perf_counter: Add PERF_SAMPLE_PERIOD
[deliverable/linux.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/hardirq.h>
24 #include <linux/rculist.h>
25 #include <linux/uaccess.h>
26 #include <linux/syscalls.h>
27 #include <linux/anon_inodes.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/perf_counter.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34 * Each CPU has a list of per CPU counters:
35 */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_counters __read_mostly;
44 static atomic_t nr_comm_counters __read_mostly;
45
46 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
47 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
48 int sysctl_perf_counter_limit __read_mostly = 100000; /* max NMIs per second */
49
50 static atomic64_t perf_counter_id;
51
52 /*
53 * Lock for (sysadmin-configurable) counter reservations:
54 */
55 static DEFINE_SPINLOCK(perf_resource_lock);
56
57 /*
58 * Architecture provided APIs - weak aliases:
59 */
60 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
61 {
62 return NULL;
63 }
64
65 void __weak hw_perf_disable(void) { barrier(); }
66 void __weak hw_perf_enable(void) { barrier(); }
67
68 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
69
70 int __weak
71 hw_perf_group_sched_in(struct perf_counter *group_leader,
72 struct perf_cpu_context *cpuctx,
73 struct perf_counter_context *ctx, int cpu)
74 {
75 return 0;
76 }
77
78 void __weak perf_counter_print_debug(void) { }
79
80 static DEFINE_PER_CPU(int, disable_count);
81
82 void __perf_disable(void)
83 {
84 __get_cpu_var(disable_count)++;
85 }
86
87 bool __perf_enable(void)
88 {
89 return !--__get_cpu_var(disable_count);
90 }
91
92 void perf_disable(void)
93 {
94 __perf_disable();
95 hw_perf_disable();
96 }
97
98 void perf_enable(void)
99 {
100 if (__perf_enable())
101 hw_perf_enable();
102 }
103
104 static void get_ctx(struct perf_counter_context *ctx)
105 {
106 atomic_inc(&ctx->refcount);
107 }
108
109 static void free_ctx(struct rcu_head *head)
110 {
111 struct perf_counter_context *ctx;
112
113 ctx = container_of(head, struct perf_counter_context, rcu_head);
114 kfree(ctx);
115 }
116
117 static void put_ctx(struct perf_counter_context *ctx)
118 {
119 if (atomic_dec_and_test(&ctx->refcount)) {
120 if (ctx->parent_ctx)
121 put_ctx(ctx->parent_ctx);
122 if (ctx->task)
123 put_task_struct(ctx->task);
124 call_rcu(&ctx->rcu_head, free_ctx);
125 }
126 }
127
128 /*
129 * Get the perf_counter_context for a task and lock it.
130 * This has to cope with with the fact that until it is locked,
131 * the context could get moved to another task.
132 */
133 static struct perf_counter_context *
134 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
135 {
136 struct perf_counter_context *ctx;
137
138 rcu_read_lock();
139 retry:
140 ctx = rcu_dereference(task->perf_counter_ctxp);
141 if (ctx) {
142 /*
143 * If this context is a clone of another, it might
144 * get swapped for another underneath us by
145 * perf_counter_task_sched_out, though the
146 * rcu_read_lock() protects us from any context
147 * getting freed. Lock the context and check if it
148 * got swapped before we could get the lock, and retry
149 * if so. If we locked the right context, then it
150 * can't get swapped on us any more.
151 */
152 spin_lock_irqsave(&ctx->lock, *flags);
153 if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
154 spin_unlock_irqrestore(&ctx->lock, *flags);
155 goto retry;
156 }
157 }
158 rcu_read_unlock();
159 return ctx;
160 }
161
162 /*
163 * Get the context for a task and increment its pin_count so it
164 * can't get swapped to another task. This also increments its
165 * reference count so that the context can't get freed.
166 */
167 static struct perf_counter_context *perf_pin_task_context(struct task_struct *task)
168 {
169 struct perf_counter_context *ctx;
170 unsigned long flags;
171
172 ctx = perf_lock_task_context(task, &flags);
173 if (ctx) {
174 ++ctx->pin_count;
175 get_ctx(ctx);
176 spin_unlock_irqrestore(&ctx->lock, flags);
177 }
178 return ctx;
179 }
180
181 static void perf_unpin_context(struct perf_counter_context *ctx)
182 {
183 unsigned long flags;
184
185 spin_lock_irqsave(&ctx->lock, flags);
186 --ctx->pin_count;
187 spin_unlock_irqrestore(&ctx->lock, flags);
188 put_ctx(ctx);
189 }
190
191 /*
192 * Add a counter from the lists for its context.
193 * Must be called with ctx->mutex and ctx->lock held.
194 */
195 static void
196 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
197 {
198 struct perf_counter *group_leader = counter->group_leader;
199
200 /*
201 * Depending on whether it is a standalone or sibling counter,
202 * add it straight to the context's counter list, or to the group
203 * leader's sibling list:
204 */
205 if (group_leader == counter)
206 list_add_tail(&counter->list_entry, &ctx->counter_list);
207 else {
208 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
209 group_leader->nr_siblings++;
210 }
211
212 list_add_rcu(&counter->event_entry, &ctx->event_list);
213 ctx->nr_counters++;
214 }
215
216 /*
217 * Remove a counter from the lists for its context.
218 * Must be called with ctx->mutex and ctx->lock held.
219 */
220 static void
221 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
222 {
223 struct perf_counter *sibling, *tmp;
224
225 if (list_empty(&counter->list_entry))
226 return;
227 ctx->nr_counters--;
228
229 list_del_init(&counter->list_entry);
230 list_del_rcu(&counter->event_entry);
231
232 if (counter->group_leader != counter)
233 counter->group_leader->nr_siblings--;
234
235 /*
236 * If this was a group counter with sibling counters then
237 * upgrade the siblings to singleton counters by adding them
238 * to the context list directly:
239 */
240 list_for_each_entry_safe(sibling, tmp,
241 &counter->sibling_list, list_entry) {
242
243 list_move_tail(&sibling->list_entry, &ctx->counter_list);
244 sibling->group_leader = sibling;
245 }
246 }
247
248 static void
249 counter_sched_out(struct perf_counter *counter,
250 struct perf_cpu_context *cpuctx,
251 struct perf_counter_context *ctx)
252 {
253 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
254 return;
255
256 counter->state = PERF_COUNTER_STATE_INACTIVE;
257 counter->tstamp_stopped = ctx->time;
258 counter->pmu->disable(counter);
259 counter->oncpu = -1;
260
261 if (!is_software_counter(counter))
262 cpuctx->active_oncpu--;
263 ctx->nr_active--;
264 if (counter->attr.exclusive || !cpuctx->active_oncpu)
265 cpuctx->exclusive = 0;
266 }
267
268 static void
269 group_sched_out(struct perf_counter *group_counter,
270 struct perf_cpu_context *cpuctx,
271 struct perf_counter_context *ctx)
272 {
273 struct perf_counter *counter;
274
275 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
276 return;
277
278 counter_sched_out(group_counter, cpuctx, ctx);
279
280 /*
281 * Schedule out siblings (if any):
282 */
283 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
284 counter_sched_out(counter, cpuctx, ctx);
285
286 if (group_counter->attr.exclusive)
287 cpuctx->exclusive = 0;
288 }
289
290 /*
291 * Cross CPU call to remove a performance counter
292 *
293 * We disable the counter on the hardware level first. After that we
294 * remove it from the context list.
295 */
296 static void __perf_counter_remove_from_context(void *info)
297 {
298 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
299 struct perf_counter *counter = info;
300 struct perf_counter_context *ctx = counter->ctx;
301
302 /*
303 * If this is a task context, we need to check whether it is
304 * the current task context of this cpu. If not it has been
305 * scheduled out before the smp call arrived.
306 */
307 if (ctx->task && cpuctx->task_ctx != ctx)
308 return;
309
310 spin_lock(&ctx->lock);
311 /*
312 * Protect the list operation against NMI by disabling the
313 * counters on a global level.
314 */
315 perf_disable();
316
317 counter_sched_out(counter, cpuctx, ctx);
318
319 list_del_counter(counter, ctx);
320
321 if (!ctx->task) {
322 /*
323 * Allow more per task counters with respect to the
324 * reservation:
325 */
326 cpuctx->max_pertask =
327 min(perf_max_counters - ctx->nr_counters,
328 perf_max_counters - perf_reserved_percpu);
329 }
330
331 perf_enable();
332 spin_unlock(&ctx->lock);
333 }
334
335
336 /*
337 * Remove the counter from a task's (or a CPU's) list of counters.
338 *
339 * Must be called with ctx->mutex held.
340 *
341 * CPU counters are removed with a smp call. For task counters we only
342 * call when the task is on a CPU.
343 *
344 * If counter->ctx is a cloned context, callers must make sure that
345 * every task struct that counter->ctx->task could possibly point to
346 * remains valid. This is OK when called from perf_release since
347 * that only calls us on the top-level context, which can't be a clone.
348 * When called from perf_counter_exit_task, it's OK because the
349 * context has been detached from its task.
350 */
351 static void perf_counter_remove_from_context(struct perf_counter *counter)
352 {
353 struct perf_counter_context *ctx = counter->ctx;
354 struct task_struct *task = ctx->task;
355
356 if (!task) {
357 /*
358 * Per cpu counters are removed via an smp call and
359 * the removal is always sucessful.
360 */
361 smp_call_function_single(counter->cpu,
362 __perf_counter_remove_from_context,
363 counter, 1);
364 return;
365 }
366
367 retry:
368 task_oncpu_function_call(task, __perf_counter_remove_from_context,
369 counter);
370
371 spin_lock_irq(&ctx->lock);
372 /*
373 * If the context is active we need to retry the smp call.
374 */
375 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
376 spin_unlock_irq(&ctx->lock);
377 goto retry;
378 }
379
380 /*
381 * The lock prevents that this context is scheduled in so we
382 * can remove the counter safely, if the call above did not
383 * succeed.
384 */
385 if (!list_empty(&counter->list_entry)) {
386 list_del_counter(counter, ctx);
387 }
388 spin_unlock_irq(&ctx->lock);
389 }
390
391 static inline u64 perf_clock(void)
392 {
393 return cpu_clock(smp_processor_id());
394 }
395
396 /*
397 * Update the record of the current time in a context.
398 */
399 static void update_context_time(struct perf_counter_context *ctx)
400 {
401 u64 now = perf_clock();
402
403 ctx->time += now - ctx->timestamp;
404 ctx->timestamp = now;
405 }
406
407 /*
408 * Update the total_time_enabled and total_time_running fields for a counter.
409 */
410 static void update_counter_times(struct perf_counter *counter)
411 {
412 struct perf_counter_context *ctx = counter->ctx;
413 u64 run_end;
414
415 if (counter->state < PERF_COUNTER_STATE_INACTIVE)
416 return;
417
418 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
419
420 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
421 run_end = counter->tstamp_stopped;
422 else
423 run_end = ctx->time;
424
425 counter->total_time_running = run_end - counter->tstamp_running;
426 }
427
428 /*
429 * Update total_time_enabled and total_time_running for all counters in a group.
430 */
431 static void update_group_times(struct perf_counter *leader)
432 {
433 struct perf_counter *counter;
434
435 update_counter_times(leader);
436 list_for_each_entry(counter, &leader->sibling_list, list_entry)
437 update_counter_times(counter);
438 }
439
440 /*
441 * Cross CPU call to disable a performance counter
442 */
443 static void __perf_counter_disable(void *info)
444 {
445 struct perf_counter *counter = info;
446 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
447 struct perf_counter_context *ctx = counter->ctx;
448
449 /*
450 * If this is a per-task counter, need to check whether this
451 * counter's task is the current task on this cpu.
452 */
453 if (ctx->task && cpuctx->task_ctx != ctx)
454 return;
455
456 spin_lock(&ctx->lock);
457
458 /*
459 * If the counter is on, turn it off.
460 * If it is in error state, leave it in error state.
461 */
462 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
463 update_context_time(ctx);
464 update_counter_times(counter);
465 if (counter == counter->group_leader)
466 group_sched_out(counter, cpuctx, ctx);
467 else
468 counter_sched_out(counter, cpuctx, ctx);
469 counter->state = PERF_COUNTER_STATE_OFF;
470 }
471
472 spin_unlock(&ctx->lock);
473 }
474
475 /*
476 * Disable a counter.
477 *
478 * If counter->ctx is a cloned context, callers must make sure that
479 * every task struct that counter->ctx->task could possibly point to
480 * remains valid. This condition is satisifed when called through
481 * perf_counter_for_each_child or perf_counter_for_each because they
482 * hold the top-level counter's child_mutex, so any descendant that
483 * goes to exit will block in sync_child_counter.
484 * When called from perf_pending_counter it's OK because counter->ctx
485 * is the current context on this CPU and preemption is disabled,
486 * hence we can't get into perf_counter_task_sched_out for this context.
487 */
488 static void perf_counter_disable(struct perf_counter *counter)
489 {
490 struct perf_counter_context *ctx = counter->ctx;
491 struct task_struct *task = ctx->task;
492
493 if (!task) {
494 /*
495 * Disable the counter on the cpu that it's on
496 */
497 smp_call_function_single(counter->cpu, __perf_counter_disable,
498 counter, 1);
499 return;
500 }
501
502 retry:
503 task_oncpu_function_call(task, __perf_counter_disable, counter);
504
505 spin_lock_irq(&ctx->lock);
506 /*
507 * If the counter is still active, we need to retry the cross-call.
508 */
509 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
510 spin_unlock_irq(&ctx->lock);
511 goto retry;
512 }
513
514 /*
515 * Since we have the lock this context can't be scheduled
516 * in, so we can change the state safely.
517 */
518 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
519 update_counter_times(counter);
520 counter->state = PERF_COUNTER_STATE_OFF;
521 }
522
523 spin_unlock_irq(&ctx->lock);
524 }
525
526 static int
527 counter_sched_in(struct perf_counter *counter,
528 struct perf_cpu_context *cpuctx,
529 struct perf_counter_context *ctx,
530 int cpu)
531 {
532 if (counter->state <= PERF_COUNTER_STATE_OFF)
533 return 0;
534
535 counter->state = PERF_COUNTER_STATE_ACTIVE;
536 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
537 /*
538 * The new state must be visible before we turn it on in the hardware:
539 */
540 smp_wmb();
541
542 if (counter->pmu->enable(counter)) {
543 counter->state = PERF_COUNTER_STATE_INACTIVE;
544 counter->oncpu = -1;
545 return -EAGAIN;
546 }
547
548 counter->tstamp_running += ctx->time - counter->tstamp_stopped;
549
550 if (!is_software_counter(counter))
551 cpuctx->active_oncpu++;
552 ctx->nr_active++;
553
554 if (counter->attr.exclusive)
555 cpuctx->exclusive = 1;
556
557 return 0;
558 }
559
560 static int
561 group_sched_in(struct perf_counter *group_counter,
562 struct perf_cpu_context *cpuctx,
563 struct perf_counter_context *ctx,
564 int cpu)
565 {
566 struct perf_counter *counter, *partial_group;
567 int ret;
568
569 if (group_counter->state == PERF_COUNTER_STATE_OFF)
570 return 0;
571
572 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
573 if (ret)
574 return ret < 0 ? ret : 0;
575
576 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
577 return -EAGAIN;
578
579 /*
580 * Schedule in siblings as one group (if any):
581 */
582 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
583 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
584 partial_group = counter;
585 goto group_error;
586 }
587 }
588
589 return 0;
590
591 group_error:
592 /*
593 * Groups can be scheduled in as one unit only, so undo any
594 * partial group before returning:
595 */
596 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
597 if (counter == partial_group)
598 break;
599 counter_sched_out(counter, cpuctx, ctx);
600 }
601 counter_sched_out(group_counter, cpuctx, ctx);
602
603 return -EAGAIN;
604 }
605
606 /*
607 * Return 1 for a group consisting entirely of software counters,
608 * 0 if the group contains any hardware counters.
609 */
610 static int is_software_only_group(struct perf_counter *leader)
611 {
612 struct perf_counter *counter;
613
614 if (!is_software_counter(leader))
615 return 0;
616
617 list_for_each_entry(counter, &leader->sibling_list, list_entry)
618 if (!is_software_counter(counter))
619 return 0;
620
621 return 1;
622 }
623
624 /*
625 * Work out whether we can put this counter group on the CPU now.
626 */
627 static int group_can_go_on(struct perf_counter *counter,
628 struct perf_cpu_context *cpuctx,
629 int can_add_hw)
630 {
631 /*
632 * Groups consisting entirely of software counters can always go on.
633 */
634 if (is_software_only_group(counter))
635 return 1;
636 /*
637 * If an exclusive group is already on, no other hardware
638 * counters can go on.
639 */
640 if (cpuctx->exclusive)
641 return 0;
642 /*
643 * If this group is exclusive and there are already
644 * counters on the CPU, it can't go on.
645 */
646 if (counter->attr.exclusive && cpuctx->active_oncpu)
647 return 0;
648 /*
649 * Otherwise, try to add it if all previous groups were able
650 * to go on.
651 */
652 return can_add_hw;
653 }
654
655 static void add_counter_to_ctx(struct perf_counter *counter,
656 struct perf_counter_context *ctx)
657 {
658 list_add_counter(counter, ctx);
659 counter->tstamp_enabled = ctx->time;
660 counter->tstamp_running = ctx->time;
661 counter->tstamp_stopped = ctx->time;
662 }
663
664 /*
665 * Cross CPU call to install and enable a performance counter
666 *
667 * Must be called with ctx->mutex held
668 */
669 static void __perf_install_in_context(void *info)
670 {
671 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
672 struct perf_counter *counter = info;
673 struct perf_counter_context *ctx = counter->ctx;
674 struct perf_counter *leader = counter->group_leader;
675 int cpu = smp_processor_id();
676 int err;
677
678 /*
679 * If this is a task context, we need to check whether it is
680 * the current task context of this cpu. If not it has been
681 * scheduled out before the smp call arrived.
682 * Or possibly this is the right context but it isn't
683 * on this cpu because it had no counters.
684 */
685 if (ctx->task && cpuctx->task_ctx != ctx) {
686 if (cpuctx->task_ctx || ctx->task != current)
687 return;
688 cpuctx->task_ctx = ctx;
689 }
690
691 spin_lock(&ctx->lock);
692 ctx->is_active = 1;
693 update_context_time(ctx);
694
695 /*
696 * Protect the list operation against NMI by disabling the
697 * counters on a global level. NOP for non NMI based counters.
698 */
699 perf_disable();
700
701 add_counter_to_ctx(counter, ctx);
702
703 /*
704 * Don't put the counter on if it is disabled or if
705 * it is in a group and the group isn't on.
706 */
707 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
708 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
709 goto unlock;
710
711 /*
712 * An exclusive counter can't go on if there are already active
713 * hardware counters, and no hardware counter can go on if there
714 * is already an exclusive counter on.
715 */
716 if (!group_can_go_on(counter, cpuctx, 1))
717 err = -EEXIST;
718 else
719 err = counter_sched_in(counter, cpuctx, ctx, cpu);
720
721 if (err) {
722 /*
723 * This counter couldn't go on. If it is in a group
724 * then we have to pull the whole group off.
725 * If the counter group is pinned then put it in error state.
726 */
727 if (leader != counter)
728 group_sched_out(leader, cpuctx, ctx);
729 if (leader->attr.pinned) {
730 update_group_times(leader);
731 leader->state = PERF_COUNTER_STATE_ERROR;
732 }
733 }
734
735 if (!err && !ctx->task && cpuctx->max_pertask)
736 cpuctx->max_pertask--;
737
738 unlock:
739 perf_enable();
740
741 spin_unlock(&ctx->lock);
742 }
743
744 /*
745 * Attach a performance counter to a context
746 *
747 * First we add the counter to the list with the hardware enable bit
748 * in counter->hw_config cleared.
749 *
750 * If the counter is attached to a task which is on a CPU we use a smp
751 * call to enable it in the task context. The task might have been
752 * scheduled away, but we check this in the smp call again.
753 *
754 * Must be called with ctx->mutex held.
755 */
756 static void
757 perf_install_in_context(struct perf_counter_context *ctx,
758 struct perf_counter *counter,
759 int cpu)
760 {
761 struct task_struct *task = ctx->task;
762
763 if (!task) {
764 /*
765 * Per cpu counters are installed via an smp call and
766 * the install is always sucessful.
767 */
768 smp_call_function_single(cpu, __perf_install_in_context,
769 counter, 1);
770 return;
771 }
772
773 retry:
774 task_oncpu_function_call(task, __perf_install_in_context,
775 counter);
776
777 spin_lock_irq(&ctx->lock);
778 /*
779 * we need to retry the smp call.
780 */
781 if (ctx->is_active && list_empty(&counter->list_entry)) {
782 spin_unlock_irq(&ctx->lock);
783 goto retry;
784 }
785
786 /*
787 * The lock prevents that this context is scheduled in so we
788 * can add the counter safely, if it the call above did not
789 * succeed.
790 */
791 if (list_empty(&counter->list_entry))
792 add_counter_to_ctx(counter, ctx);
793 spin_unlock_irq(&ctx->lock);
794 }
795
796 /*
797 * Cross CPU call to enable a performance counter
798 */
799 static void __perf_counter_enable(void *info)
800 {
801 struct perf_counter *counter = info;
802 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
803 struct perf_counter_context *ctx = counter->ctx;
804 struct perf_counter *leader = counter->group_leader;
805 int err;
806
807 /*
808 * If this is a per-task counter, need to check whether this
809 * counter's task is the current task on this cpu.
810 */
811 if (ctx->task && cpuctx->task_ctx != ctx) {
812 if (cpuctx->task_ctx || ctx->task != current)
813 return;
814 cpuctx->task_ctx = ctx;
815 }
816
817 spin_lock(&ctx->lock);
818 ctx->is_active = 1;
819 update_context_time(ctx);
820
821 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
822 goto unlock;
823 counter->state = PERF_COUNTER_STATE_INACTIVE;
824 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
825
826 /*
827 * If the counter is in a group and isn't the group leader,
828 * then don't put it on unless the group is on.
829 */
830 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
831 goto unlock;
832
833 if (!group_can_go_on(counter, cpuctx, 1)) {
834 err = -EEXIST;
835 } else {
836 perf_disable();
837 if (counter == leader)
838 err = group_sched_in(counter, cpuctx, ctx,
839 smp_processor_id());
840 else
841 err = counter_sched_in(counter, cpuctx, ctx,
842 smp_processor_id());
843 perf_enable();
844 }
845
846 if (err) {
847 /*
848 * If this counter can't go on and it's part of a
849 * group, then the whole group has to come off.
850 */
851 if (leader != counter)
852 group_sched_out(leader, cpuctx, ctx);
853 if (leader->attr.pinned) {
854 update_group_times(leader);
855 leader->state = PERF_COUNTER_STATE_ERROR;
856 }
857 }
858
859 unlock:
860 spin_unlock(&ctx->lock);
861 }
862
863 /*
864 * Enable a counter.
865 *
866 * If counter->ctx is a cloned context, callers must make sure that
867 * every task struct that counter->ctx->task could possibly point to
868 * remains valid. This condition is satisfied when called through
869 * perf_counter_for_each_child or perf_counter_for_each as described
870 * for perf_counter_disable.
871 */
872 static void perf_counter_enable(struct perf_counter *counter)
873 {
874 struct perf_counter_context *ctx = counter->ctx;
875 struct task_struct *task = ctx->task;
876
877 if (!task) {
878 /*
879 * Enable the counter on the cpu that it's on
880 */
881 smp_call_function_single(counter->cpu, __perf_counter_enable,
882 counter, 1);
883 return;
884 }
885
886 spin_lock_irq(&ctx->lock);
887 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
888 goto out;
889
890 /*
891 * If the counter is in error state, clear that first.
892 * That way, if we see the counter in error state below, we
893 * know that it has gone back into error state, as distinct
894 * from the task having been scheduled away before the
895 * cross-call arrived.
896 */
897 if (counter->state == PERF_COUNTER_STATE_ERROR)
898 counter->state = PERF_COUNTER_STATE_OFF;
899
900 retry:
901 spin_unlock_irq(&ctx->lock);
902 task_oncpu_function_call(task, __perf_counter_enable, counter);
903
904 spin_lock_irq(&ctx->lock);
905
906 /*
907 * If the context is active and the counter is still off,
908 * we need to retry the cross-call.
909 */
910 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
911 goto retry;
912
913 /*
914 * Since we have the lock this context can't be scheduled
915 * in, so we can change the state safely.
916 */
917 if (counter->state == PERF_COUNTER_STATE_OFF) {
918 counter->state = PERF_COUNTER_STATE_INACTIVE;
919 counter->tstamp_enabled =
920 ctx->time - counter->total_time_enabled;
921 }
922 out:
923 spin_unlock_irq(&ctx->lock);
924 }
925
926 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
927 {
928 /*
929 * not supported on inherited counters
930 */
931 if (counter->attr.inherit)
932 return -EINVAL;
933
934 atomic_add(refresh, &counter->event_limit);
935 perf_counter_enable(counter);
936
937 return 0;
938 }
939
940 void __perf_counter_sched_out(struct perf_counter_context *ctx,
941 struct perf_cpu_context *cpuctx)
942 {
943 struct perf_counter *counter;
944
945 spin_lock(&ctx->lock);
946 ctx->is_active = 0;
947 if (likely(!ctx->nr_counters))
948 goto out;
949 update_context_time(ctx);
950
951 perf_disable();
952 if (ctx->nr_active) {
953 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
954 if (counter != counter->group_leader)
955 counter_sched_out(counter, cpuctx, ctx);
956 else
957 group_sched_out(counter, cpuctx, ctx);
958 }
959 }
960 perf_enable();
961 out:
962 spin_unlock(&ctx->lock);
963 }
964
965 /*
966 * Test whether two contexts are equivalent, i.e. whether they
967 * have both been cloned from the same version of the same context
968 * and they both have the same number of enabled counters.
969 * If the number of enabled counters is the same, then the set
970 * of enabled counters should be the same, because these are both
971 * inherited contexts, therefore we can't access individual counters
972 * in them directly with an fd; we can only enable/disable all
973 * counters via prctl, or enable/disable all counters in a family
974 * via ioctl, which will have the same effect on both contexts.
975 */
976 static int context_equiv(struct perf_counter_context *ctx1,
977 struct perf_counter_context *ctx2)
978 {
979 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
980 && ctx1->parent_gen == ctx2->parent_gen
981 && !ctx1->pin_count && !ctx2->pin_count;
982 }
983
984 /*
985 * Called from scheduler to remove the counters of the current task,
986 * with interrupts disabled.
987 *
988 * We stop each counter and update the counter value in counter->count.
989 *
990 * This does not protect us against NMI, but disable()
991 * sets the disabled bit in the control field of counter _before_
992 * accessing the counter control register. If a NMI hits, then it will
993 * not restart the counter.
994 */
995 void perf_counter_task_sched_out(struct task_struct *task,
996 struct task_struct *next, int cpu)
997 {
998 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
999 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1000 struct perf_counter_context *next_ctx;
1001 struct perf_counter_context *parent;
1002 struct pt_regs *regs;
1003 int do_switch = 1;
1004
1005 regs = task_pt_regs(task);
1006 perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
1007
1008 if (likely(!ctx || !cpuctx->task_ctx))
1009 return;
1010
1011 update_context_time(ctx);
1012
1013 rcu_read_lock();
1014 parent = rcu_dereference(ctx->parent_ctx);
1015 next_ctx = next->perf_counter_ctxp;
1016 if (parent && next_ctx &&
1017 rcu_dereference(next_ctx->parent_ctx) == parent) {
1018 /*
1019 * Looks like the two contexts are clones, so we might be
1020 * able to optimize the context switch. We lock both
1021 * contexts and check that they are clones under the
1022 * lock (including re-checking that neither has been
1023 * uncloned in the meantime). It doesn't matter which
1024 * order we take the locks because no other cpu could
1025 * be trying to lock both of these tasks.
1026 */
1027 spin_lock(&ctx->lock);
1028 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1029 if (context_equiv(ctx, next_ctx)) {
1030 /*
1031 * XXX do we need a memory barrier of sorts
1032 * wrt to rcu_dereference() of perf_counter_ctxp
1033 */
1034 task->perf_counter_ctxp = next_ctx;
1035 next->perf_counter_ctxp = ctx;
1036 ctx->task = next;
1037 next_ctx->task = task;
1038 do_switch = 0;
1039 }
1040 spin_unlock(&next_ctx->lock);
1041 spin_unlock(&ctx->lock);
1042 }
1043 rcu_read_unlock();
1044
1045 if (do_switch) {
1046 __perf_counter_sched_out(ctx, cpuctx);
1047 cpuctx->task_ctx = NULL;
1048 }
1049 }
1050
1051 /*
1052 * Called with IRQs disabled
1053 */
1054 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
1055 {
1056 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1057
1058 if (!cpuctx->task_ctx)
1059 return;
1060
1061 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1062 return;
1063
1064 __perf_counter_sched_out(ctx, cpuctx);
1065 cpuctx->task_ctx = NULL;
1066 }
1067
1068 /*
1069 * Called with IRQs disabled
1070 */
1071 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1072 {
1073 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1074 }
1075
1076 static void
1077 __perf_counter_sched_in(struct perf_counter_context *ctx,
1078 struct perf_cpu_context *cpuctx, int cpu)
1079 {
1080 struct perf_counter *counter;
1081 int can_add_hw = 1;
1082
1083 spin_lock(&ctx->lock);
1084 ctx->is_active = 1;
1085 if (likely(!ctx->nr_counters))
1086 goto out;
1087
1088 ctx->timestamp = perf_clock();
1089
1090 perf_disable();
1091
1092 /*
1093 * First go through the list and put on any pinned groups
1094 * in order to give them the best chance of going on.
1095 */
1096 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1097 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1098 !counter->attr.pinned)
1099 continue;
1100 if (counter->cpu != -1 && counter->cpu != cpu)
1101 continue;
1102
1103 if (counter != counter->group_leader)
1104 counter_sched_in(counter, cpuctx, ctx, cpu);
1105 else {
1106 if (group_can_go_on(counter, cpuctx, 1))
1107 group_sched_in(counter, cpuctx, ctx, cpu);
1108 }
1109
1110 /*
1111 * If this pinned group hasn't been scheduled,
1112 * put it in error state.
1113 */
1114 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1115 update_group_times(counter);
1116 counter->state = PERF_COUNTER_STATE_ERROR;
1117 }
1118 }
1119
1120 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1121 /*
1122 * Ignore counters in OFF or ERROR state, and
1123 * ignore pinned counters since we did them already.
1124 */
1125 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1126 counter->attr.pinned)
1127 continue;
1128
1129 /*
1130 * Listen to the 'cpu' scheduling filter constraint
1131 * of counters:
1132 */
1133 if (counter->cpu != -1 && counter->cpu != cpu)
1134 continue;
1135
1136 if (counter != counter->group_leader) {
1137 if (counter_sched_in(counter, cpuctx, ctx, cpu))
1138 can_add_hw = 0;
1139 } else {
1140 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1141 if (group_sched_in(counter, cpuctx, ctx, cpu))
1142 can_add_hw = 0;
1143 }
1144 }
1145 }
1146 perf_enable();
1147 out:
1148 spin_unlock(&ctx->lock);
1149 }
1150
1151 /*
1152 * Called from scheduler to add the counters of the current task
1153 * with interrupts disabled.
1154 *
1155 * We restore the counter value and then enable it.
1156 *
1157 * This does not protect us against NMI, but enable()
1158 * sets the enabled bit in the control field of counter _before_
1159 * accessing the counter control register. If a NMI hits, then it will
1160 * keep the counter running.
1161 */
1162 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1163 {
1164 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1165 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1166
1167 if (likely(!ctx))
1168 return;
1169 if (cpuctx->task_ctx == ctx)
1170 return;
1171 __perf_counter_sched_in(ctx, cpuctx, cpu);
1172 cpuctx->task_ctx = ctx;
1173 }
1174
1175 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1176 {
1177 struct perf_counter_context *ctx = &cpuctx->ctx;
1178
1179 __perf_counter_sched_in(ctx, cpuctx, cpu);
1180 }
1181
1182 #define MAX_INTERRUPTS (~0ULL)
1183
1184 static void perf_log_throttle(struct perf_counter *counter, int enable);
1185 static void perf_log_period(struct perf_counter *counter, u64 period);
1186
1187 static void perf_adjust_freq(struct perf_counter_context *ctx)
1188 {
1189 struct perf_counter *counter;
1190 u64 interrupts, sample_period;
1191 u64 events, period;
1192 s64 delta;
1193
1194 spin_lock(&ctx->lock);
1195 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1196 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1197 continue;
1198
1199 interrupts = counter->hw.interrupts;
1200 counter->hw.interrupts = 0;
1201
1202 if (interrupts == MAX_INTERRUPTS) {
1203 perf_log_throttle(counter, 1);
1204 counter->pmu->unthrottle(counter);
1205 interrupts = 2*sysctl_perf_counter_limit/HZ;
1206 }
1207
1208 if (!counter->attr.freq || !counter->attr.sample_freq)
1209 continue;
1210
1211 events = HZ * interrupts * counter->hw.sample_period;
1212 period = div64_u64(events, counter->attr.sample_freq);
1213
1214 delta = (s64)(1 + period - counter->hw.sample_period);
1215 delta >>= 1;
1216
1217 sample_period = counter->hw.sample_period + delta;
1218
1219 if (!sample_period)
1220 sample_period = 1;
1221
1222 perf_log_period(counter, sample_period);
1223
1224 counter->hw.sample_period = sample_period;
1225 }
1226 spin_unlock(&ctx->lock);
1227 }
1228
1229 /*
1230 * Round-robin a context's counters:
1231 */
1232 static void rotate_ctx(struct perf_counter_context *ctx)
1233 {
1234 struct perf_counter *counter;
1235
1236 if (!ctx->nr_counters)
1237 return;
1238
1239 spin_lock(&ctx->lock);
1240 /*
1241 * Rotate the first entry last (works just fine for group counters too):
1242 */
1243 perf_disable();
1244 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1245 list_move_tail(&counter->list_entry, &ctx->counter_list);
1246 break;
1247 }
1248 perf_enable();
1249
1250 spin_unlock(&ctx->lock);
1251 }
1252
1253 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1254 {
1255 struct perf_cpu_context *cpuctx;
1256 struct perf_counter_context *ctx;
1257
1258 if (!atomic_read(&nr_counters))
1259 return;
1260
1261 cpuctx = &per_cpu(perf_cpu_context, cpu);
1262 ctx = curr->perf_counter_ctxp;
1263
1264 perf_adjust_freq(&cpuctx->ctx);
1265 if (ctx)
1266 perf_adjust_freq(ctx);
1267
1268 perf_counter_cpu_sched_out(cpuctx);
1269 if (ctx)
1270 __perf_counter_task_sched_out(ctx);
1271
1272 rotate_ctx(&cpuctx->ctx);
1273 if (ctx)
1274 rotate_ctx(ctx);
1275
1276 perf_counter_cpu_sched_in(cpuctx, cpu);
1277 if (ctx)
1278 perf_counter_task_sched_in(curr, cpu);
1279 }
1280
1281 /*
1282 * Cross CPU call to read the hardware counter
1283 */
1284 static void __read(void *info)
1285 {
1286 struct perf_counter *counter = info;
1287 struct perf_counter_context *ctx = counter->ctx;
1288 unsigned long flags;
1289
1290 local_irq_save(flags);
1291 if (ctx->is_active)
1292 update_context_time(ctx);
1293 counter->pmu->read(counter);
1294 update_counter_times(counter);
1295 local_irq_restore(flags);
1296 }
1297
1298 static u64 perf_counter_read(struct perf_counter *counter)
1299 {
1300 /*
1301 * If counter is enabled and currently active on a CPU, update the
1302 * value in the counter structure:
1303 */
1304 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1305 smp_call_function_single(counter->oncpu,
1306 __read, counter, 1);
1307 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1308 update_counter_times(counter);
1309 }
1310
1311 return atomic64_read(&counter->count);
1312 }
1313
1314 /*
1315 * Initialize the perf_counter context in a task_struct:
1316 */
1317 static void
1318 __perf_counter_init_context(struct perf_counter_context *ctx,
1319 struct task_struct *task)
1320 {
1321 memset(ctx, 0, sizeof(*ctx));
1322 spin_lock_init(&ctx->lock);
1323 mutex_init(&ctx->mutex);
1324 INIT_LIST_HEAD(&ctx->counter_list);
1325 INIT_LIST_HEAD(&ctx->event_list);
1326 atomic_set(&ctx->refcount, 1);
1327 ctx->task = task;
1328 }
1329
1330 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1331 {
1332 struct perf_counter_context *parent_ctx;
1333 struct perf_counter_context *ctx;
1334 struct perf_cpu_context *cpuctx;
1335 struct task_struct *task;
1336 unsigned long flags;
1337 int err;
1338
1339 /*
1340 * If cpu is not a wildcard then this is a percpu counter:
1341 */
1342 if (cpu != -1) {
1343 /* Must be root to operate on a CPU counter: */
1344 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1345 return ERR_PTR(-EACCES);
1346
1347 if (cpu < 0 || cpu > num_possible_cpus())
1348 return ERR_PTR(-EINVAL);
1349
1350 /*
1351 * We could be clever and allow to attach a counter to an
1352 * offline CPU and activate it when the CPU comes up, but
1353 * that's for later.
1354 */
1355 if (!cpu_isset(cpu, cpu_online_map))
1356 return ERR_PTR(-ENODEV);
1357
1358 cpuctx = &per_cpu(perf_cpu_context, cpu);
1359 ctx = &cpuctx->ctx;
1360 get_ctx(ctx);
1361
1362 return ctx;
1363 }
1364
1365 rcu_read_lock();
1366 if (!pid)
1367 task = current;
1368 else
1369 task = find_task_by_vpid(pid);
1370 if (task)
1371 get_task_struct(task);
1372 rcu_read_unlock();
1373
1374 if (!task)
1375 return ERR_PTR(-ESRCH);
1376
1377 /*
1378 * Can't attach counters to a dying task.
1379 */
1380 err = -ESRCH;
1381 if (task->flags & PF_EXITING)
1382 goto errout;
1383
1384 /* Reuse ptrace permission checks for now. */
1385 err = -EACCES;
1386 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1387 goto errout;
1388
1389 retry:
1390 ctx = perf_lock_task_context(task, &flags);
1391 if (ctx) {
1392 parent_ctx = ctx->parent_ctx;
1393 if (parent_ctx) {
1394 put_ctx(parent_ctx);
1395 ctx->parent_ctx = NULL; /* no longer a clone */
1396 }
1397 /*
1398 * Get an extra reference before dropping the lock so that
1399 * this context won't get freed if the task exits.
1400 */
1401 get_ctx(ctx);
1402 spin_unlock_irqrestore(&ctx->lock, flags);
1403 }
1404
1405 if (!ctx) {
1406 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1407 err = -ENOMEM;
1408 if (!ctx)
1409 goto errout;
1410 __perf_counter_init_context(ctx, task);
1411 get_ctx(ctx);
1412 if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1413 /*
1414 * We raced with some other task; use
1415 * the context they set.
1416 */
1417 kfree(ctx);
1418 goto retry;
1419 }
1420 get_task_struct(task);
1421 }
1422
1423 put_task_struct(task);
1424 return ctx;
1425
1426 errout:
1427 put_task_struct(task);
1428 return ERR_PTR(err);
1429 }
1430
1431 static void free_counter_rcu(struct rcu_head *head)
1432 {
1433 struct perf_counter *counter;
1434
1435 counter = container_of(head, struct perf_counter, rcu_head);
1436 if (counter->ns)
1437 put_pid_ns(counter->ns);
1438 kfree(counter);
1439 }
1440
1441 static void perf_pending_sync(struct perf_counter *counter);
1442
1443 static void free_counter(struct perf_counter *counter)
1444 {
1445 perf_pending_sync(counter);
1446
1447 atomic_dec(&nr_counters);
1448 if (counter->attr.mmap)
1449 atomic_dec(&nr_mmap_counters);
1450 if (counter->attr.comm)
1451 atomic_dec(&nr_comm_counters);
1452
1453 if (counter->destroy)
1454 counter->destroy(counter);
1455
1456 put_ctx(counter->ctx);
1457 call_rcu(&counter->rcu_head, free_counter_rcu);
1458 }
1459
1460 /*
1461 * Called when the last reference to the file is gone.
1462 */
1463 static int perf_release(struct inode *inode, struct file *file)
1464 {
1465 struct perf_counter *counter = file->private_data;
1466 struct perf_counter_context *ctx = counter->ctx;
1467
1468 file->private_data = NULL;
1469
1470 WARN_ON_ONCE(ctx->parent_ctx);
1471 mutex_lock(&ctx->mutex);
1472 perf_counter_remove_from_context(counter);
1473 mutex_unlock(&ctx->mutex);
1474
1475 mutex_lock(&counter->owner->perf_counter_mutex);
1476 list_del_init(&counter->owner_entry);
1477 mutex_unlock(&counter->owner->perf_counter_mutex);
1478 put_task_struct(counter->owner);
1479
1480 free_counter(counter);
1481
1482 return 0;
1483 }
1484
1485 /*
1486 * Read the performance counter - simple non blocking version for now
1487 */
1488 static ssize_t
1489 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1490 {
1491 u64 values[3];
1492 int n;
1493
1494 /*
1495 * Return end-of-file for a read on a counter that is in
1496 * error state (i.e. because it was pinned but it couldn't be
1497 * scheduled on to the CPU at some point).
1498 */
1499 if (counter->state == PERF_COUNTER_STATE_ERROR)
1500 return 0;
1501
1502 WARN_ON_ONCE(counter->ctx->parent_ctx);
1503 mutex_lock(&counter->child_mutex);
1504 values[0] = perf_counter_read(counter);
1505 n = 1;
1506 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1507 values[n++] = counter->total_time_enabled +
1508 atomic64_read(&counter->child_total_time_enabled);
1509 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1510 values[n++] = counter->total_time_running +
1511 atomic64_read(&counter->child_total_time_running);
1512 if (counter->attr.read_format & PERF_FORMAT_ID)
1513 values[n++] = counter->id;
1514 mutex_unlock(&counter->child_mutex);
1515
1516 if (count < n * sizeof(u64))
1517 return -EINVAL;
1518 count = n * sizeof(u64);
1519
1520 if (copy_to_user(buf, values, count))
1521 return -EFAULT;
1522
1523 return count;
1524 }
1525
1526 static ssize_t
1527 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1528 {
1529 struct perf_counter *counter = file->private_data;
1530
1531 return perf_read_hw(counter, buf, count);
1532 }
1533
1534 static unsigned int perf_poll(struct file *file, poll_table *wait)
1535 {
1536 struct perf_counter *counter = file->private_data;
1537 struct perf_mmap_data *data;
1538 unsigned int events = POLL_HUP;
1539
1540 rcu_read_lock();
1541 data = rcu_dereference(counter->data);
1542 if (data)
1543 events = atomic_xchg(&data->poll, 0);
1544 rcu_read_unlock();
1545
1546 poll_wait(file, &counter->waitq, wait);
1547
1548 return events;
1549 }
1550
1551 static void perf_counter_reset(struct perf_counter *counter)
1552 {
1553 (void)perf_counter_read(counter);
1554 atomic64_set(&counter->count, 0);
1555 perf_counter_update_userpage(counter);
1556 }
1557
1558 static void perf_counter_for_each_sibling(struct perf_counter *counter,
1559 void (*func)(struct perf_counter *))
1560 {
1561 struct perf_counter_context *ctx = counter->ctx;
1562 struct perf_counter *sibling;
1563
1564 WARN_ON_ONCE(ctx->parent_ctx);
1565 mutex_lock(&ctx->mutex);
1566 counter = counter->group_leader;
1567
1568 func(counter);
1569 list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1570 func(sibling);
1571 mutex_unlock(&ctx->mutex);
1572 }
1573
1574 /*
1575 * Holding the top-level counter's child_mutex means that any
1576 * descendant process that has inherited this counter will block
1577 * in sync_child_counter if it goes to exit, thus satisfying the
1578 * task existence requirements of perf_counter_enable/disable.
1579 */
1580 static void perf_counter_for_each_child(struct perf_counter *counter,
1581 void (*func)(struct perf_counter *))
1582 {
1583 struct perf_counter *child;
1584
1585 WARN_ON_ONCE(counter->ctx->parent_ctx);
1586 mutex_lock(&counter->child_mutex);
1587 func(counter);
1588 list_for_each_entry(child, &counter->child_list, child_list)
1589 func(child);
1590 mutex_unlock(&counter->child_mutex);
1591 }
1592
1593 static void perf_counter_for_each(struct perf_counter *counter,
1594 void (*func)(struct perf_counter *))
1595 {
1596 struct perf_counter *child;
1597
1598 WARN_ON_ONCE(counter->ctx->parent_ctx);
1599 mutex_lock(&counter->child_mutex);
1600 perf_counter_for_each_sibling(counter, func);
1601 list_for_each_entry(child, &counter->child_list, child_list)
1602 perf_counter_for_each_sibling(child, func);
1603 mutex_unlock(&counter->child_mutex);
1604 }
1605
1606 static int perf_counter_period(struct perf_counter *counter, u64 __user *arg)
1607 {
1608 struct perf_counter_context *ctx = counter->ctx;
1609 unsigned long size;
1610 int ret = 0;
1611 u64 value;
1612
1613 if (!counter->attr.sample_period)
1614 return -EINVAL;
1615
1616 size = copy_from_user(&value, arg, sizeof(value));
1617 if (size != sizeof(value))
1618 return -EFAULT;
1619
1620 if (!value)
1621 return -EINVAL;
1622
1623 spin_lock_irq(&ctx->lock);
1624 if (counter->attr.freq) {
1625 if (value > sysctl_perf_counter_limit) {
1626 ret = -EINVAL;
1627 goto unlock;
1628 }
1629
1630 counter->attr.sample_freq = value;
1631 } else {
1632 counter->attr.sample_period = value;
1633 counter->hw.sample_period = value;
1634
1635 perf_log_period(counter, value);
1636 }
1637 unlock:
1638 spin_unlock_irq(&ctx->lock);
1639
1640 return ret;
1641 }
1642
1643 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1644 {
1645 struct perf_counter *counter = file->private_data;
1646 void (*func)(struct perf_counter *);
1647 u32 flags = arg;
1648
1649 switch (cmd) {
1650 case PERF_COUNTER_IOC_ENABLE:
1651 func = perf_counter_enable;
1652 break;
1653 case PERF_COUNTER_IOC_DISABLE:
1654 func = perf_counter_disable;
1655 break;
1656 case PERF_COUNTER_IOC_RESET:
1657 func = perf_counter_reset;
1658 break;
1659
1660 case PERF_COUNTER_IOC_REFRESH:
1661 return perf_counter_refresh(counter, arg);
1662
1663 case PERF_COUNTER_IOC_PERIOD:
1664 return perf_counter_period(counter, (u64 __user *)arg);
1665
1666 default:
1667 return -ENOTTY;
1668 }
1669
1670 if (flags & PERF_IOC_FLAG_GROUP)
1671 perf_counter_for_each(counter, func);
1672 else
1673 perf_counter_for_each_child(counter, func);
1674
1675 return 0;
1676 }
1677
1678 int perf_counter_task_enable(void)
1679 {
1680 struct perf_counter *counter;
1681
1682 mutex_lock(&current->perf_counter_mutex);
1683 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1684 perf_counter_for_each_child(counter, perf_counter_enable);
1685 mutex_unlock(&current->perf_counter_mutex);
1686
1687 return 0;
1688 }
1689
1690 int perf_counter_task_disable(void)
1691 {
1692 struct perf_counter *counter;
1693
1694 mutex_lock(&current->perf_counter_mutex);
1695 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1696 perf_counter_for_each_child(counter, perf_counter_disable);
1697 mutex_unlock(&current->perf_counter_mutex);
1698
1699 return 0;
1700 }
1701
1702 /*
1703 * Callers need to ensure there can be no nesting of this function, otherwise
1704 * the seqlock logic goes bad. We can not serialize this because the arch
1705 * code calls this from NMI context.
1706 */
1707 void perf_counter_update_userpage(struct perf_counter *counter)
1708 {
1709 struct perf_counter_mmap_page *userpg;
1710 struct perf_mmap_data *data;
1711
1712 rcu_read_lock();
1713 data = rcu_dereference(counter->data);
1714 if (!data)
1715 goto unlock;
1716
1717 userpg = data->user_page;
1718
1719 /*
1720 * Disable preemption so as to not let the corresponding user-space
1721 * spin too long if we get preempted.
1722 */
1723 preempt_disable();
1724 ++userpg->lock;
1725 barrier();
1726 userpg->index = counter->hw.idx;
1727 userpg->offset = atomic64_read(&counter->count);
1728 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1729 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1730
1731 barrier();
1732 ++userpg->lock;
1733 preempt_enable();
1734 unlock:
1735 rcu_read_unlock();
1736 }
1737
1738 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1739 {
1740 struct perf_counter *counter = vma->vm_file->private_data;
1741 struct perf_mmap_data *data;
1742 int ret = VM_FAULT_SIGBUS;
1743
1744 rcu_read_lock();
1745 data = rcu_dereference(counter->data);
1746 if (!data)
1747 goto unlock;
1748
1749 if (vmf->pgoff == 0) {
1750 vmf->page = virt_to_page(data->user_page);
1751 } else {
1752 int nr = vmf->pgoff - 1;
1753
1754 if ((unsigned)nr > data->nr_pages)
1755 goto unlock;
1756
1757 vmf->page = virt_to_page(data->data_pages[nr]);
1758 }
1759 get_page(vmf->page);
1760 ret = 0;
1761 unlock:
1762 rcu_read_unlock();
1763
1764 return ret;
1765 }
1766
1767 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1768 {
1769 struct perf_mmap_data *data;
1770 unsigned long size;
1771 int i;
1772
1773 WARN_ON(atomic_read(&counter->mmap_count));
1774
1775 size = sizeof(struct perf_mmap_data);
1776 size += nr_pages * sizeof(void *);
1777
1778 data = kzalloc(size, GFP_KERNEL);
1779 if (!data)
1780 goto fail;
1781
1782 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1783 if (!data->user_page)
1784 goto fail_user_page;
1785
1786 for (i = 0; i < nr_pages; i++) {
1787 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1788 if (!data->data_pages[i])
1789 goto fail_data_pages;
1790 }
1791
1792 data->nr_pages = nr_pages;
1793 atomic_set(&data->lock, -1);
1794
1795 rcu_assign_pointer(counter->data, data);
1796
1797 return 0;
1798
1799 fail_data_pages:
1800 for (i--; i >= 0; i--)
1801 free_page((unsigned long)data->data_pages[i]);
1802
1803 free_page((unsigned long)data->user_page);
1804
1805 fail_user_page:
1806 kfree(data);
1807
1808 fail:
1809 return -ENOMEM;
1810 }
1811
1812 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1813 {
1814 struct perf_mmap_data *data;
1815 int i;
1816
1817 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
1818
1819 free_page((unsigned long)data->user_page);
1820 for (i = 0; i < data->nr_pages; i++)
1821 free_page((unsigned long)data->data_pages[i]);
1822 kfree(data);
1823 }
1824
1825 static void perf_mmap_data_free(struct perf_counter *counter)
1826 {
1827 struct perf_mmap_data *data = counter->data;
1828
1829 WARN_ON(atomic_read(&counter->mmap_count));
1830
1831 rcu_assign_pointer(counter->data, NULL);
1832 call_rcu(&data->rcu_head, __perf_mmap_data_free);
1833 }
1834
1835 static void perf_mmap_open(struct vm_area_struct *vma)
1836 {
1837 struct perf_counter *counter = vma->vm_file->private_data;
1838
1839 atomic_inc(&counter->mmap_count);
1840 }
1841
1842 static void perf_mmap_close(struct vm_area_struct *vma)
1843 {
1844 struct perf_counter *counter = vma->vm_file->private_data;
1845
1846 WARN_ON_ONCE(counter->ctx->parent_ctx);
1847 if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) {
1848 struct user_struct *user = current_user();
1849
1850 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1851 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1852 perf_mmap_data_free(counter);
1853 mutex_unlock(&counter->mmap_mutex);
1854 }
1855 }
1856
1857 static struct vm_operations_struct perf_mmap_vmops = {
1858 .open = perf_mmap_open,
1859 .close = perf_mmap_close,
1860 .fault = perf_mmap_fault,
1861 };
1862
1863 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1864 {
1865 struct perf_counter *counter = file->private_data;
1866 unsigned long user_locked, user_lock_limit;
1867 struct user_struct *user = current_user();
1868 unsigned long locked, lock_limit;
1869 unsigned long vma_size;
1870 unsigned long nr_pages;
1871 long user_extra, extra;
1872 int ret = 0;
1873
1874 if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1875 return -EINVAL;
1876
1877 vma_size = vma->vm_end - vma->vm_start;
1878 nr_pages = (vma_size / PAGE_SIZE) - 1;
1879
1880 /*
1881 * If we have data pages ensure they're a power-of-two number, so we
1882 * can do bitmasks instead of modulo.
1883 */
1884 if (nr_pages != 0 && !is_power_of_2(nr_pages))
1885 return -EINVAL;
1886
1887 if (vma_size != PAGE_SIZE * (1 + nr_pages))
1888 return -EINVAL;
1889
1890 if (vma->vm_pgoff != 0)
1891 return -EINVAL;
1892
1893 WARN_ON_ONCE(counter->ctx->parent_ctx);
1894 mutex_lock(&counter->mmap_mutex);
1895 if (atomic_inc_not_zero(&counter->mmap_count)) {
1896 if (nr_pages != counter->data->nr_pages)
1897 ret = -EINVAL;
1898 goto unlock;
1899 }
1900
1901 user_extra = nr_pages + 1;
1902 user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1903
1904 /*
1905 * Increase the limit linearly with more CPUs:
1906 */
1907 user_lock_limit *= num_online_cpus();
1908
1909 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1910
1911 extra = 0;
1912 if (user_locked > user_lock_limit)
1913 extra = user_locked - user_lock_limit;
1914
1915 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1916 lock_limit >>= PAGE_SHIFT;
1917 locked = vma->vm_mm->locked_vm + extra;
1918
1919 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1920 ret = -EPERM;
1921 goto unlock;
1922 }
1923
1924 WARN_ON(counter->data);
1925 ret = perf_mmap_data_alloc(counter, nr_pages);
1926 if (ret)
1927 goto unlock;
1928
1929 atomic_set(&counter->mmap_count, 1);
1930 atomic_long_add(user_extra, &user->locked_vm);
1931 vma->vm_mm->locked_vm += extra;
1932 counter->data->nr_locked = extra;
1933 unlock:
1934 mutex_unlock(&counter->mmap_mutex);
1935
1936 vma->vm_flags &= ~VM_MAYWRITE;
1937 vma->vm_flags |= VM_RESERVED;
1938 vma->vm_ops = &perf_mmap_vmops;
1939
1940 return ret;
1941 }
1942
1943 static int perf_fasync(int fd, struct file *filp, int on)
1944 {
1945 struct inode *inode = filp->f_path.dentry->d_inode;
1946 struct perf_counter *counter = filp->private_data;
1947 int retval;
1948
1949 mutex_lock(&inode->i_mutex);
1950 retval = fasync_helper(fd, filp, on, &counter->fasync);
1951 mutex_unlock(&inode->i_mutex);
1952
1953 if (retval < 0)
1954 return retval;
1955
1956 return 0;
1957 }
1958
1959 static const struct file_operations perf_fops = {
1960 .release = perf_release,
1961 .read = perf_read,
1962 .poll = perf_poll,
1963 .unlocked_ioctl = perf_ioctl,
1964 .compat_ioctl = perf_ioctl,
1965 .mmap = perf_mmap,
1966 .fasync = perf_fasync,
1967 };
1968
1969 /*
1970 * Perf counter wakeup
1971 *
1972 * If there's data, ensure we set the poll() state and publish everything
1973 * to user-space before waking everybody up.
1974 */
1975
1976 void perf_counter_wakeup(struct perf_counter *counter)
1977 {
1978 wake_up_all(&counter->waitq);
1979
1980 if (counter->pending_kill) {
1981 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1982 counter->pending_kill = 0;
1983 }
1984 }
1985
1986 /*
1987 * Pending wakeups
1988 *
1989 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1990 *
1991 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1992 * single linked list and use cmpxchg() to add entries lockless.
1993 */
1994
1995 static void perf_pending_counter(struct perf_pending_entry *entry)
1996 {
1997 struct perf_counter *counter = container_of(entry,
1998 struct perf_counter, pending);
1999
2000 if (counter->pending_disable) {
2001 counter->pending_disable = 0;
2002 perf_counter_disable(counter);
2003 }
2004
2005 if (counter->pending_wakeup) {
2006 counter->pending_wakeup = 0;
2007 perf_counter_wakeup(counter);
2008 }
2009 }
2010
2011 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2012
2013 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2014 PENDING_TAIL,
2015 };
2016
2017 static void perf_pending_queue(struct perf_pending_entry *entry,
2018 void (*func)(struct perf_pending_entry *))
2019 {
2020 struct perf_pending_entry **head;
2021
2022 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2023 return;
2024
2025 entry->func = func;
2026
2027 head = &get_cpu_var(perf_pending_head);
2028
2029 do {
2030 entry->next = *head;
2031 } while (cmpxchg(head, entry->next, entry) != entry->next);
2032
2033 set_perf_counter_pending();
2034
2035 put_cpu_var(perf_pending_head);
2036 }
2037
2038 static int __perf_pending_run(void)
2039 {
2040 struct perf_pending_entry *list;
2041 int nr = 0;
2042
2043 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2044 while (list != PENDING_TAIL) {
2045 void (*func)(struct perf_pending_entry *);
2046 struct perf_pending_entry *entry = list;
2047
2048 list = list->next;
2049
2050 func = entry->func;
2051 entry->next = NULL;
2052 /*
2053 * Ensure we observe the unqueue before we issue the wakeup,
2054 * so that we won't be waiting forever.
2055 * -- see perf_not_pending().
2056 */
2057 smp_wmb();
2058
2059 func(entry);
2060 nr++;
2061 }
2062
2063 return nr;
2064 }
2065
2066 static inline int perf_not_pending(struct perf_counter *counter)
2067 {
2068 /*
2069 * If we flush on whatever cpu we run, there is a chance we don't
2070 * need to wait.
2071 */
2072 get_cpu();
2073 __perf_pending_run();
2074 put_cpu();
2075
2076 /*
2077 * Ensure we see the proper queue state before going to sleep
2078 * so that we do not miss the wakeup. -- see perf_pending_handle()
2079 */
2080 smp_rmb();
2081 return counter->pending.next == NULL;
2082 }
2083
2084 static void perf_pending_sync(struct perf_counter *counter)
2085 {
2086 wait_event(counter->waitq, perf_not_pending(counter));
2087 }
2088
2089 void perf_counter_do_pending(void)
2090 {
2091 __perf_pending_run();
2092 }
2093
2094 /*
2095 * Callchain support -- arch specific
2096 */
2097
2098 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2099 {
2100 return NULL;
2101 }
2102
2103 /*
2104 * Output
2105 */
2106
2107 struct perf_output_handle {
2108 struct perf_counter *counter;
2109 struct perf_mmap_data *data;
2110 unsigned long head;
2111 unsigned long offset;
2112 int nmi;
2113 int overflow;
2114 int locked;
2115 unsigned long flags;
2116 };
2117
2118 static void perf_output_wakeup(struct perf_output_handle *handle)
2119 {
2120 atomic_set(&handle->data->poll, POLL_IN);
2121
2122 if (handle->nmi) {
2123 handle->counter->pending_wakeup = 1;
2124 perf_pending_queue(&handle->counter->pending,
2125 perf_pending_counter);
2126 } else
2127 perf_counter_wakeup(handle->counter);
2128 }
2129
2130 /*
2131 * Curious locking construct.
2132 *
2133 * We need to ensure a later event doesn't publish a head when a former
2134 * event isn't done writing. However since we need to deal with NMIs we
2135 * cannot fully serialize things.
2136 *
2137 * What we do is serialize between CPUs so we only have to deal with NMI
2138 * nesting on a single CPU.
2139 *
2140 * We only publish the head (and generate a wakeup) when the outer-most
2141 * event completes.
2142 */
2143 static void perf_output_lock(struct perf_output_handle *handle)
2144 {
2145 struct perf_mmap_data *data = handle->data;
2146 int cpu;
2147
2148 handle->locked = 0;
2149
2150 local_irq_save(handle->flags);
2151 cpu = smp_processor_id();
2152
2153 if (in_nmi() && atomic_read(&data->lock) == cpu)
2154 return;
2155
2156 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2157 cpu_relax();
2158
2159 handle->locked = 1;
2160 }
2161
2162 static void perf_output_unlock(struct perf_output_handle *handle)
2163 {
2164 struct perf_mmap_data *data = handle->data;
2165 unsigned long head;
2166 int cpu;
2167
2168 data->done_head = data->head;
2169
2170 if (!handle->locked)
2171 goto out;
2172
2173 again:
2174 /*
2175 * The xchg implies a full barrier that ensures all writes are done
2176 * before we publish the new head, matched by a rmb() in userspace when
2177 * reading this position.
2178 */
2179 while ((head = atomic_long_xchg(&data->done_head, 0)))
2180 data->user_page->data_head = head;
2181
2182 /*
2183 * NMI can happen here, which means we can miss a done_head update.
2184 */
2185
2186 cpu = atomic_xchg(&data->lock, -1);
2187 WARN_ON_ONCE(cpu != smp_processor_id());
2188
2189 /*
2190 * Therefore we have to validate we did not indeed do so.
2191 */
2192 if (unlikely(atomic_long_read(&data->done_head))) {
2193 /*
2194 * Since we had it locked, we can lock it again.
2195 */
2196 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2197 cpu_relax();
2198
2199 goto again;
2200 }
2201
2202 if (atomic_xchg(&data->wakeup, 0))
2203 perf_output_wakeup(handle);
2204 out:
2205 local_irq_restore(handle->flags);
2206 }
2207
2208 static int perf_output_begin(struct perf_output_handle *handle,
2209 struct perf_counter *counter, unsigned int size,
2210 int nmi, int overflow)
2211 {
2212 struct perf_mmap_data *data;
2213 unsigned int offset, head;
2214
2215 /*
2216 * For inherited counters we send all the output towards the parent.
2217 */
2218 if (counter->parent)
2219 counter = counter->parent;
2220
2221 rcu_read_lock();
2222 data = rcu_dereference(counter->data);
2223 if (!data)
2224 goto out;
2225
2226 handle->data = data;
2227 handle->counter = counter;
2228 handle->nmi = nmi;
2229 handle->overflow = overflow;
2230
2231 if (!data->nr_pages)
2232 goto fail;
2233
2234 perf_output_lock(handle);
2235
2236 do {
2237 offset = head = atomic_long_read(&data->head);
2238 head += size;
2239 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2240
2241 handle->offset = offset;
2242 handle->head = head;
2243
2244 if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2245 atomic_set(&data->wakeup, 1);
2246
2247 return 0;
2248
2249 fail:
2250 perf_output_wakeup(handle);
2251 out:
2252 rcu_read_unlock();
2253
2254 return -ENOSPC;
2255 }
2256
2257 static void perf_output_copy(struct perf_output_handle *handle,
2258 const void *buf, unsigned int len)
2259 {
2260 unsigned int pages_mask;
2261 unsigned int offset;
2262 unsigned int size;
2263 void **pages;
2264
2265 offset = handle->offset;
2266 pages_mask = handle->data->nr_pages - 1;
2267 pages = handle->data->data_pages;
2268
2269 do {
2270 unsigned int page_offset;
2271 int nr;
2272
2273 nr = (offset >> PAGE_SHIFT) & pages_mask;
2274 page_offset = offset & (PAGE_SIZE - 1);
2275 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2276
2277 memcpy(pages[nr] + page_offset, buf, size);
2278
2279 len -= size;
2280 buf += size;
2281 offset += size;
2282 } while (len);
2283
2284 handle->offset = offset;
2285
2286 /*
2287 * Check we didn't copy past our reservation window, taking the
2288 * possible unsigned int wrap into account.
2289 */
2290 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2291 }
2292
2293 #define perf_output_put(handle, x) \
2294 perf_output_copy((handle), &(x), sizeof(x))
2295
2296 static void perf_output_end(struct perf_output_handle *handle)
2297 {
2298 struct perf_counter *counter = handle->counter;
2299 struct perf_mmap_data *data = handle->data;
2300
2301 int wakeup_events = counter->attr.wakeup_events;
2302
2303 if (handle->overflow && wakeup_events) {
2304 int events = atomic_inc_return(&data->events);
2305 if (events >= wakeup_events) {
2306 atomic_sub(wakeup_events, &data->events);
2307 atomic_set(&data->wakeup, 1);
2308 }
2309 }
2310
2311 perf_output_unlock(handle);
2312 rcu_read_unlock();
2313 }
2314
2315 static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p)
2316 {
2317 /*
2318 * only top level counters have the pid namespace they were created in
2319 */
2320 if (counter->parent)
2321 counter = counter->parent;
2322
2323 return task_tgid_nr_ns(p, counter->ns);
2324 }
2325
2326 static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p)
2327 {
2328 /*
2329 * only top level counters have the pid namespace they were created in
2330 */
2331 if (counter->parent)
2332 counter = counter->parent;
2333
2334 return task_pid_nr_ns(p, counter->ns);
2335 }
2336
2337 static void perf_counter_output(struct perf_counter *counter,
2338 int nmi, struct pt_regs *regs, u64 addr)
2339 {
2340 int ret;
2341 u64 sample_type = counter->attr.sample_type;
2342 struct perf_output_handle handle;
2343 struct perf_event_header header;
2344 u64 ip;
2345 struct {
2346 u32 pid, tid;
2347 } tid_entry;
2348 struct {
2349 u64 id;
2350 u64 counter;
2351 } group_entry;
2352 struct perf_callchain_entry *callchain = NULL;
2353 int callchain_size = 0;
2354 u64 time;
2355 struct {
2356 u32 cpu, reserved;
2357 } cpu_entry;
2358
2359 header.type = 0;
2360 header.size = sizeof(header);
2361
2362 header.misc = PERF_EVENT_MISC_OVERFLOW;
2363 header.misc |= perf_misc_flags(regs);
2364
2365 if (sample_type & PERF_SAMPLE_IP) {
2366 ip = perf_instruction_pointer(regs);
2367 header.type |= PERF_SAMPLE_IP;
2368 header.size += sizeof(ip);
2369 }
2370
2371 if (sample_type & PERF_SAMPLE_TID) {
2372 /* namespace issues */
2373 tid_entry.pid = perf_counter_pid(counter, current);
2374 tid_entry.tid = perf_counter_tid(counter, current);
2375
2376 header.type |= PERF_SAMPLE_TID;
2377 header.size += sizeof(tid_entry);
2378 }
2379
2380 if (sample_type & PERF_SAMPLE_TIME) {
2381 /*
2382 * Maybe do better on x86 and provide cpu_clock_nmi()
2383 */
2384 time = sched_clock();
2385
2386 header.type |= PERF_SAMPLE_TIME;
2387 header.size += sizeof(u64);
2388 }
2389
2390 if (sample_type & PERF_SAMPLE_ADDR) {
2391 header.type |= PERF_SAMPLE_ADDR;
2392 header.size += sizeof(u64);
2393 }
2394
2395 if (sample_type & PERF_SAMPLE_ID) {
2396 header.type |= PERF_SAMPLE_ID;
2397 header.size += sizeof(u64);
2398 }
2399
2400 if (sample_type & PERF_SAMPLE_CPU) {
2401 header.type |= PERF_SAMPLE_CPU;
2402 header.size += sizeof(cpu_entry);
2403
2404 cpu_entry.cpu = raw_smp_processor_id();
2405 }
2406
2407 if (sample_type & PERF_SAMPLE_PERIOD) {
2408 header.type |= PERF_SAMPLE_PERIOD;
2409 header.size += sizeof(u64);
2410 }
2411
2412 if (sample_type & PERF_SAMPLE_GROUP) {
2413 header.type |= PERF_SAMPLE_GROUP;
2414 header.size += sizeof(u64) +
2415 counter->nr_siblings * sizeof(group_entry);
2416 }
2417
2418 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2419 callchain = perf_callchain(regs);
2420
2421 if (callchain) {
2422 callchain_size = (1 + callchain->nr) * sizeof(u64);
2423
2424 header.type |= PERF_SAMPLE_CALLCHAIN;
2425 header.size += callchain_size;
2426 }
2427 }
2428
2429 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2430 if (ret)
2431 return;
2432
2433 perf_output_put(&handle, header);
2434
2435 if (sample_type & PERF_SAMPLE_IP)
2436 perf_output_put(&handle, ip);
2437
2438 if (sample_type & PERF_SAMPLE_TID)
2439 perf_output_put(&handle, tid_entry);
2440
2441 if (sample_type & PERF_SAMPLE_TIME)
2442 perf_output_put(&handle, time);
2443
2444 if (sample_type & PERF_SAMPLE_ADDR)
2445 perf_output_put(&handle, addr);
2446
2447 if (sample_type & PERF_SAMPLE_ID)
2448 perf_output_put(&handle, counter->id);
2449
2450 if (sample_type & PERF_SAMPLE_CPU)
2451 perf_output_put(&handle, cpu_entry);
2452
2453 if (sample_type & PERF_SAMPLE_PERIOD)
2454 perf_output_put(&handle, counter->hw.sample_period);
2455
2456 /*
2457 * XXX PERF_SAMPLE_GROUP vs inherited counters seems difficult.
2458 */
2459 if (sample_type & PERF_SAMPLE_GROUP) {
2460 struct perf_counter *leader, *sub;
2461 u64 nr = counter->nr_siblings;
2462
2463 perf_output_put(&handle, nr);
2464
2465 leader = counter->group_leader;
2466 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2467 if (sub != counter)
2468 sub->pmu->read(sub);
2469
2470 group_entry.id = sub->id;
2471 group_entry.counter = atomic64_read(&sub->count);
2472
2473 perf_output_put(&handle, group_entry);
2474 }
2475 }
2476
2477 if (callchain)
2478 perf_output_copy(&handle, callchain, callchain_size);
2479
2480 perf_output_end(&handle);
2481 }
2482
2483 /*
2484 * fork tracking
2485 */
2486
2487 struct perf_fork_event {
2488 struct task_struct *task;
2489
2490 struct {
2491 struct perf_event_header header;
2492
2493 u32 pid;
2494 u32 ppid;
2495 } event;
2496 };
2497
2498 static void perf_counter_fork_output(struct perf_counter *counter,
2499 struct perf_fork_event *fork_event)
2500 {
2501 struct perf_output_handle handle;
2502 int size = fork_event->event.header.size;
2503 struct task_struct *task = fork_event->task;
2504 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2505
2506 if (ret)
2507 return;
2508
2509 fork_event->event.pid = perf_counter_pid(counter, task);
2510 fork_event->event.ppid = perf_counter_pid(counter, task->real_parent);
2511
2512 perf_output_put(&handle, fork_event->event);
2513 perf_output_end(&handle);
2514 }
2515
2516 static int perf_counter_fork_match(struct perf_counter *counter)
2517 {
2518 if (counter->attr.comm || counter->attr.mmap)
2519 return 1;
2520
2521 return 0;
2522 }
2523
2524 static void perf_counter_fork_ctx(struct perf_counter_context *ctx,
2525 struct perf_fork_event *fork_event)
2526 {
2527 struct perf_counter *counter;
2528
2529 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2530 return;
2531
2532 rcu_read_lock();
2533 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2534 if (perf_counter_fork_match(counter))
2535 perf_counter_fork_output(counter, fork_event);
2536 }
2537 rcu_read_unlock();
2538 }
2539
2540 static void perf_counter_fork_event(struct perf_fork_event *fork_event)
2541 {
2542 struct perf_cpu_context *cpuctx;
2543 struct perf_counter_context *ctx;
2544
2545 cpuctx = &get_cpu_var(perf_cpu_context);
2546 perf_counter_fork_ctx(&cpuctx->ctx, fork_event);
2547 put_cpu_var(perf_cpu_context);
2548
2549 rcu_read_lock();
2550 /*
2551 * doesn't really matter which of the child contexts the
2552 * events ends up in.
2553 */
2554 ctx = rcu_dereference(current->perf_counter_ctxp);
2555 if (ctx)
2556 perf_counter_fork_ctx(ctx, fork_event);
2557 rcu_read_unlock();
2558 }
2559
2560 void perf_counter_fork(struct task_struct *task)
2561 {
2562 struct perf_fork_event fork_event;
2563
2564 if (!atomic_read(&nr_comm_counters) &&
2565 !atomic_read(&nr_mmap_counters))
2566 return;
2567
2568 fork_event = (struct perf_fork_event){
2569 .task = task,
2570 .event = {
2571 .header = {
2572 .type = PERF_EVENT_FORK,
2573 .size = sizeof(fork_event.event),
2574 },
2575 },
2576 };
2577
2578 perf_counter_fork_event(&fork_event);
2579 }
2580
2581 /*
2582 * comm tracking
2583 */
2584
2585 struct perf_comm_event {
2586 struct task_struct *task;
2587 char *comm;
2588 int comm_size;
2589
2590 struct {
2591 struct perf_event_header header;
2592
2593 u32 pid;
2594 u32 tid;
2595 } event;
2596 };
2597
2598 static void perf_counter_comm_output(struct perf_counter *counter,
2599 struct perf_comm_event *comm_event)
2600 {
2601 struct perf_output_handle handle;
2602 int size = comm_event->event.header.size;
2603 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2604
2605 if (ret)
2606 return;
2607
2608 comm_event->event.pid = perf_counter_pid(counter, comm_event->task);
2609 comm_event->event.tid = perf_counter_tid(counter, comm_event->task);
2610
2611 perf_output_put(&handle, comm_event->event);
2612 perf_output_copy(&handle, comm_event->comm,
2613 comm_event->comm_size);
2614 perf_output_end(&handle);
2615 }
2616
2617 static int perf_counter_comm_match(struct perf_counter *counter)
2618 {
2619 if (counter->attr.comm)
2620 return 1;
2621
2622 return 0;
2623 }
2624
2625 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2626 struct perf_comm_event *comm_event)
2627 {
2628 struct perf_counter *counter;
2629
2630 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2631 return;
2632
2633 rcu_read_lock();
2634 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2635 if (perf_counter_comm_match(counter))
2636 perf_counter_comm_output(counter, comm_event);
2637 }
2638 rcu_read_unlock();
2639 }
2640
2641 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2642 {
2643 struct perf_cpu_context *cpuctx;
2644 struct perf_counter_context *ctx;
2645 unsigned int size;
2646 char *comm = comm_event->task->comm;
2647
2648 size = ALIGN(strlen(comm)+1, sizeof(u64));
2649
2650 comm_event->comm = comm;
2651 comm_event->comm_size = size;
2652
2653 comm_event->event.header.size = sizeof(comm_event->event) + size;
2654
2655 cpuctx = &get_cpu_var(perf_cpu_context);
2656 perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2657 put_cpu_var(perf_cpu_context);
2658
2659 rcu_read_lock();
2660 /*
2661 * doesn't really matter which of the child contexts the
2662 * events ends up in.
2663 */
2664 ctx = rcu_dereference(current->perf_counter_ctxp);
2665 if (ctx)
2666 perf_counter_comm_ctx(ctx, comm_event);
2667 rcu_read_unlock();
2668 }
2669
2670 void perf_counter_comm(struct task_struct *task)
2671 {
2672 struct perf_comm_event comm_event;
2673
2674 if (!atomic_read(&nr_comm_counters))
2675 return;
2676
2677 comm_event = (struct perf_comm_event){
2678 .task = task,
2679 .event = {
2680 .header = { .type = PERF_EVENT_COMM, },
2681 },
2682 };
2683
2684 perf_counter_comm_event(&comm_event);
2685 }
2686
2687 /*
2688 * mmap tracking
2689 */
2690
2691 struct perf_mmap_event {
2692 struct vm_area_struct *vma;
2693
2694 const char *file_name;
2695 int file_size;
2696
2697 struct {
2698 struct perf_event_header header;
2699
2700 u32 pid;
2701 u32 tid;
2702 u64 start;
2703 u64 len;
2704 u64 pgoff;
2705 } event;
2706 };
2707
2708 static void perf_counter_mmap_output(struct perf_counter *counter,
2709 struct perf_mmap_event *mmap_event)
2710 {
2711 struct perf_output_handle handle;
2712 int size = mmap_event->event.header.size;
2713 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2714
2715 if (ret)
2716 return;
2717
2718 mmap_event->event.pid = perf_counter_pid(counter, current);
2719 mmap_event->event.tid = perf_counter_tid(counter, current);
2720
2721 perf_output_put(&handle, mmap_event->event);
2722 perf_output_copy(&handle, mmap_event->file_name,
2723 mmap_event->file_size);
2724 perf_output_end(&handle);
2725 }
2726
2727 static int perf_counter_mmap_match(struct perf_counter *counter,
2728 struct perf_mmap_event *mmap_event)
2729 {
2730 if (counter->attr.mmap)
2731 return 1;
2732
2733 return 0;
2734 }
2735
2736 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2737 struct perf_mmap_event *mmap_event)
2738 {
2739 struct perf_counter *counter;
2740
2741 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2742 return;
2743
2744 rcu_read_lock();
2745 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2746 if (perf_counter_mmap_match(counter, mmap_event))
2747 perf_counter_mmap_output(counter, mmap_event);
2748 }
2749 rcu_read_unlock();
2750 }
2751
2752 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2753 {
2754 struct perf_cpu_context *cpuctx;
2755 struct perf_counter_context *ctx;
2756 struct vm_area_struct *vma = mmap_event->vma;
2757 struct file *file = vma->vm_file;
2758 unsigned int size;
2759 char tmp[16];
2760 char *buf = NULL;
2761 const char *name;
2762
2763 if (file) {
2764 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2765 if (!buf) {
2766 name = strncpy(tmp, "//enomem", sizeof(tmp));
2767 goto got_name;
2768 }
2769 name = d_path(&file->f_path, buf, PATH_MAX);
2770 if (IS_ERR(name)) {
2771 name = strncpy(tmp, "//toolong", sizeof(tmp));
2772 goto got_name;
2773 }
2774 } else {
2775 name = arch_vma_name(mmap_event->vma);
2776 if (name)
2777 goto got_name;
2778
2779 if (!vma->vm_mm) {
2780 name = strncpy(tmp, "[vdso]", sizeof(tmp));
2781 goto got_name;
2782 }
2783
2784 name = strncpy(tmp, "//anon", sizeof(tmp));
2785 goto got_name;
2786 }
2787
2788 got_name:
2789 size = ALIGN(strlen(name)+1, sizeof(u64));
2790
2791 mmap_event->file_name = name;
2792 mmap_event->file_size = size;
2793
2794 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2795
2796 cpuctx = &get_cpu_var(perf_cpu_context);
2797 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2798 put_cpu_var(perf_cpu_context);
2799
2800 rcu_read_lock();
2801 /*
2802 * doesn't really matter which of the child contexts the
2803 * events ends up in.
2804 */
2805 ctx = rcu_dereference(current->perf_counter_ctxp);
2806 if (ctx)
2807 perf_counter_mmap_ctx(ctx, mmap_event);
2808 rcu_read_unlock();
2809
2810 kfree(buf);
2811 }
2812
2813 void __perf_counter_mmap(struct vm_area_struct *vma)
2814 {
2815 struct perf_mmap_event mmap_event;
2816
2817 if (!atomic_read(&nr_mmap_counters))
2818 return;
2819
2820 mmap_event = (struct perf_mmap_event){
2821 .vma = vma,
2822 .event = {
2823 .header = { .type = PERF_EVENT_MMAP, },
2824 .start = vma->vm_start,
2825 .len = vma->vm_end - vma->vm_start,
2826 .pgoff = vma->vm_pgoff,
2827 },
2828 };
2829
2830 perf_counter_mmap_event(&mmap_event);
2831 }
2832
2833 /*
2834 * Log sample_period changes so that analyzing tools can re-normalize the
2835 * event flow.
2836 */
2837
2838 static void perf_log_period(struct perf_counter *counter, u64 period)
2839 {
2840 struct perf_output_handle handle;
2841 int ret;
2842
2843 struct {
2844 struct perf_event_header header;
2845 u64 time;
2846 u64 id;
2847 u64 period;
2848 } freq_event = {
2849 .header = {
2850 .type = PERF_EVENT_PERIOD,
2851 .misc = 0,
2852 .size = sizeof(freq_event),
2853 },
2854 .time = sched_clock(),
2855 .id = counter->id,
2856 .period = period,
2857 };
2858
2859 if (counter->hw.sample_period == period)
2860 return;
2861
2862 ret = perf_output_begin(&handle, counter, sizeof(freq_event), 0, 0);
2863 if (ret)
2864 return;
2865
2866 perf_output_put(&handle, freq_event);
2867 perf_output_end(&handle);
2868 }
2869
2870 /*
2871 * IRQ throttle logging
2872 */
2873
2874 static void perf_log_throttle(struct perf_counter *counter, int enable)
2875 {
2876 struct perf_output_handle handle;
2877 int ret;
2878
2879 struct {
2880 struct perf_event_header header;
2881 u64 time;
2882 } throttle_event = {
2883 .header = {
2884 .type = PERF_EVENT_THROTTLE + 1,
2885 .misc = 0,
2886 .size = sizeof(throttle_event),
2887 },
2888 .time = sched_clock(),
2889 };
2890
2891 ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
2892 if (ret)
2893 return;
2894
2895 perf_output_put(&handle, throttle_event);
2896 perf_output_end(&handle);
2897 }
2898
2899 /*
2900 * Generic counter overflow handling.
2901 */
2902
2903 int perf_counter_overflow(struct perf_counter *counter,
2904 int nmi, struct pt_regs *regs, u64 addr)
2905 {
2906 int events = atomic_read(&counter->event_limit);
2907 int throttle = counter->pmu->unthrottle != NULL;
2908 int ret = 0;
2909
2910 if (!throttle) {
2911 counter->hw.interrupts++;
2912 } else {
2913 if (counter->hw.interrupts != MAX_INTERRUPTS) {
2914 counter->hw.interrupts++;
2915 if (HZ*counter->hw.interrupts > (u64)sysctl_perf_counter_limit) {
2916 counter->hw.interrupts = MAX_INTERRUPTS;
2917 perf_log_throttle(counter, 0);
2918 ret = 1;
2919 }
2920 } else {
2921 /*
2922 * Keep re-disabling counters even though on the previous
2923 * pass we disabled it - just in case we raced with a
2924 * sched-in and the counter got enabled again:
2925 */
2926 ret = 1;
2927 }
2928 }
2929
2930 /*
2931 * XXX event_limit might not quite work as expected on inherited
2932 * counters
2933 */
2934
2935 counter->pending_kill = POLL_IN;
2936 if (events && atomic_dec_and_test(&counter->event_limit)) {
2937 ret = 1;
2938 counter->pending_kill = POLL_HUP;
2939 if (nmi) {
2940 counter->pending_disable = 1;
2941 perf_pending_queue(&counter->pending,
2942 perf_pending_counter);
2943 } else
2944 perf_counter_disable(counter);
2945 }
2946
2947 perf_counter_output(counter, nmi, regs, addr);
2948 return ret;
2949 }
2950
2951 /*
2952 * Generic software counter infrastructure
2953 */
2954
2955 static void perf_swcounter_update(struct perf_counter *counter)
2956 {
2957 struct hw_perf_counter *hwc = &counter->hw;
2958 u64 prev, now;
2959 s64 delta;
2960
2961 again:
2962 prev = atomic64_read(&hwc->prev_count);
2963 now = atomic64_read(&hwc->count);
2964 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2965 goto again;
2966
2967 delta = now - prev;
2968
2969 atomic64_add(delta, &counter->count);
2970 atomic64_sub(delta, &hwc->period_left);
2971 }
2972
2973 static void perf_swcounter_set_period(struct perf_counter *counter)
2974 {
2975 struct hw_perf_counter *hwc = &counter->hw;
2976 s64 left = atomic64_read(&hwc->period_left);
2977 s64 period = hwc->sample_period;
2978
2979 if (unlikely(left <= -period)) {
2980 left = period;
2981 atomic64_set(&hwc->period_left, left);
2982 }
2983
2984 if (unlikely(left <= 0)) {
2985 left += period;
2986 atomic64_add(period, &hwc->period_left);
2987 }
2988
2989 atomic64_set(&hwc->prev_count, -left);
2990 atomic64_set(&hwc->count, -left);
2991 }
2992
2993 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2994 {
2995 enum hrtimer_restart ret = HRTIMER_RESTART;
2996 struct perf_counter *counter;
2997 struct pt_regs *regs;
2998 u64 period;
2999
3000 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
3001 counter->pmu->read(counter);
3002
3003 regs = get_irq_regs();
3004 /*
3005 * In case we exclude kernel IPs or are somehow not in interrupt
3006 * context, provide the next best thing, the user IP.
3007 */
3008 if ((counter->attr.exclude_kernel || !regs) &&
3009 !counter->attr.exclude_user)
3010 regs = task_pt_regs(current);
3011
3012 if (regs) {
3013 if (perf_counter_overflow(counter, 0, regs, 0))
3014 ret = HRTIMER_NORESTART;
3015 }
3016
3017 period = max_t(u64, 10000, counter->hw.sample_period);
3018 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3019
3020 return ret;
3021 }
3022
3023 static void perf_swcounter_overflow(struct perf_counter *counter,
3024 int nmi, struct pt_regs *regs, u64 addr)
3025 {
3026 perf_swcounter_update(counter);
3027 perf_swcounter_set_period(counter);
3028 if (perf_counter_overflow(counter, nmi, regs, addr))
3029 /* soft-disable the counter */
3030 ;
3031
3032 }
3033
3034 static int perf_swcounter_is_counting(struct perf_counter *counter)
3035 {
3036 struct perf_counter_context *ctx;
3037 unsigned long flags;
3038 int count;
3039
3040 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
3041 return 1;
3042
3043 if (counter->state != PERF_COUNTER_STATE_INACTIVE)
3044 return 0;
3045
3046 /*
3047 * If the counter is inactive, it could be just because
3048 * its task is scheduled out, or because it's in a group
3049 * which could not go on the PMU. We want to count in
3050 * the first case but not the second. If the context is
3051 * currently active then an inactive software counter must
3052 * be the second case. If it's not currently active then
3053 * we need to know whether the counter was active when the
3054 * context was last active, which we can determine by
3055 * comparing counter->tstamp_stopped with ctx->time.
3056 *
3057 * We are within an RCU read-side critical section,
3058 * which protects the existence of *ctx.
3059 */
3060 ctx = counter->ctx;
3061 spin_lock_irqsave(&ctx->lock, flags);
3062 count = 1;
3063 /* Re-check state now we have the lock */
3064 if (counter->state < PERF_COUNTER_STATE_INACTIVE ||
3065 counter->ctx->is_active ||
3066 counter->tstamp_stopped < ctx->time)
3067 count = 0;
3068 spin_unlock_irqrestore(&ctx->lock, flags);
3069 return count;
3070 }
3071
3072 static int perf_swcounter_match(struct perf_counter *counter,
3073 enum perf_event_types type,
3074 u32 event, struct pt_regs *regs)
3075 {
3076 u64 event_config;
3077
3078 event_config = ((u64) type << PERF_COUNTER_TYPE_SHIFT) | event;
3079
3080 if (!perf_swcounter_is_counting(counter))
3081 return 0;
3082
3083 if (counter->attr.config != event_config)
3084 return 0;
3085
3086 if (regs) {
3087 if (counter->attr.exclude_user && user_mode(regs))
3088 return 0;
3089
3090 if (counter->attr.exclude_kernel && !user_mode(regs))
3091 return 0;
3092 }
3093
3094 return 1;
3095 }
3096
3097 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
3098 int nmi, struct pt_regs *regs, u64 addr)
3099 {
3100 int neg = atomic64_add_negative(nr, &counter->hw.count);
3101
3102 if (counter->hw.sample_period && !neg && regs)
3103 perf_swcounter_overflow(counter, nmi, regs, addr);
3104 }
3105
3106 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
3107 enum perf_event_types type, u32 event,
3108 u64 nr, int nmi, struct pt_regs *regs,
3109 u64 addr)
3110 {
3111 struct perf_counter *counter;
3112
3113 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3114 return;
3115
3116 rcu_read_lock();
3117 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3118 if (perf_swcounter_match(counter, type, event, regs))
3119 perf_swcounter_add(counter, nr, nmi, regs, addr);
3120 }
3121 rcu_read_unlock();
3122 }
3123
3124 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
3125 {
3126 if (in_nmi())
3127 return &cpuctx->recursion[3];
3128
3129 if (in_irq())
3130 return &cpuctx->recursion[2];
3131
3132 if (in_softirq())
3133 return &cpuctx->recursion[1];
3134
3135 return &cpuctx->recursion[0];
3136 }
3137
3138 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
3139 u64 nr, int nmi, struct pt_regs *regs,
3140 u64 addr)
3141 {
3142 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3143 int *recursion = perf_swcounter_recursion_context(cpuctx);
3144 struct perf_counter_context *ctx;
3145
3146 if (*recursion)
3147 goto out;
3148
3149 (*recursion)++;
3150 barrier();
3151
3152 perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
3153 nr, nmi, regs, addr);
3154 rcu_read_lock();
3155 /*
3156 * doesn't really matter which of the child contexts the
3157 * events ends up in.
3158 */
3159 ctx = rcu_dereference(current->perf_counter_ctxp);
3160 if (ctx)
3161 perf_swcounter_ctx_event(ctx, type, event, nr, nmi, regs, addr);
3162 rcu_read_unlock();
3163
3164 barrier();
3165 (*recursion)--;
3166
3167 out:
3168 put_cpu_var(perf_cpu_context);
3169 }
3170
3171 void
3172 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
3173 {
3174 __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
3175 }
3176
3177 static void perf_swcounter_read(struct perf_counter *counter)
3178 {
3179 perf_swcounter_update(counter);
3180 }
3181
3182 static int perf_swcounter_enable(struct perf_counter *counter)
3183 {
3184 perf_swcounter_set_period(counter);
3185 return 0;
3186 }
3187
3188 static void perf_swcounter_disable(struct perf_counter *counter)
3189 {
3190 perf_swcounter_update(counter);
3191 }
3192
3193 static const struct pmu perf_ops_generic = {
3194 .enable = perf_swcounter_enable,
3195 .disable = perf_swcounter_disable,
3196 .read = perf_swcounter_read,
3197 };
3198
3199 /*
3200 * Software counter: cpu wall time clock
3201 */
3202
3203 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
3204 {
3205 int cpu = raw_smp_processor_id();
3206 s64 prev;
3207 u64 now;
3208
3209 now = cpu_clock(cpu);
3210 prev = atomic64_read(&counter->hw.prev_count);
3211 atomic64_set(&counter->hw.prev_count, now);
3212 atomic64_add(now - prev, &counter->count);
3213 }
3214
3215 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
3216 {
3217 struct hw_perf_counter *hwc = &counter->hw;
3218 int cpu = raw_smp_processor_id();
3219
3220 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3221 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3222 hwc->hrtimer.function = perf_swcounter_hrtimer;
3223 if (hwc->sample_period) {
3224 u64 period = max_t(u64, 10000, hwc->sample_period);
3225 __hrtimer_start_range_ns(&hwc->hrtimer,
3226 ns_to_ktime(period), 0,
3227 HRTIMER_MODE_REL, 0);
3228 }
3229
3230 return 0;
3231 }
3232
3233 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
3234 {
3235 if (counter->hw.sample_period)
3236 hrtimer_cancel(&counter->hw.hrtimer);
3237 cpu_clock_perf_counter_update(counter);
3238 }
3239
3240 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
3241 {
3242 cpu_clock_perf_counter_update(counter);
3243 }
3244
3245 static const struct pmu perf_ops_cpu_clock = {
3246 .enable = cpu_clock_perf_counter_enable,
3247 .disable = cpu_clock_perf_counter_disable,
3248 .read = cpu_clock_perf_counter_read,
3249 };
3250
3251 /*
3252 * Software counter: task time clock
3253 */
3254
3255 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
3256 {
3257 u64 prev;
3258 s64 delta;
3259
3260 prev = atomic64_xchg(&counter->hw.prev_count, now);
3261 delta = now - prev;
3262 atomic64_add(delta, &counter->count);
3263 }
3264
3265 static int task_clock_perf_counter_enable(struct perf_counter *counter)
3266 {
3267 struct hw_perf_counter *hwc = &counter->hw;
3268 u64 now;
3269
3270 now = counter->ctx->time;
3271
3272 atomic64_set(&hwc->prev_count, now);
3273 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3274 hwc->hrtimer.function = perf_swcounter_hrtimer;
3275 if (hwc->sample_period) {
3276 u64 period = max_t(u64, 10000, hwc->sample_period);
3277 __hrtimer_start_range_ns(&hwc->hrtimer,
3278 ns_to_ktime(period), 0,
3279 HRTIMER_MODE_REL, 0);
3280 }
3281
3282 return 0;
3283 }
3284
3285 static void task_clock_perf_counter_disable(struct perf_counter *counter)
3286 {
3287 if (counter->hw.sample_period)
3288 hrtimer_cancel(&counter->hw.hrtimer);
3289 task_clock_perf_counter_update(counter, counter->ctx->time);
3290
3291 }
3292
3293 static void task_clock_perf_counter_read(struct perf_counter *counter)
3294 {
3295 u64 time;
3296
3297 if (!in_nmi()) {
3298 update_context_time(counter->ctx);
3299 time = counter->ctx->time;
3300 } else {
3301 u64 now = perf_clock();
3302 u64 delta = now - counter->ctx->timestamp;
3303 time = counter->ctx->time + delta;
3304 }
3305
3306 task_clock_perf_counter_update(counter, time);
3307 }
3308
3309 static const struct pmu perf_ops_task_clock = {
3310 .enable = task_clock_perf_counter_enable,
3311 .disable = task_clock_perf_counter_disable,
3312 .read = task_clock_perf_counter_read,
3313 };
3314
3315 /*
3316 * Software counter: cpu migrations
3317 */
3318 void perf_counter_task_migration(struct task_struct *task, int cpu)
3319 {
3320 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3321 struct perf_counter_context *ctx;
3322
3323 perf_swcounter_ctx_event(&cpuctx->ctx, PERF_TYPE_SOFTWARE,
3324 PERF_COUNT_CPU_MIGRATIONS,
3325 1, 1, NULL, 0);
3326
3327 ctx = perf_pin_task_context(task);
3328 if (ctx) {
3329 perf_swcounter_ctx_event(ctx, PERF_TYPE_SOFTWARE,
3330 PERF_COUNT_CPU_MIGRATIONS,
3331 1, 1, NULL, 0);
3332 perf_unpin_context(ctx);
3333 }
3334 }
3335
3336 #ifdef CONFIG_EVENT_PROFILE
3337 void perf_tpcounter_event(int event_id)
3338 {
3339 struct pt_regs *regs = get_irq_regs();
3340
3341 if (!regs)
3342 regs = task_pt_regs(current);
3343
3344 __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
3345 }
3346 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3347
3348 extern int ftrace_profile_enable(int);
3349 extern void ftrace_profile_disable(int);
3350
3351 static void tp_perf_counter_destroy(struct perf_counter *counter)
3352 {
3353 ftrace_profile_disable(perf_event_id(&counter->attr));
3354 }
3355
3356 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3357 {
3358 int event_id = perf_event_id(&counter->attr);
3359 int ret;
3360
3361 ret = ftrace_profile_enable(event_id);
3362 if (ret)
3363 return NULL;
3364
3365 counter->destroy = tp_perf_counter_destroy;
3366 counter->hw.sample_period = counter->attr.sample_period;
3367
3368 return &perf_ops_generic;
3369 }
3370 #else
3371 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3372 {
3373 return NULL;
3374 }
3375 #endif
3376
3377 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3378 {
3379 const struct pmu *pmu = NULL;
3380
3381 /*
3382 * Software counters (currently) can't in general distinguish
3383 * between user, kernel and hypervisor events.
3384 * However, context switches and cpu migrations are considered
3385 * to be kernel events, and page faults are never hypervisor
3386 * events.
3387 */
3388 switch (perf_event_id(&counter->attr)) {
3389 case PERF_COUNT_CPU_CLOCK:
3390 pmu = &perf_ops_cpu_clock;
3391
3392 break;
3393 case PERF_COUNT_TASK_CLOCK:
3394 /*
3395 * If the user instantiates this as a per-cpu counter,
3396 * use the cpu_clock counter instead.
3397 */
3398 if (counter->ctx->task)
3399 pmu = &perf_ops_task_clock;
3400 else
3401 pmu = &perf_ops_cpu_clock;
3402
3403 break;
3404 case PERF_COUNT_PAGE_FAULTS:
3405 case PERF_COUNT_PAGE_FAULTS_MIN:
3406 case PERF_COUNT_PAGE_FAULTS_MAJ:
3407 case PERF_COUNT_CONTEXT_SWITCHES:
3408 case PERF_COUNT_CPU_MIGRATIONS:
3409 pmu = &perf_ops_generic;
3410 break;
3411 }
3412
3413 return pmu;
3414 }
3415
3416 /*
3417 * Allocate and initialize a counter structure
3418 */
3419 static struct perf_counter *
3420 perf_counter_alloc(struct perf_counter_attr *attr,
3421 int cpu,
3422 struct perf_counter_context *ctx,
3423 struct perf_counter *group_leader,
3424 gfp_t gfpflags)
3425 {
3426 const struct pmu *pmu;
3427 struct perf_counter *counter;
3428 struct hw_perf_counter *hwc;
3429 long err;
3430
3431 counter = kzalloc(sizeof(*counter), gfpflags);
3432 if (!counter)
3433 return ERR_PTR(-ENOMEM);
3434
3435 /*
3436 * Single counters are their own group leaders, with an
3437 * empty sibling list:
3438 */
3439 if (!group_leader)
3440 group_leader = counter;
3441
3442 mutex_init(&counter->child_mutex);
3443 INIT_LIST_HEAD(&counter->child_list);
3444
3445 INIT_LIST_HEAD(&counter->list_entry);
3446 INIT_LIST_HEAD(&counter->event_entry);
3447 INIT_LIST_HEAD(&counter->sibling_list);
3448 init_waitqueue_head(&counter->waitq);
3449
3450 mutex_init(&counter->mmap_mutex);
3451
3452 counter->cpu = cpu;
3453 counter->attr = *attr;
3454 counter->group_leader = group_leader;
3455 counter->pmu = NULL;
3456 counter->ctx = ctx;
3457 counter->oncpu = -1;
3458
3459 counter->ns = get_pid_ns(current->nsproxy->pid_ns);
3460 counter->id = atomic64_inc_return(&perf_counter_id);
3461
3462 counter->state = PERF_COUNTER_STATE_INACTIVE;
3463
3464 if (attr->disabled)
3465 counter->state = PERF_COUNTER_STATE_OFF;
3466
3467 pmu = NULL;
3468
3469 hwc = &counter->hw;
3470 if (attr->freq && attr->sample_freq)
3471 hwc->sample_period = div64_u64(TICK_NSEC, attr->sample_freq);
3472 else
3473 hwc->sample_period = attr->sample_period;
3474
3475 /*
3476 * we currently do not support PERF_SAMPLE_GROUP on inherited counters
3477 */
3478 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_GROUP))
3479 goto done;
3480
3481 if (perf_event_raw(attr)) {
3482 pmu = hw_perf_counter_init(counter);
3483 goto done;
3484 }
3485
3486 switch (perf_event_type(attr)) {
3487 case PERF_TYPE_HARDWARE:
3488 pmu = hw_perf_counter_init(counter);
3489 break;
3490
3491 case PERF_TYPE_SOFTWARE:
3492 pmu = sw_perf_counter_init(counter);
3493 break;
3494
3495 case PERF_TYPE_TRACEPOINT:
3496 pmu = tp_perf_counter_init(counter);
3497 break;
3498 }
3499 done:
3500 err = 0;
3501 if (!pmu)
3502 err = -EINVAL;
3503 else if (IS_ERR(pmu))
3504 err = PTR_ERR(pmu);
3505
3506 if (err) {
3507 if (counter->ns)
3508 put_pid_ns(counter->ns);
3509 kfree(counter);
3510 return ERR_PTR(err);
3511 }
3512
3513 counter->pmu = pmu;
3514
3515 atomic_inc(&nr_counters);
3516 if (counter->attr.mmap)
3517 atomic_inc(&nr_mmap_counters);
3518 if (counter->attr.comm)
3519 atomic_inc(&nr_comm_counters);
3520
3521 return counter;
3522 }
3523
3524 /**
3525 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
3526 *
3527 * @attr_uptr: event type attributes for monitoring/sampling
3528 * @pid: target pid
3529 * @cpu: target cpu
3530 * @group_fd: group leader counter fd
3531 */
3532 SYSCALL_DEFINE5(perf_counter_open,
3533 const struct perf_counter_attr __user *, attr_uptr,
3534 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
3535 {
3536 struct perf_counter *counter, *group_leader;
3537 struct perf_counter_attr attr;
3538 struct perf_counter_context *ctx;
3539 struct file *counter_file = NULL;
3540 struct file *group_file = NULL;
3541 int fput_needed = 0;
3542 int fput_needed2 = 0;
3543 int ret;
3544
3545 /* for future expandability... */
3546 if (flags)
3547 return -EINVAL;
3548
3549 if (copy_from_user(&attr, attr_uptr, sizeof(attr)) != 0)
3550 return -EFAULT;
3551
3552 /*
3553 * Get the target context (task or percpu):
3554 */
3555 ctx = find_get_context(pid, cpu);
3556 if (IS_ERR(ctx))
3557 return PTR_ERR(ctx);
3558
3559 /*
3560 * Look up the group leader (we will attach this counter to it):
3561 */
3562 group_leader = NULL;
3563 if (group_fd != -1) {
3564 ret = -EINVAL;
3565 group_file = fget_light(group_fd, &fput_needed);
3566 if (!group_file)
3567 goto err_put_context;
3568 if (group_file->f_op != &perf_fops)
3569 goto err_put_context;
3570
3571 group_leader = group_file->private_data;
3572 /*
3573 * Do not allow a recursive hierarchy (this new sibling
3574 * becoming part of another group-sibling):
3575 */
3576 if (group_leader->group_leader != group_leader)
3577 goto err_put_context;
3578 /*
3579 * Do not allow to attach to a group in a different
3580 * task or CPU context:
3581 */
3582 if (group_leader->ctx != ctx)
3583 goto err_put_context;
3584 /*
3585 * Only a group leader can be exclusive or pinned
3586 */
3587 if (attr.exclusive || attr.pinned)
3588 goto err_put_context;
3589 }
3590
3591 counter = perf_counter_alloc(&attr, cpu, ctx, group_leader,
3592 GFP_KERNEL);
3593 ret = PTR_ERR(counter);
3594 if (IS_ERR(counter))
3595 goto err_put_context;
3596
3597 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
3598 if (ret < 0)
3599 goto err_free_put_context;
3600
3601 counter_file = fget_light(ret, &fput_needed2);
3602 if (!counter_file)
3603 goto err_free_put_context;
3604
3605 counter->filp = counter_file;
3606 WARN_ON_ONCE(ctx->parent_ctx);
3607 mutex_lock(&ctx->mutex);
3608 perf_install_in_context(ctx, counter, cpu);
3609 ++ctx->generation;
3610 mutex_unlock(&ctx->mutex);
3611
3612 counter->owner = current;
3613 get_task_struct(current);
3614 mutex_lock(&current->perf_counter_mutex);
3615 list_add_tail(&counter->owner_entry, &current->perf_counter_list);
3616 mutex_unlock(&current->perf_counter_mutex);
3617
3618 fput_light(counter_file, fput_needed2);
3619
3620 out_fput:
3621 fput_light(group_file, fput_needed);
3622
3623 return ret;
3624
3625 err_free_put_context:
3626 kfree(counter);
3627
3628 err_put_context:
3629 put_ctx(ctx);
3630
3631 goto out_fput;
3632 }
3633
3634 /*
3635 * inherit a counter from parent task to child task:
3636 */
3637 static struct perf_counter *
3638 inherit_counter(struct perf_counter *parent_counter,
3639 struct task_struct *parent,
3640 struct perf_counter_context *parent_ctx,
3641 struct task_struct *child,
3642 struct perf_counter *group_leader,
3643 struct perf_counter_context *child_ctx)
3644 {
3645 struct perf_counter *child_counter;
3646
3647 /*
3648 * Instead of creating recursive hierarchies of counters,
3649 * we link inherited counters back to the original parent,
3650 * which has a filp for sure, which we use as the reference
3651 * count:
3652 */
3653 if (parent_counter->parent)
3654 parent_counter = parent_counter->parent;
3655
3656 child_counter = perf_counter_alloc(&parent_counter->attr,
3657 parent_counter->cpu, child_ctx,
3658 group_leader, GFP_KERNEL);
3659 if (IS_ERR(child_counter))
3660 return child_counter;
3661 get_ctx(child_ctx);
3662
3663 /*
3664 * Make the child state follow the state of the parent counter,
3665 * not its attr.disabled bit. We hold the parent's mutex,
3666 * so we won't race with perf_counter_{en, dis}able_family.
3667 */
3668 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3669 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3670 else
3671 child_counter->state = PERF_COUNTER_STATE_OFF;
3672
3673 /*
3674 * Link it up in the child's context:
3675 */
3676 add_counter_to_ctx(child_counter, child_ctx);
3677
3678 child_counter->parent = parent_counter;
3679 /*
3680 * inherit into child's child as well:
3681 */
3682 child_counter->attr.inherit = 1;
3683
3684 /*
3685 * Get a reference to the parent filp - we will fput it
3686 * when the child counter exits. This is safe to do because
3687 * we are in the parent and we know that the filp still
3688 * exists and has a nonzero count:
3689 */
3690 atomic_long_inc(&parent_counter->filp->f_count);
3691
3692 /*
3693 * Link this into the parent counter's child list
3694 */
3695 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3696 mutex_lock(&parent_counter->child_mutex);
3697 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3698 mutex_unlock(&parent_counter->child_mutex);
3699
3700 return child_counter;
3701 }
3702
3703 static int inherit_group(struct perf_counter *parent_counter,
3704 struct task_struct *parent,
3705 struct perf_counter_context *parent_ctx,
3706 struct task_struct *child,
3707 struct perf_counter_context *child_ctx)
3708 {
3709 struct perf_counter *leader;
3710 struct perf_counter *sub;
3711 struct perf_counter *child_ctr;
3712
3713 leader = inherit_counter(parent_counter, parent, parent_ctx,
3714 child, NULL, child_ctx);
3715 if (IS_ERR(leader))
3716 return PTR_ERR(leader);
3717 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3718 child_ctr = inherit_counter(sub, parent, parent_ctx,
3719 child, leader, child_ctx);
3720 if (IS_ERR(child_ctr))
3721 return PTR_ERR(child_ctr);
3722 }
3723 return 0;
3724 }
3725
3726 static void sync_child_counter(struct perf_counter *child_counter,
3727 struct perf_counter *parent_counter)
3728 {
3729 u64 child_val;
3730
3731 child_val = atomic64_read(&child_counter->count);
3732
3733 /*
3734 * Add back the child's count to the parent's count:
3735 */
3736 atomic64_add(child_val, &parent_counter->count);
3737 atomic64_add(child_counter->total_time_enabled,
3738 &parent_counter->child_total_time_enabled);
3739 atomic64_add(child_counter->total_time_running,
3740 &parent_counter->child_total_time_running);
3741
3742 /*
3743 * Remove this counter from the parent's list
3744 */
3745 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
3746 mutex_lock(&parent_counter->child_mutex);
3747 list_del_init(&child_counter->child_list);
3748 mutex_unlock(&parent_counter->child_mutex);
3749
3750 /*
3751 * Release the parent counter, if this was the last
3752 * reference to it.
3753 */
3754 fput(parent_counter->filp);
3755 }
3756
3757 static void
3758 __perf_counter_exit_task(struct perf_counter *child_counter,
3759 struct perf_counter_context *child_ctx)
3760 {
3761 struct perf_counter *parent_counter;
3762
3763 update_counter_times(child_counter);
3764 perf_counter_remove_from_context(child_counter);
3765
3766 parent_counter = child_counter->parent;
3767 /*
3768 * It can happen that parent exits first, and has counters
3769 * that are still around due to the child reference. These
3770 * counters need to be zapped - but otherwise linger.
3771 */
3772 if (parent_counter) {
3773 sync_child_counter(child_counter, parent_counter);
3774 free_counter(child_counter);
3775 }
3776 }
3777
3778 /*
3779 * When a child task exits, feed back counter values to parent counters.
3780 */
3781 void perf_counter_exit_task(struct task_struct *child)
3782 {
3783 struct perf_counter *child_counter, *tmp;
3784 struct perf_counter_context *child_ctx;
3785 unsigned long flags;
3786
3787 if (likely(!child->perf_counter_ctxp))
3788 return;
3789
3790 local_irq_save(flags);
3791 /*
3792 * We can't reschedule here because interrupts are disabled,
3793 * and either child is current or it is a task that can't be
3794 * scheduled, so we are now safe from rescheduling changing
3795 * our context.
3796 */
3797 child_ctx = child->perf_counter_ctxp;
3798 __perf_counter_task_sched_out(child_ctx);
3799
3800 /*
3801 * Take the context lock here so that if find_get_context is
3802 * reading child->perf_counter_ctxp, we wait until it has
3803 * incremented the context's refcount before we do put_ctx below.
3804 */
3805 spin_lock(&child_ctx->lock);
3806 child->perf_counter_ctxp = NULL;
3807 if (child_ctx->parent_ctx) {
3808 /*
3809 * This context is a clone; unclone it so it can't get
3810 * swapped to another process while we're removing all
3811 * the counters from it.
3812 */
3813 put_ctx(child_ctx->parent_ctx);
3814 child_ctx->parent_ctx = NULL;
3815 }
3816 spin_unlock(&child_ctx->lock);
3817 local_irq_restore(flags);
3818
3819 mutex_lock(&child_ctx->mutex);
3820
3821 again:
3822 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3823 list_entry)
3824 __perf_counter_exit_task(child_counter, child_ctx);
3825
3826 /*
3827 * If the last counter was a group counter, it will have appended all
3828 * its siblings to the list, but we obtained 'tmp' before that which
3829 * will still point to the list head terminating the iteration.
3830 */
3831 if (!list_empty(&child_ctx->counter_list))
3832 goto again;
3833
3834 mutex_unlock(&child_ctx->mutex);
3835
3836 put_ctx(child_ctx);
3837 }
3838
3839 /*
3840 * free an unexposed, unused context as created by inheritance by
3841 * init_task below, used by fork() in case of fail.
3842 */
3843 void perf_counter_free_task(struct task_struct *task)
3844 {
3845 struct perf_counter_context *ctx = task->perf_counter_ctxp;
3846 struct perf_counter *counter, *tmp;
3847
3848 if (!ctx)
3849 return;
3850
3851 mutex_lock(&ctx->mutex);
3852 again:
3853 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) {
3854 struct perf_counter *parent = counter->parent;
3855
3856 if (WARN_ON_ONCE(!parent))
3857 continue;
3858
3859 mutex_lock(&parent->child_mutex);
3860 list_del_init(&counter->child_list);
3861 mutex_unlock(&parent->child_mutex);
3862
3863 fput(parent->filp);
3864
3865 list_del_counter(counter, ctx);
3866 free_counter(counter);
3867 }
3868
3869 if (!list_empty(&ctx->counter_list))
3870 goto again;
3871
3872 mutex_unlock(&ctx->mutex);
3873
3874 put_ctx(ctx);
3875 }
3876
3877 /*
3878 * Initialize the perf_counter context in task_struct
3879 */
3880 int perf_counter_init_task(struct task_struct *child)
3881 {
3882 struct perf_counter_context *child_ctx, *parent_ctx;
3883 struct perf_counter_context *cloned_ctx;
3884 struct perf_counter *counter;
3885 struct task_struct *parent = current;
3886 int inherited_all = 1;
3887 int ret = 0;
3888
3889 child->perf_counter_ctxp = NULL;
3890
3891 mutex_init(&child->perf_counter_mutex);
3892 INIT_LIST_HEAD(&child->perf_counter_list);
3893
3894 if (likely(!parent->perf_counter_ctxp))
3895 return 0;
3896
3897 /*
3898 * This is executed from the parent task context, so inherit
3899 * counters that have been marked for cloning.
3900 * First allocate and initialize a context for the child.
3901 */
3902
3903 child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
3904 if (!child_ctx)
3905 return -ENOMEM;
3906
3907 __perf_counter_init_context(child_ctx, child);
3908 child->perf_counter_ctxp = child_ctx;
3909 get_task_struct(child);
3910
3911 /*
3912 * If the parent's context is a clone, pin it so it won't get
3913 * swapped under us.
3914 */
3915 parent_ctx = perf_pin_task_context(parent);
3916
3917 /*
3918 * No need to check if parent_ctx != NULL here; since we saw
3919 * it non-NULL earlier, the only reason for it to become NULL
3920 * is if we exit, and since we're currently in the middle of
3921 * a fork we can't be exiting at the same time.
3922 */
3923
3924 /*
3925 * Lock the parent list. No need to lock the child - not PID
3926 * hashed yet and not running, so nobody can access it.
3927 */
3928 mutex_lock(&parent_ctx->mutex);
3929
3930 /*
3931 * We dont have to disable NMIs - we are only looking at
3932 * the list, not manipulating it:
3933 */
3934 list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
3935 if (counter != counter->group_leader)
3936 continue;
3937
3938 if (!counter->attr.inherit) {
3939 inherited_all = 0;
3940 continue;
3941 }
3942
3943 ret = inherit_group(counter, parent, parent_ctx,
3944 child, child_ctx);
3945 if (ret) {
3946 inherited_all = 0;
3947 break;
3948 }
3949 }
3950
3951 if (inherited_all) {
3952 /*
3953 * Mark the child context as a clone of the parent
3954 * context, or of whatever the parent is a clone of.
3955 * Note that if the parent is a clone, it could get
3956 * uncloned at any point, but that doesn't matter
3957 * because the list of counters and the generation
3958 * count can't have changed since we took the mutex.
3959 */
3960 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
3961 if (cloned_ctx) {
3962 child_ctx->parent_ctx = cloned_ctx;
3963 child_ctx->parent_gen = parent_ctx->parent_gen;
3964 } else {
3965 child_ctx->parent_ctx = parent_ctx;
3966 child_ctx->parent_gen = parent_ctx->generation;
3967 }
3968 get_ctx(child_ctx->parent_ctx);
3969 }
3970
3971 mutex_unlock(&parent_ctx->mutex);
3972
3973 perf_unpin_context(parent_ctx);
3974
3975 return ret;
3976 }
3977
3978 static void __cpuinit perf_counter_init_cpu(int cpu)
3979 {
3980 struct perf_cpu_context *cpuctx;
3981
3982 cpuctx = &per_cpu(perf_cpu_context, cpu);
3983 __perf_counter_init_context(&cpuctx->ctx, NULL);
3984
3985 spin_lock(&perf_resource_lock);
3986 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3987 spin_unlock(&perf_resource_lock);
3988
3989 hw_perf_counter_setup(cpu);
3990 }
3991
3992 #ifdef CONFIG_HOTPLUG_CPU
3993 static void __perf_counter_exit_cpu(void *info)
3994 {
3995 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3996 struct perf_counter_context *ctx = &cpuctx->ctx;
3997 struct perf_counter *counter, *tmp;
3998
3999 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
4000 __perf_counter_remove_from_context(counter);
4001 }
4002 static void perf_counter_exit_cpu(int cpu)
4003 {
4004 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4005 struct perf_counter_context *ctx = &cpuctx->ctx;
4006
4007 mutex_lock(&ctx->mutex);
4008 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
4009 mutex_unlock(&ctx->mutex);
4010 }
4011 #else
4012 static inline void perf_counter_exit_cpu(int cpu) { }
4013 #endif
4014
4015 static int __cpuinit
4016 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
4017 {
4018 unsigned int cpu = (long)hcpu;
4019
4020 switch (action) {
4021
4022 case CPU_UP_PREPARE:
4023 case CPU_UP_PREPARE_FROZEN:
4024 perf_counter_init_cpu(cpu);
4025 break;
4026
4027 case CPU_DOWN_PREPARE:
4028 case CPU_DOWN_PREPARE_FROZEN:
4029 perf_counter_exit_cpu(cpu);
4030 break;
4031
4032 default:
4033 break;
4034 }
4035
4036 return NOTIFY_OK;
4037 }
4038
4039 /*
4040 * This has to have a higher priority than migration_notifier in sched.c.
4041 */
4042 static struct notifier_block __cpuinitdata perf_cpu_nb = {
4043 .notifier_call = perf_cpu_notify,
4044 .priority = 20,
4045 };
4046
4047 void __init perf_counter_init(void)
4048 {
4049 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
4050 (void *)(long)smp_processor_id());
4051 register_cpu_notifier(&perf_cpu_nb);
4052 }
4053
4054 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
4055 {
4056 return sprintf(buf, "%d\n", perf_reserved_percpu);
4057 }
4058
4059 static ssize_t
4060 perf_set_reserve_percpu(struct sysdev_class *class,
4061 const char *buf,
4062 size_t count)
4063 {
4064 struct perf_cpu_context *cpuctx;
4065 unsigned long val;
4066 int err, cpu, mpt;
4067
4068 err = strict_strtoul(buf, 10, &val);
4069 if (err)
4070 return err;
4071 if (val > perf_max_counters)
4072 return -EINVAL;
4073
4074 spin_lock(&perf_resource_lock);
4075 perf_reserved_percpu = val;
4076 for_each_online_cpu(cpu) {
4077 cpuctx = &per_cpu(perf_cpu_context, cpu);
4078 spin_lock_irq(&cpuctx->ctx.lock);
4079 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
4080 perf_max_counters - perf_reserved_percpu);
4081 cpuctx->max_pertask = mpt;
4082 spin_unlock_irq(&cpuctx->ctx.lock);
4083 }
4084 spin_unlock(&perf_resource_lock);
4085
4086 return count;
4087 }
4088
4089 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
4090 {
4091 return sprintf(buf, "%d\n", perf_overcommit);
4092 }
4093
4094 static ssize_t
4095 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
4096 {
4097 unsigned long val;
4098 int err;
4099
4100 err = strict_strtoul(buf, 10, &val);
4101 if (err)
4102 return err;
4103 if (val > 1)
4104 return -EINVAL;
4105
4106 spin_lock(&perf_resource_lock);
4107 perf_overcommit = val;
4108 spin_unlock(&perf_resource_lock);
4109
4110 return count;
4111 }
4112
4113 static SYSDEV_CLASS_ATTR(
4114 reserve_percpu,
4115 0644,
4116 perf_show_reserve_percpu,
4117 perf_set_reserve_percpu
4118 );
4119
4120 static SYSDEV_CLASS_ATTR(
4121 overcommit,
4122 0644,
4123 perf_show_overcommit,
4124 perf_set_overcommit
4125 );
4126
4127 static struct attribute *perfclass_attrs[] = {
4128 &attr_reserve_percpu.attr,
4129 &attr_overcommit.attr,
4130 NULL
4131 };
4132
4133 static struct attribute_group perfclass_attr_group = {
4134 .attrs = perfclass_attrs,
4135 .name = "perf_counters",
4136 };
4137
4138 static int __init perf_counter_sysfs_init(void)
4139 {
4140 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
4141 &perfclass_attr_group);
4142 }
4143 device_initcall(perf_counter_sysfs_init);
This page took 0.116162 seconds and 6 git commands to generate.