perf_counter: add ioctl(PERF_COUNTER_IOC_RESET)
[deliverable/linux.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/ptrace.h>
20 #include <linux/percpu.h>
21 #include <linux/vmstat.h>
22 #include <linux/hardirq.h>
23 #include <linux/rculist.h>
24 #include <linux/uaccess.h>
25 #include <linux/syscalls.h>
26 #include <linux/anon_inodes.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/perf_counter.h>
29 #include <linux/dcache.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34 * Each CPU has a list of per CPU counters:
35 */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_mmap_tracking __read_mostly;
43 static atomic_t nr_munmap_tracking __read_mostly;
44 static atomic_t nr_comm_tracking __read_mostly;
45
46 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
47
48 /*
49 * Lock for (sysadmin-configurable) counter reservations:
50 */
51 static DEFINE_SPINLOCK(perf_resource_lock);
52
53 /*
54 * Architecture provided APIs - weak aliases:
55 */
56 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
57 {
58 return NULL;
59 }
60
61 u64 __weak hw_perf_save_disable(void) { return 0; }
62 void __weak hw_perf_restore(u64 ctrl) { barrier(); }
63 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
64 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
65 struct perf_cpu_context *cpuctx,
66 struct perf_counter_context *ctx, int cpu)
67 {
68 return 0;
69 }
70
71 void __weak perf_counter_print_debug(void) { }
72
73 static void
74 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
75 {
76 struct perf_counter *group_leader = counter->group_leader;
77
78 /*
79 * Depending on whether it is a standalone or sibling counter,
80 * add it straight to the context's counter list, or to the group
81 * leader's sibling list:
82 */
83 if (counter->group_leader == counter)
84 list_add_tail(&counter->list_entry, &ctx->counter_list);
85 else {
86 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
87 group_leader->nr_siblings++;
88 }
89
90 list_add_rcu(&counter->event_entry, &ctx->event_list);
91 }
92
93 static void
94 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
95 {
96 struct perf_counter *sibling, *tmp;
97
98 list_del_init(&counter->list_entry);
99 list_del_rcu(&counter->event_entry);
100
101 if (counter->group_leader != counter)
102 counter->group_leader->nr_siblings--;
103
104 /*
105 * If this was a group counter with sibling counters then
106 * upgrade the siblings to singleton counters by adding them
107 * to the context list directly:
108 */
109 list_for_each_entry_safe(sibling, tmp,
110 &counter->sibling_list, list_entry) {
111
112 list_move_tail(&sibling->list_entry, &ctx->counter_list);
113 sibling->group_leader = sibling;
114 }
115 }
116
117 static void
118 counter_sched_out(struct perf_counter *counter,
119 struct perf_cpu_context *cpuctx,
120 struct perf_counter_context *ctx)
121 {
122 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
123 return;
124
125 counter->state = PERF_COUNTER_STATE_INACTIVE;
126 counter->tstamp_stopped = ctx->time;
127 counter->pmu->disable(counter);
128 counter->oncpu = -1;
129
130 if (!is_software_counter(counter))
131 cpuctx->active_oncpu--;
132 ctx->nr_active--;
133 if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
134 cpuctx->exclusive = 0;
135 }
136
137 static void
138 group_sched_out(struct perf_counter *group_counter,
139 struct perf_cpu_context *cpuctx,
140 struct perf_counter_context *ctx)
141 {
142 struct perf_counter *counter;
143
144 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
145 return;
146
147 counter_sched_out(group_counter, cpuctx, ctx);
148
149 /*
150 * Schedule out siblings (if any):
151 */
152 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
153 counter_sched_out(counter, cpuctx, ctx);
154
155 if (group_counter->hw_event.exclusive)
156 cpuctx->exclusive = 0;
157 }
158
159 /*
160 * Cross CPU call to remove a performance counter
161 *
162 * We disable the counter on the hardware level first. After that we
163 * remove it from the context list.
164 */
165 static void __perf_counter_remove_from_context(void *info)
166 {
167 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
168 struct perf_counter *counter = info;
169 struct perf_counter_context *ctx = counter->ctx;
170 unsigned long flags;
171 u64 perf_flags;
172
173 /*
174 * If this is a task context, we need to check whether it is
175 * the current task context of this cpu. If not it has been
176 * scheduled out before the smp call arrived.
177 */
178 if (ctx->task && cpuctx->task_ctx != ctx)
179 return;
180
181 spin_lock_irqsave(&ctx->lock, flags);
182
183 counter_sched_out(counter, cpuctx, ctx);
184
185 counter->task = NULL;
186 ctx->nr_counters--;
187
188 /*
189 * Protect the list operation against NMI by disabling the
190 * counters on a global level. NOP for non NMI based counters.
191 */
192 perf_flags = hw_perf_save_disable();
193 list_del_counter(counter, ctx);
194 hw_perf_restore(perf_flags);
195
196 if (!ctx->task) {
197 /*
198 * Allow more per task counters with respect to the
199 * reservation:
200 */
201 cpuctx->max_pertask =
202 min(perf_max_counters - ctx->nr_counters,
203 perf_max_counters - perf_reserved_percpu);
204 }
205
206 spin_unlock_irqrestore(&ctx->lock, flags);
207 }
208
209
210 /*
211 * Remove the counter from a task's (or a CPU's) list of counters.
212 *
213 * Must be called with counter->mutex and ctx->mutex held.
214 *
215 * CPU counters are removed with a smp call. For task counters we only
216 * call when the task is on a CPU.
217 */
218 static void perf_counter_remove_from_context(struct perf_counter *counter)
219 {
220 struct perf_counter_context *ctx = counter->ctx;
221 struct task_struct *task = ctx->task;
222
223 if (!task) {
224 /*
225 * Per cpu counters are removed via an smp call and
226 * the removal is always sucessful.
227 */
228 smp_call_function_single(counter->cpu,
229 __perf_counter_remove_from_context,
230 counter, 1);
231 return;
232 }
233
234 retry:
235 task_oncpu_function_call(task, __perf_counter_remove_from_context,
236 counter);
237
238 spin_lock_irq(&ctx->lock);
239 /*
240 * If the context is active we need to retry the smp call.
241 */
242 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
243 spin_unlock_irq(&ctx->lock);
244 goto retry;
245 }
246
247 /*
248 * The lock prevents that this context is scheduled in so we
249 * can remove the counter safely, if the call above did not
250 * succeed.
251 */
252 if (!list_empty(&counter->list_entry)) {
253 ctx->nr_counters--;
254 list_del_counter(counter, ctx);
255 counter->task = NULL;
256 }
257 spin_unlock_irq(&ctx->lock);
258 }
259
260 static inline u64 perf_clock(void)
261 {
262 return cpu_clock(smp_processor_id());
263 }
264
265 /*
266 * Update the record of the current time in a context.
267 */
268 static void update_context_time(struct perf_counter_context *ctx)
269 {
270 u64 now = perf_clock();
271
272 ctx->time += now - ctx->timestamp;
273 ctx->timestamp = now;
274 }
275
276 /*
277 * Update the total_time_enabled and total_time_running fields for a counter.
278 */
279 static void update_counter_times(struct perf_counter *counter)
280 {
281 struct perf_counter_context *ctx = counter->ctx;
282 u64 run_end;
283
284 if (counter->state < PERF_COUNTER_STATE_INACTIVE)
285 return;
286
287 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
288
289 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
290 run_end = counter->tstamp_stopped;
291 else
292 run_end = ctx->time;
293
294 counter->total_time_running = run_end - counter->tstamp_running;
295 }
296
297 /*
298 * Update total_time_enabled and total_time_running for all counters in a group.
299 */
300 static void update_group_times(struct perf_counter *leader)
301 {
302 struct perf_counter *counter;
303
304 update_counter_times(leader);
305 list_for_each_entry(counter, &leader->sibling_list, list_entry)
306 update_counter_times(counter);
307 }
308
309 /*
310 * Cross CPU call to disable a performance counter
311 */
312 static void __perf_counter_disable(void *info)
313 {
314 struct perf_counter *counter = info;
315 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
316 struct perf_counter_context *ctx = counter->ctx;
317 unsigned long flags;
318
319 /*
320 * If this is a per-task counter, need to check whether this
321 * counter's task is the current task on this cpu.
322 */
323 if (ctx->task && cpuctx->task_ctx != ctx)
324 return;
325
326 spin_lock_irqsave(&ctx->lock, flags);
327
328 /*
329 * If the counter is on, turn it off.
330 * If it is in error state, leave it in error state.
331 */
332 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
333 update_context_time(ctx);
334 update_counter_times(counter);
335 if (counter == counter->group_leader)
336 group_sched_out(counter, cpuctx, ctx);
337 else
338 counter_sched_out(counter, cpuctx, ctx);
339 counter->state = PERF_COUNTER_STATE_OFF;
340 }
341
342 spin_unlock_irqrestore(&ctx->lock, flags);
343 }
344
345 /*
346 * Disable a counter.
347 */
348 static void perf_counter_disable(struct perf_counter *counter)
349 {
350 struct perf_counter_context *ctx = counter->ctx;
351 struct task_struct *task = ctx->task;
352
353 if (!task) {
354 /*
355 * Disable the counter on the cpu that it's on
356 */
357 smp_call_function_single(counter->cpu, __perf_counter_disable,
358 counter, 1);
359 return;
360 }
361
362 retry:
363 task_oncpu_function_call(task, __perf_counter_disable, counter);
364
365 spin_lock_irq(&ctx->lock);
366 /*
367 * If the counter is still active, we need to retry the cross-call.
368 */
369 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
370 spin_unlock_irq(&ctx->lock);
371 goto retry;
372 }
373
374 /*
375 * Since we have the lock this context can't be scheduled
376 * in, so we can change the state safely.
377 */
378 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
379 update_counter_times(counter);
380 counter->state = PERF_COUNTER_STATE_OFF;
381 }
382
383 spin_unlock_irq(&ctx->lock);
384 }
385
386 /*
387 * Disable a counter and all its children.
388 */
389 static void perf_counter_disable_family(struct perf_counter *counter)
390 {
391 struct perf_counter *child;
392
393 perf_counter_disable(counter);
394
395 /*
396 * Lock the mutex to protect the list of children
397 */
398 mutex_lock(&counter->mutex);
399 list_for_each_entry(child, &counter->child_list, child_list)
400 perf_counter_disable(child);
401 mutex_unlock(&counter->mutex);
402 }
403
404 static int
405 counter_sched_in(struct perf_counter *counter,
406 struct perf_cpu_context *cpuctx,
407 struct perf_counter_context *ctx,
408 int cpu)
409 {
410 if (counter->state <= PERF_COUNTER_STATE_OFF)
411 return 0;
412
413 counter->state = PERF_COUNTER_STATE_ACTIVE;
414 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
415 /*
416 * The new state must be visible before we turn it on in the hardware:
417 */
418 smp_wmb();
419
420 if (counter->pmu->enable(counter)) {
421 counter->state = PERF_COUNTER_STATE_INACTIVE;
422 counter->oncpu = -1;
423 return -EAGAIN;
424 }
425
426 counter->tstamp_running += ctx->time - counter->tstamp_stopped;
427
428 if (!is_software_counter(counter))
429 cpuctx->active_oncpu++;
430 ctx->nr_active++;
431
432 if (counter->hw_event.exclusive)
433 cpuctx->exclusive = 1;
434
435 return 0;
436 }
437
438 /*
439 * Return 1 for a group consisting entirely of software counters,
440 * 0 if the group contains any hardware counters.
441 */
442 static int is_software_only_group(struct perf_counter *leader)
443 {
444 struct perf_counter *counter;
445
446 if (!is_software_counter(leader))
447 return 0;
448
449 list_for_each_entry(counter, &leader->sibling_list, list_entry)
450 if (!is_software_counter(counter))
451 return 0;
452
453 return 1;
454 }
455
456 /*
457 * Work out whether we can put this counter group on the CPU now.
458 */
459 static int group_can_go_on(struct perf_counter *counter,
460 struct perf_cpu_context *cpuctx,
461 int can_add_hw)
462 {
463 /*
464 * Groups consisting entirely of software counters can always go on.
465 */
466 if (is_software_only_group(counter))
467 return 1;
468 /*
469 * If an exclusive group is already on, no other hardware
470 * counters can go on.
471 */
472 if (cpuctx->exclusive)
473 return 0;
474 /*
475 * If this group is exclusive and there are already
476 * counters on the CPU, it can't go on.
477 */
478 if (counter->hw_event.exclusive && cpuctx->active_oncpu)
479 return 0;
480 /*
481 * Otherwise, try to add it if all previous groups were able
482 * to go on.
483 */
484 return can_add_hw;
485 }
486
487 static void add_counter_to_ctx(struct perf_counter *counter,
488 struct perf_counter_context *ctx)
489 {
490 list_add_counter(counter, ctx);
491 ctx->nr_counters++;
492 counter->prev_state = PERF_COUNTER_STATE_OFF;
493 counter->tstamp_enabled = ctx->time;
494 counter->tstamp_running = ctx->time;
495 counter->tstamp_stopped = ctx->time;
496 }
497
498 /*
499 * Cross CPU call to install and enable a performance counter
500 */
501 static void __perf_install_in_context(void *info)
502 {
503 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
504 struct perf_counter *counter = info;
505 struct perf_counter_context *ctx = counter->ctx;
506 struct perf_counter *leader = counter->group_leader;
507 int cpu = smp_processor_id();
508 unsigned long flags;
509 u64 perf_flags;
510 int err;
511
512 /*
513 * If this is a task context, we need to check whether it is
514 * the current task context of this cpu. If not it has been
515 * scheduled out before the smp call arrived.
516 */
517 if (ctx->task && cpuctx->task_ctx != ctx)
518 return;
519
520 spin_lock_irqsave(&ctx->lock, flags);
521 update_context_time(ctx);
522
523 /*
524 * Protect the list operation against NMI by disabling the
525 * counters on a global level. NOP for non NMI based counters.
526 */
527 perf_flags = hw_perf_save_disable();
528
529 add_counter_to_ctx(counter, ctx);
530
531 /*
532 * Don't put the counter on if it is disabled or if
533 * it is in a group and the group isn't on.
534 */
535 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
536 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
537 goto unlock;
538
539 /*
540 * An exclusive counter can't go on if there are already active
541 * hardware counters, and no hardware counter can go on if there
542 * is already an exclusive counter on.
543 */
544 if (!group_can_go_on(counter, cpuctx, 1))
545 err = -EEXIST;
546 else
547 err = counter_sched_in(counter, cpuctx, ctx, cpu);
548
549 if (err) {
550 /*
551 * This counter couldn't go on. If it is in a group
552 * then we have to pull the whole group off.
553 * If the counter group is pinned then put it in error state.
554 */
555 if (leader != counter)
556 group_sched_out(leader, cpuctx, ctx);
557 if (leader->hw_event.pinned) {
558 update_group_times(leader);
559 leader->state = PERF_COUNTER_STATE_ERROR;
560 }
561 }
562
563 if (!err && !ctx->task && cpuctx->max_pertask)
564 cpuctx->max_pertask--;
565
566 unlock:
567 hw_perf_restore(perf_flags);
568
569 spin_unlock_irqrestore(&ctx->lock, flags);
570 }
571
572 /*
573 * Attach a performance counter to a context
574 *
575 * First we add the counter to the list with the hardware enable bit
576 * in counter->hw_config cleared.
577 *
578 * If the counter is attached to a task which is on a CPU we use a smp
579 * call to enable it in the task context. The task might have been
580 * scheduled away, but we check this in the smp call again.
581 *
582 * Must be called with ctx->mutex held.
583 */
584 static void
585 perf_install_in_context(struct perf_counter_context *ctx,
586 struct perf_counter *counter,
587 int cpu)
588 {
589 struct task_struct *task = ctx->task;
590
591 if (!task) {
592 /*
593 * Per cpu counters are installed via an smp call and
594 * the install is always sucessful.
595 */
596 smp_call_function_single(cpu, __perf_install_in_context,
597 counter, 1);
598 return;
599 }
600
601 counter->task = task;
602 retry:
603 task_oncpu_function_call(task, __perf_install_in_context,
604 counter);
605
606 spin_lock_irq(&ctx->lock);
607 /*
608 * we need to retry the smp call.
609 */
610 if (ctx->is_active && list_empty(&counter->list_entry)) {
611 spin_unlock_irq(&ctx->lock);
612 goto retry;
613 }
614
615 /*
616 * The lock prevents that this context is scheduled in so we
617 * can add the counter safely, if it the call above did not
618 * succeed.
619 */
620 if (list_empty(&counter->list_entry))
621 add_counter_to_ctx(counter, ctx);
622 spin_unlock_irq(&ctx->lock);
623 }
624
625 /*
626 * Cross CPU call to enable a performance counter
627 */
628 static void __perf_counter_enable(void *info)
629 {
630 struct perf_counter *counter = info;
631 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
632 struct perf_counter_context *ctx = counter->ctx;
633 struct perf_counter *leader = counter->group_leader;
634 unsigned long flags;
635 int err;
636
637 /*
638 * If this is a per-task counter, need to check whether this
639 * counter's task is the current task on this cpu.
640 */
641 if (ctx->task && cpuctx->task_ctx != ctx)
642 return;
643
644 spin_lock_irqsave(&ctx->lock, flags);
645 update_context_time(ctx);
646
647 counter->prev_state = counter->state;
648 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
649 goto unlock;
650 counter->state = PERF_COUNTER_STATE_INACTIVE;
651 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
652
653 /*
654 * If the counter is in a group and isn't the group leader,
655 * then don't put it on unless the group is on.
656 */
657 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
658 goto unlock;
659
660 if (!group_can_go_on(counter, cpuctx, 1))
661 err = -EEXIST;
662 else
663 err = counter_sched_in(counter, cpuctx, ctx,
664 smp_processor_id());
665
666 if (err) {
667 /*
668 * If this counter can't go on and it's part of a
669 * group, then the whole group has to come off.
670 */
671 if (leader != counter)
672 group_sched_out(leader, cpuctx, ctx);
673 if (leader->hw_event.pinned) {
674 update_group_times(leader);
675 leader->state = PERF_COUNTER_STATE_ERROR;
676 }
677 }
678
679 unlock:
680 spin_unlock_irqrestore(&ctx->lock, flags);
681 }
682
683 /*
684 * Enable a counter.
685 */
686 static void perf_counter_enable(struct perf_counter *counter)
687 {
688 struct perf_counter_context *ctx = counter->ctx;
689 struct task_struct *task = ctx->task;
690
691 if (!task) {
692 /*
693 * Enable the counter on the cpu that it's on
694 */
695 smp_call_function_single(counter->cpu, __perf_counter_enable,
696 counter, 1);
697 return;
698 }
699
700 spin_lock_irq(&ctx->lock);
701 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
702 goto out;
703
704 /*
705 * If the counter is in error state, clear that first.
706 * That way, if we see the counter in error state below, we
707 * know that it has gone back into error state, as distinct
708 * from the task having been scheduled away before the
709 * cross-call arrived.
710 */
711 if (counter->state == PERF_COUNTER_STATE_ERROR)
712 counter->state = PERF_COUNTER_STATE_OFF;
713
714 retry:
715 spin_unlock_irq(&ctx->lock);
716 task_oncpu_function_call(task, __perf_counter_enable, counter);
717
718 spin_lock_irq(&ctx->lock);
719
720 /*
721 * If the context is active and the counter is still off,
722 * we need to retry the cross-call.
723 */
724 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
725 goto retry;
726
727 /*
728 * Since we have the lock this context can't be scheduled
729 * in, so we can change the state safely.
730 */
731 if (counter->state == PERF_COUNTER_STATE_OFF) {
732 counter->state = PERF_COUNTER_STATE_INACTIVE;
733 counter->tstamp_enabled =
734 ctx->time - counter->total_time_enabled;
735 }
736 out:
737 spin_unlock_irq(&ctx->lock);
738 }
739
740 static void perf_counter_refresh(struct perf_counter *counter, int refresh)
741 {
742 atomic_add(refresh, &counter->event_limit);
743 perf_counter_enable(counter);
744 }
745
746 /*
747 * Enable a counter and all its children.
748 */
749 static void perf_counter_enable_family(struct perf_counter *counter)
750 {
751 struct perf_counter *child;
752
753 perf_counter_enable(counter);
754
755 /*
756 * Lock the mutex to protect the list of children
757 */
758 mutex_lock(&counter->mutex);
759 list_for_each_entry(child, &counter->child_list, child_list)
760 perf_counter_enable(child);
761 mutex_unlock(&counter->mutex);
762 }
763
764 void __perf_counter_sched_out(struct perf_counter_context *ctx,
765 struct perf_cpu_context *cpuctx)
766 {
767 struct perf_counter *counter;
768 u64 flags;
769
770 spin_lock(&ctx->lock);
771 ctx->is_active = 0;
772 if (likely(!ctx->nr_counters))
773 goto out;
774 update_context_time(ctx);
775
776 flags = hw_perf_save_disable();
777 if (ctx->nr_active) {
778 list_for_each_entry(counter, &ctx->counter_list, list_entry)
779 group_sched_out(counter, cpuctx, ctx);
780 }
781 hw_perf_restore(flags);
782 out:
783 spin_unlock(&ctx->lock);
784 }
785
786 /*
787 * Called from scheduler to remove the counters of the current task,
788 * with interrupts disabled.
789 *
790 * We stop each counter and update the counter value in counter->count.
791 *
792 * This does not protect us against NMI, but disable()
793 * sets the disabled bit in the control field of counter _before_
794 * accessing the counter control register. If a NMI hits, then it will
795 * not restart the counter.
796 */
797 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
798 {
799 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
800 struct perf_counter_context *ctx = &task->perf_counter_ctx;
801 struct pt_regs *regs;
802
803 if (likely(!cpuctx->task_ctx))
804 return;
805
806 update_context_time(ctx);
807
808 regs = task_pt_regs(task);
809 perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
810 __perf_counter_sched_out(ctx, cpuctx);
811
812 cpuctx->task_ctx = NULL;
813 }
814
815 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
816 {
817 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
818 }
819
820 static int
821 group_sched_in(struct perf_counter *group_counter,
822 struct perf_cpu_context *cpuctx,
823 struct perf_counter_context *ctx,
824 int cpu)
825 {
826 struct perf_counter *counter, *partial_group;
827 int ret;
828
829 if (group_counter->state == PERF_COUNTER_STATE_OFF)
830 return 0;
831
832 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
833 if (ret)
834 return ret < 0 ? ret : 0;
835
836 group_counter->prev_state = group_counter->state;
837 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
838 return -EAGAIN;
839
840 /*
841 * Schedule in siblings as one group (if any):
842 */
843 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
844 counter->prev_state = counter->state;
845 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
846 partial_group = counter;
847 goto group_error;
848 }
849 }
850
851 return 0;
852
853 group_error:
854 /*
855 * Groups can be scheduled in as one unit only, so undo any
856 * partial group before returning:
857 */
858 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
859 if (counter == partial_group)
860 break;
861 counter_sched_out(counter, cpuctx, ctx);
862 }
863 counter_sched_out(group_counter, cpuctx, ctx);
864
865 return -EAGAIN;
866 }
867
868 static void
869 __perf_counter_sched_in(struct perf_counter_context *ctx,
870 struct perf_cpu_context *cpuctx, int cpu)
871 {
872 struct perf_counter *counter;
873 u64 flags;
874 int can_add_hw = 1;
875
876 spin_lock(&ctx->lock);
877 ctx->is_active = 1;
878 if (likely(!ctx->nr_counters))
879 goto out;
880
881 ctx->timestamp = perf_clock();
882
883 flags = hw_perf_save_disable();
884
885 /*
886 * First go through the list and put on any pinned groups
887 * in order to give them the best chance of going on.
888 */
889 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
890 if (counter->state <= PERF_COUNTER_STATE_OFF ||
891 !counter->hw_event.pinned)
892 continue;
893 if (counter->cpu != -1 && counter->cpu != cpu)
894 continue;
895
896 if (group_can_go_on(counter, cpuctx, 1))
897 group_sched_in(counter, cpuctx, ctx, cpu);
898
899 /*
900 * If this pinned group hasn't been scheduled,
901 * put it in error state.
902 */
903 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
904 update_group_times(counter);
905 counter->state = PERF_COUNTER_STATE_ERROR;
906 }
907 }
908
909 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
910 /*
911 * Ignore counters in OFF or ERROR state, and
912 * ignore pinned counters since we did them already.
913 */
914 if (counter->state <= PERF_COUNTER_STATE_OFF ||
915 counter->hw_event.pinned)
916 continue;
917
918 /*
919 * Listen to the 'cpu' scheduling filter constraint
920 * of counters:
921 */
922 if (counter->cpu != -1 && counter->cpu != cpu)
923 continue;
924
925 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
926 if (group_sched_in(counter, cpuctx, ctx, cpu))
927 can_add_hw = 0;
928 }
929 }
930 hw_perf_restore(flags);
931 out:
932 spin_unlock(&ctx->lock);
933 }
934
935 /*
936 * Called from scheduler to add the counters of the current task
937 * with interrupts disabled.
938 *
939 * We restore the counter value and then enable it.
940 *
941 * This does not protect us against NMI, but enable()
942 * sets the enabled bit in the control field of counter _before_
943 * accessing the counter control register. If a NMI hits, then it will
944 * keep the counter running.
945 */
946 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
947 {
948 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
949 struct perf_counter_context *ctx = &task->perf_counter_ctx;
950
951 __perf_counter_sched_in(ctx, cpuctx, cpu);
952 cpuctx->task_ctx = ctx;
953 }
954
955 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
956 {
957 struct perf_counter_context *ctx = &cpuctx->ctx;
958
959 __perf_counter_sched_in(ctx, cpuctx, cpu);
960 }
961
962 int perf_counter_task_disable(void)
963 {
964 struct task_struct *curr = current;
965 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
966 struct perf_counter *counter;
967 unsigned long flags;
968 u64 perf_flags;
969 int cpu;
970
971 if (likely(!ctx->nr_counters))
972 return 0;
973
974 local_irq_save(flags);
975 cpu = smp_processor_id();
976
977 perf_counter_task_sched_out(curr, cpu);
978
979 spin_lock(&ctx->lock);
980
981 /*
982 * Disable all the counters:
983 */
984 perf_flags = hw_perf_save_disable();
985
986 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
987 if (counter->state != PERF_COUNTER_STATE_ERROR) {
988 update_group_times(counter);
989 counter->state = PERF_COUNTER_STATE_OFF;
990 }
991 }
992
993 hw_perf_restore(perf_flags);
994
995 spin_unlock_irqrestore(&ctx->lock, flags);
996
997 return 0;
998 }
999
1000 int perf_counter_task_enable(void)
1001 {
1002 struct task_struct *curr = current;
1003 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1004 struct perf_counter *counter;
1005 unsigned long flags;
1006 u64 perf_flags;
1007 int cpu;
1008
1009 if (likely(!ctx->nr_counters))
1010 return 0;
1011
1012 local_irq_save(flags);
1013 cpu = smp_processor_id();
1014
1015 perf_counter_task_sched_out(curr, cpu);
1016
1017 spin_lock(&ctx->lock);
1018
1019 /*
1020 * Disable all the counters:
1021 */
1022 perf_flags = hw_perf_save_disable();
1023
1024 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1025 if (counter->state > PERF_COUNTER_STATE_OFF)
1026 continue;
1027 counter->state = PERF_COUNTER_STATE_INACTIVE;
1028 counter->tstamp_enabled =
1029 ctx->time - counter->total_time_enabled;
1030 counter->hw_event.disabled = 0;
1031 }
1032 hw_perf_restore(perf_flags);
1033
1034 spin_unlock(&ctx->lock);
1035
1036 perf_counter_task_sched_in(curr, cpu);
1037
1038 local_irq_restore(flags);
1039
1040 return 0;
1041 }
1042
1043 /*
1044 * Round-robin a context's counters:
1045 */
1046 static void rotate_ctx(struct perf_counter_context *ctx)
1047 {
1048 struct perf_counter *counter;
1049 u64 perf_flags;
1050
1051 if (!ctx->nr_counters)
1052 return;
1053
1054 spin_lock(&ctx->lock);
1055 /*
1056 * Rotate the first entry last (works just fine for group counters too):
1057 */
1058 perf_flags = hw_perf_save_disable();
1059 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1060 list_move_tail(&counter->list_entry, &ctx->counter_list);
1061 break;
1062 }
1063 hw_perf_restore(perf_flags);
1064
1065 spin_unlock(&ctx->lock);
1066 }
1067
1068 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1069 {
1070 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1071 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1072
1073 perf_counter_cpu_sched_out(cpuctx);
1074 perf_counter_task_sched_out(curr, cpu);
1075
1076 rotate_ctx(&cpuctx->ctx);
1077 rotate_ctx(ctx);
1078
1079 perf_counter_cpu_sched_in(cpuctx, cpu);
1080 perf_counter_task_sched_in(curr, cpu);
1081 }
1082
1083 /*
1084 * Cross CPU call to read the hardware counter
1085 */
1086 static void __read(void *info)
1087 {
1088 struct perf_counter *counter = info;
1089 struct perf_counter_context *ctx = counter->ctx;
1090 unsigned long flags;
1091
1092 local_irq_save(flags);
1093 if (ctx->is_active)
1094 update_context_time(ctx);
1095 counter->pmu->read(counter);
1096 update_counter_times(counter);
1097 local_irq_restore(flags);
1098 }
1099
1100 static u64 perf_counter_read(struct perf_counter *counter)
1101 {
1102 /*
1103 * If counter is enabled and currently active on a CPU, update the
1104 * value in the counter structure:
1105 */
1106 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1107 smp_call_function_single(counter->oncpu,
1108 __read, counter, 1);
1109 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1110 update_counter_times(counter);
1111 }
1112
1113 return atomic64_read(&counter->count);
1114 }
1115
1116 static void put_context(struct perf_counter_context *ctx)
1117 {
1118 if (ctx->task)
1119 put_task_struct(ctx->task);
1120 }
1121
1122 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1123 {
1124 struct perf_cpu_context *cpuctx;
1125 struct perf_counter_context *ctx;
1126 struct task_struct *task;
1127
1128 /*
1129 * If cpu is not a wildcard then this is a percpu counter:
1130 */
1131 if (cpu != -1) {
1132 /* Must be root to operate on a CPU counter: */
1133 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1134 return ERR_PTR(-EACCES);
1135
1136 if (cpu < 0 || cpu > num_possible_cpus())
1137 return ERR_PTR(-EINVAL);
1138
1139 /*
1140 * We could be clever and allow to attach a counter to an
1141 * offline CPU and activate it when the CPU comes up, but
1142 * that's for later.
1143 */
1144 if (!cpu_isset(cpu, cpu_online_map))
1145 return ERR_PTR(-ENODEV);
1146
1147 cpuctx = &per_cpu(perf_cpu_context, cpu);
1148 ctx = &cpuctx->ctx;
1149
1150 return ctx;
1151 }
1152
1153 rcu_read_lock();
1154 if (!pid)
1155 task = current;
1156 else
1157 task = find_task_by_vpid(pid);
1158 if (task)
1159 get_task_struct(task);
1160 rcu_read_unlock();
1161
1162 if (!task)
1163 return ERR_PTR(-ESRCH);
1164
1165 ctx = &task->perf_counter_ctx;
1166 ctx->task = task;
1167
1168 /* Reuse ptrace permission checks for now. */
1169 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1170 put_context(ctx);
1171 return ERR_PTR(-EACCES);
1172 }
1173
1174 return ctx;
1175 }
1176
1177 static void free_counter_rcu(struct rcu_head *head)
1178 {
1179 struct perf_counter *counter;
1180
1181 counter = container_of(head, struct perf_counter, rcu_head);
1182 kfree(counter);
1183 }
1184
1185 static void perf_pending_sync(struct perf_counter *counter);
1186
1187 static void free_counter(struct perf_counter *counter)
1188 {
1189 perf_pending_sync(counter);
1190
1191 if (counter->hw_event.mmap)
1192 atomic_dec(&nr_mmap_tracking);
1193 if (counter->hw_event.munmap)
1194 atomic_dec(&nr_munmap_tracking);
1195 if (counter->hw_event.comm)
1196 atomic_dec(&nr_comm_tracking);
1197
1198 if (counter->destroy)
1199 counter->destroy(counter);
1200
1201 call_rcu(&counter->rcu_head, free_counter_rcu);
1202 }
1203
1204 /*
1205 * Called when the last reference to the file is gone.
1206 */
1207 static int perf_release(struct inode *inode, struct file *file)
1208 {
1209 struct perf_counter *counter = file->private_data;
1210 struct perf_counter_context *ctx = counter->ctx;
1211
1212 file->private_data = NULL;
1213
1214 mutex_lock(&ctx->mutex);
1215 mutex_lock(&counter->mutex);
1216
1217 perf_counter_remove_from_context(counter);
1218
1219 mutex_unlock(&counter->mutex);
1220 mutex_unlock(&ctx->mutex);
1221
1222 free_counter(counter);
1223 put_context(ctx);
1224
1225 return 0;
1226 }
1227
1228 /*
1229 * Read the performance counter - simple non blocking version for now
1230 */
1231 static ssize_t
1232 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1233 {
1234 u64 values[3];
1235 int n;
1236
1237 /*
1238 * Return end-of-file for a read on a counter that is in
1239 * error state (i.e. because it was pinned but it couldn't be
1240 * scheduled on to the CPU at some point).
1241 */
1242 if (counter->state == PERF_COUNTER_STATE_ERROR)
1243 return 0;
1244
1245 mutex_lock(&counter->mutex);
1246 values[0] = perf_counter_read(counter);
1247 n = 1;
1248 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1249 values[n++] = counter->total_time_enabled +
1250 atomic64_read(&counter->child_total_time_enabled);
1251 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1252 values[n++] = counter->total_time_running +
1253 atomic64_read(&counter->child_total_time_running);
1254 mutex_unlock(&counter->mutex);
1255
1256 if (count < n * sizeof(u64))
1257 return -EINVAL;
1258 count = n * sizeof(u64);
1259
1260 if (copy_to_user(buf, values, count))
1261 return -EFAULT;
1262
1263 return count;
1264 }
1265
1266 static ssize_t
1267 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1268 {
1269 struct perf_counter *counter = file->private_data;
1270
1271 return perf_read_hw(counter, buf, count);
1272 }
1273
1274 static unsigned int perf_poll(struct file *file, poll_table *wait)
1275 {
1276 struct perf_counter *counter = file->private_data;
1277 struct perf_mmap_data *data;
1278 unsigned int events = POLL_HUP;
1279
1280 rcu_read_lock();
1281 data = rcu_dereference(counter->data);
1282 if (data)
1283 events = atomic_xchg(&data->poll, 0);
1284 rcu_read_unlock();
1285
1286 poll_wait(file, &counter->waitq, wait);
1287
1288 return events;
1289 }
1290
1291 static void perf_counter_reset(struct perf_counter *counter)
1292 {
1293 atomic_set(&counter->count, 0);
1294 }
1295
1296 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1297 {
1298 struct perf_counter *counter = file->private_data;
1299 int err = 0;
1300
1301 switch (cmd) {
1302 case PERF_COUNTER_IOC_ENABLE:
1303 perf_counter_enable_family(counter);
1304 break;
1305 case PERF_COUNTER_IOC_DISABLE:
1306 perf_counter_disable_family(counter);
1307 break;
1308 case PERF_COUNTER_IOC_REFRESH:
1309 perf_counter_refresh(counter, arg);
1310 break;
1311 case PERF_COUNTER_IOC_RESET:
1312 perf_counter_reset(counter);
1313 break;
1314 default:
1315 err = -ENOTTY;
1316 }
1317 return err;
1318 }
1319
1320 /*
1321 * Callers need to ensure there can be no nesting of this function, otherwise
1322 * the seqlock logic goes bad. We can not serialize this because the arch
1323 * code calls this from NMI context.
1324 */
1325 void perf_counter_update_userpage(struct perf_counter *counter)
1326 {
1327 struct perf_mmap_data *data;
1328 struct perf_counter_mmap_page *userpg;
1329
1330 rcu_read_lock();
1331 data = rcu_dereference(counter->data);
1332 if (!data)
1333 goto unlock;
1334
1335 userpg = data->user_page;
1336
1337 /*
1338 * Disable preemption so as to not let the corresponding user-space
1339 * spin too long if we get preempted.
1340 */
1341 preempt_disable();
1342 ++userpg->lock;
1343 barrier();
1344 userpg->index = counter->hw.idx;
1345 userpg->offset = atomic64_read(&counter->count);
1346 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1347 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1348
1349 barrier();
1350 ++userpg->lock;
1351 preempt_enable();
1352 unlock:
1353 rcu_read_unlock();
1354 }
1355
1356 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1357 {
1358 struct perf_counter *counter = vma->vm_file->private_data;
1359 struct perf_mmap_data *data;
1360 int ret = VM_FAULT_SIGBUS;
1361
1362 rcu_read_lock();
1363 data = rcu_dereference(counter->data);
1364 if (!data)
1365 goto unlock;
1366
1367 if (vmf->pgoff == 0) {
1368 vmf->page = virt_to_page(data->user_page);
1369 } else {
1370 int nr = vmf->pgoff - 1;
1371
1372 if ((unsigned)nr > data->nr_pages)
1373 goto unlock;
1374
1375 vmf->page = virt_to_page(data->data_pages[nr]);
1376 }
1377 get_page(vmf->page);
1378 ret = 0;
1379 unlock:
1380 rcu_read_unlock();
1381
1382 return ret;
1383 }
1384
1385 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1386 {
1387 struct perf_mmap_data *data;
1388 unsigned long size;
1389 int i;
1390
1391 WARN_ON(atomic_read(&counter->mmap_count));
1392
1393 size = sizeof(struct perf_mmap_data);
1394 size += nr_pages * sizeof(void *);
1395
1396 data = kzalloc(size, GFP_KERNEL);
1397 if (!data)
1398 goto fail;
1399
1400 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1401 if (!data->user_page)
1402 goto fail_user_page;
1403
1404 for (i = 0; i < nr_pages; i++) {
1405 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1406 if (!data->data_pages[i])
1407 goto fail_data_pages;
1408 }
1409
1410 data->nr_pages = nr_pages;
1411
1412 rcu_assign_pointer(counter->data, data);
1413
1414 return 0;
1415
1416 fail_data_pages:
1417 for (i--; i >= 0; i--)
1418 free_page((unsigned long)data->data_pages[i]);
1419
1420 free_page((unsigned long)data->user_page);
1421
1422 fail_user_page:
1423 kfree(data);
1424
1425 fail:
1426 return -ENOMEM;
1427 }
1428
1429 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1430 {
1431 struct perf_mmap_data *data = container_of(rcu_head,
1432 struct perf_mmap_data, rcu_head);
1433 int i;
1434
1435 free_page((unsigned long)data->user_page);
1436 for (i = 0; i < data->nr_pages; i++)
1437 free_page((unsigned long)data->data_pages[i]);
1438 kfree(data);
1439 }
1440
1441 static void perf_mmap_data_free(struct perf_counter *counter)
1442 {
1443 struct perf_mmap_data *data = counter->data;
1444
1445 WARN_ON(atomic_read(&counter->mmap_count));
1446
1447 rcu_assign_pointer(counter->data, NULL);
1448 call_rcu(&data->rcu_head, __perf_mmap_data_free);
1449 }
1450
1451 static void perf_mmap_open(struct vm_area_struct *vma)
1452 {
1453 struct perf_counter *counter = vma->vm_file->private_data;
1454
1455 atomic_inc(&counter->mmap_count);
1456 }
1457
1458 static void perf_mmap_close(struct vm_area_struct *vma)
1459 {
1460 struct perf_counter *counter = vma->vm_file->private_data;
1461
1462 if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1463 &counter->mmap_mutex)) {
1464 vma->vm_mm->locked_vm -= counter->data->nr_pages + 1;
1465 perf_mmap_data_free(counter);
1466 mutex_unlock(&counter->mmap_mutex);
1467 }
1468 }
1469
1470 static struct vm_operations_struct perf_mmap_vmops = {
1471 .open = perf_mmap_open,
1472 .close = perf_mmap_close,
1473 .fault = perf_mmap_fault,
1474 };
1475
1476 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1477 {
1478 struct perf_counter *counter = file->private_data;
1479 unsigned long vma_size;
1480 unsigned long nr_pages;
1481 unsigned long locked, lock_limit;
1482 int ret = 0;
1483
1484 if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1485 return -EINVAL;
1486
1487 vma_size = vma->vm_end - vma->vm_start;
1488 nr_pages = (vma_size / PAGE_SIZE) - 1;
1489
1490 /*
1491 * If we have data pages ensure they're a power-of-two number, so we
1492 * can do bitmasks instead of modulo.
1493 */
1494 if (nr_pages != 0 && !is_power_of_2(nr_pages))
1495 return -EINVAL;
1496
1497 if (vma_size != PAGE_SIZE * (1 + nr_pages))
1498 return -EINVAL;
1499
1500 if (vma->vm_pgoff != 0)
1501 return -EINVAL;
1502
1503 mutex_lock(&counter->mmap_mutex);
1504 if (atomic_inc_not_zero(&counter->mmap_count)) {
1505 if (nr_pages != counter->data->nr_pages)
1506 ret = -EINVAL;
1507 goto unlock;
1508 }
1509
1510 locked = vma->vm_mm->locked_vm;
1511 locked += nr_pages + 1;
1512
1513 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1514 lock_limit >>= PAGE_SHIFT;
1515
1516 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1517 ret = -EPERM;
1518 goto unlock;
1519 }
1520
1521 WARN_ON(counter->data);
1522 ret = perf_mmap_data_alloc(counter, nr_pages);
1523 if (ret)
1524 goto unlock;
1525
1526 atomic_set(&counter->mmap_count, 1);
1527 vma->vm_mm->locked_vm += nr_pages + 1;
1528 unlock:
1529 mutex_unlock(&counter->mmap_mutex);
1530
1531 vma->vm_flags &= ~VM_MAYWRITE;
1532 vma->vm_flags |= VM_RESERVED;
1533 vma->vm_ops = &perf_mmap_vmops;
1534
1535 return ret;
1536 }
1537
1538 static int perf_fasync(int fd, struct file *filp, int on)
1539 {
1540 struct perf_counter *counter = filp->private_data;
1541 struct inode *inode = filp->f_path.dentry->d_inode;
1542 int retval;
1543
1544 mutex_lock(&inode->i_mutex);
1545 retval = fasync_helper(fd, filp, on, &counter->fasync);
1546 mutex_unlock(&inode->i_mutex);
1547
1548 if (retval < 0)
1549 return retval;
1550
1551 return 0;
1552 }
1553
1554 static const struct file_operations perf_fops = {
1555 .release = perf_release,
1556 .read = perf_read,
1557 .poll = perf_poll,
1558 .unlocked_ioctl = perf_ioctl,
1559 .compat_ioctl = perf_ioctl,
1560 .mmap = perf_mmap,
1561 .fasync = perf_fasync,
1562 };
1563
1564 /*
1565 * Perf counter wakeup
1566 *
1567 * If there's data, ensure we set the poll() state and publish everything
1568 * to user-space before waking everybody up.
1569 */
1570
1571 void perf_counter_wakeup(struct perf_counter *counter)
1572 {
1573 wake_up_all(&counter->waitq);
1574
1575 if (counter->pending_kill) {
1576 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1577 counter->pending_kill = 0;
1578 }
1579 }
1580
1581 /*
1582 * Pending wakeups
1583 *
1584 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1585 *
1586 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1587 * single linked list and use cmpxchg() to add entries lockless.
1588 */
1589
1590 static void perf_pending_counter(struct perf_pending_entry *entry)
1591 {
1592 struct perf_counter *counter = container_of(entry,
1593 struct perf_counter, pending);
1594
1595 if (counter->pending_disable) {
1596 counter->pending_disable = 0;
1597 perf_counter_disable(counter);
1598 }
1599
1600 if (counter->pending_wakeup) {
1601 counter->pending_wakeup = 0;
1602 perf_counter_wakeup(counter);
1603 }
1604 }
1605
1606 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1607
1608 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1609 PENDING_TAIL,
1610 };
1611
1612 static void perf_pending_queue(struct perf_pending_entry *entry,
1613 void (*func)(struct perf_pending_entry *))
1614 {
1615 struct perf_pending_entry **head;
1616
1617 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1618 return;
1619
1620 entry->func = func;
1621
1622 head = &get_cpu_var(perf_pending_head);
1623
1624 do {
1625 entry->next = *head;
1626 } while (cmpxchg(head, entry->next, entry) != entry->next);
1627
1628 set_perf_counter_pending();
1629
1630 put_cpu_var(perf_pending_head);
1631 }
1632
1633 static int __perf_pending_run(void)
1634 {
1635 struct perf_pending_entry *list;
1636 int nr = 0;
1637
1638 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1639 while (list != PENDING_TAIL) {
1640 void (*func)(struct perf_pending_entry *);
1641 struct perf_pending_entry *entry = list;
1642
1643 list = list->next;
1644
1645 func = entry->func;
1646 entry->next = NULL;
1647 /*
1648 * Ensure we observe the unqueue before we issue the wakeup,
1649 * so that we won't be waiting forever.
1650 * -- see perf_not_pending().
1651 */
1652 smp_wmb();
1653
1654 func(entry);
1655 nr++;
1656 }
1657
1658 return nr;
1659 }
1660
1661 static inline int perf_not_pending(struct perf_counter *counter)
1662 {
1663 /*
1664 * If we flush on whatever cpu we run, there is a chance we don't
1665 * need to wait.
1666 */
1667 get_cpu();
1668 __perf_pending_run();
1669 put_cpu();
1670
1671 /*
1672 * Ensure we see the proper queue state before going to sleep
1673 * so that we do not miss the wakeup. -- see perf_pending_handle()
1674 */
1675 smp_rmb();
1676 return counter->pending.next == NULL;
1677 }
1678
1679 static void perf_pending_sync(struct perf_counter *counter)
1680 {
1681 wait_event(counter->waitq, perf_not_pending(counter));
1682 }
1683
1684 void perf_counter_do_pending(void)
1685 {
1686 __perf_pending_run();
1687 }
1688
1689 /*
1690 * Callchain support -- arch specific
1691 */
1692
1693 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1694 {
1695 return NULL;
1696 }
1697
1698 /*
1699 * Output
1700 */
1701
1702 struct perf_output_handle {
1703 struct perf_counter *counter;
1704 struct perf_mmap_data *data;
1705 unsigned int offset;
1706 unsigned int head;
1707 int nmi;
1708 int overflow;
1709 int locked;
1710 unsigned long flags;
1711 };
1712
1713 static void perf_output_wakeup(struct perf_output_handle *handle)
1714 {
1715 atomic_set(&handle->data->poll, POLL_IN);
1716
1717 if (handle->nmi) {
1718 handle->counter->pending_wakeup = 1;
1719 perf_pending_queue(&handle->counter->pending,
1720 perf_pending_counter);
1721 } else
1722 perf_counter_wakeup(handle->counter);
1723 }
1724
1725 /*
1726 * Curious locking construct.
1727 *
1728 * We need to ensure a later event doesn't publish a head when a former
1729 * event isn't done writing. However since we need to deal with NMIs we
1730 * cannot fully serialize things.
1731 *
1732 * What we do is serialize between CPUs so we only have to deal with NMI
1733 * nesting on a single CPU.
1734 *
1735 * We only publish the head (and generate a wakeup) when the outer-most
1736 * event completes.
1737 */
1738 static void perf_output_lock(struct perf_output_handle *handle)
1739 {
1740 struct perf_mmap_data *data = handle->data;
1741 int cpu;
1742
1743 handle->locked = 0;
1744
1745 local_irq_save(handle->flags);
1746 cpu = smp_processor_id();
1747
1748 if (in_nmi() && atomic_read(&data->lock) == cpu)
1749 return;
1750
1751 while (atomic_cmpxchg(&data->lock, 0, cpu) != 0)
1752 cpu_relax();
1753
1754 handle->locked = 1;
1755 }
1756
1757 static void perf_output_unlock(struct perf_output_handle *handle)
1758 {
1759 struct perf_mmap_data *data = handle->data;
1760 int head, cpu;
1761
1762 data->done_head = data->head;
1763
1764 if (!handle->locked)
1765 goto out;
1766
1767 again:
1768 /*
1769 * The xchg implies a full barrier that ensures all writes are done
1770 * before we publish the new head, matched by a rmb() in userspace when
1771 * reading this position.
1772 */
1773 while ((head = atomic_xchg(&data->done_head, 0)))
1774 data->user_page->data_head = head;
1775
1776 /*
1777 * NMI can happen here, which means we can miss a done_head update.
1778 */
1779
1780 cpu = atomic_xchg(&data->lock, 0);
1781 WARN_ON_ONCE(cpu != smp_processor_id());
1782
1783 /*
1784 * Therefore we have to validate we did not indeed do so.
1785 */
1786 if (unlikely(atomic_read(&data->done_head))) {
1787 /*
1788 * Since we had it locked, we can lock it again.
1789 */
1790 while (atomic_cmpxchg(&data->lock, 0, cpu) != 0)
1791 cpu_relax();
1792
1793 goto again;
1794 }
1795
1796 if (atomic_xchg(&data->wakeup, 0))
1797 perf_output_wakeup(handle);
1798 out:
1799 local_irq_restore(handle->flags);
1800 }
1801
1802 static int perf_output_begin(struct perf_output_handle *handle,
1803 struct perf_counter *counter, unsigned int size,
1804 int nmi, int overflow)
1805 {
1806 struct perf_mmap_data *data;
1807 unsigned int offset, head;
1808
1809 rcu_read_lock();
1810 data = rcu_dereference(counter->data);
1811 if (!data)
1812 goto out;
1813
1814 handle->data = data;
1815 handle->counter = counter;
1816 handle->nmi = nmi;
1817 handle->overflow = overflow;
1818
1819 if (!data->nr_pages)
1820 goto fail;
1821
1822 perf_output_lock(handle);
1823
1824 do {
1825 offset = head = atomic_read(&data->head);
1826 head += size;
1827 } while (atomic_cmpxchg(&data->head, offset, head) != offset);
1828
1829 handle->offset = offset;
1830 handle->head = head;
1831
1832 if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
1833 atomic_set(&data->wakeup, 1);
1834
1835 return 0;
1836
1837 fail:
1838 perf_output_wakeup(handle);
1839 out:
1840 rcu_read_unlock();
1841
1842 return -ENOSPC;
1843 }
1844
1845 static void perf_output_copy(struct perf_output_handle *handle,
1846 void *buf, unsigned int len)
1847 {
1848 unsigned int pages_mask;
1849 unsigned int offset;
1850 unsigned int size;
1851 void **pages;
1852
1853 offset = handle->offset;
1854 pages_mask = handle->data->nr_pages - 1;
1855 pages = handle->data->data_pages;
1856
1857 do {
1858 unsigned int page_offset;
1859 int nr;
1860
1861 nr = (offset >> PAGE_SHIFT) & pages_mask;
1862 page_offset = offset & (PAGE_SIZE - 1);
1863 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
1864
1865 memcpy(pages[nr] + page_offset, buf, size);
1866
1867 len -= size;
1868 buf += size;
1869 offset += size;
1870 } while (len);
1871
1872 handle->offset = offset;
1873
1874 WARN_ON_ONCE(handle->offset > handle->head);
1875 }
1876
1877 #define perf_output_put(handle, x) \
1878 perf_output_copy((handle), &(x), sizeof(x))
1879
1880 static void perf_output_end(struct perf_output_handle *handle)
1881 {
1882 struct perf_counter *counter = handle->counter;
1883 struct perf_mmap_data *data = handle->data;
1884
1885 int wakeup_events = counter->hw_event.wakeup_events;
1886
1887 if (handle->overflow && wakeup_events) {
1888 int events = atomic_inc_return(&data->events);
1889 if (events >= wakeup_events) {
1890 atomic_sub(wakeup_events, &data->events);
1891 atomic_set(&data->wakeup, 1);
1892 }
1893 }
1894
1895 perf_output_unlock(handle);
1896 rcu_read_unlock();
1897 }
1898
1899 static void perf_counter_output(struct perf_counter *counter,
1900 int nmi, struct pt_regs *regs, u64 addr)
1901 {
1902 int ret;
1903 u64 record_type = counter->hw_event.record_type;
1904 struct perf_output_handle handle;
1905 struct perf_event_header header;
1906 u64 ip;
1907 struct {
1908 u32 pid, tid;
1909 } tid_entry;
1910 struct {
1911 u64 event;
1912 u64 counter;
1913 } group_entry;
1914 struct perf_callchain_entry *callchain = NULL;
1915 int callchain_size = 0;
1916 u64 time;
1917
1918 header.type = 0;
1919 header.size = sizeof(header);
1920
1921 header.misc = PERF_EVENT_MISC_OVERFLOW;
1922 header.misc |= user_mode(regs) ?
1923 PERF_EVENT_MISC_USER : PERF_EVENT_MISC_KERNEL;
1924
1925 if (record_type & PERF_RECORD_IP) {
1926 ip = instruction_pointer(regs);
1927 header.type |= PERF_RECORD_IP;
1928 header.size += sizeof(ip);
1929 }
1930
1931 if (record_type & PERF_RECORD_TID) {
1932 /* namespace issues */
1933 tid_entry.pid = current->group_leader->pid;
1934 tid_entry.tid = current->pid;
1935
1936 header.type |= PERF_RECORD_TID;
1937 header.size += sizeof(tid_entry);
1938 }
1939
1940 if (record_type & PERF_RECORD_TIME) {
1941 /*
1942 * Maybe do better on x86 and provide cpu_clock_nmi()
1943 */
1944 time = sched_clock();
1945
1946 header.type |= PERF_RECORD_TIME;
1947 header.size += sizeof(u64);
1948 }
1949
1950 if (record_type & PERF_RECORD_ADDR) {
1951 header.type |= PERF_RECORD_ADDR;
1952 header.size += sizeof(u64);
1953 }
1954
1955 if (record_type & PERF_RECORD_GROUP) {
1956 header.type |= PERF_RECORD_GROUP;
1957 header.size += sizeof(u64) +
1958 counter->nr_siblings * sizeof(group_entry);
1959 }
1960
1961 if (record_type & PERF_RECORD_CALLCHAIN) {
1962 callchain = perf_callchain(regs);
1963
1964 if (callchain) {
1965 callchain_size = (1 + callchain->nr) * sizeof(u64);
1966
1967 header.type |= PERF_RECORD_CALLCHAIN;
1968 header.size += callchain_size;
1969 }
1970 }
1971
1972 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
1973 if (ret)
1974 return;
1975
1976 perf_output_put(&handle, header);
1977
1978 if (record_type & PERF_RECORD_IP)
1979 perf_output_put(&handle, ip);
1980
1981 if (record_type & PERF_RECORD_TID)
1982 perf_output_put(&handle, tid_entry);
1983
1984 if (record_type & PERF_RECORD_TIME)
1985 perf_output_put(&handle, time);
1986
1987 if (record_type & PERF_RECORD_ADDR)
1988 perf_output_put(&handle, addr);
1989
1990 if (record_type & PERF_RECORD_GROUP) {
1991 struct perf_counter *leader, *sub;
1992 u64 nr = counter->nr_siblings;
1993
1994 perf_output_put(&handle, nr);
1995
1996 leader = counter->group_leader;
1997 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
1998 if (sub != counter)
1999 sub->pmu->read(sub);
2000
2001 group_entry.event = sub->hw_event.config;
2002 group_entry.counter = atomic64_read(&sub->count);
2003
2004 perf_output_put(&handle, group_entry);
2005 }
2006 }
2007
2008 if (callchain)
2009 perf_output_copy(&handle, callchain, callchain_size);
2010
2011 perf_output_end(&handle);
2012 }
2013
2014 /*
2015 * comm tracking
2016 */
2017
2018 struct perf_comm_event {
2019 struct task_struct *task;
2020 char *comm;
2021 int comm_size;
2022
2023 struct {
2024 struct perf_event_header header;
2025
2026 u32 pid;
2027 u32 tid;
2028 } event;
2029 };
2030
2031 static void perf_counter_comm_output(struct perf_counter *counter,
2032 struct perf_comm_event *comm_event)
2033 {
2034 struct perf_output_handle handle;
2035 int size = comm_event->event.header.size;
2036 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2037
2038 if (ret)
2039 return;
2040
2041 perf_output_put(&handle, comm_event->event);
2042 perf_output_copy(&handle, comm_event->comm,
2043 comm_event->comm_size);
2044 perf_output_end(&handle);
2045 }
2046
2047 static int perf_counter_comm_match(struct perf_counter *counter,
2048 struct perf_comm_event *comm_event)
2049 {
2050 if (counter->hw_event.comm &&
2051 comm_event->event.header.type == PERF_EVENT_COMM)
2052 return 1;
2053
2054 return 0;
2055 }
2056
2057 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2058 struct perf_comm_event *comm_event)
2059 {
2060 struct perf_counter *counter;
2061
2062 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2063 return;
2064
2065 rcu_read_lock();
2066 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2067 if (perf_counter_comm_match(counter, comm_event))
2068 perf_counter_comm_output(counter, comm_event);
2069 }
2070 rcu_read_unlock();
2071 }
2072
2073 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2074 {
2075 struct perf_cpu_context *cpuctx;
2076 unsigned int size;
2077 char *comm = comm_event->task->comm;
2078
2079 size = ALIGN(strlen(comm)+1, sizeof(u64));
2080
2081 comm_event->comm = comm;
2082 comm_event->comm_size = size;
2083
2084 comm_event->event.header.size = sizeof(comm_event->event) + size;
2085
2086 cpuctx = &get_cpu_var(perf_cpu_context);
2087 perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2088 put_cpu_var(perf_cpu_context);
2089
2090 perf_counter_comm_ctx(&current->perf_counter_ctx, comm_event);
2091 }
2092
2093 void perf_counter_comm(struct task_struct *task)
2094 {
2095 struct perf_comm_event comm_event;
2096
2097 if (!atomic_read(&nr_comm_tracking))
2098 return;
2099
2100 comm_event = (struct perf_comm_event){
2101 .task = task,
2102 .event = {
2103 .header = { .type = PERF_EVENT_COMM, },
2104 .pid = task->group_leader->pid,
2105 .tid = task->pid,
2106 },
2107 };
2108
2109 perf_counter_comm_event(&comm_event);
2110 }
2111
2112 /*
2113 * mmap tracking
2114 */
2115
2116 struct perf_mmap_event {
2117 struct file *file;
2118 char *file_name;
2119 int file_size;
2120
2121 struct {
2122 struct perf_event_header header;
2123
2124 u32 pid;
2125 u32 tid;
2126 u64 start;
2127 u64 len;
2128 u64 pgoff;
2129 } event;
2130 };
2131
2132 static void perf_counter_mmap_output(struct perf_counter *counter,
2133 struct perf_mmap_event *mmap_event)
2134 {
2135 struct perf_output_handle handle;
2136 int size = mmap_event->event.header.size;
2137 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2138
2139 if (ret)
2140 return;
2141
2142 perf_output_put(&handle, mmap_event->event);
2143 perf_output_copy(&handle, mmap_event->file_name,
2144 mmap_event->file_size);
2145 perf_output_end(&handle);
2146 }
2147
2148 static int perf_counter_mmap_match(struct perf_counter *counter,
2149 struct perf_mmap_event *mmap_event)
2150 {
2151 if (counter->hw_event.mmap &&
2152 mmap_event->event.header.type == PERF_EVENT_MMAP)
2153 return 1;
2154
2155 if (counter->hw_event.munmap &&
2156 mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2157 return 1;
2158
2159 return 0;
2160 }
2161
2162 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2163 struct perf_mmap_event *mmap_event)
2164 {
2165 struct perf_counter *counter;
2166
2167 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2168 return;
2169
2170 rcu_read_lock();
2171 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2172 if (perf_counter_mmap_match(counter, mmap_event))
2173 perf_counter_mmap_output(counter, mmap_event);
2174 }
2175 rcu_read_unlock();
2176 }
2177
2178 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2179 {
2180 struct perf_cpu_context *cpuctx;
2181 struct file *file = mmap_event->file;
2182 unsigned int size;
2183 char tmp[16];
2184 char *buf = NULL;
2185 char *name;
2186
2187 if (file) {
2188 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2189 if (!buf) {
2190 name = strncpy(tmp, "//enomem", sizeof(tmp));
2191 goto got_name;
2192 }
2193 name = d_path(&file->f_path, buf, PATH_MAX);
2194 if (IS_ERR(name)) {
2195 name = strncpy(tmp, "//toolong", sizeof(tmp));
2196 goto got_name;
2197 }
2198 } else {
2199 name = strncpy(tmp, "//anon", sizeof(tmp));
2200 goto got_name;
2201 }
2202
2203 got_name:
2204 size = ALIGN(strlen(name)+1, sizeof(u64));
2205
2206 mmap_event->file_name = name;
2207 mmap_event->file_size = size;
2208
2209 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2210
2211 cpuctx = &get_cpu_var(perf_cpu_context);
2212 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2213 put_cpu_var(perf_cpu_context);
2214
2215 perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);
2216
2217 kfree(buf);
2218 }
2219
2220 void perf_counter_mmap(unsigned long addr, unsigned long len,
2221 unsigned long pgoff, struct file *file)
2222 {
2223 struct perf_mmap_event mmap_event;
2224
2225 if (!atomic_read(&nr_mmap_tracking))
2226 return;
2227
2228 mmap_event = (struct perf_mmap_event){
2229 .file = file,
2230 .event = {
2231 .header = { .type = PERF_EVENT_MMAP, },
2232 .pid = current->group_leader->pid,
2233 .tid = current->pid,
2234 .start = addr,
2235 .len = len,
2236 .pgoff = pgoff,
2237 },
2238 };
2239
2240 perf_counter_mmap_event(&mmap_event);
2241 }
2242
2243 void perf_counter_munmap(unsigned long addr, unsigned long len,
2244 unsigned long pgoff, struct file *file)
2245 {
2246 struct perf_mmap_event mmap_event;
2247
2248 if (!atomic_read(&nr_munmap_tracking))
2249 return;
2250
2251 mmap_event = (struct perf_mmap_event){
2252 .file = file,
2253 .event = {
2254 .header = { .type = PERF_EVENT_MUNMAP, },
2255 .pid = current->group_leader->pid,
2256 .tid = current->pid,
2257 .start = addr,
2258 .len = len,
2259 .pgoff = pgoff,
2260 },
2261 };
2262
2263 perf_counter_mmap_event(&mmap_event);
2264 }
2265
2266 /*
2267 * Generic counter overflow handling.
2268 */
2269
2270 int perf_counter_overflow(struct perf_counter *counter,
2271 int nmi, struct pt_regs *regs, u64 addr)
2272 {
2273 int events = atomic_read(&counter->event_limit);
2274 int ret = 0;
2275
2276 counter->pending_kill = POLL_IN;
2277 if (events && atomic_dec_and_test(&counter->event_limit)) {
2278 ret = 1;
2279 counter->pending_kill = POLL_HUP;
2280 if (nmi) {
2281 counter->pending_disable = 1;
2282 perf_pending_queue(&counter->pending,
2283 perf_pending_counter);
2284 } else
2285 perf_counter_disable(counter);
2286 }
2287
2288 perf_counter_output(counter, nmi, regs, addr);
2289 return ret;
2290 }
2291
2292 /*
2293 * Generic software counter infrastructure
2294 */
2295
2296 static void perf_swcounter_update(struct perf_counter *counter)
2297 {
2298 struct hw_perf_counter *hwc = &counter->hw;
2299 u64 prev, now;
2300 s64 delta;
2301
2302 again:
2303 prev = atomic64_read(&hwc->prev_count);
2304 now = atomic64_read(&hwc->count);
2305 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2306 goto again;
2307
2308 delta = now - prev;
2309
2310 atomic64_add(delta, &counter->count);
2311 atomic64_sub(delta, &hwc->period_left);
2312 }
2313
2314 static void perf_swcounter_set_period(struct perf_counter *counter)
2315 {
2316 struct hw_perf_counter *hwc = &counter->hw;
2317 s64 left = atomic64_read(&hwc->period_left);
2318 s64 period = hwc->irq_period;
2319
2320 if (unlikely(left <= -period)) {
2321 left = period;
2322 atomic64_set(&hwc->period_left, left);
2323 }
2324
2325 if (unlikely(left <= 0)) {
2326 left += period;
2327 atomic64_add(period, &hwc->period_left);
2328 }
2329
2330 atomic64_set(&hwc->prev_count, -left);
2331 atomic64_set(&hwc->count, -left);
2332 }
2333
2334 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2335 {
2336 enum hrtimer_restart ret = HRTIMER_RESTART;
2337 struct perf_counter *counter;
2338 struct pt_regs *regs;
2339
2340 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2341 counter->pmu->read(counter);
2342
2343 regs = get_irq_regs();
2344 /*
2345 * In case we exclude kernel IPs or are somehow not in interrupt
2346 * context, provide the next best thing, the user IP.
2347 */
2348 if ((counter->hw_event.exclude_kernel || !regs) &&
2349 !counter->hw_event.exclude_user)
2350 regs = task_pt_regs(current);
2351
2352 if (regs) {
2353 if (perf_counter_overflow(counter, 0, regs, 0))
2354 ret = HRTIMER_NORESTART;
2355 }
2356
2357 hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
2358
2359 return ret;
2360 }
2361
2362 static void perf_swcounter_overflow(struct perf_counter *counter,
2363 int nmi, struct pt_regs *regs, u64 addr)
2364 {
2365 perf_swcounter_update(counter);
2366 perf_swcounter_set_period(counter);
2367 if (perf_counter_overflow(counter, nmi, regs, addr))
2368 /* soft-disable the counter */
2369 ;
2370
2371 }
2372
2373 static int perf_swcounter_match(struct perf_counter *counter,
2374 enum perf_event_types type,
2375 u32 event, struct pt_regs *regs)
2376 {
2377 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2378 return 0;
2379
2380 if (perf_event_raw(&counter->hw_event))
2381 return 0;
2382
2383 if (perf_event_type(&counter->hw_event) != type)
2384 return 0;
2385
2386 if (perf_event_id(&counter->hw_event) != event)
2387 return 0;
2388
2389 if (counter->hw_event.exclude_user && user_mode(regs))
2390 return 0;
2391
2392 if (counter->hw_event.exclude_kernel && !user_mode(regs))
2393 return 0;
2394
2395 return 1;
2396 }
2397
2398 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2399 int nmi, struct pt_regs *regs, u64 addr)
2400 {
2401 int neg = atomic64_add_negative(nr, &counter->hw.count);
2402 if (counter->hw.irq_period && !neg)
2403 perf_swcounter_overflow(counter, nmi, regs, addr);
2404 }
2405
2406 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2407 enum perf_event_types type, u32 event,
2408 u64 nr, int nmi, struct pt_regs *regs,
2409 u64 addr)
2410 {
2411 struct perf_counter *counter;
2412
2413 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2414 return;
2415
2416 rcu_read_lock();
2417 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2418 if (perf_swcounter_match(counter, type, event, regs))
2419 perf_swcounter_add(counter, nr, nmi, regs, addr);
2420 }
2421 rcu_read_unlock();
2422 }
2423
2424 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2425 {
2426 if (in_nmi())
2427 return &cpuctx->recursion[3];
2428
2429 if (in_irq())
2430 return &cpuctx->recursion[2];
2431
2432 if (in_softirq())
2433 return &cpuctx->recursion[1];
2434
2435 return &cpuctx->recursion[0];
2436 }
2437
2438 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2439 u64 nr, int nmi, struct pt_regs *regs,
2440 u64 addr)
2441 {
2442 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2443 int *recursion = perf_swcounter_recursion_context(cpuctx);
2444
2445 if (*recursion)
2446 goto out;
2447
2448 (*recursion)++;
2449 barrier();
2450
2451 perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
2452 nr, nmi, regs, addr);
2453 if (cpuctx->task_ctx) {
2454 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2455 nr, nmi, regs, addr);
2456 }
2457
2458 barrier();
2459 (*recursion)--;
2460
2461 out:
2462 put_cpu_var(perf_cpu_context);
2463 }
2464
2465 void
2466 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2467 {
2468 __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2469 }
2470
2471 static void perf_swcounter_read(struct perf_counter *counter)
2472 {
2473 perf_swcounter_update(counter);
2474 }
2475
2476 static int perf_swcounter_enable(struct perf_counter *counter)
2477 {
2478 perf_swcounter_set_period(counter);
2479 return 0;
2480 }
2481
2482 static void perf_swcounter_disable(struct perf_counter *counter)
2483 {
2484 perf_swcounter_update(counter);
2485 }
2486
2487 static const struct pmu perf_ops_generic = {
2488 .enable = perf_swcounter_enable,
2489 .disable = perf_swcounter_disable,
2490 .read = perf_swcounter_read,
2491 };
2492
2493 /*
2494 * Software counter: cpu wall time clock
2495 */
2496
2497 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2498 {
2499 int cpu = raw_smp_processor_id();
2500 s64 prev;
2501 u64 now;
2502
2503 now = cpu_clock(cpu);
2504 prev = atomic64_read(&counter->hw.prev_count);
2505 atomic64_set(&counter->hw.prev_count, now);
2506 atomic64_add(now - prev, &counter->count);
2507 }
2508
2509 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2510 {
2511 struct hw_perf_counter *hwc = &counter->hw;
2512 int cpu = raw_smp_processor_id();
2513
2514 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2515 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2516 hwc->hrtimer.function = perf_swcounter_hrtimer;
2517 if (hwc->irq_period) {
2518 __hrtimer_start_range_ns(&hwc->hrtimer,
2519 ns_to_ktime(hwc->irq_period), 0,
2520 HRTIMER_MODE_REL, 0);
2521 }
2522
2523 return 0;
2524 }
2525
2526 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2527 {
2528 hrtimer_cancel(&counter->hw.hrtimer);
2529 cpu_clock_perf_counter_update(counter);
2530 }
2531
2532 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2533 {
2534 cpu_clock_perf_counter_update(counter);
2535 }
2536
2537 static const struct pmu perf_ops_cpu_clock = {
2538 .enable = cpu_clock_perf_counter_enable,
2539 .disable = cpu_clock_perf_counter_disable,
2540 .read = cpu_clock_perf_counter_read,
2541 };
2542
2543 /*
2544 * Software counter: task time clock
2545 */
2546
2547 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2548 {
2549 u64 prev;
2550 s64 delta;
2551
2552 prev = atomic64_xchg(&counter->hw.prev_count, now);
2553 delta = now - prev;
2554 atomic64_add(delta, &counter->count);
2555 }
2556
2557 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2558 {
2559 struct hw_perf_counter *hwc = &counter->hw;
2560 u64 now;
2561
2562 now = counter->ctx->time;
2563
2564 atomic64_set(&hwc->prev_count, now);
2565 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2566 hwc->hrtimer.function = perf_swcounter_hrtimer;
2567 if (hwc->irq_period) {
2568 __hrtimer_start_range_ns(&hwc->hrtimer,
2569 ns_to_ktime(hwc->irq_period), 0,
2570 HRTIMER_MODE_REL, 0);
2571 }
2572
2573 return 0;
2574 }
2575
2576 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2577 {
2578 hrtimer_cancel(&counter->hw.hrtimer);
2579 task_clock_perf_counter_update(counter, counter->ctx->time);
2580
2581 }
2582
2583 static void task_clock_perf_counter_read(struct perf_counter *counter)
2584 {
2585 u64 time;
2586
2587 if (!in_nmi()) {
2588 update_context_time(counter->ctx);
2589 time = counter->ctx->time;
2590 } else {
2591 u64 now = perf_clock();
2592 u64 delta = now - counter->ctx->timestamp;
2593 time = counter->ctx->time + delta;
2594 }
2595
2596 task_clock_perf_counter_update(counter, time);
2597 }
2598
2599 static const struct pmu perf_ops_task_clock = {
2600 .enable = task_clock_perf_counter_enable,
2601 .disable = task_clock_perf_counter_disable,
2602 .read = task_clock_perf_counter_read,
2603 };
2604
2605 /*
2606 * Software counter: cpu migrations
2607 */
2608
2609 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2610 {
2611 struct task_struct *curr = counter->ctx->task;
2612
2613 if (curr)
2614 return curr->se.nr_migrations;
2615 return cpu_nr_migrations(smp_processor_id());
2616 }
2617
2618 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2619 {
2620 u64 prev, now;
2621 s64 delta;
2622
2623 prev = atomic64_read(&counter->hw.prev_count);
2624 now = get_cpu_migrations(counter);
2625
2626 atomic64_set(&counter->hw.prev_count, now);
2627
2628 delta = now - prev;
2629
2630 atomic64_add(delta, &counter->count);
2631 }
2632
2633 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2634 {
2635 cpu_migrations_perf_counter_update(counter);
2636 }
2637
2638 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2639 {
2640 if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2641 atomic64_set(&counter->hw.prev_count,
2642 get_cpu_migrations(counter));
2643 return 0;
2644 }
2645
2646 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2647 {
2648 cpu_migrations_perf_counter_update(counter);
2649 }
2650
2651 static const struct pmu perf_ops_cpu_migrations = {
2652 .enable = cpu_migrations_perf_counter_enable,
2653 .disable = cpu_migrations_perf_counter_disable,
2654 .read = cpu_migrations_perf_counter_read,
2655 };
2656
2657 #ifdef CONFIG_EVENT_PROFILE
2658 void perf_tpcounter_event(int event_id)
2659 {
2660 struct pt_regs *regs = get_irq_regs();
2661
2662 if (!regs)
2663 regs = task_pt_regs(current);
2664
2665 __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
2666 }
2667 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
2668
2669 extern int ftrace_profile_enable(int);
2670 extern void ftrace_profile_disable(int);
2671
2672 static void tp_perf_counter_destroy(struct perf_counter *counter)
2673 {
2674 ftrace_profile_disable(perf_event_id(&counter->hw_event));
2675 }
2676
2677 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2678 {
2679 int event_id = perf_event_id(&counter->hw_event);
2680 int ret;
2681
2682 ret = ftrace_profile_enable(event_id);
2683 if (ret)
2684 return NULL;
2685
2686 counter->destroy = tp_perf_counter_destroy;
2687 counter->hw.irq_period = counter->hw_event.irq_period;
2688
2689 return &perf_ops_generic;
2690 }
2691 #else
2692 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2693 {
2694 return NULL;
2695 }
2696 #endif
2697
2698 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
2699 {
2700 struct perf_counter_hw_event *hw_event = &counter->hw_event;
2701 const struct pmu *pmu = NULL;
2702 struct hw_perf_counter *hwc = &counter->hw;
2703
2704 /*
2705 * Software counters (currently) can't in general distinguish
2706 * between user, kernel and hypervisor events.
2707 * However, context switches and cpu migrations are considered
2708 * to be kernel events, and page faults are never hypervisor
2709 * events.
2710 */
2711 switch (perf_event_id(&counter->hw_event)) {
2712 case PERF_COUNT_CPU_CLOCK:
2713 pmu = &perf_ops_cpu_clock;
2714
2715 if (hw_event->irq_period && hw_event->irq_period < 10000)
2716 hw_event->irq_period = 10000;
2717 break;
2718 case PERF_COUNT_TASK_CLOCK:
2719 /*
2720 * If the user instantiates this as a per-cpu counter,
2721 * use the cpu_clock counter instead.
2722 */
2723 if (counter->ctx->task)
2724 pmu = &perf_ops_task_clock;
2725 else
2726 pmu = &perf_ops_cpu_clock;
2727
2728 if (hw_event->irq_period && hw_event->irq_period < 10000)
2729 hw_event->irq_period = 10000;
2730 break;
2731 case PERF_COUNT_PAGE_FAULTS:
2732 case PERF_COUNT_PAGE_FAULTS_MIN:
2733 case PERF_COUNT_PAGE_FAULTS_MAJ:
2734 case PERF_COUNT_CONTEXT_SWITCHES:
2735 pmu = &perf_ops_generic;
2736 break;
2737 case PERF_COUNT_CPU_MIGRATIONS:
2738 if (!counter->hw_event.exclude_kernel)
2739 pmu = &perf_ops_cpu_migrations;
2740 break;
2741 }
2742
2743 if (pmu)
2744 hwc->irq_period = hw_event->irq_period;
2745
2746 return pmu;
2747 }
2748
2749 /*
2750 * Allocate and initialize a counter structure
2751 */
2752 static struct perf_counter *
2753 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
2754 int cpu,
2755 struct perf_counter_context *ctx,
2756 struct perf_counter *group_leader,
2757 gfp_t gfpflags)
2758 {
2759 const struct pmu *pmu;
2760 struct perf_counter *counter;
2761 long err;
2762
2763 counter = kzalloc(sizeof(*counter), gfpflags);
2764 if (!counter)
2765 return ERR_PTR(-ENOMEM);
2766
2767 /*
2768 * Single counters are their own group leaders, with an
2769 * empty sibling list:
2770 */
2771 if (!group_leader)
2772 group_leader = counter;
2773
2774 mutex_init(&counter->mutex);
2775 INIT_LIST_HEAD(&counter->list_entry);
2776 INIT_LIST_HEAD(&counter->event_entry);
2777 INIT_LIST_HEAD(&counter->sibling_list);
2778 init_waitqueue_head(&counter->waitq);
2779
2780 mutex_init(&counter->mmap_mutex);
2781
2782 INIT_LIST_HEAD(&counter->child_list);
2783
2784 counter->cpu = cpu;
2785 counter->hw_event = *hw_event;
2786 counter->group_leader = group_leader;
2787 counter->pmu = NULL;
2788 counter->ctx = ctx;
2789
2790 counter->state = PERF_COUNTER_STATE_INACTIVE;
2791 if (hw_event->disabled)
2792 counter->state = PERF_COUNTER_STATE_OFF;
2793
2794 pmu = NULL;
2795
2796 if (perf_event_raw(hw_event)) {
2797 pmu = hw_perf_counter_init(counter);
2798 goto done;
2799 }
2800
2801 switch (perf_event_type(hw_event)) {
2802 case PERF_TYPE_HARDWARE:
2803 pmu = hw_perf_counter_init(counter);
2804 break;
2805
2806 case PERF_TYPE_SOFTWARE:
2807 pmu = sw_perf_counter_init(counter);
2808 break;
2809
2810 case PERF_TYPE_TRACEPOINT:
2811 pmu = tp_perf_counter_init(counter);
2812 break;
2813 }
2814 done:
2815 err = 0;
2816 if (!pmu)
2817 err = -EINVAL;
2818 else if (IS_ERR(pmu))
2819 err = PTR_ERR(pmu);
2820
2821 if (err) {
2822 kfree(counter);
2823 return ERR_PTR(err);
2824 }
2825
2826 counter->pmu = pmu;
2827
2828 if (counter->hw_event.mmap)
2829 atomic_inc(&nr_mmap_tracking);
2830 if (counter->hw_event.munmap)
2831 atomic_inc(&nr_munmap_tracking);
2832 if (counter->hw_event.comm)
2833 atomic_inc(&nr_comm_tracking);
2834
2835 return counter;
2836 }
2837
2838 /**
2839 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
2840 *
2841 * @hw_event_uptr: event type attributes for monitoring/sampling
2842 * @pid: target pid
2843 * @cpu: target cpu
2844 * @group_fd: group leader counter fd
2845 */
2846 SYSCALL_DEFINE5(perf_counter_open,
2847 const struct perf_counter_hw_event __user *, hw_event_uptr,
2848 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
2849 {
2850 struct perf_counter *counter, *group_leader;
2851 struct perf_counter_hw_event hw_event;
2852 struct perf_counter_context *ctx;
2853 struct file *counter_file = NULL;
2854 struct file *group_file = NULL;
2855 int fput_needed = 0;
2856 int fput_needed2 = 0;
2857 int ret;
2858
2859 /* for future expandability... */
2860 if (flags)
2861 return -EINVAL;
2862
2863 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2864 return -EFAULT;
2865
2866 /*
2867 * Get the target context (task or percpu):
2868 */
2869 ctx = find_get_context(pid, cpu);
2870 if (IS_ERR(ctx))
2871 return PTR_ERR(ctx);
2872
2873 /*
2874 * Look up the group leader (we will attach this counter to it):
2875 */
2876 group_leader = NULL;
2877 if (group_fd != -1) {
2878 ret = -EINVAL;
2879 group_file = fget_light(group_fd, &fput_needed);
2880 if (!group_file)
2881 goto err_put_context;
2882 if (group_file->f_op != &perf_fops)
2883 goto err_put_context;
2884
2885 group_leader = group_file->private_data;
2886 /*
2887 * Do not allow a recursive hierarchy (this new sibling
2888 * becoming part of another group-sibling):
2889 */
2890 if (group_leader->group_leader != group_leader)
2891 goto err_put_context;
2892 /*
2893 * Do not allow to attach to a group in a different
2894 * task or CPU context:
2895 */
2896 if (group_leader->ctx != ctx)
2897 goto err_put_context;
2898 /*
2899 * Only a group leader can be exclusive or pinned
2900 */
2901 if (hw_event.exclusive || hw_event.pinned)
2902 goto err_put_context;
2903 }
2904
2905 counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
2906 GFP_KERNEL);
2907 ret = PTR_ERR(counter);
2908 if (IS_ERR(counter))
2909 goto err_put_context;
2910
2911 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
2912 if (ret < 0)
2913 goto err_free_put_context;
2914
2915 counter_file = fget_light(ret, &fput_needed2);
2916 if (!counter_file)
2917 goto err_free_put_context;
2918
2919 counter->filp = counter_file;
2920 mutex_lock(&ctx->mutex);
2921 perf_install_in_context(ctx, counter, cpu);
2922 mutex_unlock(&ctx->mutex);
2923
2924 fput_light(counter_file, fput_needed2);
2925
2926 out_fput:
2927 fput_light(group_file, fput_needed);
2928
2929 return ret;
2930
2931 err_free_put_context:
2932 kfree(counter);
2933
2934 err_put_context:
2935 put_context(ctx);
2936
2937 goto out_fput;
2938 }
2939
2940 /*
2941 * Initialize the perf_counter context in a task_struct:
2942 */
2943 static void
2944 __perf_counter_init_context(struct perf_counter_context *ctx,
2945 struct task_struct *task)
2946 {
2947 memset(ctx, 0, sizeof(*ctx));
2948 spin_lock_init(&ctx->lock);
2949 mutex_init(&ctx->mutex);
2950 INIT_LIST_HEAD(&ctx->counter_list);
2951 INIT_LIST_HEAD(&ctx->event_list);
2952 ctx->task = task;
2953 }
2954
2955 /*
2956 * inherit a counter from parent task to child task:
2957 */
2958 static struct perf_counter *
2959 inherit_counter(struct perf_counter *parent_counter,
2960 struct task_struct *parent,
2961 struct perf_counter_context *parent_ctx,
2962 struct task_struct *child,
2963 struct perf_counter *group_leader,
2964 struct perf_counter_context *child_ctx)
2965 {
2966 struct perf_counter *child_counter;
2967
2968 /*
2969 * Instead of creating recursive hierarchies of counters,
2970 * we link inherited counters back to the original parent,
2971 * which has a filp for sure, which we use as the reference
2972 * count:
2973 */
2974 if (parent_counter->parent)
2975 parent_counter = parent_counter->parent;
2976
2977 child_counter = perf_counter_alloc(&parent_counter->hw_event,
2978 parent_counter->cpu, child_ctx,
2979 group_leader, GFP_KERNEL);
2980 if (IS_ERR(child_counter))
2981 return child_counter;
2982
2983 /*
2984 * Link it up in the child's context:
2985 */
2986 child_counter->task = child;
2987 add_counter_to_ctx(child_counter, child_ctx);
2988
2989 child_counter->parent = parent_counter;
2990 /*
2991 * inherit into child's child as well:
2992 */
2993 child_counter->hw_event.inherit = 1;
2994
2995 /*
2996 * Get a reference to the parent filp - we will fput it
2997 * when the child counter exits. This is safe to do because
2998 * we are in the parent and we know that the filp still
2999 * exists and has a nonzero count:
3000 */
3001 atomic_long_inc(&parent_counter->filp->f_count);
3002
3003 /*
3004 * Link this into the parent counter's child list
3005 */
3006 mutex_lock(&parent_counter->mutex);
3007 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3008
3009 /*
3010 * Make the child state follow the state of the parent counter,
3011 * not its hw_event.disabled bit. We hold the parent's mutex,
3012 * so we won't race with perf_counter_{en,dis}able_family.
3013 */
3014 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3015 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3016 else
3017 child_counter->state = PERF_COUNTER_STATE_OFF;
3018
3019 mutex_unlock(&parent_counter->mutex);
3020
3021 return child_counter;
3022 }
3023
3024 static int inherit_group(struct perf_counter *parent_counter,
3025 struct task_struct *parent,
3026 struct perf_counter_context *parent_ctx,
3027 struct task_struct *child,
3028 struct perf_counter_context *child_ctx)
3029 {
3030 struct perf_counter *leader;
3031 struct perf_counter *sub;
3032 struct perf_counter *child_ctr;
3033
3034 leader = inherit_counter(parent_counter, parent, parent_ctx,
3035 child, NULL, child_ctx);
3036 if (IS_ERR(leader))
3037 return PTR_ERR(leader);
3038 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3039 child_ctr = inherit_counter(sub, parent, parent_ctx,
3040 child, leader, child_ctx);
3041 if (IS_ERR(child_ctr))
3042 return PTR_ERR(child_ctr);
3043 }
3044 return 0;
3045 }
3046
3047 static void sync_child_counter(struct perf_counter *child_counter,
3048 struct perf_counter *parent_counter)
3049 {
3050 u64 parent_val, child_val;
3051
3052 parent_val = atomic64_read(&parent_counter->count);
3053 child_val = atomic64_read(&child_counter->count);
3054
3055 /*
3056 * Add back the child's count to the parent's count:
3057 */
3058 atomic64_add(child_val, &parent_counter->count);
3059 atomic64_add(child_counter->total_time_enabled,
3060 &parent_counter->child_total_time_enabled);
3061 atomic64_add(child_counter->total_time_running,
3062 &parent_counter->child_total_time_running);
3063
3064 /*
3065 * Remove this counter from the parent's list
3066 */
3067 mutex_lock(&parent_counter->mutex);
3068 list_del_init(&child_counter->child_list);
3069 mutex_unlock(&parent_counter->mutex);
3070
3071 /*
3072 * Release the parent counter, if this was the last
3073 * reference to it.
3074 */
3075 fput(parent_counter->filp);
3076 }
3077
3078 static void
3079 __perf_counter_exit_task(struct task_struct *child,
3080 struct perf_counter *child_counter,
3081 struct perf_counter_context *child_ctx)
3082 {
3083 struct perf_counter *parent_counter;
3084 struct perf_counter *sub, *tmp;
3085
3086 /*
3087 * If we do not self-reap then we have to wait for the
3088 * child task to unschedule (it will happen for sure),
3089 * so that its counter is at its final count. (This
3090 * condition triggers rarely - child tasks usually get
3091 * off their CPU before the parent has a chance to
3092 * get this far into the reaping action)
3093 */
3094 if (child != current) {
3095 wait_task_inactive(child, 0);
3096 list_del_init(&child_counter->list_entry);
3097 update_counter_times(child_counter);
3098 } else {
3099 struct perf_cpu_context *cpuctx;
3100 unsigned long flags;
3101 u64 perf_flags;
3102
3103 /*
3104 * Disable and unlink this counter.
3105 *
3106 * Be careful about zapping the list - IRQ/NMI context
3107 * could still be processing it:
3108 */
3109 local_irq_save(flags);
3110 perf_flags = hw_perf_save_disable();
3111
3112 cpuctx = &__get_cpu_var(perf_cpu_context);
3113
3114 group_sched_out(child_counter, cpuctx, child_ctx);
3115 update_counter_times(child_counter);
3116
3117 list_del_init(&child_counter->list_entry);
3118
3119 child_ctx->nr_counters--;
3120
3121 hw_perf_restore(perf_flags);
3122 local_irq_restore(flags);
3123 }
3124
3125 parent_counter = child_counter->parent;
3126 /*
3127 * It can happen that parent exits first, and has counters
3128 * that are still around due to the child reference. These
3129 * counters need to be zapped - but otherwise linger.
3130 */
3131 if (parent_counter) {
3132 sync_child_counter(child_counter, parent_counter);
3133 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
3134 list_entry) {
3135 if (sub->parent) {
3136 sync_child_counter(sub, sub->parent);
3137 free_counter(sub);
3138 }
3139 }
3140 free_counter(child_counter);
3141 }
3142 }
3143
3144 /*
3145 * When a child task exits, feed back counter values to parent counters.
3146 *
3147 * Note: we may be running in child context, but the PID is not hashed
3148 * anymore so new counters will not be added.
3149 */
3150 void perf_counter_exit_task(struct task_struct *child)
3151 {
3152 struct perf_counter *child_counter, *tmp;
3153 struct perf_counter_context *child_ctx;
3154
3155 child_ctx = &child->perf_counter_ctx;
3156
3157 if (likely(!child_ctx->nr_counters))
3158 return;
3159
3160 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3161 list_entry)
3162 __perf_counter_exit_task(child, child_counter, child_ctx);
3163 }
3164
3165 /*
3166 * Initialize the perf_counter context in task_struct
3167 */
3168 void perf_counter_init_task(struct task_struct *child)
3169 {
3170 struct perf_counter_context *child_ctx, *parent_ctx;
3171 struct perf_counter *counter;
3172 struct task_struct *parent = current;
3173
3174 child_ctx = &child->perf_counter_ctx;
3175 parent_ctx = &parent->perf_counter_ctx;
3176
3177 __perf_counter_init_context(child_ctx, child);
3178
3179 /*
3180 * This is executed from the parent task context, so inherit
3181 * counters that have been marked for cloning:
3182 */
3183
3184 if (likely(!parent_ctx->nr_counters))
3185 return;
3186
3187 /*
3188 * Lock the parent list. No need to lock the child - not PID
3189 * hashed yet and not running, so nobody can access it.
3190 */
3191 mutex_lock(&parent_ctx->mutex);
3192
3193 /*
3194 * We dont have to disable NMIs - we are only looking at
3195 * the list, not manipulating it:
3196 */
3197 list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
3198 if (!counter->hw_event.inherit)
3199 continue;
3200
3201 if (inherit_group(counter, parent,
3202 parent_ctx, child, child_ctx))
3203 break;
3204 }
3205
3206 mutex_unlock(&parent_ctx->mutex);
3207 }
3208
3209 static void __cpuinit perf_counter_init_cpu(int cpu)
3210 {
3211 struct perf_cpu_context *cpuctx;
3212
3213 cpuctx = &per_cpu(perf_cpu_context, cpu);
3214 __perf_counter_init_context(&cpuctx->ctx, NULL);
3215
3216 spin_lock(&perf_resource_lock);
3217 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3218 spin_unlock(&perf_resource_lock);
3219
3220 hw_perf_counter_setup(cpu);
3221 }
3222
3223 #ifdef CONFIG_HOTPLUG_CPU
3224 static void __perf_counter_exit_cpu(void *info)
3225 {
3226 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3227 struct perf_counter_context *ctx = &cpuctx->ctx;
3228 struct perf_counter *counter, *tmp;
3229
3230 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3231 __perf_counter_remove_from_context(counter);
3232 }
3233 static void perf_counter_exit_cpu(int cpu)
3234 {
3235 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3236 struct perf_counter_context *ctx = &cpuctx->ctx;
3237
3238 mutex_lock(&ctx->mutex);
3239 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3240 mutex_unlock(&ctx->mutex);
3241 }
3242 #else
3243 static inline void perf_counter_exit_cpu(int cpu) { }
3244 #endif
3245
3246 static int __cpuinit
3247 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3248 {
3249 unsigned int cpu = (long)hcpu;
3250
3251 switch (action) {
3252
3253 case CPU_UP_PREPARE:
3254 case CPU_UP_PREPARE_FROZEN:
3255 perf_counter_init_cpu(cpu);
3256 break;
3257
3258 case CPU_DOWN_PREPARE:
3259 case CPU_DOWN_PREPARE_FROZEN:
3260 perf_counter_exit_cpu(cpu);
3261 break;
3262
3263 default:
3264 break;
3265 }
3266
3267 return NOTIFY_OK;
3268 }
3269
3270 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3271 .notifier_call = perf_cpu_notify,
3272 };
3273
3274 void __init perf_counter_init(void)
3275 {
3276 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3277 (void *)(long)smp_processor_id());
3278 register_cpu_notifier(&perf_cpu_nb);
3279 }
3280
3281 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3282 {
3283 return sprintf(buf, "%d\n", perf_reserved_percpu);
3284 }
3285
3286 static ssize_t
3287 perf_set_reserve_percpu(struct sysdev_class *class,
3288 const char *buf,
3289 size_t count)
3290 {
3291 struct perf_cpu_context *cpuctx;
3292 unsigned long val;
3293 int err, cpu, mpt;
3294
3295 err = strict_strtoul(buf, 10, &val);
3296 if (err)
3297 return err;
3298 if (val > perf_max_counters)
3299 return -EINVAL;
3300
3301 spin_lock(&perf_resource_lock);
3302 perf_reserved_percpu = val;
3303 for_each_online_cpu(cpu) {
3304 cpuctx = &per_cpu(perf_cpu_context, cpu);
3305 spin_lock_irq(&cpuctx->ctx.lock);
3306 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3307 perf_max_counters - perf_reserved_percpu);
3308 cpuctx->max_pertask = mpt;
3309 spin_unlock_irq(&cpuctx->ctx.lock);
3310 }
3311 spin_unlock(&perf_resource_lock);
3312
3313 return count;
3314 }
3315
3316 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3317 {
3318 return sprintf(buf, "%d\n", perf_overcommit);
3319 }
3320
3321 static ssize_t
3322 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3323 {
3324 unsigned long val;
3325 int err;
3326
3327 err = strict_strtoul(buf, 10, &val);
3328 if (err)
3329 return err;
3330 if (val > 1)
3331 return -EINVAL;
3332
3333 spin_lock(&perf_resource_lock);
3334 perf_overcommit = val;
3335 spin_unlock(&perf_resource_lock);
3336
3337 return count;
3338 }
3339
3340 static SYSDEV_CLASS_ATTR(
3341 reserve_percpu,
3342 0644,
3343 perf_show_reserve_percpu,
3344 perf_set_reserve_percpu
3345 );
3346
3347 static SYSDEV_CLASS_ATTR(
3348 overcommit,
3349 0644,
3350 perf_show_overcommit,
3351 perf_set_overcommit
3352 );
3353
3354 static struct attribute *perfclass_attrs[] = {
3355 &attr_reserve_percpu.attr,
3356 &attr_overcommit.attr,
3357 NULL
3358 };
3359
3360 static struct attribute_group perfclass_attr_group = {
3361 .attrs = perfclass_attrs,
3362 .name = "perf_counters",
3363 };
3364
3365 static int __init perf_counter_sysfs_init(void)
3366 {
3367 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3368 &perfclass_attr_group);
3369 }
3370 device_initcall(perf_counter_sysfs_init);
This page took 0.09569 seconds and 6 git commands to generate.