter->state = PERF_COUNTER_STATE_OFF;
4107
4108 pmu = NULL;
4109
4110 hwc = &counter->hw;
4111 hwc->sample_period = attr->sample_period;
4112 if (attr->freq && attr->sample_freq)
4113 hwc->sample_period = 1;
4114 hwc->last_period = hwc->sample_period;
4115
4116 atomic64_set(&hwc->period_left, hwc->sample_period);
4117
4118 /*
4119 * we currently do not support PERF_FORMAT_GROUP on inherited counters
4120 */
4121 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4122 goto done;
4123
4124 switch (attr->type) {
4125 case PERF_TYPE_RAW:
4126 case PERF_TYPE_HARDWARE:
4127 case PERF_TYPE_HW_CACHE:
4128 pmu = hw_perf_counter_init(counter);
4129 break;
4130
4131 case PERF_TYPE_SOFTWARE:
4132 pmu = sw_perf_counter_init(counter);
4133 break;
4134
4135 case PERF_TYPE_TRACEPOINT:
4136 pmu = tp_perf_counter_init(counter);
4137 break;
4138
4139 default:
4140 break;
4141 }
4142 done:
4143 err = 0;
4144 if (!pmu)
4145 err = -EINVAL;
4146 else if (IS_ERR(pmu))
4147 err = PTR_ERR(pmu);
4148
4149 if (err) {
4150 if (counter->ns)
4151 put_pid_ns(counter->ns);
4152 kfree(counter);
4153 return ERR_PTR(err);
4154 }
4155
4156 counter->pmu = pmu;
4157
4158 if (!counter->parent) {
4159 atomic_inc(&nr_counters);
4160 if (counter->attr.mmap)
4161 atomic_inc(&nr_mmap_counters);
4162 if (counter->attr.comm)
4163 atomic_inc(&nr_comm_counters);
4164 if (counter->attr.task)
4165 atomic_inc(&nr_task_counters);
4166 }
4167
4168 return counter;
4169 }
4170
4171 static int perf_copy_attr(struct perf_counter_attr __user *uattr,
4172 struct perf_counter_attr *attr)
4173 {
4174 int ret;
4175 u32 size;
4176
4177 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4178 return -EFAULT;
4179
4180 /*
4181 * zero the full structure, so that a short copy will be nice.
4182 */
4183 memset(attr, 0, sizeof(*attr));
4184
4185 ret = get_user(size, &uattr->size);
4186 if (ret)
4187 return ret;
4188
4189 if (size > PAGE_SIZE) /* silly large */
4190 goto err_size;
4191
4192 if (!size) /* abi compat */
4193 size = PERF_ATTR_SIZE_VER0;
4194
4195 if (size < PERF_ATTR_SIZE_VER0)
4196 goto err_size;
4197
4198 /*
4199 * If we're handed a bigger struct than we know of,
4200 * ensure all the unknown bits are 0.
4201 */
4202 if (size > sizeof(*attr)) {
4203 unsigned long val;
4204 unsigned long __user *addr;
4205 unsigned long __user *end;
4206
4207 addr = PTR_ALIGN((void __user *)uattr + sizeof(*attr),
4208 sizeof(unsigned long));
4209 end = PTR_ALIGN((void __user *)uattr + size,
4210 sizeof(unsigned long));
4211
4212 for (; addr < end; addr += sizeof(unsigned long)) {
4213 ret = get_user(val, addr);
4214 if (ret)
4215 return ret;
4216 if (val)
4217 goto err_size;
4218 }
4219 }
4220
4221 ret = copy_from_user(attr, uattr, size);
4222 if (ret)
4223 return -EFAULT;
4224
4225 /*
4226 * If the type exists, the corresponding creation will verify
4227 * the attr->config.
4228 */
4229 if (attr->type >= PERF_TYPE_MAX)
4230 return -EINVAL;
4231
4232 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
4233 return -EINVAL;
4234
4235 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4236 return -EINVAL;
4237
4238 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4239 return -EINVAL;
4240
4241 out:
4242 return ret;
4243
4244 err_size:
4245 put_user(sizeof(*attr), &uattr->size);
4246 ret = -E2BIG;
4247 goto out;
4248 }
4249
4250 int perf_counter_set_output(struct perf_counter *counter, int output_fd)
4251 {
4252 struct perf_counter *output_counter = NULL;
4253 struct file *output_file = NULL;
4254 struct perf_counter *old_output;
4255 int fput_needed = 0;
4256 int ret = -EINVAL;
4257
4258 if (!output_fd)
4259 goto set;
4260
4261 output_file = fget_light(output_fd, &fput_needed);
4262 if (!output_file)
4263 return -EBADF;
4264
4265 if (output_file->f_op != &perf_fops)
4266 goto out;
4267
4268 output_counter = output_file->private_data;
4269
4270 /* Don't chain output fds */
4271 if (output_counter->output)
4272 goto out;
4273
4274 /* Don't set an output fd when we already have an output channel */
4275 if (counter->data)
4276 goto out;
4277
4278 atomic_long_inc(&output_file->f_count);
4279
4280 set:
4281 mutex_lock(&counter->mmap_mutex);
4282 old_output = counter->output;
4283 rcu_assign_pointer(counter->output, output_counter);
4284 mutex_unlock(&counter->mmap_mutex);
4285
4286 if (old_output) {
4287 /*
4288 * we need to make sure no existing perf_output_*()
4289 * is still referencing this counter.
4290 */
4291 synchronize_rcu();
4292 fput(old_output->filp);
4293 }
4294
4295 ret = 0;
4296 out:
4297 fput_light(output_file, fput_needed);
4298 return ret;
4299 }
4300
4301 /**
4302 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
4303 *
4304 * @attr_uptr: event type attributes for monitoring/sampling
4305 * @pid: target pid
4306 * @cpu: target cpu
4307 * @group_fd: group leader counter fd
4308 */
4309 SYSCALL_DEFINE5(perf_counter_open,
4310 struct perf_counter_attr __user *, attr_uptr,
4311 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4312 {
4313 struct perf_counter *counter, *group_leader;
4314 struct perf_counter_attr attr;
4315 struct perf_counter_context *ctx;
4316 struct file *counter_file = NULL;
4317 struct file *group_file = NULL;
4318 int fput_needed = 0;
4319 int fput_needed2 = 0;
4320 int err;
4321
4322 /* for future expandability... */
4323 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4324 return -EINVAL;
4325
4326 err = perf_copy_attr(attr_uptr, &attr);
4327 if (err)
4328 return err;
4329
4330 if (!attr.exclude_kernel) {
4331 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4332 return -EACCES;
4333 }
4334
4335 if (attr.freq) {
4336 if (attr.sample_freq > sysctl_perf_counter_sample_rate)
4337 return -EINVAL;
4338 }
4339
4340 /*
4341 * Get the target context (task or percpu):
4342 */
4343 ctx = find_get_context(pid, cpu);
4344 if (IS_ERR(ctx))
4345 return PTR_ERR(ctx);
4346
4347 /*
4348 * Look up the group leader (we will attach this counter to it):
4349 */
4350 group_leader = NULL;
4351 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4352 err = -EINVAL;
4353 group_file = fget_light(group_fd, &fput_needed);
4354 if (!group_file)
4355 goto err_put_context;
4356 if (group_file->f_op != &perf_fops)
4357 goto err_put_context;
4358
4359 group_leader = group_file->private_data;
4360 /*
4361 * Do not allow a recursive hierarchy (this new sibling
4362 * becoming part of another group-sibling):
4363 */
4364 if (group_leader->group_leader != group_leader)
4365 goto err_put_context;
4366 /*
4367 * Do not allow to attach to a group in a different
4368 * task or CPU context:
4369 */
4370 if (group_leader->ctx != ctx)
4371 goto err_put_context;
4372 /*
4373 * Only a group leader can be exclusive or pinned
4374 */
4375 if (attr.exclusive || attr.pinned)
4376 goto err_put_context;
4377 }
4378
4379 counter = perf_counter_alloc(&attr, cpu, ctx, group_leader,
4380 NULL, GFP_KERNEL);
4381 err = PTR_ERR(counter);
4382 if (IS_ERR(counter))
4383 goto err_put_context;
4384
4385 err = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
4386 if (err < 0)
4387 goto err_free_put_context;
4388
4389 counter_file = fget_light(err, &fput_needed2);
4390 if (!counter_file)
4391 goto err_free_put_context;
4392
4393 if (flags & PERF_FLAG_FD_OUTPUT) {
4394 err = perf_counter_set_output(counter, group_fd);
4395 if (err)
4396 goto err_fput_free_put_context;
4397 }
4398
4399 counter->filp = counter_file;
4400 WARN_ON_ONCE(ctx->parent_ctx);
4401 mutex_lock(&ctx->mutex);
4402 perf_install_in_context(ctx, counter, cpu);
4403 ++ctx->generation;
4404 mutex_unlock(&ctx->mutex);
4405
4406 counter->owner = current;
4407 get_task_struct(current);
4408 mutex_lock(&current->perf_counter_mutex);
4409 list_add_tail(&counter->owner_entry, &current->perf_counter_list);
4410 mutex_unlock(&current->perf_counter_mutex);
4411
4412 err_fput_free_put_context:
4413 fput_light(counter_file, fput_needed2);
4414
4415 err_free_put_context:
4416 if (err < 0)
4417 kfree(counter);
4418
4419 err_put_context:
4420 if (err < 0)
4421 put_ctx(ctx);
4422
4423 fput_light(group_file, fput_needed);
4424
4425 return err;
4426 }
4427
4428 /*
4429 * inherit a counter from parent task to child task:
4430 */
4431 static struct perf_counter *
4432 inherit_counter(struct perf_counter *parent_counter,
4433 struct task_struct *parent,
4434 struct perf_counter_context *parent_ctx,
4435 struct task_struct *child,
4436 struct perf_counter *group_leader,
4437 struct perf_counter_context *child_ctx)
4438 {
4439 struct perf_counter *child_counter;
4440
4441 /*
4442 * Instead of creating recursive hierarchies of counters,
4443 * we link inherited counters back to the original parent,
4444 * which has a filp for sure, which we use as the reference
4445 * count:
4446 */
4447 if (parent_counter->parent)
4448 parent_counter = parent_counter->parent;
4449
4450 child_counter = perf_counter_alloc(&parent_counter->attr,
4451 parent_counter->cpu, child_ctx,
4452 group_leader, parent_counter,
4453 GFP_KERNEL);
4454 if (IS_ERR(child_counter))
4455 return child_counter;
4456 get_ctx(child_ctx);
4457
4458 /*
4459 * Make the child state follow the state of the parent counter,
4460 * not its attr.disabled bit. We hold the parent's mutex,
4461 * so we won't race with perf_counter_{en, dis}able_family.
4462 */
4463 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
4464 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
4465 else
4466 child_counter->state = PERF_COUNTER_STATE_OFF;
4467
4468 if (parent_counter->attr.freq)
4469 child_counter->hw.sample_period = parent_counter->hw.sample_period;
4470
4471 /*
4472 * Link it up in the child's context:
4473 */
4474 add_counter_to_ctx(child_counter, child_ctx);
4475
4476 /*
4477 * Get a reference to the parent filp - we will fput it
4478 * when the child counter exits. This is safe to do because
4479 * we are in the parent and we know that the filp still
4480 * exists and has a nonzero count:
4481 */
4482 atomic_long_inc(&parent_counter->filp->f_count);
4483
4484 /*
4485 * Link this into the parent counter's child list
4486 */
4487 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
4488 mutex_lock(&parent_counter->child_mutex);
4489 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
4490 mutex_unlock(&parent_counter->child_mutex);
4491
4492 return child_counter;
4493 }
4494
4495 static int inherit_group(struct perf_counter *parent_counter,
4496 struct task_struct *parent,
4497 struct perf_counter_context *parent_ctx,
4498 struct task_struct *child,
4499 struct perf_counter_context *child_ctx)
4500 {
4501 struct perf_counter *leader;
4502 struct perf_counter *sub;
4503 struct perf_counter *child_ctr;
4504
4505 leader = inherit_counter(parent_counter, parent, parent_ctx,
4506 child, NULL, child_ctx);
4507 if (IS_ERR(leader))
4508 return PTR_ERR(leader);
4509 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
4510 child_ctr = inherit_counter(sub, parent, parent_ctx,
4511 child, leader, child_ctx);
4512 if (IS_ERR(child_ctr))
4513 return PTR_ERR(child_ctr);
4514 }
4515 return 0;
4516 }
4517
4518 static void sync_child_counter(struct perf_counter *child_counter,
4519 struct task_struct *child)
4520 {
4521 struct perf_counter *parent_counter = child_counter->parent;
4522 u64 child_val;
4523
4524 if (child_counter->attr.inherit_stat)
4525 perf_counter_read_event(child_counter, child);
4526
4527 child_val = atomic64_read(&child_counter->count);
4528
4529 /*
4530 * Add back the child's count to the parent's count:
4531 */
4532 atomic64_add(child_val, &parent_counter->count);
4533 atomic64_add(child_counter->total_time_enabled,
4534 &parent_counter->child_total_time_enabled);
4535 atomic64_add(child_counter->total_time_running,
4536 &parent_counter->child_total_time_running);
4537
4538 /*
4539 * Remove this counter from the parent's list
4540 */
4541 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
4542 mutex_lock(&parent_counter->child_mutex);
4543 list_del_init(&child_counter->child_list);
4544 mutex_unlock(&parent_counter->child_mutex);
4545
4546 /*
4547 * Release the parent counter, if this was the last
4548 * reference to it.
4549 */
4550 fput(parent_counter->filp);
4551 }
4552
4553 static void
4554 __perf_counter_exit_task(struct perf_counter *child_counter,
4555 struct perf_counter_context *child_ctx,
4556 struct task_struct *child)
4557 {
4558 struct perf_counter *parent_counter;
4559
4560 update_counter_times(child_counter);
4561 perf_counter_remove_from_context(child_counter);
4562
4563 parent_counter = child_counter->parent;
4564 /*
4565 * It can happen that parent exits first, and has counters
4566 * that are still around due to the child reference. These
4567 * counters need to be zapped - but otherwise linger.
4568 */
4569 if (parent_counter) {
4570 sync_child_counter(child_counter, child);
4571 free_counter(child_counter);
4572 }
4573 }
4574
4575 /*
4576 * When a child task exits, feed back counter values to parent counters.
4577 */
4578 void perf_counter_exit_task(struct task_struct *child)
4579 {
4580 struct perf_counter *child_counter, *tmp;
4581 struct perf_counter_context *child_ctx;
4582 unsigned long flags;
4583
4584 if (likely(!child->perf_counter_ctxp)) {
4585 perf_counter_task(child, NULL, 0);
4586 return;
4587 }
4588
4589 local_irq_save(flags);
4590 /*
4591 * We can't reschedule here because interrupts are disabled,
4592 * and either child is current or it is a task that can't be
4593 * scheduled, so we are now safe from rescheduling changing
4594 * our context.
4595 */
4596 child_ctx = child->perf_counter_ctxp;
4597 __perf_counter_task_sched_out(child_ctx);
4598
4599 /*
4600 * Take the context lock here so that if find_get_context is
4601 * reading child->perf_counter_ctxp, we wait until it has
4602 * incremented the context's refcount before we do put_ctx below.
4603 */
4604 spin_lock(&child_ctx->lock);
4605 child->perf_counter_ctxp = NULL;
4606 /*
4607 * If this context is a clone; unclone it so it can't get
4608 * swapped to another process while we're removing all
4609 * the counters from it.
4610 */
4611 unclone_ctx(child_ctx);
4612 spin_unlock_irqrestore(&child_ctx->lock, flags);
4613
4614 /*
4615 * Report the task dead after unscheduling the counters so that we
4616 * won't get any samples after PERF_EVENT_EXIT. We can however still
4617 * get a few PERF_EVENT_READ events.
4618 */
4619 perf_counter_task(child, child_ctx, 0);
4620
4621 /*
4622 * We can recurse on the same lock type through:
4623 *
4624 * __perf_counter_exit_task()
4625 * sync_child_counter()
4626 * fput(parent_counter->filp)
4627 * perf_release()
4628 * mutex_lock(&ctx->mutex)
4629 *
4630 * But since its the parent context it won't be the same instance.
4631 */
4632 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4633
4634 again:
4635 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
4636 list_entry)
4637 __perf_counter_exit_task(child_counter, child_ctx, child);
4638
4639 /*
4640 * If the last counter was a group counter, it will have appended all
4641 * its siblings to the list, but we obtained 'tmp' before that which
4642 * will still point to the list head terminating the iteration.
4643 */
4644 if (!list_empty(&child_ctx->counter_list))
4645 goto again;
4646
4647 mutex_unlock(&child_ctx->mutex);
4648
4649 put_ctx(child_ctx);
4650 }
4651
4652 /*
4653 * free an unexposed, unused context as created by inheritance by
4654 * init_task below, used by fork() in case of fail.
4655 */
4656 void perf_counter_free_task(struct task_struct *task)
4657 {
4658 struct perf_counter_context *ctx = task->perf_counter_ctxp;
4659 struct perf_counter *counter, *tmp;
4660
4661 if (!ctx)
4662 return;
4663
4664 mutex_lock(&ctx->mutex);
4665 again:
4666 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) {
4667 struct perf_counter *parent = counter->parent;
4668
4669 if (WARN_ON_ONCE(!parent))
4670 continue;
4671
4672 mutex_lock(&parent->child_mutex);
4673 list_del_init(&counter->child_list);
4674 mutex_unlock(&parent->child_mutex);
4675
4676 fput(parent->filp);
4677
4678 list_del_counter(counter, ctx);
4679 free_counter(counter);
4680 }
4681
4682 if (!list_empty(&ctx->counter_list))
4683 goto again;
4684
4685 mutex_unlock(&ctx->mutex);
4686
4687 put_ctx(ctx);
4688 }
4689
4690 /*
4691 * Initialize the perf_counter context in task_struct
4692 */
4693 int perf_counter_init_task(struct task_struct *child)
4694 {
4695 struct perf_counter_context *child_ctx, *parent_ctx;
4696 struct perf_counter_context *cloned_ctx;
4697 struct perf_counter *counter;
4698 struct task_struct *parent = current;
4699 int inherited_all = 1;
4700 int ret = 0;
4701
4702 child->perf_counter_ctxp = NULL;
4703
4704 mutex_init(&child->perf_counter_mutex);
4705 INIT_LIST_HEAD(&child->perf_counter_list);
4706
4707 if (likely(!parent->perf_counter_ctxp))
4708 return 0;
4709
4710 /*
4711 * This is executed from the parent task context, so inherit
4712 * counters that have been marked for cloning.
4713 * First allocate and initialize a context for the child.
4714 */
4715
4716 child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
4717 if (!child_ctx)
4718 return -ENOMEM;
4719
4720 __perf_counter_init_context(child_ctx, child);
4721 child->perf_counter_ctxp = child_ctx;
4722 get_task_struct(child);
4723
4724 /*
4725 * If the parent's context is a clone, pin it so it won't get
4726 * swapped under us.
4727 */
4728 parent_ctx = perf_pin_task_context(parent);
4729
4730 /*
4731 * No need to check if parent_ctx != NULL here; since we saw
4732 * it non-NULL earlier, the only reason for it to become NULL
4733 * is if we exit, and since we're currently in the middle of
4734 * a fork we can't be exiting at the same time.
4735 */
4736
4737 /*
4738 * Lock the parent list. No need to lock the child - not PID
4739 * hashed yet and not running, so nobody can access it.
4740 */
4741 mutex_lock(&parent_ctx->mutex);
4742
4743 /*
4744 * We dont have to disable NMIs - we are only looking at
4745 * the list, not manipulating it:
4746 */
4747 list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
4748 if (counter != counter->group_leader)
4749 continue;
4750
4751 if (!counter->attr.inherit) {
4752 inherited_all = 0;
4753 continue;
4754 }
4755
4756 ret = inherit_group(counter, parent, parent_ctx,
4757 child, child_ctx);
4758 if (ret) {
4759 inherited_all = 0;
4760 break;
4761 }
4762 }
4763
4764 if (inherited_all) {
4765 /*
4766 * Mark the child context as a clone of the parent
4767 * context, or of whatever the parent is a clone of.
4768 * Note that if the parent is a clone, it could get
4769 * uncloned at any point, but that doesn't matter
4770 * because the list of counters and the generation
4771 * count can't have changed since we took the mutex.
4772 */
4773 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
4774 if (cloned_ctx) {
4775 child_ctx->parent_ctx = cloned_ctx;
4776 child_ctx->parent_gen = parent_ctx->parent_gen;
4777 } else {
4778 child_ctx->parent_ctx = parent_ctx;
4779 child_ctx->parent_gen = parent_ctx->generation;
4780 }
4781 get_ctx(child_ctx->parent_ctx);
4782 }
4783
4784 mutex_unlock(&parent_ctx->mutex);
4785
4786 perf_unpin_context(parent_ctx);
4787
4788 return ret;
4789 }
4790
4791 static void __cpuinit perf_counter_init_cpu(int cpu)
4792 {
4793 struct perf_cpu_context *cpuctx;
4794
4795 cpuctx = &per_cpu(perf_cpu_context, cpu);
4796 __perf_counter_init_context(&cpuctx->ctx, NULL);
4797
4798 spin_lock(&perf_resource_lock);
4799 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
4800 spin_unlock(&perf_resource_lock);
4801
4802 hw_perf_counter_setup(cpu);
4803 }
4804
4805 #ifdef CONFIG_HOTPLUG_CPU
4806 static void __perf_counter_exit_cpu(void *info)
4807 {
4808 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4809 struct perf_counter_context *ctx = &cpuctx->ctx;
4810 struct perf_counter *counter, *tmp;
4811
4812 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
4813 __perf_counter_remove_from_context(counter);
4814 }
4815 static void perf_counter_exit_cpu(int cpu)
4816 {
4817 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4818 struct perf_counter_context *ctx = &cpuctx->ctx;
4819
4820 mutex_lock(&ctx->mutex);
4821 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
4822 mutex_unlock(&ctx->mutex);
4823 }
4824 #else
4825 static inline void perf_counter_exit_cpu(int cpu) { }
4826 #endif
4827
4828 static int __cpuinit
4829 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
4830 {
4831 unsigned int cpu = (long)hcpu;
4832
4833 switch (action) {
4834
4835 case CPU_UP_PREPARE:
4836 case CPU_UP_PREPARE_FROZEN:
4837 perf_counter_init_cpu(cpu);
4838 break;
4839
4840 case CPU_ONLINE:
4841 case CPU_ONLINE_FROZEN:
4842 hw_perf_counter_setup_online(cpu);
4843 break;
4844
4845 case CPU_DOWN_PREPARE:
4846 case CPU_DOWN_PREPARE_FROZEN:
4847 perf_counter_exit_cpu(cpu);
4848 break;
4849
4850 default:
4851 break;
4852 }
4853
4854 return NOTIFY_OK;
4855 }
4856
4857 /*
4858 * This has to have a higher priority than migration_notifier in sched.c.
4859 */
4860 static struct notifier_block __cpuinitdata perf_cpu_nb = {
4861 .notifier_call = perf_cpu_notify,
4862 .priority = 20,
4863 };
4864
4865 void __init perf_counter_init(void)
4866 {
4867 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
4868 (void *)(long)smp_processor_id());
4869 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
4870 (void *)(long)smp_processor_id());
4871 register_cpu_notifier(&perf_cpu_nb);
4872 }
4873
4874 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
4875 {
4876 return sprintf(buf, "%d\n", perf_reserved_percpu);
4877 }
4878
4879 static ssize_t
4880 perf_set_reserve_percpu(struct sysdev_class *class,
4881 const char *buf,
4882 size_t count)
4883 {
4884 struct perf_cpu_context *cpuctx;
4885 unsigned long val;
4886 int err, cpu, mpt;
4887
4888 err = strict_strtoul(buf, 10, &val);
4889 if (err)
4890 return err;
4891 if (val > perf_max_counters)
4892 return -EINVAL;
4893
4894 spin_lock(&perf_resource_lock);
4895 perf_reserved_percpu = val;
4896 for_each_online_cpu(cpu) {
4897 cpuctx = &per_cpu(perf_cpu_context, cpu);
4898 spin_lock_irq(&cpuctx->ctx.lock);
4899 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
4900 perf_max_counters - perf_reserved_percpu);
4901 cpuctx->max_pertask = mpt;
4902 spin_unlock_irq(&cpuctx->ctx.lock);
4903 }
4904 spin_unlock(&perf_resource_lock);
4905
4906 return count;
4907 }
4908
4909 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
4910 {
4911 return sprintf(buf, "%d\n", perf_overcommit);
4912 }
4913
4914 static ssize_t
4915 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
4916 {
4917 unsigned long val;
4918 int err;
4919
4920 err = strict_strtoul(buf, 10, &val);
4921 if (err)
4922 return err;
4923 if (val > 1)
4924 return -EINVAL;
4925
4926 spin_lock(&perf_resource_lock);
4927 perf_overcommit = val;
4928 spin_unlock(&perf_resource_lock);
4929
4930 return count;
4931 }
4932
4933 static SYSDEV_CLASS_ATTR(
4934 reserve_percpu,
4935 0644,
4936 perf_show_reserve_percpu,
4937 perf_set_reserve_percpu
4938 );
4939
4940 static SYSDEV_CLASS_ATTR(
4941 overcommit,
4942 0644,
4943 perf_show_overcommit,
4944 perf_set_overcommit
4945 );
4946
4947 static struct attribute *perfclass_attrs[] = {
4948 &attr_reserve_percpu.attr,
4949 &attr_overcommit.attr,
4950 NULL
4951 };
4952
4953 static struct attribute_group perfclass_attr_group = {
4954 .attrs = perfclass_attrs,
4955 .name = "perf_counters",
4956 };
4957
4958 static int __init perf_counter_sysfs_init(void)
4959 {
4960 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
4961 &perfclass_attr_group);
4962 }
4963 device_initcall(perf_counter_sysfs_init);
This page took 0.130323 seconds and 6 git commands to generate.