perf_counter: Put whole group on when enabling group leader
[deliverable/linux.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/ptrace.h>
20 #include <linux/percpu.h>
21 #include <linux/vmstat.h>
22 #include <linux/hardirq.h>
23 #include <linux/rculist.h>
24 #include <linux/uaccess.h>
25 #include <linux/syscalls.h>
26 #include <linux/anon_inodes.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/perf_counter.h>
29 #include <linux/dcache.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34 * Each CPU has a list of per CPU counters:
35 */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_tracking __read_mostly;
44 static atomic_t nr_munmap_tracking __read_mostly;
45 static atomic_t nr_comm_tracking __read_mostly;
46
47 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48 int sysctl_perf_counter_mlock __read_mostly = 128; /* 'free' kb per counter */
49
50 /*
51 * Lock for (sysadmin-configurable) counter reservations:
52 */
53 static DEFINE_SPINLOCK(perf_resource_lock);
54
55 /*
56 * Architecture provided APIs - weak aliases:
57 */
58 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
59 {
60 return NULL;
61 }
62
63 u64 __weak hw_perf_save_disable(void) { return 0; }
64 void __weak hw_perf_restore(u64 ctrl) { barrier(); }
65 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
66 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
67 struct perf_cpu_context *cpuctx,
68 struct perf_counter_context *ctx, int cpu)
69 {
70 return 0;
71 }
72
73 void __weak perf_counter_print_debug(void) { }
74
75 static void
76 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
77 {
78 struct perf_counter *group_leader = counter->group_leader;
79
80 /*
81 * Depending on whether it is a standalone or sibling counter,
82 * add it straight to the context's counter list, or to the group
83 * leader's sibling list:
84 */
85 if (group_leader == counter)
86 list_add_tail(&counter->list_entry, &ctx->counter_list);
87 else {
88 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
89 group_leader->nr_siblings++;
90 }
91
92 list_add_rcu(&counter->event_entry, &ctx->event_list);
93 }
94
95 static void
96 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
97 {
98 struct perf_counter *sibling, *tmp;
99
100 list_del_init(&counter->list_entry);
101 list_del_rcu(&counter->event_entry);
102
103 if (counter->group_leader != counter)
104 counter->group_leader->nr_siblings--;
105
106 /*
107 * If this was a group counter with sibling counters then
108 * upgrade the siblings to singleton counters by adding them
109 * to the context list directly:
110 */
111 list_for_each_entry_safe(sibling, tmp,
112 &counter->sibling_list, list_entry) {
113
114 list_move_tail(&sibling->list_entry, &ctx->counter_list);
115 sibling->group_leader = sibling;
116 }
117 }
118
119 static void
120 counter_sched_out(struct perf_counter *counter,
121 struct perf_cpu_context *cpuctx,
122 struct perf_counter_context *ctx)
123 {
124 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
125 return;
126
127 counter->state = PERF_COUNTER_STATE_INACTIVE;
128 counter->tstamp_stopped = ctx->time;
129 counter->pmu->disable(counter);
130 counter->oncpu = -1;
131
132 if (!is_software_counter(counter))
133 cpuctx->active_oncpu--;
134 ctx->nr_active--;
135 if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
136 cpuctx->exclusive = 0;
137 }
138
139 static void
140 group_sched_out(struct perf_counter *group_counter,
141 struct perf_cpu_context *cpuctx,
142 struct perf_counter_context *ctx)
143 {
144 struct perf_counter *counter;
145
146 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
147 return;
148
149 counter_sched_out(group_counter, cpuctx, ctx);
150
151 /*
152 * Schedule out siblings (if any):
153 */
154 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
155 counter_sched_out(counter, cpuctx, ctx);
156
157 if (group_counter->hw_event.exclusive)
158 cpuctx->exclusive = 0;
159 }
160
161 /*
162 * Cross CPU call to remove a performance counter
163 *
164 * We disable the counter on the hardware level first. After that we
165 * remove it from the context list.
166 */
167 static void __perf_counter_remove_from_context(void *info)
168 {
169 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
170 struct perf_counter *counter = info;
171 struct perf_counter_context *ctx = counter->ctx;
172 unsigned long flags;
173 u64 perf_flags;
174
175 /*
176 * If this is a task context, we need to check whether it is
177 * the current task context of this cpu. If not it has been
178 * scheduled out before the smp call arrived.
179 */
180 if (ctx->task && cpuctx->task_ctx != ctx)
181 return;
182
183 spin_lock_irqsave(&ctx->lock, flags);
184
185 counter_sched_out(counter, cpuctx, ctx);
186
187 counter->task = NULL;
188 ctx->nr_counters--;
189
190 /*
191 * Protect the list operation against NMI by disabling the
192 * counters on a global level. NOP for non NMI based counters.
193 */
194 perf_flags = hw_perf_save_disable();
195 list_del_counter(counter, ctx);
196 hw_perf_restore(perf_flags);
197
198 if (!ctx->task) {
199 /*
200 * Allow more per task counters with respect to the
201 * reservation:
202 */
203 cpuctx->max_pertask =
204 min(perf_max_counters - ctx->nr_counters,
205 perf_max_counters - perf_reserved_percpu);
206 }
207
208 spin_unlock_irqrestore(&ctx->lock, flags);
209 }
210
211
212 /*
213 * Remove the counter from a task's (or a CPU's) list of counters.
214 *
215 * Must be called with counter->mutex and ctx->mutex held.
216 *
217 * CPU counters are removed with a smp call. For task counters we only
218 * call when the task is on a CPU.
219 */
220 static void perf_counter_remove_from_context(struct perf_counter *counter)
221 {
222 struct perf_counter_context *ctx = counter->ctx;
223 struct task_struct *task = ctx->task;
224
225 if (!task) {
226 /*
227 * Per cpu counters are removed via an smp call and
228 * the removal is always sucessful.
229 */
230 smp_call_function_single(counter->cpu,
231 __perf_counter_remove_from_context,
232 counter, 1);
233 return;
234 }
235
236 retry:
237 task_oncpu_function_call(task, __perf_counter_remove_from_context,
238 counter);
239
240 spin_lock_irq(&ctx->lock);
241 /*
242 * If the context is active we need to retry the smp call.
243 */
244 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
245 spin_unlock_irq(&ctx->lock);
246 goto retry;
247 }
248
249 /*
250 * The lock prevents that this context is scheduled in so we
251 * can remove the counter safely, if the call above did not
252 * succeed.
253 */
254 if (!list_empty(&counter->list_entry)) {
255 ctx->nr_counters--;
256 list_del_counter(counter, ctx);
257 counter->task = NULL;
258 }
259 spin_unlock_irq(&ctx->lock);
260 }
261
262 static inline u64 perf_clock(void)
263 {
264 return cpu_clock(smp_processor_id());
265 }
266
267 /*
268 * Update the record of the current time in a context.
269 */
270 static void update_context_time(struct perf_counter_context *ctx)
271 {
272 u64 now = perf_clock();
273
274 ctx->time += now - ctx->timestamp;
275 ctx->timestamp = now;
276 }
277
278 /*
279 * Update the total_time_enabled and total_time_running fields for a counter.
280 */
281 static void update_counter_times(struct perf_counter *counter)
282 {
283 struct perf_counter_context *ctx = counter->ctx;
284 u64 run_end;
285
286 if (counter->state < PERF_COUNTER_STATE_INACTIVE)
287 return;
288
289 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
290
291 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
292 run_end = counter->tstamp_stopped;
293 else
294 run_end = ctx->time;
295
296 counter->total_time_running = run_end - counter->tstamp_running;
297 }
298
299 /*
300 * Update total_time_enabled and total_time_running for all counters in a group.
301 */
302 static void update_group_times(struct perf_counter *leader)
303 {
304 struct perf_counter *counter;
305
306 update_counter_times(leader);
307 list_for_each_entry(counter, &leader->sibling_list, list_entry)
308 update_counter_times(counter);
309 }
310
311 /*
312 * Cross CPU call to disable a performance counter
313 */
314 static void __perf_counter_disable(void *info)
315 {
316 struct perf_counter *counter = info;
317 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
318 struct perf_counter_context *ctx = counter->ctx;
319 unsigned long flags;
320
321 /*
322 * If this is a per-task counter, need to check whether this
323 * counter's task is the current task on this cpu.
324 */
325 if (ctx->task && cpuctx->task_ctx != ctx)
326 return;
327
328 spin_lock_irqsave(&ctx->lock, flags);
329
330 /*
331 * If the counter is on, turn it off.
332 * If it is in error state, leave it in error state.
333 */
334 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
335 update_context_time(ctx);
336 update_counter_times(counter);
337 if (counter == counter->group_leader)
338 group_sched_out(counter, cpuctx, ctx);
339 else
340 counter_sched_out(counter, cpuctx, ctx);
341 counter->state = PERF_COUNTER_STATE_OFF;
342 }
343
344 spin_unlock_irqrestore(&ctx->lock, flags);
345 }
346
347 /*
348 * Disable a counter.
349 */
350 static void perf_counter_disable(struct perf_counter *counter)
351 {
352 struct perf_counter_context *ctx = counter->ctx;
353 struct task_struct *task = ctx->task;
354
355 if (!task) {
356 /*
357 * Disable the counter on the cpu that it's on
358 */
359 smp_call_function_single(counter->cpu, __perf_counter_disable,
360 counter, 1);
361 return;
362 }
363
364 retry:
365 task_oncpu_function_call(task, __perf_counter_disable, counter);
366
367 spin_lock_irq(&ctx->lock);
368 /*
369 * If the counter is still active, we need to retry the cross-call.
370 */
371 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
372 spin_unlock_irq(&ctx->lock);
373 goto retry;
374 }
375
376 /*
377 * Since we have the lock this context can't be scheduled
378 * in, so we can change the state safely.
379 */
380 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
381 update_counter_times(counter);
382 counter->state = PERF_COUNTER_STATE_OFF;
383 }
384
385 spin_unlock_irq(&ctx->lock);
386 }
387
388 static int
389 counter_sched_in(struct perf_counter *counter,
390 struct perf_cpu_context *cpuctx,
391 struct perf_counter_context *ctx,
392 int cpu)
393 {
394 if (counter->state <= PERF_COUNTER_STATE_OFF)
395 return 0;
396
397 counter->state = PERF_COUNTER_STATE_ACTIVE;
398 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
399 /*
400 * The new state must be visible before we turn it on in the hardware:
401 */
402 smp_wmb();
403
404 if (counter->pmu->enable(counter)) {
405 counter->state = PERF_COUNTER_STATE_INACTIVE;
406 counter->oncpu = -1;
407 return -EAGAIN;
408 }
409
410 counter->tstamp_running += ctx->time - counter->tstamp_stopped;
411
412 if (!is_software_counter(counter))
413 cpuctx->active_oncpu++;
414 ctx->nr_active++;
415
416 if (counter->hw_event.exclusive)
417 cpuctx->exclusive = 1;
418
419 return 0;
420 }
421
422 static int
423 group_sched_in(struct perf_counter *group_counter,
424 struct perf_cpu_context *cpuctx,
425 struct perf_counter_context *ctx,
426 int cpu)
427 {
428 struct perf_counter *counter, *partial_group;
429 int ret;
430
431 if (group_counter->state == PERF_COUNTER_STATE_OFF)
432 return 0;
433
434 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
435 if (ret)
436 return ret < 0 ? ret : 0;
437
438 group_counter->prev_state = group_counter->state;
439 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
440 return -EAGAIN;
441
442 /*
443 * Schedule in siblings as one group (if any):
444 */
445 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
446 counter->prev_state = counter->state;
447 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
448 partial_group = counter;
449 goto group_error;
450 }
451 }
452
453 return 0;
454
455 group_error:
456 /*
457 * Groups can be scheduled in as one unit only, so undo any
458 * partial group before returning:
459 */
460 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
461 if (counter == partial_group)
462 break;
463 counter_sched_out(counter, cpuctx, ctx);
464 }
465 counter_sched_out(group_counter, cpuctx, ctx);
466
467 return -EAGAIN;
468 }
469
470 /*
471 * Return 1 for a group consisting entirely of software counters,
472 * 0 if the group contains any hardware counters.
473 */
474 static int is_software_only_group(struct perf_counter *leader)
475 {
476 struct perf_counter *counter;
477
478 if (!is_software_counter(leader))
479 return 0;
480
481 list_for_each_entry(counter, &leader->sibling_list, list_entry)
482 if (!is_software_counter(counter))
483 return 0;
484
485 return 1;
486 }
487
488 /*
489 * Work out whether we can put this counter group on the CPU now.
490 */
491 static int group_can_go_on(struct perf_counter *counter,
492 struct perf_cpu_context *cpuctx,
493 int can_add_hw)
494 {
495 /*
496 * Groups consisting entirely of software counters can always go on.
497 */
498 if (is_software_only_group(counter))
499 return 1;
500 /*
501 * If an exclusive group is already on, no other hardware
502 * counters can go on.
503 */
504 if (cpuctx->exclusive)
505 return 0;
506 /*
507 * If this group is exclusive and there are already
508 * counters on the CPU, it can't go on.
509 */
510 if (counter->hw_event.exclusive && cpuctx->active_oncpu)
511 return 0;
512 /*
513 * Otherwise, try to add it if all previous groups were able
514 * to go on.
515 */
516 return can_add_hw;
517 }
518
519 static void add_counter_to_ctx(struct perf_counter *counter,
520 struct perf_counter_context *ctx)
521 {
522 list_add_counter(counter, ctx);
523 ctx->nr_counters++;
524 counter->prev_state = PERF_COUNTER_STATE_OFF;
525 counter->tstamp_enabled = ctx->time;
526 counter->tstamp_running = ctx->time;
527 counter->tstamp_stopped = ctx->time;
528 }
529
530 /*
531 * Cross CPU call to install and enable a performance counter
532 */
533 static void __perf_install_in_context(void *info)
534 {
535 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
536 struct perf_counter *counter = info;
537 struct perf_counter_context *ctx = counter->ctx;
538 struct perf_counter *leader = counter->group_leader;
539 int cpu = smp_processor_id();
540 unsigned long flags;
541 u64 perf_flags;
542 int err;
543
544 /*
545 * If this is a task context, we need to check whether it is
546 * the current task context of this cpu. If not it has been
547 * scheduled out before the smp call arrived.
548 */
549 if (ctx->task && cpuctx->task_ctx != ctx)
550 return;
551
552 spin_lock_irqsave(&ctx->lock, flags);
553 update_context_time(ctx);
554
555 /*
556 * Protect the list operation against NMI by disabling the
557 * counters on a global level. NOP for non NMI based counters.
558 */
559 perf_flags = hw_perf_save_disable();
560
561 add_counter_to_ctx(counter, ctx);
562
563 /*
564 * Don't put the counter on if it is disabled or if
565 * it is in a group and the group isn't on.
566 */
567 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
568 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
569 goto unlock;
570
571 /*
572 * An exclusive counter can't go on if there are already active
573 * hardware counters, and no hardware counter can go on if there
574 * is already an exclusive counter on.
575 */
576 if (!group_can_go_on(counter, cpuctx, 1))
577 err = -EEXIST;
578 else
579 err = counter_sched_in(counter, cpuctx, ctx, cpu);
580
581 if (err) {
582 /*
583 * This counter couldn't go on. If it is in a group
584 * then we have to pull the whole group off.
585 * If the counter group is pinned then put it in error state.
586 */
587 if (leader != counter)
588 group_sched_out(leader, cpuctx, ctx);
589 if (leader->hw_event.pinned) {
590 update_group_times(leader);
591 leader->state = PERF_COUNTER_STATE_ERROR;
592 }
593 }
594
595 if (!err && !ctx->task && cpuctx->max_pertask)
596 cpuctx->max_pertask--;
597
598 unlock:
599 hw_perf_restore(perf_flags);
600
601 spin_unlock_irqrestore(&ctx->lock, flags);
602 }
603
604 /*
605 * Attach a performance counter to a context
606 *
607 * First we add the counter to the list with the hardware enable bit
608 * in counter->hw_config cleared.
609 *
610 * If the counter is attached to a task which is on a CPU we use a smp
611 * call to enable it in the task context. The task might have been
612 * scheduled away, but we check this in the smp call again.
613 *
614 * Must be called with ctx->mutex held.
615 */
616 static void
617 perf_install_in_context(struct perf_counter_context *ctx,
618 struct perf_counter *counter,
619 int cpu)
620 {
621 struct task_struct *task = ctx->task;
622
623 if (!task) {
624 /*
625 * Per cpu counters are installed via an smp call and
626 * the install is always sucessful.
627 */
628 smp_call_function_single(cpu, __perf_install_in_context,
629 counter, 1);
630 return;
631 }
632
633 counter->task = task;
634 retry:
635 task_oncpu_function_call(task, __perf_install_in_context,
636 counter);
637
638 spin_lock_irq(&ctx->lock);
639 /*
640 * we need to retry the smp call.
641 */
642 if (ctx->is_active && list_empty(&counter->list_entry)) {
643 spin_unlock_irq(&ctx->lock);
644 goto retry;
645 }
646
647 /*
648 * The lock prevents that this context is scheduled in so we
649 * can add the counter safely, if it the call above did not
650 * succeed.
651 */
652 if (list_empty(&counter->list_entry))
653 add_counter_to_ctx(counter, ctx);
654 spin_unlock_irq(&ctx->lock);
655 }
656
657 /*
658 * Cross CPU call to enable a performance counter
659 */
660 static void __perf_counter_enable(void *info)
661 {
662 struct perf_counter *counter = info;
663 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
664 struct perf_counter_context *ctx = counter->ctx;
665 struct perf_counter *leader = counter->group_leader;
666 unsigned long flags;
667 int err;
668
669 /*
670 * If this is a per-task counter, need to check whether this
671 * counter's task is the current task on this cpu.
672 */
673 if (ctx->task && cpuctx->task_ctx != ctx)
674 return;
675
676 spin_lock_irqsave(&ctx->lock, flags);
677 update_context_time(ctx);
678
679 counter->prev_state = counter->state;
680 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
681 goto unlock;
682 counter->state = PERF_COUNTER_STATE_INACTIVE;
683 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
684
685 /*
686 * If the counter is in a group and isn't the group leader,
687 * then don't put it on unless the group is on.
688 */
689 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
690 goto unlock;
691
692 if (!group_can_go_on(counter, cpuctx, 1))
693 err = -EEXIST;
694 else if (counter == leader)
695 err = group_sched_in(counter, cpuctx, ctx,
696 smp_processor_id());
697 else
698 err = counter_sched_in(counter, cpuctx, ctx,
699 smp_processor_id());
700
701 if (err) {
702 /*
703 * If this counter can't go on and it's part of a
704 * group, then the whole group has to come off.
705 */
706 if (leader != counter)
707 group_sched_out(leader, cpuctx, ctx);
708 if (leader->hw_event.pinned) {
709 update_group_times(leader);
710 leader->state = PERF_COUNTER_STATE_ERROR;
711 }
712 }
713
714 unlock:
715 spin_unlock_irqrestore(&ctx->lock, flags);
716 }
717
718 /*
719 * Enable a counter.
720 */
721 static void perf_counter_enable(struct perf_counter *counter)
722 {
723 struct perf_counter_context *ctx = counter->ctx;
724 struct task_struct *task = ctx->task;
725
726 if (!task) {
727 /*
728 * Enable the counter on the cpu that it's on
729 */
730 smp_call_function_single(counter->cpu, __perf_counter_enable,
731 counter, 1);
732 return;
733 }
734
735 spin_lock_irq(&ctx->lock);
736 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
737 goto out;
738
739 /*
740 * If the counter is in error state, clear that first.
741 * That way, if we see the counter in error state below, we
742 * know that it has gone back into error state, as distinct
743 * from the task having been scheduled away before the
744 * cross-call arrived.
745 */
746 if (counter->state == PERF_COUNTER_STATE_ERROR)
747 counter->state = PERF_COUNTER_STATE_OFF;
748
749 retry:
750 spin_unlock_irq(&ctx->lock);
751 task_oncpu_function_call(task, __perf_counter_enable, counter);
752
753 spin_lock_irq(&ctx->lock);
754
755 /*
756 * If the context is active and the counter is still off,
757 * we need to retry the cross-call.
758 */
759 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
760 goto retry;
761
762 /*
763 * Since we have the lock this context can't be scheduled
764 * in, so we can change the state safely.
765 */
766 if (counter->state == PERF_COUNTER_STATE_OFF) {
767 counter->state = PERF_COUNTER_STATE_INACTIVE;
768 counter->tstamp_enabled =
769 ctx->time - counter->total_time_enabled;
770 }
771 out:
772 spin_unlock_irq(&ctx->lock);
773 }
774
775 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
776 {
777 /*
778 * not supported on inherited counters
779 */
780 if (counter->hw_event.inherit)
781 return -EINVAL;
782
783 atomic_add(refresh, &counter->event_limit);
784 perf_counter_enable(counter);
785
786 return 0;
787 }
788
789 void __perf_counter_sched_out(struct perf_counter_context *ctx,
790 struct perf_cpu_context *cpuctx)
791 {
792 struct perf_counter *counter;
793 u64 flags;
794
795 spin_lock(&ctx->lock);
796 ctx->is_active = 0;
797 if (likely(!ctx->nr_counters))
798 goto out;
799 update_context_time(ctx);
800
801 flags = hw_perf_save_disable();
802 if (ctx->nr_active) {
803 list_for_each_entry(counter, &ctx->counter_list, list_entry)
804 group_sched_out(counter, cpuctx, ctx);
805 }
806 hw_perf_restore(flags);
807 out:
808 spin_unlock(&ctx->lock);
809 }
810
811 /*
812 * Called from scheduler to remove the counters of the current task,
813 * with interrupts disabled.
814 *
815 * We stop each counter and update the counter value in counter->count.
816 *
817 * This does not protect us against NMI, but disable()
818 * sets the disabled bit in the control field of counter _before_
819 * accessing the counter control register. If a NMI hits, then it will
820 * not restart the counter.
821 */
822 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
823 {
824 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
825 struct perf_counter_context *ctx = &task->perf_counter_ctx;
826 struct pt_regs *regs;
827
828 if (likely(!cpuctx->task_ctx))
829 return;
830
831 update_context_time(ctx);
832
833 regs = task_pt_regs(task);
834 perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
835 __perf_counter_sched_out(ctx, cpuctx);
836
837 cpuctx->task_ctx = NULL;
838 }
839
840 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
841 {
842 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
843 }
844
845 static void
846 __perf_counter_sched_in(struct perf_counter_context *ctx,
847 struct perf_cpu_context *cpuctx, int cpu)
848 {
849 struct perf_counter *counter;
850 u64 flags;
851 int can_add_hw = 1;
852
853 spin_lock(&ctx->lock);
854 ctx->is_active = 1;
855 if (likely(!ctx->nr_counters))
856 goto out;
857
858 ctx->timestamp = perf_clock();
859
860 flags = hw_perf_save_disable();
861
862 /*
863 * First go through the list and put on any pinned groups
864 * in order to give them the best chance of going on.
865 */
866 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
867 if (counter->state <= PERF_COUNTER_STATE_OFF ||
868 !counter->hw_event.pinned)
869 continue;
870 if (counter->cpu != -1 && counter->cpu != cpu)
871 continue;
872
873 if (group_can_go_on(counter, cpuctx, 1))
874 group_sched_in(counter, cpuctx, ctx, cpu);
875
876 /*
877 * If this pinned group hasn't been scheduled,
878 * put it in error state.
879 */
880 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
881 update_group_times(counter);
882 counter->state = PERF_COUNTER_STATE_ERROR;
883 }
884 }
885
886 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
887 /*
888 * Ignore counters in OFF or ERROR state, and
889 * ignore pinned counters since we did them already.
890 */
891 if (counter->state <= PERF_COUNTER_STATE_OFF ||
892 counter->hw_event.pinned)
893 continue;
894
895 /*
896 * Listen to the 'cpu' scheduling filter constraint
897 * of counters:
898 */
899 if (counter->cpu != -1 && counter->cpu != cpu)
900 continue;
901
902 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
903 if (group_sched_in(counter, cpuctx, ctx, cpu))
904 can_add_hw = 0;
905 }
906 }
907 hw_perf_restore(flags);
908 out:
909 spin_unlock(&ctx->lock);
910 }
911
912 /*
913 * Called from scheduler to add the counters of the current task
914 * with interrupts disabled.
915 *
916 * We restore the counter value and then enable it.
917 *
918 * This does not protect us against NMI, but enable()
919 * sets the enabled bit in the control field of counter _before_
920 * accessing the counter control register. If a NMI hits, then it will
921 * keep the counter running.
922 */
923 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
924 {
925 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
926 struct perf_counter_context *ctx = &task->perf_counter_ctx;
927
928 __perf_counter_sched_in(ctx, cpuctx, cpu);
929 cpuctx->task_ctx = ctx;
930 }
931
932 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
933 {
934 struct perf_counter_context *ctx = &cpuctx->ctx;
935
936 __perf_counter_sched_in(ctx, cpuctx, cpu);
937 }
938
939 int perf_counter_task_disable(void)
940 {
941 struct task_struct *curr = current;
942 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
943 struct perf_counter *counter;
944 unsigned long flags;
945 u64 perf_flags;
946 int cpu;
947
948 if (likely(!ctx->nr_counters))
949 return 0;
950
951 local_irq_save(flags);
952 cpu = smp_processor_id();
953
954 perf_counter_task_sched_out(curr, cpu);
955
956 spin_lock(&ctx->lock);
957
958 /*
959 * Disable all the counters:
960 */
961 perf_flags = hw_perf_save_disable();
962
963 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
964 if (counter->state != PERF_COUNTER_STATE_ERROR) {
965 update_group_times(counter);
966 counter->state = PERF_COUNTER_STATE_OFF;
967 }
968 }
969
970 hw_perf_restore(perf_flags);
971
972 spin_unlock_irqrestore(&ctx->lock, flags);
973
974 return 0;
975 }
976
977 int perf_counter_task_enable(void)
978 {
979 struct task_struct *curr = current;
980 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
981 struct perf_counter *counter;
982 unsigned long flags;
983 u64 perf_flags;
984 int cpu;
985
986 if (likely(!ctx->nr_counters))
987 return 0;
988
989 local_irq_save(flags);
990 cpu = smp_processor_id();
991
992 perf_counter_task_sched_out(curr, cpu);
993
994 spin_lock(&ctx->lock);
995
996 /*
997 * Disable all the counters:
998 */
999 perf_flags = hw_perf_save_disable();
1000
1001 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1002 if (counter->state > PERF_COUNTER_STATE_OFF)
1003 continue;
1004 counter->state = PERF_COUNTER_STATE_INACTIVE;
1005 counter->tstamp_enabled =
1006 ctx->time - counter->total_time_enabled;
1007 counter->hw_event.disabled = 0;
1008 }
1009 hw_perf_restore(perf_flags);
1010
1011 spin_unlock(&ctx->lock);
1012
1013 perf_counter_task_sched_in(curr, cpu);
1014
1015 local_irq_restore(flags);
1016
1017 return 0;
1018 }
1019
1020 /*
1021 * Round-robin a context's counters:
1022 */
1023 static void rotate_ctx(struct perf_counter_context *ctx)
1024 {
1025 struct perf_counter *counter;
1026 u64 perf_flags;
1027
1028 if (!ctx->nr_counters)
1029 return;
1030
1031 spin_lock(&ctx->lock);
1032 /*
1033 * Rotate the first entry last (works just fine for group counters too):
1034 */
1035 perf_flags = hw_perf_save_disable();
1036 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1037 list_move_tail(&counter->list_entry, &ctx->counter_list);
1038 break;
1039 }
1040 hw_perf_restore(perf_flags);
1041
1042 spin_unlock(&ctx->lock);
1043 }
1044
1045 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1046 {
1047 struct perf_cpu_context *cpuctx;
1048 struct perf_counter_context *ctx;
1049
1050 if (!atomic_read(&nr_counters))
1051 return;
1052
1053 cpuctx = &per_cpu(perf_cpu_context, cpu);
1054 ctx = &curr->perf_counter_ctx;
1055
1056 perf_counter_cpu_sched_out(cpuctx);
1057 perf_counter_task_sched_out(curr, cpu);
1058
1059 rotate_ctx(&cpuctx->ctx);
1060 rotate_ctx(ctx);
1061
1062 perf_counter_cpu_sched_in(cpuctx, cpu);
1063 perf_counter_task_sched_in(curr, cpu);
1064 }
1065
1066 /*
1067 * Cross CPU call to read the hardware counter
1068 */
1069 static void __read(void *info)
1070 {
1071 struct perf_counter *counter = info;
1072 struct perf_counter_context *ctx = counter->ctx;
1073 unsigned long flags;
1074
1075 local_irq_save(flags);
1076 if (ctx->is_active)
1077 update_context_time(ctx);
1078 counter->pmu->read(counter);
1079 update_counter_times(counter);
1080 local_irq_restore(flags);
1081 }
1082
1083 static u64 perf_counter_read(struct perf_counter *counter)
1084 {
1085 /*
1086 * If counter is enabled and currently active on a CPU, update the
1087 * value in the counter structure:
1088 */
1089 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1090 smp_call_function_single(counter->oncpu,
1091 __read, counter, 1);
1092 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1093 update_counter_times(counter);
1094 }
1095
1096 return atomic64_read(&counter->count);
1097 }
1098
1099 static void put_context(struct perf_counter_context *ctx)
1100 {
1101 if (ctx->task)
1102 put_task_struct(ctx->task);
1103 }
1104
1105 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1106 {
1107 struct perf_cpu_context *cpuctx;
1108 struct perf_counter_context *ctx;
1109 struct task_struct *task;
1110
1111 /*
1112 * If cpu is not a wildcard then this is a percpu counter:
1113 */
1114 if (cpu != -1) {
1115 /* Must be root to operate on a CPU counter: */
1116 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1117 return ERR_PTR(-EACCES);
1118
1119 if (cpu < 0 || cpu > num_possible_cpus())
1120 return ERR_PTR(-EINVAL);
1121
1122 /*
1123 * We could be clever and allow to attach a counter to an
1124 * offline CPU and activate it when the CPU comes up, but
1125 * that's for later.
1126 */
1127 if (!cpu_isset(cpu, cpu_online_map))
1128 return ERR_PTR(-ENODEV);
1129
1130 cpuctx = &per_cpu(perf_cpu_context, cpu);
1131 ctx = &cpuctx->ctx;
1132
1133 return ctx;
1134 }
1135
1136 rcu_read_lock();
1137 if (!pid)
1138 task = current;
1139 else
1140 task = find_task_by_vpid(pid);
1141 if (task)
1142 get_task_struct(task);
1143 rcu_read_unlock();
1144
1145 if (!task)
1146 return ERR_PTR(-ESRCH);
1147
1148 ctx = &task->perf_counter_ctx;
1149 ctx->task = task;
1150
1151 /* Reuse ptrace permission checks for now. */
1152 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1153 put_context(ctx);
1154 return ERR_PTR(-EACCES);
1155 }
1156
1157 return ctx;
1158 }
1159
1160 static void free_counter_rcu(struct rcu_head *head)
1161 {
1162 struct perf_counter *counter;
1163
1164 counter = container_of(head, struct perf_counter, rcu_head);
1165 kfree(counter);
1166 }
1167
1168 static void perf_pending_sync(struct perf_counter *counter);
1169
1170 static void free_counter(struct perf_counter *counter)
1171 {
1172 perf_pending_sync(counter);
1173
1174 atomic_dec(&nr_counters);
1175 if (counter->hw_event.mmap)
1176 atomic_dec(&nr_mmap_tracking);
1177 if (counter->hw_event.munmap)
1178 atomic_dec(&nr_munmap_tracking);
1179 if (counter->hw_event.comm)
1180 atomic_dec(&nr_comm_tracking);
1181
1182 if (counter->destroy)
1183 counter->destroy(counter);
1184
1185 call_rcu(&counter->rcu_head, free_counter_rcu);
1186 }
1187
1188 /*
1189 * Called when the last reference to the file is gone.
1190 */
1191 static int perf_release(struct inode *inode, struct file *file)
1192 {
1193 struct perf_counter *counter = file->private_data;
1194 struct perf_counter_context *ctx = counter->ctx;
1195
1196 file->private_data = NULL;
1197
1198 mutex_lock(&ctx->mutex);
1199 mutex_lock(&counter->mutex);
1200
1201 perf_counter_remove_from_context(counter);
1202
1203 mutex_unlock(&counter->mutex);
1204 mutex_unlock(&ctx->mutex);
1205
1206 free_counter(counter);
1207 put_context(ctx);
1208
1209 return 0;
1210 }
1211
1212 /*
1213 * Read the performance counter - simple non blocking version for now
1214 */
1215 static ssize_t
1216 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1217 {
1218 u64 values[3];
1219 int n;
1220
1221 /*
1222 * Return end-of-file for a read on a counter that is in
1223 * error state (i.e. because it was pinned but it couldn't be
1224 * scheduled on to the CPU at some point).
1225 */
1226 if (counter->state == PERF_COUNTER_STATE_ERROR)
1227 return 0;
1228
1229 mutex_lock(&counter->mutex);
1230 values[0] = perf_counter_read(counter);
1231 n = 1;
1232 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1233 values[n++] = counter->total_time_enabled +
1234 atomic64_read(&counter->child_total_time_enabled);
1235 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1236 values[n++] = counter->total_time_running +
1237 atomic64_read(&counter->child_total_time_running);
1238 mutex_unlock(&counter->mutex);
1239
1240 if (count < n * sizeof(u64))
1241 return -EINVAL;
1242 count = n * sizeof(u64);
1243
1244 if (copy_to_user(buf, values, count))
1245 return -EFAULT;
1246
1247 return count;
1248 }
1249
1250 static ssize_t
1251 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1252 {
1253 struct perf_counter *counter = file->private_data;
1254
1255 return perf_read_hw(counter, buf, count);
1256 }
1257
1258 static unsigned int perf_poll(struct file *file, poll_table *wait)
1259 {
1260 struct perf_counter *counter = file->private_data;
1261 struct perf_mmap_data *data;
1262 unsigned int events = POLL_HUP;
1263
1264 rcu_read_lock();
1265 data = rcu_dereference(counter->data);
1266 if (data)
1267 events = atomic_xchg(&data->poll, 0);
1268 rcu_read_unlock();
1269
1270 poll_wait(file, &counter->waitq, wait);
1271
1272 return events;
1273 }
1274
1275 static void perf_counter_reset(struct perf_counter *counter)
1276 {
1277 (void)perf_counter_read(counter);
1278 atomic_set(&counter->count, 0);
1279 perf_counter_update_userpage(counter);
1280 }
1281
1282 static void perf_counter_for_each_sibling(struct perf_counter *counter,
1283 void (*func)(struct perf_counter *))
1284 {
1285 struct perf_counter_context *ctx = counter->ctx;
1286 struct perf_counter *sibling;
1287
1288 spin_lock_irq(&ctx->lock);
1289 counter = counter->group_leader;
1290
1291 func(counter);
1292 list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1293 func(sibling);
1294 spin_unlock_irq(&ctx->lock);
1295 }
1296
1297 static void perf_counter_for_each_child(struct perf_counter *counter,
1298 void (*func)(struct perf_counter *))
1299 {
1300 struct perf_counter *child;
1301
1302 mutex_lock(&counter->mutex);
1303 func(counter);
1304 list_for_each_entry(child, &counter->child_list, child_list)
1305 func(child);
1306 mutex_unlock(&counter->mutex);
1307 }
1308
1309 static void perf_counter_for_each(struct perf_counter *counter,
1310 void (*func)(struct perf_counter *))
1311 {
1312 struct perf_counter *child;
1313
1314 mutex_lock(&counter->mutex);
1315 perf_counter_for_each_sibling(counter, func);
1316 list_for_each_entry(child, &counter->child_list, child_list)
1317 perf_counter_for_each_sibling(child, func);
1318 mutex_unlock(&counter->mutex);
1319 }
1320
1321 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1322 {
1323 struct perf_counter *counter = file->private_data;
1324 void (*func)(struct perf_counter *);
1325 u32 flags = arg;
1326
1327 switch (cmd) {
1328 case PERF_COUNTER_IOC_ENABLE:
1329 func = perf_counter_enable;
1330 break;
1331 case PERF_COUNTER_IOC_DISABLE:
1332 func = perf_counter_disable;
1333 break;
1334 case PERF_COUNTER_IOC_RESET:
1335 func = perf_counter_reset;
1336 break;
1337
1338 case PERF_COUNTER_IOC_REFRESH:
1339 return perf_counter_refresh(counter, arg);
1340 default:
1341 return -ENOTTY;
1342 }
1343
1344 if (flags & PERF_IOC_FLAG_GROUP)
1345 perf_counter_for_each(counter, func);
1346 else
1347 perf_counter_for_each_child(counter, func);
1348
1349 return 0;
1350 }
1351
1352 /*
1353 * Callers need to ensure there can be no nesting of this function, otherwise
1354 * the seqlock logic goes bad. We can not serialize this because the arch
1355 * code calls this from NMI context.
1356 */
1357 void perf_counter_update_userpage(struct perf_counter *counter)
1358 {
1359 struct perf_mmap_data *data;
1360 struct perf_counter_mmap_page *userpg;
1361
1362 rcu_read_lock();
1363 data = rcu_dereference(counter->data);
1364 if (!data)
1365 goto unlock;
1366
1367 userpg = data->user_page;
1368
1369 /*
1370 * Disable preemption so as to not let the corresponding user-space
1371 * spin too long if we get preempted.
1372 */
1373 preempt_disable();
1374 ++userpg->lock;
1375 barrier();
1376 userpg->index = counter->hw.idx;
1377 userpg->offset = atomic64_read(&counter->count);
1378 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1379 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1380
1381 barrier();
1382 ++userpg->lock;
1383 preempt_enable();
1384 unlock:
1385 rcu_read_unlock();
1386 }
1387
1388 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1389 {
1390 struct perf_counter *counter = vma->vm_file->private_data;
1391 struct perf_mmap_data *data;
1392 int ret = VM_FAULT_SIGBUS;
1393
1394 rcu_read_lock();
1395 data = rcu_dereference(counter->data);
1396 if (!data)
1397 goto unlock;
1398
1399 if (vmf->pgoff == 0) {
1400 vmf->page = virt_to_page(data->user_page);
1401 } else {
1402 int nr = vmf->pgoff - 1;
1403
1404 if ((unsigned)nr > data->nr_pages)
1405 goto unlock;
1406
1407 vmf->page = virt_to_page(data->data_pages[nr]);
1408 }
1409 get_page(vmf->page);
1410 ret = 0;
1411 unlock:
1412 rcu_read_unlock();
1413
1414 return ret;
1415 }
1416
1417 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1418 {
1419 struct perf_mmap_data *data;
1420 unsigned long size;
1421 int i;
1422
1423 WARN_ON(atomic_read(&counter->mmap_count));
1424
1425 size = sizeof(struct perf_mmap_data);
1426 size += nr_pages * sizeof(void *);
1427
1428 data = kzalloc(size, GFP_KERNEL);
1429 if (!data)
1430 goto fail;
1431
1432 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1433 if (!data->user_page)
1434 goto fail_user_page;
1435
1436 for (i = 0; i < nr_pages; i++) {
1437 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1438 if (!data->data_pages[i])
1439 goto fail_data_pages;
1440 }
1441
1442 data->nr_pages = nr_pages;
1443 atomic_set(&data->lock, -1);
1444
1445 rcu_assign_pointer(counter->data, data);
1446
1447 return 0;
1448
1449 fail_data_pages:
1450 for (i--; i >= 0; i--)
1451 free_page((unsigned long)data->data_pages[i]);
1452
1453 free_page((unsigned long)data->user_page);
1454
1455 fail_user_page:
1456 kfree(data);
1457
1458 fail:
1459 return -ENOMEM;
1460 }
1461
1462 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1463 {
1464 struct perf_mmap_data *data = container_of(rcu_head,
1465 struct perf_mmap_data, rcu_head);
1466 int i;
1467
1468 free_page((unsigned long)data->user_page);
1469 for (i = 0; i < data->nr_pages; i++)
1470 free_page((unsigned long)data->data_pages[i]);
1471 kfree(data);
1472 }
1473
1474 static void perf_mmap_data_free(struct perf_counter *counter)
1475 {
1476 struct perf_mmap_data *data = counter->data;
1477
1478 WARN_ON(atomic_read(&counter->mmap_count));
1479
1480 rcu_assign_pointer(counter->data, NULL);
1481 call_rcu(&data->rcu_head, __perf_mmap_data_free);
1482 }
1483
1484 static void perf_mmap_open(struct vm_area_struct *vma)
1485 {
1486 struct perf_counter *counter = vma->vm_file->private_data;
1487
1488 atomic_inc(&counter->mmap_count);
1489 }
1490
1491 static void perf_mmap_close(struct vm_area_struct *vma)
1492 {
1493 struct perf_counter *counter = vma->vm_file->private_data;
1494
1495 if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1496 &counter->mmap_mutex)) {
1497 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1498 perf_mmap_data_free(counter);
1499 mutex_unlock(&counter->mmap_mutex);
1500 }
1501 }
1502
1503 static struct vm_operations_struct perf_mmap_vmops = {
1504 .open = perf_mmap_open,
1505 .close = perf_mmap_close,
1506 .fault = perf_mmap_fault,
1507 };
1508
1509 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1510 {
1511 struct perf_counter *counter = file->private_data;
1512 unsigned long vma_size;
1513 unsigned long nr_pages;
1514 unsigned long locked, lock_limit;
1515 int ret = 0;
1516 long extra;
1517
1518 if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1519 return -EINVAL;
1520
1521 vma_size = vma->vm_end - vma->vm_start;
1522 nr_pages = (vma_size / PAGE_SIZE) - 1;
1523
1524 /*
1525 * If we have data pages ensure they're a power-of-two number, so we
1526 * can do bitmasks instead of modulo.
1527 */
1528 if (nr_pages != 0 && !is_power_of_2(nr_pages))
1529 return -EINVAL;
1530
1531 if (vma_size != PAGE_SIZE * (1 + nr_pages))
1532 return -EINVAL;
1533
1534 if (vma->vm_pgoff != 0)
1535 return -EINVAL;
1536
1537 mutex_lock(&counter->mmap_mutex);
1538 if (atomic_inc_not_zero(&counter->mmap_count)) {
1539 if (nr_pages != counter->data->nr_pages)
1540 ret = -EINVAL;
1541 goto unlock;
1542 }
1543
1544 extra = nr_pages /* + 1 only account the data pages */;
1545 extra -= sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1546 if (extra < 0)
1547 extra = 0;
1548
1549 locked = vma->vm_mm->locked_vm + extra;
1550
1551 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1552 lock_limit >>= PAGE_SHIFT;
1553
1554 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1555 ret = -EPERM;
1556 goto unlock;
1557 }
1558
1559 WARN_ON(counter->data);
1560 ret = perf_mmap_data_alloc(counter, nr_pages);
1561 if (ret)
1562 goto unlock;
1563
1564 atomic_set(&counter->mmap_count, 1);
1565 vma->vm_mm->locked_vm += extra;
1566 counter->data->nr_locked = extra;
1567 unlock:
1568 mutex_unlock(&counter->mmap_mutex);
1569
1570 vma->vm_flags &= ~VM_MAYWRITE;
1571 vma->vm_flags |= VM_RESERVED;
1572 vma->vm_ops = &perf_mmap_vmops;
1573
1574 return ret;
1575 }
1576
1577 static int perf_fasync(int fd, struct file *filp, int on)
1578 {
1579 struct perf_counter *counter = filp->private_data;
1580 struct inode *inode = filp->f_path.dentry->d_inode;
1581 int retval;
1582
1583 mutex_lock(&inode->i_mutex);
1584 retval = fasync_helper(fd, filp, on, &counter->fasync);
1585 mutex_unlock(&inode->i_mutex);
1586
1587 if (retval < 0)
1588 return retval;
1589
1590 return 0;
1591 }
1592
1593 static const struct file_operations perf_fops = {
1594 .release = perf_release,
1595 .read = perf_read,
1596 .poll = perf_poll,
1597 .unlocked_ioctl = perf_ioctl,
1598 .compat_ioctl = perf_ioctl,
1599 .mmap = perf_mmap,
1600 .fasync = perf_fasync,
1601 };
1602
1603 /*
1604 * Perf counter wakeup
1605 *
1606 * If there's data, ensure we set the poll() state and publish everything
1607 * to user-space before waking everybody up.
1608 */
1609
1610 void perf_counter_wakeup(struct perf_counter *counter)
1611 {
1612 wake_up_all(&counter->waitq);
1613
1614 if (counter->pending_kill) {
1615 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1616 counter->pending_kill = 0;
1617 }
1618 }
1619
1620 /*
1621 * Pending wakeups
1622 *
1623 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1624 *
1625 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1626 * single linked list and use cmpxchg() to add entries lockless.
1627 */
1628
1629 static void perf_pending_counter(struct perf_pending_entry *entry)
1630 {
1631 struct perf_counter *counter = container_of(entry,
1632 struct perf_counter, pending);
1633
1634 if (counter->pending_disable) {
1635 counter->pending_disable = 0;
1636 perf_counter_disable(counter);
1637 }
1638
1639 if (counter->pending_wakeup) {
1640 counter->pending_wakeup = 0;
1641 perf_counter_wakeup(counter);
1642 }
1643 }
1644
1645 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1646
1647 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1648 PENDING_TAIL,
1649 };
1650
1651 static void perf_pending_queue(struct perf_pending_entry *entry,
1652 void (*func)(struct perf_pending_entry *))
1653 {
1654 struct perf_pending_entry **head;
1655
1656 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1657 return;
1658
1659 entry->func = func;
1660
1661 head = &get_cpu_var(perf_pending_head);
1662
1663 do {
1664 entry->next = *head;
1665 } while (cmpxchg(head, entry->next, entry) != entry->next);
1666
1667 set_perf_counter_pending();
1668
1669 put_cpu_var(perf_pending_head);
1670 }
1671
1672 static int __perf_pending_run(void)
1673 {
1674 struct perf_pending_entry *list;
1675 int nr = 0;
1676
1677 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1678 while (list != PENDING_TAIL) {
1679 void (*func)(struct perf_pending_entry *);
1680 struct perf_pending_entry *entry = list;
1681
1682 list = list->next;
1683
1684 func = entry->func;
1685 entry->next = NULL;
1686 /*
1687 * Ensure we observe the unqueue before we issue the wakeup,
1688 * so that we won't be waiting forever.
1689 * -- see perf_not_pending().
1690 */
1691 smp_wmb();
1692
1693 func(entry);
1694 nr++;
1695 }
1696
1697 return nr;
1698 }
1699
1700 static inline int perf_not_pending(struct perf_counter *counter)
1701 {
1702 /*
1703 * If we flush on whatever cpu we run, there is a chance we don't
1704 * need to wait.
1705 */
1706 get_cpu();
1707 __perf_pending_run();
1708 put_cpu();
1709
1710 /*
1711 * Ensure we see the proper queue state before going to sleep
1712 * so that we do not miss the wakeup. -- see perf_pending_handle()
1713 */
1714 smp_rmb();
1715 return counter->pending.next == NULL;
1716 }
1717
1718 static void perf_pending_sync(struct perf_counter *counter)
1719 {
1720 wait_event(counter->waitq, perf_not_pending(counter));
1721 }
1722
1723 void perf_counter_do_pending(void)
1724 {
1725 __perf_pending_run();
1726 }
1727
1728 /*
1729 * Callchain support -- arch specific
1730 */
1731
1732 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1733 {
1734 return NULL;
1735 }
1736
1737 /*
1738 * Output
1739 */
1740
1741 struct perf_output_handle {
1742 struct perf_counter *counter;
1743 struct perf_mmap_data *data;
1744 unsigned int offset;
1745 unsigned int head;
1746 int nmi;
1747 int overflow;
1748 int locked;
1749 unsigned long flags;
1750 };
1751
1752 static void perf_output_wakeup(struct perf_output_handle *handle)
1753 {
1754 atomic_set(&handle->data->poll, POLL_IN);
1755
1756 if (handle->nmi) {
1757 handle->counter->pending_wakeup = 1;
1758 perf_pending_queue(&handle->counter->pending,
1759 perf_pending_counter);
1760 } else
1761 perf_counter_wakeup(handle->counter);
1762 }
1763
1764 /*
1765 * Curious locking construct.
1766 *
1767 * We need to ensure a later event doesn't publish a head when a former
1768 * event isn't done writing. However since we need to deal with NMIs we
1769 * cannot fully serialize things.
1770 *
1771 * What we do is serialize between CPUs so we only have to deal with NMI
1772 * nesting on a single CPU.
1773 *
1774 * We only publish the head (and generate a wakeup) when the outer-most
1775 * event completes.
1776 */
1777 static void perf_output_lock(struct perf_output_handle *handle)
1778 {
1779 struct perf_mmap_data *data = handle->data;
1780 int cpu;
1781
1782 handle->locked = 0;
1783
1784 local_irq_save(handle->flags);
1785 cpu = smp_processor_id();
1786
1787 if (in_nmi() && atomic_read(&data->lock) == cpu)
1788 return;
1789
1790 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1791 cpu_relax();
1792
1793 handle->locked = 1;
1794 }
1795
1796 static void perf_output_unlock(struct perf_output_handle *handle)
1797 {
1798 struct perf_mmap_data *data = handle->data;
1799 int head, cpu;
1800
1801 data->done_head = data->head;
1802
1803 if (!handle->locked)
1804 goto out;
1805
1806 again:
1807 /*
1808 * The xchg implies a full barrier that ensures all writes are done
1809 * before we publish the new head, matched by a rmb() in userspace when
1810 * reading this position.
1811 */
1812 while ((head = atomic_xchg(&data->done_head, 0)))
1813 data->user_page->data_head = head;
1814
1815 /*
1816 * NMI can happen here, which means we can miss a done_head update.
1817 */
1818
1819 cpu = atomic_xchg(&data->lock, -1);
1820 WARN_ON_ONCE(cpu != smp_processor_id());
1821
1822 /*
1823 * Therefore we have to validate we did not indeed do so.
1824 */
1825 if (unlikely(atomic_read(&data->done_head))) {
1826 /*
1827 * Since we had it locked, we can lock it again.
1828 */
1829 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1830 cpu_relax();
1831
1832 goto again;
1833 }
1834
1835 if (atomic_xchg(&data->wakeup, 0))
1836 perf_output_wakeup(handle);
1837 out:
1838 local_irq_restore(handle->flags);
1839 }
1840
1841 static int perf_output_begin(struct perf_output_handle *handle,
1842 struct perf_counter *counter, unsigned int size,
1843 int nmi, int overflow)
1844 {
1845 struct perf_mmap_data *data;
1846 unsigned int offset, head;
1847
1848 /*
1849 * For inherited counters we send all the output towards the parent.
1850 */
1851 if (counter->parent)
1852 counter = counter->parent;
1853
1854 rcu_read_lock();
1855 data = rcu_dereference(counter->data);
1856 if (!data)
1857 goto out;
1858
1859 handle->data = data;
1860 handle->counter = counter;
1861 handle->nmi = nmi;
1862 handle->overflow = overflow;
1863
1864 if (!data->nr_pages)
1865 goto fail;
1866
1867 perf_output_lock(handle);
1868
1869 do {
1870 offset = head = atomic_read(&data->head);
1871 head += size;
1872 } while (atomic_cmpxchg(&data->head, offset, head) != offset);
1873
1874 handle->offset = offset;
1875 handle->head = head;
1876
1877 if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
1878 atomic_set(&data->wakeup, 1);
1879
1880 return 0;
1881
1882 fail:
1883 perf_output_wakeup(handle);
1884 out:
1885 rcu_read_unlock();
1886
1887 return -ENOSPC;
1888 }
1889
1890 static void perf_output_copy(struct perf_output_handle *handle,
1891 void *buf, unsigned int len)
1892 {
1893 unsigned int pages_mask;
1894 unsigned int offset;
1895 unsigned int size;
1896 void **pages;
1897
1898 offset = handle->offset;
1899 pages_mask = handle->data->nr_pages - 1;
1900 pages = handle->data->data_pages;
1901
1902 do {
1903 unsigned int page_offset;
1904 int nr;
1905
1906 nr = (offset >> PAGE_SHIFT) & pages_mask;
1907 page_offset = offset & (PAGE_SIZE - 1);
1908 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
1909
1910 memcpy(pages[nr] + page_offset, buf, size);
1911
1912 len -= size;
1913 buf += size;
1914 offset += size;
1915 } while (len);
1916
1917 handle->offset = offset;
1918
1919 WARN_ON_ONCE(handle->offset > handle->head);
1920 }
1921
1922 #define perf_output_put(handle, x) \
1923 perf_output_copy((handle), &(x), sizeof(x))
1924
1925 static void perf_output_end(struct perf_output_handle *handle)
1926 {
1927 struct perf_counter *counter = handle->counter;
1928 struct perf_mmap_data *data = handle->data;
1929
1930 int wakeup_events = counter->hw_event.wakeup_events;
1931
1932 if (handle->overflow && wakeup_events) {
1933 int events = atomic_inc_return(&data->events);
1934 if (events >= wakeup_events) {
1935 atomic_sub(wakeup_events, &data->events);
1936 atomic_set(&data->wakeup, 1);
1937 }
1938 }
1939
1940 perf_output_unlock(handle);
1941 rcu_read_unlock();
1942 }
1943
1944 static void perf_counter_output(struct perf_counter *counter,
1945 int nmi, struct pt_regs *regs, u64 addr)
1946 {
1947 int ret;
1948 u64 record_type = counter->hw_event.record_type;
1949 struct perf_output_handle handle;
1950 struct perf_event_header header;
1951 u64 ip;
1952 struct {
1953 u32 pid, tid;
1954 } tid_entry;
1955 struct {
1956 u64 event;
1957 u64 counter;
1958 } group_entry;
1959 struct perf_callchain_entry *callchain = NULL;
1960 int callchain_size = 0;
1961 u64 time;
1962 struct {
1963 u32 cpu, reserved;
1964 } cpu_entry;
1965
1966 header.type = 0;
1967 header.size = sizeof(header);
1968
1969 header.misc = PERF_EVENT_MISC_OVERFLOW;
1970 header.misc |= user_mode(regs) ?
1971 PERF_EVENT_MISC_USER : PERF_EVENT_MISC_KERNEL;
1972
1973 if (record_type & PERF_RECORD_IP) {
1974 ip = instruction_pointer(regs);
1975 header.type |= PERF_RECORD_IP;
1976 header.size += sizeof(ip);
1977 }
1978
1979 if (record_type & PERF_RECORD_TID) {
1980 /* namespace issues */
1981 tid_entry.pid = current->group_leader->pid;
1982 tid_entry.tid = current->pid;
1983
1984 header.type |= PERF_RECORD_TID;
1985 header.size += sizeof(tid_entry);
1986 }
1987
1988 if (record_type & PERF_RECORD_TIME) {
1989 /*
1990 * Maybe do better on x86 and provide cpu_clock_nmi()
1991 */
1992 time = sched_clock();
1993
1994 header.type |= PERF_RECORD_TIME;
1995 header.size += sizeof(u64);
1996 }
1997
1998 if (record_type & PERF_RECORD_ADDR) {
1999 header.type |= PERF_RECORD_ADDR;
2000 header.size += sizeof(u64);
2001 }
2002
2003 if (record_type & PERF_RECORD_CONFIG) {
2004 header.type |= PERF_RECORD_CONFIG;
2005 header.size += sizeof(u64);
2006 }
2007
2008 if (record_type & PERF_RECORD_CPU) {
2009 header.type |= PERF_RECORD_CPU;
2010 header.size += sizeof(cpu_entry);
2011
2012 cpu_entry.cpu = raw_smp_processor_id();
2013 }
2014
2015 if (record_type & PERF_RECORD_GROUP) {
2016 header.type |= PERF_RECORD_GROUP;
2017 header.size += sizeof(u64) +
2018 counter->nr_siblings * sizeof(group_entry);
2019 }
2020
2021 if (record_type & PERF_RECORD_CALLCHAIN) {
2022 callchain = perf_callchain(regs);
2023
2024 if (callchain) {
2025 callchain_size = (1 + callchain->nr) * sizeof(u64);
2026
2027 header.type |= PERF_RECORD_CALLCHAIN;
2028 header.size += callchain_size;
2029 }
2030 }
2031
2032 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2033 if (ret)
2034 return;
2035
2036 perf_output_put(&handle, header);
2037
2038 if (record_type & PERF_RECORD_IP)
2039 perf_output_put(&handle, ip);
2040
2041 if (record_type & PERF_RECORD_TID)
2042 perf_output_put(&handle, tid_entry);
2043
2044 if (record_type & PERF_RECORD_TIME)
2045 perf_output_put(&handle, time);
2046
2047 if (record_type & PERF_RECORD_ADDR)
2048 perf_output_put(&handle, addr);
2049
2050 if (record_type & PERF_RECORD_CONFIG)
2051 perf_output_put(&handle, counter->hw_event.config);
2052
2053 if (record_type & PERF_RECORD_CPU)
2054 perf_output_put(&handle, cpu_entry);
2055
2056 /*
2057 * XXX PERF_RECORD_GROUP vs inherited counters seems difficult.
2058 */
2059 if (record_type & PERF_RECORD_GROUP) {
2060 struct perf_counter *leader, *sub;
2061 u64 nr = counter->nr_siblings;
2062
2063 perf_output_put(&handle, nr);
2064
2065 leader = counter->group_leader;
2066 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2067 if (sub != counter)
2068 sub->pmu->read(sub);
2069
2070 group_entry.event = sub->hw_event.config;
2071 group_entry.counter = atomic64_read(&sub->count);
2072
2073 perf_output_put(&handle, group_entry);
2074 }
2075 }
2076
2077 if (callchain)
2078 perf_output_copy(&handle, callchain, callchain_size);
2079
2080 perf_output_end(&handle);
2081 }
2082
2083 /*
2084 * comm tracking
2085 */
2086
2087 struct perf_comm_event {
2088 struct task_struct *task;
2089 char *comm;
2090 int comm_size;
2091
2092 struct {
2093 struct perf_event_header header;
2094
2095 u32 pid;
2096 u32 tid;
2097 } event;
2098 };
2099
2100 static void perf_counter_comm_output(struct perf_counter *counter,
2101 struct perf_comm_event *comm_event)
2102 {
2103 struct perf_output_handle handle;
2104 int size = comm_event->event.header.size;
2105 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2106
2107 if (ret)
2108 return;
2109
2110 perf_output_put(&handle, comm_event->event);
2111 perf_output_copy(&handle, comm_event->comm,
2112 comm_event->comm_size);
2113 perf_output_end(&handle);
2114 }
2115
2116 static int perf_counter_comm_match(struct perf_counter *counter,
2117 struct perf_comm_event *comm_event)
2118 {
2119 if (counter->hw_event.comm &&
2120 comm_event->event.header.type == PERF_EVENT_COMM)
2121 return 1;
2122
2123 return 0;
2124 }
2125
2126 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2127 struct perf_comm_event *comm_event)
2128 {
2129 struct perf_counter *counter;
2130
2131 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2132 return;
2133
2134 rcu_read_lock();
2135 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2136 if (perf_counter_comm_match(counter, comm_event))
2137 perf_counter_comm_output(counter, comm_event);
2138 }
2139 rcu_read_unlock();
2140 }
2141
2142 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2143 {
2144 struct perf_cpu_context *cpuctx;
2145 unsigned int size;
2146 char *comm = comm_event->task->comm;
2147
2148 size = ALIGN(strlen(comm)+1, sizeof(u64));
2149
2150 comm_event->comm = comm;
2151 comm_event->comm_size = size;
2152
2153 comm_event->event.header.size = sizeof(comm_event->event) + size;
2154
2155 cpuctx = &get_cpu_var(perf_cpu_context);
2156 perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2157 put_cpu_var(perf_cpu_context);
2158
2159 perf_counter_comm_ctx(&current->perf_counter_ctx, comm_event);
2160 }
2161
2162 void perf_counter_comm(struct task_struct *task)
2163 {
2164 struct perf_comm_event comm_event;
2165
2166 if (!atomic_read(&nr_comm_tracking))
2167 return;
2168
2169 comm_event = (struct perf_comm_event){
2170 .task = task,
2171 .event = {
2172 .header = { .type = PERF_EVENT_COMM, },
2173 .pid = task->group_leader->pid,
2174 .tid = task->pid,
2175 },
2176 };
2177
2178 perf_counter_comm_event(&comm_event);
2179 }
2180
2181 /*
2182 * mmap tracking
2183 */
2184
2185 struct perf_mmap_event {
2186 struct file *file;
2187 char *file_name;
2188 int file_size;
2189
2190 struct {
2191 struct perf_event_header header;
2192
2193 u32 pid;
2194 u32 tid;
2195 u64 start;
2196 u64 len;
2197 u64 pgoff;
2198 } event;
2199 };
2200
2201 static void perf_counter_mmap_output(struct perf_counter *counter,
2202 struct perf_mmap_event *mmap_event)
2203 {
2204 struct perf_output_handle handle;
2205 int size = mmap_event->event.header.size;
2206 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2207
2208 if (ret)
2209 return;
2210
2211 perf_output_put(&handle, mmap_event->event);
2212 perf_output_copy(&handle, mmap_event->file_name,
2213 mmap_event->file_size);
2214 perf_output_end(&handle);
2215 }
2216
2217 static int perf_counter_mmap_match(struct perf_counter *counter,
2218 struct perf_mmap_event *mmap_event)
2219 {
2220 if (counter->hw_event.mmap &&
2221 mmap_event->event.header.type == PERF_EVENT_MMAP)
2222 return 1;
2223
2224 if (counter->hw_event.munmap &&
2225 mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2226 return 1;
2227
2228 return 0;
2229 }
2230
2231 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2232 struct perf_mmap_event *mmap_event)
2233 {
2234 struct perf_counter *counter;
2235
2236 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2237 return;
2238
2239 rcu_read_lock();
2240 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2241 if (perf_counter_mmap_match(counter, mmap_event))
2242 perf_counter_mmap_output(counter, mmap_event);
2243 }
2244 rcu_read_unlock();
2245 }
2246
2247 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2248 {
2249 struct perf_cpu_context *cpuctx;
2250 struct file *file = mmap_event->file;
2251 unsigned int size;
2252 char tmp[16];
2253 char *buf = NULL;
2254 char *name;
2255
2256 if (file) {
2257 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2258 if (!buf) {
2259 name = strncpy(tmp, "//enomem", sizeof(tmp));
2260 goto got_name;
2261 }
2262 name = d_path(&file->f_path, buf, PATH_MAX);
2263 if (IS_ERR(name)) {
2264 name = strncpy(tmp, "//toolong", sizeof(tmp));
2265 goto got_name;
2266 }
2267 } else {
2268 name = strncpy(tmp, "//anon", sizeof(tmp));
2269 goto got_name;
2270 }
2271
2272 got_name:
2273 size = ALIGN(strlen(name)+1, sizeof(u64));
2274
2275 mmap_event->file_name = name;
2276 mmap_event->file_size = size;
2277
2278 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2279
2280 cpuctx = &get_cpu_var(perf_cpu_context);
2281 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2282 put_cpu_var(perf_cpu_context);
2283
2284 perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);
2285
2286 kfree(buf);
2287 }
2288
2289 void perf_counter_mmap(unsigned long addr, unsigned long len,
2290 unsigned long pgoff, struct file *file)
2291 {
2292 struct perf_mmap_event mmap_event;
2293
2294 if (!atomic_read(&nr_mmap_tracking))
2295 return;
2296
2297 mmap_event = (struct perf_mmap_event){
2298 .file = file,
2299 .event = {
2300 .header = { .type = PERF_EVENT_MMAP, },
2301 .pid = current->group_leader->pid,
2302 .tid = current->pid,
2303 .start = addr,
2304 .len = len,
2305 .pgoff = pgoff,
2306 },
2307 };
2308
2309 perf_counter_mmap_event(&mmap_event);
2310 }
2311
2312 void perf_counter_munmap(unsigned long addr, unsigned long len,
2313 unsigned long pgoff, struct file *file)
2314 {
2315 struct perf_mmap_event mmap_event;
2316
2317 if (!atomic_read(&nr_munmap_tracking))
2318 return;
2319
2320 mmap_event = (struct perf_mmap_event){
2321 .file = file,
2322 .event = {
2323 .header = { .type = PERF_EVENT_MUNMAP, },
2324 .pid = current->group_leader->pid,
2325 .tid = current->pid,
2326 .start = addr,
2327 .len = len,
2328 .pgoff = pgoff,
2329 },
2330 };
2331
2332 perf_counter_mmap_event(&mmap_event);
2333 }
2334
2335 /*
2336 * Generic counter overflow handling.
2337 */
2338
2339 int perf_counter_overflow(struct perf_counter *counter,
2340 int nmi, struct pt_regs *regs, u64 addr)
2341 {
2342 int events = atomic_read(&counter->event_limit);
2343 int ret = 0;
2344
2345 /*
2346 * XXX event_limit might not quite work as expected on inherited
2347 * counters
2348 */
2349
2350 counter->pending_kill = POLL_IN;
2351 if (events && atomic_dec_and_test(&counter->event_limit)) {
2352 ret = 1;
2353 counter->pending_kill = POLL_HUP;
2354 if (nmi) {
2355 counter->pending_disable = 1;
2356 perf_pending_queue(&counter->pending,
2357 perf_pending_counter);
2358 } else
2359 perf_counter_disable(counter);
2360 }
2361
2362 perf_counter_output(counter, nmi, regs, addr);
2363 return ret;
2364 }
2365
2366 /*
2367 * Generic software counter infrastructure
2368 */
2369
2370 static void perf_swcounter_update(struct perf_counter *counter)
2371 {
2372 struct hw_perf_counter *hwc = &counter->hw;
2373 u64 prev, now;
2374 s64 delta;
2375
2376 again:
2377 prev = atomic64_read(&hwc->prev_count);
2378 now = atomic64_read(&hwc->count);
2379 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2380 goto again;
2381
2382 delta = now - prev;
2383
2384 atomic64_add(delta, &counter->count);
2385 atomic64_sub(delta, &hwc->period_left);
2386 }
2387
2388 static void perf_swcounter_set_period(struct perf_counter *counter)
2389 {
2390 struct hw_perf_counter *hwc = &counter->hw;
2391 s64 left = atomic64_read(&hwc->period_left);
2392 s64 period = hwc->irq_period;
2393
2394 if (unlikely(left <= -period)) {
2395 left = period;
2396 atomic64_set(&hwc->period_left, left);
2397 }
2398
2399 if (unlikely(left <= 0)) {
2400 left += period;
2401 atomic64_add(period, &hwc->period_left);
2402 }
2403
2404 atomic64_set(&hwc->prev_count, -left);
2405 atomic64_set(&hwc->count, -left);
2406 }
2407
2408 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2409 {
2410 enum hrtimer_restart ret = HRTIMER_RESTART;
2411 struct perf_counter *counter;
2412 struct pt_regs *regs;
2413
2414 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2415 counter->pmu->read(counter);
2416
2417 regs = get_irq_regs();
2418 /*
2419 * In case we exclude kernel IPs or are somehow not in interrupt
2420 * context, provide the next best thing, the user IP.
2421 */
2422 if ((counter->hw_event.exclude_kernel || !regs) &&
2423 !counter->hw_event.exclude_user)
2424 regs = task_pt_regs(current);
2425
2426 if (regs) {
2427 if (perf_counter_overflow(counter, 0, regs, 0))
2428 ret = HRTIMER_NORESTART;
2429 }
2430
2431 hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
2432
2433 return ret;
2434 }
2435
2436 static void perf_swcounter_overflow(struct perf_counter *counter,
2437 int nmi, struct pt_regs *regs, u64 addr)
2438 {
2439 perf_swcounter_update(counter);
2440 perf_swcounter_set_period(counter);
2441 if (perf_counter_overflow(counter, nmi, regs, addr))
2442 /* soft-disable the counter */
2443 ;
2444
2445 }
2446
2447 static int perf_swcounter_match(struct perf_counter *counter,
2448 enum perf_event_types type,
2449 u32 event, struct pt_regs *regs)
2450 {
2451 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2452 return 0;
2453
2454 if (perf_event_raw(&counter->hw_event))
2455 return 0;
2456
2457 if (perf_event_type(&counter->hw_event) != type)
2458 return 0;
2459
2460 if (perf_event_id(&counter->hw_event) != event)
2461 return 0;
2462
2463 if (counter->hw_event.exclude_user && user_mode(regs))
2464 return 0;
2465
2466 if (counter->hw_event.exclude_kernel && !user_mode(regs))
2467 return 0;
2468
2469 return 1;
2470 }
2471
2472 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2473 int nmi, struct pt_regs *regs, u64 addr)
2474 {
2475 int neg = atomic64_add_negative(nr, &counter->hw.count);
2476 if (counter->hw.irq_period && !neg)
2477 perf_swcounter_overflow(counter, nmi, regs, addr);
2478 }
2479
2480 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2481 enum perf_event_types type, u32 event,
2482 u64 nr, int nmi, struct pt_regs *regs,
2483 u64 addr)
2484 {
2485 struct perf_counter *counter;
2486
2487 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2488 return;
2489
2490 rcu_read_lock();
2491 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2492 if (perf_swcounter_match(counter, type, event, regs))
2493 perf_swcounter_add(counter, nr, nmi, regs, addr);
2494 }
2495 rcu_read_unlock();
2496 }
2497
2498 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2499 {
2500 if (in_nmi())
2501 return &cpuctx->recursion[3];
2502
2503 if (in_irq())
2504 return &cpuctx->recursion[2];
2505
2506 if (in_softirq())
2507 return &cpuctx->recursion[1];
2508
2509 return &cpuctx->recursion[0];
2510 }
2511
2512 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2513 u64 nr, int nmi, struct pt_regs *regs,
2514 u64 addr)
2515 {
2516 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2517 int *recursion = perf_swcounter_recursion_context(cpuctx);
2518
2519 if (*recursion)
2520 goto out;
2521
2522 (*recursion)++;
2523 barrier();
2524
2525 perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
2526 nr, nmi, regs, addr);
2527 if (cpuctx->task_ctx) {
2528 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2529 nr, nmi, regs, addr);
2530 }
2531
2532 barrier();
2533 (*recursion)--;
2534
2535 out:
2536 put_cpu_var(perf_cpu_context);
2537 }
2538
2539 void
2540 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2541 {
2542 __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2543 }
2544
2545 static void perf_swcounter_read(struct perf_counter *counter)
2546 {
2547 perf_swcounter_update(counter);
2548 }
2549
2550 static int perf_swcounter_enable(struct perf_counter *counter)
2551 {
2552 perf_swcounter_set_period(counter);
2553 return 0;
2554 }
2555
2556 static void perf_swcounter_disable(struct perf_counter *counter)
2557 {
2558 perf_swcounter_update(counter);
2559 }
2560
2561 static const struct pmu perf_ops_generic = {
2562 .enable = perf_swcounter_enable,
2563 .disable = perf_swcounter_disable,
2564 .read = perf_swcounter_read,
2565 };
2566
2567 /*
2568 * Software counter: cpu wall time clock
2569 */
2570
2571 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2572 {
2573 int cpu = raw_smp_processor_id();
2574 s64 prev;
2575 u64 now;
2576
2577 now = cpu_clock(cpu);
2578 prev = atomic64_read(&counter->hw.prev_count);
2579 atomic64_set(&counter->hw.prev_count, now);
2580 atomic64_add(now - prev, &counter->count);
2581 }
2582
2583 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2584 {
2585 struct hw_perf_counter *hwc = &counter->hw;
2586 int cpu = raw_smp_processor_id();
2587
2588 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2589 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2590 hwc->hrtimer.function = perf_swcounter_hrtimer;
2591 if (hwc->irq_period) {
2592 __hrtimer_start_range_ns(&hwc->hrtimer,
2593 ns_to_ktime(hwc->irq_period), 0,
2594 HRTIMER_MODE_REL, 0);
2595 }
2596
2597 return 0;
2598 }
2599
2600 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2601 {
2602 hrtimer_cancel(&counter->hw.hrtimer);
2603 cpu_clock_perf_counter_update(counter);
2604 }
2605
2606 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2607 {
2608 cpu_clock_perf_counter_update(counter);
2609 }
2610
2611 static const struct pmu perf_ops_cpu_clock = {
2612 .enable = cpu_clock_perf_counter_enable,
2613 .disable = cpu_clock_perf_counter_disable,
2614 .read = cpu_clock_perf_counter_read,
2615 };
2616
2617 /*
2618 * Software counter: task time clock
2619 */
2620
2621 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2622 {
2623 u64 prev;
2624 s64 delta;
2625
2626 prev = atomic64_xchg(&counter->hw.prev_count, now);
2627 delta = now - prev;
2628 atomic64_add(delta, &counter->count);
2629 }
2630
2631 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2632 {
2633 struct hw_perf_counter *hwc = &counter->hw;
2634 u64 now;
2635
2636 now = counter->ctx->time;
2637
2638 atomic64_set(&hwc->prev_count, now);
2639 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2640 hwc->hrtimer.function = perf_swcounter_hrtimer;
2641 if (hwc->irq_period) {
2642 __hrtimer_start_range_ns(&hwc->hrtimer,
2643 ns_to_ktime(hwc->irq_period), 0,
2644 HRTIMER_MODE_REL, 0);
2645 }
2646
2647 return 0;
2648 }
2649
2650 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2651 {
2652 hrtimer_cancel(&counter->hw.hrtimer);
2653 task_clock_perf_counter_update(counter, counter->ctx->time);
2654
2655 }
2656
2657 static void task_clock_perf_counter_read(struct perf_counter *counter)
2658 {
2659 u64 time;
2660
2661 if (!in_nmi()) {
2662 update_context_time(counter->ctx);
2663 time = counter->ctx->time;
2664 } else {
2665 u64 now = perf_clock();
2666 u64 delta = now - counter->ctx->timestamp;
2667 time = counter->ctx->time + delta;
2668 }
2669
2670 task_clock_perf_counter_update(counter, time);
2671 }
2672
2673 static const struct pmu perf_ops_task_clock = {
2674 .enable = task_clock_perf_counter_enable,
2675 .disable = task_clock_perf_counter_disable,
2676 .read = task_clock_perf_counter_read,
2677 };
2678
2679 /*
2680 * Software counter: cpu migrations
2681 */
2682
2683 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2684 {
2685 struct task_struct *curr = counter->ctx->task;
2686
2687 if (curr)
2688 return curr->se.nr_migrations;
2689 return cpu_nr_migrations(smp_processor_id());
2690 }
2691
2692 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2693 {
2694 u64 prev, now;
2695 s64 delta;
2696
2697 prev = atomic64_read(&counter->hw.prev_count);
2698 now = get_cpu_migrations(counter);
2699
2700 atomic64_set(&counter->hw.prev_count, now);
2701
2702 delta = now - prev;
2703
2704 atomic64_add(delta, &counter->count);
2705 }
2706
2707 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2708 {
2709 cpu_migrations_perf_counter_update(counter);
2710 }
2711
2712 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2713 {
2714 if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2715 atomic64_set(&counter->hw.prev_count,
2716 get_cpu_migrations(counter));
2717 return 0;
2718 }
2719
2720 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2721 {
2722 cpu_migrations_perf_counter_update(counter);
2723 }
2724
2725 static const struct pmu perf_ops_cpu_migrations = {
2726 .enable = cpu_migrations_perf_counter_enable,
2727 .disable = cpu_migrations_perf_counter_disable,
2728 .read = cpu_migrations_perf_counter_read,
2729 };
2730
2731 #ifdef CONFIG_EVENT_PROFILE
2732 void perf_tpcounter_event(int event_id)
2733 {
2734 struct pt_regs *regs = get_irq_regs();
2735
2736 if (!regs)
2737 regs = task_pt_regs(current);
2738
2739 __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
2740 }
2741 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
2742
2743 extern int ftrace_profile_enable(int);
2744 extern void ftrace_profile_disable(int);
2745
2746 static void tp_perf_counter_destroy(struct perf_counter *counter)
2747 {
2748 ftrace_profile_disable(perf_event_id(&counter->hw_event));
2749 }
2750
2751 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2752 {
2753 int event_id = perf_event_id(&counter->hw_event);
2754 int ret;
2755
2756 ret = ftrace_profile_enable(event_id);
2757 if (ret)
2758 return NULL;
2759
2760 counter->destroy = tp_perf_counter_destroy;
2761 counter->hw.irq_period = counter->hw_event.irq_period;
2762
2763 return &perf_ops_generic;
2764 }
2765 #else
2766 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2767 {
2768 return NULL;
2769 }
2770 #endif
2771
2772 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
2773 {
2774 struct perf_counter_hw_event *hw_event = &counter->hw_event;
2775 const struct pmu *pmu = NULL;
2776 struct hw_perf_counter *hwc = &counter->hw;
2777
2778 /*
2779 * Software counters (currently) can't in general distinguish
2780 * between user, kernel and hypervisor events.
2781 * However, context switches and cpu migrations are considered
2782 * to be kernel events, and page faults are never hypervisor
2783 * events.
2784 */
2785 switch (perf_event_id(&counter->hw_event)) {
2786 case PERF_COUNT_CPU_CLOCK:
2787 pmu = &perf_ops_cpu_clock;
2788
2789 if (hw_event->irq_period && hw_event->irq_period < 10000)
2790 hw_event->irq_period = 10000;
2791 break;
2792 case PERF_COUNT_TASK_CLOCK:
2793 /*
2794 * If the user instantiates this as a per-cpu counter,
2795 * use the cpu_clock counter instead.
2796 */
2797 if (counter->ctx->task)
2798 pmu = &perf_ops_task_clock;
2799 else
2800 pmu = &perf_ops_cpu_clock;
2801
2802 if (hw_event->irq_period && hw_event->irq_period < 10000)
2803 hw_event->irq_period = 10000;
2804 break;
2805 case PERF_COUNT_PAGE_FAULTS:
2806 case PERF_COUNT_PAGE_FAULTS_MIN:
2807 case PERF_COUNT_PAGE_FAULTS_MAJ:
2808 case PERF_COUNT_CONTEXT_SWITCHES:
2809 pmu = &perf_ops_generic;
2810 break;
2811 case PERF_COUNT_CPU_MIGRATIONS:
2812 if (!counter->hw_event.exclude_kernel)
2813 pmu = &perf_ops_cpu_migrations;
2814 break;
2815 }
2816
2817 if (pmu)
2818 hwc->irq_period = hw_event->irq_period;
2819
2820 return pmu;
2821 }
2822
2823 /*
2824 * Allocate and initialize a counter structure
2825 */
2826 static struct perf_counter *
2827 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
2828 int cpu,
2829 struct perf_counter_context *ctx,
2830 struct perf_counter *group_leader,
2831 gfp_t gfpflags)
2832 {
2833 const struct pmu *pmu;
2834 struct perf_counter *counter;
2835 long err;
2836
2837 counter = kzalloc(sizeof(*counter), gfpflags);
2838 if (!counter)
2839 return ERR_PTR(-ENOMEM);
2840
2841 /*
2842 * Single counters are their own group leaders, with an
2843 * empty sibling list:
2844 */
2845 if (!group_leader)
2846 group_leader = counter;
2847
2848 mutex_init(&counter->mutex);
2849 INIT_LIST_HEAD(&counter->list_entry);
2850 INIT_LIST_HEAD(&counter->event_entry);
2851 INIT_LIST_HEAD(&counter->sibling_list);
2852 init_waitqueue_head(&counter->waitq);
2853
2854 mutex_init(&counter->mmap_mutex);
2855
2856 INIT_LIST_HEAD(&counter->child_list);
2857
2858 counter->cpu = cpu;
2859 counter->hw_event = *hw_event;
2860 counter->group_leader = group_leader;
2861 counter->pmu = NULL;
2862 counter->ctx = ctx;
2863
2864 counter->state = PERF_COUNTER_STATE_INACTIVE;
2865 if (hw_event->disabled)
2866 counter->state = PERF_COUNTER_STATE_OFF;
2867
2868 pmu = NULL;
2869
2870 /*
2871 * we currently do not support PERF_RECORD_GROUP on inherited counters
2872 */
2873 if (hw_event->inherit && (hw_event->record_type & PERF_RECORD_GROUP))
2874 goto done;
2875
2876 if (perf_event_raw(hw_event)) {
2877 pmu = hw_perf_counter_init(counter);
2878 goto done;
2879 }
2880
2881 switch (perf_event_type(hw_event)) {
2882 case PERF_TYPE_HARDWARE:
2883 pmu = hw_perf_counter_init(counter);
2884 break;
2885
2886 case PERF_TYPE_SOFTWARE:
2887 pmu = sw_perf_counter_init(counter);
2888 break;
2889
2890 case PERF_TYPE_TRACEPOINT:
2891 pmu = tp_perf_counter_init(counter);
2892 break;
2893 }
2894 done:
2895 err = 0;
2896 if (!pmu)
2897 err = -EINVAL;
2898 else if (IS_ERR(pmu))
2899 err = PTR_ERR(pmu);
2900
2901 if (err) {
2902 kfree(counter);
2903 return ERR_PTR(err);
2904 }
2905
2906 counter->pmu = pmu;
2907
2908 atomic_inc(&nr_counters);
2909 if (counter->hw_event.mmap)
2910 atomic_inc(&nr_mmap_tracking);
2911 if (counter->hw_event.munmap)
2912 atomic_inc(&nr_munmap_tracking);
2913 if (counter->hw_event.comm)
2914 atomic_inc(&nr_comm_tracking);
2915
2916 return counter;
2917 }
2918
2919 /**
2920 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
2921 *
2922 * @hw_event_uptr: event type attributes for monitoring/sampling
2923 * @pid: target pid
2924 * @cpu: target cpu
2925 * @group_fd: group leader counter fd
2926 */
2927 SYSCALL_DEFINE5(perf_counter_open,
2928 const struct perf_counter_hw_event __user *, hw_event_uptr,
2929 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
2930 {
2931 struct perf_counter *counter, *group_leader;
2932 struct perf_counter_hw_event hw_event;
2933 struct perf_counter_context *ctx;
2934 struct file *counter_file = NULL;
2935 struct file *group_file = NULL;
2936 int fput_needed = 0;
2937 int fput_needed2 = 0;
2938 int ret;
2939
2940 /* for future expandability... */
2941 if (flags)
2942 return -EINVAL;
2943
2944 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2945 return -EFAULT;
2946
2947 /*
2948 * Get the target context (task or percpu):
2949 */
2950 ctx = find_get_context(pid, cpu);
2951 if (IS_ERR(ctx))
2952 return PTR_ERR(ctx);
2953
2954 /*
2955 * Look up the group leader (we will attach this counter to it):
2956 */
2957 group_leader = NULL;
2958 if (group_fd != -1) {
2959 ret = -EINVAL;
2960 group_file = fget_light(group_fd, &fput_needed);
2961 if (!group_file)
2962 goto err_put_context;
2963 if (group_file->f_op != &perf_fops)
2964 goto err_put_context;
2965
2966 group_leader = group_file->private_data;
2967 /*
2968 * Do not allow a recursive hierarchy (this new sibling
2969 * becoming part of another group-sibling):
2970 */
2971 if (group_leader->group_leader != group_leader)
2972 goto err_put_context;
2973 /*
2974 * Do not allow to attach to a group in a different
2975 * task or CPU context:
2976 */
2977 if (group_leader->ctx != ctx)
2978 goto err_put_context;
2979 /*
2980 * Only a group leader can be exclusive or pinned
2981 */
2982 if (hw_event.exclusive || hw_event.pinned)
2983 goto err_put_context;
2984 }
2985
2986 counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
2987 GFP_KERNEL);
2988 ret = PTR_ERR(counter);
2989 if (IS_ERR(counter))
2990 goto err_put_context;
2991
2992 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
2993 if (ret < 0)
2994 goto err_free_put_context;
2995
2996 counter_file = fget_light(ret, &fput_needed2);
2997 if (!counter_file)
2998 goto err_free_put_context;
2999
3000 counter->filp = counter_file;
3001 mutex_lock(&ctx->mutex);
3002 perf_install_in_context(ctx, counter, cpu);
3003 mutex_unlock(&ctx->mutex);
3004
3005 fput_light(counter_file, fput_needed2);
3006
3007 out_fput:
3008 fput_light(group_file, fput_needed);
3009
3010 return ret;
3011
3012 err_free_put_context:
3013 kfree(counter);
3014
3015 err_put_context:
3016 put_context(ctx);
3017
3018 goto out_fput;
3019 }
3020
3021 /*
3022 * Initialize the perf_counter context in a task_struct:
3023 */
3024 static void
3025 __perf_counter_init_context(struct perf_counter_context *ctx,
3026 struct task_struct *task)
3027 {
3028 memset(ctx, 0, sizeof(*ctx));
3029 spin_lock_init(&ctx->lock);
3030 mutex_init(&ctx->mutex);
3031 INIT_LIST_HEAD(&ctx->counter_list);
3032 INIT_LIST_HEAD(&ctx->event_list);
3033 ctx->task = task;
3034 }
3035
3036 /*
3037 * inherit a counter from parent task to child task:
3038 */
3039 static struct perf_counter *
3040 inherit_counter(struct perf_counter *parent_counter,
3041 struct task_struct *parent,
3042 struct perf_counter_context *parent_ctx,
3043 struct task_struct *child,
3044 struct perf_counter *group_leader,
3045 struct perf_counter_context *child_ctx)
3046 {
3047 struct perf_counter *child_counter;
3048
3049 /*
3050 * Instead of creating recursive hierarchies of counters,
3051 * we link inherited counters back to the original parent,
3052 * which has a filp for sure, which we use as the reference
3053 * count:
3054 */
3055 if (parent_counter->parent)
3056 parent_counter = parent_counter->parent;
3057
3058 child_counter = perf_counter_alloc(&parent_counter->hw_event,
3059 parent_counter->cpu, child_ctx,
3060 group_leader, GFP_KERNEL);
3061 if (IS_ERR(child_counter))
3062 return child_counter;
3063
3064 /*
3065 * Link it up in the child's context:
3066 */
3067 child_counter->task = child;
3068 add_counter_to_ctx(child_counter, child_ctx);
3069
3070 child_counter->parent = parent_counter;
3071 /*
3072 * inherit into child's child as well:
3073 */
3074 child_counter->hw_event.inherit = 1;
3075
3076 /*
3077 * Get a reference to the parent filp - we will fput it
3078 * when the child counter exits. This is safe to do because
3079 * we are in the parent and we know that the filp still
3080 * exists and has a nonzero count:
3081 */
3082 atomic_long_inc(&parent_counter->filp->f_count);
3083
3084 /*
3085 * Link this into the parent counter's child list
3086 */
3087 mutex_lock(&parent_counter->mutex);
3088 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3089
3090 /*
3091 * Make the child state follow the state of the parent counter,
3092 * not its hw_event.disabled bit. We hold the parent's mutex,
3093 * so we won't race with perf_counter_{en,dis}able_family.
3094 */
3095 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3096 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3097 else
3098 child_counter->state = PERF_COUNTER_STATE_OFF;
3099
3100 mutex_unlock(&parent_counter->mutex);
3101
3102 return child_counter;
3103 }
3104
3105 static int inherit_group(struct perf_counter *parent_counter,
3106 struct task_struct *parent,
3107 struct perf_counter_context *parent_ctx,
3108 struct task_struct *child,
3109 struct perf_counter_context *child_ctx)
3110 {
3111 struct perf_counter *leader;
3112 struct perf_counter *sub;
3113 struct perf_counter *child_ctr;
3114
3115 leader = inherit_counter(parent_counter, parent, parent_ctx,
3116 child, NULL, child_ctx);
3117 if (IS_ERR(leader))
3118 return PTR_ERR(leader);
3119 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3120 child_ctr = inherit_counter(sub, parent, parent_ctx,
3121 child, leader, child_ctx);
3122 if (IS_ERR(child_ctr))
3123 return PTR_ERR(child_ctr);
3124 }
3125 return 0;
3126 }
3127
3128 static void sync_child_counter(struct perf_counter *child_counter,
3129 struct perf_counter *parent_counter)
3130 {
3131 u64 parent_val, child_val;
3132
3133 parent_val = atomic64_read(&parent_counter->count);
3134 child_val = atomic64_read(&child_counter->count);
3135
3136 /*
3137 * Add back the child's count to the parent's count:
3138 */
3139 atomic64_add(child_val, &parent_counter->count);
3140 atomic64_add(child_counter->total_time_enabled,
3141 &parent_counter->child_total_time_enabled);
3142 atomic64_add(child_counter->total_time_running,
3143 &parent_counter->child_total_time_running);
3144
3145 /*
3146 * Remove this counter from the parent's list
3147 */
3148 mutex_lock(&parent_counter->mutex);
3149 list_del_init(&child_counter->child_list);
3150 mutex_unlock(&parent_counter->mutex);
3151
3152 /*
3153 * Release the parent counter, if this was the last
3154 * reference to it.
3155 */
3156 fput(parent_counter->filp);
3157 }
3158
3159 static void
3160 __perf_counter_exit_task(struct task_struct *child,
3161 struct perf_counter *child_counter,
3162 struct perf_counter_context *child_ctx)
3163 {
3164 struct perf_counter *parent_counter;
3165 struct perf_counter *sub, *tmp;
3166
3167 /*
3168 * If we do not self-reap then we have to wait for the
3169 * child task to unschedule (it will happen for sure),
3170 * so that its counter is at its final count. (This
3171 * condition triggers rarely - child tasks usually get
3172 * off their CPU before the parent has a chance to
3173 * get this far into the reaping action)
3174 */
3175 if (child != current) {
3176 wait_task_inactive(child, 0);
3177 list_del_init(&child_counter->list_entry);
3178 update_counter_times(child_counter);
3179 } else {
3180 struct perf_cpu_context *cpuctx;
3181 unsigned long flags;
3182 u64 perf_flags;
3183
3184 /*
3185 * Disable and unlink this counter.
3186 *
3187 * Be careful about zapping the list - IRQ/NMI context
3188 * could still be processing it:
3189 */
3190 local_irq_save(flags);
3191 perf_flags = hw_perf_save_disable();
3192
3193 cpuctx = &__get_cpu_var(perf_cpu_context);
3194
3195 group_sched_out(child_counter, cpuctx, child_ctx);
3196 update_counter_times(child_counter);
3197
3198 list_del_init(&child_counter->list_entry);
3199
3200 child_ctx->nr_counters--;
3201
3202 hw_perf_restore(perf_flags);
3203 local_irq_restore(flags);
3204 }
3205
3206 parent_counter = child_counter->parent;
3207 /*
3208 * It can happen that parent exits first, and has counters
3209 * that are still around due to the child reference. These
3210 * counters need to be zapped - but otherwise linger.
3211 */
3212 if (parent_counter) {
3213 sync_child_counter(child_counter, parent_counter);
3214 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
3215 list_entry) {
3216 if (sub->parent) {
3217 sync_child_counter(sub, sub->parent);
3218 free_counter(sub);
3219 }
3220 }
3221 free_counter(child_counter);
3222 }
3223 }
3224
3225 /*
3226 * When a child task exits, feed back counter values to parent counters.
3227 *
3228 * Note: we may be running in child context, but the PID is not hashed
3229 * anymore so new counters will not be added.
3230 */
3231 void perf_counter_exit_task(struct task_struct *child)
3232 {
3233 struct perf_counter *child_counter, *tmp;
3234 struct perf_counter_context *child_ctx;
3235
3236 child_ctx = &child->perf_counter_ctx;
3237
3238 if (likely(!child_ctx->nr_counters))
3239 return;
3240
3241 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3242 list_entry)
3243 __perf_counter_exit_task(child, child_counter, child_ctx);
3244 }
3245
3246 /*
3247 * Initialize the perf_counter context in task_struct
3248 */
3249 void perf_counter_init_task(struct task_struct *child)
3250 {
3251 struct perf_counter_context *child_ctx, *parent_ctx;
3252 struct perf_counter *counter;
3253 struct task_struct *parent = current;
3254
3255 child_ctx = &child->perf_counter_ctx;
3256 parent_ctx = &parent->perf_counter_ctx;
3257
3258 __perf_counter_init_context(child_ctx, child);
3259
3260 /*
3261 * This is executed from the parent task context, so inherit
3262 * counters that have been marked for cloning:
3263 */
3264
3265 if (likely(!parent_ctx->nr_counters))
3266 return;
3267
3268 /*
3269 * Lock the parent list. No need to lock the child - not PID
3270 * hashed yet and not running, so nobody can access it.
3271 */
3272 mutex_lock(&parent_ctx->mutex);
3273
3274 /*
3275 * We dont have to disable NMIs - we are only looking at
3276 * the list, not manipulating it:
3277 */
3278 list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
3279 if (!counter->hw_event.inherit)
3280 continue;
3281
3282 if (inherit_group(counter, parent,
3283 parent_ctx, child, child_ctx))
3284 break;
3285 }
3286
3287 mutex_unlock(&parent_ctx->mutex);
3288 }
3289
3290 static void __cpuinit perf_counter_init_cpu(int cpu)
3291 {
3292 struct perf_cpu_context *cpuctx;
3293
3294 cpuctx = &per_cpu(perf_cpu_context, cpu);
3295 __perf_counter_init_context(&cpuctx->ctx, NULL);
3296
3297 spin_lock(&perf_resource_lock);
3298 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3299 spin_unlock(&perf_resource_lock);
3300
3301 hw_perf_counter_setup(cpu);
3302 }
3303
3304 #ifdef CONFIG_HOTPLUG_CPU
3305 static void __perf_counter_exit_cpu(void *info)
3306 {
3307 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3308 struct perf_counter_context *ctx = &cpuctx->ctx;
3309 struct perf_counter *counter, *tmp;
3310
3311 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3312 __perf_counter_remove_from_context(counter);
3313 }
3314 static void perf_counter_exit_cpu(int cpu)
3315 {
3316 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3317 struct perf_counter_context *ctx = &cpuctx->ctx;
3318
3319 mutex_lock(&ctx->mutex);
3320 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3321 mutex_unlock(&ctx->mutex);
3322 }
3323 #else
3324 static inline void perf_counter_exit_cpu(int cpu) { }
3325 #endif
3326
3327 static int __cpuinit
3328 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3329 {
3330 unsigned int cpu = (long)hcpu;
3331
3332 switch (action) {
3333
3334 case CPU_UP_PREPARE:
3335 case CPU_UP_PREPARE_FROZEN:
3336 perf_counter_init_cpu(cpu);
3337 break;
3338
3339 case CPU_DOWN_PREPARE:
3340 case CPU_DOWN_PREPARE_FROZEN:
3341 perf_counter_exit_cpu(cpu);
3342 break;
3343
3344 default:
3345 break;
3346 }
3347
3348 return NOTIFY_OK;
3349 }
3350
3351 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3352 .notifier_call = perf_cpu_notify,
3353 };
3354
3355 void __init perf_counter_init(void)
3356 {
3357 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3358 (void *)(long)smp_processor_id());
3359 register_cpu_notifier(&perf_cpu_nb);
3360 }
3361
3362 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3363 {
3364 return sprintf(buf, "%d\n", perf_reserved_percpu);
3365 }
3366
3367 static ssize_t
3368 perf_set_reserve_percpu(struct sysdev_class *class,
3369 const char *buf,
3370 size_t count)
3371 {
3372 struct perf_cpu_context *cpuctx;
3373 unsigned long val;
3374 int err, cpu, mpt;
3375
3376 err = strict_strtoul(buf, 10, &val);
3377 if (err)
3378 return err;
3379 if (val > perf_max_counters)
3380 return -EINVAL;
3381
3382 spin_lock(&perf_resource_lock);
3383 perf_reserved_percpu = val;
3384 for_each_online_cpu(cpu) {
3385 cpuctx = &per_cpu(perf_cpu_context, cpu);
3386 spin_lock_irq(&cpuctx->ctx.lock);
3387 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3388 perf_max_counters - perf_reserved_percpu);
3389 cpuctx->max_pertask = mpt;
3390 spin_unlock_irq(&cpuctx->ctx.lock);
3391 }
3392 spin_unlock(&perf_resource_lock);
3393
3394 return count;
3395 }
3396
3397 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3398 {
3399 return sprintf(buf, "%d\n", perf_overcommit);
3400 }
3401
3402 static ssize_t
3403 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3404 {
3405 unsigned long val;
3406 int err;
3407
3408 err = strict_strtoul(buf, 10, &val);
3409 if (err)
3410 return err;
3411 if (val > 1)
3412 return -EINVAL;
3413
3414 spin_lock(&perf_resource_lock);
3415 perf_overcommit = val;
3416 spin_unlock(&perf_resource_lock);
3417
3418 return count;
3419 }
3420
3421 static SYSDEV_CLASS_ATTR(
3422 reserve_percpu,
3423 0644,
3424 perf_show_reserve_percpu,
3425 perf_set_reserve_percpu
3426 );
3427
3428 static SYSDEV_CLASS_ATTR(
3429 overcommit,
3430 0644,
3431 perf_show_overcommit,
3432 perf_set_overcommit
3433 );
3434
3435 static struct attribute *perfclass_attrs[] = {
3436 &attr_reserve_percpu.attr,
3437 &attr_overcommit.attr,
3438 NULL
3439 };
3440
3441 static struct attribute_group perfclass_attr_group = {
3442 .attrs = perfclass_attrs,
3443 .name = "perf_counters",
3444 };
3445
3446 static int __init perf_counter_sysfs_init(void)
3447 {
3448 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3449 &perfclass_attr_group);
3450 }
3451 device_initcall(perf_counter_sysfs_init);
This page took 0.166139 seconds and 6 git commands to generate.