perf_counter: Fix perf_output_copy() WARN to account for overflow
[deliverable/linux.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/ptrace.h>
20 #include <linux/percpu.h>
21 #include <linux/vmstat.h>
22 #include <linux/hardirq.h>
23 #include <linux/rculist.h>
24 #include <linux/uaccess.h>
25 #include <linux/syscalls.h>
26 #include <linux/anon_inodes.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/perf_counter.h>
29 #include <linux/dcache.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34 * Each CPU has a list of per CPU counters:
35 */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_tracking __read_mostly;
44 static atomic_t nr_munmap_tracking __read_mostly;
45 static atomic_t nr_comm_tracking __read_mostly;
46
47 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48 int sysctl_perf_counter_mlock __read_mostly = 128; /* 'free' kb per counter */
49
50 /*
51 * Lock for (sysadmin-configurable) counter reservations:
52 */
53 static DEFINE_SPINLOCK(perf_resource_lock);
54
55 /*
56 * Architecture provided APIs - weak aliases:
57 */
58 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
59 {
60 return NULL;
61 }
62
63 u64 __weak hw_perf_save_disable(void) { return 0; }
64 void __weak hw_perf_restore(u64 ctrl) { barrier(); }
65 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
66 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
67 struct perf_cpu_context *cpuctx,
68 struct perf_counter_context *ctx, int cpu)
69 {
70 return 0;
71 }
72
73 void __weak perf_counter_print_debug(void) { }
74
75 static void
76 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
77 {
78 struct perf_counter *group_leader = counter->group_leader;
79
80 /*
81 * Depending on whether it is a standalone or sibling counter,
82 * add it straight to the context's counter list, or to the group
83 * leader's sibling list:
84 */
85 if (group_leader == counter)
86 list_add_tail(&counter->list_entry, &ctx->counter_list);
87 else {
88 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
89 group_leader->nr_siblings++;
90 }
91
92 list_add_rcu(&counter->event_entry, &ctx->event_list);
93 }
94
95 static void
96 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
97 {
98 struct perf_counter *sibling, *tmp;
99
100 list_del_init(&counter->list_entry);
101 list_del_rcu(&counter->event_entry);
102
103 if (counter->group_leader != counter)
104 counter->group_leader->nr_siblings--;
105
106 /*
107 * If this was a group counter with sibling counters then
108 * upgrade the siblings to singleton counters by adding them
109 * to the context list directly:
110 */
111 list_for_each_entry_safe(sibling, tmp,
112 &counter->sibling_list, list_entry) {
113
114 list_move_tail(&sibling->list_entry, &ctx->counter_list);
115 sibling->group_leader = sibling;
116 }
117 }
118
119 static void
120 counter_sched_out(struct perf_counter *counter,
121 struct perf_cpu_context *cpuctx,
122 struct perf_counter_context *ctx)
123 {
124 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
125 return;
126
127 counter->state = PERF_COUNTER_STATE_INACTIVE;
128 counter->tstamp_stopped = ctx->time;
129 counter->pmu->disable(counter);
130 counter->oncpu = -1;
131
132 if (!is_software_counter(counter))
133 cpuctx->active_oncpu--;
134 ctx->nr_active--;
135 if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
136 cpuctx->exclusive = 0;
137 }
138
139 static void
140 group_sched_out(struct perf_counter *group_counter,
141 struct perf_cpu_context *cpuctx,
142 struct perf_counter_context *ctx)
143 {
144 struct perf_counter *counter;
145
146 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
147 return;
148
149 counter_sched_out(group_counter, cpuctx, ctx);
150
151 /*
152 * Schedule out siblings (if any):
153 */
154 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
155 counter_sched_out(counter, cpuctx, ctx);
156
157 if (group_counter->hw_event.exclusive)
158 cpuctx->exclusive = 0;
159 }
160
161 /*
162 * Cross CPU call to remove a performance counter
163 *
164 * We disable the counter on the hardware level first. After that we
165 * remove it from the context list.
166 */
167 static void __perf_counter_remove_from_context(void *info)
168 {
169 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
170 struct perf_counter *counter = info;
171 struct perf_counter_context *ctx = counter->ctx;
172 unsigned long flags;
173 u64 perf_flags;
174
175 /*
176 * If this is a task context, we need to check whether it is
177 * the current task context of this cpu. If not it has been
178 * scheduled out before the smp call arrived.
179 */
180 if (ctx->task && cpuctx->task_ctx != ctx)
181 return;
182
183 spin_lock_irqsave(&ctx->lock, flags);
184
185 counter_sched_out(counter, cpuctx, ctx);
186
187 counter->task = NULL;
188 ctx->nr_counters--;
189
190 /*
191 * Protect the list operation against NMI by disabling the
192 * counters on a global level. NOP for non NMI based counters.
193 */
194 perf_flags = hw_perf_save_disable();
195 list_del_counter(counter, ctx);
196 hw_perf_restore(perf_flags);
197
198 if (!ctx->task) {
199 /*
200 * Allow more per task counters with respect to the
201 * reservation:
202 */
203 cpuctx->max_pertask =
204 min(perf_max_counters - ctx->nr_counters,
205 perf_max_counters - perf_reserved_percpu);
206 }
207
208 spin_unlock_irqrestore(&ctx->lock, flags);
209 }
210
211
212 /*
213 * Remove the counter from a task's (or a CPU's) list of counters.
214 *
215 * Must be called with counter->mutex and ctx->mutex held.
216 *
217 * CPU counters are removed with a smp call. For task counters we only
218 * call when the task is on a CPU.
219 */
220 static void perf_counter_remove_from_context(struct perf_counter *counter)
221 {
222 struct perf_counter_context *ctx = counter->ctx;
223 struct task_struct *task = ctx->task;
224
225 if (!task) {
226 /*
227 * Per cpu counters are removed via an smp call and
228 * the removal is always sucessful.
229 */
230 smp_call_function_single(counter->cpu,
231 __perf_counter_remove_from_context,
232 counter, 1);
233 return;
234 }
235
236 retry:
237 task_oncpu_function_call(task, __perf_counter_remove_from_context,
238 counter);
239
240 spin_lock_irq(&ctx->lock);
241 /*
242 * If the context is active we need to retry the smp call.
243 */
244 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
245 spin_unlock_irq(&ctx->lock);
246 goto retry;
247 }
248
249 /*
250 * The lock prevents that this context is scheduled in so we
251 * can remove the counter safely, if the call above did not
252 * succeed.
253 */
254 if (!list_empty(&counter->list_entry)) {
255 ctx->nr_counters--;
256 list_del_counter(counter, ctx);
257 counter->task = NULL;
258 }
259 spin_unlock_irq(&ctx->lock);
260 }
261
262 static inline u64 perf_clock(void)
263 {
264 return cpu_clock(smp_processor_id());
265 }
266
267 /*
268 * Update the record of the current time in a context.
269 */
270 static void update_context_time(struct perf_counter_context *ctx)
271 {
272 u64 now = perf_clock();
273
274 ctx->time += now - ctx->timestamp;
275 ctx->timestamp = now;
276 }
277
278 /*
279 * Update the total_time_enabled and total_time_running fields for a counter.
280 */
281 static void update_counter_times(struct perf_counter *counter)
282 {
283 struct perf_counter_context *ctx = counter->ctx;
284 u64 run_end;
285
286 if (counter->state < PERF_COUNTER_STATE_INACTIVE)
287 return;
288
289 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
290
291 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
292 run_end = counter->tstamp_stopped;
293 else
294 run_end = ctx->time;
295
296 counter->total_time_running = run_end - counter->tstamp_running;
297 }
298
299 /*
300 * Update total_time_enabled and total_time_running for all counters in a group.
301 */
302 static void update_group_times(struct perf_counter *leader)
303 {
304 struct perf_counter *counter;
305
306 update_counter_times(leader);
307 list_for_each_entry(counter, &leader->sibling_list, list_entry)
308 update_counter_times(counter);
309 }
310
311 /*
312 * Cross CPU call to disable a performance counter
313 */
314 static void __perf_counter_disable(void *info)
315 {
316 struct perf_counter *counter = info;
317 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
318 struct perf_counter_context *ctx = counter->ctx;
319 unsigned long flags;
320
321 /*
322 * If this is a per-task counter, need to check whether this
323 * counter's task is the current task on this cpu.
324 */
325 if (ctx->task && cpuctx->task_ctx != ctx)
326 return;
327
328 spin_lock_irqsave(&ctx->lock, flags);
329
330 /*
331 * If the counter is on, turn it off.
332 * If it is in error state, leave it in error state.
333 */
334 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
335 update_context_time(ctx);
336 update_counter_times(counter);
337 if (counter == counter->group_leader)
338 group_sched_out(counter, cpuctx, ctx);
339 else
340 counter_sched_out(counter, cpuctx, ctx);
341 counter->state = PERF_COUNTER_STATE_OFF;
342 }
343
344 spin_unlock_irqrestore(&ctx->lock, flags);
345 }
346
347 /*
348 * Disable a counter.
349 */
350 static void perf_counter_disable(struct perf_counter *counter)
351 {
352 struct perf_counter_context *ctx = counter->ctx;
353 struct task_struct *task = ctx->task;
354
355 if (!task) {
356 /*
357 * Disable the counter on the cpu that it's on
358 */
359 smp_call_function_single(counter->cpu, __perf_counter_disable,
360 counter, 1);
361 return;
362 }
363
364 retry:
365 task_oncpu_function_call(task, __perf_counter_disable, counter);
366
367 spin_lock_irq(&ctx->lock);
368 /*
369 * If the counter is still active, we need to retry the cross-call.
370 */
371 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
372 spin_unlock_irq(&ctx->lock);
373 goto retry;
374 }
375
376 /*
377 * Since we have the lock this context can't be scheduled
378 * in, so we can change the state safely.
379 */
380 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
381 update_counter_times(counter);
382 counter->state = PERF_COUNTER_STATE_OFF;
383 }
384
385 spin_unlock_irq(&ctx->lock);
386 }
387
388 static int
389 counter_sched_in(struct perf_counter *counter,
390 struct perf_cpu_context *cpuctx,
391 struct perf_counter_context *ctx,
392 int cpu)
393 {
394 if (counter->state <= PERF_COUNTER_STATE_OFF)
395 return 0;
396
397 counter->state = PERF_COUNTER_STATE_ACTIVE;
398 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
399 /*
400 * The new state must be visible before we turn it on in the hardware:
401 */
402 smp_wmb();
403
404 if (counter->pmu->enable(counter)) {
405 counter->state = PERF_COUNTER_STATE_INACTIVE;
406 counter->oncpu = -1;
407 return -EAGAIN;
408 }
409
410 counter->tstamp_running += ctx->time - counter->tstamp_stopped;
411
412 if (!is_software_counter(counter))
413 cpuctx->active_oncpu++;
414 ctx->nr_active++;
415
416 if (counter->hw_event.exclusive)
417 cpuctx->exclusive = 1;
418
419 return 0;
420 }
421
422 static int
423 group_sched_in(struct perf_counter *group_counter,
424 struct perf_cpu_context *cpuctx,
425 struct perf_counter_context *ctx,
426 int cpu)
427 {
428 struct perf_counter *counter, *partial_group;
429 int ret;
430
431 if (group_counter->state == PERF_COUNTER_STATE_OFF)
432 return 0;
433
434 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
435 if (ret)
436 return ret < 0 ? ret : 0;
437
438 group_counter->prev_state = group_counter->state;
439 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
440 return -EAGAIN;
441
442 /*
443 * Schedule in siblings as one group (if any):
444 */
445 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
446 counter->prev_state = counter->state;
447 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
448 partial_group = counter;
449 goto group_error;
450 }
451 }
452
453 return 0;
454
455 group_error:
456 /*
457 * Groups can be scheduled in as one unit only, so undo any
458 * partial group before returning:
459 */
460 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
461 if (counter == partial_group)
462 break;
463 counter_sched_out(counter, cpuctx, ctx);
464 }
465 counter_sched_out(group_counter, cpuctx, ctx);
466
467 return -EAGAIN;
468 }
469
470 /*
471 * Return 1 for a group consisting entirely of software counters,
472 * 0 if the group contains any hardware counters.
473 */
474 static int is_software_only_group(struct perf_counter *leader)
475 {
476 struct perf_counter *counter;
477
478 if (!is_software_counter(leader))
479 return 0;
480
481 list_for_each_entry(counter, &leader->sibling_list, list_entry)
482 if (!is_software_counter(counter))
483 return 0;
484
485 return 1;
486 }
487
488 /*
489 * Work out whether we can put this counter group on the CPU now.
490 */
491 static int group_can_go_on(struct perf_counter *counter,
492 struct perf_cpu_context *cpuctx,
493 int can_add_hw)
494 {
495 /*
496 * Groups consisting entirely of software counters can always go on.
497 */
498 if (is_software_only_group(counter))
499 return 1;
500 /*
501 * If an exclusive group is already on, no other hardware
502 * counters can go on.
503 */
504 if (cpuctx->exclusive)
505 return 0;
506 /*
507 * If this group is exclusive and there are already
508 * counters on the CPU, it can't go on.
509 */
510 if (counter->hw_event.exclusive && cpuctx->active_oncpu)
511 return 0;
512 /*
513 * Otherwise, try to add it if all previous groups were able
514 * to go on.
515 */
516 return can_add_hw;
517 }
518
519 static void add_counter_to_ctx(struct perf_counter *counter,
520 struct perf_counter_context *ctx)
521 {
522 list_add_counter(counter, ctx);
523 ctx->nr_counters++;
524 counter->prev_state = PERF_COUNTER_STATE_OFF;
525 counter->tstamp_enabled = ctx->time;
526 counter->tstamp_running = ctx->time;
527 counter->tstamp_stopped = ctx->time;
528 }
529
530 /*
531 * Cross CPU call to install and enable a performance counter
532 */
533 static void __perf_install_in_context(void *info)
534 {
535 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
536 struct perf_counter *counter = info;
537 struct perf_counter_context *ctx = counter->ctx;
538 struct perf_counter *leader = counter->group_leader;
539 int cpu = smp_processor_id();
540 unsigned long flags;
541 u64 perf_flags;
542 int err;
543
544 /*
545 * If this is a task context, we need to check whether it is
546 * the current task context of this cpu. If not it has been
547 * scheduled out before the smp call arrived.
548 */
549 if (ctx->task && cpuctx->task_ctx != ctx)
550 return;
551
552 spin_lock_irqsave(&ctx->lock, flags);
553 update_context_time(ctx);
554
555 /*
556 * Protect the list operation against NMI by disabling the
557 * counters on a global level. NOP for non NMI based counters.
558 */
559 perf_flags = hw_perf_save_disable();
560
561 add_counter_to_ctx(counter, ctx);
562
563 /*
564 * Don't put the counter on if it is disabled or if
565 * it is in a group and the group isn't on.
566 */
567 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
568 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
569 goto unlock;
570
571 /*
572 * An exclusive counter can't go on if there are already active
573 * hardware counters, and no hardware counter can go on if there
574 * is already an exclusive counter on.
575 */
576 if (!group_can_go_on(counter, cpuctx, 1))
577 err = -EEXIST;
578 else
579 err = counter_sched_in(counter, cpuctx, ctx, cpu);
580
581 if (err) {
582 /*
583 * This counter couldn't go on. If it is in a group
584 * then we have to pull the whole group off.
585 * If the counter group is pinned then put it in error state.
586 */
587 if (leader != counter)
588 group_sched_out(leader, cpuctx, ctx);
589 if (leader->hw_event.pinned) {
590 update_group_times(leader);
591 leader->state = PERF_COUNTER_STATE_ERROR;
592 }
593 }
594
595 if (!err && !ctx->task && cpuctx->max_pertask)
596 cpuctx->max_pertask--;
597
598 unlock:
599 hw_perf_restore(perf_flags);
600
601 spin_unlock_irqrestore(&ctx->lock, flags);
602 }
603
604 /*
605 * Attach a performance counter to a context
606 *
607 * First we add the counter to the list with the hardware enable bit
608 * in counter->hw_config cleared.
609 *
610 * If the counter is attached to a task which is on a CPU we use a smp
611 * call to enable it in the task context. The task might have been
612 * scheduled away, but we check this in the smp call again.
613 *
614 * Must be called with ctx->mutex held.
615 */
616 static void
617 perf_install_in_context(struct perf_counter_context *ctx,
618 struct perf_counter *counter,
619 int cpu)
620 {
621 struct task_struct *task = ctx->task;
622
623 if (!task) {
624 /*
625 * Per cpu counters are installed via an smp call and
626 * the install is always sucessful.
627 */
628 smp_call_function_single(cpu, __perf_install_in_context,
629 counter, 1);
630 return;
631 }
632
633 counter->task = task;
634 retry:
635 task_oncpu_function_call(task, __perf_install_in_context,
636 counter);
637
638 spin_lock_irq(&ctx->lock);
639 /*
640 * we need to retry the smp call.
641 */
642 if (ctx->is_active && list_empty(&counter->list_entry)) {
643 spin_unlock_irq(&ctx->lock);
644 goto retry;
645 }
646
647 /*
648 * The lock prevents that this context is scheduled in so we
649 * can add the counter safely, if it the call above did not
650 * succeed.
651 */
652 if (list_empty(&counter->list_entry))
653 add_counter_to_ctx(counter, ctx);
654 spin_unlock_irq(&ctx->lock);
655 }
656
657 /*
658 * Cross CPU call to enable a performance counter
659 */
660 static void __perf_counter_enable(void *info)
661 {
662 struct perf_counter *counter = info;
663 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
664 struct perf_counter_context *ctx = counter->ctx;
665 struct perf_counter *leader = counter->group_leader;
666 unsigned long pmuflags;
667 unsigned long flags;
668 int err;
669
670 /*
671 * If this is a per-task counter, need to check whether this
672 * counter's task is the current task on this cpu.
673 */
674 if (ctx->task && cpuctx->task_ctx != ctx)
675 return;
676
677 spin_lock_irqsave(&ctx->lock, flags);
678 update_context_time(ctx);
679
680 counter->prev_state = counter->state;
681 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
682 goto unlock;
683 counter->state = PERF_COUNTER_STATE_INACTIVE;
684 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
685
686 /*
687 * If the counter is in a group and isn't the group leader,
688 * then don't put it on unless the group is on.
689 */
690 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
691 goto unlock;
692
693 if (!group_can_go_on(counter, cpuctx, 1)) {
694 err = -EEXIST;
695 } else {
696 pmuflags = hw_perf_save_disable();
697 if (counter == leader)
698 err = group_sched_in(counter, cpuctx, ctx,
699 smp_processor_id());
700 else
701 err = counter_sched_in(counter, cpuctx, ctx,
702 smp_processor_id());
703 hw_perf_restore(pmuflags);
704 }
705
706 if (err) {
707 /*
708 * If this counter can't go on and it's part of a
709 * group, then the whole group has to come off.
710 */
711 if (leader != counter)
712 group_sched_out(leader, cpuctx, ctx);
713 if (leader->hw_event.pinned) {
714 update_group_times(leader);
715 leader->state = PERF_COUNTER_STATE_ERROR;
716 }
717 }
718
719 unlock:
720 spin_unlock_irqrestore(&ctx->lock, flags);
721 }
722
723 /*
724 * Enable a counter.
725 */
726 static void perf_counter_enable(struct perf_counter *counter)
727 {
728 struct perf_counter_context *ctx = counter->ctx;
729 struct task_struct *task = ctx->task;
730
731 if (!task) {
732 /*
733 * Enable the counter on the cpu that it's on
734 */
735 smp_call_function_single(counter->cpu, __perf_counter_enable,
736 counter, 1);
737 return;
738 }
739
740 spin_lock_irq(&ctx->lock);
741 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
742 goto out;
743
744 /*
745 * If the counter is in error state, clear that first.
746 * That way, if we see the counter in error state below, we
747 * know that it has gone back into error state, as distinct
748 * from the task having been scheduled away before the
749 * cross-call arrived.
750 */
751 if (counter->state == PERF_COUNTER_STATE_ERROR)
752 counter->state = PERF_COUNTER_STATE_OFF;
753
754 retry:
755 spin_unlock_irq(&ctx->lock);
756 task_oncpu_function_call(task, __perf_counter_enable, counter);
757
758 spin_lock_irq(&ctx->lock);
759
760 /*
761 * If the context is active and the counter is still off,
762 * we need to retry the cross-call.
763 */
764 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
765 goto retry;
766
767 /*
768 * Since we have the lock this context can't be scheduled
769 * in, so we can change the state safely.
770 */
771 if (counter->state == PERF_COUNTER_STATE_OFF) {
772 counter->state = PERF_COUNTER_STATE_INACTIVE;
773 counter->tstamp_enabled =
774 ctx->time - counter->total_time_enabled;
775 }
776 out:
777 spin_unlock_irq(&ctx->lock);
778 }
779
780 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
781 {
782 /*
783 * not supported on inherited counters
784 */
785 if (counter->hw_event.inherit)
786 return -EINVAL;
787
788 atomic_add(refresh, &counter->event_limit);
789 perf_counter_enable(counter);
790
791 return 0;
792 }
793
794 void __perf_counter_sched_out(struct perf_counter_context *ctx,
795 struct perf_cpu_context *cpuctx)
796 {
797 struct perf_counter *counter;
798 u64 flags;
799
800 spin_lock(&ctx->lock);
801 ctx->is_active = 0;
802 if (likely(!ctx->nr_counters))
803 goto out;
804 update_context_time(ctx);
805
806 flags = hw_perf_save_disable();
807 if (ctx->nr_active) {
808 list_for_each_entry(counter, &ctx->counter_list, list_entry)
809 group_sched_out(counter, cpuctx, ctx);
810 }
811 hw_perf_restore(flags);
812 out:
813 spin_unlock(&ctx->lock);
814 }
815
816 /*
817 * Called from scheduler to remove the counters of the current task,
818 * with interrupts disabled.
819 *
820 * We stop each counter and update the counter value in counter->count.
821 *
822 * This does not protect us against NMI, but disable()
823 * sets the disabled bit in the control field of counter _before_
824 * accessing the counter control register. If a NMI hits, then it will
825 * not restart the counter.
826 */
827 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
828 {
829 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
830 struct perf_counter_context *ctx = &task->perf_counter_ctx;
831 struct pt_regs *regs;
832
833 if (likely(!cpuctx->task_ctx))
834 return;
835
836 update_context_time(ctx);
837
838 regs = task_pt_regs(task);
839 perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
840 __perf_counter_sched_out(ctx, cpuctx);
841
842 cpuctx->task_ctx = NULL;
843 }
844
845 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
846 {
847 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
848
849 __perf_counter_sched_out(ctx, cpuctx);
850 cpuctx->task_ctx = NULL;
851 }
852
853 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
854 {
855 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
856 }
857
858 static void
859 __perf_counter_sched_in(struct perf_counter_context *ctx,
860 struct perf_cpu_context *cpuctx, int cpu)
861 {
862 struct perf_counter *counter;
863 u64 flags;
864 int can_add_hw = 1;
865
866 spin_lock(&ctx->lock);
867 ctx->is_active = 1;
868 if (likely(!ctx->nr_counters))
869 goto out;
870
871 ctx->timestamp = perf_clock();
872
873 flags = hw_perf_save_disable();
874
875 /*
876 * First go through the list and put on any pinned groups
877 * in order to give them the best chance of going on.
878 */
879 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
880 if (counter->state <= PERF_COUNTER_STATE_OFF ||
881 !counter->hw_event.pinned)
882 continue;
883 if (counter->cpu != -1 && counter->cpu != cpu)
884 continue;
885
886 if (group_can_go_on(counter, cpuctx, 1))
887 group_sched_in(counter, cpuctx, ctx, cpu);
888
889 /*
890 * If this pinned group hasn't been scheduled,
891 * put it in error state.
892 */
893 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
894 update_group_times(counter);
895 counter->state = PERF_COUNTER_STATE_ERROR;
896 }
897 }
898
899 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
900 /*
901 * Ignore counters in OFF or ERROR state, and
902 * ignore pinned counters since we did them already.
903 */
904 if (counter->state <= PERF_COUNTER_STATE_OFF ||
905 counter->hw_event.pinned)
906 continue;
907
908 /*
909 * Listen to the 'cpu' scheduling filter constraint
910 * of counters:
911 */
912 if (counter->cpu != -1 && counter->cpu != cpu)
913 continue;
914
915 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
916 if (group_sched_in(counter, cpuctx, ctx, cpu))
917 can_add_hw = 0;
918 }
919 }
920 hw_perf_restore(flags);
921 out:
922 spin_unlock(&ctx->lock);
923 }
924
925 /*
926 * Called from scheduler to add the counters of the current task
927 * with interrupts disabled.
928 *
929 * We restore the counter value and then enable it.
930 *
931 * This does not protect us against NMI, but enable()
932 * sets the enabled bit in the control field of counter _before_
933 * accessing the counter control register. If a NMI hits, then it will
934 * keep the counter running.
935 */
936 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
937 {
938 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
939 struct perf_counter_context *ctx = &task->perf_counter_ctx;
940
941 __perf_counter_sched_in(ctx, cpuctx, cpu);
942 cpuctx->task_ctx = ctx;
943 }
944
945 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
946 {
947 struct perf_counter_context *ctx = &cpuctx->ctx;
948
949 __perf_counter_sched_in(ctx, cpuctx, cpu);
950 }
951
952 int perf_counter_task_disable(void)
953 {
954 struct task_struct *curr = current;
955 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
956 struct perf_counter *counter;
957 unsigned long flags;
958 u64 perf_flags;
959
960 if (likely(!ctx->nr_counters))
961 return 0;
962
963 local_irq_save(flags);
964
965 __perf_counter_task_sched_out(ctx);
966
967 spin_lock(&ctx->lock);
968
969 /*
970 * Disable all the counters:
971 */
972 perf_flags = hw_perf_save_disable();
973
974 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
975 if (counter->state != PERF_COUNTER_STATE_ERROR) {
976 update_group_times(counter);
977 counter->state = PERF_COUNTER_STATE_OFF;
978 }
979 }
980
981 hw_perf_restore(perf_flags);
982
983 spin_unlock_irqrestore(&ctx->lock, flags);
984
985 return 0;
986 }
987
988 int perf_counter_task_enable(void)
989 {
990 struct task_struct *curr = current;
991 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
992 struct perf_counter *counter;
993 unsigned long flags;
994 u64 perf_flags;
995 int cpu;
996
997 if (likely(!ctx->nr_counters))
998 return 0;
999
1000 local_irq_save(flags);
1001 cpu = smp_processor_id();
1002
1003 __perf_counter_task_sched_out(ctx);
1004
1005 spin_lock(&ctx->lock);
1006
1007 /*
1008 * Disable all the counters:
1009 */
1010 perf_flags = hw_perf_save_disable();
1011
1012 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1013 if (counter->state > PERF_COUNTER_STATE_OFF)
1014 continue;
1015 counter->state = PERF_COUNTER_STATE_INACTIVE;
1016 counter->tstamp_enabled =
1017 ctx->time - counter->total_time_enabled;
1018 counter->hw_event.disabled = 0;
1019 }
1020 hw_perf_restore(perf_flags);
1021
1022 spin_unlock(&ctx->lock);
1023
1024 perf_counter_task_sched_in(curr, cpu);
1025
1026 local_irq_restore(flags);
1027
1028 return 0;
1029 }
1030
1031 /*
1032 * Round-robin a context's counters:
1033 */
1034 static void rotate_ctx(struct perf_counter_context *ctx)
1035 {
1036 struct perf_counter *counter;
1037 u64 perf_flags;
1038
1039 if (!ctx->nr_counters)
1040 return;
1041
1042 spin_lock(&ctx->lock);
1043 /*
1044 * Rotate the first entry last (works just fine for group counters too):
1045 */
1046 perf_flags = hw_perf_save_disable();
1047 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1048 list_move_tail(&counter->list_entry, &ctx->counter_list);
1049 break;
1050 }
1051 hw_perf_restore(perf_flags);
1052
1053 spin_unlock(&ctx->lock);
1054 }
1055
1056 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1057 {
1058 struct perf_cpu_context *cpuctx;
1059 struct perf_counter_context *ctx;
1060
1061 if (!atomic_read(&nr_counters))
1062 return;
1063
1064 cpuctx = &per_cpu(perf_cpu_context, cpu);
1065 ctx = &curr->perf_counter_ctx;
1066
1067 perf_counter_cpu_sched_out(cpuctx);
1068 __perf_counter_task_sched_out(ctx);
1069
1070 rotate_ctx(&cpuctx->ctx);
1071 rotate_ctx(ctx);
1072
1073 perf_counter_cpu_sched_in(cpuctx, cpu);
1074 perf_counter_task_sched_in(curr, cpu);
1075 }
1076
1077 /*
1078 * Cross CPU call to read the hardware counter
1079 */
1080 static void __read(void *info)
1081 {
1082 struct perf_counter *counter = info;
1083 struct perf_counter_context *ctx = counter->ctx;
1084 unsigned long flags;
1085
1086 local_irq_save(flags);
1087 if (ctx->is_active)
1088 update_context_time(ctx);
1089 counter->pmu->read(counter);
1090 update_counter_times(counter);
1091 local_irq_restore(flags);
1092 }
1093
1094 static u64 perf_counter_read(struct perf_counter *counter)
1095 {
1096 /*
1097 * If counter is enabled and currently active on a CPU, update the
1098 * value in the counter structure:
1099 */
1100 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1101 smp_call_function_single(counter->oncpu,
1102 __read, counter, 1);
1103 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1104 update_counter_times(counter);
1105 }
1106
1107 return atomic64_read(&counter->count);
1108 }
1109
1110 static void put_context(struct perf_counter_context *ctx)
1111 {
1112 if (ctx->task)
1113 put_task_struct(ctx->task);
1114 }
1115
1116 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1117 {
1118 struct perf_cpu_context *cpuctx;
1119 struct perf_counter_context *ctx;
1120 struct task_struct *task;
1121
1122 /*
1123 * If cpu is not a wildcard then this is a percpu counter:
1124 */
1125 if (cpu != -1) {
1126 /* Must be root to operate on a CPU counter: */
1127 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1128 return ERR_PTR(-EACCES);
1129
1130 if (cpu < 0 || cpu > num_possible_cpus())
1131 return ERR_PTR(-EINVAL);
1132
1133 /*
1134 * We could be clever and allow to attach a counter to an
1135 * offline CPU and activate it when the CPU comes up, but
1136 * that's for later.
1137 */
1138 if (!cpu_isset(cpu, cpu_online_map))
1139 return ERR_PTR(-ENODEV);
1140
1141 cpuctx = &per_cpu(perf_cpu_context, cpu);
1142 ctx = &cpuctx->ctx;
1143
1144 return ctx;
1145 }
1146
1147 rcu_read_lock();
1148 if (!pid)
1149 task = current;
1150 else
1151 task = find_task_by_vpid(pid);
1152 if (task)
1153 get_task_struct(task);
1154 rcu_read_unlock();
1155
1156 if (!task)
1157 return ERR_PTR(-ESRCH);
1158
1159 ctx = &task->perf_counter_ctx;
1160 ctx->task = task;
1161
1162 /* Reuse ptrace permission checks for now. */
1163 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1164 put_context(ctx);
1165 return ERR_PTR(-EACCES);
1166 }
1167
1168 return ctx;
1169 }
1170
1171 static void free_counter_rcu(struct rcu_head *head)
1172 {
1173 struct perf_counter *counter;
1174
1175 counter = container_of(head, struct perf_counter, rcu_head);
1176 kfree(counter);
1177 }
1178
1179 static void perf_pending_sync(struct perf_counter *counter);
1180
1181 static void free_counter(struct perf_counter *counter)
1182 {
1183 perf_pending_sync(counter);
1184
1185 atomic_dec(&nr_counters);
1186 if (counter->hw_event.mmap)
1187 atomic_dec(&nr_mmap_tracking);
1188 if (counter->hw_event.munmap)
1189 atomic_dec(&nr_munmap_tracking);
1190 if (counter->hw_event.comm)
1191 atomic_dec(&nr_comm_tracking);
1192
1193 if (counter->destroy)
1194 counter->destroy(counter);
1195
1196 call_rcu(&counter->rcu_head, free_counter_rcu);
1197 }
1198
1199 /*
1200 * Called when the last reference to the file is gone.
1201 */
1202 static int perf_release(struct inode *inode, struct file *file)
1203 {
1204 struct perf_counter *counter = file->private_data;
1205 struct perf_counter_context *ctx = counter->ctx;
1206
1207 file->private_data = NULL;
1208
1209 mutex_lock(&ctx->mutex);
1210 mutex_lock(&counter->mutex);
1211
1212 perf_counter_remove_from_context(counter);
1213
1214 mutex_unlock(&counter->mutex);
1215 mutex_unlock(&ctx->mutex);
1216
1217 free_counter(counter);
1218 put_context(ctx);
1219
1220 return 0;
1221 }
1222
1223 /*
1224 * Read the performance counter - simple non blocking version for now
1225 */
1226 static ssize_t
1227 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1228 {
1229 u64 values[3];
1230 int n;
1231
1232 /*
1233 * Return end-of-file for a read on a counter that is in
1234 * error state (i.e. because it was pinned but it couldn't be
1235 * scheduled on to the CPU at some point).
1236 */
1237 if (counter->state == PERF_COUNTER_STATE_ERROR)
1238 return 0;
1239
1240 mutex_lock(&counter->mutex);
1241 values[0] = perf_counter_read(counter);
1242 n = 1;
1243 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1244 values[n++] = counter->total_time_enabled +
1245 atomic64_read(&counter->child_total_time_enabled);
1246 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1247 values[n++] = counter->total_time_running +
1248 atomic64_read(&counter->child_total_time_running);
1249 mutex_unlock(&counter->mutex);
1250
1251 if (count < n * sizeof(u64))
1252 return -EINVAL;
1253 count = n * sizeof(u64);
1254
1255 if (copy_to_user(buf, values, count))
1256 return -EFAULT;
1257
1258 return count;
1259 }
1260
1261 static ssize_t
1262 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1263 {
1264 struct perf_counter *counter = file->private_data;
1265
1266 return perf_read_hw(counter, buf, count);
1267 }
1268
1269 static unsigned int perf_poll(struct file *file, poll_table *wait)
1270 {
1271 struct perf_counter *counter = file->private_data;
1272 struct perf_mmap_data *data;
1273 unsigned int events = POLL_HUP;
1274
1275 rcu_read_lock();
1276 data = rcu_dereference(counter->data);
1277 if (data)
1278 events = atomic_xchg(&data->poll, 0);
1279 rcu_read_unlock();
1280
1281 poll_wait(file, &counter->waitq, wait);
1282
1283 return events;
1284 }
1285
1286 static void perf_counter_reset(struct perf_counter *counter)
1287 {
1288 (void)perf_counter_read(counter);
1289 atomic64_set(&counter->count, 0);
1290 perf_counter_update_userpage(counter);
1291 }
1292
1293 static void perf_counter_for_each_sibling(struct perf_counter *counter,
1294 void (*func)(struct perf_counter *))
1295 {
1296 struct perf_counter_context *ctx = counter->ctx;
1297 struct perf_counter *sibling;
1298
1299 spin_lock_irq(&ctx->lock);
1300 counter = counter->group_leader;
1301
1302 func(counter);
1303 list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1304 func(sibling);
1305 spin_unlock_irq(&ctx->lock);
1306 }
1307
1308 static void perf_counter_for_each_child(struct perf_counter *counter,
1309 void (*func)(struct perf_counter *))
1310 {
1311 struct perf_counter *child;
1312
1313 mutex_lock(&counter->mutex);
1314 func(counter);
1315 list_for_each_entry(child, &counter->child_list, child_list)
1316 func(child);
1317 mutex_unlock(&counter->mutex);
1318 }
1319
1320 static void perf_counter_for_each(struct perf_counter *counter,
1321 void (*func)(struct perf_counter *))
1322 {
1323 struct perf_counter *child;
1324
1325 mutex_lock(&counter->mutex);
1326 perf_counter_for_each_sibling(counter, func);
1327 list_for_each_entry(child, &counter->child_list, child_list)
1328 perf_counter_for_each_sibling(child, func);
1329 mutex_unlock(&counter->mutex);
1330 }
1331
1332 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1333 {
1334 struct perf_counter *counter = file->private_data;
1335 void (*func)(struct perf_counter *);
1336 u32 flags = arg;
1337
1338 switch (cmd) {
1339 case PERF_COUNTER_IOC_ENABLE:
1340 func = perf_counter_enable;
1341 break;
1342 case PERF_COUNTER_IOC_DISABLE:
1343 func = perf_counter_disable;
1344 break;
1345 case PERF_COUNTER_IOC_RESET:
1346 func = perf_counter_reset;
1347 break;
1348
1349 case PERF_COUNTER_IOC_REFRESH:
1350 return perf_counter_refresh(counter, arg);
1351 default:
1352 return -ENOTTY;
1353 }
1354
1355 if (flags & PERF_IOC_FLAG_GROUP)
1356 perf_counter_for_each(counter, func);
1357 else
1358 perf_counter_for_each_child(counter, func);
1359
1360 return 0;
1361 }
1362
1363 /*
1364 * Callers need to ensure there can be no nesting of this function, otherwise
1365 * the seqlock logic goes bad. We can not serialize this because the arch
1366 * code calls this from NMI context.
1367 */
1368 void perf_counter_update_userpage(struct perf_counter *counter)
1369 {
1370 struct perf_mmap_data *data;
1371 struct perf_counter_mmap_page *userpg;
1372
1373 rcu_read_lock();
1374 data = rcu_dereference(counter->data);
1375 if (!data)
1376 goto unlock;
1377
1378 userpg = data->user_page;
1379
1380 /*
1381 * Disable preemption so as to not let the corresponding user-space
1382 * spin too long if we get preempted.
1383 */
1384 preempt_disable();
1385 ++userpg->lock;
1386 barrier();
1387 userpg->index = counter->hw.idx;
1388 userpg->offset = atomic64_read(&counter->count);
1389 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1390 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1391
1392 barrier();
1393 ++userpg->lock;
1394 preempt_enable();
1395 unlock:
1396 rcu_read_unlock();
1397 }
1398
1399 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1400 {
1401 struct perf_counter *counter = vma->vm_file->private_data;
1402 struct perf_mmap_data *data;
1403 int ret = VM_FAULT_SIGBUS;
1404
1405 rcu_read_lock();
1406 data = rcu_dereference(counter->data);
1407 if (!data)
1408 goto unlock;
1409
1410 if (vmf->pgoff == 0) {
1411 vmf->page = virt_to_page(data->user_page);
1412 } else {
1413 int nr = vmf->pgoff - 1;
1414
1415 if ((unsigned)nr > data->nr_pages)
1416 goto unlock;
1417
1418 vmf->page = virt_to_page(data->data_pages[nr]);
1419 }
1420 get_page(vmf->page);
1421 ret = 0;
1422 unlock:
1423 rcu_read_unlock();
1424
1425 return ret;
1426 }
1427
1428 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1429 {
1430 struct perf_mmap_data *data;
1431 unsigned long size;
1432 int i;
1433
1434 WARN_ON(atomic_read(&counter->mmap_count));
1435
1436 size = sizeof(struct perf_mmap_data);
1437 size += nr_pages * sizeof(void *);
1438
1439 data = kzalloc(size, GFP_KERNEL);
1440 if (!data)
1441 goto fail;
1442
1443 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1444 if (!data->user_page)
1445 goto fail_user_page;
1446
1447 for (i = 0; i < nr_pages; i++) {
1448 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1449 if (!data->data_pages[i])
1450 goto fail_data_pages;
1451 }
1452
1453 data->nr_pages = nr_pages;
1454 atomic_set(&data->lock, -1);
1455
1456 rcu_assign_pointer(counter->data, data);
1457
1458 return 0;
1459
1460 fail_data_pages:
1461 for (i--; i >= 0; i--)
1462 free_page((unsigned long)data->data_pages[i]);
1463
1464 free_page((unsigned long)data->user_page);
1465
1466 fail_user_page:
1467 kfree(data);
1468
1469 fail:
1470 return -ENOMEM;
1471 }
1472
1473 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1474 {
1475 struct perf_mmap_data *data = container_of(rcu_head,
1476 struct perf_mmap_data, rcu_head);
1477 int i;
1478
1479 free_page((unsigned long)data->user_page);
1480 for (i = 0; i < data->nr_pages; i++)
1481 free_page((unsigned long)data->data_pages[i]);
1482 kfree(data);
1483 }
1484
1485 static void perf_mmap_data_free(struct perf_counter *counter)
1486 {
1487 struct perf_mmap_data *data = counter->data;
1488
1489 WARN_ON(atomic_read(&counter->mmap_count));
1490
1491 rcu_assign_pointer(counter->data, NULL);
1492 call_rcu(&data->rcu_head, __perf_mmap_data_free);
1493 }
1494
1495 static void perf_mmap_open(struct vm_area_struct *vma)
1496 {
1497 struct perf_counter *counter = vma->vm_file->private_data;
1498
1499 atomic_inc(&counter->mmap_count);
1500 }
1501
1502 static void perf_mmap_close(struct vm_area_struct *vma)
1503 {
1504 struct perf_counter *counter = vma->vm_file->private_data;
1505
1506 if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1507 &counter->mmap_mutex)) {
1508 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1509 perf_mmap_data_free(counter);
1510 mutex_unlock(&counter->mmap_mutex);
1511 }
1512 }
1513
1514 static struct vm_operations_struct perf_mmap_vmops = {
1515 .open = perf_mmap_open,
1516 .close = perf_mmap_close,
1517 .fault = perf_mmap_fault,
1518 };
1519
1520 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1521 {
1522 struct perf_counter *counter = file->private_data;
1523 unsigned long vma_size;
1524 unsigned long nr_pages;
1525 unsigned long locked, lock_limit;
1526 int ret = 0;
1527 long extra;
1528
1529 if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1530 return -EINVAL;
1531
1532 vma_size = vma->vm_end - vma->vm_start;
1533 nr_pages = (vma_size / PAGE_SIZE) - 1;
1534
1535 /*
1536 * If we have data pages ensure they're a power-of-two number, so we
1537 * can do bitmasks instead of modulo.
1538 */
1539 if (nr_pages != 0 && !is_power_of_2(nr_pages))
1540 return -EINVAL;
1541
1542 if (vma_size != PAGE_SIZE * (1 + nr_pages))
1543 return -EINVAL;
1544
1545 if (vma->vm_pgoff != 0)
1546 return -EINVAL;
1547
1548 mutex_lock(&counter->mmap_mutex);
1549 if (atomic_inc_not_zero(&counter->mmap_count)) {
1550 if (nr_pages != counter->data->nr_pages)
1551 ret = -EINVAL;
1552 goto unlock;
1553 }
1554
1555 extra = nr_pages /* + 1 only account the data pages */;
1556 extra -= sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1557 if (extra < 0)
1558 extra = 0;
1559
1560 locked = vma->vm_mm->locked_vm + extra;
1561
1562 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1563 lock_limit >>= PAGE_SHIFT;
1564
1565 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1566 ret = -EPERM;
1567 goto unlock;
1568 }
1569
1570 WARN_ON(counter->data);
1571 ret = perf_mmap_data_alloc(counter, nr_pages);
1572 if (ret)
1573 goto unlock;
1574
1575 atomic_set(&counter->mmap_count, 1);
1576 vma->vm_mm->locked_vm += extra;
1577 counter->data->nr_locked = extra;
1578 unlock:
1579 mutex_unlock(&counter->mmap_mutex);
1580
1581 vma->vm_flags &= ~VM_MAYWRITE;
1582 vma->vm_flags |= VM_RESERVED;
1583 vma->vm_ops = &perf_mmap_vmops;
1584
1585 return ret;
1586 }
1587
1588 static int perf_fasync(int fd, struct file *filp, int on)
1589 {
1590 struct perf_counter *counter = filp->private_data;
1591 struct inode *inode = filp->f_path.dentry->d_inode;
1592 int retval;
1593
1594 mutex_lock(&inode->i_mutex);
1595 retval = fasync_helper(fd, filp, on, &counter->fasync);
1596 mutex_unlock(&inode->i_mutex);
1597
1598 if (retval < 0)
1599 return retval;
1600
1601 return 0;
1602 }
1603
1604 static const struct file_operations perf_fops = {
1605 .release = perf_release,
1606 .read = perf_read,
1607 .poll = perf_poll,
1608 .unlocked_ioctl = perf_ioctl,
1609 .compat_ioctl = perf_ioctl,
1610 .mmap = perf_mmap,
1611 .fasync = perf_fasync,
1612 };
1613
1614 /*
1615 * Perf counter wakeup
1616 *
1617 * If there's data, ensure we set the poll() state and publish everything
1618 * to user-space before waking everybody up.
1619 */
1620
1621 void perf_counter_wakeup(struct perf_counter *counter)
1622 {
1623 wake_up_all(&counter->waitq);
1624
1625 if (counter->pending_kill) {
1626 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1627 counter->pending_kill = 0;
1628 }
1629 }
1630
1631 /*
1632 * Pending wakeups
1633 *
1634 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1635 *
1636 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1637 * single linked list and use cmpxchg() to add entries lockless.
1638 */
1639
1640 static void perf_pending_counter(struct perf_pending_entry *entry)
1641 {
1642 struct perf_counter *counter = container_of(entry,
1643 struct perf_counter, pending);
1644
1645 if (counter->pending_disable) {
1646 counter->pending_disable = 0;
1647 perf_counter_disable(counter);
1648 }
1649
1650 if (counter->pending_wakeup) {
1651 counter->pending_wakeup = 0;
1652 perf_counter_wakeup(counter);
1653 }
1654 }
1655
1656 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1657
1658 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1659 PENDING_TAIL,
1660 };
1661
1662 static void perf_pending_queue(struct perf_pending_entry *entry,
1663 void (*func)(struct perf_pending_entry *))
1664 {
1665 struct perf_pending_entry **head;
1666
1667 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1668 return;
1669
1670 entry->func = func;
1671
1672 head = &get_cpu_var(perf_pending_head);
1673
1674 do {
1675 entry->next = *head;
1676 } while (cmpxchg(head, entry->next, entry) != entry->next);
1677
1678 set_perf_counter_pending();
1679
1680 put_cpu_var(perf_pending_head);
1681 }
1682
1683 static int __perf_pending_run(void)
1684 {
1685 struct perf_pending_entry *list;
1686 int nr = 0;
1687
1688 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1689 while (list != PENDING_TAIL) {
1690 void (*func)(struct perf_pending_entry *);
1691 struct perf_pending_entry *entry = list;
1692
1693 list = list->next;
1694
1695 func = entry->func;
1696 entry->next = NULL;
1697 /*
1698 * Ensure we observe the unqueue before we issue the wakeup,
1699 * so that we won't be waiting forever.
1700 * -- see perf_not_pending().
1701 */
1702 smp_wmb();
1703
1704 func(entry);
1705 nr++;
1706 }
1707
1708 return nr;
1709 }
1710
1711 static inline int perf_not_pending(struct perf_counter *counter)
1712 {
1713 /*
1714 * If we flush on whatever cpu we run, there is a chance we don't
1715 * need to wait.
1716 */
1717 get_cpu();
1718 __perf_pending_run();
1719 put_cpu();
1720
1721 /*
1722 * Ensure we see the proper queue state before going to sleep
1723 * so that we do not miss the wakeup. -- see perf_pending_handle()
1724 */
1725 smp_rmb();
1726 return counter->pending.next == NULL;
1727 }
1728
1729 static void perf_pending_sync(struct perf_counter *counter)
1730 {
1731 wait_event(counter->waitq, perf_not_pending(counter));
1732 }
1733
1734 void perf_counter_do_pending(void)
1735 {
1736 __perf_pending_run();
1737 }
1738
1739 /*
1740 * Callchain support -- arch specific
1741 */
1742
1743 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1744 {
1745 return NULL;
1746 }
1747
1748 /*
1749 * Output
1750 */
1751
1752 struct perf_output_handle {
1753 struct perf_counter *counter;
1754 struct perf_mmap_data *data;
1755 unsigned int offset;
1756 unsigned int head;
1757 int nmi;
1758 int overflow;
1759 int locked;
1760 unsigned long flags;
1761 };
1762
1763 static void perf_output_wakeup(struct perf_output_handle *handle)
1764 {
1765 atomic_set(&handle->data->poll, POLL_IN);
1766
1767 if (handle->nmi) {
1768 handle->counter->pending_wakeup = 1;
1769 perf_pending_queue(&handle->counter->pending,
1770 perf_pending_counter);
1771 } else
1772 perf_counter_wakeup(handle->counter);
1773 }
1774
1775 /*
1776 * Curious locking construct.
1777 *
1778 * We need to ensure a later event doesn't publish a head when a former
1779 * event isn't done writing. However since we need to deal with NMIs we
1780 * cannot fully serialize things.
1781 *
1782 * What we do is serialize between CPUs so we only have to deal with NMI
1783 * nesting on a single CPU.
1784 *
1785 * We only publish the head (and generate a wakeup) when the outer-most
1786 * event completes.
1787 */
1788 static void perf_output_lock(struct perf_output_handle *handle)
1789 {
1790 struct perf_mmap_data *data = handle->data;
1791 int cpu;
1792
1793 handle->locked = 0;
1794
1795 local_irq_save(handle->flags);
1796 cpu = smp_processor_id();
1797
1798 if (in_nmi() && atomic_read(&data->lock) == cpu)
1799 return;
1800
1801 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1802 cpu_relax();
1803
1804 handle->locked = 1;
1805 }
1806
1807 static void perf_output_unlock(struct perf_output_handle *handle)
1808 {
1809 struct perf_mmap_data *data = handle->data;
1810 int head, cpu;
1811
1812 data->done_head = data->head;
1813
1814 if (!handle->locked)
1815 goto out;
1816
1817 again:
1818 /*
1819 * The xchg implies a full barrier that ensures all writes are done
1820 * before we publish the new head, matched by a rmb() in userspace when
1821 * reading this position.
1822 */
1823 while ((head = atomic_xchg(&data->done_head, 0)))
1824 data->user_page->data_head = head;
1825
1826 /*
1827 * NMI can happen here, which means we can miss a done_head update.
1828 */
1829
1830 cpu = atomic_xchg(&data->lock, -1);
1831 WARN_ON_ONCE(cpu != smp_processor_id());
1832
1833 /*
1834 * Therefore we have to validate we did not indeed do so.
1835 */
1836 if (unlikely(atomic_read(&data->done_head))) {
1837 /*
1838 * Since we had it locked, we can lock it again.
1839 */
1840 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1841 cpu_relax();
1842
1843 goto again;
1844 }
1845
1846 if (atomic_xchg(&data->wakeup, 0))
1847 perf_output_wakeup(handle);
1848 out:
1849 local_irq_restore(handle->flags);
1850 }
1851
1852 static int perf_output_begin(struct perf_output_handle *handle,
1853 struct perf_counter *counter, unsigned int size,
1854 int nmi, int overflow)
1855 {
1856 struct perf_mmap_data *data;
1857 unsigned int offset, head;
1858
1859 /*
1860 * For inherited counters we send all the output towards the parent.
1861 */
1862 if (counter->parent)
1863 counter = counter->parent;
1864
1865 rcu_read_lock();
1866 data = rcu_dereference(counter->data);
1867 if (!data)
1868 goto out;
1869
1870 handle->data = data;
1871 handle->counter = counter;
1872 handle->nmi = nmi;
1873 handle->overflow = overflow;
1874
1875 if (!data->nr_pages)
1876 goto fail;
1877
1878 perf_output_lock(handle);
1879
1880 do {
1881 offset = head = atomic_read(&data->head);
1882 head += size;
1883 } while (atomic_cmpxchg(&data->head, offset, head) != offset);
1884
1885 handle->offset = offset;
1886 handle->head = head;
1887
1888 if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
1889 atomic_set(&data->wakeup, 1);
1890
1891 return 0;
1892
1893 fail:
1894 perf_output_wakeup(handle);
1895 out:
1896 rcu_read_unlock();
1897
1898 return -ENOSPC;
1899 }
1900
1901 static void perf_output_copy(struct perf_output_handle *handle,
1902 void *buf, unsigned int len)
1903 {
1904 unsigned int pages_mask;
1905 unsigned int offset;
1906 unsigned int size;
1907 void **pages;
1908
1909 offset = handle->offset;
1910 pages_mask = handle->data->nr_pages - 1;
1911 pages = handle->data->data_pages;
1912
1913 do {
1914 unsigned int page_offset;
1915 int nr;
1916
1917 nr = (offset >> PAGE_SHIFT) & pages_mask;
1918 page_offset = offset & (PAGE_SIZE - 1);
1919 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
1920
1921 memcpy(pages[nr] + page_offset, buf, size);
1922
1923 len -= size;
1924 buf += size;
1925 offset += size;
1926 } while (len);
1927
1928 handle->offset = offset;
1929
1930 /*
1931 * Check we didn't copy past our reservation window, taking the
1932 * possible unsigned int wrap into account.
1933 */
1934 WARN_ON_ONCE(((int)(handle->head - handle->offset)) < 0);
1935 }
1936
1937 #define perf_output_put(handle, x) \
1938 perf_output_copy((handle), &(x), sizeof(x))
1939
1940 static void perf_output_end(struct perf_output_handle *handle)
1941 {
1942 struct perf_counter *counter = handle->counter;
1943 struct perf_mmap_data *data = handle->data;
1944
1945 int wakeup_events = counter->hw_event.wakeup_events;
1946
1947 if (handle->overflow && wakeup_events) {
1948 int events = atomic_inc_return(&data->events);
1949 if (events >= wakeup_events) {
1950 atomic_sub(wakeup_events, &data->events);
1951 atomic_set(&data->wakeup, 1);
1952 }
1953 }
1954
1955 perf_output_unlock(handle);
1956 rcu_read_unlock();
1957 }
1958
1959 static void perf_counter_output(struct perf_counter *counter,
1960 int nmi, struct pt_regs *regs, u64 addr)
1961 {
1962 int ret;
1963 u64 record_type = counter->hw_event.record_type;
1964 struct perf_output_handle handle;
1965 struct perf_event_header header;
1966 u64 ip;
1967 struct {
1968 u32 pid, tid;
1969 } tid_entry;
1970 struct {
1971 u64 event;
1972 u64 counter;
1973 } group_entry;
1974 struct perf_callchain_entry *callchain = NULL;
1975 int callchain_size = 0;
1976 u64 time;
1977 struct {
1978 u32 cpu, reserved;
1979 } cpu_entry;
1980
1981 header.type = 0;
1982 header.size = sizeof(header);
1983
1984 header.misc = PERF_EVENT_MISC_OVERFLOW;
1985 header.misc |= user_mode(regs) ?
1986 PERF_EVENT_MISC_USER : PERF_EVENT_MISC_KERNEL;
1987
1988 if (record_type & PERF_RECORD_IP) {
1989 ip = instruction_pointer(regs);
1990 header.type |= PERF_RECORD_IP;
1991 header.size += sizeof(ip);
1992 }
1993
1994 if (record_type & PERF_RECORD_TID) {
1995 /* namespace issues */
1996 tid_entry.pid = current->group_leader->pid;
1997 tid_entry.tid = current->pid;
1998
1999 header.type |= PERF_RECORD_TID;
2000 header.size += sizeof(tid_entry);
2001 }
2002
2003 if (record_type & PERF_RECORD_TIME) {
2004 /*
2005 * Maybe do better on x86 and provide cpu_clock_nmi()
2006 */
2007 time = sched_clock();
2008
2009 header.type |= PERF_RECORD_TIME;
2010 header.size += sizeof(u64);
2011 }
2012
2013 if (record_type & PERF_RECORD_ADDR) {
2014 header.type |= PERF_RECORD_ADDR;
2015 header.size += sizeof(u64);
2016 }
2017
2018 if (record_type & PERF_RECORD_CONFIG) {
2019 header.type |= PERF_RECORD_CONFIG;
2020 header.size += sizeof(u64);
2021 }
2022
2023 if (record_type & PERF_RECORD_CPU) {
2024 header.type |= PERF_RECORD_CPU;
2025 header.size += sizeof(cpu_entry);
2026
2027 cpu_entry.cpu = raw_smp_processor_id();
2028 }
2029
2030 if (record_type & PERF_RECORD_GROUP) {
2031 header.type |= PERF_RECORD_GROUP;
2032 header.size += sizeof(u64) +
2033 counter->nr_siblings * sizeof(group_entry);
2034 }
2035
2036 if (record_type & PERF_RECORD_CALLCHAIN) {
2037 callchain = perf_callchain(regs);
2038
2039 if (callchain) {
2040 callchain_size = (1 + callchain->nr) * sizeof(u64);
2041
2042 header.type |= PERF_RECORD_CALLCHAIN;
2043 header.size += callchain_size;
2044 }
2045 }
2046
2047 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2048 if (ret)
2049 return;
2050
2051 perf_output_put(&handle, header);
2052
2053 if (record_type & PERF_RECORD_IP)
2054 perf_output_put(&handle, ip);
2055
2056 if (record_type & PERF_RECORD_TID)
2057 perf_output_put(&handle, tid_entry);
2058
2059 if (record_type & PERF_RECORD_TIME)
2060 perf_output_put(&handle, time);
2061
2062 if (record_type & PERF_RECORD_ADDR)
2063 perf_output_put(&handle, addr);
2064
2065 if (record_type & PERF_RECORD_CONFIG)
2066 perf_output_put(&handle, counter->hw_event.config);
2067
2068 if (record_type & PERF_RECORD_CPU)
2069 perf_output_put(&handle, cpu_entry);
2070
2071 /*
2072 * XXX PERF_RECORD_GROUP vs inherited counters seems difficult.
2073 */
2074 if (record_type & PERF_RECORD_GROUP) {
2075 struct perf_counter *leader, *sub;
2076 u64 nr = counter->nr_siblings;
2077
2078 perf_output_put(&handle, nr);
2079
2080 leader = counter->group_leader;
2081 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2082 if (sub != counter)
2083 sub->pmu->read(sub);
2084
2085 group_entry.event = sub->hw_event.config;
2086 group_entry.counter = atomic64_read(&sub->count);
2087
2088 perf_output_put(&handle, group_entry);
2089 }
2090 }
2091
2092 if (callchain)
2093 perf_output_copy(&handle, callchain, callchain_size);
2094
2095 perf_output_end(&handle);
2096 }
2097
2098 /*
2099 * comm tracking
2100 */
2101
2102 struct perf_comm_event {
2103 struct task_struct *task;
2104 char *comm;
2105 int comm_size;
2106
2107 struct {
2108 struct perf_event_header header;
2109
2110 u32 pid;
2111 u32 tid;
2112 } event;
2113 };
2114
2115 static void perf_counter_comm_output(struct perf_counter *counter,
2116 struct perf_comm_event *comm_event)
2117 {
2118 struct perf_output_handle handle;
2119 int size = comm_event->event.header.size;
2120 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2121
2122 if (ret)
2123 return;
2124
2125 perf_output_put(&handle, comm_event->event);
2126 perf_output_copy(&handle, comm_event->comm,
2127 comm_event->comm_size);
2128 perf_output_end(&handle);
2129 }
2130
2131 static int perf_counter_comm_match(struct perf_counter *counter,
2132 struct perf_comm_event *comm_event)
2133 {
2134 if (counter->hw_event.comm &&
2135 comm_event->event.header.type == PERF_EVENT_COMM)
2136 return 1;
2137
2138 return 0;
2139 }
2140
2141 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2142 struct perf_comm_event *comm_event)
2143 {
2144 struct perf_counter *counter;
2145
2146 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2147 return;
2148
2149 rcu_read_lock();
2150 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2151 if (perf_counter_comm_match(counter, comm_event))
2152 perf_counter_comm_output(counter, comm_event);
2153 }
2154 rcu_read_unlock();
2155 }
2156
2157 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2158 {
2159 struct perf_cpu_context *cpuctx;
2160 unsigned int size;
2161 char *comm = comm_event->task->comm;
2162
2163 size = ALIGN(strlen(comm)+1, sizeof(u64));
2164
2165 comm_event->comm = comm;
2166 comm_event->comm_size = size;
2167
2168 comm_event->event.header.size = sizeof(comm_event->event) + size;
2169
2170 cpuctx = &get_cpu_var(perf_cpu_context);
2171 perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2172 put_cpu_var(perf_cpu_context);
2173
2174 perf_counter_comm_ctx(&current->perf_counter_ctx, comm_event);
2175 }
2176
2177 void perf_counter_comm(struct task_struct *task)
2178 {
2179 struct perf_comm_event comm_event;
2180
2181 if (!atomic_read(&nr_comm_tracking))
2182 return;
2183
2184 comm_event = (struct perf_comm_event){
2185 .task = task,
2186 .event = {
2187 .header = { .type = PERF_EVENT_COMM, },
2188 .pid = task->group_leader->pid,
2189 .tid = task->pid,
2190 },
2191 };
2192
2193 perf_counter_comm_event(&comm_event);
2194 }
2195
2196 /*
2197 * mmap tracking
2198 */
2199
2200 struct perf_mmap_event {
2201 struct file *file;
2202 char *file_name;
2203 int file_size;
2204
2205 struct {
2206 struct perf_event_header header;
2207
2208 u32 pid;
2209 u32 tid;
2210 u64 start;
2211 u64 len;
2212 u64 pgoff;
2213 } event;
2214 };
2215
2216 static void perf_counter_mmap_output(struct perf_counter *counter,
2217 struct perf_mmap_event *mmap_event)
2218 {
2219 struct perf_output_handle handle;
2220 int size = mmap_event->event.header.size;
2221 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2222
2223 if (ret)
2224 return;
2225
2226 perf_output_put(&handle, mmap_event->event);
2227 perf_output_copy(&handle, mmap_event->file_name,
2228 mmap_event->file_size);
2229 perf_output_end(&handle);
2230 }
2231
2232 static int perf_counter_mmap_match(struct perf_counter *counter,
2233 struct perf_mmap_event *mmap_event)
2234 {
2235 if (counter->hw_event.mmap &&
2236 mmap_event->event.header.type == PERF_EVENT_MMAP)
2237 return 1;
2238
2239 if (counter->hw_event.munmap &&
2240 mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2241 return 1;
2242
2243 return 0;
2244 }
2245
2246 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2247 struct perf_mmap_event *mmap_event)
2248 {
2249 struct perf_counter *counter;
2250
2251 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2252 return;
2253
2254 rcu_read_lock();
2255 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2256 if (perf_counter_mmap_match(counter, mmap_event))
2257 perf_counter_mmap_output(counter, mmap_event);
2258 }
2259 rcu_read_unlock();
2260 }
2261
2262 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2263 {
2264 struct perf_cpu_context *cpuctx;
2265 struct file *file = mmap_event->file;
2266 unsigned int size;
2267 char tmp[16];
2268 char *buf = NULL;
2269 char *name;
2270
2271 if (file) {
2272 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2273 if (!buf) {
2274 name = strncpy(tmp, "//enomem", sizeof(tmp));
2275 goto got_name;
2276 }
2277 name = d_path(&file->f_path, buf, PATH_MAX);
2278 if (IS_ERR(name)) {
2279 name = strncpy(tmp, "//toolong", sizeof(tmp));
2280 goto got_name;
2281 }
2282 } else {
2283 name = strncpy(tmp, "//anon", sizeof(tmp));
2284 goto got_name;
2285 }
2286
2287 got_name:
2288 size = ALIGN(strlen(name)+1, sizeof(u64));
2289
2290 mmap_event->file_name = name;
2291 mmap_event->file_size = size;
2292
2293 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2294
2295 cpuctx = &get_cpu_var(perf_cpu_context);
2296 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2297 put_cpu_var(perf_cpu_context);
2298
2299 perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);
2300
2301 kfree(buf);
2302 }
2303
2304 void perf_counter_mmap(unsigned long addr, unsigned long len,
2305 unsigned long pgoff, struct file *file)
2306 {
2307 struct perf_mmap_event mmap_event;
2308
2309 if (!atomic_read(&nr_mmap_tracking))
2310 return;
2311
2312 mmap_event = (struct perf_mmap_event){
2313 .file = file,
2314 .event = {
2315 .header = { .type = PERF_EVENT_MMAP, },
2316 .pid = current->group_leader->pid,
2317 .tid = current->pid,
2318 .start = addr,
2319 .len = len,
2320 .pgoff = pgoff,
2321 },
2322 };
2323
2324 perf_counter_mmap_event(&mmap_event);
2325 }
2326
2327 void perf_counter_munmap(unsigned long addr, unsigned long len,
2328 unsigned long pgoff, struct file *file)
2329 {
2330 struct perf_mmap_event mmap_event;
2331
2332 if (!atomic_read(&nr_munmap_tracking))
2333 return;
2334
2335 mmap_event = (struct perf_mmap_event){
2336 .file = file,
2337 .event = {
2338 .header = { .type = PERF_EVENT_MUNMAP, },
2339 .pid = current->group_leader->pid,
2340 .tid = current->pid,
2341 .start = addr,
2342 .len = len,
2343 .pgoff = pgoff,
2344 },
2345 };
2346
2347 perf_counter_mmap_event(&mmap_event);
2348 }
2349
2350 /*
2351 * Generic counter overflow handling.
2352 */
2353
2354 int perf_counter_overflow(struct perf_counter *counter,
2355 int nmi, struct pt_regs *regs, u64 addr)
2356 {
2357 int events = atomic_read(&counter->event_limit);
2358 int ret = 0;
2359
2360 /*
2361 * XXX event_limit might not quite work as expected on inherited
2362 * counters
2363 */
2364
2365 counter->pending_kill = POLL_IN;
2366 if (events && atomic_dec_and_test(&counter->event_limit)) {
2367 ret = 1;
2368 counter->pending_kill = POLL_HUP;
2369 if (nmi) {
2370 counter->pending_disable = 1;
2371 perf_pending_queue(&counter->pending,
2372 perf_pending_counter);
2373 } else
2374 perf_counter_disable(counter);
2375 }
2376
2377 perf_counter_output(counter, nmi, regs, addr);
2378 return ret;
2379 }
2380
2381 /*
2382 * Generic software counter infrastructure
2383 */
2384
2385 static void perf_swcounter_update(struct perf_counter *counter)
2386 {
2387 struct hw_perf_counter *hwc = &counter->hw;
2388 u64 prev, now;
2389 s64 delta;
2390
2391 again:
2392 prev = atomic64_read(&hwc->prev_count);
2393 now = atomic64_read(&hwc->count);
2394 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2395 goto again;
2396
2397 delta = now - prev;
2398
2399 atomic64_add(delta, &counter->count);
2400 atomic64_sub(delta, &hwc->period_left);
2401 }
2402
2403 static void perf_swcounter_set_period(struct perf_counter *counter)
2404 {
2405 struct hw_perf_counter *hwc = &counter->hw;
2406 s64 left = atomic64_read(&hwc->period_left);
2407 s64 period = hwc->irq_period;
2408
2409 if (unlikely(left <= -period)) {
2410 left = period;
2411 atomic64_set(&hwc->period_left, left);
2412 }
2413
2414 if (unlikely(left <= 0)) {
2415 left += period;
2416 atomic64_add(period, &hwc->period_left);
2417 }
2418
2419 atomic64_set(&hwc->prev_count, -left);
2420 atomic64_set(&hwc->count, -left);
2421 }
2422
2423 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2424 {
2425 enum hrtimer_restart ret = HRTIMER_RESTART;
2426 struct perf_counter *counter;
2427 struct pt_regs *regs;
2428
2429 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2430 counter->pmu->read(counter);
2431
2432 regs = get_irq_regs();
2433 /*
2434 * In case we exclude kernel IPs or are somehow not in interrupt
2435 * context, provide the next best thing, the user IP.
2436 */
2437 if ((counter->hw_event.exclude_kernel || !regs) &&
2438 !counter->hw_event.exclude_user)
2439 regs = task_pt_regs(current);
2440
2441 if (regs) {
2442 if (perf_counter_overflow(counter, 0, regs, 0))
2443 ret = HRTIMER_NORESTART;
2444 }
2445
2446 hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
2447
2448 return ret;
2449 }
2450
2451 static void perf_swcounter_overflow(struct perf_counter *counter,
2452 int nmi, struct pt_regs *regs, u64 addr)
2453 {
2454 perf_swcounter_update(counter);
2455 perf_swcounter_set_period(counter);
2456 if (perf_counter_overflow(counter, nmi, regs, addr))
2457 /* soft-disable the counter */
2458 ;
2459
2460 }
2461
2462 static int perf_swcounter_match(struct perf_counter *counter,
2463 enum perf_event_types type,
2464 u32 event, struct pt_regs *regs)
2465 {
2466 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2467 return 0;
2468
2469 if (perf_event_raw(&counter->hw_event))
2470 return 0;
2471
2472 if (perf_event_type(&counter->hw_event) != type)
2473 return 0;
2474
2475 if (perf_event_id(&counter->hw_event) != event)
2476 return 0;
2477
2478 if (counter->hw_event.exclude_user && user_mode(regs))
2479 return 0;
2480
2481 if (counter->hw_event.exclude_kernel && !user_mode(regs))
2482 return 0;
2483
2484 return 1;
2485 }
2486
2487 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2488 int nmi, struct pt_regs *regs, u64 addr)
2489 {
2490 int neg = atomic64_add_negative(nr, &counter->hw.count);
2491 if (counter->hw.irq_period && !neg)
2492 perf_swcounter_overflow(counter, nmi, regs, addr);
2493 }
2494
2495 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2496 enum perf_event_types type, u32 event,
2497 u64 nr, int nmi, struct pt_regs *regs,
2498 u64 addr)
2499 {
2500 struct perf_counter *counter;
2501
2502 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2503 return;
2504
2505 rcu_read_lock();
2506 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2507 if (perf_swcounter_match(counter, type, event, regs))
2508 perf_swcounter_add(counter, nr, nmi, regs, addr);
2509 }
2510 rcu_read_unlock();
2511 }
2512
2513 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2514 {
2515 if (in_nmi())
2516 return &cpuctx->recursion[3];
2517
2518 if (in_irq())
2519 return &cpuctx->recursion[2];
2520
2521 if (in_softirq())
2522 return &cpuctx->recursion[1];
2523
2524 return &cpuctx->recursion[0];
2525 }
2526
2527 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2528 u64 nr, int nmi, struct pt_regs *regs,
2529 u64 addr)
2530 {
2531 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2532 int *recursion = perf_swcounter_recursion_context(cpuctx);
2533
2534 if (*recursion)
2535 goto out;
2536
2537 (*recursion)++;
2538 barrier();
2539
2540 perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
2541 nr, nmi, regs, addr);
2542 if (cpuctx->task_ctx) {
2543 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2544 nr, nmi, regs, addr);
2545 }
2546
2547 barrier();
2548 (*recursion)--;
2549
2550 out:
2551 put_cpu_var(perf_cpu_context);
2552 }
2553
2554 void
2555 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2556 {
2557 __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2558 }
2559
2560 static void perf_swcounter_read(struct perf_counter *counter)
2561 {
2562 perf_swcounter_update(counter);
2563 }
2564
2565 static int perf_swcounter_enable(struct perf_counter *counter)
2566 {
2567 perf_swcounter_set_period(counter);
2568 return 0;
2569 }
2570
2571 static void perf_swcounter_disable(struct perf_counter *counter)
2572 {
2573 perf_swcounter_update(counter);
2574 }
2575
2576 static const struct pmu perf_ops_generic = {
2577 .enable = perf_swcounter_enable,
2578 .disable = perf_swcounter_disable,
2579 .read = perf_swcounter_read,
2580 };
2581
2582 /*
2583 * Software counter: cpu wall time clock
2584 */
2585
2586 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2587 {
2588 int cpu = raw_smp_processor_id();
2589 s64 prev;
2590 u64 now;
2591
2592 now = cpu_clock(cpu);
2593 prev = atomic64_read(&counter->hw.prev_count);
2594 atomic64_set(&counter->hw.prev_count, now);
2595 atomic64_add(now - prev, &counter->count);
2596 }
2597
2598 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2599 {
2600 struct hw_perf_counter *hwc = &counter->hw;
2601 int cpu = raw_smp_processor_id();
2602
2603 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2604 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2605 hwc->hrtimer.function = perf_swcounter_hrtimer;
2606 if (hwc->irq_period) {
2607 __hrtimer_start_range_ns(&hwc->hrtimer,
2608 ns_to_ktime(hwc->irq_period), 0,
2609 HRTIMER_MODE_REL, 0);
2610 }
2611
2612 return 0;
2613 }
2614
2615 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2616 {
2617 hrtimer_cancel(&counter->hw.hrtimer);
2618 cpu_clock_perf_counter_update(counter);
2619 }
2620
2621 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2622 {
2623 cpu_clock_perf_counter_update(counter);
2624 }
2625
2626 static const struct pmu perf_ops_cpu_clock = {
2627 .enable = cpu_clock_perf_counter_enable,
2628 .disable = cpu_clock_perf_counter_disable,
2629 .read = cpu_clock_perf_counter_read,
2630 };
2631
2632 /*
2633 * Software counter: task time clock
2634 */
2635
2636 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2637 {
2638 u64 prev;
2639 s64 delta;
2640
2641 prev = atomic64_xchg(&counter->hw.prev_count, now);
2642 delta = now - prev;
2643 atomic64_add(delta, &counter->count);
2644 }
2645
2646 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2647 {
2648 struct hw_perf_counter *hwc = &counter->hw;
2649 u64 now;
2650
2651 now = counter->ctx->time;
2652
2653 atomic64_set(&hwc->prev_count, now);
2654 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2655 hwc->hrtimer.function = perf_swcounter_hrtimer;
2656 if (hwc->irq_period) {
2657 __hrtimer_start_range_ns(&hwc->hrtimer,
2658 ns_to_ktime(hwc->irq_period), 0,
2659 HRTIMER_MODE_REL, 0);
2660 }
2661
2662 return 0;
2663 }
2664
2665 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2666 {
2667 hrtimer_cancel(&counter->hw.hrtimer);
2668 task_clock_perf_counter_update(counter, counter->ctx->time);
2669
2670 }
2671
2672 static void task_clock_perf_counter_read(struct perf_counter *counter)
2673 {
2674 u64 time;
2675
2676 if (!in_nmi()) {
2677 update_context_time(counter->ctx);
2678 time = counter->ctx->time;
2679 } else {
2680 u64 now = perf_clock();
2681 u64 delta = now - counter->ctx->timestamp;
2682 time = counter->ctx->time + delta;
2683 }
2684
2685 task_clock_perf_counter_update(counter, time);
2686 }
2687
2688 static const struct pmu perf_ops_task_clock = {
2689 .enable = task_clock_perf_counter_enable,
2690 .disable = task_clock_perf_counter_disable,
2691 .read = task_clock_perf_counter_read,
2692 };
2693
2694 /*
2695 * Software counter: cpu migrations
2696 */
2697
2698 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2699 {
2700 struct task_struct *curr = counter->ctx->task;
2701
2702 if (curr)
2703 return curr->se.nr_migrations;
2704 return cpu_nr_migrations(smp_processor_id());
2705 }
2706
2707 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2708 {
2709 u64 prev, now;
2710 s64 delta;
2711
2712 prev = atomic64_read(&counter->hw.prev_count);
2713 now = get_cpu_migrations(counter);
2714
2715 atomic64_set(&counter->hw.prev_count, now);
2716
2717 delta = now - prev;
2718
2719 atomic64_add(delta, &counter->count);
2720 }
2721
2722 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2723 {
2724 cpu_migrations_perf_counter_update(counter);
2725 }
2726
2727 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2728 {
2729 if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2730 atomic64_set(&counter->hw.prev_count,
2731 get_cpu_migrations(counter));
2732 return 0;
2733 }
2734
2735 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2736 {
2737 cpu_migrations_perf_counter_update(counter);
2738 }
2739
2740 static const struct pmu perf_ops_cpu_migrations = {
2741 .enable = cpu_migrations_perf_counter_enable,
2742 .disable = cpu_migrations_perf_counter_disable,
2743 .read = cpu_migrations_perf_counter_read,
2744 };
2745
2746 #ifdef CONFIG_EVENT_PROFILE
2747 void perf_tpcounter_event(int event_id)
2748 {
2749 struct pt_regs *regs = get_irq_regs();
2750
2751 if (!regs)
2752 regs = task_pt_regs(current);
2753
2754 __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
2755 }
2756 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
2757
2758 extern int ftrace_profile_enable(int);
2759 extern void ftrace_profile_disable(int);
2760
2761 static void tp_perf_counter_destroy(struct perf_counter *counter)
2762 {
2763 ftrace_profile_disable(perf_event_id(&counter->hw_event));
2764 }
2765
2766 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2767 {
2768 int event_id = perf_event_id(&counter->hw_event);
2769 int ret;
2770
2771 ret = ftrace_profile_enable(event_id);
2772 if (ret)
2773 return NULL;
2774
2775 counter->destroy = tp_perf_counter_destroy;
2776 counter->hw.irq_period = counter->hw_event.irq_period;
2777
2778 return &perf_ops_generic;
2779 }
2780 #else
2781 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2782 {
2783 return NULL;
2784 }
2785 #endif
2786
2787 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
2788 {
2789 struct perf_counter_hw_event *hw_event = &counter->hw_event;
2790 const struct pmu *pmu = NULL;
2791 struct hw_perf_counter *hwc = &counter->hw;
2792
2793 /*
2794 * Software counters (currently) can't in general distinguish
2795 * between user, kernel and hypervisor events.
2796 * However, context switches and cpu migrations are considered
2797 * to be kernel events, and page faults are never hypervisor
2798 * events.
2799 */
2800 switch (perf_event_id(&counter->hw_event)) {
2801 case PERF_COUNT_CPU_CLOCK:
2802 pmu = &perf_ops_cpu_clock;
2803
2804 if (hw_event->irq_period && hw_event->irq_period < 10000)
2805 hw_event->irq_period = 10000;
2806 break;
2807 case PERF_COUNT_TASK_CLOCK:
2808 /*
2809 * If the user instantiates this as a per-cpu counter,
2810 * use the cpu_clock counter instead.
2811 */
2812 if (counter->ctx->task)
2813 pmu = &perf_ops_task_clock;
2814 else
2815 pmu = &perf_ops_cpu_clock;
2816
2817 if (hw_event->irq_period && hw_event->irq_period < 10000)
2818 hw_event->irq_period = 10000;
2819 break;
2820 case PERF_COUNT_PAGE_FAULTS:
2821 case PERF_COUNT_PAGE_FAULTS_MIN:
2822 case PERF_COUNT_PAGE_FAULTS_MAJ:
2823 case PERF_COUNT_CONTEXT_SWITCHES:
2824 pmu = &perf_ops_generic;
2825 break;
2826 case PERF_COUNT_CPU_MIGRATIONS:
2827 if (!counter->hw_event.exclude_kernel)
2828 pmu = &perf_ops_cpu_migrations;
2829 break;
2830 }
2831
2832 if (pmu)
2833 hwc->irq_period = hw_event->irq_period;
2834
2835 return pmu;
2836 }
2837
2838 /*
2839 * Allocate and initialize a counter structure
2840 */
2841 static struct perf_counter *
2842 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
2843 int cpu,
2844 struct perf_counter_context *ctx,
2845 struct perf_counter *group_leader,
2846 gfp_t gfpflags)
2847 {
2848 const struct pmu *pmu;
2849 struct perf_counter *counter;
2850 long err;
2851
2852 counter = kzalloc(sizeof(*counter), gfpflags);
2853 if (!counter)
2854 return ERR_PTR(-ENOMEM);
2855
2856 /*
2857 * Single counters are their own group leaders, with an
2858 * empty sibling list:
2859 */
2860 if (!group_leader)
2861 group_leader = counter;
2862
2863 mutex_init(&counter->mutex);
2864 INIT_LIST_HEAD(&counter->list_entry);
2865 INIT_LIST_HEAD(&counter->event_entry);
2866 INIT_LIST_HEAD(&counter->sibling_list);
2867 init_waitqueue_head(&counter->waitq);
2868
2869 mutex_init(&counter->mmap_mutex);
2870
2871 INIT_LIST_HEAD(&counter->child_list);
2872
2873 counter->cpu = cpu;
2874 counter->hw_event = *hw_event;
2875 counter->group_leader = group_leader;
2876 counter->pmu = NULL;
2877 counter->ctx = ctx;
2878
2879 counter->state = PERF_COUNTER_STATE_INACTIVE;
2880 if (hw_event->disabled)
2881 counter->state = PERF_COUNTER_STATE_OFF;
2882
2883 pmu = NULL;
2884
2885 /*
2886 * we currently do not support PERF_RECORD_GROUP on inherited counters
2887 */
2888 if (hw_event->inherit && (hw_event->record_type & PERF_RECORD_GROUP))
2889 goto done;
2890
2891 if (perf_event_raw(hw_event)) {
2892 pmu = hw_perf_counter_init(counter);
2893 goto done;
2894 }
2895
2896 switch (perf_event_type(hw_event)) {
2897 case PERF_TYPE_HARDWARE:
2898 pmu = hw_perf_counter_init(counter);
2899 break;
2900
2901 case PERF_TYPE_SOFTWARE:
2902 pmu = sw_perf_counter_init(counter);
2903 break;
2904
2905 case PERF_TYPE_TRACEPOINT:
2906 pmu = tp_perf_counter_init(counter);
2907 break;
2908 }
2909 done:
2910 err = 0;
2911 if (!pmu)
2912 err = -EINVAL;
2913 else if (IS_ERR(pmu))
2914 err = PTR_ERR(pmu);
2915
2916 if (err) {
2917 kfree(counter);
2918 return ERR_PTR(err);
2919 }
2920
2921 counter->pmu = pmu;
2922
2923 atomic_inc(&nr_counters);
2924 if (counter->hw_event.mmap)
2925 atomic_inc(&nr_mmap_tracking);
2926 if (counter->hw_event.munmap)
2927 atomic_inc(&nr_munmap_tracking);
2928 if (counter->hw_event.comm)
2929 atomic_inc(&nr_comm_tracking);
2930
2931 return counter;
2932 }
2933
2934 /**
2935 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
2936 *
2937 * @hw_event_uptr: event type attributes for monitoring/sampling
2938 * @pid: target pid
2939 * @cpu: target cpu
2940 * @group_fd: group leader counter fd
2941 */
2942 SYSCALL_DEFINE5(perf_counter_open,
2943 const struct perf_counter_hw_event __user *, hw_event_uptr,
2944 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
2945 {
2946 struct perf_counter *counter, *group_leader;
2947 struct perf_counter_hw_event hw_event;
2948 struct perf_counter_context *ctx;
2949 struct file *counter_file = NULL;
2950 struct file *group_file = NULL;
2951 int fput_needed = 0;
2952 int fput_needed2 = 0;
2953 int ret;
2954
2955 /* for future expandability... */
2956 if (flags)
2957 return -EINVAL;
2958
2959 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2960 return -EFAULT;
2961
2962 /*
2963 * Get the target context (task or percpu):
2964 */
2965 ctx = find_get_context(pid, cpu);
2966 if (IS_ERR(ctx))
2967 return PTR_ERR(ctx);
2968
2969 /*
2970 * Look up the group leader (we will attach this counter to it):
2971 */
2972 group_leader = NULL;
2973 if (group_fd != -1) {
2974 ret = -EINVAL;
2975 group_file = fget_light(group_fd, &fput_needed);
2976 if (!group_file)
2977 goto err_put_context;
2978 if (group_file->f_op != &perf_fops)
2979 goto err_put_context;
2980
2981 group_leader = group_file->private_data;
2982 /*
2983 * Do not allow a recursive hierarchy (this new sibling
2984 * becoming part of another group-sibling):
2985 */
2986 if (group_leader->group_leader != group_leader)
2987 goto err_put_context;
2988 /*
2989 * Do not allow to attach to a group in a different
2990 * task or CPU context:
2991 */
2992 if (group_leader->ctx != ctx)
2993 goto err_put_context;
2994 /*
2995 * Only a group leader can be exclusive or pinned
2996 */
2997 if (hw_event.exclusive || hw_event.pinned)
2998 goto err_put_context;
2999 }
3000
3001 counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
3002 GFP_KERNEL);
3003 ret = PTR_ERR(counter);
3004 if (IS_ERR(counter))
3005 goto err_put_context;
3006
3007 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
3008 if (ret < 0)
3009 goto err_free_put_context;
3010
3011 counter_file = fget_light(ret, &fput_needed2);
3012 if (!counter_file)
3013 goto err_free_put_context;
3014
3015 counter->filp = counter_file;
3016 mutex_lock(&ctx->mutex);
3017 perf_install_in_context(ctx, counter, cpu);
3018 mutex_unlock(&ctx->mutex);
3019
3020 fput_light(counter_file, fput_needed2);
3021
3022 out_fput:
3023 fput_light(group_file, fput_needed);
3024
3025 return ret;
3026
3027 err_free_put_context:
3028 kfree(counter);
3029
3030 err_put_context:
3031 put_context(ctx);
3032
3033 goto out_fput;
3034 }
3035
3036 /*
3037 * Initialize the perf_counter context in a task_struct:
3038 */
3039 static void
3040 __perf_counter_init_context(struct perf_counter_context *ctx,
3041 struct task_struct *task)
3042 {
3043 memset(ctx, 0, sizeof(*ctx));
3044 spin_lock_init(&ctx->lock);
3045 mutex_init(&ctx->mutex);
3046 INIT_LIST_HEAD(&ctx->counter_list);
3047 INIT_LIST_HEAD(&ctx->event_list);
3048 ctx->task = task;
3049 }
3050
3051 /*
3052 * inherit a counter from parent task to child task:
3053 */
3054 static struct perf_counter *
3055 inherit_counter(struct perf_counter *parent_counter,
3056 struct task_struct *parent,
3057 struct perf_counter_context *parent_ctx,
3058 struct task_struct *child,
3059 struct perf_counter *group_leader,
3060 struct perf_counter_context *child_ctx)
3061 {
3062 struct perf_counter *child_counter;
3063
3064 /*
3065 * Instead of creating recursive hierarchies of counters,
3066 * we link inherited counters back to the original parent,
3067 * which has a filp for sure, which we use as the reference
3068 * count:
3069 */
3070 if (parent_counter->parent)
3071 parent_counter = parent_counter->parent;
3072
3073 child_counter = perf_counter_alloc(&parent_counter->hw_event,
3074 parent_counter->cpu, child_ctx,
3075 group_leader, GFP_KERNEL);
3076 if (IS_ERR(child_counter))
3077 return child_counter;
3078
3079 /*
3080 * Link it up in the child's context:
3081 */
3082 child_counter->task = child;
3083 add_counter_to_ctx(child_counter, child_ctx);
3084
3085 child_counter->parent = parent_counter;
3086 /*
3087 * inherit into child's child as well:
3088 */
3089 child_counter->hw_event.inherit = 1;
3090
3091 /*
3092 * Get a reference to the parent filp - we will fput it
3093 * when the child counter exits. This is safe to do because
3094 * we are in the parent and we know that the filp still
3095 * exists and has a nonzero count:
3096 */
3097 atomic_long_inc(&parent_counter->filp->f_count);
3098
3099 /*
3100 * Link this into the parent counter's child list
3101 */
3102 mutex_lock(&parent_counter->mutex);
3103 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3104
3105 /*
3106 * Make the child state follow the state of the parent counter,
3107 * not its hw_event.disabled bit. We hold the parent's mutex,
3108 * so we won't race with perf_counter_{en,dis}able_family.
3109 */
3110 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3111 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3112 else
3113 child_counter->state = PERF_COUNTER_STATE_OFF;
3114
3115 mutex_unlock(&parent_counter->mutex);
3116
3117 return child_counter;
3118 }
3119
3120 static int inherit_group(struct perf_counter *parent_counter,
3121 struct task_struct *parent,
3122 struct perf_counter_context *parent_ctx,
3123 struct task_struct *child,
3124 struct perf_counter_context *child_ctx)
3125 {
3126 struct perf_counter *leader;
3127 struct perf_counter *sub;
3128 struct perf_counter *child_ctr;
3129
3130 leader = inherit_counter(parent_counter, parent, parent_ctx,
3131 child, NULL, child_ctx);
3132 if (IS_ERR(leader))
3133 return PTR_ERR(leader);
3134 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3135 child_ctr = inherit_counter(sub, parent, parent_ctx,
3136 child, leader, child_ctx);
3137 if (IS_ERR(child_ctr))
3138 return PTR_ERR(child_ctr);
3139 }
3140 return 0;
3141 }
3142
3143 static void sync_child_counter(struct perf_counter *child_counter,
3144 struct perf_counter *parent_counter)
3145 {
3146 u64 parent_val, child_val;
3147
3148 parent_val = atomic64_read(&parent_counter->count);
3149 child_val = atomic64_read(&child_counter->count);
3150
3151 /*
3152 * Add back the child's count to the parent's count:
3153 */
3154 atomic64_add(child_val, &parent_counter->count);
3155 atomic64_add(child_counter->total_time_enabled,
3156 &parent_counter->child_total_time_enabled);
3157 atomic64_add(child_counter->total_time_running,
3158 &parent_counter->child_total_time_running);
3159
3160 /*
3161 * Remove this counter from the parent's list
3162 */
3163 mutex_lock(&parent_counter->mutex);
3164 list_del_init(&child_counter->child_list);
3165 mutex_unlock(&parent_counter->mutex);
3166
3167 /*
3168 * Release the parent counter, if this was the last
3169 * reference to it.
3170 */
3171 fput(parent_counter->filp);
3172 }
3173
3174 static void
3175 __perf_counter_exit_task(struct task_struct *child,
3176 struct perf_counter *child_counter,
3177 struct perf_counter_context *child_ctx)
3178 {
3179 struct perf_counter *parent_counter;
3180 struct perf_counter *sub, *tmp;
3181
3182 /*
3183 * If we do not self-reap then we have to wait for the
3184 * child task to unschedule (it will happen for sure),
3185 * so that its counter is at its final count. (This
3186 * condition triggers rarely - child tasks usually get
3187 * off their CPU before the parent has a chance to
3188 * get this far into the reaping action)
3189 */
3190 if (child != current) {
3191 wait_task_inactive(child, 0);
3192 list_del_init(&child_counter->list_entry);
3193 update_counter_times(child_counter);
3194 } else {
3195 struct perf_cpu_context *cpuctx;
3196 unsigned long flags;
3197 u64 perf_flags;
3198
3199 /*
3200 * Disable and unlink this counter.
3201 *
3202 * Be careful about zapping the list - IRQ/NMI context
3203 * could still be processing it:
3204 */
3205 local_irq_save(flags);
3206 perf_flags = hw_perf_save_disable();
3207
3208 cpuctx = &__get_cpu_var(perf_cpu_context);
3209
3210 group_sched_out(child_counter, cpuctx, child_ctx);
3211 update_counter_times(child_counter);
3212
3213 list_del_init(&child_counter->list_entry);
3214
3215 child_ctx->nr_counters--;
3216
3217 hw_perf_restore(perf_flags);
3218 local_irq_restore(flags);
3219 }
3220
3221 parent_counter = child_counter->parent;
3222 /*
3223 * It can happen that parent exits first, and has counters
3224 * that are still around due to the child reference. These
3225 * counters need to be zapped - but otherwise linger.
3226 */
3227 if (parent_counter) {
3228 sync_child_counter(child_counter, parent_counter);
3229 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
3230 list_entry) {
3231 if (sub->parent) {
3232 sync_child_counter(sub, sub->parent);
3233 free_counter(sub);
3234 }
3235 }
3236 free_counter(child_counter);
3237 }
3238 }
3239
3240 /*
3241 * When a child task exits, feed back counter values to parent counters.
3242 *
3243 * Note: we may be running in child context, but the PID is not hashed
3244 * anymore so new counters will not be added.
3245 */
3246 void perf_counter_exit_task(struct task_struct *child)
3247 {
3248 struct perf_counter *child_counter, *tmp;
3249 struct perf_counter_context *child_ctx;
3250
3251 child_ctx = &child->perf_counter_ctx;
3252
3253 if (likely(!child_ctx->nr_counters))
3254 return;
3255
3256 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3257 list_entry)
3258 __perf_counter_exit_task(child, child_counter, child_ctx);
3259 }
3260
3261 /*
3262 * Initialize the perf_counter context in task_struct
3263 */
3264 void perf_counter_init_task(struct task_struct *child)
3265 {
3266 struct perf_counter_context *child_ctx, *parent_ctx;
3267 struct perf_counter *counter;
3268 struct task_struct *parent = current;
3269
3270 child_ctx = &child->perf_counter_ctx;
3271 parent_ctx = &parent->perf_counter_ctx;
3272
3273 __perf_counter_init_context(child_ctx, child);
3274
3275 /*
3276 * This is executed from the parent task context, so inherit
3277 * counters that have been marked for cloning:
3278 */
3279
3280 if (likely(!parent_ctx->nr_counters))
3281 return;
3282
3283 /*
3284 * Lock the parent list. No need to lock the child - not PID
3285 * hashed yet and not running, so nobody can access it.
3286 */
3287 mutex_lock(&parent_ctx->mutex);
3288
3289 /*
3290 * We dont have to disable NMIs - we are only looking at
3291 * the list, not manipulating it:
3292 */
3293 list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
3294 if (!counter->hw_event.inherit)
3295 continue;
3296
3297 if (inherit_group(counter, parent,
3298 parent_ctx, child, child_ctx))
3299 break;
3300 }
3301
3302 mutex_unlock(&parent_ctx->mutex);
3303 }
3304
3305 static void __cpuinit perf_counter_init_cpu(int cpu)
3306 {
3307 struct perf_cpu_context *cpuctx;
3308
3309 cpuctx = &per_cpu(perf_cpu_context, cpu);
3310 __perf_counter_init_context(&cpuctx->ctx, NULL);
3311
3312 spin_lock(&perf_resource_lock);
3313 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3314 spin_unlock(&perf_resource_lock);
3315
3316 hw_perf_counter_setup(cpu);
3317 }
3318
3319 #ifdef CONFIG_HOTPLUG_CPU
3320 static void __perf_counter_exit_cpu(void *info)
3321 {
3322 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3323 struct perf_counter_context *ctx = &cpuctx->ctx;
3324 struct perf_counter *counter, *tmp;
3325
3326 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3327 __perf_counter_remove_from_context(counter);
3328 }
3329 static void perf_counter_exit_cpu(int cpu)
3330 {
3331 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3332 struct perf_counter_context *ctx = &cpuctx->ctx;
3333
3334 mutex_lock(&ctx->mutex);
3335 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3336 mutex_unlock(&ctx->mutex);
3337 }
3338 #else
3339 static inline void perf_counter_exit_cpu(int cpu) { }
3340 #endif
3341
3342 static int __cpuinit
3343 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3344 {
3345 unsigned int cpu = (long)hcpu;
3346
3347 switch (action) {
3348
3349 case CPU_UP_PREPARE:
3350 case CPU_UP_PREPARE_FROZEN:
3351 perf_counter_init_cpu(cpu);
3352 break;
3353
3354 case CPU_DOWN_PREPARE:
3355 case CPU_DOWN_PREPARE_FROZEN:
3356 perf_counter_exit_cpu(cpu);
3357 break;
3358
3359 default:
3360 break;
3361 }
3362
3363 return NOTIFY_OK;
3364 }
3365
3366 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3367 .notifier_call = perf_cpu_notify,
3368 };
3369
3370 void __init perf_counter_init(void)
3371 {
3372 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3373 (void *)(long)smp_processor_id());
3374 register_cpu_notifier(&perf_cpu_nb);
3375 }
3376
3377 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3378 {
3379 return sprintf(buf, "%d\n", perf_reserved_percpu);
3380 }
3381
3382 static ssize_t
3383 perf_set_reserve_percpu(struct sysdev_class *class,
3384 const char *buf,
3385 size_t count)
3386 {
3387 struct perf_cpu_context *cpuctx;
3388 unsigned long val;
3389 int err, cpu, mpt;
3390
3391 err = strict_strtoul(buf, 10, &val);
3392 if (err)
3393 return err;
3394 if (val > perf_max_counters)
3395 return -EINVAL;
3396
3397 spin_lock(&perf_resource_lock);
3398 perf_reserved_percpu = val;
3399 for_each_online_cpu(cpu) {
3400 cpuctx = &per_cpu(perf_cpu_context, cpu);
3401 spin_lock_irq(&cpuctx->ctx.lock);
3402 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3403 perf_max_counters - perf_reserved_percpu);
3404 cpuctx->max_pertask = mpt;
3405 spin_unlock_irq(&cpuctx->ctx.lock);
3406 }
3407 spin_unlock(&perf_resource_lock);
3408
3409 return count;
3410 }
3411
3412 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3413 {
3414 return sprintf(buf, "%d\n", perf_overcommit);
3415 }
3416
3417 static ssize_t
3418 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3419 {
3420 unsigned long val;
3421 int err;
3422
3423 err = strict_strtoul(buf, 10, &val);
3424 if (err)
3425 return err;
3426 if (val > 1)
3427 return -EINVAL;
3428
3429 spin_lock(&perf_resource_lock);
3430 perf_overcommit = val;
3431 spin_unlock(&perf_resource_lock);
3432
3433 return count;
3434 }
3435
3436 static SYSDEV_CLASS_ATTR(
3437 reserve_percpu,
3438 0644,
3439 perf_show_reserve_percpu,
3440 perf_set_reserve_percpu
3441 );
3442
3443 static SYSDEV_CLASS_ATTR(
3444 overcommit,
3445 0644,
3446 perf_show_overcommit,
3447 perf_set_overcommit
3448 );
3449
3450 static struct attribute *perfclass_attrs[] = {
3451 &attr_reserve_percpu.attr,
3452 &attr_overcommit.attr,
3453 NULL
3454 };
3455
3456 static struct attribute_group perfclass_attr_group = {
3457 .attrs = perfclass_attrs,
3458 .name = "perf_counters",
3459 };
3460
3461 static int __init perf_counter_sysfs_init(void)
3462 {
3463 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3464 &perfclass_attr_group);
3465 }
3466 device_initcall(perf_counter_sysfs_init);
This page took 0.203988 seconds and 6 git commands to generate.