perf_counter: Propagate inheritance failures down the fork() path
[deliverable/linux.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/ptrace.h>
20 #include <linux/percpu.h>
21 #include <linux/vmstat.h>
22 #include <linux/hardirq.h>
23 #include <linux/rculist.h>
24 #include <linux/uaccess.h>
25 #include <linux/syscalls.h>
26 #include <linux/anon_inodes.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/perf_counter.h>
29 #include <linux/dcache.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34 * Each CPU has a list of per CPU counters:
35 */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_tracking __read_mostly;
44 static atomic_t nr_munmap_tracking __read_mostly;
45 static atomic_t nr_comm_tracking __read_mostly;
46
47 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
49
50 /*
51 * Lock for (sysadmin-configurable) counter reservations:
52 */
53 static DEFINE_SPINLOCK(perf_resource_lock);
54
55 /*
56 * Architecture provided APIs - weak aliases:
57 */
58 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
59 {
60 return NULL;
61 }
62
63 void __weak hw_perf_disable(void) { barrier(); }
64 void __weak hw_perf_enable(void) { barrier(); }
65
66 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
67 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
68 struct perf_cpu_context *cpuctx,
69 struct perf_counter_context *ctx, int cpu)
70 {
71 return 0;
72 }
73
74 void __weak perf_counter_print_debug(void) { }
75
76 static DEFINE_PER_CPU(int, disable_count);
77
78 void __perf_disable(void)
79 {
80 __get_cpu_var(disable_count)++;
81 }
82
83 bool __perf_enable(void)
84 {
85 return !--__get_cpu_var(disable_count);
86 }
87
88 void perf_disable(void)
89 {
90 __perf_disable();
91 hw_perf_disable();
92 }
93
94 void perf_enable(void)
95 {
96 if (__perf_enable())
97 hw_perf_enable();
98 }
99
100 static void get_ctx(struct perf_counter_context *ctx)
101 {
102 atomic_inc(&ctx->refcount);
103 }
104
105 static void put_ctx(struct perf_counter_context *ctx)
106 {
107 if (atomic_dec_and_test(&ctx->refcount)) {
108 if (ctx->parent_ctx)
109 put_ctx(ctx->parent_ctx);
110 kfree(ctx);
111 }
112 }
113
114 /*
115 * Add a counter from the lists for its context.
116 * Must be called with ctx->mutex and ctx->lock held.
117 */
118 static void
119 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
120 {
121 struct perf_counter *group_leader = counter->group_leader;
122
123 /*
124 * Depending on whether it is a standalone or sibling counter,
125 * add it straight to the context's counter list, or to the group
126 * leader's sibling list:
127 */
128 if (group_leader == counter)
129 list_add_tail(&counter->list_entry, &ctx->counter_list);
130 else {
131 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
132 group_leader->nr_siblings++;
133 }
134
135 list_add_rcu(&counter->event_entry, &ctx->event_list);
136 ctx->nr_counters++;
137 }
138
139 /*
140 * Remove a counter from the lists for its context.
141 * Must be called with ctx->mutex and ctx->lock held.
142 */
143 static void
144 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
145 {
146 struct perf_counter *sibling, *tmp;
147
148 if (list_empty(&counter->list_entry))
149 return;
150 ctx->nr_counters--;
151
152 list_del_init(&counter->list_entry);
153 list_del_rcu(&counter->event_entry);
154
155 if (counter->group_leader != counter)
156 counter->group_leader->nr_siblings--;
157
158 /*
159 * If this was a group counter with sibling counters then
160 * upgrade the siblings to singleton counters by adding them
161 * to the context list directly:
162 */
163 list_for_each_entry_safe(sibling, tmp,
164 &counter->sibling_list, list_entry) {
165
166 list_move_tail(&sibling->list_entry, &ctx->counter_list);
167 sibling->group_leader = sibling;
168 }
169 }
170
171 static void
172 counter_sched_out(struct perf_counter *counter,
173 struct perf_cpu_context *cpuctx,
174 struct perf_counter_context *ctx)
175 {
176 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
177 return;
178
179 counter->state = PERF_COUNTER_STATE_INACTIVE;
180 counter->tstamp_stopped = ctx->time;
181 counter->pmu->disable(counter);
182 counter->oncpu = -1;
183
184 if (!is_software_counter(counter))
185 cpuctx->active_oncpu--;
186 ctx->nr_active--;
187 if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
188 cpuctx->exclusive = 0;
189 }
190
191 static void
192 group_sched_out(struct perf_counter *group_counter,
193 struct perf_cpu_context *cpuctx,
194 struct perf_counter_context *ctx)
195 {
196 struct perf_counter *counter;
197
198 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
199 return;
200
201 counter_sched_out(group_counter, cpuctx, ctx);
202
203 /*
204 * Schedule out siblings (if any):
205 */
206 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
207 counter_sched_out(counter, cpuctx, ctx);
208
209 if (group_counter->hw_event.exclusive)
210 cpuctx->exclusive = 0;
211 }
212
213 /*
214 * Mark this context as not being a clone of another.
215 * Called when counters are added to or removed from this context.
216 * We also increment our generation number so that anything that
217 * was cloned from this context before this will not match anything
218 * cloned from this context after this.
219 */
220 static void unclone_ctx(struct perf_counter_context *ctx)
221 {
222 ++ctx->generation;
223 if (!ctx->parent_ctx)
224 return;
225 put_ctx(ctx->parent_ctx);
226 ctx->parent_ctx = NULL;
227 }
228
229 /*
230 * Cross CPU call to remove a performance counter
231 *
232 * We disable the counter on the hardware level first. After that we
233 * remove it from the context list.
234 */
235 static void __perf_counter_remove_from_context(void *info)
236 {
237 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
238 struct perf_counter *counter = info;
239 struct perf_counter_context *ctx = counter->ctx;
240 unsigned long flags;
241
242 /*
243 * If this is a task context, we need to check whether it is
244 * the current task context of this cpu. If not it has been
245 * scheduled out before the smp call arrived.
246 */
247 if (ctx->task && cpuctx->task_ctx != ctx)
248 return;
249
250 spin_lock_irqsave(&ctx->lock, flags);
251 /*
252 * Protect the list operation against NMI by disabling the
253 * counters on a global level.
254 */
255 perf_disable();
256
257 counter_sched_out(counter, cpuctx, ctx);
258
259 list_del_counter(counter, ctx);
260
261 if (!ctx->task) {
262 /*
263 * Allow more per task counters with respect to the
264 * reservation:
265 */
266 cpuctx->max_pertask =
267 min(perf_max_counters - ctx->nr_counters,
268 perf_max_counters - perf_reserved_percpu);
269 }
270
271 perf_enable();
272 spin_unlock_irqrestore(&ctx->lock, flags);
273 }
274
275
276 /*
277 * Remove the counter from a task's (or a CPU's) list of counters.
278 *
279 * Must be called with ctx->mutex held.
280 *
281 * CPU counters are removed with a smp call. For task counters we only
282 * call when the task is on a CPU.
283 */
284 static void perf_counter_remove_from_context(struct perf_counter *counter)
285 {
286 struct perf_counter_context *ctx = counter->ctx;
287 struct task_struct *task = ctx->task;
288
289 unclone_ctx(ctx);
290 if (!task) {
291 /*
292 * Per cpu counters are removed via an smp call and
293 * the removal is always sucessful.
294 */
295 smp_call_function_single(counter->cpu,
296 __perf_counter_remove_from_context,
297 counter, 1);
298 return;
299 }
300
301 retry:
302 task_oncpu_function_call(task, __perf_counter_remove_from_context,
303 counter);
304
305 spin_lock_irq(&ctx->lock);
306 /*
307 * If the context is active we need to retry the smp call.
308 */
309 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
310 spin_unlock_irq(&ctx->lock);
311 goto retry;
312 }
313
314 /*
315 * The lock prevents that this context is scheduled in so we
316 * can remove the counter safely, if the call above did not
317 * succeed.
318 */
319 if (!list_empty(&counter->list_entry)) {
320 list_del_counter(counter, ctx);
321 }
322 spin_unlock_irq(&ctx->lock);
323 }
324
325 static inline u64 perf_clock(void)
326 {
327 return cpu_clock(smp_processor_id());
328 }
329
330 /*
331 * Update the record of the current time in a context.
332 */
333 static void update_context_time(struct perf_counter_context *ctx)
334 {
335 u64 now = perf_clock();
336
337 ctx->time += now - ctx->timestamp;
338 ctx->timestamp = now;
339 }
340
341 /*
342 * Update the total_time_enabled and total_time_running fields for a counter.
343 */
344 static void update_counter_times(struct perf_counter *counter)
345 {
346 struct perf_counter_context *ctx = counter->ctx;
347 u64 run_end;
348
349 if (counter->state < PERF_COUNTER_STATE_INACTIVE)
350 return;
351
352 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
353
354 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
355 run_end = counter->tstamp_stopped;
356 else
357 run_end = ctx->time;
358
359 counter->total_time_running = run_end - counter->tstamp_running;
360 }
361
362 /*
363 * Update total_time_enabled and total_time_running for all counters in a group.
364 */
365 static void update_group_times(struct perf_counter *leader)
366 {
367 struct perf_counter *counter;
368
369 update_counter_times(leader);
370 list_for_each_entry(counter, &leader->sibling_list, list_entry)
371 update_counter_times(counter);
372 }
373
374 /*
375 * Cross CPU call to disable a performance counter
376 */
377 static void __perf_counter_disable(void *info)
378 {
379 struct perf_counter *counter = info;
380 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
381 struct perf_counter_context *ctx = counter->ctx;
382 unsigned long flags;
383
384 /*
385 * If this is a per-task counter, need to check whether this
386 * counter's task is the current task on this cpu.
387 */
388 if (ctx->task && cpuctx->task_ctx != ctx)
389 return;
390
391 spin_lock_irqsave(&ctx->lock, flags);
392
393 /*
394 * If the counter is on, turn it off.
395 * If it is in error state, leave it in error state.
396 */
397 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
398 update_context_time(ctx);
399 update_counter_times(counter);
400 if (counter == counter->group_leader)
401 group_sched_out(counter, cpuctx, ctx);
402 else
403 counter_sched_out(counter, cpuctx, ctx);
404 counter->state = PERF_COUNTER_STATE_OFF;
405 }
406
407 spin_unlock_irqrestore(&ctx->lock, flags);
408 }
409
410 /*
411 * Disable a counter.
412 */
413 static void perf_counter_disable(struct perf_counter *counter)
414 {
415 struct perf_counter_context *ctx = counter->ctx;
416 struct task_struct *task = ctx->task;
417
418 if (!task) {
419 /*
420 * Disable the counter on the cpu that it's on
421 */
422 smp_call_function_single(counter->cpu, __perf_counter_disable,
423 counter, 1);
424 return;
425 }
426
427 retry:
428 task_oncpu_function_call(task, __perf_counter_disable, counter);
429
430 spin_lock_irq(&ctx->lock);
431 /*
432 * If the counter is still active, we need to retry the cross-call.
433 */
434 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
435 spin_unlock_irq(&ctx->lock);
436 goto retry;
437 }
438
439 /*
440 * Since we have the lock this context can't be scheduled
441 * in, so we can change the state safely.
442 */
443 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
444 update_counter_times(counter);
445 counter->state = PERF_COUNTER_STATE_OFF;
446 }
447
448 spin_unlock_irq(&ctx->lock);
449 }
450
451 static int
452 counter_sched_in(struct perf_counter *counter,
453 struct perf_cpu_context *cpuctx,
454 struct perf_counter_context *ctx,
455 int cpu)
456 {
457 if (counter->state <= PERF_COUNTER_STATE_OFF)
458 return 0;
459
460 counter->state = PERF_COUNTER_STATE_ACTIVE;
461 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
462 /*
463 * The new state must be visible before we turn it on in the hardware:
464 */
465 smp_wmb();
466
467 if (counter->pmu->enable(counter)) {
468 counter->state = PERF_COUNTER_STATE_INACTIVE;
469 counter->oncpu = -1;
470 return -EAGAIN;
471 }
472
473 counter->tstamp_running += ctx->time - counter->tstamp_stopped;
474
475 if (!is_software_counter(counter))
476 cpuctx->active_oncpu++;
477 ctx->nr_active++;
478
479 if (counter->hw_event.exclusive)
480 cpuctx->exclusive = 1;
481
482 return 0;
483 }
484
485 static int
486 group_sched_in(struct perf_counter *group_counter,
487 struct perf_cpu_context *cpuctx,
488 struct perf_counter_context *ctx,
489 int cpu)
490 {
491 struct perf_counter *counter, *partial_group;
492 int ret;
493
494 if (group_counter->state == PERF_COUNTER_STATE_OFF)
495 return 0;
496
497 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
498 if (ret)
499 return ret < 0 ? ret : 0;
500
501 group_counter->prev_state = group_counter->state;
502 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
503 return -EAGAIN;
504
505 /*
506 * Schedule in siblings as one group (if any):
507 */
508 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
509 counter->prev_state = counter->state;
510 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
511 partial_group = counter;
512 goto group_error;
513 }
514 }
515
516 return 0;
517
518 group_error:
519 /*
520 * Groups can be scheduled in as one unit only, so undo any
521 * partial group before returning:
522 */
523 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
524 if (counter == partial_group)
525 break;
526 counter_sched_out(counter, cpuctx, ctx);
527 }
528 counter_sched_out(group_counter, cpuctx, ctx);
529
530 return -EAGAIN;
531 }
532
533 /*
534 * Return 1 for a group consisting entirely of software counters,
535 * 0 if the group contains any hardware counters.
536 */
537 static int is_software_only_group(struct perf_counter *leader)
538 {
539 struct perf_counter *counter;
540
541 if (!is_software_counter(leader))
542 return 0;
543
544 list_for_each_entry(counter, &leader->sibling_list, list_entry)
545 if (!is_software_counter(counter))
546 return 0;
547
548 return 1;
549 }
550
551 /*
552 * Work out whether we can put this counter group on the CPU now.
553 */
554 static int group_can_go_on(struct perf_counter *counter,
555 struct perf_cpu_context *cpuctx,
556 int can_add_hw)
557 {
558 /*
559 * Groups consisting entirely of software counters can always go on.
560 */
561 if (is_software_only_group(counter))
562 return 1;
563 /*
564 * If an exclusive group is already on, no other hardware
565 * counters can go on.
566 */
567 if (cpuctx->exclusive)
568 return 0;
569 /*
570 * If this group is exclusive and there are already
571 * counters on the CPU, it can't go on.
572 */
573 if (counter->hw_event.exclusive && cpuctx->active_oncpu)
574 return 0;
575 /*
576 * Otherwise, try to add it if all previous groups were able
577 * to go on.
578 */
579 return can_add_hw;
580 }
581
582 static void add_counter_to_ctx(struct perf_counter *counter,
583 struct perf_counter_context *ctx)
584 {
585 list_add_counter(counter, ctx);
586 counter->prev_state = PERF_COUNTER_STATE_OFF;
587 counter->tstamp_enabled = ctx->time;
588 counter->tstamp_running = ctx->time;
589 counter->tstamp_stopped = ctx->time;
590 }
591
592 /*
593 * Cross CPU call to install and enable a performance counter
594 *
595 * Must be called with ctx->mutex held
596 */
597 static void __perf_install_in_context(void *info)
598 {
599 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
600 struct perf_counter *counter = info;
601 struct perf_counter_context *ctx = counter->ctx;
602 struct perf_counter *leader = counter->group_leader;
603 int cpu = smp_processor_id();
604 unsigned long flags;
605 int err;
606
607 /*
608 * If this is a task context, we need to check whether it is
609 * the current task context of this cpu. If not it has been
610 * scheduled out before the smp call arrived.
611 * Or possibly this is the right context but it isn't
612 * on this cpu because it had no counters.
613 */
614 if (ctx->task && cpuctx->task_ctx != ctx) {
615 if (cpuctx->task_ctx || ctx->task != current)
616 return;
617 cpuctx->task_ctx = ctx;
618 }
619
620 spin_lock_irqsave(&ctx->lock, flags);
621 ctx->is_active = 1;
622 update_context_time(ctx);
623
624 /*
625 * Protect the list operation against NMI by disabling the
626 * counters on a global level. NOP for non NMI based counters.
627 */
628 perf_disable();
629
630 add_counter_to_ctx(counter, ctx);
631
632 /*
633 * Don't put the counter on if it is disabled or if
634 * it is in a group and the group isn't on.
635 */
636 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
637 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
638 goto unlock;
639
640 /*
641 * An exclusive counter can't go on if there are already active
642 * hardware counters, and no hardware counter can go on if there
643 * is already an exclusive counter on.
644 */
645 if (!group_can_go_on(counter, cpuctx, 1))
646 err = -EEXIST;
647 else
648 err = counter_sched_in(counter, cpuctx, ctx, cpu);
649
650 if (err) {
651 /*
652 * This counter couldn't go on. If it is in a group
653 * then we have to pull the whole group off.
654 * If the counter group is pinned then put it in error state.
655 */
656 if (leader != counter)
657 group_sched_out(leader, cpuctx, ctx);
658 if (leader->hw_event.pinned) {
659 update_group_times(leader);
660 leader->state = PERF_COUNTER_STATE_ERROR;
661 }
662 }
663
664 if (!err && !ctx->task && cpuctx->max_pertask)
665 cpuctx->max_pertask--;
666
667 unlock:
668 perf_enable();
669
670 spin_unlock_irqrestore(&ctx->lock, flags);
671 }
672
673 /*
674 * Attach a performance counter to a context
675 *
676 * First we add the counter to the list with the hardware enable bit
677 * in counter->hw_config cleared.
678 *
679 * If the counter is attached to a task which is on a CPU we use a smp
680 * call to enable it in the task context. The task might have been
681 * scheduled away, but we check this in the smp call again.
682 *
683 * Must be called with ctx->mutex held.
684 */
685 static void
686 perf_install_in_context(struct perf_counter_context *ctx,
687 struct perf_counter *counter,
688 int cpu)
689 {
690 struct task_struct *task = ctx->task;
691
692 if (!task) {
693 /*
694 * Per cpu counters are installed via an smp call and
695 * the install is always sucessful.
696 */
697 smp_call_function_single(cpu, __perf_install_in_context,
698 counter, 1);
699 return;
700 }
701
702 retry:
703 task_oncpu_function_call(task, __perf_install_in_context,
704 counter);
705
706 spin_lock_irq(&ctx->lock);
707 /*
708 * we need to retry the smp call.
709 */
710 if (ctx->is_active && list_empty(&counter->list_entry)) {
711 spin_unlock_irq(&ctx->lock);
712 goto retry;
713 }
714
715 /*
716 * The lock prevents that this context is scheduled in so we
717 * can add the counter safely, if it the call above did not
718 * succeed.
719 */
720 if (list_empty(&counter->list_entry))
721 add_counter_to_ctx(counter, ctx);
722 spin_unlock_irq(&ctx->lock);
723 }
724
725 /*
726 * Cross CPU call to enable a performance counter
727 */
728 static void __perf_counter_enable(void *info)
729 {
730 struct perf_counter *counter = info;
731 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
732 struct perf_counter_context *ctx = counter->ctx;
733 struct perf_counter *leader = counter->group_leader;
734 unsigned long flags;
735 int err;
736
737 /*
738 * If this is a per-task counter, need to check whether this
739 * counter's task is the current task on this cpu.
740 */
741 if (ctx->task && cpuctx->task_ctx != ctx) {
742 if (cpuctx->task_ctx || ctx->task != current)
743 return;
744 cpuctx->task_ctx = ctx;
745 }
746
747 spin_lock_irqsave(&ctx->lock, flags);
748 ctx->is_active = 1;
749 update_context_time(ctx);
750
751 counter->prev_state = counter->state;
752 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
753 goto unlock;
754 counter->state = PERF_COUNTER_STATE_INACTIVE;
755 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
756
757 /*
758 * If the counter is in a group and isn't the group leader,
759 * then don't put it on unless the group is on.
760 */
761 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
762 goto unlock;
763
764 if (!group_can_go_on(counter, cpuctx, 1)) {
765 err = -EEXIST;
766 } else {
767 perf_disable();
768 if (counter == leader)
769 err = group_sched_in(counter, cpuctx, ctx,
770 smp_processor_id());
771 else
772 err = counter_sched_in(counter, cpuctx, ctx,
773 smp_processor_id());
774 perf_enable();
775 }
776
777 if (err) {
778 /*
779 * If this counter can't go on and it's part of a
780 * group, then the whole group has to come off.
781 */
782 if (leader != counter)
783 group_sched_out(leader, cpuctx, ctx);
784 if (leader->hw_event.pinned) {
785 update_group_times(leader);
786 leader->state = PERF_COUNTER_STATE_ERROR;
787 }
788 }
789
790 unlock:
791 spin_unlock_irqrestore(&ctx->lock, flags);
792 }
793
794 /*
795 * Enable a counter.
796 */
797 static void perf_counter_enable(struct perf_counter *counter)
798 {
799 struct perf_counter_context *ctx = counter->ctx;
800 struct task_struct *task = ctx->task;
801
802 if (!task) {
803 /*
804 * Enable the counter on the cpu that it's on
805 */
806 smp_call_function_single(counter->cpu, __perf_counter_enable,
807 counter, 1);
808 return;
809 }
810
811 spin_lock_irq(&ctx->lock);
812 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
813 goto out;
814
815 /*
816 * If the counter is in error state, clear that first.
817 * That way, if we see the counter in error state below, we
818 * know that it has gone back into error state, as distinct
819 * from the task having been scheduled away before the
820 * cross-call arrived.
821 */
822 if (counter->state == PERF_COUNTER_STATE_ERROR)
823 counter->state = PERF_COUNTER_STATE_OFF;
824
825 retry:
826 spin_unlock_irq(&ctx->lock);
827 task_oncpu_function_call(task, __perf_counter_enable, counter);
828
829 spin_lock_irq(&ctx->lock);
830
831 /*
832 * If the context is active and the counter is still off,
833 * we need to retry the cross-call.
834 */
835 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
836 goto retry;
837
838 /*
839 * Since we have the lock this context can't be scheduled
840 * in, so we can change the state safely.
841 */
842 if (counter->state == PERF_COUNTER_STATE_OFF) {
843 counter->state = PERF_COUNTER_STATE_INACTIVE;
844 counter->tstamp_enabled =
845 ctx->time - counter->total_time_enabled;
846 }
847 out:
848 spin_unlock_irq(&ctx->lock);
849 }
850
851 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
852 {
853 /*
854 * not supported on inherited counters
855 */
856 if (counter->hw_event.inherit)
857 return -EINVAL;
858
859 atomic_add(refresh, &counter->event_limit);
860 perf_counter_enable(counter);
861
862 return 0;
863 }
864
865 void __perf_counter_sched_out(struct perf_counter_context *ctx,
866 struct perf_cpu_context *cpuctx)
867 {
868 struct perf_counter *counter;
869
870 spin_lock(&ctx->lock);
871 ctx->is_active = 0;
872 if (likely(!ctx->nr_counters))
873 goto out;
874 update_context_time(ctx);
875
876 perf_disable();
877 if (ctx->nr_active) {
878 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
879 if (counter != counter->group_leader)
880 counter_sched_out(counter, cpuctx, ctx);
881 else
882 group_sched_out(counter, cpuctx, ctx);
883 }
884 }
885 perf_enable();
886 out:
887 spin_unlock(&ctx->lock);
888 }
889
890 /*
891 * Test whether two contexts are equivalent, i.e. whether they
892 * have both been cloned from the same version of the same context
893 * and they both have the same number of enabled counters.
894 * If the number of enabled counters is the same, then the set
895 * of enabled counters should be the same, because these are both
896 * inherited contexts, therefore we can't access individual counters
897 * in them directly with an fd; we can only enable/disable all
898 * counters via prctl, or enable/disable all counters in a family
899 * via ioctl, which will have the same effect on both contexts.
900 */
901 static int context_equiv(struct perf_counter_context *ctx1,
902 struct perf_counter_context *ctx2)
903 {
904 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
905 && ctx1->parent_gen == ctx2->parent_gen;
906 }
907
908 /*
909 * Called from scheduler to remove the counters of the current task,
910 * with interrupts disabled.
911 *
912 * We stop each counter and update the counter value in counter->count.
913 *
914 * This does not protect us against NMI, but disable()
915 * sets the disabled bit in the control field of counter _before_
916 * accessing the counter control register. If a NMI hits, then it will
917 * not restart the counter.
918 */
919 void perf_counter_task_sched_out(struct task_struct *task,
920 struct task_struct *next, int cpu)
921 {
922 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
923 struct perf_counter_context *ctx = task->perf_counter_ctxp;
924 struct perf_counter_context *next_ctx;
925 struct pt_regs *regs;
926
927 if (likely(!ctx || !cpuctx->task_ctx))
928 return;
929
930 update_context_time(ctx);
931
932 regs = task_pt_regs(task);
933 perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
934
935 next_ctx = next->perf_counter_ctxp;
936 if (next_ctx && context_equiv(ctx, next_ctx)) {
937 task->perf_counter_ctxp = next_ctx;
938 next->perf_counter_ctxp = ctx;
939 ctx->task = next;
940 next_ctx->task = task;
941 return;
942 }
943
944 __perf_counter_sched_out(ctx, cpuctx);
945
946 cpuctx->task_ctx = NULL;
947 }
948
949 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
950 {
951 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
952
953 if (!cpuctx->task_ctx)
954 return;
955 __perf_counter_sched_out(ctx, cpuctx);
956 cpuctx->task_ctx = NULL;
957 }
958
959 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
960 {
961 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
962 }
963
964 static void
965 __perf_counter_sched_in(struct perf_counter_context *ctx,
966 struct perf_cpu_context *cpuctx, int cpu)
967 {
968 struct perf_counter *counter;
969 int can_add_hw = 1;
970
971 spin_lock(&ctx->lock);
972 ctx->is_active = 1;
973 if (likely(!ctx->nr_counters))
974 goto out;
975
976 ctx->timestamp = perf_clock();
977
978 perf_disable();
979
980 /*
981 * First go through the list and put on any pinned groups
982 * in order to give them the best chance of going on.
983 */
984 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
985 if (counter->state <= PERF_COUNTER_STATE_OFF ||
986 !counter->hw_event.pinned)
987 continue;
988 if (counter->cpu != -1 && counter->cpu != cpu)
989 continue;
990
991 if (counter != counter->group_leader)
992 counter_sched_in(counter, cpuctx, ctx, cpu);
993 else {
994 if (group_can_go_on(counter, cpuctx, 1))
995 group_sched_in(counter, cpuctx, ctx, cpu);
996 }
997
998 /*
999 * If this pinned group hasn't been scheduled,
1000 * put it in error state.
1001 */
1002 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1003 update_group_times(counter);
1004 counter->state = PERF_COUNTER_STATE_ERROR;
1005 }
1006 }
1007
1008 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1009 /*
1010 * Ignore counters in OFF or ERROR state, and
1011 * ignore pinned counters since we did them already.
1012 */
1013 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1014 counter->hw_event.pinned)
1015 continue;
1016
1017 /*
1018 * Listen to the 'cpu' scheduling filter constraint
1019 * of counters:
1020 */
1021 if (counter->cpu != -1 && counter->cpu != cpu)
1022 continue;
1023
1024 if (counter != counter->group_leader) {
1025 if (counter_sched_in(counter, cpuctx, ctx, cpu))
1026 can_add_hw = 0;
1027 } else {
1028 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1029 if (group_sched_in(counter, cpuctx, ctx, cpu))
1030 can_add_hw = 0;
1031 }
1032 }
1033 }
1034 perf_enable();
1035 out:
1036 spin_unlock(&ctx->lock);
1037 }
1038
1039 /*
1040 * Called from scheduler to add the counters of the current task
1041 * with interrupts disabled.
1042 *
1043 * We restore the counter value and then enable it.
1044 *
1045 * This does not protect us against NMI, but enable()
1046 * sets the enabled bit in the control field of counter _before_
1047 * accessing the counter control register. If a NMI hits, then it will
1048 * keep the counter running.
1049 */
1050 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1051 {
1052 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1053 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1054
1055 if (likely(!ctx))
1056 return;
1057 if (cpuctx->task_ctx == ctx)
1058 return;
1059 __perf_counter_sched_in(ctx, cpuctx, cpu);
1060 cpuctx->task_ctx = ctx;
1061 }
1062
1063 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1064 {
1065 struct perf_counter_context *ctx = &cpuctx->ctx;
1066
1067 __perf_counter_sched_in(ctx, cpuctx, cpu);
1068 }
1069
1070 static void perf_log_period(struct perf_counter *counter, u64 period);
1071
1072 static void perf_adjust_freq(struct perf_counter_context *ctx)
1073 {
1074 struct perf_counter *counter;
1075 u64 irq_period;
1076 u64 events, period;
1077 s64 delta;
1078
1079 spin_lock(&ctx->lock);
1080 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1081 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1082 continue;
1083
1084 if (!counter->hw_event.freq || !counter->hw_event.irq_freq)
1085 continue;
1086
1087 events = HZ * counter->hw.interrupts * counter->hw.irq_period;
1088 period = div64_u64(events, counter->hw_event.irq_freq);
1089
1090 delta = (s64)(1 + period - counter->hw.irq_period);
1091 delta >>= 1;
1092
1093 irq_period = counter->hw.irq_period + delta;
1094
1095 if (!irq_period)
1096 irq_period = 1;
1097
1098 perf_log_period(counter, irq_period);
1099
1100 counter->hw.irq_period = irq_period;
1101 counter->hw.interrupts = 0;
1102 }
1103 spin_unlock(&ctx->lock);
1104 }
1105
1106 /*
1107 * Round-robin a context's counters:
1108 */
1109 static void rotate_ctx(struct perf_counter_context *ctx)
1110 {
1111 struct perf_counter *counter;
1112
1113 if (!ctx->nr_counters)
1114 return;
1115
1116 spin_lock(&ctx->lock);
1117 /*
1118 * Rotate the first entry last (works just fine for group counters too):
1119 */
1120 perf_disable();
1121 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1122 list_move_tail(&counter->list_entry, &ctx->counter_list);
1123 break;
1124 }
1125 perf_enable();
1126
1127 spin_unlock(&ctx->lock);
1128 }
1129
1130 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1131 {
1132 struct perf_cpu_context *cpuctx;
1133 struct perf_counter_context *ctx;
1134
1135 if (!atomic_read(&nr_counters))
1136 return;
1137
1138 cpuctx = &per_cpu(perf_cpu_context, cpu);
1139 ctx = curr->perf_counter_ctxp;
1140
1141 perf_adjust_freq(&cpuctx->ctx);
1142 if (ctx)
1143 perf_adjust_freq(ctx);
1144
1145 perf_counter_cpu_sched_out(cpuctx);
1146 if (ctx)
1147 __perf_counter_task_sched_out(ctx);
1148
1149 rotate_ctx(&cpuctx->ctx);
1150 if (ctx)
1151 rotate_ctx(ctx);
1152
1153 perf_counter_cpu_sched_in(cpuctx, cpu);
1154 if (ctx)
1155 perf_counter_task_sched_in(curr, cpu);
1156 }
1157
1158 /*
1159 * Cross CPU call to read the hardware counter
1160 */
1161 static void __read(void *info)
1162 {
1163 struct perf_counter *counter = info;
1164 struct perf_counter_context *ctx = counter->ctx;
1165 unsigned long flags;
1166
1167 local_irq_save(flags);
1168 if (ctx->is_active)
1169 update_context_time(ctx);
1170 counter->pmu->read(counter);
1171 update_counter_times(counter);
1172 local_irq_restore(flags);
1173 }
1174
1175 static u64 perf_counter_read(struct perf_counter *counter)
1176 {
1177 /*
1178 * If counter is enabled and currently active on a CPU, update the
1179 * value in the counter structure:
1180 */
1181 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1182 smp_call_function_single(counter->oncpu,
1183 __read, counter, 1);
1184 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1185 update_counter_times(counter);
1186 }
1187
1188 return atomic64_read(&counter->count);
1189 }
1190
1191 /*
1192 * Initialize the perf_counter context in a task_struct:
1193 */
1194 static void
1195 __perf_counter_init_context(struct perf_counter_context *ctx,
1196 struct task_struct *task)
1197 {
1198 memset(ctx, 0, sizeof(*ctx));
1199 spin_lock_init(&ctx->lock);
1200 mutex_init(&ctx->mutex);
1201 INIT_LIST_HEAD(&ctx->counter_list);
1202 INIT_LIST_HEAD(&ctx->event_list);
1203 atomic_set(&ctx->refcount, 1);
1204 ctx->task = task;
1205 }
1206
1207 static void put_context(struct perf_counter_context *ctx)
1208 {
1209 if (ctx->task)
1210 put_task_struct(ctx->task);
1211 }
1212
1213 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1214 {
1215 struct perf_cpu_context *cpuctx;
1216 struct perf_counter_context *ctx;
1217 struct perf_counter_context *tctx;
1218 struct task_struct *task;
1219
1220 /*
1221 * If cpu is not a wildcard then this is a percpu counter:
1222 */
1223 if (cpu != -1) {
1224 /* Must be root to operate on a CPU counter: */
1225 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1226 return ERR_PTR(-EACCES);
1227
1228 if (cpu < 0 || cpu > num_possible_cpus())
1229 return ERR_PTR(-EINVAL);
1230
1231 /*
1232 * We could be clever and allow to attach a counter to an
1233 * offline CPU and activate it when the CPU comes up, but
1234 * that's for later.
1235 */
1236 if (!cpu_isset(cpu, cpu_online_map))
1237 return ERR_PTR(-ENODEV);
1238
1239 cpuctx = &per_cpu(perf_cpu_context, cpu);
1240 ctx = &cpuctx->ctx;
1241
1242 return ctx;
1243 }
1244
1245 rcu_read_lock();
1246 if (!pid)
1247 task = current;
1248 else
1249 task = find_task_by_vpid(pid);
1250 if (task)
1251 get_task_struct(task);
1252 rcu_read_unlock();
1253
1254 if (!task)
1255 return ERR_PTR(-ESRCH);
1256
1257 /* Reuse ptrace permission checks for now. */
1258 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1259 put_task_struct(task);
1260 return ERR_PTR(-EACCES);
1261 }
1262
1263 ctx = task->perf_counter_ctxp;
1264 if (!ctx) {
1265 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1266 if (!ctx) {
1267 put_task_struct(task);
1268 return ERR_PTR(-ENOMEM);
1269 }
1270 __perf_counter_init_context(ctx, task);
1271 /*
1272 * Make sure other cpus see correct values for *ctx
1273 * once task->perf_counter_ctxp is visible to them.
1274 */
1275 smp_wmb();
1276 tctx = cmpxchg(&task->perf_counter_ctxp, NULL, ctx);
1277 if (tctx) {
1278 /*
1279 * We raced with some other task; use
1280 * the context they set.
1281 */
1282 kfree(ctx);
1283 ctx = tctx;
1284 }
1285 }
1286
1287 return ctx;
1288 }
1289
1290 static void free_counter_rcu(struct rcu_head *head)
1291 {
1292 struct perf_counter *counter;
1293
1294 counter = container_of(head, struct perf_counter, rcu_head);
1295 put_ctx(counter->ctx);
1296 kfree(counter);
1297 }
1298
1299 static void perf_pending_sync(struct perf_counter *counter);
1300
1301 static void free_counter(struct perf_counter *counter)
1302 {
1303 perf_pending_sync(counter);
1304
1305 atomic_dec(&nr_counters);
1306 if (counter->hw_event.mmap)
1307 atomic_dec(&nr_mmap_tracking);
1308 if (counter->hw_event.munmap)
1309 atomic_dec(&nr_munmap_tracking);
1310 if (counter->hw_event.comm)
1311 atomic_dec(&nr_comm_tracking);
1312
1313 if (counter->destroy)
1314 counter->destroy(counter);
1315
1316 call_rcu(&counter->rcu_head, free_counter_rcu);
1317 }
1318
1319 /*
1320 * Called when the last reference to the file is gone.
1321 */
1322 static int perf_release(struct inode *inode, struct file *file)
1323 {
1324 struct perf_counter *counter = file->private_data;
1325 struct perf_counter_context *ctx = counter->ctx;
1326
1327 file->private_data = NULL;
1328
1329 mutex_lock(&ctx->mutex);
1330 perf_counter_remove_from_context(counter);
1331 mutex_unlock(&ctx->mutex);
1332
1333 mutex_lock(&counter->owner->perf_counter_mutex);
1334 list_del_init(&counter->owner_entry);
1335 mutex_unlock(&counter->owner->perf_counter_mutex);
1336 put_task_struct(counter->owner);
1337
1338 free_counter(counter);
1339 put_context(ctx);
1340
1341 return 0;
1342 }
1343
1344 /*
1345 * Read the performance counter - simple non blocking version for now
1346 */
1347 static ssize_t
1348 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1349 {
1350 u64 values[3];
1351 int n;
1352
1353 /*
1354 * Return end-of-file for a read on a counter that is in
1355 * error state (i.e. because it was pinned but it couldn't be
1356 * scheduled on to the CPU at some point).
1357 */
1358 if (counter->state == PERF_COUNTER_STATE_ERROR)
1359 return 0;
1360
1361 mutex_lock(&counter->child_mutex);
1362 values[0] = perf_counter_read(counter);
1363 n = 1;
1364 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1365 values[n++] = counter->total_time_enabled +
1366 atomic64_read(&counter->child_total_time_enabled);
1367 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1368 values[n++] = counter->total_time_running +
1369 atomic64_read(&counter->child_total_time_running);
1370 mutex_unlock(&counter->child_mutex);
1371
1372 if (count < n * sizeof(u64))
1373 return -EINVAL;
1374 count = n * sizeof(u64);
1375
1376 if (copy_to_user(buf, values, count))
1377 return -EFAULT;
1378
1379 return count;
1380 }
1381
1382 static ssize_t
1383 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1384 {
1385 struct perf_counter *counter = file->private_data;
1386
1387 return perf_read_hw(counter, buf, count);
1388 }
1389
1390 static unsigned int perf_poll(struct file *file, poll_table *wait)
1391 {
1392 struct perf_counter *counter = file->private_data;
1393 struct perf_mmap_data *data;
1394 unsigned int events = POLL_HUP;
1395
1396 rcu_read_lock();
1397 data = rcu_dereference(counter->data);
1398 if (data)
1399 events = atomic_xchg(&data->poll, 0);
1400 rcu_read_unlock();
1401
1402 poll_wait(file, &counter->waitq, wait);
1403
1404 return events;
1405 }
1406
1407 static void perf_counter_reset(struct perf_counter *counter)
1408 {
1409 (void)perf_counter_read(counter);
1410 atomic64_set(&counter->count, 0);
1411 perf_counter_update_userpage(counter);
1412 }
1413
1414 static void perf_counter_for_each_sibling(struct perf_counter *counter,
1415 void (*func)(struct perf_counter *))
1416 {
1417 struct perf_counter_context *ctx = counter->ctx;
1418 struct perf_counter *sibling;
1419
1420 mutex_lock(&ctx->mutex);
1421 counter = counter->group_leader;
1422
1423 func(counter);
1424 list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1425 func(sibling);
1426 mutex_unlock(&ctx->mutex);
1427 }
1428
1429 static void perf_counter_for_each_child(struct perf_counter *counter,
1430 void (*func)(struct perf_counter *))
1431 {
1432 struct perf_counter *child;
1433
1434 mutex_lock(&counter->child_mutex);
1435 func(counter);
1436 list_for_each_entry(child, &counter->child_list, child_list)
1437 func(child);
1438 mutex_unlock(&counter->child_mutex);
1439 }
1440
1441 static void perf_counter_for_each(struct perf_counter *counter,
1442 void (*func)(struct perf_counter *))
1443 {
1444 struct perf_counter *child;
1445
1446 mutex_lock(&counter->child_mutex);
1447 perf_counter_for_each_sibling(counter, func);
1448 list_for_each_entry(child, &counter->child_list, child_list)
1449 perf_counter_for_each_sibling(child, func);
1450 mutex_unlock(&counter->child_mutex);
1451 }
1452
1453 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1454 {
1455 struct perf_counter *counter = file->private_data;
1456 void (*func)(struct perf_counter *);
1457 u32 flags = arg;
1458
1459 switch (cmd) {
1460 case PERF_COUNTER_IOC_ENABLE:
1461 func = perf_counter_enable;
1462 break;
1463 case PERF_COUNTER_IOC_DISABLE:
1464 func = perf_counter_disable;
1465 break;
1466 case PERF_COUNTER_IOC_RESET:
1467 func = perf_counter_reset;
1468 break;
1469
1470 case PERF_COUNTER_IOC_REFRESH:
1471 return perf_counter_refresh(counter, arg);
1472 default:
1473 return -ENOTTY;
1474 }
1475
1476 if (flags & PERF_IOC_FLAG_GROUP)
1477 perf_counter_for_each(counter, func);
1478 else
1479 perf_counter_for_each_child(counter, func);
1480
1481 return 0;
1482 }
1483
1484 int perf_counter_task_enable(void)
1485 {
1486 struct perf_counter *counter;
1487
1488 mutex_lock(&current->perf_counter_mutex);
1489 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1490 perf_counter_for_each_child(counter, perf_counter_enable);
1491 mutex_unlock(&current->perf_counter_mutex);
1492
1493 return 0;
1494 }
1495
1496 int perf_counter_task_disable(void)
1497 {
1498 struct perf_counter *counter;
1499
1500 mutex_lock(&current->perf_counter_mutex);
1501 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1502 perf_counter_for_each_child(counter, perf_counter_disable);
1503 mutex_unlock(&current->perf_counter_mutex);
1504
1505 return 0;
1506 }
1507
1508 /*
1509 * Callers need to ensure there can be no nesting of this function, otherwise
1510 * the seqlock logic goes bad. We can not serialize this because the arch
1511 * code calls this from NMI context.
1512 */
1513 void perf_counter_update_userpage(struct perf_counter *counter)
1514 {
1515 struct perf_mmap_data *data;
1516 struct perf_counter_mmap_page *userpg;
1517
1518 rcu_read_lock();
1519 data = rcu_dereference(counter->data);
1520 if (!data)
1521 goto unlock;
1522
1523 userpg = data->user_page;
1524
1525 /*
1526 * Disable preemption so as to not let the corresponding user-space
1527 * spin too long if we get preempted.
1528 */
1529 preempt_disable();
1530 ++userpg->lock;
1531 barrier();
1532 userpg->index = counter->hw.idx;
1533 userpg->offset = atomic64_read(&counter->count);
1534 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1535 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1536
1537 barrier();
1538 ++userpg->lock;
1539 preempt_enable();
1540 unlock:
1541 rcu_read_unlock();
1542 }
1543
1544 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1545 {
1546 struct perf_counter *counter = vma->vm_file->private_data;
1547 struct perf_mmap_data *data;
1548 int ret = VM_FAULT_SIGBUS;
1549
1550 rcu_read_lock();
1551 data = rcu_dereference(counter->data);
1552 if (!data)
1553 goto unlock;
1554
1555 if (vmf->pgoff == 0) {
1556 vmf->page = virt_to_page(data->user_page);
1557 } else {
1558 int nr = vmf->pgoff - 1;
1559
1560 if ((unsigned)nr > data->nr_pages)
1561 goto unlock;
1562
1563 vmf->page = virt_to_page(data->data_pages[nr]);
1564 }
1565 get_page(vmf->page);
1566 ret = 0;
1567 unlock:
1568 rcu_read_unlock();
1569
1570 return ret;
1571 }
1572
1573 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1574 {
1575 struct perf_mmap_data *data;
1576 unsigned long size;
1577 int i;
1578
1579 WARN_ON(atomic_read(&counter->mmap_count));
1580
1581 size = sizeof(struct perf_mmap_data);
1582 size += nr_pages * sizeof(void *);
1583
1584 data = kzalloc(size, GFP_KERNEL);
1585 if (!data)
1586 goto fail;
1587
1588 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1589 if (!data->user_page)
1590 goto fail_user_page;
1591
1592 for (i = 0; i < nr_pages; i++) {
1593 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1594 if (!data->data_pages[i])
1595 goto fail_data_pages;
1596 }
1597
1598 data->nr_pages = nr_pages;
1599 atomic_set(&data->lock, -1);
1600
1601 rcu_assign_pointer(counter->data, data);
1602
1603 return 0;
1604
1605 fail_data_pages:
1606 for (i--; i >= 0; i--)
1607 free_page((unsigned long)data->data_pages[i]);
1608
1609 free_page((unsigned long)data->user_page);
1610
1611 fail_user_page:
1612 kfree(data);
1613
1614 fail:
1615 return -ENOMEM;
1616 }
1617
1618 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1619 {
1620 struct perf_mmap_data *data = container_of(rcu_head,
1621 struct perf_mmap_data, rcu_head);
1622 int i;
1623
1624 free_page((unsigned long)data->user_page);
1625 for (i = 0; i < data->nr_pages; i++)
1626 free_page((unsigned long)data->data_pages[i]);
1627 kfree(data);
1628 }
1629
1630 static void perf_mmap_data_free(struct perf_counter *counter)
1631 {
1632 struct perf_mmap_data *data = counter->data;
1633
1634 WARN_ON(atomic_read(&counter->mmap_count));
1635
1636 rcu_assign_pointer(counter->data, NULL);
1637 call_rcu(&data->rcu_head, __perf_mmap_data_free);
1638 }
1639
1640 static void perf_mmap_open(struct vm_area_struct *vma)
1641 {
1642 struct perf_counter *counter = vma->vm_file->private_data;
1643
1644 atomic_inc(&counter->mmap_count);
1645 }
1646
1647 static void perf_mmap_close(struct vm_area_struct *vma)
1648 {
1649 struct perf_counter *counter = vma->vm_file->private_data;
1650
1651 if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1652 &counter->mmap_mutex)) {
1653 struct user_struct *user = current_user();
1654
1655 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1656 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1657 perf_mmap_data_free(counter);
1658 mutex_unlock(&counter->mmap_mutex);
1659 }
1660 }
1661
1662 static struct vm_operations_struct perf_mmap_vmops = {
1663 .open = perf_mmap_open,
1664 .close = perf_mmap_close,
1665 .fault = perf_mmap_fault,
1666 };
1667
1668 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1669 {
1670 struct perf_counter *counter = file->private_data;
1671 struct user_struct *user = current_user();
1672 unsigned long vma_size;
1673 unsigned long nr_pages;
1674 unsigned long user_locked, user_lock_limit;
1675 unsigned long locked, lock_limit;
1676 long user_extra, extra;
1677 int ret = 0;
1678
1679 if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1680 return -EINVAL;
1681
1682 vma_size = vma->vm_end - vma->vm_start;
1683 nr_pages = (vma_size / PAGE_SIZE) - 1;
1684
1685 /*
1686 * If we have data pages ensure they're a power-of-two number, so we
1687 * can do bitmasks instead of modulo.
1688 */
1689 if (nr_pages != 0 && !is_power_of_2(nr_pages))
1690 return -EINVAL;
1691
1692 if (vma_size != PAGE_SIZE * (1 + nr_pages))
1693 return -EINVAL;
1694
1695 if (vma->vm_pgoff != 0)
1696 return -EINVAL;
1697
1698 mutex_lock(&counter->mmap_mutex);
1699 if (atomic_inc_not_zero(&counter->mmap_count)) {
1700 if (nr_pages != counter->data->nr_pages)
1701 ret = -EINVAL;
1702 goto unlock;
1703 }
1704
1705 user_extra = nr_pages + 1;
1706 user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1707
1708 /*
1709 * Increase the limit linearly with more CPUs:
1710 */
1711 user_lock_limit *= num_online_cpus();
1712
1713 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1714
1715 extra = 0;
1716 if (user_locked > user_lock_limit)
1717 extra = user_locked - user_lock_limit;
1718
1719 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1720 lock_limit >>= PAGE_SHIFT;
1721 locked = vma->vm_mm->locked_vm + extra;
1722
1723 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1724 ret = -EPERM;
1725 goto unlock;
1726 }
1727
1728 WARN_ON(counter->data);
1729 ret = perf_mmap_data_alloc(counter, nr_pages);
1730 if (ret)
1731 goto unlock;
1732
1733 atomic_set(&counter->mmap_count, 1);
1734 atomic_long_add(user_extra, &user->locked_vm);
1735 vma->vm_mm->locked_vm += extra;
1736 counter->data->nr_locked = extra;
1737 unlock:
1738 mutex_unlock(&counter->mmap_mutex);
1739
1740 vma->vm_flags &= ~VM_MAYWRITE;
1741 vma->vm_flags |= VM_RESERVED;
1742 vma->vm_ops = &perf_mmap_vmops;
1743
1744 return ret;
1745 }
1746
1747 static int perf_fasync(int fd, struct file *filp, int on)
1748 {
1749 struct perf_counter *counter = filp->private_data;
1750 struct inode *inode = filp->f_path.dentry->d_inode;
1751 int retval;
1752
1753 mutex_lock(&inode->i_mutex);
1754 retval = fasync_helper(fd, filp, on, &counter->fasync);
1755 mutex_unlock(&inode->i_mutex);
1756
1757 if (retval < 0)
1758 return retval;
1759
1760 return 0;
1761 }
1762
1763 static const struct file_operations perf_fops = {
1764 .release = perf_release,
1765 .read = perf_read,
1766 .poll = perf_poll,
1767 .unlocked_ioctl = perf_ioctl,
1768 .compat_ioctl = perf_ioctl,
1769 .mmap = perf_mmap,
1770 .fasync = perf_fasync,
1771 };
1772
1773 /*
1774 * Perf counter wakeup
1775 *
1776 * If there's data, ensure we set the poll() state and publish everything
1777 * to user-space before waking everybody up.
1778 */
1779
1780 void perf_counter_wakeup(struct perf_counter *counter)
1781 {
1782 wake_up_all(&counter->waitq);
1783
1784 if (counter->pending_kill) {
1785 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1786 counter->pending_kill = 0;
1787 }
1788 }
1789
1790 /*
1791 * Pending wakeups
1792 *
1793 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1794 *
1795 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1796 * single linked list and use cmpxchg() to add entries lockless.
1797 */
1798
1799 static void perf_pending_counter(struct perf_pending_entry *entry)
1800 {
1801 struct perf_counter *counter = container_of(entry,
1802 struct perf_counter, pending);
1803
1804 if (counter->pending_disable) {
1805 counter->pending_disable = 0;
1806 perf_counter_disable(counter);
1807 }
1808
1809 if (counter->pending_wakeup) {
1810 counter->pending_wakeup = 0;
1811 perf_counter_wakeup(counter);
1812 }
1813 }
1814
1815 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1816
1817 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1818 PENDING_TAIL,
1819 };
1820
1821 static void perf_pending_queue(struct perf_pending_entry *entry,
1822 void (*func)(struct perf_pending_entry *))
1823 {
1824 struct perf_pending_entry **head;
1825
1826 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1827 return;
1828
1829 entry->func = func;
1830
1831 head = &get_cpu_var(perf_pending_head);
1832
1833 do {
1834 entry->next = *head;
1835 } while (cmpxchg(head, entry->next, entry) != entry->next);
1836
1837 set_perf_counter_pending();
1838
1839 put_cpu_var(perf_pending_head);
1840 }
1841
1842 static int __perf_pending_run(void)
1843 {
1844 struct perf_pending_entry *list;
1845 int nr = 0;
1846
1847 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1848 while (list != PENDING_TAIL) {
1849 void (*func)(struct perf_pending_entry *);
1850 struct perf_pending_entry *entry = list;
1851
1852 list = list->next;
1853
1854 func = entry->func;
1855 entry->next = NULL;
1856 /*
1857 * Ensure we observe the unqueue before we issue the wakeup,
1858 * so that we won't be waiting forever.
1859 * -- see perf_not_pending().
1860 */
1861 smp_wmb();
1862
1863 func(entry);
1864 nr++;
1865 }
1866
1867 return nr;
1868 }
1869
1870 static inline int perf_not_pending(struct perf_counter *counter)
1871 {
1872 /*
1873 * If we flush on whatever cpu we run, there is a chance we don't
1874 * need to wait.
1875 */
1876 get_cpu();
1877 __perf_pending_run();
1878 put_cpu();
1879
1880 /*
1881 * Ensure we see the proper queue state before going to sleep
1882 * so that we do not miss the wakeup. -- see perf_pending_handle()
1883 */
1884 smp_rmb();
1885 return counter->pending.next == NULL;
1886 }
1887
1888 static void perf_pending_sync(struct perf_counter *counter)
1889 {
1890 wait_event(counter->waitq, perf_not_pending(counter));
1891 }
1892
1893 void perf_counter_do_pending(void)
1894 {
1895 __perf_pending_run();
1896 }
1897
1898 /*
1899 * Callchain support -- arch specific
1900 */
1901
1902 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1903 {
1904 return NULL;
1905 }
1906
1907 /*
1908 * Output
1909 */
1910
1911 struct perf_output_handle {
1912 struct perf_counter *counter;
1913 struct perf_mmap_data *data;
1914 unsigned int offset;
1915 unsigned int head;
1916 int nmi;
1917 int overflow;
1918 int locked;
1919 unsigned long flags;
1920 };
1921
1922 static void perf_output_wakeup(struct perf_output_handle *handle)
1923 {
1924 atomic_set(&handle->data->poll, POLL_IN);
1925
1926 if (handle->nmi) {
1927 handle->counter->pending_wakeup = 1;
1928 perf_pending_queue(&handle->counter->pending,
1929 perf_pending_counter);
1930 } else
1931 perf_counter_wakeup(handle->counter);
1932 }
1933
1934 /*
1935 * Curious locking construct.
1936 *
1937 * We need to ensure a later event doesn't publish a head when a former
1938 * event isn't done writing. However since we need to deal with NMIs we
1939 * cannot fully serialize things.
1940 *
1941 * What we do is serialize between CPUs so we only have to deal with NMI
1942 * nesting on a single CPU.
1943 *
1944 * We only publish the head (and generate a wakeup) when the outer-most
1945 * event completes.
1946 */
1947 static void perf_output_lock(struct perf_output_handle *handle)
1948 {
1949 struct perf_mmap_data *data = handle->data;
1950 int cpu;
1951
1952 handle->locked = 0;
1953
1954 local_irq_save(handle->flags);
1955 cpu = smp_processor_id();
1956
1957 if (in_nmi() && atomic_read(&data->lock) == cpu)
1958 return;
1959
1960 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1961 cpu_relax();
1962
1963 handle->locked = 1;
1964 }
1965
1966 static void perf_output_unlock(struct perf_output_handle *handle)
1967 {
1968 struct perf_mmap_data *data = handle->data;
1969 int head, cpu;
1970
1971 data->done_head = data->head;
1972
1973 if (!handle->locked)
1974 goto out;
1975
1976 again:
1977 /*
1978 * The xchg implies a full barrier that ensures all writes are done
1979 * before we publish the new head, matched by a rmb() in userspace when
1980 * reading this position.
1981 */
1982 while ((head = atomic_xchg(&data->done_head, 0)))
1983 data->user_page->data_head = head;
1984
1985 /*
1986 * NMI can happen here, which means we can miss a done_head update.
1987 */
1988
1989 cpu = atomic_xchg(&data->lock, -1);
1990 WARN_ON_ONCE(cpu != smp_processor_id());
1991
1992 /*
1993 * Therefore we have to validate we did not indeed do so.
1994 */
1995 if (unlikely(atomic_read(&data->done_head))) {
1996 /*
1997 * Since we had it locked, we can lock it again.
1998 */
1999 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2000 cpu_relax();
2001
2002 goto again;
2003 }
2004
2005 if (atomic_xchg(&data->wakeup, 0))
2006 perf_output_wakeup(handle);
2007 out:
2008 local_irq_restore(handle->flags);
2009 }
2010
2011 static int perf_output_begin(struct perf_output_handle *handle,
2012 struct perf_counter *counter, unsigned int size,
2013 int nmi, int overflow)
2014 {
2015 struct perf_mmap_data *data;
2016 unsigned int offset, head;
2017
2018 /*
2019 * For inherited counters we send all the output towards the parent.
2020 */
2021 if (counter->parent)
2022 counter = counter->parent;
2023
2024 rcu_read_lock();
2025 data = rcu_dereference(counter->data);
2026 if (!data)
2027 goto out;
2028
2029 handle->data = data;
2030 handle->counter = counter;
2031 handle->nmi = nmi;
2032 handle->overflow = overflow;
2033
2034 if (!data->nr_pages)
2035 goto fail;
2036
2037 perf_output_lock(handle);
2038
2039 do {
2040 offset = head = atomic_read(&data->head);
2041 head += size;
2042 } while (atomic_cmpxchg(&data->head, offset, head) != offset);
2043
2044 handle->offset = offset;
2045 handle->head = head;
2046
2047 if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2048 atomic_set(&data->wakeup, 1);
2049
2050 return 0;
2051
2052 fail:
2053 perf_output_wakeup(handle);
2054 out:
2055 rcu_read_unlock();
2056
2057 return -ENOSPC;
2058 }
2059
2060 static void perf_output_copy(struct perf_output_handle *handle,
2061 void *buf, unsigned int len)
2062 {
2063 unsigned int pages_mask;
2064 unsigned int offset;
2065 unsigned int size;
2066 void **pages;
2067
2068 offset = handle->offset;
2069 pages_mask = handle->data->nr_pages - 1;
2070 pages = handle->data->data_pages;
2071
2072 do {
2073 unsigned int page_offset;
2074 int nr;
2075
2076 nr = (offset >> PAGE_SHIFT) & pages_mask;
2077 page_offset = offset & (PAGE_SIZE - 1);
2078 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2079
2080 memcpy(pages[nr] + page_offset, buf, size);
2081
2082 len -= size;
2083 buf += size;
2084 offset += size;
2085 } while (len);
2086
2087 handle->offset = offset;
2088
2089 /*
2090 * Check we didn't copy past our reservation window, taking the
2091 * possible unsigned int wrap into account.
2092 */
2093 WARN_ON_ONCE(((int)(handle->head - handle->offset)) < 0);
2094 }
2095
2096 #define perf_output_put(handle, x) \
2097 perf_output_copy((handle), &(x), sizeof(x))
2098
2099 static void perf_output_end(struct perf_output_handle *handle)
2100 {
2101 struct perf_counter *counter = handle->counter;
2102 struct perf_mmap_data *data = handle->data;
2103
2104 int wakeup_events = counter->hw_event.wakeup_events;
2105
2106 if (handle->overflow && wakeup_events) {
2107 int events = atomic_inc_return(&data->events);
2108 if (events >= wakeup_events) {
2109 atomic_sub(wakeup_events, &data->events);
2110 atomic_set(&data->wakeup, 1);
2111 }
2112 }
2113
2114 perf_output_unlock(handle);
2115 rcu_read_unlock();
2116 }
2117
2118 static void perf_counter_output(struct perf_counter *counter,
2119 int nmi, struct pt_regs *regs, u64 addr)
2120 {
2121 int ret;
2122 u64 record_type = counter->hw_event.record_type;
2123 struct perf_output_handle handle;
2124 struct perf_event_header header;
2125 u64 ip;
2126 struct {
2127 u32 pid, tid;
2128 } tid_entry;
2129 struct {
2130 u64 event;
2131 u64 counter;
2132 } group_entry;
2133 struct perf_callchain_entry *callchain = NULL;
2134 int callchain_size = 0;
2135 u64 time;
2136 struct {
2137 u32 cpu, reserved;
2138 } cpu_entry;
2139
2140 header.type = 0;
2141 header.size = sizeof(header);
2142
2143 header.misc = PERF_EVENT_MISC_OVERFLOW;
2144 header.misc |= perf_misc_flags(regs);
2145
2146 if (record_type & PERF_RECORD_IP) {
2147 ip = perf_instruction_pointer(regs);
2148 header.type |= PERF_RECORD_IP;
2149 header.size += sizeof(ip);
2150 }
2151
2152 if (record_type & PERF_RECORD_TID) {
2153 /* namespace issues */
2154 tid_entry.pid = current->group_leader->pid;
2155 tid_entry.tid = current->pid;
2156
2157 header.type |= PERF_RECORD_TID;
2158 header.size += sizeof(tid_entry);
2159 }
2160
2161 if (record_type & PERF_RECORD_TIME) {
2162 /*
2163 * Maybe do better on x86 and provide cpu_clock_nmi()
2164 */
2165 time = sched_clock();
2166
2167 header.type |= PERF_RECORD_TIME;
2168 header.size += sizeof(u64);
2169 }
2170
2171 if (record_type & PERF_RECORD_ADDR) {
2172 header.type |= PERF_RECORD_ADDR;
2173 header.size += sizeof(u64);
2174 }
2175
2176 if (record_type & PERF_RECORD_CONFIG) {
2177 header.type |= PERF_RECORD_CONFIG;
2178 header.size += sizeof(u64);
2179 }
2180
2181 if (record_type & PERF_RECORD_CPU) {
2182 header.type |= PERF_RECORD_CPU;
2183 header.size += sizeof(cpu_entry);
2184
2185 cpu_entry.cpu = raw_smp_processor_id();
2186 }
2187
2188 if (record_type & PERF_RECORD_GROUP) {
2189 header.type |= PERF_RECORD_GROUP;
2190 header.size += sizeof(u64) +
2191 counter->nr_siblings * sizeof(group_entry);
2192 }
2193
2194 if (record_type & PERF_RECORD_CALLCHAIN) {
2195 callchain = perf_callchain(regs);
2196
2197 if (callchain) {
2198 callchain_size = (1 + callchain->nr) * sizeof(u64);
2199
2200 header.type |= PERF_RECORD_CALLCHAIN;
2201 header.size += callchain_size;
2202 }
2203 }
2204
2205 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2206 if (ret)
2207 return;
2208
2209 perf_output_put(&handle, header);
2210
2211 if (record_type & PERF_RECORD_IP)
2212 perf_output_put(&handle, ip);
2213
2214 if (record_type & PERF_RECORD_TID)
2215 perf_output_put(&handle, tid_entry);
2216
2217 if (record_type & PERF_RECORD_TIME)
2218 perf_output_put(&handle, time);
2219
2220 if (record_type & PERF_RECORD_ADDR)
2221 perf_output_put(&handle, addr);
2222
2223 if (record_type & PERF_RECORD_CONFIG)
2224 perf_output_put(&handle, counter->hw_event.config);
2225
2226 if (record_type & PERF_RECORD_CPU)
2227 perf_output_put(&handle, cpu_entry);
2228
2229 /*
2230 * XXX PERF_RECORD_GROUP vs inherited counters seems difficult.
2231 */
2232 if (record_type & PERF_RECORD_GROUP) {
2233 struct perf_counter *leader, *sub;
2234 u64 nr = counter->nr_siblings;
2235
2236 perf_output_put(&handle, nr);
2237
2238 leader = counter->group_leader;
2239 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2240 if (sub != counter)
2241 sub->pmu->read(sub);
2242
2243 group_entry.event = sub->hw_event.config;
2244 group_entry.counter = atomic64_read(&sub->count);
2245
2246 perf_output_put(&handle, group_entry);
2247 }
2248 }
2249
2250 if (callchain)
2251 perf_output_copy(&handle, callchain, callchain_size);
2252
2253 perf_output_end(&handle);
2254 }
2255
2256 /*
2257 * comm tracking
2258 */
2259
2260 struct perf_comm_event {
2261 struct task_struct *task;
2262 char *comm;
2263 int comm_size;
2264
2265 struct {
2266 struct perf_event_header header;
2267
2268 u32 pid;
2269 u32 tid;
2270 } event;
2271 };
2272
2273 static void perf_counter_comm_output(struct perf_counter *counter,
2274 struct perf_comm_event *comm_event)
2275 {
2276 struct perf_output_handle handle;
2277 int size = comm_event->event.header.size;
2278 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2279
2280 if (ret)
2281 return;
2282
2283 perf_output_put(&handle, comm_event->event);
2284 perf_output_copy(&handle, comm_event->comm,
2285 comm_event->comm_size);
2286 perf_output_end(&handle);
2287 }
2288
2289 static int perf_counter_comm_match(struct perf_counter *counter,
2290 struct perf_comm_event *comm_event)
2291 {
2292 if (counter->hw_event.comm &&
2293 comm_event->event.header.type == PERF_EVENT_COMM)
2294 return 1;
2295
2296 return 0;
2297 }
2298
2299 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2300 struct perf_comm_event *comm_event)
2301 {
2302 struct perf_counter *counter;
2303
2304 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2305 return;
2306
2307 rcu_read_lock();
2308 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2309 if (perf_counter_comm_match(counter, comm_event))
2310 perf_counter_comm_output(counter, comm_event);
2311 }
2312 rcu_read_unlock();
2313 }
2314
2315 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2316 {
2317 struct perf_cpu_context *cpuctx;
2318 unsigned int size;
2319 char *comm = comm_event->task->comm;
2320
2321 size = ALIGN(strlen(comm)+1, sizeof(u64));
2322
2323 comm_event->comm = comm;
2324 comm_event->comm_size = size;
2325
2326 comm_event->event.header.size = sizeof(comm_event->event) + size;
2327
2328 cpuctx = &get_cpu_var(perf_cpu_context);
2329 perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2330 put_cpu_var(perf_cpu_context);
2331
2332 perf_counter_comm_ctx(current->perf_counter_ctxp, comm_event);
2333 }
2334
2335 void perf_counter_comm(struct task_struct *task)
2336 {
2337 struct perf_comm_event comm_event;
2338
2339 if (!atomic_read(&nr_comm_tracking))
2340 return;
2341 if (!current->perf_counter_ctxp)
2342 return;
2343
2344 comm_event = (struct perf_comm_event){
2345 .task = task,
2346 .event = {
2347 .header = { .type = PERF_EVENT_COMM, },
2348 .pid = task->group_leader->pid,
2349 .tid = task->pid,
2350 },
2351 };
2352
2353 perf_counter_comm_event(&comm_event);
2354 }
2355
2356 /*
2357 * mmap tracking
2358 */
2359
2360 struct perf_mmap_event {
2361 struct file *file;
2362 char *file_name;
2363 int file_size;
2364
2365 struct {
2366 struct perf_event_header header;
2367
2368 u32 pid;
2369 u32 tid;
2370 u64 start;
2371 u64 len;
2372 u64 pgoff;
2373 } event;
2374 };
2375
2376 static void perf_counter_mmap_output(struct perf_counter *counter,
2377 struct perf_mmap_event *mmap_event)
2378 {
2379 struct perf_output_handle handle;
2380 int size = mmap_event->event.header.size;
2381 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2382
2383 if (ret)
2384 return;
2385
2386 perf_output_put(&handle, mmap_event->event);
2387 perf_output_copy(&handle, mmap_event->file_name,
2388 mmap_event->file_size);
2389 perf_output_end(&handle);
2390 }
2391
2392 static int perf_counter_mmap_match(struct perf_counter *counter,
2393 struct perf_mmap_event *mmap_event)
2394 {
2395 if (counter->hw_event.mmap &&
2396 mmap_event->event.header.type == PERF_EVENT_MMAP)
2397 return 1;
2398
2399 if (counter->hw_event.munmap &&
2400 mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2401 return 1;
2402
2403 return 0;
2404 }
2405
2406 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2407 struct perf_mmap_event *mmap_event)
2408 {
2409 struct perf_counter *counter;
2410
2411 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2412 return;
2413
2414 rcu_read_lock();
2415 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2416 if (perf_counter_mmap_match(counter, mmap_event))
2417 perf_counter_mmap_output(counter, mmap_event);
2418 }
2419 rcu_read_unlock();
2420 }
2421
2422 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2423 {
2424 struct perf_cpu_context *cpuctx;
2425 struct file *file = mmap_event->file;
2426 unsigned int size;
2427 char tmp[16];
2428 char *buf = NULL;
2429 char *name;
2430
2431 if (file) {
2432 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2433 if (!buf) {
2434 name = strncpy(tmp, "//enomem", sizeof(tmp));
2435 goto got_name;
2436 }
2437 name = d_path(&file->f_path, buf, PATH_MAX);
2438 if (IS_ERR(name)) {
2439 name = strncpy(tmp, "//toolong", sizeof(tmp));
2440 goto got_name;
2441 }
2442 } else {
2443 name = strncpy(tmp, "//anon", sizeof(tmp));
2444 goto got_name;
2445 }
2446
2447 got_name:
2448 size = ALIGN(strlen(name)+1, sizeof(u64));
2449
2450 mmap_event->file_name = name;
2451 mmap_event->file_size = size;
2452
2453 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2454
2455 cpuctx = &get_cpu_var(perf_cpu_context);
2456 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2457 put_cpu_var(perf_cpu_context);
2458
2459 perf_counter_mmap_ctx(current->perf_counter_ctxp, mmap_event);
2460
2461 kfree(buf);
2462 }
2463
2464 void perf_counter_mmap(unsigned long addr, unsigned long len,
2465 unsigned long pgoff, struct file *file)
2466 {
2467 struct perf_mmap_event mmap_event;
2468
2469 if (!atomic_read(&nr_mmap_tracking))
2470 return;
2471 if (!current->perf_counter_ctxp)
2472 return;
2473
2474 mmap_event = (struct perf_mmap_event){
2475 .file = file,
2476 .event = {
2477 .header = { .type = PERF_EVENT_MMAP, },
2478 .pid = current->group_leader->pid,
2479 .tid = current->pid,
2480 .start = addr,
2481 .len = len,
2482 .pgoff = pgoff,
2483 },
2484 };
2485
2486 perf_counter_mmap_event(&mmap_event);
2487 }
2488
2489 void perf_counter_munmap(unsigned long addr, unsigned long len,
2490 unsigned long pgoff, struct file *file)
2491 {
2492 struct perf_mmap_event mmap_event;
2493
2494 if (!atomic_read(&nr_munmap_tracking))
2495 return;
2496
2497 mmap_event = (struct perf_mmap_event){
2498 .file = file,
2499 .event = {
2500 .header = { .type = PERF_EVENT_MUNMAP, },
2501 .pid = current->group_leader->pid,
2502 .tid = current->pid,
2503 .start = addr,
2504 .len = len,
2505 .pgoff = pgoff,
2506 },
2507 };
2508
2509 perf_counter_mmap_event(&mmap_event);
2510 }
2511
2512 /*
2513 * Log irq_period changes so that analyzing tools can re-normalize the
2514 * event flow.
2515 */
2516
2517 static void perf_log_period(struct perf_counter *counter, u64 period)
2518 {
2519 struct perf_output_handle handle;
2520 int ret;
2521
2522 struct {
2523 struct perf_event_header header;
2524 u64 time;
2525 u64 period;
2526 } freq_event = {
2527 .header = {
2528 .type = PERF_EVENT_PERIOD,
2529 .misc = 0,
2530 .size = sizeof(freq_event),
2531 },
2532 .time = sched_clock(),
2533 .period = period,
2534 };
2535
2536 if (counter->hw.irq_period == period)
2537 return;
2538
2539 ret = perf_output_begin(&handle, counter, sizeof(freq_event), 0, 0);
2540 if (ret)
2541 return;
2542
2543 perf_output_put(&handle, freq_event);
2544 perf_output_end(&handle);
2545 }
2546
2547 /*
2548 * Generic counter overflow handling.
2549 */
2550
2551 int perf_counter_overflow(struct perf_counter *counter,
2552 int nmi, struct pt_regs *regs, u64 addr)
2553 {
2554 int events = atomic_read(&counter->event_limit);
2555 int ret = 0;
2556
2557 counter->hw.interrupts++;
2558
2559 /*
2560 * XXX event_limit might not quite work as expected on inherited
2561 * counters
2562 */
2563
2564 counter->pending_kill = POLL_IN;
2565 if (events && atomic_dec_and_test(&counter->event_limit)) {
2566 ret = 1;
2567 counter->pending_kill = POLL_HUP;
2568 if (nmi) {
2569 counter->pending_disable = 1;
2570 perf_pending_queue(&counter->pending,
2571 perf_pending_counter);
2572 } else
2573 perf_counter_disable(counter);
2574 }
2575
2576 perf_counter_output(counter, nmi, regs, addr);
2577 return ret;
2578 }
2579
2580 /*
2581 * Generic software counter infrastructure
2582 */
2583
2584 static void perf_swcounter_update(struct perf_counter *counter)
2585 {
2586 struct hw_perf_counter *hwc = &counter->hw;
2587 u64 prev, now;
2588 s64 delta;
2589
2590 again:
2591 prev = atomic64_read(&hwc->prev_count);
2592 now = atomic64_read(&hwc->count);
2593 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2594 goto again;
2595
2596 delta = now - prev;
2597
2598 atomic64_add(delta, &counter->count);
2599 atomic64_sub(delta, &hwc->period_left);
2600 }
2601
2602 static void perf_swcounter_set_period(struct perf_counter *counter)
2603 {
2604 struct hw_perf_counter *hwc = &counter->hw;
2605 s64 left = atomic64_read(&hwc->period_left);
2606 s64 period = hwc->irq_period;
2607
2608 if (unlikely(left <= -period)) {
2609 left = period;
2610 atomic64_set(&hwc->period_left, left);
2611 }
2612
2613 if (unlikely(left <= 0)) {
2614 left += period;
2615 atomic64_add(period, &hwc->period_left);
2616 }
2617
2618 atomic64_set(&hwc->prev_count, -left);
2619 atomic64_set(&hwc->count, -left);
2620 }
2621
2622 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2623 {
2624 enum hrtimer_restart ret = HRTIMER_RESTART;
2625 struct perf_counter *counter;
2626 struct pt_regs *regs;
2627 u64 period;
2628
2629 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2630 counter->pmu->read(counter);
2631
2632 regs = get_irq_regs();
2633 /*
2634 * In case we exclude kernel IPs or are somehow not in interrupt
2635 * context, provide the next best thing, the user IP.
2636 */
2637 if ((counter->hw_event.exclude_kernel || !regs) &&
2638 !counter->hw_event.exclude_user)
2639 regs = task_pt_regs(current);
2640
2641 if (regs) {
2642 if (perf_counter_overflow(counter, 0, regs, 0))
2643 ret = HRTIMER_NORESTART;
2644 }
2645
2646 period = max_t(u64, 10000, counter->hw.irq_period);
2647 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
2648
2649 return ret;
2650 }
2651
2652 static void perf_swcounter_overflow(struct perf_counter *counter,
2653 int nmi, struct pt_regs *regs, u64 addr)
2654 {
2655 perf_swcounter_update(counter);
2656 perf_swcounter_set_period(counter);
2657 if (perf_counter_overflow(counter, nmi, regs, addr))
2658 /* soft-disable the counter */
2659 ;
2660
2661 }
2662
2663 static int perf_swcounter_match(struct perf_counter *counter,
2664 enum perf_event_types type,
2665 u32 event, struct pt_regs *regs)
2666 {
2667 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2668 return 0;
2669
2670 if (perf_event_raw(&counter->hw_event))
2671 return 0;
2672
2673 if (perf_event_type(&counter->hw_event) != type)
2674 return 0;
2675
2676 if (perf_event_id(&counter->hw_event) != event)
2677 return 0;
2678
2679 if (counter->hw_event.exclude_user && user_mode(regs))
2680 return 0;
2681
2682 if (counter->hw_event.exclude_kernel && !user_mode(regs))
2683 return 0;
2684
2685 return 1;
2686 }
2687
2688 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2689 int nmi, struct pt_regs *regs, u64 addr)
2690 {
2691 int neg = atomic64_add_negative(nr, &counter->hw.count);
2692 if (counter->hw.irq_period && !neg)
2693 perf_swcounter_overflow(counter, nmi, regs, addr);
2694 }
2695
2696 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2697 enum perf_event_types type, u32 event,
2698 u64 nr, int nmi, struct pt_regs *regs,
2699 u64 addr)
2700 {
2701 struct perf_counter *counter;
2702
2703 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2704 return;
2705
2706 rcu_read_lock();
2707 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2708 if (perf_swcounter_match(counter, type, event, regs))
2709 perf_swcounter_add(counter, nr, nmi, regs, addr);
2710 }
2711 rcu_read_unlock();
2712 }
2713
2714 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2715 {
2716 if (in_nmi())
2717 return &cpuctx->recursion[3];
2718
2719 if (in_irq())
2720 return &cpuctx->recursion[2];
2721
2722 if (in_softirq())
2723 return &cpuctx->recursion[1];
2724
2725 return &cpuctx->recursion[0];
2726 }
2727
2728 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2729 u64 nr, int nmi, struct pt_regs *regs,
2730 u64 addr)
2731 {
2732 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2733 int *recursion = perf_swcounter_recursion_context(cpuctx);
2734
2735 if (*recursion)
2736 goto out;
2737
2738 (*recursion)++;
2739 barrier();
2740
2741 perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
2742 nr, nmi, regs, addr);
2743 if (cpuctx->task_ctx) {
2744 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2745 nr, nmi, regs, addr);
2746 }
2747
2748 barrier();
2749 (*recursion)--;
2750
2751 out:
2752 put_cpu_var(perf_cpu_context);
2753 }
2754
2755 void
2756 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2757 {
2758 __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2759 }
2760
2761 static void perf_swcounter_read(struct perf_counter *counter)
2762 {
2763 perf_swcounter_update(counter);
2764 }
2765
2766 static int perf_swcounter_enable(struct perf_counter *counter)
2767 {
2768 perf_swcounter_set_period(counter);
2769 return 0;
2770 }
2771
2772 static void perf_swcounter_disable(struct perf_counter *counter)
2773 {
2774 perf_swcounter_update(counter);
2775 }
2776
2777 static const struct pmu perf_ops_generic = {
2778 .enable = perf_swcounter_enable,
2779 .disable = perf_swcounter_disable,
2780 .read = perf_swcounter_read,
2781 };
2782
2783 /*
2784 * Software counter: cpu wall time clock
2785 */
2786
2787 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2788 {
2789 int cpu = raw_smp_processor_id();
2790 s64 prev;
2791 u64 now;
2792
2793 now = cpu_clock(cpu);
2794 prev = atomic64_read(&counter->hw.prev_count);
2795 atomic64_set(&counter->hw.prev_count, now);
2796 atomic64_add(now - prev, &counter->count);
2797 }
2798
2799 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2800 {
2801 struct hw_perf_counter *hwc = &counter->hw;
2802 int cpu = raw_smp_processor_id();
2803
2804 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2805 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2806 hwc->hrtimer.function = perf_swcounter_hrtimer;
2807 if (hwc->irq_period) {
2808 u64 period = max_t(u64, 10000, hwc->irq_period);
2809 __hrtimer_start_range_ns(&hwc->hrtimer,
2810 ns_to_ktime(period), 0,
2811 HRTIMER_MODE_REL, 0);
2812 }
2813
2814 return 0;
2815 }
2816
2817 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2818 {
2819 if (counter->hw.irq_period)
2820 hrtimer_cancel(&counter->hw.hrtimer);
2821 cpu_clock_perf_counter_update(counter);
2822 }
2823
2824 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2825 {
2826 cpu_clock_perf_counter_update(counter);
2827 }
2828
2829 static const struct pmu perf_ops_cpu_clock = {
2830 .enable = cpu_clock_perf_counter_enable,
2831 .disable = cpu_clock_perf_counter_disable,
2832 .read = cpu_clock_perf_counter_read,
2833 };
2834
2835 /*
2836 * Software counter: task time clock
2837 */
2838
2839 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2840 {
2841 u64 prev;
2842 s64 delta;
2843
2844 prev = atomic64_xchg(&counter->hw.prev_count, now);
2845 delta = now - prev;
2846 atomic64_add(delta, &counter->count);
2847 }
2848
2849 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2850 {
2851 struct hw_perf_counter *hwc = &counter->hw;
2852 u64 now;
2853
2854 now = counter->ctx->time;
2855
2856 atomic64_set(&hwc->prev_count, now);
2857 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2858 hwc->hrtimer.function = perf_swcounter_hrtimer;
2859 if (hwc->irq_period) {
2860 u64 period = max_t(u64, 10000, hwc->irq_period);
2861 __hrtimer_start_range_ns(&hwc->hrtimer,
2862 ns_to_ktime(period), 0,
2863 HRTIMER_MODE_REL, 0);
2864 }
2865
2866 return 0;
2867 }
2868
2869 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2870 {
2871 if (counter->hw.irq_period)
2872 hrtimer_cancel(&counter->hw.hrtimer);
2873 task_clock_perf_counter_update(counter, counter->ctx->time);
2874
2875 }
2876
2877 static void task_clock_perf_counter_read(struct perf_counter *counter)
2878 {
2879 u64 time;
2880
2881 if (!in_nmi()) {
2882 update_context_time(counter->ctx);
2883 time = counter->ctx->time;
2884 } else {
2885 u64 now = perf_clock();
2886 u64 delta = now - counter->ctx->timestamp;
2887 time = counter->ctx->time + delta;
2888 }
2889
2890 task_clock_perf_counter_update(counter, time);
2891 }
2892
2893 static const struct pmu perf_ops_task_clock = {
2894 .enable = task_clock_perf_counter_enable,
2895 .disable = task_clock_perf_counter_disable,
2896 .read = task_clock_perf_counter_read,
2897 };
2898
2899 /*
2900 * Software counter: cpu migrations
2901 */
2902
2903 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2904 {
2905 struct task_struct *curr = counter->ctx->task;
2906
2907 if (curr)
2908 return curr->se.nr_migrations;
2909 return cpu_nr_migrations(smp_processor_id());
2910 }
2911
2912 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2913 {
2914 u64 prev, now;
2915 s64 delta;
2916
2917 prev = atomic64_read(&counter->hw.prev_count);
2918 now = get_cpu_migrations(counter);
2919
2920 atomic64_set(&counter->hw.prev_count, now);
2921
2922 delta = now - prev;
2923
2924 atomic64_add(delta, &counter->count);
2925 }
2926
2927 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2928 {
2929 cpu_migrations_perf_counter_update(counter);
2930 }
2931
2932 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2933 {
2934 if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2935 atomic64_set(&counter->hw.prev_count,
2936 get_cpu_migrations(counter));
2937 return 0;
2938 }
2939
2940 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2941 {
2942 cpu_migrations_perf_counter_update(counter);
2943 }
2944
2945 static const struct pmu perf_ops_cpu_migrations = {
2946 .enable = cpu_migrations_perf_counter_enable,
2947 .disable = cpu_migrations_perf_counter_disable,
2948 .read = cpu_migrations_perf_counter_read,
2949 };
2950
2951 #ifdef CONFIG_EVENT_PROFILE
2952 void perf_tpcounter_event(int event_id)
2953 {
2954 struct pt_regs *regs = get_irq_regs();
2955
2956 if (!regs)
2957 regs = task_pt_regs(current);
2958
2959 __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
2960 }
2961 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
2962
2963 extern int ftrace_profile_enable(int);
2964 extern void ftrace_profile_disable(int);
2965
2966 static void tp_perf_counter_destroy(struct perf_counter *counter)
2967 {
2968 ftrace_profile_disable(perf_event_id(&counter->hw_event));
2969 }
2970
2971 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2972 {
2973 int event_id = perf_event_id(&counter->hw_event);
2974 int ret;
2975
2976 ret = ftrace_profile_enable(event_id);
2977 if (ret)
2978 return NULL;
2979
2980 counter->destroy = tp_perf_counter_destroy;
2981 counter->hw.irq_period = counter->hw_event.irq_period;
2982
2983 return &perf_ops_generic;
2984 }
2985 #else
2986 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2987 {
2988 return NULL;
2989 }
2990 #endif
2991
2992 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
2993 {
2994 const struct pmu *pmu = NULL;
2995
2996 /*
2997 * Software counters (currently) can't in general distinguish
2998 * between user, kernel and hypervisor events.
2999 * However, context switches and cpu migrations are considered
3000 * to be kernel events, and page faults are never hypervisor
3001 * events.
3002 */
3003 switch (perf_event_id(&counter->hw_event)) {
3004 case PERF_COUNT_CPU_CLOCK:
3005 pmu = &perf_ops_cpu_clock;
3006
3007 break;
3008 case PERF_COUNT_TASK_CLOCK:
3009 /*
3010 * If the user instantiates this as a per-cpu counter,
3011 * use the cpu_clock counter instead.
3012 */
3013 if (counter->ctx->task)
3014 pmu = &perf_ops_task_clock;
3015 else
3016 pmu = &perf_ops_cpu_clock;
3017
3018 break;
3019 case PERF_COUNT_PAGE_FAULTS:
3020 case PERF_COUNT_PAGE_FAULTS_MIN:
3021 case PERF_COUNT_PAGE_FAULTS_MAJ:
3022 case PERF_COUNT_CONTEXT_SWITCHES:
3023 pmu = &perf_ops_generic;
3024 break;
3025 case PERF_COUNT_CPU_MIGRATIONS:
3026 if (!counter->hw_event.exclude_kernel)
3027 pmu = &perf_ops_cpu_migrations;
3028 break;
3029 }
3030
3031 return pmu;
3032 }
3033
3034 /*
3035 * Allocate and initialize a counter structure
3036 */
3037 static struct perf_counter *
3038 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
3039 int cpu,
3040 struct perf_counter_context *ctx,
3041 struct perf_counter *group_leader,
3042 gfp_t gfpflags)
3043 {
3044 const struct pmu *pmu;
3045 struct perf_counter *counter;
3046 struct hw_perf_counter *hwc;
3047 long err;
3048
3049 counter = kzalloc(sizeof(*counter), gfpflags);
3050 if (!counter)
3051 return ERR_PTR(-ENOMEM);
3052
3053 /*
3054 * Single counters are their own group leaders, with an
3055 * empty sibling list:
3056 */
3057 if (!group_leader)
3058 group_leader = counter;
3059
3060 mutex_init(&counter->child_mutex);
3061 INIT_LIST_HEAD(&counter->child_list);
3062
3063 INIT_LIST_HEAD(&counter->list_entry);
3064 INIT_LIST_HEAD(&counter->event_entry);
3065 INIT_LIST_HEAD(&counter->sibling_list);
3066 init_waitqueue_head(&counter->waitq);
3067
3068 mutex_init(&counter->mmap_mutex);
3069
3070 counter->cpu = cpu;
3071 counter->hw_event = *hw_event;
3072 counter->group_leader = group_leader;
3073 counter->pmu = NULL;
3074 counter->ctx = ctx;
3075 get_ctx(ctx);
3076
3077 counter->state = PERF_COUNTER_STATE_INACTIVE;
3078 if (hw_event->disabled)
3079 counter->state = PERF_COUNTER_STATE_OFF;
3080
3081 pmu = NULL;
3082
3083 hwc = &counter->hw;
3084 if (hw_event->freq && hw_event->irq_freq)
3085 hwc->irq_period = div64_u64(TICK_NSEC, hw_event->irq_freq);
3086 else
3087 hwc->irq_period = hw_event->irq_period;
3088
3089 /*
3090 * we currently do not support PERF_RECORD_GROUP on inherited counters
3091 */
3092 if (hw_event->inherit && (hw_event->record_type & PERF_RECORD_GROUP))
3093 goto done;
3094
3095 if (perf_event_raw(hw_event)) {
3096 pmu = hw_perf_counter_init(counter);
3097 goto done;
3098 }
3099
3100 switch (perf_event_type(hw_event)) {
3101 case PERF_TYPE_HARDWARE:
3102 pmu = hw_perf_counter_init(counter);
3103 break;
3104
3105 case PERF_TYPE_SOFTWARE:
3106 pmu = sw_perf_counter_init(counter);
3107 break;
3108
3109 case PERF_TYPE_TRACEPOINT:
3110 pmu = tp_perf_counter_init(counter);
3111 break;
3112 }
3113 done:
3114 err = 0;
3115 if (!pmu)
3116 err = -EINVAL;
3117 else if (IS_ERR(pmu))
3118 err = PTR_ERR(pmu);
3119
3120 if (err) {
3121 kfree(counter);
3122 return ERR_PTR(err);
3123 }
3124
3125 counter->pmu = pmu;
3126
3127 atomic_inc(&nr_counters);
3128 if (counter->hw_event.mmap)
3129 atomic_inc(&nr_mmap_tracking);
3130 if (counter->hw_event.munmap)
3131 atomic_inc(&nr_munmap_tracking);
3132 if (counter->hw_event.comm)
3133 atomic_inc(&nr_comm_tracking);
3134
3135 return counter;
3136 }
3137
3138 /**
3139 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
3140 *
3141 * @hw_event_uptr: event type attributes for monitoring/sampling
3142 * @pid: target pid
3143 * @cpu: target cpu
3144 * @group_fd: group leader counter fd
3145 */
3146 SYSCALL_DEFINE5(perf_counter_open,
3147 const struct perf_counter_hw_event __user *, hw_event_uptr,
3148 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
3149 {
3150 struct perf_counter *counter, *group_leader;
3151 struct perf_counter_hw_event hw_event;
3152 struct perf_counter_context *ctx;
3153 struct file *counter_file = NULL;
3154 struct file *group_file = NULL;
3155 int fput_needed = 0;
3156 int fput_needed2 = 0;
3157 int ret;
3158
3159 /* for future expandability... */
3160 if (flags)
3161 return -EINVAL;
3162
3163 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
3164 return -EFAULT;
3165
3166 /*
3167 * Get the target context (task or percpu):
3168 */
3169 ctx = find_get_context(pid, cpu);
3170 if (IS_ERR(ctx))
3171 return PTR_ERR(ctx);
3172
3173 /*
3174 * Look up the group leader (we will attach this counter to it):
3175 */
3176 group_leader = NULL;
3177 if (group_fd != -1) {
3178 ret = -EINVAL;
3179 group_file = fget_light(group_fd, &fput_needed);
3180 if (!group_file)
3181 goto err_put_context;
3182 if (group_file->f_op != &perf_fops)
3183 goto err_put_context;
3184
3185 group_leader = group_file->private_data;
3186 /*
3187 * Do not allow a recursive hierarchy (this new sibling
3188 * becoming part of another group-sibling):
3189 */
3190 if (group_leader->group_leader != group_leader)
3191 goto err_put_context;
3192 /*
3193 * Do not allow to attach to a group in a different
3194 * task or CPU context:
3195 */
3196 if (group_leader->ctx != ctx)
3197 goto err_put_context;
3198 /*
3199 * Only a group leader can be exclusive or pinned
3200 */
3201 if (hw_event.exclusive || hw_event.pinned)
3202 goto err_put_context;
3203 }
3204
3205 counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
3206 GFP_KERNEL);
3207 ret = PTR_ERR(counter);
3208 if (IS_ERR(counter))
3209 goto err_put_context;
3210
3211 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
3212 if (ret < 0)
3213 goto err_free_put_context;
3214
3215 counter_file = fget_light(ret, &fput_needed2);
3216 if (!counter_file)
3217 goto err_free_put_context;
3218
3219 counter->filp = counter_file;
3220 mutex_lock(&ctx->mutex);
3221 perf_install_in_context(ctx, counter, cpu);
3222 mutex_unlock(&ctx->mutex);
3223
3224 counter->owner = current;
3225 get_task_struct(current);
3226 mutex_lock(&current->perf_counter_mutex);
3227 list_add_tail(&counter->owner_entry, &current->perf_counter_list);
3228 mutex_unlock(&current->perf_counter_mutex);
3229
3230 fput_light(counter_file, fput_needed2);
3231
3232 out_fput:
3233 fput_light(group_file, fput_needed);
3234
3235 return ret;
3236
3237 err_free_put_context:
3238 kfree(counter);
3239
3240 err_put_context:
3241 put_context(ctx);
3242
3243 goto out_fput;
3244 }
3245
3246 /*
3247 * inherit a counter from parent task to child task:
3248 */
3249 static struct perf_counter *
3250 inherit_counter(struct perf_counter *parent_counter,
3251 struct task_struct *parent,
3252 struct perf_counter_context *parent_ctx,
3253 struct task_struct *child,
3254 struct perf_counter *group_leader,
3255 struct perf_counter_context *child_ctx)
3256 {
3257 struct perf_counter *child_counter;
3258
3259 /*
3260 * Instead of creating recursive hierarchies of counters,
3261 * we link inherited counters back to the original parent,
3262 * which has a filp for sure, which we use as the reference
3263 * count:
3264 */
3265 if (parent_counter->parent)
3266 parent_counter = parent_counter->parent;
3267
3268 child_counter = perf_counter_alloc(&parent_counter->hw_event,
3269 parent_counter->cpu, child_ctx,
3270 group_leader, GFP_KERNEL);
3271 if (IS_ERR(child_counter))
3272 return child_counter;
3273
3274 /*
3275 * Make the child state follow the state of the parent counter,
3276 * not its hw_event.disabled bit. We hold the parent's mutex,
3277 * so we won't race with perf_counter_{en,dis}able_family.
3278 */
3279 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3280 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3281 else
3282 child_counter->state = PERF_COUNTER_STATE_OFF;
3283
3284 /*
3285 * Link it up in the child's context:
3286 */
3287 add_counter_to_ctx(child_counter, child_ctx);
3288
3289 child_counter->parent = parent_counter;
3290 /*
3291 * inherit into child's child as well:
3292 */
3293 child_counter->hw_event.inherit = 1;
3294
3295 /*
3296 * Get a reference to the parent filp - we will fput it
3297 * when the child counter exits. This is safe to do because
3298 * we are in the parent and we know that the filp still
3299 * exists and has a nonzero count:
3300 */
3301 atomic_long_inc(&parent_counter->filp->f_count);
3302
3303 /*
3304 * Link this into the parent counter's child list
3305 */
3306 mutex_lock(&parent_counter->child_mutex);
3307 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3308 mutex_unlock(&parent_counter->child_mutex);
3309
3310 return child_counter;
3311 }
3312
3313 static int inherit_group(struct perf_counter *parent_counter,
3314 struct task_struct *parent,
3315 struct perf_counter_context *parent_ctx,
3316 struct task_struct *child,
3317 struct perf_counter_context *child_ctx)
3318 {
3319 struct perf_counter *leader;
3320 struct perf_counter *sub;
3321 struct perf_counter *child_ctr;
3322
3323 leader = inherit_counter(parent_counter, parent, parent_ctx,
3324 child, NULL, child_ctx);
3325 if (IS_ERR(leader))
3326 return PTR_ERR(leader);
3327 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3328 child_ctr = inherit_counter(sub, parent, parent_ctx,
3329 child, leader, child_ctx);
3330 if (IS_ERR(child_ctr))
3331 return PTR_ERR(child_ctr);
3332 }
3333 return 0;
3334 }
3335
3336 static void sync_child_counter(struct perf_counter *child_counter,
3337 struct perf_counter *parent_counter)
3338 {
3339 u64 child_val;
3340
3341 child_val = atomic64_read(&child_counter->count);
3342
3343 /*
3344 * Add back the child's count to the parent's count:
3345 */
3346 atomic64_add(child_val, &parent_counter->count);
3347 atomic64_add(child_counter->total_time_enabled,
3348 &parent_counter->child_total_time_enabled);
3349 atomic64_add(child_counter->total_time_running,
3350 &parent_counter->child_total_time_running);
3351
3352 /*
3353 * Remove this counter from the parent's list
3354 */
3355 mutex_lock(&parent_counter->child_mutex);
3356 list_del_init(&child_counter->child_list);
3357 mutex_unlock(&parent_counter->child_mutex);
3358
3359 /*
3360 * Release the parent counter, if this was the last
3361 * reference to it.
3362 */
3363 fput(parent_counter->filp);
3364 }
3365
3366 static void
3367 __perf_counter_exit_task(struct task_struct *child,
3368 struct perf_counter *child_counter,
3369 struct perf_counter_context *child_ctx)
3370 {
3371 struct perf_counter *parent_counter;
3372
3373 update_counter_times(child_counter);
3374 perf_counter_remove_from_context(child_counter);
3375
3376 parent_counter = child_counter->parent;
3377 /*
3378 * It can happen that parent exits first, and has counters
3379 * that are still around due to the child reference. These
3380 * counters need to be zapped - but otherwise linger.
3381 */
3382 if (parent_counter) {
3383 sync_child_counter(child_counter, parent_counter);
3384 free_counter(child_counter);
3385 }
3386 }
3387
3388 /*
3389 * When a child task exits, feed back counter values to parent counters.
3390 *
3391 * Note: we may be running in child context, but the PID is not hashed
3392 * anymore so new counters will not be added.
3393 * (XXX not sure that is true when we get called from flush_old_exec.
3394 * -- paulus)
3395 */
3396 void perf_counter_exit_task(struct task_struct *child)
3397 {
3398 struct perf_counter *child_counter, *tmp;
3399 struct perf_counter_context *child_ctx;
3400 unsigned long flags;
3401
3402 WARN_ON_ONCE(child != current);
3403
3404 child_ctx = child->perf_counter_ctxp;
3405
3406 if (likely(!child_ctx))
3407 return;
3408
3409 local_irq_save(flags);
3410 __perf_counter_task_sched_out(child_ctx);
3411 child->perf_counter_ctxp = NULL;
3412 local_irq_restore(flags);
3413
3414 mutex_lock(&child_ctx->mutex);
3415
3416 again:
3417 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3418 list_entry)
3419 __perf_counter_exit_task(child, child_counter, child_ctx);
3420
3421 /*
3422 * If the last counter was a group counter, it will have appended all
3423 * its siblings to the list, but we obtained 'tmp' before that which
3424 * will still point to the list head terminating the iteration.
3425 */
3426 if (!list_empty(&child_ctx->counter_list))
3427 goto again;
3428
3429 mutex_unlock(&child_ctx->mutex);
3430
3431 put_ctx(child_ctx);
3432 }
3433
3434 /*
3435 * Initialize the perf_counter context in task_struct
3436 */
3437 int perf_counter_init_task(struct task_struct *child)
3438 {
3439 struct perf_counter_context *child_ctx, *parent_ctx;
3440 struct perf_counter *counter;
3441 struct task_struct *parent = current;
3442 int inherited_all = 1;
3443 int ret = 0;
3444
3445 child->perf_counter_ctxp = NULL;
3446
3447 mutex_init(&child->perf_counter_mutex);
3448 INIT_LIST_HEAD(&child->perf_counter_list);
3449
3450 parent_ctx = parent->perf_counter_ctxp;
3451 if (likely(!parent_ctx || !parent_ctx->nr_counters))
3452 return 0;
3453
3454 /*
3455 * This is executed from the parent task context, so inherit
3456 * counters that have been marked for cloning.
3457 * First allocate and initialize a context for the child.
3458 */
3459
3460 child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
3461 if (!child_ctx)
3462 return -ENOMEM;
3463
3464 __perf_counter_init_context(child_ctx, child);
3465 child->perf_counter_ctxp = child_ctx;
3466
3467 /*
3468 * Lock the parent list. No need to lock the child - not PID
3469 * hashed yet and not running, so nobody can access it.
3470 */
3471 mutex_lock(&parent_ctx->mutex);
3472
3473 /*
3474 * We dont have to disable NMIs - we are only looking at
3475 * the list, not manipulating it:
3476 */
3477 list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
3478 if (counter != counter->group_leader)
3479 continue;
3480
3481 if (!counter->hw_event.inherit) {
3482 inherited_all = 0;
3483 continue;
3484 }
3485
3486 ret = inherit_group(counter, parent, parent_ctx,
3487 child, child_ctx);
3488 if (ret) {
3489 inherited_all = 0;
3490 break;
3491 }
3492 }
3493
3494 if (inherited_all) {
3495 /*
3496 * Mark the child context as a clone of the parent
3497 * context, or of whatever the parent is a clone of.
3498 */
3499 if (parent_ctx->parent_ctx) {
3500 child_ctx->parent_ctx = parent_ctx->parent_ctx;
3501 child_ctx->parent_gen = parent_ctx->parent_gen;
3502 } else {
3503 child_ctx->parent_ctx = parent_ctx;
3504 child_ctx->parent_gen = parent_ctx->generation;
3505 }
3506 get_ctx(child_ctx->parent_ctx);
3507 }
3508
3509 mutex_unlock(&parent_ctx->mutex);
3510
3511 return ret;
3512 }
3513
3514 static void __cpuinit perf_counter_init_cpu(int cpu)
3515 {
3516 struct perf_cpu_context *cpuctx;
3517
3518 cpuctx = &per_cpu(perf_cpu_context, cpu);
3519 __perf_counter_init_context(&cpuctx->ctx, NULL);
3520
3521 spin_lock(&perf_resource_lock);
3522 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3523 spin_unlock(&perf_resource_lock);
3524
3525 hw_perf_counter_setup(cpu);
3526 }
3527
3528 #ifdef CONFIG_HOTPLUG_CPU
3529 static void __perf_counter_exit_cpu(void *info)
3530 {
3531 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3532 struct perf_counter_context *ctx = &cpuctx->ctx;
3533 struct perf_counter *counter, *tmp;
3534
3535 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3536 __perf_counter_remove_from_context(counter);
3537 }
3538 static void perf_counter_exit_cpu(int cpu)
3539 {
3540 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3541 struct perf_counter_context *ctx = &cpuctx->ctx;
3542
3543 mutex_lock(&ctx->mutex);
3544 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3545 mutex_unlock(&ctx->mutex);
3546 }
3547 #else
3548 static inline void perf_counter_exit_cpu(int cpu) { }
3549 #endif
3550
3551 static int __cpuinit
3552 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3553 {
3554 unsigned int cpu = (long)hcpu;
3555
3556 switch (action) {
3557
3558 case CPU_UP_PREPARE:
3559 case CPU_UP_PREPARE_FROZEN:
3560 perf_counter_init_cpu(cpu);
3561 break;
3562
3563 case CPU_DOWN_PREPARE:
3564 case CPU_DOWN_PREPARE_FROZEN:
3565 perf_counter_exit_cpu(cpu);
3566 break;
3567
3568 default:
3569 break;
3570 }
3571
3572 return NOTIFY_OK;
3573 }
3574
3575 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3576 .notifier_call = perf_cpu_notify,
3577 };
3578
3579 void __init perf_counter_init(void)
3580 {
3581 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3582 (void *)(long)smp_processor_id());
3583 register_cpu_notifier(&perf_cpu_nb);
3584 }
3585
3586 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3587 {
3588 return sprintf(buf, "%d\n", perf_reserved_percpu);
3589 }
3590
3591 static ssize_t
3592 perf_set_reserve_percpu(struct sysdev_class *class,
3593 const char *buf,
3594 size_t count)
3595 {
3596 struct perf_cpu_context *cpuctx;
3597 unsigned long val;
3598 int err, cpu, mpt;
3599
3600 err = strict_strtoul(buf, 10, &val);
3601 if (err)
3602 return err;
3603 if (val > perf_max_counters)
3604 return -EINVAL;
3605
3606 spin_lock(&perf_resource_lock);
3607 perf_reserved_percpu = val;
3608 for_each_online_cpu(cpu) {
3609 cpuctx = &per_cpu(perf_cpu_context, cpu);
3610 spin_lock_irq(&cpuctx->ctx.lock);
3611 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3612 perf_max_counters - perf_reserved_percpu);
3613 cpuctx->max_pertask = mpt;
3614 spin_unlock_irq(&cpuctx->ctx.lock);
3615 }
3616 spin_unlock(&perf_resource_lock);
3617
3618 return count;
3619 }
3620
3621 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3622 {
3623 return sprintf(buf, "%d\n", perf_overcommit);
3624 }
3625
3626 static ssize_t
3627 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3628 {
3629 unsigned long val;
3630 int err;
3631
3632 err = strict_strtoul(buf, 10, &val);
3633 if (err)
3634 return err;
3635 if (val > 1)
3636 return -EINVAL;
3637
3638 spin_lock(&perf_resource_lock);
3639 perf_overcommit = val;
3640 spin_unlock(&perf_resource_lock);
3641
3642 return count;
3643 }
3644
3645 static SYSDEV_CLASS_ATTR(
3646 reserve_percpu,
3647 0644,
3648 perf_show_reserve_percpu,
3649 perf_set_reserve_percpu
3650 );
3651
3652 static SYSDEV_CLASS_ATTR(
3653 overcommit,
3654 0644,
3655 perf_show_overcommit,
3656 perf_set_overcommit
3657 );
3658
3659 static struct attribute *perfclass_attrs[] = {
3660 &attr_reserve_percpu.attr,
3661 &attr_overcommit.attr,
3662 NULL
3663 };
3664
3665 static struct attribute_group perfclass_attr_group = {
3666 .attrs = perfclass_attrs,
3667 .name = "perf_counters",
3668 };
3669
3670 static int __init perf_counter_sysfs_init(void)
3671 {
3672 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3673 &perfclass_attr_group);
3674 }
3675 device_initcall(perf_counter_sysfs_init);
This page took 0.105527 seconds and 6 git commands to generate.