perfcounters: fix refcounting bug, take 2
[deliverable/linux.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
6 *
7 * For licencing details see kernel-base/COPYING
8 */
9
10 #include <linux/fs.h>
11 #include <linux/cpu.h>
12 #include <linux/smp.h>
13 #include <linux/file.h>
14 #include <linux/poll.h>
15 #include <linux/sysfs.h>
16 #include <linux/ptrace.h>
17 #include <linux/percpu.h>
18 #include <linux/uaccess.h>
19 #include <linux/syscalls.h>
20 #include <linux/anon_inodes.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/perf_counter.h>
23 #include <linux/mm.h>
24 #include <linux/vmstat.h>
25
26 /*
27 * Each CPU has a list of per CPU counters:
28 */
29 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
30
31 int perf_max_counters __read_mostly = 1;
32 static int perf_reserved_percpu __read_mostly;
33 static int perf_overcommit __read_mostly = 1;
34
35 /*
36 * Mutex for (sysadmin-configurable) counter reservations:
37 */
38 static DEFINE_MUTEX(perf_resource_mutex);
39
40 /*
41 * Architecture provided APIs - weak aliases:
42 */
43 extern __weak const struct hw_perf_counter_ops *
44 hw_perf_counter_init(struct perf_counter *counter)
45 {
46 return NULL;
47 }
48
49 u64 __weak hw_perf_save_disable(void) { return 0; }
50 void __weak hw_perf_restore(u64 ctrl) { barrier(); }
51 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
52 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
53 struct perf_cpu_context *cpuctx,
54 struct perf_counter_context *ctx, int cpu)
55 {
56 return 0;
57 }
58
59 void __weak perf_counter_print_debug(void) { }
60
61 static void
62 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
63 {
64 struct perf_counter *group_leader = counter->group_leader;
65
66 /*
67 * Depending on whether it is a standalone or sibling counter,
68 * add it straight to the context's counter list, or to the group
69 * leader's sibling list:
70 */
71 if (counter->group_leader == counter)
72 list_add_tail(&counter->list_entry, &ctx->counter_list);
73 else
74 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
75 }
76
77 static void
78 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
79 {
80 struct perf_counter *sibling, *tmp;
81
82 list_del_init(&counter->list_entry);
83
84 /*
85 * If this was a group counter with sibling counters then
86 * upgrade the siblings to singleton counters by adding them
87 * to the context list directly:
88 */
89 list_for_each_entry_safe(sibling, tmp,
90 &counter->sibling_list, list_entry) {
91
92 list_del_init(&sibling->list_entry);
93 list_add_tail(&sibling->list_entry, &ctx->counter_list);
94 sibling->group_leader = sibling;
95 }
96 }
97
98 static void
99 counter_sched_out(struct perf_counter *counter,
100 struct perf_cpu_context *cpuctx,
101 struct perf_counter_context *ctx)
102 {
103 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
104 return;
105
106 counter->state = PERF_COUNTER_STATE_INACTIVE;
107 counter->hw_ops->disable(counter);
108 counter->oncpu = -1;
109
110 if (!is_software_counter(counter))
111 cpuctx->active_oncpu--;
112 ctx->nr_active--;
113 if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
114 cpuctx->exclusive = 0;
115 }
116
117 static void
118 group_sched_out(struct perf_counter *group_counter,
119 struct perf_cpu_context *cpuctx,
120 struct perf_counter_context *ctx)
121 {
122 struct perf_counter *counter;
123
124 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
125 return;
126
127 counter_sched_out(group_counter, cpuctx, ctx);
128
129 /*
130 * Schedule out siblings (if any):
131 */
132 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
133 counter_sched_out(counter, cpuctx, ctx);
134
135 if (group_counter->hw_event.exclusive)
136 cpuctx->exclusive = 0;
137 }
138
139 /*
140 * Cross CPU call to remove a performance counter
141 *
142 * We disable the counter on the hardware level first. After that we
143 * remove it from the context list.
144 */
145 static void __perf_counter_remove_from_context(void *info)
146 {
147 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
148 struct perf_counter *counter = info;
149 struct perf_counter_context *ctx = counter->ctx;
150 unsigned long flags;
151 u64 perf_flags;
152
153 /*
154 * If this is a task context, we need to check whether it is
155 * the current task context of this cpu. If not it has been
156 * scheduled out before the smp call arrived.
157 */
158 if (ctx->task && cpuctx->task_ctx != ctx)
159 return;
160
161 curr_rq_lock_irq_save(&flags);
162 spin_lock(&ctx->lock);
163
164 counter_sched_out(counter, cpuctx, ctx);
165
166 counter->task = NULL;
167 ctx->nr_counters--;
168
169 /*
170 * Protect the list operation against NMI by disabling the
171 * counters on a global level. NOP for non NMI based counters.
172 */
173 perf_flags = hw_perf_save_disable();
174 list_del_counter(counter, ctx);
175 hw_perf_restore(perf_flags);
176
177 if (!ctx->task) {
178 /*
179 * Allow more per task counters with respect to the
180 * reservation:
181 */
182 cpuctx->max_pertask =
183 min(perf_max_counters - ctx->nr_counters,
184 perf_max_counters - perf_reserved_percpu);
185 }
186
187 spin_unlock(&ctx->lock);
188 curr_rq_unlock_irq_restore(&flags);
189 }
190
191
192 /*
193 * Remove the counter from a task's (or a CPU's) list of counters.
194 *
195 * Must be called with counter->mutex and ctx->mutex held.
196 *
197 * CPU counters are removed with a smp call. For task counters we only
198 * call when the task is on a CPU.
199 */
200 static void perf_counter_remove_from_context(struct perf_counter *counter)
201 {
202 struct perf_counter_context *ctx = counter->ctx;
203 struct task_struct *task = ctx->task;
204
205 if (!task) {
206 /*
207 * Per cpu counters are removed via an smp call and
208 * the removal is always sucessful.
209 */
210 smp_call_function_single(counter->cpu,
211 __perf_counter_remove_from_context,
212 counter, 1);
213 return;
214 }
215
216 retry:
217 task_oncpu_function_call(task, __perf_counter_remove_from_context,
218 counter);
219
220 spin_lock_irq(&ctx->lock);
221 /*
222 * If the context is active we need to retry the smp call.
223 */
224 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
225 spin_unlock_irq(&ctx->lock);
226 goto retry;
227 }
228
229 /*
230 * The lock prevents that this context is scheduled in so we
231 * can remove the counter safely, if the call above did not
232 * succeed.
233 */
234 if (!list_empty(&counter->list_entry)) {
235 ctx->nr_counters--;
236 list_del_counter(counter, ctx);
237 counter->task = NULL;
238 }
239 spin_unlock_irq(&ctx->lock);
240 }
241
242 /*
243 * Cross CPU call to disable a performance counter
244 */
245 static void __perf_counter_disable(void *info)
246 {
247 struct perf_counter *counter = info;
248 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
249 struct perf_counter_context *ctx = counter->ctx;
250 unsigned long flags;
251
252 /*
253 * If this is a per-task counter, need to check whether this
254 * counter's task is the current task on this cpu.
255 */
256 if (ctx->task && cpuctx->task_ctx != ctx)
257 return;
258
259 curr_rq_lock_irq_save(&flags);
260 spin_lock(&ctx->lock);
261
262 /*
263 * If the counter is on, turn it off.
264 * If it is in error state, leave it in error state.
265 */
266 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
267 if (counter == counter->group_leader)
268 group_sched_out(counter, cpuctx, ctx);
269 else
270 counter_sched_out(counter, cpuctx, ctx);
271 counter->state = PERF_COUNTER_STATE_OFF;
272 }
273
274 spin_unlock(&ctx->lock);
275 curr_rq_unlock_irq_restore(&flags);
276 }
277
278 /*
279 * Disable a counter.
280 */
281 static void perf_counter_disable(struct perf_counter *counter)
282 {
283 struct perf_counter_context *ctx = counter->ctx;
284 struct task_struct *task = ctx->task;
285
286 if (!task) {
287 /*
288 * Disable the counter on the cpu that it's on
289 */
290 smp_call_function_single(counter->cpu, __perf_counter_disable,
291 counter, 1);
292 return;
293 }
294
295 retry:
296 task_oncpu_function_call(task, __perf_counter_disable, counter);
297
298 spin_lock_irq(&ctx->lock);
299 /*
300 * If the counter is still active, we need to retry the cross-call.
301 */
302 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
303 spin_unlock_irq(&ctx->lock);
304 goto retry;
305 }
306
307 /*
308 * Since we have the lock this context can't be scheduled
309 * in, so we can change the state safely.
310 */
311 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
312 counter->state = PERF_COUNTER_STATE_OFF;
313
314 spin_unlock_irq(&ctx->lock);
315 }
316
317 /*
318 * Disable a counter and all its children.
319 */
320 static void perf_counter_disable_family(struct perf_counter *counter)
321 {
322 struct perf_counter *child;
323
324 perf_counter_disable(counter);
325
326 /*
327 * Lock the mutex to protect the list of children
328 */
329 mutex_lock(&counter->mutex);
330 list_for_each_entry(child, &counter->child_list, child_list)
331 perf_counter_disable(child);
332 mutex_unlock(&counter->mutex);
333 }
334
335 static int
336 counter_sched_in(struct perf_counter *counter,
337 struct perf_cpu_context *cpuctx,
338 struct perf_counter_context *ctx,
339 int cpu)
340 {
341 if (counter->state <= PERF_COUNTER_STATE_OFF)
342 return 0;
343
344 counter->state = PERF_COUNTER_STATE_ACTIVE;
345 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
346 /*
347 * The new state must be visible before we turn it on in the hardware:
348 */
349 smp_wmb();
350
351 if (counter->hw_ops->enable(counter)) {
352 counter->state = PERF_COUNTER_STATE_INACTIVE;
353 counter->oncpu = -1;
354 return -EAGAIN;
355 }
356
357 if (!is_software_counter(counter))
358 cpuctx->active_oncpu++;
359 ctx->nr_active++;
360
361 if (counter->hw_event.exclusive)
362 cpuctx->exclusive = 1;
363
364 return 0;
365 }
366
367 /*
368 * Return 1 for a group consisting entirely of software counters,
369 * 0 if the group contains any hardware counters.
370 */
371 static int is_software_only_group(struct perf_counter *leader)
372 {
373 struct perf_counter *counter;
374
375 if (!is_software_counter(leader))
376 return 0;
377 list_for_each_entry(counter, &leader->sibling_list, list_entry)
378 if (!is_software_counter(counter))
379 return 0;
380 return 1;
381 }
382
383 /*
384 * Work out whether we can put this counter group on the CPU now.
385 */
386 static int group_can_go_on(struct perf_counter *counter,
387 struct perf_cpu_context *cpuctx,
388 int can_add_hw)
389 {
390 /*
391 * Groups consisting entirely of software counters can always go on.
392 */
393 if (is_software_only_group(counter))
394 return 1;
395 /*
396 * If an exclusive group is already on, no other hardware
397 * counters can go on.
398 */
399 if (cpuctx->exclusive)
400 return 0;
401 /*
402 * If this group is exclusive and there are already
403 * counters on the CPU, it can't go on.
404 */
405 if (counter->hw_event.exclusive && cpuctx->active_oncpu)
406 return 0;
407 /*
408 * Otherwise, try to add it if all previous groups were able
409 * to go on.
410 */
411 return can_add_hw;
412 }
413
414 /*
415 * Cross CPU call to install and enable a performance counter
416 */
417 static void __perf_install_in_context(void *info)
418 {
419 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
420 struct perf_counter *counter = info;
421 struct perf_counter_context *ctx = counter->ctx;
422 struct perf_counter *leader = counter->group_leader;
423 int cpu = smp_processor_id();
424 unsigned long flags;
425 u64 perf_flags;
426 int err;
427
428 /*
429 * If this is a task context, we need to check whether it is
430 * the current task context of this cpu. If not it has been
431 * scheduled out before the smp call arrived.
432 */
433 if (ctx->task && cpuctx->task_ctx != ctx)
434 return;
435
436 curr_rq_lock_irq_save(&flags);
437 spin_lock(&ctx->lock);
438
439 /*
440 * Protect the list operation against NMI by disabling the
441 * counters on a global level. NOP for non NMI based counters.
442 */
443 perf_flags = hw_perf_save_disable();
444
445 list_add_counter(counter, ctx);
446 ctx->nr_counters++;
447
448 /*
449 * Don't put the counter on if it is disabled or if
450 * it is in a group and the group isn't on.
451 */
452 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
453 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
454 goto unlock;
455
456 /*
457 * An exclusive counter can't go on if there are already active
458 * hardware counters, and no hardware counter can go on if there
459 * is already an exclusive counter on.
460 */
461 if (!group_can_go_on(counter, cpuctx, 1))
462 err = -EEXIST;
463 else
464 err = counter_sched_in(counter, cpuctx, ctx, cpu);
465
466 if (err) {
467 /*
468 * This counter couldn't go on. If it is in a group
469 * then we have to pull the whole group off.
470 * If the counter group is pinned then put it in error state.
471 */
472 if (leader != counter)
473 group_sched_out(leader, cpuctx, ctx);
474 if (leader->hw_event.pinned)
475 leader->state = PERF_COUNTER_STATE_ERROR;
476 }
477
478 if (!err && !ctx->task && cpuctx->max_pertask)
479 cpuctx->max_pertask--;
480
481 unlock:
482 hw_perf_restore(perf_flags);
483
484 spin_unlock(&ctx->lock);
485 curr_rq_unlock_irq_restore(&flags);
486 }
487
488 /*
489 * Attach a performance counter to a context
490 *
491 * First we add the counter to the list with the hardware enable bit
492 * in counter->hw_config cleared.
493 *
494 * If the counter is attached to a task which is on a CPU we use a smp
495 * call to enable it in the task context. The task might have been
496 * scheduled away, but we check this in the smp call again.
497 *
498 * Must be called with ctx->mutex held.
499 */
500 static void
501 perf_install_in_context(struct perf_counter_context *ctx,
502 struct perf_counter *counter,
503 int cpu)
504 {
505 struct task_struct *task = ctx->task;
506
507 if (!task) {
508 /*
509 * Per cpu counters are installed via an smp call and
510 * the install is always sucessful.
511 */
512 smp_call_function_single(cpu, __perf_install_in_context,
513 counter, 1);
514 return;
515 }
516
517 counter->task = task;
518 retry:
519 task_oncpu_function_call(task, __perf_install_in_context,
520 counter);
521
522 spin_lock_irq(&ctx->lock);
523 /*
524 * we need to retry the smp call.
525 */
526 if (ctx->is_active && list_empty(&counter->list_entry)) {
527 spin_unlock_irq(&ctx->lock);
528 goto retry;
529 }
530
531 /*
532 * The lock prevents that this context is scheduled in so we
533 * can add the counter safely, if it the call above did not
534 * succeed.
535 */
536 if (list_empty(&counter->list_entry)) {
537 list_add_counter(counter, ctx);
538 ctx->nr_counters++;
539 }
540 spin_unlock_irq(&ctx->lock);
541 }
542
543 /*
544 * Cross CPU call to enable a performance counter
545 */
546 static void __perf_counter_enable(void *info)
547 {
548 struct perf_counter *counter = info;
549 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
550 struct perf_counter_context *ctx = counter->ctx;
551 struct perf_counter *leader = counter->group_leader;
552 unsigned long flags;
553 int err;
554
555 /*
556 * If this is a per-task counter, need to check whether this
557 * counter's task is the current task on this cpu.
558 */
559 if (ctx->task && cpuctx->task_ctx != ctx)
560 return;
561
562 curr_rq_lock_irq_save(&flags);
563 spin_lock(&ctx->lock);
564
565 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
566 goto unlock;
567 counter->state = PERF_COUNTER_STATE_INACTIVE;
568
569 /*
570 * If the counter is in a group and isn't the group leader,
571 * then don't put it on unless the group is on.
572 */
573 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
574 goto unlock;
575
576 if (!group_can_go_on(counter, cpuctx, 1))
577 err = -EEXIST;
578 else
579 err = counter_sched_in(counter, cpuctx, ctx,
580 smp_processor_id());
581
582 if (err) {
583 /*
584 * If this counter can't go on and it's part of a
585 * group, then the whole group has to come off.
586 */
587 if (leader != counter)
588 group_sched_out(leader, cpuctx, ctx);
589 if (leader->hw_event.pinned)
590 leader->state = PERF_COUNTER_STATE_ERROR;
591 }
592
593 unlock:
594 spin_unlock(&ctx->lock);
595 curr_rq_unlock_irq_restore(&flags);
596 }
597
598 /*
599 * Enable a counter.
600 */
601 static void perf_counter_enable(struct perf_counter *counter)
602 {
603 struct perf_counter_context *ctx = counter->ctx;
604 struct task_struct *task = ctx->task;
605
606 if (!task) {
607 /*
608 * Enable the counter on the cpu that it's on
609 */
610 smp_call_function_single(counter->cpu, __perf_counter_enable,
611 counter, 1);
612 return;
613 }
614
615 spin_lock_irq(&ctx->lock);
616 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
617 goto out;
618
619 /*
620 * If the counter is in error state, clear that first.
621 * That way, if we see the counter in error state below, we
622 * know that it has gone back into error state, as distinct
623 * from the task having been scheduled away before the
624 * cross-call arrived.
625 */
626 if (counter->state == PERF_COUNTER_STATE_ERROR)
627 counter->state = PERF_COUNTER_STATE_OFF;
628
629 retry:
630 spin_unlock_irq(&ctx->lock);
631 task_oncpu_function_call(task, __perf_counter_enable, counter);
632
633 spin_lock_irq(&ctx->lock);
634
635 /*
636 * If the context is active and the counter is still off,
637 * we need to retry the cross-call.
638 */
639 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
640 goto retry;
641
642 /*
643 * Since we have the lock this context can't be scheduled
644 * in, so we can change the state safely.
645 */
646 if (counter->state == PERF_COUNTER_STATE_OFF)
647 counter->state = PERF_COUNTER_STATE_INACTIVE;
648 out:
649 spin_unlock_irq(&ctx->lock);
650 }
651
652 /*
653 * Enable a counter and all its children.
654 */
655 static void perf_counter_enable_family(struct perf_counter *counter)
656 {
657 struct perf_counter *child;
658
659 perf_counter_enable(counter);
660
661 /*
662 * Lock the mutex to protect the list of children
663 */
664 mutex_lock(&counter->mutex);
665 list_for_each_entry(child, &counter->child_list, child_list)
666 perf_counter_enable(child);
667 mutex_unlock(&counter->mutex);
668 }
669
670 void __perf_counter_sched_out(struct perf_counter_context *ctx,
671 struct perf_cpu_context *cpuctx)
672 {
673 struct perf_counter *counter;
674 u64 flags;
675
676 spin_lock(&ctx->lock);
677 ctx->is_active = 0;
678 if (likely(!ctx->nr_counters))
679 goto out;
680
681 flags = hw_perf_save_disable();
682 if (ctx->nr_active) {
683 list_for_each_entry(counter, &ctx->counter_list, list_entry)
684 group_sched_out(counter, cpuctx, ctx);
685 }
686 hw_perf_restore(flags);
687 out:
688 spin_unlock(&ctx->lock);
689 }
690
691 /*
692 * Called from scheduler to remove the counters of the current task,
693 * with interrupts disabled.
694 *
695 * We stop each counter and update the counter value in counter->count.
696 *
697 * This does not protect us against NMI, but disable()
698 * sets the disabled bit in the control field of counter _before_
699 * accessing the counter control register. If a NMI hits, then it will
700 * not restart the counter.
701 */
702 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
703 {
704 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
705 struct perf_counter_context *ctx = &task->perf_counter_ctx;
706
707 if (likely(!cpuctx->task_ctx))
708 return;
709
710 __perf_counter_sched_out(ctx, cpuctx);
711
712 cpuctx->task_ctx = NULL;
713 }
714
715 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
716 {
717 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
718 }
719
720 static int
721 group_sched_in(struct perf_counter *group_counter,
722 struct perf_cpu_context *cpuctx,
723 struct perf_counter_context *ctx,
724 int cpu)
725 {
726 struct perf_counter *counter, *partial_group;
727 int ret;
728
729 if (group_counter->state == PERF_COUNTER_STATE_OFF)
730 return 0;
731
732 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
733 if (ret)
734 return ret < 0 ? ret : 0;
735
736 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
737 return -EAGAIN;
738
739 /*
740 * Schedule in siblings as one group (if any):
741 */
742 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
743 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
744 partial_group = counter;
745 goto group_error;
746 }
747 }
748
749 return 0;
750
751 group_error:
752 /*
753 * Groups can be scheduled in as one unit only, so undo any
754 * partial group before returning:
755 */
756 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
757 if (counter == partial_group)
758 break;
759 counter_sched_out(counter, cpuctx, ctx);
760 }
761 counter_sched_out(group_counter, cpuctx, ctx);
762
763 return -EAGAIN;
764 }
765
766 static void
767 __perf_counter_sched_in(struct perf_counter_context *ctx,
768 struct perf_cpu_context *cpuctx, int cpu)
769 {
770 struct perf_counter *counter;
771 u64 flags;
772 int can_add_hw = 1;
773
774 spin_lock(&ctx->lock);
775 ctx->is_active = 1;
776 if (likely(!ctx->nr_counters))
777 goto out;
778
779 flags = hw_perf_save_disable();
780
781 /*
782 * First go through the list and put on any pinned groups
783 * in order to give them the best chance of going on.
784 */
785 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
786 if (counter->state <= PERF_COUNTER_STATE_OFF ||
787 !counter->hw_event.pinned)
788 continue;
789 if (counter->cpu != -1 && counter->cpu != cpu)
790 continue;
791
792 if (group_can_go_on(counter, cpuctx, 1))
793 group_sched_in(counter, cpuctx, ctx, cpu);
794
795 /*
796 * If this pinned group hasn't been scheduled,
797 * put it in error state.
798 */
799 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
800 counter->state = PERF_COUNTER_STATE_ERROR;
801 }
802
803 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
804 /*
805 * Ignore counters in OFF or ERROR state, and
806 * ignore pinned counters since we did them already.
807 */
808 if (counter->state <= PERF_COUNTER_STATE_OFF ||
809 counter->hw_event.pinned)
810 continue;
811
812 /*
813 * Listen to the 'cpu' scheduling filter constraint
814 * of counters:
815 */
816 if (counter->cpu != -1 && counter->cpu != cpu)
817 continue;
818
819 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
820 if (group_sched_in(counter, cpuctx, ctx, cpu))
821 can_add_hw = 0;
822 }
823 }
824 hw_perf_restore(flags);
825 out:
826 spin_unlock(&ctx->lock);
827 }
828
829 /*
830 * Called from scheduler to add the counters of the current task
831 * with interrupts disabled.
832 *
833 * We restore the counter value and then enable it.
834 *
835 * This does not protect us against NMI, but enable()
836 * sets the enabled bit in the control field of counter _before_
837 * accessing the counter control register. If a NMI hits, then it will
838 * keep the counter running.
839 */
840 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
841 {
842 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
843 struct perf_counter_context *ctx = &task->perf_counter_ctx;
844
845 __perf_counter_sched_in(ctx, cpuctx, cpu);
846 cpuctx->task_ctx = ctx;
847 }
848
849 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
850 {
851 struct perf_counter_context *ctx = &cpuctx->ctx;
852
853 __perf_counter_sched_in(ctx, cpuctx, cpu);
854 }
855
856 int perf_counter_task_disable(void)
857 {
858 struct task_struct *curr = current;
859 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
860 struct perf_counter *counter;
861 unsigned long flags;
862 u64 perf_flags;
863 int cpu;
864
865 if (likely(!ctx->nr_counters))
866 return 0;
867
868 curr_rq_lock_irq_save(&flags);
869 cpu = smp_processor_id();
870
871 /* force the update of the task clock: */
872 __task_delta_exec(curr, 1);
873
874 perf_counter_task_sched_out(curr, cpu);
875
876 spin_lock(&ctx->lock);
877
878 /*
879 * Disable all the counters:
880 */
881 perf_flags = hw_perf_save_disable();
882
883 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
884 if (counter->state != PERF_COUNTER_STATE_ERROR)
885 counter->state = PERF_COUNTER_STATE_OFF;
886 }
887
888 hw_perf_restore(perf_flags);
889
890 spin_unlock(&ctx->lock);
891
892 curr_rq_unlock_irq_restore(&flags);
893
894 return 0;
895 }
896
897 int perf_counter_task_enable(void)
898 {
899 struct task_struct *curr = current;
900 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
901 struct perf_counter *counter;
902 unsigned long flags;
903 u64 perf_flags;
904 int cpu;
905
906 if (likely(!ctx->nr_counters))
907 return 0;
908
909 curr_rq_lock_irq_save(&flags);
910 cpu = smp_processor_id();
911
912 /* force the update of the task clock: */
913 __task_delta_exec(curr, 1);
914
915 perf_counter_task_sched_out(curr, cpu);
916
917 spin_lock(&ctx->lock);
918
919 /*
920 * Disable all the counters:
921 */
922 perf_flags = hw_perf_save_disable();
923
924 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
925 if (counter->state > PERF_COUNTER_STATE_OFF)
926 continue;
927 counter->state = PERF_COUNTER_STATE_INACTIVE;
928 counter->hw_event.disabled = 0;
929 }
930 hw_perf_restore(perf_flags);
931
932 spin_unlock(&ctx->lock);
933
934 perf_counter_task_sched_in(curr, cpu);
935
936 curr_rq_unlock_irq_restore(&flags);
937
938 return 0;
939 }
940
941 /*
942 * Round-robin a context's counters:
943 */
944 static void rotate_ctx(struct perf_counter_context *ctx)
945 {
946 struct perf_counter *counter;
947 u64 perf_flags;
948
949 if (!ctx->nr_counters)
950 return;
951
952 spin_lock(&ctx->lock);
953 /*
954 * Rotate the first entry last (works just fine for group counters too):
955 */
956 perf_flags = hw_perf_save_disable();
957 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
958 list_del(&counter->list_entry);
959 list_add_tail(&counter->list_entry, &ctx->counter_list);
960 break;
961 }
962 hw_perf_restore(perf_flags);
963
964 spin_unlock(&ctx->lock);
965 }
966
967 void perf_counter_task_tick(struct task_struct *curr, int cpu)
968 {
969 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
970 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
971 const int rotate_percpu = 0;
972
973 if (rotate_percpu)
974 perf_counter_cpu_sched_out(cpuctx);
975 perf_counter_task_sched_out(curr, cpu);
976
977 if (rotate_percpu)
978 rotate_ctx(&cpuctx->ctx);
979 rotate_ctx(ctx);
980
981 if (rotate_percpu)
982 perf_counter_cpu_sched_in(cpuctx, cpu);
983 perf_counter_task_sched_in(curr, cpu);
984 }
985
986 /*
987 * Cross CPU call to read the hardware counter
988 */
989 static void __read(void *info)
990 {
991 struct perf_counter *counter = info;
992 unsigned long flags;
993
994 curr_rq_lock_irq_save(&flags);
995 counter->hw_ops->read(counter);
996 curr_rq_unlock_irq_restore(&flags);
997 }
998
999 static u64 perf_counter_read(struct perf_counter *counter)
1000 {
1001 /*
1002 * If counter is enabled and currently active on a CPU, update the
1003 * value in the counter structure:
1004 */
1005 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1006 smp_call_function_single(counter->oncpu,
1007 __read, counter, 1);
1008 }
1009
1010 return atomic64_read(&counter->count);
1011 }
1012
1013 /*
1014 * Cross CPU call to switch performance data pointers
1015 */
1016 static void __perf_switch_irq_data(void *info)
1017 {
1018 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1019 struct perf_counter *counter = info;
1020 struct perf_counter_context *ctx = counter->ctx;
1021 struct perf_data *oldirqdata = counter->irqdata;
1022
1023 /*
1024 * If this is a task context, we need to check whether it is
1025 * the current task context of this cpu. If not it has been
1026 * scheduled out before the smp call arrived.
1027 */
1028 if (ctx->task) {
1029 if (cpuctx->task_ctx != ctx)
1030 return;
1031 spin_lock(&ctx->lock);
1032 }
1033
1034 /* Change the pointer NMI safe */
1035 atomic_long_set((atomic_long_t *)&counter->irqdata,
1036 (unsigned long) counter->usrdata);
1037 counter->usrdata = oldirqdata;
1038
1039 if (ctx->task)
1040 spin_unlock(&ctx->lock);
1041 }
1042
1043 static struct perf_data *perf_switch_irq_data(struct perf_counter *counter)
1044 {
1045 struct perf_counter_context *ctx = counter->ctx;
1046 struct perf_data *oldirqdata = counter->irqdata;
1047 struct task_struct *task = ctx->task;
1048
1049 if (!task) {
1050 smp_call_function_single(counter->cpu,
1051 __perf_switch_irq_data,
1052 counter, 1);
1053 return counter->usrdata;
1054 }
1055
1056 retry:
1057 spin_lock_irq(&ctx->lock);
1058 if (counter->state != PERF_COUNTER_STATE_ACTIVE) {
1059 counter->irqdata = counter->usrdata;
1060 counter->usrdata = oldirqdata;
1061 spin_unlock_irq(&ctx->lock);
1062 return oldirqdata;
1063 }
1064 spin_unlock_irq(&ctx->lock);
1065 task_oncpu_function_call(task, __perf_switch_irq_data, counter);
1066 /* Might have failed, because task was scheduled out */
1067 if (counter->irqdata == oldirqdata)
1068 goto retry;
1069
1070 return counter->usrdata;
1071 }
1072
1073 static void put_context(struct perf_counter_context *ctx)
1074 {
1075 if (ctx->task)
1076 put_task_struct(ctx->task);
1077 }
1078
1079 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1080 {
1081 struct perf_cpu_context *cpuctx;
1082 struct perf_counter_context *ctx;
1083 struct task_struct *task;
1084
1085 /*
1086 * If cpu is not a wildcard then this is a percpu counter:
1087 */
1088 if (cpu != -1) {
1089 /* Must be root to operate on a CPU counter: */
1090 if (!capable(CAP_SYS_ADMIN))
1091 return ERR_PTR(-EACCES);
1092
1093 if (cpu < 0 || cpu > num_possible_cpus())
1094 return ERR_PTR(-EINVAL);
1095
1096 /*
1097 * We could be clever and allow to attach a counter to an
1098 * offline CPU and activate it when the CPU comes up, but
1099 * that's for later.
1100 */
1101 if (!cpu_isset(cpu, cpu_online_map))
1102 return ERR_PTR(-ENODEV);
1103
1104 cpuctx = &per_cpu(perf_cpu_context, cpu);
1105 ctx = &cpuctx->ctx;
1106
1107 return ctx;
1108 }
1109
1110 rcu_read_lock();
1111 if (!pid)
1112 task = current;
1113 else
1114 task = find_task_by_vpid(pid);
1115 if (task)
1116 get_task_struct(task);
1117 rcu_read_unlock();
1118
1119 if (!task)
1120 return ERR_PTR(-ESRCH);
1121
1122 ctx = &task->perf_counter_ctx;
1123 ctx->task = task;
1124
1125 /* Reuse ptrace permission checks for now. */
1126 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1127 put_context(ctx);
1128 return ERR_PTR(-EACCES);
1129 }
1130
1131 return ctx;
1132 }
1133
1134 /*
1135 * Called when the last reference to the file is gone.
1136 */
1137 static int perf_release(struct inode *inode, struct file *file)
1138 {
1139 struct perf_counter *counter = file->private_data;
1140 struct perf_counter_context *ctx = counter->ctx;
1141
1142 file->private_data = NULL;
1143
1144 mutex_lock(&ctx->mutex);
1145 mutex_lock(&counter->mutex);
1146
1147 perf_counter_remove_from_context(counter);
1148
1149 mutex_unlock(&counter->mutex);
1150 mutex_unlock(&ctx->mutex);
1151
1152 kfree(counter);
1153 put_context(ctx);
1154
1155 return 0;
1156 }
1157
1158 /*
1159 * Read the performance counter - simple non blocking version for now
1160 */
1161 static ssize_t
1162 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1163 {
1164 u64 cntval;
1165
1166 if (count != sizeof(cntval))
1167 return -EINVAL;
1168
1169 /*
1170 * Return end-of-file for a read on a counter that is in
1171 * error state (i.e. because it was pinned but it couldn't be
1172 * scheduled on to the CPU at some point).
1173 */
1174 if (counter->state == PERF_COUNTER_STATE_ERROR)
1175 return 0;
1176
1177 mutex_lock(&counter->mutex);
1178 cntval = perf_counter_read(counter);
1179 mutex_unlock(&counter->mutex);
1180
1181 return put_user(cntval, (u64 __user *) buf) ? -EFAULT : sizeof(cntval);
1182 }
1183
1184 static ssize_t
1185 perf_copy_usrdata(struct perf_data *usrdata, char __user *buf, size_t count)
1186 {
1187 if (!usrdata->len)
1188 return 0;
1189
1190 count = min(count, (size_t)usrdata->len);
1191 if (copy_to_user(buf, usrdata->data + usrdata->rd_idx, count))
1192 return -EFAULT;
1193
1194 /* Adjust the counters */
1195 usrdata->len -= count;
1196 if (!usrdata->len)
1197 usrdata->rd_idx = 0;
1198 else
1199 usrdata->rd_idx += count;
1200
1201 return count;
1202 }
1203
1204 static ssize_t
1205 perf_read_irq_data(struct perf_counter *counter,
1206 char __user *buf,
1207 size_t count,
1208 int nonblocking)
1209 {
1210 struct perf_data *irqdata, *usrdata;
1211 DECLARE_WAITQUEUE(wait, current);
1212 ssize_t res, res2;
1213
1214 irqdata = counter->irqdata;
1215 usrdata = counter->usrdata;
1216
1217 if (usrdata->len + irqdata->len >= count)
1218 goto read_pending;
1219
1220 if (nonblocking)
1221 return -EAGAIN;
1222
1223 spin_lock_irq(&counter->waitq.lock);
1224 __add_wait_queue(&counter->waitq, &wait);
1225 for (;;) {
1226 set_current_state(TASK_INTERRUPTIBLE);
1227 if (usrdata->len + irqdata->len >= count)
1228 break;
1229
1230 if (signal_pending(current))
1231 break;
1232
1233 if (counter->state == PERF_COUNTER_STATE_ERROR)
1234 break;
1235
1236 spin_unlock_irq(&counter->waitq.lock);
1237 schedule();
1238 spin_lock_irq(&counter->waitq.lock);
1239 }
1240 __remove_wait_queue(&counter->waitq, &wait);
1241 __set_current_state(TASK_RUNNING);
1242 spin_unlock_irq(&counter->waitq.lock);
1243
1244 if (usrdata->len + irqdata->len < count &&
1245 counter->state != PERF_COUNTER_STATE_ERROR)
1246 return -ERESTARTSYS;
1247 read_pending:
1248 mutex_lock(&counter->mutex);
1249
1250 /* Drain pending data first: */
1251 res = perf_copy_usrdata(usrdata, buf, count);
1252 if (res < 0 || res == count)
1253 goto out;
1254
1255 /* Switch irq buffer: */
1256 usrdata = perf_switch_irq_data(counter);
1257 res2 = perf_copy_usrdata(usrdata, buf + res, count - res);
1258 if (res2 < 0) {
1259 if (!res)
1260 res = -EFAULT;
1261 } else {
1262 res += res2;
1263 }
1264 out:
1265 mutex_unlock(&counter->mutex);
1266
1267 return res;
1268 }
1269
1270 static ssize_t
1271 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1272 {
1273 struct perf_counter *counter = file->private_data;
1274
1275 switch (counter->hw_event.record_type) {
1276 case PERF_RECORD_SIMPLE:
1277 return perf_read_hw(counter, buf, count);
1278
1279 case PERF_RECORD_IRQ:
1280 case PERF_RECORD_GROUP:
1281 return perf_read_irq_data(counter, buf, count,
1282 file->f_flags & O_NONBLOCK);
1283 }
1284 return -EINVAL;
1285 }
1286
1287 static unsigned int perf_poll(struct file *file, poll_table *wait)
1288 {
1289 struct perf_counter *counter = file->private_data;
1290 unsigned int events = 0;
1291 unsigned long flags;
1292
1293 poll_wait(file, &counter->waitq, wait);
1294
1295 spin_lock_irqsave(&counter->waitq.lock, flags);
1296 if (counter->usrdata->len || counter->irqdata->len)
1297 events |= POLLIN;
1298 spin_unlock_irqrestore(&counter->waitq.lock, flags);
1299
1300 return events;
1301 }
1302
1303 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1304 {
1305 struct perf_counter *counter = file->private_data;
1306 int err = 0;
1307
1308 switch (cmd) {
1309 case PERF_COUNTER_IOC_ENABLE:
1310 perf_counter_enable_family(counter);
1311 break;
1312 case PERF_COUNTER_IOC_DISABLE:
1313 perf_counter_disable_family(counter);
1314 break;
1315 default:
1316 err = -ENOTTY;
1317 }
1318 return err;
1319 }
1320
1321 static const struct file_operations perf_fops = {
1322 .release = perf_release,
1323 .read = perf_read,
1324 .poll = perf_poll,
1325 .unlocked_ioctl = perf_ioctl,
1326 .compat_ioctl = perf_ioctl,
1327 };
1328
1329 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
1330 {
1331 int cpu = raw_smp_processor_id();
1332
1333 atomic64_set(&counter->hw.prev_count, cpu_clock(cpu));
1334 return 0;
1335 }
1336
1337 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
1338 {
1339 int cpu = raw_smp_processor_id();
1340 s64 prev;
1341 u64 now;
1342
1343 now = cpu_clock(cpu);
1344 prev = atomic64_read(&counter->hw.prev_count);
1345 atomic64_set(&counter->hw.prev_count, now);
1346 atomic64_add(now - prev, &counter->count);
1347 }
1348
1349 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
1350 {
1351 cpu_clock_perf_counter_update(counter);
1352 }
1353
1354 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
1355 {
1356 cpu_clock_perf_counter_update(counter);
1357 }
1358
1359 static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
1360 .enable = cpu_clock_perf_counter_enable,
1361 .disable = cpu_clock_perf_counter_disable,
1362 .read = cpu_clock_perf_counter_read,
1363 };
1364
1365 /*
1366 * Called from within the scheduler:
1367 */
1368 static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
1369 {
1370 struct task_struct *curr = counter->task;
1371 u64 delta;
1372
1373 delta = __task_delta_exec(curr, update);
1374
1375 return curr->se.sum_exec_runtime + delta;
1376 }
1377
1378 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
1379 {
1380 u64 prev;
1381 s64 delta;
1382
1383 prev = atomic64_read(&counter->hw.prev_count);
1384
1385 atomic64_set(&counter->hw.prev_count, now);
1386
1387 delta = now - prev;
1388
1389 atomic64_add(delta, &counter->count);
1390 }
1391
1392 static void task_clock_perf_counter_read(struct perf_counter *counter)
1393 {
1394 u64 now = task_clock_perf_counter_val(counter, 1);
1395
1396 task_clock_perf_counter_update(counter, now);
1397 }
1398
1399 static int task_clock_perf_counter_enable(struct perf_counter *counter)
1400 {
1401 u64 now = task_clock_perf_counter_val(counter, 0);
1402
1403 atomic64_set(&counter->hw.prev_count, now);
1404
1405 return 0;
1406 }
1407
1408 static void task_clock_perf_counter_disable(struct perf_counter *counter)
1409 {
1410 u64 now = task_clock_perf_counter_val(counter, 0);
1411
1412 task_clock_perf_counter_update(counter, now);
1413 }
1414
1415 static const struct hw_perf_counter_ops perf_ops_task_clock = {
1416 .enable = task_clock_perf_counter_enable,
1417 .disable = task_clock_perf_counter_disable,
1418 .read = task_clock_perf_counter_read,
1419 };
1420
1421 #ifdef CONFIG_VM_EVENT_COUNTERS
1422 #define cpu_page_faults() __get_cpu_var(vm_event_states).event[PGFAULT]
1423 #else
1424 #define cpu_page_faults() 0
1425 #endif
1426
1427 static u64 get_page_faults(struct perf_counter *counter)
1428 {
1429 struct task_struct *curr = counter->ctx->task;
1430
1431 if (curr)
1432 return curr->maj_flt + curr->min_flt;
1433 return cpu_page_faults();
1434 }
1435
1436 static void page_faults_perf_counter_update(struct perf_counter *counter)
1437 {
1438 u64 prev, now;
1439 s64 delta;
1440
1441 prev = atomic64_read(&counter->hw.prev_count);
1442 now = get_page_faults(counter);
1443
1444 atomic64_set(&counter->hw.prev_count, now);
1445
1446 delta = now - prev;
1447
1448 atomic64_add(delta, &counter->count);
1449 }
1450
1451 static void page_faults_perf_counter_read(struct perf_counter *counter)
1452 {
1453 page_faults_perf_counter_update(counter);
1454 }
1455
1456 static int page_faults_perf_counter_enable(struct perf_counter *counter)
1457 {
1458 atomic64_set(&counter->hw.prev_count, get_page_faults(counter));
1459 return 0;
1460 }
1461
1462 static void page_faults_perf_counter_disable(struct perf_counter *counter)
1463 {
1464 page_faults_perf_counter_update(counter);
1465 }
1466
1467 static const struct hw_perf_counter_ops perf_ops_page_faults = {
1468 .enable = page_faults_perf_counter_enable,
1469 .disable = page_faults_perf_counter_disable,
1470 .read = page_faults_perf_counter_read,
1471 };
1472
1473 static u64 get_context_switches(struct perf_counter *counter)
1474 {
1475 struct task_struct *curr = counter->ctx->task;
1476
1477 if (curr)
1478 return curr->nvcsw + curr->nivcsw;
1479 return cpu_nr_switches(smp_processor_id());
1480 }
1481
1482 static void context_switches_perf_counter_update(struct perf_counter *counter)
1483 {
1484 u64 prev, now;
1485 s64 delta;
1486
1487 prev = atomic64_read(&counter->hw.prev_count);
1488 now = get_context_switches(counter);
1489
1490 atomic64_set(&counter->hw.prev_count, now);
1491
1492 delta = now - prev;
1493
1494 atomic64_add(delta, &counter->count);
1495 }
1496
1497 static void context_switches_perf_counter_read(struct perf_counter *counter)
1498 {
1499 context_switches_perf_counter_update(counter);
1500 }
1501
1502 static int context_switches_perf_counter_enable(struct perf_counter *counter)
1503 {
1504 atomic64_set(&counter->hw.prev_count, get_context_switches(counter));
1505 return 0;
1506 }
1507
1508 static void context_switches_perf_counter_disable(struct perf_counter *counter)
1509 {
1510 context_switches_perf_counter_update(counter);
1511 }
1512
1513 static const struct hw_perf_counter_ops perf_ops_context_switches = {
1514 .enable = context_switches_perf_counter_enable,
1515 .disable = context_switches_perf_counter_disable,
1516 .read = context_switches_perf_counter_read,
1517 };
1518
1519 static inline u64 get_cpu_migrations(struct perf_counter *counter)
1520 {
1521 struct task_struct *curr = counter->ctx->task;
1522
1523 if (curr)
1524 return curr->se.nr_migrations;
1525 return cpu_nr_migrations(smp_processor_id());
1526 }
1527
1528 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
1529 {
1530 u64 prev, now;
1531 s64 delta;
1532
1533 prev = atomic64_read(&counter->hw.prev_count);
1534 now = get_cpu_migrations(counter);
1535
1536 atomic64_set(&counter->hw.prev_count, now);
1537
1538 delta = now - prev;
1539
1540 atomic64_add(delta, &counter->count);
1541 }
1542
1543 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
1544 {
1545 cpu_migrations_perf_counter_update(counter);
1546 }
1547
1548 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
1549 {
1550 atomic64_set(&counter->hw.prev_count, get_cpu_migrations(counter));
1551 return 0;
1552 }
1553
1554 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
1555 {
1556 cpu_migrations_perf_counter_update(counter);
1557 }
1558
1559 static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
1560 .enable = cpu_migrations_perf_counter_enable,
1561 .disable = cpu_migrations_perf_counter_disable,
1562 .read = cpu_migrations_perf_counter_read,
1563 };
1564
1565 static const struct hw_perf_counter_ops *
1566 sw_perf_counter_init(struct perf_counter *counter)
1567 {
1568 const struct hw_perf_counter_ops *hw_ops = NULL;
1569
1570 /*
1571 * Software counters (currently) can't in general distinguish
1572 * between user, kernel and hypervisor events.
1573 * However, context switches and cpu migrations are considered
1574 * to be kernel events, and page faults are never hypervisor
1575 * events.
1576 */
1577 switch (counter->hw_event.type) {
1578 case PERF_COUNT_CPU_CLOCK:
1579 if (!(counter->hw_event.exclude_user ||
1580 counter->hw_event.exclude_kernel ||
1581 counter->hw_event.exclude_hv))
1582 hw_ops = &perf_ops_cpu_clock;
1583 break;
1584 case PERF_COUNT_TASK_CLOCK:
1585 if (counter->hw_event.exclude_user ||
1586 counter->hw_event.exclude_kernel ||
1587 counter->hw_event.exclude_hv)
1588 break;
1589 /*
1590 * If the user instantiates this as a per-cpu counter,
1591 * use the cpu_clock counter instead.
1592 */
1593 if (counter->ctx->task)
1594 hw_ops = &perf_ops_task_clock;
1595 else
1596 hw_ops = &perf_ops_cpu_clock;
1597 break;
1598 case PERF_COUNT_PAGE_FAULTS:
1599 if (!(counter->hw_event.exclude_user ||
1600 counter->hw_event.exclude_kernel))
1601 hw_ops = &perf_ops_page_faults;
1602 break;
1603 case PERF_COUNT_CONTEXT_SWITCHES:
1604 if (!counter->hw_event.exclude_kernel)
1605 hw_ops = &perf_ops_context_switches;
1606 break;
1607 case PERF_COUNT_CPU_MIGRATIONS:
1608 if (!counter->hw_event.exclude_kernel)
1609 hw_ops = &perf_ops_cpu_migrations;
1610 break;
1611 default:
1612 break;
1613 }
1614 return hw_ops;
1615 }
1616
1617 /*
1618 * Allocate and initialize a counter structure
1619 */
1620 static struct perf_counter *
1621 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
1622 int cpu,
1623 struct perf_counter_context *ctx,
1624 struct perf_counter *group_leader,
1625 gfp_t gfpflags)
1626 {
1627 const struct hw_perf_counter_ops *hw_ops;
1628 struct perf_counter *counter;
1629
1630 counter = kzalloc(sizeof(*counter), gfpflags);
1631 if (!counter)
1632 return NULL;
1633
1634 /*
1635 * Single counters are their own group leaders, with an
1636 * empty sibling list:
1637 */
1638 if (!group_leader)
1639 group_leader = counter;
1640
1641 mutex_init(&counter->mutex);
1642 INIT_LIST_HEAD(&counter->list_entry);
1643 INIT_LIST_HEAD(&counter->sibling_list);
1644 init_waitqueue_head(&counter->waitq);
1645
1646 INIT_LIST_HEAD(&counter->child_list);
1647
1648 counter->irqdata = &counter->data[0];
1649 counter->usrdata = &counter->data[1];
1650 counter->cpu = cpu;
1651 counter->hw_event = *hw_event;
1652 counter->wakeup_pending = 0;
1653 counter->group_leader = group_leader;
1654 counter->hw_ops = NULL;
1655 counter->ctx = ctx;
1656
1657 counter->state = PERF_COUNTER_STATE_INACTIVE;
1658 if (hw_event->disabled)
1659 counter->state = PERF_COUNTER_STATE_OFF;
1660
1661 hw_ops = NULL;
1662 if (!hw_event->raw && hw_event->type < 0)
1663 hw_ops = sw_perf_counter_init(counter);
1664 else
1665 hw_ops = hw_perf_counter_init(counter);
1666
1667 if (!hw_ops) {
1668 kfree(counter);
1669 return NULL;
1670 }
1671 counter->hw_ops = hw_ops;
1672
1673 return counter;
1674 }
1675
1676 /**
1677 * sys_perf_task_open - open a performance counter, associate it to a task/cpu
1678 *
1679 * @hw_event_uptr: event type attributes for monitoring/sampling
1680 * @pid: target pid
1681 * @cpu: target cpu
1682 * @group_fd: group leader counter fd
1683 */
1684 asmlinkage int
1685 sys_perf_counter_open(struct perf_counter_hw_event *hw_event_uptr __user,
1686 pid_t pid, int cpu, int group_fd)
1687 {
1688 struct perf_counter *counter, *group_leader;
1689 struct perf_counter_hw_event hw_event;
1690 struct perf_counter_context *ctx;
1691 struct file *counter_file = NULL;
1692 struct file *group_file = NULL;
1693 int fput_needed = 0;
1694 int fput_needed2 = 0;
1695 int ret;
1696
1697 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
1698 return -EFAULT;
1699
1700 /*
1701 * Get the target context (task or percpu):
1702 */
1703 ctx = find_get_context(pid, cpu);
1704 if (IS_ERR(ctx))
1705 return PTR_ERR(ctx);
1706
1707 /*
1708 * Look up the group leader (we will attach this counter to it):
1709 */
1710 group_leader = NULL;
1711 if (group_fd != -1) {
1712 ret = -EINVAL;
1713 group_file = fget_light(group_fd, &fput_needed);
1714 if (!group_file)
1715 goto err_put_context;
1716 if (group_file->f_op != &perf_fops)
1717 goto err_put_context;
1718
1719 group_leader = group_file->private_data;
1720 /*
1721 * Do not allow a recursive hierarchy (this new sibling
1722 * becoming part of another group-sibling):
1723 */
1724 if (group_leader->group_leader != group_leader)
1725 goto err_put_context;
1726 /*
1727 * Do not allow to attach to a group in a different
1728 * task or CPU context:
1729 */
1730 if (group_leader->ctx != ctx)
1731 goto err_put_context;
1732 /*
1733 * Only a group leader can be exclusive or pinned
1734 */
1735 if (hw_event.exclusive || hw_event.pinned)
1736 goto err_put_context;
1737 }
1738
1739 ret = -EINVAL;
1740 counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
1741 GFP_KERNEL);
1742 if (!counter)
1743 goto err_put_context;
1744
1745 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
1746 if (ret < 0)
1747 goto err_free_put_context;
1748
1749 counter_file = fget_light(ret, &fput_needed2);
1750 if (!counter_file)
1751 goto err_free_put_context;
1752
1753 counter->filp = counter_file;
1754 mutex_lock(&ctx->mutex);
1755 perf_install_in_context(ctx, counter, cpu);
1756 mutex_unlock(&ctx->mutex);
1757
1758 fput_light(counter_file, fput_needed2);
1759
1760 out_fput:
1761 fput_light(group_file, fput_needed);
1762
1763 return ret;
1764
1765 err_free_put_context:
1766 kfree(counter);
1767
1768 err_put_context:
1769 put_context(ctx);
1770
1771 goto out_fput;
1772 }
1773
1774 /*
1775 * Initialize the perf_counter context in a task_struct:
1776 */
1777 static void
1778 __perf_counter_init_context(struct perf_counter_context *ctx,
1779 struct task_struct *task)
1780 {
1781 memset(ctx, 0, sizeof(*ctx));
1782 spin_lock_init(&ctx->lock);
1783 mutex_init(&ctx->mutex);
1784 INIT_LIST_HEAD(&ctx->counter_list);
1785 ctx->task = task;
1786 }
1787
1788 /*
1789 * inherit a counter from parent task to child task:
1790 */
1791 static struct perf_counter *
1792 inherit_counter(struct perf_counter *parent_counter,
1793 struct task_struct *parent,
1794 struct perf_counter_context *parent_ctx,
1795 struct task_struct *child,
1796 struct perf_counter *group_leader,
1797 struct perf_counter_context *child_ctx)
1798 {
1799 struct perf_counter *child_counter;
1800
1801 /*
1802 * Instead of creating recursive hierarchies of counters,
1803 * we link inherited counters back to the original parent,
1804 * which has a filp for sure, which we use as the reference
1805 * count:
1806 */
1807 if (parent_counter->parent)
1808 parent_counter = parent_counter->parent;
1809
1810 child_counter = perf_counter_alloc(&parent_counter->hw_event,
1811 parent_counter->cpu, child_ctx,
1812 group_leader, GFP_KERNEL);
1813 if (!child_counter)
1814 return NULL;
1815
1816 /*
1817 * Link it up in the child's context:
1818 */
1819 child_counter->task = child;
1820 list_add_counter(child_counter, child_ctx);
1821 child_ctx->nr_counters++;
1822
1823 child_counter->parent = parent_counter;
1824 /*
1825 * inherit into child's child as well:
1826 */
1827 child_counter->hw_event.inherit = 1;
1828
1829 /*
1830 * Get a reference to the parent filp - we will fput it
1831 * when the child counter exits. This is safe to do because
1832 * we are in the parent and we know that the filp still
1833 * exists and has a nonzero count:
1834 */
1835 atomic_long_inc(&parent_counter->filp->f_count);
1836
1837 /*
1838 * Link this into the parent counter's child list
1839 */
1840 mutex_lock(&parent_counter->mutex);
1841 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
1842
1843 /*
1844 * Make the child state follow the state of the parent counter,
1845 * not its hw_event.disabled bit. We hold the parent's mutex,
1846 * so we won't race with perf_counter_{en,dis}able_family.
1847 */
1848 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
1849 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
1850 else
1851 child_counter->state = PERF_COUNTER_STATE_OFF;
1852
1853 mutex_unlock(&parent_counter->mutex);
1854
1855 return child_counter;
1856 }
1857
1858 static int inherit_group(struct perf_counter *parent_counter,
1859 struct task_struct *parent,
1860 struct perf_counter_context *parent_ctx,
1861 struct task_struct *child,
1862 struct perf_counter_context *child_ctx)
1863 {
1864 struct perf_counter *leader;
1865 struct perf_counter *sub;
1866
1867 leader = inherit_counter(parent_counter, parent, parent_ctx,
1868 child, NULL, child_ctx);
1869 if (!leader)
1870 return -ENOMEM;
1871 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
1872 if (!inherit_counter(sub, parent, parent_ctx,
1873 child, leader, child_ctx))
1874 return -ENOMEM;
1875 }
1876 return 0;
1877 }
1878
1879 static void sync_child_counter(struct perf_counter *child_counter,
1880 struct perf_counter *parent_counter)
1881 {
1882 u64 parent_val, child_val;
1883
1884 parent_val = atomic64_read(&parent_counter->count);
1885 child_val = atomic64_read(&child_counter->count);
1886
1887 /*
1888 * Add back the child's count to the parent's count:
1889 */
1890 atomic64_add(child_val, &parent_counter->count);
1891
1892 /*
1893 * Remove this counter from the parent's list
1894 */
1895 mutex_lock(&parent_counter->mutex);
1896 list_del_init(&child_counter->child_list);
1897 mutex_unlock(&parent_counter->mutex);
1898
1899 /*
1900 * Release the parent counter, if this was the last
1901 * reference to it.
1902 */
1903 fput(parent_counter->filp);
1904 }
1905
1906 static void
1907 __perf_counter_exit_task(struct task_struct *child,
1908 struct perf_counter *child_counter,
1909 struct perf_counter_context *child_ctx)
1910 {
1911 struct perf_counter *parent_counter;
1912 struct perf_counter *sub, *tmp;
1913
1914 /*
1915 * If we do not self-reap then we have to wait for the
1916 * child task to unschedule (it will happen for sure),
1917 * so that its counter is at its final count. (This
1918 * condition triggers rarely - child tasks usually get
1919 * off their CPU before the parent has a chance to
1920 * get this far into the reaping action)
1921 */
1922 if (child != current) {
1923 wait_task_inactive(child, 0);
1924 list_del_init(&child_counter->list_entry);
1925 } else {
1926 struct perf_cpu_context *cpuctx;
1927 unsigned long flags;
1928 u64 perf_flags;
1929
1930 /*
1931 * Disable and unlink this counter.
1932 *
1933 * Be careful about zapping the list - IRQ/NMI context
1934 * could still be processing it:
1935 */
1936 curr_rq_lock_irq_save(&flags);
1937 perf_flags = hw_perf_save_disable();
1938
1939 cpuctx = &__get_cpu_var(perf_cpu_context);
1940
1941 group_sched_out(child_counter, cpuctx, child_ctx);
1942
1943 list_del_init(&child_counter->list_entry);
1944
1945 child_ctx->nr_counters--;
1946
1947 hw_perf_restore(perf_flags);
1948 curr_rq_unlock_irq_restore(&flags);
1949 }
1950
1951 parent_counter = child_counter->parent;
1952 /*
1953 * It can happen that parent exits first, and has counters
1954 * that are still around due to the child reference. These
1955 * counters need to be zapped - but otherwise linger.
1956 */
1957 if (parent_counter) {
1958 sync_child_counter(child_counter, parent_counter);
1959 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
1960 list_entry) {
1961 if (sub->parent) {
1962 sync_child_counter(sub, sub->parent);
1963 kfree(sub);
1964 }
1965 }
1966 kfree(child_counter);
1967 }
1968 }
1969
1970 /*
1971 * When a child task exits, feed back counter values to parent counters.
1972 *
1973 * Note: we may be running in child context, but the PID is not hashed
1974 * anymore so new counters will not be added.
1975 */
1976 void perf_counter_exit_task(struct task_struct *child)
1977 {
1978 struct perf_counter *child_counter, *tmp;
1979 struct perf_counter_context *child_ctx;
1980
1981 child_ctx = &child->perf_counter_ctx;
1982
1983 if (likely(!child_ctx->nr_counters))
1984 return;
1985
1986 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
1987 list_entry)
1988 __perf_counter_exit_task(child, child_counter, child_ctx);
1989 }
1990
1991 /*
1992 * Initialize the perf_counter context in task_struct
1993 */
1994 void perf_counter_init_task(struct task_struct *child)
1995 {
1996 struct perf_counter_context *child_ctx, *parent_ctx;
1997 struct perf_counter *counter;
1998 struct task_struct *parent = current;
1999
2000 child_ctx = &child->perf_counter_ctx;
2001 parent_ctx = &parent->perf_counter_ctx;
2002
2003 __perf_counter_init_context(child_ctx, child);
2004
2005 /*
2006 * This is executed from the parent task context, so inherit
2007 * counters that have been marked for cloning:
2008 */
2009
2010 if (likely(!parent_ctx->nr_counters))
2011 return;
2012
2013 /*
2014 * Lock the parent list. No need to lock the child - not PID
2015 * hashed yet and not running, so nobody can access it.
2016 */
2017 mutex_lock(&parent_ctx->mutex);
2018
2019 /*
2020 * We dont have to disable NMIs - we are only looking at
2021 * the list, not manipulating it:
2022 */
2023 list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
2024 if (!counter->hw_event.inherit)
2025 continue;
2026
2027 if (inherit_group(counter, parent,
2028 parent_ctx, child, child_ctx))
2029 break;
2030 }
2031
2032 mutex_unlock(&parent_ctx->mutex);
2033 }
2034
2035 static void __cpuinit perf_counter_init_cpu(int cpu)
2036 {
2037 struct perf_cpu_context *cpuctx;
2038
2039 cpuctx = &per_cpu(perf_cpu_context, cpu);
2040 __perf_counter_init_context(&cpuctx->ctx, NULL);
2041
2042 mutex_lock(&perf_resource_mutex);
2043 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
2044 mutex_unlock(&perf_resource_mutex);
2045
2046 hw_perf_counter_setup(cpu);
2047 }
2048
2049 #ifdef CONFIG_HOTPLUG_CPU
2050 static void __perf_counter_exit_cpu(void *info)
2051 {
2052 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
2053 struct perf_counter_context *ctx = &cpuctx->ctx;
2054 struct perf_counter *counter, *tmp;
2055
2056 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
2057 __perf_counter_remove_from_context(counter);
2058 }
2059 static void perf_counter_exit_cpu(int cpu)
2060 {
2061 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
2062 struct perf_counter_context *ctx = &cpuctx->ctx;
2063
2064 mutex_lock(&ctx->mutex);
2065 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
2066 mutex_unlock(&ctx->mutex);
2067 }
2068 #else
2069 static inline void perf_counter_exit_cpu(int cpu) { }
2070 #endif
2071
2072 static int __cpuinit
2073 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
2074 {
2075 unsigned int cpu = (long)hcpu;
2076
2077 switch (action) {
2078
2079 case CPU_UP_PREPARE:
2080 case CPU_UP_PREPARE_FROZEN:
2081 perf_counter_init_cpu(cpu);
2082 break;
2083
2084 case CPU_DOWN_PREPARE:
2085 case CPU_DOWN_PREPARE_FROZEN:
2086 perf_counter_exit_cpu(cpu);
2087 break;
2088
2089 default:
2090 break;
2091 }
2092
2093 return NOTIFY_OK;
2094 }
2095
2096 static struct notifier_block __cpuinitdata perf_cpu_nb = {
2097 .notifier_call = perf_cpu_notify,
2098 };
2099
2100 static int __init perf_counter_init(void)
2101 {
2102 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
2103 (void *)(long)smp_processor_id());
2104 register_cpu_notifier(&perf_cpu_nb);
2105
2106 return 0;
2107 }
2108 early_initcall(perf_counter_init);
2109
2110 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
2111 {
2112 return sprintf(buf, "%d\n", perf_reserved_percpu);
2113 }
2114
2115 static ssize_t
2116 perf_set_reserve_percpu(struct sysdev_class *class,
2117 const char *buf,
2118 size_t count)
2119 {
2120 struct perf_cpu_context *cpuctx;
2121 unsigned long val;
2122 int err, cpu, mpt;
2123
2124 err = strict_strtoul(buf, 10, &val);
2125 if (err)
2126 return err;
2127 if (val > perf_max_counters)
2128 return -EINVAL;
2129
2130 mutex_lock(&perf_resource_mutex);
2131 perf_reserved_percpu = val;
2132 for_each_online_cpu(cpu) {
2133 cpuctx = &per_cpu(perf_cpu_context, cpu);
2134 spin_lock_irq(&cpuctx->ctx.lock);
2135 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
2136 perf_max_counters - perf_reserved_percpu);
2137 cpuctx->max_pertask = mpt;
2138 spin_unlock_irq(&cpuctx->ctx.lock);
2139 }
2140 mutex_unlock(&perf_resource_mutex);
2141
2142 return count;
2143 }
2144
2145 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
2146 {
2147 return sprintf(buf, "%d\n", perf_overcommit);
2148 }
2149
2150 static ssize_t
2151 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
2152 {
2153 unsigned long val;
2154 int err;
2155
2156 err = strict_strtoul(buf, 10, &val);
2157 if (err)
2158 return err;
2159 if (val > 1)
2160 return -EINVAL;
2161
2162 mutex_lock(&perf_resource_mutex);
2163 perf_overcommit = val;
2164 mutex_unlock(&perf_resource_mutex);
2165
2166 return count;
2167 }
2168
2169 static SYSDEV_CLASS_ATTR(
2170 reserve_percpu,
2171 0644,
2172 perf_show_reserve_percpu,
2173 perf_set_reserve_percpu
2174 );
2175
2176 static SYSDEV_CLASS_ATTR(
2177 overcommit,
2178 0644,
2179 perf_show_overcommit,
2180 perf_set_overcommit
2181 );
2182
2183 static struct attribute *perfclass_attrs[] = {
2184 &attr_reserve_percpu.attr,
2185 &attr_overcommit.attr,
2186 NULL
2187 };
2188
2189 static struct attribute_group perfclass_attr_group = {
2190 .attrs = perfclass_attrs,
2191 .name = "perf_counters",
2192 };
2193
2194 static int __init perf_counter_sysfs_init(void)
2195 {
2196 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
2197 &perfclass_attr_group);
2198 }
2199 device_initcall(perf_counter_sysfs_init);
This page took 0.073063 seconds and 6 git commands to generate.