perf_counter: add an event_list
[deliverable/linux.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
6 *
7 * For licencing details see kernel-base/COPYING
8 */
9
10 #include <linux/fs.h>
11 #include <linux/cpu.h>
12 #include <linux/smp.h>
13 #include <linux/file.h>
14 #include <linux/poll.h>
15 #include <linux/sysfs.h>
16 #include <linux/ptrace.h>
17 #include <linux/percpu.h>
18 #include <linux/uaccess.h>
19 #include <linux/syscalls.h>
20 #include <linux/anon_inodes.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/perf_counter.h>
23 #include <linux/mm.h>
24 #include <linux/vmstat.h>
25 #include <linux/rculist.h>
26
27 /*
28 * Each CPU has a list of per CPU counters:
29 */
30 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
31
32 int perf_max_counters __read_mostly = 1;
33 static int perf_reserved_percpu __read_mostly;
34 static int perf_overcommit __read_mostly = 1;
35
36 /*
37 * Mutex for (sysadmin-configurable) counter reservations:
38 */
39 static DEFINE_MUTEX(perf_resource_mutex);
40
41 /*
42 * Architecture provided APIs - weak aliases:
43 */
44 extern __weak const struct hw_perf_counter_ops *
45 hw_perf_counter_init(struct perf_counter *counter)
46 {
47 return NULL;
48 }
49
50 u64 __weak hw_perf_save_disable(void) { return 0; }
51 void __weak hw_perf_restore(u64 ctrl) { barrier(); }
52 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
53 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
54 struct perf_cpu_context *cpuctx,
55 struct perf_counter_context *ctx, int cpu)
56 {
57 return 0;
58 }
59
60 void __weak perf_counter_print_debug(void) { }
61
62 static void
63 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
64 {
65 struct perf_counter *group_leader = counter->group_leader;
66
67 /*
68 * Depending on whether it is a standalone or sibling counter,
69 * add it straight to the context's counter list, or to the group
70 * leader's sibling list:
71 */
72 if (counter->group_leader == counter)
73 list_add_tail(&counter->list_entry, &ctx->counter_list);
74 else
75 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
76
77 list_add_rcu(&counter->event_entry, &ctx->event_list);
78 }
79
80 static void
81 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
82 {
83 struct perf_counter *sibling, *tmp;
84
85 list_del_init(&counter->list_entry);
86 list_del_rcu(&counter->event_entry);
87
88 /*
89 * If this was a group counter with sibling counters then
90 * upgrade the siblings to singleton counters by adding them
91 * to the context list directly:
92 */
93 list_for_each_entry_safe(sibling, tmp,
94 &counter->sibling_list, list_entry) {
95
96 list_move_tail(&sibling->list_entry, &ctx->counter_list);
97 sibling->group_leader = sibling;
98 }
99 }
100
101 static void
102 counter_sched_out(struct perf_counter *counter,
103 struct perf_cpu_context *cpuctx,
104 struct perf_counter_context *ctx)
105 {
106 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
107 return;
108
109 counter->state = PERF_COUNTER_STATE_INACTIVE;
110 counter->hw_ops->disable(counter);
111 counter->oncpu = -1;
112
113 if (!is_software_counter(counter))
114 cpuctx->active_oncpu--;
115 ctx->nr_active--;
116 if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
117 cpuctx->exclusive = 0;
118 }
119
120 static void
121 group_sched_out(struct perf_counter *group_counter,
122 struct perf_cpu_context *cpuctx,
123 struct perf_counter_context *ctx)
124 {
125 struct perf_counter *counter;
126
127 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
128 return;
129
130 counter_sched_out(group_counter, cpuctx, ctx);
131
132 /*
133 * Schedule out siblings (if any):
134 */
135 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
136 counter_sched_out(counter, cpuctx, ctx);
137
138 if (group_counter->hw_event.exclusive)
139 cpuctx->exclusive = 0;
140 }
141
142 /*
143 * Cross CPU call to remove a performance counter
144 *
145 * We disable the counter on the hardware level first. After that we
146 * remove it from the context list.
147 */
148 static void __perf_counter_remove_from_context(void *info)
149 {
150 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
151 struct perf_counter *counter = info;
152 struct perf_counter_context *ctx = counter->ctx;
153 unsigned long flags;
154 u64 perf_flags;
155
156 /*
157 * If this is a task context, we need to check whether it is
158 * the current task context of this cpu. If not it has been
159 * scheduled out before the smp call arrived.
160 */
161 if (ctx->task && cpuctx->task_ctx != ctx)
162 return;
163
164 curr_rq_lock_irq_save(&flags);
165 spin_lock(&ctx->lock);
166
167 counter_sched_out(counter, cpuctx, ctx);
168
169 counter->task = NULL;
170 ctx->nr_counters--;
171
172 /*
173 * Protect the list operation against NMI by disabling the
174 * counters on a global level. NOP for non NMI based counters.
175 */
176 perf_flags = hw_perf_save_disable();
177 list_del_counter(counter, ctx);
178 hw_perf_restore(perf_flags);
179
180 if (!ctx->task) {
181 /*
182 * Allow more per task counters with respect to the
183 * reservation:
184 */
185 cpuctx->max_pertask =
186 min(perf_max_counters - ctx->nr_counters,
187 perf_max_counters - perf_reserved_percpu);
188 }
189
190 spin_unlock(&ctx->lock);
191 curr_rq_unlock_irq_restore(&flags);
192 }
193
194
195 /*
196 * Remove the counter from a task's (or a CPU's) list of counters.
197 *
198 * Must be called with counter->mutex and ctx->mutex held.
199 *
200 * CPU counters are removed with a smp call. For task counters we only
201 * call when the task is on a CPU.
202 */
203 static void perf_counter_remove_from_context(struct perf_counter *counter)
204 {
205 struct perf_counter_context *ctx = counter->ctx;
206 struct task_struct *task = ctx->task;
207
208 if (!task) {
209 /*
210 * Per cpu counters are removed via an smp call and
211 * the removal is always sucessful.
212 */
213 smp_call_function_single(counter->cpu,
214 __perf_counter_remove_from_context,
215 counter, 1);
216 return;
217 }
218
219 retry:
220 task_oncpu_function_call(task, __perf_counter_remove_from_context,
221 counter);
222
223 spin_lock_irq(&ctx->lock);
224 /*
225 * If the context is active we need to retry the smp call.
226 */
227 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
228 spin_unlock_irq(&ctx->lock);
229 goto retry;
230 }
231
232 /*
233 * The lock prevents that this context is scheduled in so we
234 * can remove the counter safely, if the call above did not
235 * succeed.
236 */
237 if (!list_empty(&counter->list_entry)) {
238 ctx->nr_counters--;
239 list_del_counter(counter, ctx);
240 counter->task = NULL;
241 }
242 spin_unlock_irq(&ctx->lock);
243 }
244
245 /*
246 * Cross CPU call to disable a performance counter
247 */
248 static void __perf_counter_disable(void *info)
249 {
250 struct perf_counter *counter = info;
251 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
252 struct perf_counter_context *ctx = counter->ctx;
253 unsigned long flags;
254
255 /*
256 * If this is a per-task counter, need to check whether this
257 * counter's task is the current task on this cpu.
258 */
259 if (ctx->task && cpuctx->task_ctx != ctx)
260 return;
261
262 curr_rq_lock_irq_save(&flags);
263 spin_lock(&ctx->lock);
264
265 /*
266 * If the counter is on, turn it off.
267 * If it is in error state, leave it in error state.
268 */
269 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
270 if (counter == counter->group_leader)
271 group_sched_out(counter, cpuctx, ctx);
272 else
273 counter_sched_out(counter, cpuctx, ctx);
274 counter->state = PERF_COUNTER_STATE_OFF;
275 }
276
277 spin_unlock(&ctx->lock);
278 curr_rq_unlock_irq_restore(&flags);
279 }
280
281 /*
282 * Disable a counter.
283 */
284 static void perf_counter_disable(struct perf_counter *counter)
285 {
286 struct perf_counter_context *ctx = counter->ctx;
287 struct task_struct *task = ctx->task;
288
289 if (!task) {
290 /*
291 * Disable the counter on the cpu that it's on
292 */
293 smp_call_function_single(counter->cpu, __perf_counter_disable,
294 counter, 1);
295 return;
296 }
297
298 retry:
299 task_oncpu_function_call(task, __perf_counter_disable, counter);
300
301 spin_lock_irq(&ctx->lock);
302 /*
303 * If the counter is still active, we need to retry the cross-call.
304 */
305 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
306 spin_unlock_irq(&ctx->lock);
307 goto retry;
308 }
309
310 /*
311 * Since we have the lock this context can't be scheduled
312 * in, so we can change the state safely.
313 */
314 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
315 counter->state = PERF_COUNTER_STATE_OFF;
316
317 spin_unlock_irq(&ctx->lock);
318 }
319
320 /*
321 * Disable a counter and all its children.
322 */
323 static void perf_counter_disable_family(struct perf_counter *counter)
324 {
325 struct perf_counter *child;
326
327 perf_counter_disable(counter);
328
329 /*
330 * Lock the mutex to protect the list of children
331 */
332 mutex_lock(&counter->mutex);
333 list_for_each_entry(child, &counter->child_list, child_list)
334 perf_counter_disable(child);
335 mutex_unlock(&counter->mutex);
336 }
337
338 static int
339 counter_sched_in(struct perf_counter *counter,
340 struct perf_cpu_context *cpuctx,
341 struct perf_counter_context *ctx,
342 int cpu)
343 {
344 if (counter->state <= PERF_COUNTER_STATE_OFF)
345 return 0;
346
347 counter->state = PERF_COUNTER_STATE_ACTIVE;
348 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
349 /*
350 * The new state must be visible before we turn it on in the hardware:
351 */
352 smp_wmb();
353
354 if (counter->hw_ops->enable(counter)) {
355 counter->state = PERF_COUNTER_STATE_INACTIVE;
356 counter->oncpu = -1;
357 return -EAGAIN;
358 }
359
360 if (!is_software_counter(counter))
361 cpuctx->active_oncpu++;
362 ctx->nr_active++;
363
364 if (counter->hw_event.exclusive)
365 cpuctx->exclusive = 1;
366
367 return 0;
368 }
369
370 /*
371 * Return 1 for a group consisting entirely of software counters,
372 * 0 if the group contains any hardware counters.
373 */
374 static int is_software_only_group(struct perf_counter *leader)
375 {
376 struct perf_counter *counter;
377
378 if (!is_software_counter(leader))
379 return 0;
380 list_for_each_entry(counter, &leader->sibling_list, list_entry)
381 if (!is_software_counter(counter))
382 return 0;
383 return 1;
384 }
385
386 /*
387 * Work out whether we can put this counter group on the CPU now.
388 */
389 static int group_can_go_on(struct perf_counter *counter,
390 struct perf_cpu_context *cpuctx,
391 int can_add_hw)
392 {
393 /*
394 * Groups consisting entirely of software counters can always go on.
395 */
396 if (is_software_only_group(counter))
397 return 1;
398 /*
399 * If an exclusive group is already on, no other hardware
400 * counters can go on.
401 */
402 if (cpuctx->exclusive)
403 return 0;
404 /*
405 * If this group is exclusive and there are already
406 * counters on the CPU, it can't go on.
407 */
408 if (counter->hw_event.exclusive && cpuctx->active_oncpu)
409 return 0;
410 /*
411 * Otherwise, try to add it if all previous groups were able
412 * to go on.
413 */
414 return can_add_hw;
415 }
416
417 /*
418 * Cross CPU call to install and enable a performance counter
419 */
420 static void __perf_install_in_context(void *info)
421 {
422 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
423 struct perf_counter *counter = info;
424 struct perf_counter_context *ctx = counter->ctx;
425 struct perf_counter *leader = counter->group_leader;
426 int cpu = smp_processor_id();
427 unsigned long flags;
428 u64 perf_flags;
429 int err;
430
431 /*
432 * If this is a task context, we need to check whether it is
433 * the current task context of this cpu. If not it has been
434 * scheduled out before the smp call arrived.
435 */
436 if (ctx->task && cpuctx->task_ctx != ctx)
437 return;
438
439 curr_rq_lock_irq_save(&flags);
440 spin_lock(&ctx->lock);
441
442 /*
443 * Protect the list operation against NMI by disabling the
444 * counters on a global level. NOP for non NMI based counters.
445 */
446 perf_flags = hw_perf_save_disable();
447
448 list_add_counter(counter, ctx);
449 ctx->nr_counters++;
450 counter->prev_state = PERF_COUNTER_STATE_OFF;
451
452 /*
453 * Don't put the counter on if it is disabled or if
454 * it is in a group and the group isn't on.
455 */
456 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
457 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
458 goto unlock;
459
460 /*
461 * An exclusive counter can't go on if there are already active
462 * hardware counters, and no hardware counter can go on if there
463 * is already an exclusive counter on.
464 */
465 if (!group_can_go_on(counter, cpuctx, 1))
466 err = -EEXIST;
467 else
468 err = counter_sched_in(counter, cpuctx, ctx, cpu);
469
470 if (err) {
471 /*
472 * This counter couldn't go on. If it is in a group
473 * then we have to pull the whole group off.
474 * If the counter group is pinned then put it in error state.
475 */
476 if (leader != counter)
477 group_sched_out(leader, cpuctx, ctx);
478 if (leader->hw_event.pinned)
479 leader->state = PERF_COUNTER_STATE_ERROR;
480 }
481
482 if (!err && !ctx->task && cpuctx->max_pertask)
483 cpuctx->max_pertask--;
484
485 unlock:
486 hw_perf_restore(perf_flags);
487
488 spin_unlock(&ctx->lock);
489 curr_rq_unlock_irq_restore(&flags);
490 }
491
492 /*
493 * Attach a performance counter to a context
494 *
495 * First we add the counter to the list with the hardware enable bit
496 * in counter->hw_config cleared.
497 *
498 * If the counter is attached to a task which is on a CPU we use a smp
499 * call to enable it in the task context. The task might have been
500 * scheduled away, but we check this in the smp call again.
501 *
502 * Must be called with ctx->mutex held.
503 */
504 static void
505 perf_install_in_context(struct perf_counter_context *ctx,
506 struct perf_counter *counter,
507 int cpu)
508 {
509 struct task_struct *task = ctx->task;
510
511 if (!task) {
512 /*
513 * Per cpu counters are installed via an smp call and
514 * the install is always sucessful.
515 */
516 smp_call_function_single(cpu, __perf_install_in_context,
517 counter, 1);
518 return;
519 }
520
521 counter->task = task;
522 retry:
523 task_oncpu_function_call(task, __perf_install_in_context,
524 counter);
525
526 spin_lock_irq(&ctx->lock);
527 /*
528 * we need to retry the smp call.
529 */
530 if (ctx->is_active && list_empty(&counter->list_entry)) {
531 spin_unlock_irq(&ctx->lock);
532 goto retry;
533 }
534
535 /*
536 * The lock prevents that this context is scheduled in so we
537 * can add the counter safely, if it the call above did not
538 * succeed.
539 */
540 if (list_empty(&counter->list_entry)) {
541 list_add_counter(counter, ctx);
542 ctx->nr_counters++;
543 }
544 spin_unlock_irq(&ctx->lock);
545 }
546
547 /*
548 * Cross CPU call to enable a performance counter
549 */
550 static void __perf_counter_enable(void *info)
551 {
552 struct perf_counter *counter = info;
553 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
554 struct perf_counter_context *ctx = counter->ctx;
555 struct perf_counter *leader = counter->group_leader;
556 unsigned long flags;
557 int err;
558
559 /*
560 * If this is a per-task counter, need to check whether this
561 * counter's task is the current task on this cpu.
562 */
563 if (ctx->task && cpuctx->task_ctx != ctx)
564 return;
565
566 curr_rq_lock_irq_save(&flags);
567 spin_lock(&ctx->lock);
568
569 counter->prev_state = counter->state;
570 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
571 goto unlock;
572 counter->state = PERF_COUNTER_STATE_INACTIVE;
573
574 /*
575 * If the counter is in a group and isn't the group leader,
576 * then don't put it on unless the group is on.
577 */
578 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
579 goto unlock;
580
581 if (!group_can_go_on(counter, cpuctx, 1))
582 err = -EEXIST;
583 else
584 err = counter_sched_in(counter, cpuctx, ctx,
585 smp_processor_id());
586
587 if (err) {
588 /*
589 * If this counter can't go on and it's part of a
590 * group, then the whole group has to come off.
591 */
592 if (leader != counter)
593 group_sched_out(leader, cpuctx, ctx);
594 if (leader->hw_event.pinned)
595 leader->state = PERF_COUNTER_STATE_ERROR;
596 }
597
598 unlock:
599 spin_unlock(&ctx->lock);
600 curr_rq_unlock_irq_restore(&flags);
601 }
602
603 /*
604 * Enable a counter.
605 */
606 static void perf_counter_enable(struct perf_counter *counter)
607 {
608 struct perf_counter_context *ctx = counter->ctx;
609 struct task_struct *task = ctx->task;
610
611 if (!task) {
612 /*
613 * Enable the counter on the cpu that it's on
614 */
615 smp_call_function_single(counter->cpu, __perf_counter_enable,
616 counter, 1);
617 return;
618 }
619
620 spin_lock_irq(&ctx->lock);
621 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
622 goto out;
623
624 /*
625 * If the counter is in error state, clear that first.
626 * That way, if we see the counter in error state below, we
627 * know that it has gone back into error state, as distinct
628 * from the task having been scheduled away before the
629 * cross-call arrived.
630 */
631 if (counter->state == PERF_COUNTER_STATE_ERROR)
632 counter->state = PERF_COUNTER_STATE_OFF;
633
634 retry:
635 spin_unlock_irq(&ctx->lock);
636 task_oncpu_function_call(task, __perf_counter_enable, counter);
637
638 spin_lock_irq(&ctx->lock);
639
640 /*
641 * If the context is active and the counter is still off,
642 * we need to retry the cross-call.
643 */
644 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
645 goto retry;
646
647 /*
648 * Since we have the lock this context can't be scheduled
649 * in, so we can change the state safely.
650 */
651 if (counter->state == PERF_COUNTER_STATE_OFF)
652 counter->state = PERF_COUNTER_STATE_INACTIVE;
653 out:
654 spin_unlock_irq(&ctx->lock);
655 }
656
657 /*
658 * Enable a counter and all its children.
659 */
660 static void perf_counter_enable_family(struct perf_counter *counter)
661 {
662 struct perf_counter *child;
663
664 perf_counter_enable(counter);
665
666 /*
667 * Lock the mutex to protect the list of children
668 */
669 mutex_lock(&counter->mutex);
670 list_for_each_entry(child, &counter->child_list, child_list)
671 perf_counter_enable(child);
672 mutex_unlock(&counter->mutex);
673 }
674
675 void __perf_counter_sched_out(struct perf_counter_context *ctx,
676 struct perf_cpu_context *cpuctx)
677 {
678 struct perf_counter *counter;
679 u64 flags;
680
681 spin_lock(&ctx->lock);
682 ctx->is_active = 0;
683 if (likely(!ctx->nr_counters))
684 goto out;
685
686 flags = hw_perf_save_disable();
687 if (ctx->nr_active) {
688 list_for_each_entry(counter, &ctx->counter_list, list_entry)
689 group_sched_out(counter, cpuctx, ctx);
690 }
691 hw_perf_restore(flags);
692 out:
693 spin_unlock(&ctx->lock);
694 }
695
696 /*
697 * Called from scheduler to remove the counters of the current task,
698 * with interrupts disabled.
699 *
700 * We stop each counter and update the counter value in counter->count.
701 *
702 * This does not protect us against NMI, but disable()
703 * sets the disabled bit in the control field of counter _before_
704 * accessing the counter control register. If a NMI hits, then it will
705 * not restart the counter.
706 */
707 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
708 {
709 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
710 struct perf_counter_context *ctx = &task->perf_counter_ctx;
711
712 if (likely(!cpuctx->task_ctx))
713 return;
714
715 __perf_counter_sched_out(ctx, cpuctx);
716
717 cpuctx->task_ctx = NULL;
718 }
719
720 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
721 {
722 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
723 }
724
725 static int
726 group_sched_in(struct perf_counter *group_counter,
727 struct perf_cpu_context *cpuctx,
728 struct perf_counter_context *ctx,
729 int cpu)
730 {
731 struct perf_counter *counter, *partial_group;
732 int ret;
733
734 if (group_counter->state == PERF_COUNTER_STATE_OFF)
735 return 0;
736
737 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
738 if (ret)
739 return ret < 0 ? ret : 0;
740
741 group_counter->prev_state = group_counter->state;
742 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
743 return -EAGAIN;
744
745 /*
746 * Schedule in siblings as one group (if any):
747 */
748 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
749 counter->prev_state = counter->state;
750 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
751 partial_group = counter;
752 goto group_error;
753 }
754 }
755
756 return 0;
757
758 group_error:
759 /*
760 * Groups can be scheduled in as one unit only, so undo any
761 * partial group before returning:
762 */
763 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
764 if (counter == partial_group)
765 break;
766 counter_sched_out(counter, cpuctx, ctx);
767 }
768 counter_sched_out(group_counter, cpuctx, ctx);
769
770 return -EAGAIN;
771 }
772
773 static void
774 __perf_counter_sched_in(struct perf_counter_context *ctx,
775 struct perf_cpu_context *cpuctx, int cpu)
776 {
777 struct perf_counter *counter;
778 u64 flags;
779 int can_add_hw = 1;
780
781 spin_lock(&ctx->lock);
782 ctx->is_active = 1;
783 if (likely(!ctx->nr_counters))
784 goto out;
785
786 flags = hw_perf_save_disable();
787
788 /*
789 * First go through the list and put on any pinned groups
790 * in order to give them the best chance of going on.
791 */
792 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
793 if (counter->state <= PERF_COUNTER_STATE_OFF ||
794 !counter->hw_event.pinned)
795 continue;
796 if (counter->cpu != -1 && counter->cpu != cpu)
797 continue;
798
799 if (group_can_go_on(counter, cpuctx, 1))
800 group_sched_in(counter, cpuctx, ctx, cpu);
801
802 /*
803 * If this pinned group hasn't been scheduled,
804 * put it in error state.
805 */
806 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
807 counter->state = PERF_COUNTER_STATE_ERROR;
808 }
809
810 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
811 /*
812 * Ignore counters in OFF or ERROR state, and
813 * ignore pinned counters since we did them already.
814 */
815 if (counter->state <= PERF_COUNTER_STATE_OFF ||
816 counter->hw_event.pinned)
817 continue;
818
819 /*
820 * Listen to the 'cpu' scheduling filter constraint
821 * of counters:
822 */
823 if (counter->cpu != -1 && counter->cpu != cpu)
824 continue;
825
826 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
827 if (group_sched_in(counter, cpuctx, ctx, cpu))
828 can_add_hw = 0;
829 }
830 }
831 hw_perf_restore(flags);
832 out:
833 spin_unlock(&ctx->lock);
834 }
835
836 /*
837 * Called from scheduler to add the counters of the current task
838 * with interrupts disabled.
839 *
840 * We restore the counter value and then enable it.
841 *
842 * This does not protect us against NMI, but enable()
843 * sets the enabled bit in the control field of counter _before_
844 * accessing the counter control register. If a NMI hits, then it will
845 * keep the counter running.
846 */
847 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
848 {
849 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
850 struct perf_counter_context *ctx = &task->perf_counter_ctx;
851
852 __perf_counter_sched_in(ctx, cpuctx, cpu);
853 cpuctx->task_ctx = ctx;
854 }
855
856 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
857 {
858 struct perf_counter_context *ctx = &cpuctx->ctx;
859
860 __perf_counter_sched_in(ctx, cpuctx, cpu);
861 }
862
863 int perf_counter_task_disable(void)
864 {
865 struct task_struct *curr = current;
866 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
867 struct perf_counter *counter;
868 unsigned long flags;
869 u64 perf_flags;
870 int cpu;
871
872 if (likely(!ctx->nr_counters))
873 return 0;
874
875 curr_rq_lock_irq_save(&flags);
876 cpu = smp_processor_id();
877
878 /* force the update of the task clock: */
879 __task_delta_exec(curr, 1);
880
881 perf_counter_task_sched_out(curr, cpu);
882
883 spin_lock(&ctx->lock);
884
885 /*
886 * Disable all the counters:
887 */
888 perf_flags = hw_perf_save_disable();
889
890 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
891 if (counter->state != PERF_COUNTER_STATE_ERROR)
892 counter->state = PERF_COUNTER_STATE_OFF;
893 }
894
895 hw_perf_restore(perf_flags);
896
897 spin_unlock(&ctx->lock);
898
899 curr_rq_unlock_irq_restore(&flags);
900
901 return 0;
902 }
903
904 int perf_counter_task_enable(void)
905 {
906 struct task_struct *curr = current;
907 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
908 struct perf_counter *counter;
909 unsigned long flags;
910 u64 perf_flags;
911 int cpu;
912
913 if (likely(!ctx->nr_counters))
914 return 0;
915
916 curr_rq_lock_irq_save(&flags);
917 cpu = smp_processor_id();
918
919 /* force the update of the task clock: */
920 __task_delta_exec(curr, 1);
921
922 perf_counter_task_sched_out(curr, cpu);
923
924 spin_lock(&ctx->lock);
925
926 /*
927 * Disable all the counters:
928 */
929 perf_flags = hw_perf_save_disable();
930
931 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
932 if (counter->state > PERF_COUNTER_STATE_OFF)
933 continue;
934 counter->state = PERF_COUNTER_STATE_INACTIVE;
935 counter->hw_event.disabled = 0;
936 }
937 hw_perf_restore(perf_flags);
938
939 spin_unlock(&ctx->lock);
940
941 perf_counter_task_sched_in(curr, cpu);
942
943 curr_rq_unlock_irq_restore(&flags);
944
945 return 0;
946 }
947
948 /*
949 * Round-robin a context's counters:
950 */
951 static void rotate_ctx(struct perf_counter_context *ctx)
952 {
953 struct perf_counter *counter;
954 u64 perf_flags;
955
956 if (!ctx->nr_counters)
957 return;
958
959 spin_lock(&ctx->lock);
960 /*
961 * Rotate the first entry last (works just fine for group counters too):
962 */
963 perf_flags = hw_perf_save_disable();
964 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
965 list_move_tail(&counter->list_entry, &ctx->counter_list);
966 break;
967 }
968 hw_perf_restore(perf_flags);
969
970 spin_unlock(&ctx->lock);
971 }
972
973 void perf_counter_task_tick(struct task_struct *curr, int cpu)
974 {
975 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
976 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
977 const int rotate_percpu = 0;
978
979 if (rotate_percpu)
980 perf_counter_cpu_sched_out(cpuctx);
981 perf_counter_task_sched_out(curr, cpu);
982
983 if (rotate_percpu)
984 rotate_ctx(&cpuctx->ctx);
985 rotate_ctx(ctx);
986
987 if (rotate_percpu)
988 perf_counter_cpu_sched_in(cpuctx, cpu);
989 perf_counter_task_sched_in(curr, cpu);
990 }
991
992 /*
993 * Cross CPU call to read the hardware counter
994 */
995 static void __read(void *info)
996 {
997 struct perf_counter *counter = info;
998 unsigned long flags;
999
1000 curr_rq_lock_irq_save(&flags);
1001 counter->hw_ops->read(counter);
1002 curr_rq_unlock_irq_restore(&flags);
1003 }
1004
1005 static u64 perf_counter_read(struct perf_counter *counter)
1006 {
1007 /*
1008 * If counter is enabled and currently active on a CPU, update the
1009 * value in the counter structure:
1010 */
1011 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1012 smp_call_function_single(counter->oncpu,
1013 __read, counter, 1);
1014 }
1015
1016 return atomic64_read(&counter->count);
1017 }
1018
1019 /*
1020 * Cross CPU call to switch performance data pointers
1021 */
1022 static void __perf_switch_irq_data(void *info)
1023 {
1024 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1025 struct perf_counter *counter = info;
1026 struct perf_counter_context *ctx = counter->ctx;
1027 struct perf_data *oldirqdata = counter->irqdata;
1028
1029 /*
1030 * If this is a task context, we need to check whether it is
1031 * the current task context of this cpu. If not it has been
1032 * scheduled out before the smp call arrived.
1033 */
1034 if (ctx->task) {
1035 if (cpuctx->task_ctx != ctx)
1036 return;
1037 spin_lock(&ctx->lock);
1038 }
1039
1040 /* Change the pointer NMI safe */
1041 atomic_long_set((atomic_long_t *)&counter->irqdata,
1042 (unsigned long) counter->usrdata);
1043 counter->usrdata = oldirqdata;
1044
1045 if (ctx->task)
1046 spin_unlock(&ctx->lock);
1047 }
1048
1049 static struct perf_data *perf_switch_irq_data(struct perf_counter *counter)
1050 {
1051 struct perf_counter_context *ctx = counter->ctx;
1052 struct perf_data *oldirqdata = counter->irqdata;
1053 struct task_struct *task = ctx->task;
1054
1055 if (!task) {
1056 smp_call_function_single(counter->cpu,
1057 __perf_switch_irq_data,
1058 counter, 1);
1059 return counter->usrdata;
1060 }
1061
1062 retry:
1063 spin_lock_irq(&ctx->lock);
1064 if (counter->state != PERF_COUNTER_STATE_ACTIVE) {
1065 counter->irqdata = counter->usrdata;
1066 counter->usrdata = oldirqdata;
1067 spin_unlock_irq(&ctx->lock);
1068 return oldirqdata;
1069 }
1070 spin_unlock_irq(&ctx->lock);
1071 task_oncpu_function_call(task, __perf_switch_irq_data, counter);
1072 /* Might have failed, because task was scheduled out */
1073 if (counter->irqdata == oldirqdata)
1074 goto retry;
1075
1076 return counter->usrdata;
1077 }
1078
1079 static void put_context(struct perf_counter_context *ctx)
1080 {
1081 if (ctx->task)
1082 put_task_struct(ctx->task);
1083 }
1084
1085 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1086 {
1087 struct perf_cpu_context *cpuctx;
1088 struct perf_counter_context *ctx;
1089 struct task_struct *task;
1090
1091 /*
1092 * If cpu is not a wildcard then this is a percpu counter:
1093 */
1094 if (cpu != -1) {
1095 /* Must be root to operate on a CPU counter: */
1096 if (!capable(CAP_SYS_ADMIN))
1097 return ERR_PTR(-EACCES);
1098
1099 if (cpu < 0 || cpu > num_possible_cpus())
1100 return ERR_PTR(-EINVAL);
1101
1102 /*
1103 * We could be clever and allow to attach a counter to an
1104 * offline CPU and activate it when the CPU comes up, but
1105 * that's for later.
1106 */
1107 if (!cpu_isset(cpu, cpu_online_map))
1108 return ERR_PTR(-ENODEV);
1109
1110 cpuctx = &per_cpu(perf_cpu_context, cpu);
1111 ctx = &cpuctx->ctx;
1112
1113 return ctx;
1114 }
1115
1116 rcu_read_lock();
1117 if (!pid)
1118 task = current;
1119 else
1120 task = find_task_by_vpid(pid);
1121 if (task)
1122 get_task_struct(task);
1123 rcu_read_unlock();
1124
1125 if (!task)
1126 return ERR_PTR(-ESRCH);
1127
1128 ctx = &task->perf_counter_ctx;
1129 ctx->task = task;
1130
1131 /* Reuse ptrace permission checks for now. */
1132 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1133 put_context(ctx);
1134 return ERR_PTR(-EACCES);
1135 }
1136
1137 return ctx;
1138 }
1139
1140 static void free_counter_rcu(struct rcu_head *head)
1141 {
1142 struct perf_counter *counter;
1143
1144 counter = container_of(head, struct perf_counter, rcu_head);
1145 kfree(counter);
1146 }
1147
1148 /*
1149 * Called when the last reference to the file is gone.
1150 */
1151 static int perf_release(struct inode *inode, struct file *file)
1152 {
1153 struct perf_counter *counter = file->private_data;
1154 struct perf_counter_context *ctx = counter->ctx;
1155
1156 file->private_data = NULL;
1157
1158 mutex_lock(&ctx->mutex);
1159 mutex_lock(&counter->mutex);
1160
1161 perf_counter_remove_from_context(counter);
1162
1163 mutex_unlock(&counter->mutex);
1164 mutex_unlock(&ctx->mutex);
1165
1166 call_rcu(&counter->rcu_head, free_counter_rcu);
1167 put_context(ctx);
1168
1169 return 0;
1170 }
1171
1172 /*
1173 * Read the performance counter - simple non blocking version for now
1174 */
1175 static ssize_t
1176 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1177 {
1178 u64 cntval;
1179
1180 if (count != sizeof(cntval))
1181 return -EINVAL;
1182
1183 /*
1184 * Return end-of-file for a read on a counter that is in
1185 * error state (i.e. because it was pinned but it couldn't be
1186 * scheduled on to the CPU at some point).
1187 */
1188 if (counter->state == PERF_COUNTER_STATE_ERROR)
1189 return 0;
1190
1191 mutex_lock(&counter->mutex);
1192 cntval = perf_counter_read(counter);
1193 mutex_unlock(&counter->mutex);
1194
1195 return put_user(cntval, (u64 __user *) buf) ? -EFAULT : sizeof(cntval);
1196 }
1197
1198 static ssize_t
1199 perf_copy_usrdata(struct perf_data *usrdata, char __user *buf, size_t count)
1200 {
1201 if (!usrdata->len)
1202 return 0;
1203
1204 count = min(count, (size_t)usrdata->len);
1205 if (copy_to_user(buf, usrdata->data + usrdata->rd_idx, count))
1206 return -EFAULT;
1207
1208 /* Adjust the counters */
1209 usrdata->len -= count;
1210 if (!usrdata->len)
1211 usrdata->rd_idx = 0;
1212 else
1213 usrdata->rd_idx += count;
1214
1215 return count;
1216 }
1217
1218 static ssize_t
1219 perf_read_irq_data(struct perf_counter *counter,
1220 char __user *buf,
1221 size_t count,
1222 int nonblocking)
1223 {
1224 struct perf_data *irqdata, *usrdata;
1225 DECLARE_WAITQUEUE(wait, current);
1226 ssize_t res, res2;
1227
1228 irqdata = counter->irqdata;
1229 usrdata = counter->usrdata;
1230
1231 if (usrdata->len + irqdata->len >= count)
1232 goto read_pending;
1233
1234 if (nonblocking)
1235 return -EAGAIN;
1236
1237 spin_lock_irq(&counter->waitq.lock);
1238 __add_wait_queue(&counter->waitq, &wait);
1239 for (;;) {
1240 set_current_state(TASK_INTERRUPTIBLE);
1241 if (usrdata->len + irqdata->len >= count)
1242 break;
1243
1244 if (signal_pending(current))
1245 break;
1246
1247 if (counter->state == PERF_COUNTER_STATE_ERROR)
1248 break;
1249
1250 spin_unlock_irq(&counter->waitq.lock);
1251 schedule();
1252 spin_lock_irq(&counter->waitq.lock);
1253 }
1254 __remove_wait_queue(&counter->waitq, &wait);
1255 __set_current_state(TASK_RUNNING);
1256 spin_unlock_irq(&counter->waitq.lock);
1257
1258 if (usrdata->len + irqdata->len < count &&
1259 counter->state != PERF_COUNTER_STATE_ERROR)
1260 return -ERESTARTSYS;
1261 read_pending:
1262 mutex_lock(&counter->mutex);
1263
1264 /* Drain pending data first: */
1265 res = perf_copy_usrdata(usrdata, buf, count);
1266 if (res < 0 || res == count)
1267 goto out;
1268
1269 /* Switch irq buffer: */
1270 usrdata = perf_switch_irq_data(counter);
1271 res2 = perf_copy_usrdata(usrdata, buf + res, count - res);
1272 if (res2 < 0) {
1273 if (!res)
1274 res = -EFAULT;
1275 } else {
1276 res += res2;
1277 }
1278 out:
1279 mutex_unlock(&counter->mutex);
1280
1281 return res;
1282 }
1283
1284 static ssize_t
1285 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1286 {
1287 struct perf_counter *counter = file->private_data;
1288
1289 switch (counter->hw_event.record_type) {
1290 case PERF_RECORD_SIMPLE:
1291 return perf_read_hw(counter, buf, count);
1292
1293 case PERF_RECORD_IRQ:
1294 case PERF_RECORD_GROUP:
1295 return perf_read_irq_data(counter, buf, count,
1296 file->f_flags & O_NONBLOCK);
1297 }
1298 return -EINVAL;
1299 }
1300
1301 static unsigned int perf_poll(struct file *file, poll_table *wait)
1302 {
1303 struct perf_counter *counter = file->private_data;
1304 unsigned int events = 0;
1305 unsigned long flags;
1306
1307 poll_wait(file, &counter->waitq, wait);
1308
1309 spin_lock_irqsave(&counter->waitq.lock, flags);
1310 if (counter->usrdata->len || counter->irqdata->len)
1311 events |= POLLIN;
1312 spin_unlock_irqrestore(&counter->waitq.lock, flags);
1313
1314 return events;
1315 }
1316
1317 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1318 {
1319 struct perf_counter *counter = file->private_data;
1320 int err = 0;
1321
1322 switch (cmd) {
1323 case PERF_COUNTER_IOC_ENABLE:
1324 perf_counter_enable_family(counter);
1325 break;
1326 case PERF_COUNTER_IOC_DISABLE:
1327 perf_counter_disable_family(counter);
1328 break;
1329 default:
1330 err = -ENOTTY;
1331 }
1332 return err;
1333 }
1334
1335 static const struct file_operations perf_fops = {
1336 .release = perf_release,
1337 .read = perf_read,
1338 .poll = perf_poll,
1339 .unlocked_ioctl = perf_ioctl,
1340 .compat_ioctl = perf_ioctl,
1341 };
1342
1343 /*
1344 * Generic software counter infrastructure
1345 */
1346
1347 static void perf_swcounter_update(struct perf_counter *counter)
1348 {
1349 struct hw_perf_counter *hwc = &counter->hw;
1350 u64 prev, now;
1351 s64 delta;
1352
1353 again:
1354 prev = atomic64_read(&hwc->prev_count);
1355 now = atomic64_read(&hwc->count);
1356 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
1357 goto again;
1358
1359 delta = now - prev;
1360
1361 atomic64_add(delta, &counter->count);
1362 atomic64_sub(delta, &hwc->period_left);
1363 }
1364
1365 static void perf_swcounter_set_period(struct perf_counter *counter)
1366 {
1367 struct hw_perf_counter *hwc = &counter->hw;
1368 s64 left = atomic64_read(&hwc->period_left);
1369 s64 period = hwc->irq_period;
1370
1371 if (unlikely(left <= -period)) {
1372 left = period;
1373 atomic64_set(&hwc->period_left, left);
1374 }
1375
1376 if (unlikely(left <= 0)) {
1377 left += period;
1378 atomic64_add(period, &hwc->period_left);
1379 }
1380
1381 atomic64_set(&hwc->prev_count, -left);
1382 atomic64_set(&hwc->count, -left);
1383 }
1384
1385 static void perf_swcounter_save_and_restart(struct perf_counter *counter)
1386 {
1387 perf_swcounter_update(counter);
1388 perf_swcounter_set_period(counter);
1389 }
1390
1391 static void perf_swcounter_store_irq(struct perf_counter *counter, u64 data)
1392 {
1393 struct perf_data *irqdata = counter->irqdata;
1394
1395 if (irqdata->len > PERF_DATA_BUFLEN - sizeof(u64)) {
1396 irqdata->overrun++;
1397 } else {
1398 u64 *p = (u64 *) &irqdata->data[irqdata->len];
1399
1400 *p = data;
1401 irqdata->len += sizeof(u64);
1402 }
1403 }
1404
1405 static void perf_swcounter_handle_group(struct perf_counter *sibling)
1406 {
1407 struct perf_counter *counter, *group_leader = sibling->group_leader;
1408
1409 list_for_each_entry(counter, &group_leader->sibling_list, list_entry) {
1410 counter->hw_ops->read(counter);
1411 perf_swcounter_store_irq(sibling, counter->hw_event.type);
1412 perf_swcounter_store_irq(sibling, atomic64_read(&counter->count));
1413 }
1414 }
1415
1416 static void perf_swcounter_interrupt(struct perf_counter *counter,
1417 int nmi, struct pt_regs *regs)
1418 {
1419 switch (counter->hw_event.record_type) {
1420 case PERF_RECORD_SIMPLE:
1421 break;
1422
1423 case PERF_RECORD_IRQ:
1424 perf_swcounter_store_irq(counter, instruction_pointer(regs));
1425 break;
1426
1427 case PERF_RECORD_GROUP:
1428 perf_swcounter_handle_group(counter);
1429 break;
1430 }
1431
1432 if (nmi) {
1433 counter->wakeup_pending = 1;
1434 set_tsk_thread_flag(current, TIF_PERF_COUNTERS);
1435 } else
1436 wake_up(&counter->waitq);
1437 }
1438
1439 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
1440 {
1441 struct perf_counter *counter;
1442 struct pt_regs *regs;
1443
1444 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
1445 counter->hw_ops->read(counter);
1446
1447 regs = get_irq_regs();
1448 /*
1449 * In case we exclude kernel IPs or are somehow not in interrupt
1450 * context, provide the next best thing, the user IP.
1451 */
1452 if ((counter->hw_event.exclude_kernel || !regs) &&
1453 !counter->hw_event.exclude_user)
1454 regs = task_pt_regs(current);
1455
1456 if (regs)
1457 perf_swcounter_interrupt(counter, 0, regs);
1458
1459 hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
1460
1461 return HRTIMER_RESTART;
1462 }
1463
1464 static void perf_swcounter_overflow(struct perf_counter *counter,
1465 int nmi, struct pt_regs *regs)
1466 {
1467 perf_swcounter_save_and_restart(counter);
1468 perf_swcounter_interrupt(counter, nmi, regs);
1469 }
1470
1471 static int perf_swcounter_match(struct perf_counter *counter,
1472 enum hw_event_types event,
1473 struct pt_regs *regs)
1474 {
1475 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1476 return 0;
1477
1478 if (counter->hw_event.raw)
1479 return 0;
1480
1481 if (counter->hw_event.type != event)
1482 return 0;
1483
1484 if (counter->hw_event.exclude_user && user_mode(regs))
1485 return 0;
1486
1487 if (counter->hw_event.exclude_kernel && !user_mode(regs))
1488 return 0;
1489
1490 return 1;
1491 }
1492
1493 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
1494 int nmi, struct pt_regs *regs)
1495 {
1496 int neg = atomic64_add_negative(nr, &counter->hw.count);
1497 if (counter->hw.irq_period && !neg)
1498 perf_swcounter_overflow(counter, nmi, regs);
1499 }
1500
1501 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
1502 enum hw_event_types event, u64 nr,
1503 int nmi, struct pt_regs *regs)
1504 {
1505 struct perf_counter *counter;
1506
1507 if (list_empty(&ctx->event_list))
1508 return;
1509
1510 rcu_read_lock();
1511 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
1512 if (perf_swcounter_match(counter, event, regs))
1513 perf_swcounter_add(counter, nr, nmi, regs);
1514 }
1515 rcu_read_unlock();
1516 }
1517
1518 void perf_swcounter_event(enum hw_event_types event, u64 nr,
1519 int nmi, struct pt_regs *regs)
1520 {
1521 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
1522
1523 perf_swcounter_ctx_event(&cpuctx->ctx, event, nr, nmi, regs);
1524 if (cpuctx->task_ctx)
1525 perf_swcounter_ctx_event(cpuctx->task_ctx, event, nr, nmi, regs);
1526
1527 put_cpu_var(perf_cpu_context);
1528 }
1529
1530 static void perf_swcounter_read(struct perf_counter *counter)
1531 {
1532 perf_swcounter_update(counter);
1533 }
1534
1535 static int perf_swcounter_enable(struct perf_counter *counter)
1536 {
1537 perf_swcounter_set_period(counter);
1538 return 0;
1539 }
1540
1541 static void perf_swcounter_disable(struct perf_counter *counter)
1542 {
1543 perf_swcounter_update(counter);
1544 }
1545
1546 static const struct hw_perf_counter_ops perf_ops_generic = {
1547 .enable = perf_swcounter_enable,
1548 .disable = perf_swcounter_disable,
1549 .read = perf_swcounter_read,
1550 };
1551
1552 /*
1553 * Software counter: cpu wall time clock
1554 */
1555
1556 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
1557 {
1558 int cpu = raw_smp_processor_id();
1559 s64 prev;
1560 u64 now;
1561
1562 now = cpu_clock(cpu);
1563 prev = atomic64_read(&counter->hw.prev_count);
1564 atomic64_set(&counter->hw.prev_count, now);
1565 atomic64_add(now - prev, &counter->count);
1566 }
1567
1568 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
1569 {
1570 struct hw_perf_counter *hwc = &counter->hw;
1571 int cpu = raw_smp_processor_id();
1572
1573 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
1574 if (hwc->irq_period) {
1575 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1576 hwc->hrtimer.function = perf_swcounter_hrtimer;
1577 __hrtimer_start_range_ns(&hwc->hrtimer,
1578 ns_to_ktime(hwc->irq_period), 0,
1579 HRTIMER_MODE_REL, 0);
1580 }
1581
1582 return 0;
1583 }
1584
1585 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
1586 {
1587 hrtimer_cancel(&counter->hw.hrtimer);
1588 cpu_clock_perf_counter_update(counter);
1589 }
1590
1591 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
1592 {
1593 cpu_clock_perf_counter_update(counter);
1594 }
1595
1596 static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
1597 .enable = cpu_clock_perf_counter_enable,
1598 .disable = cpu_clock_perf_counter_disable,
1599 .read = cpu_clock_perf_counter_read,
1600 };
1601
1602 /*
1603 * Software counter: task time clock
1604 */
1605
1606 /*
1607 * Called from within the scheduler:
1608 */
1609 static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
1610 {
1611 struct task_struct *curr = counter->task;
1612 u64 delta;
1613
1614 delta = __task_delta_exec(curr, update);
1615
1616 return curr->se.sum_exec_runtime + delta;
1617 }
1618
1619 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
1620 {
1621 u64 prev;
1622 s64 delta;
1623
1624 prev = atomic64_read(&counter->hw.prev_count);
1625
1626 atomic64_set(&counter->hw.prev_count, now);
1627
1628 delta = now - prev;
1629
1630 atomic64_add(delta, &counter->count);
1631 }
1632
1633 static int task_clock_perf_counter_enable(struct perf_counter *counter)
1634 {
1635 struct hw_perf_counter *hwc = &counter->hw;
1636
1637 atomic64_set(&hwc->prev_count, task_clock_perf_counter_val(counter, 0));
1638 if (hwc->irq_period) {
1639 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1640 hwc->hrtimer.function = perf_swcounter_hrtimer;
1641 __hrtimer_start_range_ns(&hwc->hrtimer,
1642 ns_to_ktime(hwc->irq_period), 0,
1643 HRTIMER_MODE_REL, 0);
1644 }
1645
1646 return 0;
1647 }
1648
1649 static void task_clock_perf_counter_disable(struct perf_counter *counter)
1650 {
1651 hrtimer_cancel(&counter->hw.hrtimer);
1652 task_clock_perf_counter_update(counter,
1653 task_clock_perf_counter_val(counter, 0));
1654 }
1655
1656 static void task_clock_perf_counter_read(struct perf_counter *counter)
1657 {
1658 task_clock_perf_counter_update(counter,
1659 task_clock_perf_counter_val(counter, 1));
1660 }
1661
1662 static const struct hw_perf_counter_ops perf_ops_task_clock = {
1663 .enable = task_clock_perf_counter_enable,
1664 .disable = task_clock_perf_counter_disable,
1665 .read = task_clock_perf_counter_read,
1666 };
1667
1668 /*
1669 * Software counter: context switches
1670 */
1671
1672 static u64 get_context_switches(struct perf_counter *counter)
1673 {
1674 struct task_struct *curr = counter->ctx->task;
1675
1676 if (curr)
1677 return curr->nvcsw + curr->nivcsw;
1678 return cpu_nr_switches(smp_processor_id());
1679 }
1680
1681 static void context_switches_perf_counter_update(struct perf_counter *counter)
1682 {
1683 u64 prev, now;
1684 s64 delta;
1685
1686 prev = atomic64_read(&counter->hw.prev_count);
1687 now = get_context_switches(counter);
1688
1689 atomic64_set(&counter->hw.prev_count, now);
1690
1691 delta = now - prev;
1692
1693 atomic64_add(delta, &counter->count);
1694 }
1695
1696 static void context_switches_perf_counter_read(struct perf_counter *counter)
1697 {
1698 context_switches_perf_counter_update(counter);
1699 }
1700
1701 static int context_switches_perf_counter_enable(struct perf_counter *counter)
1702 {
1703 if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
1704 atomic64_set(&counter->hw.prev_count,
1705 get_context_switches(counter));
1706 return 0;
1707 }
1708
1709 static void context_switches_perf_counter_disable(struct perf_counter *counter)
1710 {
1711 context_switches_perf_counter_update(counter);
1712 }
1713
1714 static const struct hw_perf_counter_ops perf_ops_context_switches = {
1715 .enable = context_switches_perf_counter_enable,
1716 .disable = context_switches_perf_counter_disable,
1717 .read = context_switches_perf_counter_read,
1718 };
1719
1720 /*
1721 * Software counter: cpu migrations
1722 */
1723
1724 static inline u64 get_cpu_migrations(struct perf_counter *counter)
1725 {
1726 struct task_struct *curr = counter->ctx->task;
1727
1728 if (curr)
1729 return curr->se.nr_migrations;
1730 return cpu_nr_migrations(smp_processor_id());
1731 }
1732
1733 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
1734 {
1735 u64 prev, now;
1736 s64 delta;
1737
1738 prev = atomic64_read(&counter->hw.prev_count);
1739 now = get_cpu_migrations(counter);
1740
1741 atomic64_set(&counter->hw.prev_count, now);
1742
1743 delta = now - prev;
1744
1745 atomic64_add(delta, &counter->count);
1746 }
1747
1748 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
1749 {
1750 cpu_migrations_perf_counter_update(counter);
1751 }
1752
1753 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
1754 {
1755 if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
1756 atomic64_set(&counter->hw.prev_count,
1757 get_cpu_migrations(counter));
1758 return 0;
1759 }
1760
1761 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
1762 {
1763 cpu_migrations_perf_counter_update(counter);
1764 }
1765
1766 static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
1767 .enable = cpu_migrations_perf_counter_enable,
1768 .disable = cpu_migrations_perf_counter_disable,
1769 .read = cpu_migrations_perf_counter_read,
1770 };
1771
1772 static const struct hw_perf_counter_ops *
1773 sw_perf_counter_init(struct perf_counter *counter)
1774 {
1775 struct perf_counter_hw_event *hw_event = &counter->hw_event;
1776 const struct hw_perf_counter_ops *hw_ops = NULL;
1777 struct hw_perf_counter *hwc = &counter->hw;
1778
1779 /*
1780 * Software counters (currently) can't in general distinguish
1781 * between user, kernel and hypervisor events.
1782 * However, context switches and cpu migrations are considered
1783 * to be kernel events, and page faults are never hypervisor
1784 * events.
1785 */
1786 switch (counter->hw_event.type) {
1787 case PERF_COUNT_CPU_CLOCK:
1788 hw_ops = &perf_ops_cpu_clock;
1789
1790 if (hw_event->irq_period && hw_event->irq_period < 10000)
1791 hw_event->irq_period = 10000;
1792 break;
1793 case PERF_COUNT_TASK_CLOCK:
1794 /*
1795 * If the user instantiates this as a per-cpu counter,
1796 * use the cpu_clock counter instead.
1797 */
1798 if (counter->ctx->task)
1799 hw_ops = &perf_ops_task_clock;
1800 else
1801 hw_ops = &perf_ops_cpu_clock;
1802
1803 if (hw_event->irq_period && hw_event->irq_period < 10000)
1804 hw_event->irq_period = 10000;
1805 break;
1806 case PERF_COUNT_PAGE_FAULTS:
1807 case PERF_COUNT_PAGE_FAULTS_MIN:
1808 case PERF_COUNT_PAGE_FAULTS_MAJ:
1809 hw_ops = &perf_ops_generic;
1810 break;
1811 case PERF_COUNT_CONTEXT_SWITCHES:
1812 if (!counter->hw_event.exclude_kernel)
1813 hw_ops = &perf_ops_context_switches;
1814 break;
1815 case PERF_COUNT_CPU_MIGRATIONS:
1816 if (!counter->hw_event.exclude_kernel)
1817 hw_ops = &perf_ops_cpu_migrations;
1818 break;
1819 default:
1820 break;
1821 }
1822
1823 if (hw_ops)
1824 hwc->irq_period = hw_event->irq_period;
1825
1826 return hw_ops;
1827 }
1828
1829 /*
1830 * Allocate and initialize a counter structure
1831 */
1832 static struct perf_counter *
1833 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
1834 int cpu,
1835 struct perf_counter_context *ctx,
1836 struct perf_counter *group_leader,
1837 gfp_t gfpflags)
1838 {
1839 const struct hw_perf_counter_ops *hw_ops;
1840 struct perf_counter *counter;
1841
1842 counter = kzalloc(sizeof(*counter), gfpflags);
1843 if (!counter)
1844 return NULL;
1845
1846 /*
1847 * Single counters are their own group leaders, with an
1848 * empty sibling list:
1849 */
1850 if (!group_leader)
1851 group_leader = counter;
1852
1853 mutex_init(&counter->mutex);
1854 INIT_LIST_HEAD(&counter->list_entry);
1855 INIT_LIST_HEAD(&counter->event_entry);
1856 INIT_LIST_HEAD(&counter->sibling_list);
1857 init_waitqueue_head(&counter->waitq);
1858
1859 INIT_LIST_HEAD(&counter->child_list);
1860
1861 counter->irqdata = &counter->data[0];
1862 counter->usrdata = &counter->data[1];
1863 counter->cpu = cpu;
1864 counter->hw_event = *hw_event;
1865 counter->wakeup_pending = 0;
1866 counter->group_leader = group_leader;
1867 counter->hw_ops = NULL;
1868 counter->ctx = ctx;
1869
1870 counter->state = PERF_COUNTER_STATE_INACTIVE;
1871 if (hw_event->disabled)
1872 counter->state = PERF_COUNTER_STATE_OFF;
1873
1874 hw_ops = NULL;
1875 if (!hw_event->raw && hw_event->type < 0)
1876 hw_ops = sw_perf_counter_init(counter);
1877 else
1878 hw_ops = hw_perf_counter_init(counter);
1879
1880 if (!hw_ops) {
1881 kfree(counter);
1882 return NULL;
1883 }
1884 counter->hw_ops = hw_ops;
1885
1886 return counter;
1887 }
1888
1889 /**
1890 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
1891 *
1892 * @hw_event_uptr: event type attributes for monitoring/sampling
1893 * @pid: target pid
1894 * @cpu: target cpu
1895 * @group_fd: group leader counter fd
1896 */
1897 SYSCALL_DEFINE5(perf_counter_open,
1898 const struct perf_counter_hw_event __user *, hw_event_uptr,
1899 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
1900 {
1901 struct perf_counter *counter, *group_leader;
1902 struct perf_counter_hw_event hw_event;
1903 struct perf_counter_context *ctx;
1904 struct file *counter_file = NULL;
1905 struct file *group_file = NULL;
1906 int fput_needed = 0;
1907 int fput_needed2 = 0;
1908 int ret;
1909
1910 /* for future expandability... */
1911 if (flags)
1912 return -EINVAL;
1913
1914 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
1915 return -EFAULT;
1916
1917 /*
1918 * Get the target context (task or percpu):
1919 */
1920 ctx = find_get_context(pid, cpu);
1921 if (IS_ERR(ctx))
1922 return PTR_ERR(ctx);
1923
1924 /*
1925 * Look up the group leader (we will attach this counter to it):
1926 */
1927 group_leader = NULL;
1928 if (group_fd != -1) {
1929 ret = -EINVAL;
1930 group_file = fget_light(group_fd, &fput_needed);
1931 if (!group_file)
1932 goto err_put_context;
1933 if (group_file->f_op != &perf_fops)
1934 goto err_put_context;
1935
1936 group_leader = group_file->private_data;
1937 /*
1938 * Do not allow a recursive hierarchy (this new sibling
1939 * becoming part of another group-sibling):
1940 */
1941 if (group_leader->group_leader != group_leader)
1942 goto err_put_context;
1943 /*
1944 * Do not allow to attach to a group in a different
1945 * task or CPU context:
1946 */
1947 if (group_leader->ctx != ctx)
1948 goto err_put_context;
1949 /*
1950 * Only a group leader can be exclusive or pinned
1951 */
1952 if (hw_event.exclusive || hw_event.pinned)
1953 goto err_put_context;
1954 }
1955
1956 ret = -EINVAL;
1957 counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
1958 GFP_KERNEL);
1959 if (!counter)
1960 goto err_put_context;
1961
1962 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
1963 if (ret < 0)
1964 goto err_free_put_context;
1965
1966 counter_file = fget_light(ret, &fput_needed2);
1967 if (!counter_file)
1968 goto err_free_put_context;
1969
1970 counter->filp = counter_file;
1971 mutex_lock(&ctx->mutex);
1972 perf_install_in_context(ctx, counter, cpu);
1973 mutex_unlock(&ctx->mutex);
1974
1975 fput_light(counter_file, fput_needed2);
1976
1977 out_fput:
1978 fput_light(group_file, fput_needed);
1979
1980 return ret;
1981
1982 err_free_put_context:
1983 kfree(counter);
1984
1985 err_put_context:
1986 put_context(ctx);
1987
1988 goto out_fput;
1989 }
1990
1991 /*
1992 * Initialize the perf_counter context in a task_struct:
1993 */
1994 static void
1995 __perf_counter_init_context(struct perf_counter_context *ctx,
1996 struct task_struct *task)
1997 {
1998 memset(ctx, 0, sizeof(*ctx));
1999 spin_lock_init(&ctx->lock);
2000 mutex_init(&ctx->mutex);
2001 INIT_LIST_HEAD(&ctx->counter_list);
2002 INIT_LIST_HEAD(&ctx->event_list);
2003 ctx->task = task;
2004 }
2005
2006 /*
2007 * inherit a counter from parent task to child task:
2008 */
2009 static struct perf_counter *
2010 inherit_counter(struct perf_counter *parent_counter,
2011 struct task_struct *parent,
2012 struct perf_counter_context *parent_ctx,
2013 struct task_struct *child,
2014 struct perf_counter *group_leader,
2015 struct perf_counter_context *child_ctx)
2016 {
2017 struct perf_counter *child_counter;
2018
2019 /*
2020 * Instead of creating recursive hierarchies of counters,
2021 * we link inherited counters back to the original parent,
2022 * which has a filp for sure, which we use as the reference
2023 * count:
2024 */
2025 if (parent_counter->parent)
2026 parent_counter = parent_counter->parent;
2027
2028 child_counter = perf_counter_alloc(&parent_counter->hw_event,
2029 parent_counter->cpu, child_ctx,
2030 group_leader, GFP_KERNEL);
2031 if (!child_counter)
2032 return NULL;
2033
2034 /*
2035 * Link it up in the child's context:
2036 */
2037 child_counter->task = child;
2038 list_add_counter(child_counter, child_ctx);
2039 child_ctx->nr_counters++;
2040
2041 child_counter->parent = parent_counter;
2042 /*
2043 * inherit into child's child as well:
2044 */
2045 child_counter->hw_event.inherit = 1;
2046
2047 /*
2048 * Get a reference to the parent filp - we will fput it
2049 * when the child counter exits. This is safe to do because
2050 * we are in the parent and we know that the filp still
2051 * exists and has a nonzero count:
2052 */
2053 atomic_long_inc(&parent_counter->filp->f_count);
2054
2055 /*
2056 * Link this into the parent counter's child list
2057 */
2058 mutex_lock(&parent_counter->mutex);
2059 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
2060
2061 /*
2062 * Make the child state follow the state of the parent counter,
2063 * not its hw_event.disabled bit. We hold the parent's mutex,
2064 * so we won't race with perf_counter_{en,dis}able_family.
2065 */
2066 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
2067 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
2068 else
2069 child_counter->state = PERF_COUNTER_STATE_OFF;
2070
2071 mutex_unlock(&parent_counter->mutex);
2072
2073 return child_counter;
2074 }
2075
2076 static int inherit_group(struct perf_counter *parent_counter,
2077 struct task_struct *parent,
2078 struct perf_counter_context *parent_ctx,
2079 struct task_struct *child,
2080 struct perf_counter_context *child_ctx)
2081 {
2082 struct perf_counter *leader;
2083 struct perf_counter *sub;
2084
2085 leader = inherit_counter(parent_counter, parent, parent_ctx,
2086 child, NULL, child_ctx);
2087 if (!leader)
2088 return -ENOMEM;
2089 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
2090 if (!inherit_counter(sub, parent, parent_ctx,
2091 child, leader, child_ctx))
2092 return -ENOMEM;
2093 }
2094 return 0;
2095 }
2096
2097 static void sync_child_counter(struct perf_counter *child_counter,
2098 struct perf_counter *parent_counter)
2099 {
2100 u64 parent_val, child_val;
2101
2102 parent_val = atomic64_read(&parent_counter->count);
2103 child_val = atomic64_read(&child_counter->count);
2104
2105 /*
2106 * Add back the child's count to the parent's count:
2107 */
2108 atomic64_add(child_val, &parent_counter->count);
2109
2110 /*
2111 * Remove this counter from the parent's list
2112 */
2113 mutex_lock(&parent_counter->mutex);
2114 list_del_init(&child_counter->child_list);
2115 mutex_unlock(&parent_counter->mutex);
2116
2117 /*
2118 * Release the parent counter, if this was the last
2119 * reference to it.
2120 */
2121 fput(parent_counter->filp);
2122 }
2123
2124 static void
2125 __perf_counter_exit_task(struct task_struct *child,
2126 struct perf_counter *child_counter,
2127 struct perf_counter_context *child_ctx)
2128 {
2129 struct perf_counter *parent_counter;
2130 struct perf_counter *sub, *tmp;
2131
2132 /*
2133 * If we do not self-reap then we have to wait for the
2134 * child task to unschedule (it will happen for sure),
2135 * so that its counter is at its final count. (This
2136 * condition triggers rarely - child tasks usually get
2137 * off their CPU before the parent has a chance to
2138 * get this far into the reaping action)
2139 */
2140 if (child != current) {
2141 wait_task_inactive(child, 0);
2142 list_del_init(&child_counter->list_entry);
2143 } else {
2144 struct perf_cpu_context *cpuctx;
2145 unsigned long flags;
2146 u64 perf_flags;
2147
2148 /*
2149 * Disable and unlink this counter.
2150 *
2151 * Be careful about zapping the list - IRQ/NMI context
2152 * could still be processing it:
2153 */
2154 curr_rq_lock_irq_save(&flags);
2155 perf_flags = hw_perf_save_disable();
2156
2157 cpuctx = &__get_cpu_var(perf_cpu_context);
2158
2159 group_sched_out(child_counter, cpuctx, child_ctx);
2160
2161 list_del_init(&child_counter->list_entry);
2162
2163 child_ctx->nr_counters--;
2164
2165 hw_perf_restore(perf_flags);
2166 curr_rq_unlock_irq_restore(&flags);
2167 }
2168
2169 parent_counter = child_counter->parent;
2170 /*
2171 * It can happen that parent exits first, and has counters
2172 * that are still around due to the child reference. These
2173 * counters need to be zapped - but otherwise linger.
2174 */
2175 if (parent_counter) {
2176 sync_child_counter(child_counter, parent_counter);
2177 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
2178 list_entry) {
2179 if (sub->parent) {
2180 sync_child_counter(sub, sub->parent);
2181 kfree(sub);
2182 }
2183 }
2184 kfree(child_counter);
2185 }
2186 }
2187
2188 /*
2189 * When a child task exits, feed back counter values to parent counters.
2190 *
2191 * Note: we may be running in child context, but the PID is not hashed
2192 * anymore so new counters will not be added.
2193 */
2194 void perf_counter_exit_task(struct task_struct *child)
2195 {
2196 struct perf_counter *child_counter, *tmp;
2197 struct perf_counter_context *child_ctx;
2198
2199 child_ctx = &child->perf_counter_ctx;
2200
2201 if (likely(!child_ctx->nr_counters))
2202 return;
2203
2204 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
2205 list_entry)
2206 __perf_counter_exit_task(child, child_counter, child_ctx);
2207 }
2208
2209 /*
2210 * Initialize the perf_counter context in task_struct
2211 */
2212 void perf_counter_init_task(struct task_struct *child)
2213 {
2214 struct perf_counter_context *child_ctx, *parent_ctx;
2215 struct perf_counter *counter;
2216 struct task_struct *parent = current;
2217
2218 child_ctx = &child->perf_counter_ctx;
2219 parent_ctx = &parent->perf_counter_ctx;
2220
2221 __perf_counter_init_context(child_ctx, child);
2222
2223 /*
2224 * This is executed from the parent task context, so inherit
2225 * counters that have been marked for cloning:
2226 */
2227
2228 if (likely(!parent_ctx->nr_counters))
2229 return;
2230
2231 /*
2232 * Lock the parent list. No need to lock the child - not PID
2233 * hashed yet and not running, so nobody can access it.
2234 */
2235 mutex_lock(&parent_ctx->mutex);
2236
2237 /*
2238 * We dont have to disable NMIs - we are only looking at
2239 * the list, not manipulating it:
2240 */
2241 list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
2242 if (!counter->hw_event.inherit)
2243 continue;
2244
2245 if (inherit_group(counter, parent,
2246 parent_ctx, child, child_ctx))
2247 break;
2248 }
2249
2250 mutex_unlock(&parent_ctx->mutex);
2251 }
2252
2253 static void __cpuinit perf_counter_init_cpu(int cpu)
2254 {
2255 struct perf_cpu_context *cpuctx;
2256
2257 cpuctx = &per_cpu(perf_cpu_context, cpu);
2258 __perf_counter_init_context(&cpuctx->ctx, NULL);
2259
2260 mutex_lock(&perf_resource_mutex);
2261 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
2262 mutex_unlock(&perf_resource_mutex);
2263
2264 hw_perf_counter_setup(cpu);
2265 }
2266
2267 #ifdef CONFIG_HOTPLUG_CPU
2268 static void __perf_counter_exit_cpu(void *info)
2269 {
2270 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
2271 struct perf_counter_context *ctx = &cpuctx->ctx;
2272 struct perf_counter *counter, *tmp;
2273
2274 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
2275 __perf_counter_remove_from_context(counter);
2276 }
2277 static void perf_counter_exit_cpu(int cpu)
2278 {
2279 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
2280 struct perf_counter_context *ctx = &cpuctx->ctx;
2281
2282 mutex_lock(&ctx->mutex);
2283 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
2284 mutex_unlock(&ctx->mutex);
2285 }
2286 #else
2287 static inline void perf_counter_exit_cpu(int cpu) { }
2288 #endif
2289
2290 static int __cpuinit
2291 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
2292 {
2293 unsigned int cpu = (long)hcpu;
2294
2295 switch (action) {
2296
2297 case CPU_UP_PREPARE:
2298 case CPU_UP_PREPARE_FROZEN:
2299 perf_counter_init_cpu(cpu);
2300 break;
2301
2302 case CPU_DOWN_PREPARE:
2303 case CPU_DOWN_PREPARE_FROZEN:
2304 perf_counter_exit_cpu(cpu);
2305 break;
2306
2307 default:
2308 break;
2309 }
2310
2311 return NOTIFY_OK;
2312 }
2313
2314 static struct notifier_block __cpuinitdata perf_cpu_nb = {
2315 .notifier_call = perf_cpu_notify,
2316 };
2317
2318 static int __init perf_counter_init(void)
2319 {
2320 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
2321 (void *)(long)smp_processor_id());
2322 register_cpu_notifier(&perf_cpu_nb);
2323
2324 return 0;
2325 }
2326 early_initcall(perf_counter_init);
2327
2328 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
2329 {
2330 return sprintf(buf, "%d\n", perf_reserved_percpu);
2331 }
2332
2333 static ssize_t
2334 perf_set_reserve_percpu(struct sysdev_class *class,
2335 const char *buf,
2336 size_t count)
2337 {
2338 struct perf_cpu_context *cpuctx;
2339 unsigned long val;
2340 int err, cpu, mpt;
2341
2342 err = strict_strtoul(buf, 10, &val);
2343 if (err)
2344 return err;
2345 if (val > perf_max_counters)
2346 return -EINVAL;
2347
2348 mutex_lock(&perf_resource_mutex);
2349 perf_reserved_percpu = val;
2350 for_each_online_cpu(cpu) {
2351 cpuctx = &per_cpu(perf_cpu_context, cpu);
2352 spin_lock_irq(&cpuctx->ctx.lock);
2353 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
2354 perf_max_counters - perf_reserved_percpu);
2355 cpuctx->max_pertask = mpt;
2356 spin_unlock_irq(&cpuctx->ctx.lock);
2357 }
2358 mutex_unlock(&perf_resource_mutex);
2359
2360 return count;
2361 }
2362
2363 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
2364 {
2365 return sprintf(buf, "%d\n", perf_overcommit);
2366 }
2367
2368 static ssize_t
2369 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
2370 {
2371 unsigned long val;
2372 int err;
2373
2374 err = strict_strtoul(buf, 10, &val);
2375 if (err)
2376 return err;
2377 if (val > 1)
2378 return -EINVAL;
2379
2380 mutex_lock(&perf_resource_mutex);
2381 perf_overcommit = val;
2382 mutex_unlock(&perf_resource_mutex);
2383
2384 return count;
2385 }
2386
2387 static SYSDEV_CLASS_ATTR(
2388 reserve_percpu,
2389 0644,
2390 perf_show_reserve_percpu,
2391 perf_set_reserve_percpu
2392 );
2393
2394 static SYSDEV_CLASS_ATTR(
2395 overcommit,
2396 0644,
2397 perf_show_overcommit,
2398 perf_set_overcommit
2399 );
2400
2401 static struct attribute *perfclass_attrs[] = {
2402 &attr_reserve_percpu.attr,
2403 &attr_overcommit.attr,
2404 NULL
2405 };
2406
2407 static struct attribute_group perfclass_attr_group = {
2408 .attrs = perfclass_attrs,
2409 .name = "perf_counters",
2410 };
2411
2412 static int __init perf_counter_sysfs_init(void)
2413 {
2414 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
2415 &perfclass_attr_group);
2416 }
2417 device_initcall(perf_counter_sysfs_init);
This page took 0.134193 seconds and 6 git commands to generate.