perf_counter: remove rq->lock usage
[deliverable/linux.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
6 *
7 *
8 * For licensing details see kernel-base/COPYING
9 */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/file.h>
16 #include <linux/poll.h>
17 #include <linux/sysfs.h>
18 #include <linux/ptrace.h>
19 #include <linux/percpu.h>
20 #include <linux/vmstat.h>
21 #include <linux/hardirq.h>
22 #include <linux/rculist.h>
23 #include <linux/uaccess.h>
24 #include <linux/syscalls.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/perf_counter.h>
28 #include <linux/dcache.h>
29
30 #include <asm/irq_regs.h>
31
32 /*
33 * Each CPU has a list of per CPU counters:
34 */
35 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
36
37 int perf_max_counters __read_mostly = 1;
38 static int perf_reserved_percpu __read_mostly;
39 static int perf_overcommit __read_mostly = 1;
40
41 /*
42 * Mutex for (sysadmin-configurable) counter reservations:
43 */
44 static DEFINE_MUTEX(perf_resource_mutex);
45
46 /*
47 * Architecture provided APIs - weak aliases:
48 */
49 extern __weak const struct hw_perf_counter_ops *
50 hw_perf_counter_init(struct perf_counter *counter)
51 {
52 return NULL;
53 }
54
55 u64 __weak hw_perf_save_disable(void) { return 0; }
56 void __weak hw_perf_restore(u64 ctrl) { barrier(); }
57 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
58 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
59 struct perf_cpu_context *cpuctx,
60 struct perf_counter_context *ctx, int cpu)
61 {
62 return 0;
63 }
64
65 void __weak perf_counter_print_debug(void) { }
66
67 static void
68 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
69 {
70 struct perf_counter *group_leader = counter->group_leader;
71
72 /*
73 * Depending on whether it is a standalone or sibling counter,
74 * add it straight to the context's counter list, or to the group
75 * leader's sibling list:
76 */
77 if (counter->group_leader == counter)
78 list_add_tail(&counter->list_entry, &ctx->counter_list);
79 else {
80 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
81 group_leader->nr_siblings++;
82 }
83
84 list_add_rcu(&counter->event_entry, &ctx->event_list);
85 }
86
87 static void
88 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
89 {
90 struct perf_counter *sibling, *tmp;
91
92 list_del_init(&counter->list_entry);
93 list_del_rcu(&counter->event_entry);
94
95 if (counter->group_leader != counter)
96 counter->group_leader->nr_siblings--;
97
98 /*
99 * If this was a group counter with sibling counters then
100 * upgrade the siblings to singleton counters by adding them
101 * to the context list directly:
102 */
103 list_for_each_entry_safe(sibling, tmp,
104 &counter->sibling_list, list_entry) {
105
106 list_move_tail(&sibling->list_entry, &ctx->counter_list);
107 sibling->group_leader = sibling;
108 }
109 }
110
111 static void
112 counter_sched_out(struct perf_counter *counter,
113 struct perf_cpu_context *cpuctx,
114 struct perf_counter_context *ctx)
115 {
116 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
117 return;
118
119 counter->state = PERF_COUNTER_STATE_INACTIVE;
120 counter->tstamp_stopped = ctx->time;
121 counter->hw_ops->disable(counter);
122 counter->oncpu = -1;
123
124 if (!is_software_counter(counter))
125 cpuctx->active_oncpu--;
126 ctx->nr_active--;
127 if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
128 cpuctx->exclusive = 0;
129 }
130
131 static void
132 group_sched_out(struct perf_counter *group_counter,
133 struct perf_cpu_context *cpuctx,
134 struct perf_counter_context *ctx)
135 {
136 struct perf_counter *counter;
137
138 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
139 return;
140
141 counter_sched_out(group_counter, cpuctx, ctx);
142
143 /*
144 * Schedule out siblings (if any):
145 */
146 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
147 counter_sched_out(counter, cpuctx, ctx);
148
149 if (group_counter->hw_event.exclusive)
150 cpuctx->exclusive = 0;
151 }
152
153 /*
154 * Cross CPU call to remove a performance counter
155 *
156 * We disable the counter on the hardware level first. After that we
157 * remove it from the context list.
158 */
159 static void __perf_counter_remove_from_context(void *info)
160 {
161 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
162 struct perf_counter *counter = info;
163 struct perf_counter_context *ctx = counter->ctx;
164 unsigned long flags;
165 u64 perf_flags;
166
167 /*
168 * If this is a task context, we need to check whether it is
169 * the current task context of this cpu. If not it has been
170 * scheduled out before the smp call arrived.
171 */
172 if (ctx->task && cpuctx->task_ctx != ctx)
173 return;
174
175 spin_lock_irqsave(&ctx->lock, flags);
176
177 counter_sched_out(counter, cpuctx, ctx);
178
179 counter->task = NULL;
180 ctx->nr_counters--;
181
182 /*
183 * Protect the list operation against NMI by disabling the
184 * counters on a global level. NOP for non NMI based counters.
185 */
186 perf_flags = hw_perf_save_disable();
187 list_del_counter(counter, ctx);
188 hw_perf_restore(perf_flags);
189
190 if (!ctx->task) {
191 /*
192 * Allow more per task counters with respect to the
193 * reservation:
194 */
195 cpuctx->max_pertask =
196 min(perf_max_counters - ctx->nr_counters,
197 perf_max_counters - perf_reserved_percpu);
198 }
199
200 spin_unlock_irqrestore(&ctx->lock, flags);
201 }
202
203
204 /*
205 * Remove the counter from a task's (or a CPU's) list of counters.
206 *
207 * Must be called with counter->mutex and ctx->mutex held.
208 *
209 * CPU counters are removed with a smp call. For task counters we only
210 * call when the task is on a CPU.
211 */
212 static void perf_counter_remove_from_context(struct perf_counter *counter)
213 {
214 struct perf_counter_context *ctx = counter->ctx;
215 struct task_struct *task = ctx->task;
216
217 if (!task) {
218 /*
219 * Per cpu counters are removed via an smp call and
220 * the removal is always sucessful.
221 */
222 smp_call_function_single(counter->cpu,
223 __perf_counter_remove_from_context,
224 counter, 1);
225 return;
226 }
227
228 retry:
229 task_oncpu_function_call(task, __perf_counter_remove_from_context,
230 counter);
231
232 spin_lock_irq(&ctx->lock);
233 /*
234 * If the context is active we need to retry the smp call.
235 */
236 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
237 spin_unlock_irq(&ctx->lock);
238 goto retry;
239 }
240
241 /*
242 * The lock prevents that this context is scheduled in so we
243 * can remove the counter safely, if the call above did not
244 * succeed.
245 */
246 if (!list_empty(&counter->list_entry)) {
247 ctx->nr_counters--;
248 list_del_counter(counter, ctx);
249 counter->task = NULL;
250 }
251 spin_unlock_irq(&ctx->lock);
252 }
253
254 static inline u64 perf_clock(void)
255 {
256 return cpu_clock(smp_processor_id());
257 }
258
259 /*
260 * Update the record of the current time in a context.
261 */
262 static void update_context_time(struct perf_counter_context *ctx)
263 {
264 u64 now = perf_clock();
265
266 ctx->time += now - ctx->timestamp;
267 ctx->timestamp = now;
268 }
269
270 /*
271 * Update the total_time_enabled and total_time_running fields for a counter.
272 */
273 static void update_counter_times(struct perf_counter *counter)
274 {
275 struct perf_counter_context *ctx = counter->ctx;
276 u64 run_end;
277
278 if (counter->state < PERF_COUNTER_STATE_INACTIVE)
279 return;
280
281 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
282
283 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
284 run_end = counter->tstamp_stopped;
285 else
286 run_end = ctx->time;
287
288 counter->total_time_running = run_end - counter->tstamp_running;
289 }
290
291 /*
292 * Update total_time_enabled and total_time_running for all counters in a group.
293 */
294 static void update_group_times(struct perf_counter *leader)
295 {
296 struct perf_counter *counter;
297
298 update_counter_times(leader);
299 list_for_each_entry(counter, &leader->sibling_list, list_entry)
300 update_counter_times(counter);
301 }
302
303 /*
304 * Cross CPU call to disable a performance counter
305 */
306 static void __perf_counter_disable(void *info)
307 {
308 struct perf_counter *counter = info;
309 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
310 struct perf_counter_context *ctx = counter->ctx;
311 unsigned long flags;
312
313 /*
314 * If this is a per-task counter, need to check whether this
315 * counter's task is the current task on this cpu.
316 */
317 if (ctx->task && cpuctx->task_ctx != ctx)
318 return;
319
320 spin_lock_irqsave(&ctx->lock, flags);
321
322 /*
323 * If the counter is on, turn it off.
324 * If it is in error state, leave it in error state.
325 */
326 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
327 update_context_time(ctx);
328 update_counter_times(counter);
329 if (counter == counter->group_leader)
330 group_sched_out(counter, cpuctx, ctx);
331 else
332 counter_sched_out(counter, cpuctx, ctx);
333 counter->state = PERF_COUNTER_STATE_OFF;
334 }
335
336 spin_unlock_irqrestore(&ctx->lock, flags);
337 }
338
339 /*
340 * Disable a counter.
341 */
342 static void perf_counter_disable(struct perf_counter *counter)
343 {
344 struct perf_counter_context *ctx = counter->ctx;
345 struct task_struct *task = ctx->task;
346
347 if (!task) {
348 /*
349 * Disable the counter on the cpu that it's on
350 */
351 smp_call_function_single(counter->cpu, __perf_counter_disable,
352 counter, 1);
353 return;
354 }
355
356 retry:
357 task_oncpu_function_call(task, __perf_counter_disable, counter);
358
359 spin_lock_irq(&ctx->lock);
360 /*
361 * If the counter is still active, we need to retry the cross-call.
362 */
363 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
364 spin_unlock_irq(&ctx->lock);
365 goto retry;
366 }
367
368 /*
369 * Since we have the lock this context can't be scheduled
370 * in, so we can change the state safely.
371 */
372 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
373 update_counter_times(counter);
374 counter->state = PERF_COUNTER_STATE_OFF;
375 }
376
377 spin_unlock_irq(&ctx->lock);
378 }
379
380 /*
381 * Disable a counter and all its children.
382 */
383 static void perf_counter_disable_family(struct perf_counter *counter)
384 {
385 struct perf_counter *child;
386
387 perf_counter_disable(counter);
388
389 /*
390 * Lock the mutex to protect the list of children
391 */
392 mutex_lock(&counter->mutex);
393 list_for_each_entry(child, &counter->child_list, child_list)
394 perf_counter_disable(child);
395 mutex_unlock(&counter->mutex);
396 }
397
398 static int
399 counter_sched_in(struct perf_counter *counter,
400 struct perf_cpu_context *cpuctx,
401 struct perf_counter_context *ctx,
402 int cpu)
403 {
404 if (counter->state <= PERF_COUNTER_STATE_OFF)
405 return 0;
406
407 counter->state = PERF_COUNTER_STATE_ACTIVE;
408 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
409 /*
410 * The new state must be visible before we turn it on in the hardware:
411 */
412 smp_wmb();
413
414 if (counter->hw_ops->enable(counter)) {
415 counter->state = PERF_COUNTER_STATE_INACTIVE;
416 counter->oncpu = -1;
417 return -EAGAIN;
418 }
419
420 counter->tstamp_running += ctx->time - counter->tstamp_stopped;
421
422 if (!is_software_counter(counter))
423 cpuctx->active_oncpu++;
424 ctx->nr_active++;
425
426 if (counter->hw_event.exclusive)
427 cpuctx->exclusive = 1;
428
429 return 0;
430 }
431
432 /*
433 * Return 1 for a group consisting entirely of software counters,
434 * 0 if the group contains any hardware counters.
435 */
436 static int is_software_only_group(struct perf_counter *leader)
437 {
438 struct perf_counter *counter;
439
440 if (!is_software_counter(leader))
441 return 0;
442
443 list_for_each_entry(counter, &leader->sibling_list, list_entry)
444 if (!is_software_counter(counter))
445 return 0;
446
447 return 1;
448 }
449
450 /*
451 * Work out whether we can put this counter group on the CPU now.
452 */
453 static int group_can_go_on(struct perf_counter *counter,
454 struct perf_cpu_context *cpuctx,
455 int can_add_hw)
456 {
457 /*
458 * Groups consisting entirely of software counters can always go on.
459 */
460 if (is_software_only_group(counter))
461 return 1;
462 /*
463 * If an exclusive group is already on, no other hardware
464 * counters can go on.
465 */
466 if (cpuctx->exclusive)
467 return 0;
468 /*
469 * If this group is exclusive and there are already
470 * counters on the CPU, it can't go on.
471 */
472 if (counter->hw_event.exclusive && cpuctx->active_oncpu)
473 return 0;
474 /*
475 * Otherwise, try to add it if all previous groups were able
476 * to go on.
477 */
478 return can_add_hw;
479 }
480
481 static void add_counter_to_ctx(struct perf_counter *counter,
482 struct perf_counter_context *ctx)
483 {
484 list_add_counter(counter, ctx);
485 ctx->nr_counters++;
486 counter->prev_state = PERF_COUNTER_STATE_OFF;
487 counter->tstamp_enabled = ctx->time;
488 counter->tstamp_running = ctx->time;
489 counter->tstamp_stopped = ctx->time;
490 }
491
492 /*
493 * Cross CPU call to install and enable a performance counter
494 */
495 static void __perf_install_in_context(void *info)
496 {
497 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
498 struct perf_counter *counter = info;
499 struct perf_counter_context *ctx = counter->ctx;
500 struct perf_counter *leader = counter->group_leader;
501 int cpu = smp_processor_id();
502 unsigned long flags;
503 u64 perf_flags;
504 int err;
505
506 /*
507 * If this is a task context, we need to check whether it is
508 * the current task context of this cpu. If not it has been
509 * scheduled out before the smp call arrived.
510 */
511 if (ctx->task && cpuctx->task_ctx != ctx)
512 return;
513
514 spin_lock_irqsave(&ctx->lock, flags);
515 update_context_time(ctx);
516
517 /*
518 * Protect the list operation against NMI by disabling the
519 * counters on a global level. NOP for non NMI based counters.
520 */
521 perf_flags = hw_perf_save_disable();
522
523 add_counter_to_ctx(counter, ctx);
524
525 /*
526 * Don't put the counter on if it is disabled or if
527 * it is in a group and the group isn't on.
528 */
529 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
530 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
531 goto unlock;
532
533 /*
534 * An exclusive counter can't go on if there are already active
535 * hardware counters, and no hardware counter can go on if there
536 * is already an exclusive counter on.
537 */
538 if (!group_can_go_on(counter, cpuctx, 1))
539 err = -EEXIST;
540 else
541 err = counter_sched_in(counter, cpuctx, ctx, cpu);
542
543 if (err) {
544 /*
545 * This counter couldn't go on. If it is in a group
546 * then we have to pull the whole group off.
547 * If the counter group is pinned then put it in error state.
548 */
549 if (leader != counter)
550 group_sched_out(leader, cpuctx, ctx);
551 if (leader->hw_event.pinned) {
552 update_group_times(leader);
553 leader->state = PERF_COUNTER_STATE_ERROR;
554 }
555 }
556
557 if (!err && !ctx->task && cpuctx->max_pertask)
558 cpuctx->max_pertask--;
559
560 unlock:
561 hw_perf_restore(perf_flags);
562
563 spin_unlock_irqrestore(&ctx->lock, flags);
564 }
565
566 /*
567 * Attach a performance counter to a context
568 *
569 * First we add the counter to the list with the hardware enable bit
570 * in counter->hw_config cleared.
571 *
572 * If the counter is attached to a task which is on a CPU we use a smp
573 * call to enable it in the task context. The task might have been
574 * scheduled away, but we check this in the smp call again.
575 *
576 * Must be called with ctx->mutex held.
577 */
578 static void
579 perf_install_in_context(struct perf_counter_context *ctx,
580 struct perf_counter *counter,
581 int cpu)
582 {
583 struct task_struct *task = ctx->task;
584
585 if (!task) {
586 /*
587 * Per cpu counters are installed via an smp call and
588 * the install is always sucessful.
589 */
590 smp_call_function_single(cpu, __perf_install_in_context,
591 counter, 1);
592 return;
593 }
594
595 counter->task = task;
596 retry:
597 task_oncpu_function_call(task, __perf_install_in_context,
598 counter);
599
600 spin_lock_irq(&ctx->lock);
601 /*
602 * we need to retry the smp call.
603 */
604 if (ctx->is_active && list_empty(&counter->list_entry)) {
605 spin_unlock_irq(&ctx->lock);
606 goto retry;
607 }
608
609 /*
610 * The lock prevents that this context is scheduled in so we
611 * can add the counter safely, if it the call above did not
612 * succeed.
613 */
614 if (list_empty(&counter->list_entry))
615 add_counter_to_ctx(counter, ctx);
616 spin_unlock_irq(&ctx->lock);
617 }
618
619 /*
620 * Cross CPU call to enable a performance counter
621 */
622 static void __perf_counter_enable(void *info)
623 {
624 struct perf_counter *counter = info;
625 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
626 struct perf_counter_context *ctx = counter->ctx;
627 struct perf_counter *leader = counter->group_leader;
628 unsigned long flags;
629 int err;
630
631 /*
632 * If this is a per-task counter, need to check whether this
633 * counter's task is the current task on this cpu.
634 */
635 if (ctx->task && cpuctx->task_ctx != ctx)
636 return;
637
638 spin_lock_irqsave(&ctx->lock, flags);
639 update_context_time(ctx);
640
641 counter->prev_state = counter->state;
642 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
643 goto unlock;
644 counter->state = PERF_COUNTER_STATE_INACTIVE;
645 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
646
647 /*
648 * If the counter is in a group and isn't the group leader,
649 * then don't put it on unless the group is on.
650 */
651 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
652 goto unlock;
653
654 if (!group_can_go_on(counter, cpuctx, 1))
655 err = -EEXIST;
656 else
657 err = counter_sched_in(counter, cpuctx, ctx,
658 smp_processor_id());
659
660 if (err) {
661 /*
662 * If this counter can't go on and it's part of a
663 * group, then the whole group has to come off.
664 */
665 if (leader != counter)
666 group_sched_out(leader, cpuctx, ctx);
667 if (leader->hw_event.pinned) {
668 update_group_times(leader);
669 leader->state = PERF_COUNTER_STATE_ERROR;
670 }
671 }
672
673 unlock:
674 spin_unlock_irqrestore(&ctx->lock, flags);
675 }
676
677 /*
678 * Enable a counter.
679 */
680 static void perf_counter_enable(struct perf_counter *counter)
681 {
682 struct perf_counter_context *ctx = counter->ctx;
683 struct task_struct *task = ctx->task;
684
685 if (!task) {
686 /*
687 * Enable the counter on the cpu that it's on
688 */
689 smp_call_function_single(counter->cpu, __perf_counter_enable,
690 counter, 1);
691 return;
692 }
693
694 spin_lock_irq(&ctx->lock);
695 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
696 goto out;
697
698 /*
699 * If the counter is in error state, clear that first.
700 * That way, if we see the counter in error state below, we
701 * know that it has gone back into error state, as distinct
702 * from the task having been scheduled away before the
703 * cross-call arrived.
704 */
705 if (counter->state == PERF_COUNTER_STATE_ERROR)
706 counter->state = PERF_COUNTER_STATE_OFF;
707
708 retry:
709 spin_unlock_irq(&ctx->lock);
710 task_oncpu_function_call(task, __perf_counter_enable, counter);
711
712 spin_lock_irq(&ctx->lock);
713
714 /*
715 * If the context is active and the counter is still off,
716 * we need to retry the cross-call.
717 */
718 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
719 goto retry;
720
721 /*
722 * Since we have the lock this context can't be scheduled
723 * in, so we can change the state safely.
724 */
725 if (counter->state == PERF_COUNTER_STATE_OFF) {
726 counter->state = PERF_COUNTER_STATE_INACTIVE;
727 counter->tstamp_enabled =
728 ctx->time - counter->total_time_enabled;
729 }
730 out:
731 spin_unlock_irq(&ctx->lock);
732 }
733
734 static void perf_counter_refresh(struct perf_counter *counter, int refresh)
735 {
736 atomic_add(refresh, &counter->event_limit);
737 perf_counter_enable(counter);
738 }
739
740 /*
741 * Enable a counter and all its children.
742 */
743 static void perf_counter_enable_family(struct perf_counter *counter)
744 {
745 struct perf_counter *child;
746
747 perf_counter_enable(counter);
748
749 /*
750 * Lock the mutex to protect the list of children
751 */
752 mutex_lock(&counter->mutex);
753 list_for_each_entry(child, &counter->child_list, child_list)
754 perf_counter_enable(child);
755 mutex_unlock(&counter->mutex);
756 }
757
758 void __perf_counter_sched_out(struct perf_counter_context *ctx,
759 struct perf_cpu_context *cpuctx)
760 {
761 struct perf_counter *counter;
762 u64 flags;
763
764 spin_lock(&ctx->lock);
765 ctx->is_active = 0;
766 if (likely(!ctx->nr_counters))
767 goto out;
768 update_context_time(ctx);
769
770 flags = hw_perf_save_disable();
771 if (ctx->nr_active) {
772 list_for_each_entry(counter, &ctx->counter_list, list_entry)
773 group_sched_out(counter, cpuctx, ctx);
774 }
775 hw_perf_restore(flags);
776 out:
777 spin_unlock(&ctx->lock);
778 }
779
780 /*
781 * Called from scheduler to remove the counters of the current task,
782 * with interrupts disabled.
783 *
784 * We stop each counter and update the counter value in counter->count.
785 *
786 * This does not protect us against NMI, but disable()
787 * sets the disabled bit in the control field of counter _before_
788 * accessing the counter control register. If a NMI hits, then it will
789 * not restart the counter.
790 */
791 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
792 {
793 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
794 struct perf_counter_context *ctx = &task->perf_counter_ctx;
795 struct pt_regs *regs;
796
797 if (likely(!cpuctx->task_ctx))
798 return;
799
800 regs = task_pt_regs(task);
801 perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs);
802 __perf_counter_sched_out(ctx, cpuctx);
803
804 cpuctx->task_ctx = NULL;
805 }
806
807 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
808 {
809 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
810 }
811
812 static int
813 group_sched_in(struct perf_counter *group_counter,
814 struct perf_cpu_context *cpuctx,
815 struct perf_counter_context *ctx,
816 int cpu)
817 {
818 struct perf_counter *counter, *partial_group;
819 int ret;
820
821 if (group_counter->state == PERF_COUNTER_STATE_OFF)
822 return 0;
823
824 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
825 if (ret)
826 return ret < 0 ? ret : 0;
827
828 group_counter->prev_state = group_counter->state;
829 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
830 return -EAGAIN;
831
832 /*
833 * Schedule in siblings as one group (if any):
834 */
835 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
836 counter->prev_state = counter->state;
837 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
838 partial_group = counter;
839 goto group_error;
840 }
841 }
842
843 return 0;
844
845 group_error:
846 /*
847 * Groups can be scheduled in as one unit only, so undo any
848 * partial group before returning:
849 */
850 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
851 if (counter == partial_group)
852 break;
853 counter_sched_out(counter, cpuctx, ctx);
854 }
855 counter_sched_out(group_counter, cpuctx, ctx);
856
857 return -EAGAIN;
858 }
859
860 static void
861 __perf_counter_sched_in(struct perf_counter_context *ctx,
862 struct perf_cpu_context *cpuctx, int cpu)
863 {
864 struct perf_counter *counter;
865 u64 flags;
866 int can_add_hw = 1;
867
868 spin_lock(&ctx->lock);
869 ctx->is_active = 1;
870 if (likely(!ctx->nr_counters))
871 goto out;
872
873 ctx->timestamp = perf_clock();
874
875 flags = hw_perf_save_disable();
876
877 /*
878 * First go through the list and put on any pinned groups
879 * in order to give them the best chance of going on.
880 */
881 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
882 if (counter->state <= PERF_COUNTER_STATE_OFF ||
883 !counter->hw_event.pinned)
884 continue;
885 if (counter->cpu != -1 && counter->cpu != cpu)
886 continue;
887
888 if (group_can_go_on(counter, cpuctx, 1))
889 group_sched_in(counter, cpuctx, ctx, cpu);
890
891 /*
892 * If this pinned group hasn't been scheduled,
893 * put it in error state.
894 */
895 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
896 update_group_times(counter);
897 counter->state = PERF_COUNTER_STATE_ERROR;
898 }
899 }
900
901 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
902 /*
903 * Ignore counters in OFF or ERROR state, and
904 * ignore pinned counters since we did them already.
905 */
906 if (counter->state <= PERF_COUNTER_STATE_OFF ||
907 counter->hw_event.pinned)
908 continue;
909
910 /*
911 * Listen to the 'cpu' scheduling filter constraint
912 * of counters:
913 */
914 if (counter->cpu != -1 && counter->cpu != cpu)
915 continue;
916
917 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
918 if (group_sched_in(counter, cpuctx, ctx, cpu))
919 can_add_hw = 0;
920 }
921 }
922 hw_perf_restore(flags);
923 out:
924 spin_unlock(&ctx->lock);
925 }
926
927 /*
928 * Called from scheduler to add the counters of the current task
929 * with interrupts disabled.
930 *
931 * We restore the counter value and then enable it.
932 *
933 * This does not protect us against NMI, but enable()
934 * sets the enabled bit in the control field of counter _before_
935 * accessing the counter control register. If a NMI hits, then it will
936 * keep the counter running.
937 */
938 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
939 {
940 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
941 struct perf_counter_context *ctx = &task->perf_counter_ctx;
942
943 __perf_counter_sched_in(ctx, cpuctx, cpu);
944 cpuctx->task_ctx = ctx;
945 }
946
947 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
948 {
949 struct perf_counter_context *ctx = &cpuctx->ctx;
950
951 __perf_counter_sched_in(ctx, cpuctx, cpu);
952 }
953
954 int perf_counter_task_disable(void)
955 {
956 struct task_struct *curr = current;
957 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
958 struct perf_counter *counter;
959 unsigned long flags;
960 u64 perf_flags;
961 int cpu;
962
963 if (likely(!ctx->nr_counters))
964 return 0;
965
966 local_irq_save(flags);
967 cpu = smp_processor_id();
968
969 perf_counter_task_sched_out(curr, cpu);
970
971 spin_lock(&ctx->lock);
972
973 /*
974 * Disable all the counters:
975 */
976 perf_flags = hw_perf_save_disable();
977
978 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
979 if (counter->state != PERF_COUNTER_STATE_ERROR) {
980 update_group_times(counter);
981 counter->state = PERF_COUNTER_STATE_OFF;
982 }
983 }
984
985 hw_perf_restore(perf_flags);
986
987 spin_unlock_irqrestore(&ctx->lock, flags);
988
989 return 0;
990 }
991
992 int perf_counter_task_enable(void)
993 {
994 struct task_struct *curr = current;
995 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
996 struct perf_counter *counter;
997 unsigned long flags;
998 u64 perf_flags;
999 int cpu;
1000
1001 if (likely(!ctx->nr_counters))
1002 return 0;
1003
1004 local_irq_save(flags);
1005 cpu = smp_processor_id();
1006
1007 perf_counter_task_sched_out(curr, cpu);
1008
1009 spin_lock(&ctx->lock);
1010
1011 /*
1012 * Disable all the counters:
1013 */
1014 perf_flags = hw_perf_save_disable();
1015
1016 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1017 if (counter->state > PERF_COUNTER_STATE_OFF)
1018 continue;
1019 counter->state = PERF_COUNTER_STATE_INACTIVE;
1020 counter->tstamp_enabled =
1021 ctx->time - counter->total_time_enabled;
1022 counter->hw_event.disabled = 0;
1023 }
1024 hw_perf_restore(perf_flags);
1025
1026 spin_unlock(&ctx->lock);
1027
1028 perf_counter_task_sched_in(curr, cpu);
1029
1030 local_irq_restore(flags);
1031
1032 return 0;
1033 }
1034
1035 /*
1036 * Round-robin a context's counters:
1037 */
1038 static void rotate_ctx(struct perf_counter_context *ctx)
1039 {
1040 struct perf_counter *counter;
1041 u64 perf_flags;
1042
1043 if (!ctx->nr_counters)
1044 return;
1045
1046 spin_lock(&ctx->lock);
1047 /*
1048 * Rotate the first entry last (works just fine for group counters too):
1049 */
1050 perf_flags = hw_perf_save_disable();
1051 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1052 list_move_tail(&counter->list_entry, &ctx->counter_list);
1053 break;
1054 }
1055 hw_perf_restore(perf_flags);
1056
1057 spin_unlock(&ctx->lock);
1058 }
1059
1060 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1061 {
1062 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1063 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1064 const int rotate_percpu = 0;
1065
1066 if (rotate_percpu)
1067 perf_counter_cpu_sched_out(cpuctx);
1068 perf_counter_task_sched_out(curr, cpu);
1069
1070 if (rotate_percpu)
1071 rotate_ctx(&cpuctx->ctx);
1072 rotate_ctx(ctx);
1073
1074 if (rotate_percpu)
1075 perf_counter_cpu_sched_in(cpuctx, cpu);
1076 perf_counter_task_sched_in(curr, cpu);
1077 }
1078
1079 /*
1080 * Cross CPU call to read the hardware counter
1081 */
1082 static void __read(void *info)
1083 {
1084 struct perf_counter *counter = info;
1085 struct perf_counter_context *ctx = counter->ctx;
1086 unsigned long flags;
1087
1088 local_irq_save(flags);
1089 if (ctx->is_active)
1090 update_context_time(ctx);
1091 counter->hw_ops->read(counter);
1092 update_counter_times(counter);
1093 local_irq_restore(flags);
1094 }
1095
1096 static u64 perf_counter_read(struct perf_counter *counter)
1097 {
1098 /*
1099 * If counter is enabled and currently active on a CPU, update the
1100 * value in the counter structure:
1101 */
1102 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1103 smp_call_function_single(counter->oncpu,
1104 __read, counter, 1);
1105 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1106 update_counter_times(counter);
1107 }
1108
1109 return atomic64_read(&counter->count);
1110 }
1111
1112 static void put_context(struct perf_counter_context *ctx)
1113 {
1114 if (ctx->task)
1115 put_task_struct(ctx->task);
1116 }
1117
1118 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1119 {
1120 struct perf_cpu_context *cpuctx;
1121 struct perf_counter_context *ctx;
1122 struct task_struct *task;
1123
1124 /*
1125 * If cpu is not a wildcard then this is a percpu counter:
1126 */
1127 if (cpu != -1) {
1128 /* Must be root to operate on a CPU counter: */
1129 if (!capable(CAP_SYS_ADMIN))
1130 return ERR_PTR(-EACCES);
1131
1132 if (cpu < 0 || cpu > num_possible_cpus())
1133 return ERR_PTR(-EINVAL);
1134
1135 /*
1136 * We could be clever and allow to attach a counter to an
1137 * offline CPU and activate it when the CPU comes up, but
1138 * that's for later.
1139 */
1140 if (!cpu_isset(cpu, cpu_online_map))
1141 return ERR_PTR(-ENODEV);
1142
1143 cpuctx = &per_cpu(perf_cpu_context, cpu);
1144 ctx = &cpuctx->ctx;
1145
1146 return ctx;
1147 }
1148
1149 rcu_read_lock();
1150 if (!pid)
1151 task = current;
1152 else
1153 task = find_task_by_vpid(pid);
1154 if (task)
1155 get_task_struct(task);
1156 rcu_read_unlock();
1157
1158 if (!task)
1159 return ERR_PTR(-ESRCH);
1160
1161 ctx = &task->perf_counter_ctx;
1162 ctx->task = task;
1163
1164 /* Reuse ptrace permission checks for now. */
1165 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1166 put_context(ctx);
1167 return ERR_PTR(-EACCES);
1168 }
1169
1170 return ctx;
1171 }
1172
1173 static void free_counter_rcu(struct rcu_head *head)
1174 {
1175 struct perf_counter *counter;
1176
1177 counter = container_of(head, struct perf_counter, rcu_head);
1178 kfree(counter);
1179 }
1180
1181 static void perf_pending_sync(struct perf_counter *counter);
1182
1183 static void free_counter(struct perf_counter *counter)
1184 {
1185 perf_pending_sync(counter);
1186
1187 if (counter->destroy)
1188 counter->destroy(counter);
1189
1190 call_rcu(&counter->rcu_head, free_counter_rcu);
1191 }
1192
1193 /*
1194 * Called when the last reference to the file is gone.
1195 */
1196 static int perf_release(struct inode *inode, struct file *file)
1197 {
1198 struct perf_counter *counter = file->private_data;
1199 struct perf_counter_context *ctx = counter->ctx;
1200
1201 file->private_data = NULL;
1202
1203 mutex_lock(&ctx->mutex);
1204 mutex_lock(&counter->mutex);
1205
1206 perf_counter_remove_from_context(counter);
1207
1208 mutex_unlock(&counter->mutex);
1209 mutex_unlock(&ctx->mutex);
1210
1211 free_counter(counter);
1212 put_context(ctx);
1213
1214 return 0;
1215 }
1216
1217 /*
1218 * Read the performance counter - simple non blocking version for now
1219 */
1220 static ssize_t
1221 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1222 {
1223 u64 values[3];
1224 int n;
1225
1226 /*
1227 * Return end-of-file for a read on a counter that is in
1228 * error state (i.e. because it was pinned but it couldn't be
1229 * scheduled on to the CPU at some point).
1230 */
1231 if (counter->state == PERF_COUNTER_STATE_ERROR)
1232 return 0;
1233
1234 mutex_lock(&counter->mutex);
1235 values[0] = perf_counter_read(counter);
1236 n = 1;
1237 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1238 values[n++] = counter->total_time_enabled +
1239 atomic64_read(&counter->child_total_time_enabled);
1240 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1241 values[n++] = counter->total_time_running +
1242 atomic64_read(&counter->child_total_time_running);
1243 mutex_unlock(&counter->mutex);
1244
1245 if (count < n * sizeof(u64))
1246 return -EINVAL;
1247 count = n * sizeof(u64);
1248
1249 if (copy_to_user(buf, values, count))
1250 return -EFAULT;
1251
1252 return count;
1253 }
1254
1255 static ssize_t
1256 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1257 {
1258 struct perf_counter *counter = file->private_data;
1259
1260 return perf_read_hw(counter, buf, count);
1261 }
1262
1263 static unsigned int perf_poll(struct file *file, poll_table *wait)
1264 {
1265 struct perf_counter *counter = file->private_data;
1266 struct perf_mmap_data *data;
1267 unsigned int events;
1268
1269 rcu_read_lock();
1270 data = rcu_dereference(counter->data);
1271 if (data)
1272 events = atomic_xchg(&data->wakeup, 0);
1273 else
1274 events = POLL_HUP;
1275 rcu_read_unlock();
1276
1277 poll_wait(file, &counter->waitq, wait);
1278
1279 return events;
1280 }
1281
1282 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1283 {
1284 struct perf_counter *counter = file->private_data;
1285 int err = 0;
1286
1287 switch (cmd) {
1288 case PERF_COUNTER_IOC_ENABLE:
1289 perf_counter_enable_family(counter);
1290 break;
1291 case PERF_COUNTER_IOC_DISABLE:
1292 perf_counter_disable_family(counter);
1293 break;
1294 case PERF_COUNTER_IOC_REFRESH:
1295 perf_counter_refresh(counter, arg);
1296 break;
1297 default:
1298 err = -ENOTTY;
1299 }
1300 return err;
1301 }
1302
1303 /*
1304 * Callers need to ensure there can be no nesting of this function, otherwise
1305 * the seqlock logic goes bad. We can not serialize this because the arch
1306 * code calls this from NMI context.
1307 */
1308 void perf_counter_update_userpage(struct perf_counter *counter)
1309 {
1310 struct perf_mmap_data *data;
1311 struct perf_counter_mmap_page *userpg;
1312
1313 rcu_read_lock();
1314 data = rcu_dereference(counter->data);
1315 if (!data)
1316 goto unlock;
1317
1318 userpg = data->user_page;
1319
1320 /*
1321 * Disable preemption so as to not let the corresponding user-space
1322 * spin too long if we get preempted.
1323 */
1324 preempt_disable();
1325 ++userpg->lock;
1326 barrier();
1327 userpg->index = counter->hw.idx;
1328 userpg->offset = atomic64_read(&counter->count);
1329 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1330 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1331
1332 barrier();
1333 ++userpg->lock;
1334 preempt_enable();
1335 unlock:
1336 rcu_read_unlock();
1337 }
1338
1339 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1340 {
1341 struct perf_counter *counter = vma->vm_file->private_data;
1342 struct perf_mmap_data *data;
1343 int ret = VM_FAULT_SIGBUS;
1344
1345 rcu_read_lock();
1346 data = rcu_dereference(counter->data);
1347 if (!data)
1348 goto unlock;
1349
1350 if (vmf->pgoff == 0) {
1351 vmf->page = virt_to_page(data->user_page);
1352 } else {
1353 int nr = vmf->pgoff - 1;
1354
1355 if ((unsigned)nr > data->nr_pages)
1356 goto unlock;
1357
1358 vmf->page = virt_to_page(data->data_pages[nr]);
1359 }
1360 get_page(vmf->page);
1361 ret = 0;
1362 unlock:
1363 rcu_read_unlock();
1364
1365 return ret;
1366 }
1367
1368 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1369 {
1370 struct perf_mmap_data *data;
1371 unsigned long size;
1372 int i;
1373
1374 WARN_ON(atomic_read(&counter->mmap_count));
1375
1376 size = sizeof(struct perf_mmap_data);
1377 size += nr_pages * sizeof(void *);
1378
1379 data = kzalloc(size, GFP_KERNEL);
1380 if (!data)
1381 goto fail;
1382
1383 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1384 if (!data->user_page)
1385 goto fail_user_page;
1386
1387 for (i = 0; i < nr_pages; i++) {
1388 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1389 if (!data->data_pages[i])
1390 goto fail_data_pages;
1391 }
1392
1393 data->nr_pages = nr_pages;
1394
1395 rcu_assign_pointer(counter->data, data);
1396
1397 return 0;
1398
1399 fail_data_pages:
1400 for (i--; i >= 0; i--)
1401 free_page((unsigned long)data->data_pages[i]);
1402
1403 free_page((unsigned long)data->user_page);
1404
1405 fail_user_page:
1406 kfree(data);
1407
1408 fail:
1409 return -ENOMEM;
1410 }
1411
1412 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1413 {
1414 struct perf_mmap_data *data = container_of(rcu_head,
1415 struct perf_mmap_data, rcu_head);
1416 int i;
1417
1418 free_page((unsigned long)data->user_page);
1419 for (i = 0; i < data->nr_pages; i++)
1420 free_page((unsigned long)data->data_pages[i]);
1421 kfree(data);
1422 }
1423
1424 static void perf_mmap_data_free(struct perf_counter *counter)
1425 {
1426 struct perf_mmap_data *data = counter->data;
1427
1428 WARN_ON(atomic_read(&counter->mmap_count));
1429
1430 rcu_assign_pointer(counter->data, NULL);
1431 call_rcu(&data->rcu_head, __perf_mmap_data_free);
1432 }
1433
1434 static void perf_mmap_open(struct vm_area_struct *vma)
1435 {
1436 struct perf_counter *counter = vma->vm_file->private_data;
1437
1438 atomic_inc(&counter->mmap_count);
1439 }
1440
1441 static void perf_mmap_close(struct vm_area_struct *vma)
1442 {
1443 struct perf_counter *counter = vma->vm_file->private_data;
1444
1445 if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1446 &counter->mmap_mutex)) {
1447 vma->vm_mm->locked_vm -= counter->data->nr_pages + 1;
1448 perf_mmap_data_free(counter);
1449 mutex_unlock(&counter->mmap_mutex);
1450 }
1451 }
1452
1453 static struct vm_operations_struct perf_mmap_vmops = {
1454 .open = perf_mmap_open,
1455 .close = perf_mmap_close,
1456 .fault = perf_mmap_fault,
1457 };
1458
1459 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1460 {
1461 struct perf_counter *counter = file->private_data;
1462 unsigned long vma_size;
1463 unsigned long nr_pages;
1464 unsigned long locked, lock_limit;
1465 int ret = 0;
1466
1467 if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1468 return -EINVAL;
1469
1470 vma_size = vma->vm_end - vma->vm_start;
1471 nr_pages = (vma_size / PAGE_SIZE) - 1;
1472
1473 /*
1474 * If we have data pages ensure they're a power-of-two number, so we
1475 * can do bitmasks instead of modulo.
1476 */
1477 if (nr_pages != 0 && !is_power_of_2(nr_pages))
1478 return -EINVAL;
1479
1480 if (vma_size != PAGE_SIZE * (1 + nr_pages))
1481 return -EINVAL;
1482
1483 if (vma->vm_pgoff != 0)
1484 return -EINVAL;
1485
1486 mutex_lock(&counter->mmap_mutex);
1487 if (atomic_inc_not_zero(&counter->mmap_count)) {
1488 if (nr_pages != counter->data->nr_pages)
1489 ret = -EINVAL;
1490 goto unlock;
1491 }
1492
1493 locked = vma->vm_mm->locked_vm;
1494 locked += nr_pages + 1;
1495
1496 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1497 lock_limit >>= PAGE_SHIFT;
1498
1499 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1500 ret = -EPERM;
1501 goto unlock;
1502 }
1503
1504 WARN_ON(counter->data);
1505 ret = perf_mmap_data_alloc(counter, nr_pages);
1506 if (ret)
1507 goto unlock;
1508
1509 atomic_set(&counter->mmap_count, 1);
1510 vma->vm_mm->locked_vm += nr_pages + 1;
1511 unlock:
1512 mutex_unlock(&counter->mmap_mutex);
1513
1514 vma->vm_flags &= ~VM_MAYWRITE;
1515 vma->vm_flags |= VM_RESERVED;
1516 vma->vm_ops = &perf_mmap_vmops;
1517
1518 return ret;
1519 }
1520
1521 static int perf_fasync(int fd, struct file *filp, int on)
1522 {
1523 struct perf_counter *counter = filp->private_data;
1524 struct inode *inode = filp->f_path.dentry->d_inode;
1525 int retval;
1526
1527 mutex_lock(&inode->i_mutex);
1528 retval = fasync_helper(fd, filp, on, &counter->fasync);
1529 mutex_unlock(&inode->i_mutex);
1530
1531 if (retval < 0)
1532 return retval;
1533
1534 return 0;
1535 }
1536
1537 static const struct file_operations perf_fops = {
1538 .release = perf_release,
1539 .read = perf_read,
1540 .poll = perf_poll,
1541 .unlocked_ioctl = perf_ioctl,
1542 .compat_ioctl = perf_ioctl,
1543 .mmap = perf_mmap,
1544 .fasync = perf_fasync,
1545 };
1546
1547 /*
1548 * Perf counter wakeup
1549 *
1550 * If there's data, ensure we set the poll() state and publish everything
1551 * to user-space before waking everybody up.
1552 */
1553
1554 void perf_counter_wakeup(struct perf_counter *counter)
1555 {
1556 struct perf_mmap_data *data;
1557
1558 rcu_read_lock();
1559 data = rcu_dereference(counter->data);
1560 if (data) {
1561 atomic_set(&data->wakeup, POLL_IN);
1562 /*
1563 * Ensure all data writes are issued before updating the
1564 * user-space data head information. The matching rmb()
1565 * will be in userspace after reading this value.
1566 */
1567 smp_wmb();
1568 data->user_page->data_head = atomic_read(&data->head);
1569 }
1570 rcu_read_unlock();
1571
1572 wake_up_all(&counter->waitq);
1573
1574 if (counter->pending_kill) {
1575 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1576 counter->pending_kill = 0;
1577 }
1578 }
1579
1580 /*
1581 * Pending wakeups
1582 *
1583 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1584 *
1585 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1586 * single linked list and use cmpxchg() to add entries lockless.
1587 */
1588
1589 static void perf_pending_counter(struct perf_pending_entry *entry)
1590 {
1591 struct perf_counter *counter = container_of(entry,
1592 struct perf_counter, pending);
1593
1594 if (counter->pending_disable) {
1595 counter->pending_disable = 0;
1596 perf_counter_disable(counter);
1597 }
1598
1599 if (counter->pending_wakeup) {
1600 counter->pending_wakeup = 0;
1601 perf_counter_wakeup(counter);
1602 }
1603 }
1604
1605 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1606
1607 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1608 PENDING_TAIL,
1609 };
1610
1611 static void perf_pending_queue(struct perf_pending_entry *entry,
1612 void (*func)(struct perf_pending_entry *))
1613 {
1614 struct perf_pending_entry **head;
1615
1616 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1617 return;
1618
1619 entry->func = func;
1620
1621 head = &get_cpu_var(perf_pending_head);
1622
1623 do {
1624 entry->next = *head;
1625 } while (cmpxchg(head, entry->next, entry) != entry->next);
1626
1627 set_perf_counter_pending();
1628
1629 put_cpu_var(perf_pending_head);
1630 }
1631
1632 static int __perf_pending_run(void)
1633 {
1634 struct perf_pending_entry *list;
1635 int nr = 0;
1636
1637 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1638 while (list != PENDING_TAIL) {
1639 void (*func)(struct perf_pending_entry *);
1640 struct perf_pending_entry *entry = list;
1641
1642 list = list->next;
1643
1644 func = entry->func;
1645 entry->next = NULL;
1646 /*
1647 * Ensure we observe the unqueue before we issue the wakeup,
1648 * so that we won't be waiting forever.
1649 * -- see perf_not_pending().
1650 */
1651 smp_wmb();
1652
1653 func(entry);
1654 nr++;
1655 }
1656
1657 return nr;
1658 }
1659
1660 static inline int perf_not_pending(struct perf_counter *counter)
1661 {
1662 /*
1663 * If we flush on whatever cpu we run, there is a chance we don't
1664 * need to wait.
1665 */
1666 get_cpu();
1667 __perf_pending_run();
1668 put_cpu();
1669
1670 /*
1671 * Ensure we see the proper queue state before going to sleep
1672 * so that we do not miss the wakeup. -- see perf_pending_handle()
1673 */
1674 smp_rmb();
1675 return counter->pending.next == NULL;
1676 }
1677
1678 static void perf_pending_sync(struct perf_counter *counter)
1679 {
1680 wait_event(counter->waitq, perf_not_pending(counter));
1681 }
1682
1683 void perf_counter_do_pending(void)
1684 {
1685 __perf_pending_run();
1686 }
1687
1688 /*
1689 * Callchain support -- arch specific
1690 */
1691
1692 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1693 {
1694 return NULL;
1695 }
1696
1697 /*
1698 * Output
1699 */
1700
1701 struct perf_output_handle {
1702 struct perf_counter *counter;
1703 struct perf_mmap_data *data;
1704 unsigned int offset;
1705 unsigned int head;
1706 int wakeup;
1707 int nmi;
1708 int overflow;
1709 };
1710
1711 static inline void __perf_output_wakeup(struct perf_output_handle *handle)
1712 {
1713 if (handle->nmi) {
1714 handle->counter->pending_wakeup = 1;
1715 perf_pending_queue(&handle->counter->pending,
1716 perf_pending_counter);
1717 } else
1718 perf_counter_wakeup(handle->counter);
1719 }
1720
1721 static int perf_output_begin(struct perf_output_handle *handle,
1722 struct perf_counter *counter, unsigned int size,
1723 int nmi, int overflow)
1724 {
1725 struct perf_mmap_data *data;
1726 unsigned int offset, head;
1727
1728 rcu_read_lock();
1729 data = rcu_dereference(counter->data);
1730 if (!data)
1731 goto out;
1732
1733 handle->counter = counter;
1734 handle->nmi = nmi;
1735 handle->overflow = overflow;
1736
1737 if (!data->nr_pages)
1738 goto fail;
1739
1740 do {
1741 offset = head = atomic_read(&data->head);
1742 head += size;
1743 } while (atomic_cmpxchg(&data->head, offset, head) != offset);
1744
1745 handle->data = data;
1746 handle->offset = offset;
1747 handle->head = head;
1748 handle->wakeup = (offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT);
1749
1750 return 0;
1751
1752 fail:
1753 __perf_output_wakeup(handle);
1754 out:
1755 rcu_read_unlock();
1756
1757 return -ENOSPC;
1758 }
1759
1760 static void perf_output_copy(struct perf_output_handle *handle,
1761 void *buf, unsigned int len)
1762 {
1763 unsigned int pages_mask;
1764 unsigned int offset;
1765 unsigned int size;
1766 void **pages;
1767
1768 offset = handle->offset;
1769 pages_mask = handle->data->nr_pages - 1;
1770 pages = handle->data->data_pages;
1771
1772 do {
1773 unsigned int page_offset;
1774 int nr;
1775
1776 nr = (offset >> PAGE_SHIFT) & pages_mask;
1777 page_offset = offset & (PAGE_SIZE - 1);
1778 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
1779
1780 memcpy(pages[nr] + page_offset, buf, size);
1781
1782 len -= size;
1783 buf += size;
1784 offset += size;
1785 } while (len);
1786
1787 handle->offset = offset;
1788
1789 WARN_ON_ONCE(handle->offset > handle->head);
1790 }
1791
1792 #define perf_output_put(handle, x) \
1793 perf_output_copy((handle), &(x), sizeof(x))
1794
1795 static void perf_output_end(struct perf_output_handle *handle)
1796 {
1797 int wakeup_events = handle->counter->hw_event.wakeup_events;
1798
1799 if (handle->overflow && wakeup_events) {
1800 int events = atomic_inc_return(&handle->data->events);
1801 if (events >= wakeup_events) {
1802 atomic_sub(wakeup_events, &handle->data->events);
1803 __perf_output_wakeup(handle);
1804 }
1805 } else if (handle->wakeup)
1806 __perf_output_wakeup(handle);
1807 rcu_read_unlock();
1808 }
1809
1810 static void perf_counter_output(struct perf_counter *counter,
1811 int nmi, struct pt_regs *regs)
1812 {
1813 int ret;
1814 u64 record_type = counter->hw_event.record_type;
1815 struct perf_output_handle handle;
1816 struct perf_event_header header;
1817 u64 ip;
1818 struct {
1819 u32 pid, tid;
1820 } tid_entry;
1821 struct {
1822 u64 event;
1823 u64 counter;
1824 } group_entry;
1825 struct perf_callchain_entry *callchain = NULL;
1826 int callchain_size = 0;
1827 u64 time;
1828
1829 header.type = PERF_EVENT_COUNTER_OVERFLOW;
1830 header.size = sizeof(header);
1831
1832 if (record_type & PERF_RECORD_IP) {
1833 ip = instruction_pointer(regs);
1834 header.type |= __PERF_EVENT_IP;
1835 header.size += sizeof(ip);
1836 }
1837
1838 if (record_type & PERF_RECORD_TID) {
1839 /* namespace issues */
1840 tid_entry.pid = current->group_leader->pid;
1841 tid_entry.tid = current->pid;
1842
1843 header.type |= __PERF_EVENT_TID;
1844 header.size += sizeof(tid_entry);
1845 }
1846
1847 if (record_type & PERF_RECORD_GROUP) {
1848 header.type |= __PERF_EVENT_GROUP;
1849 header.size += sizeof(u64) +
1850 counter->nr_siblings * sizeof(group_entry);
1851 }
1852
1853 if (record_type & PERF_RECORD_CALLCHAIN) {
1854 callchain = perf_callchain(regs);
1855
1856 if (callchain) {
1857 callchain_size = (1 + callchain->nr) * sizeof(u64);
1858
1859 header.type |= __PERF_EVENT_CALLCHAIN;
1860 header.size += callchain_size;
1861 }
1862 }
1863
1864 if (record_type & PERF_RECORD_TIME) {
1865 /*
1866 * Maybe do better on x86 and provide cpu_clock_nmi()
1867 */
1868 time = sched_clock();
1869
1870 header.type |= __PERF_EVENT_TIME;
1871 header.size += sizeof(u64);
1872 }
1873
1874 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
1875 if (ret)
1876 return;
1877
1878 perf_output_put(&handle, header);
1879
1880 if (record_type & PERF_RECORD_IP)
1881 perf_output_put(&handle, ip);
1882
1883 if (record_type & PERF_RECORD_TID)
1884 perf_output_put(&handle, tid_entry);
1885
1886 if (record_type & PERF_RECORD_GROUP) {
1887 struct perf_counter *leader, *sub;
1888 u64 nr = counter->nr_siblings;
1889
1890 perf_output_put(&handle, nr);
1891
1892 leader = counter->group_leader;
1893 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
1894 if (sub != counter)
1895 sub->hw_ops->read(sub);
1896
1897 group_entry.event = sub->hw_event.config;
1898 group_entry.counter = atomic64_read(&sub->count);
1899
1900 perf_output_put(&handle, group_entry);
1901 }
1902 }
1903
1904 if (callchain)
1905 perf_output_copy(&handle, callchain, callchain_size);
1906
1907 if (record_type & PERF_RECORD_TIME)
1908 perf_output_put(&handle, time);
1909
1910 perf_output_end(&handle);
1911 }
1912
1913 /*
1914 * mmap tracking
1915 */
1916
1917 struct perf_mmap_event {
1918 struct file *file;
1919 char *file_name;
1920 int file_size;
1921
1922 struct {
1923 struct perf_event_header header;
1924
1925 u32 pid;
1926 u32 tid;
1927 u64 start;
1928 u64 len;
1929 u64 pgoff;
1930 } event;
1931 };
1932
1933 static void perf_counter_mmap_output(struct perf_counter *counter,
1934 struct perf_mmap_event *mmap_event)
1935 {
1936 struct perf_output_handle handle;
1937 int size = mmap_event->event.header.size;
1938 int ret = perf_output_begin(&handle, counter, size, 0, 0);
1939
1940 if (ret)
1941 return;
1942
1943 perf_output_put(&handle, mmap_event->event);
1944 perf_output_copy(&handle, mmap_event->file_name,
1945 mmap_event->file_size);
1946 perf_output_end(&handle);
1947 }
1948
1949 static int perf_counter_mmap_match(struct perf_counter *counter,
1950 struct perf_mmap_event *mmap_event)
1951 {
1952 if (counter->hw_event.mmap &&
1953 mmap_event->event.header.type == PERF_EVENT_MMAP)
1954 return 1;
1955
1956 if (counter->hw_event.munmap &&
1957 mmap_event->event.header.type == PERF_EVENT_MUNMAP)
1958 return 1;
1959
1960 return 0;
1961 }
1962
1963 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
1964 struct perf_mmap_event *mmap_event)
1965 {
1966 struct perf_counter *counter;
1967
1968 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
1969 return;
1970
1971 rcu_read_lock();
1972 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
1973 if (perf_counter_mmap_match(counter, mmap_event))
1974 perf_counter_mmap_output(counter, mmap_event);
1975 }
1976 rcu_read_unlock();
1977 }
1978
1979 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
1980 {
1981 struct perf_cpu_context *cpuctx;
1982 struct file *file = mmap_event->file;
1983 unsigned int size;
1984 char tmp[16];
1985 char *buf = NULL;
1986 char *name;
1987
1988 if (file) {
1989 buf = kzalloc(PATH_MAX, GFP_KERNEL);
1990 if (!buf) {
1991 name = strncpy(tmp, "//enomem", sizeof(tmp));
1992 goto got_name;
1993 }
1994 name = dentry_path(file->f_dentry, buf, PATH_MAX);
1995 if (IS_ERR(name)) {
1996 name = strncpy(tmp, "//toolong", sizeof(tmp));
1997 goto got_name;
1998 }
1999 } else {
2000 name = strncpy(tmp, "//anon", sizeof(tmp));
2001 goto got_name;
2002 }
2003
2004 got_name:
2005 size = ALIGN(strlen(name), sizeof(u64));
2006
2007 mmap_event->file_name = name;
2008 mmap_event->file_size = size;
2009
2010 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2011
2012 cpuctx = &get_cpu_var(perf_cpu_context);
2013 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2014 put_cpu_var(perf_cpu_context);
2015
2016 perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);
2017
2018 kfree(buf);
2019 }
2020
2021 void perf_counter_mmap(unsigned long addr, unsigned long len,
2022 unsigned long pgoff, struct file *file)
2023 {
2024 struct perf_mmap_event mmap_event = {
2025 .file = file,
2026 .event = {
2027 .header = { .type = PERF_EVENT_MMAP, },
2028 .pid = current->group_leader->pid,
2029 .tid = current->pid,
2030 .start = addr,
2031 .len = len,
2032 .pgoff = pgoff,
2033 },
2034 };
2035
2036 perf_counter_mmap_event(&mmap_event);
2037 }
2038
2039 void perf_counter_munmap(unsigned long addr, unsigned long len,
2040 unsigned long pgoff, struct file *file)
2041 {
2042 struct perf_mmap_event mmap_event = {
2043 .file = file,
2044 .event = {
2045 .header = { .type = PERF_EVENT_MUNMAP, },
2046 .pid = current->group_leader->pid,
2047 .tid = current->pid,
2048 .start = addr,
2049 .len = len,
2050 .pgoff = pgoff,
2051 },
2052 };
2053
2054 perf_counter_mmap_event(&mmap_event);
2055 }
2056
2057 /*
2058 * Generic counter overflow handling.
2059 */
2060
2061 int perf_counter_overflow(struct perf_counter *counter,
2062 int nmi, struct pt_regs *regs)
2063 {
2064 int events = atomic_read(&counter->event_limit);
2065 int ret = 0;
2066
2067 counter->pending_kill = POLL_IN;
2068 if (events && atomic_dec_and_test(&counter->event_limit)) {
2069 ret = 1;
2070 counter->pending_kill = POLL_HUP;
2071 if (nmi) {
2072 counter->pending_disable = 1;
2073 perf_pending_queue(&counter->pending,
2074 perf_pending_counter);
2075 } else
2076 perf_counter_disable(counter);
2077 }
2078
2079 perf_counter_output(counter, nmi, regs);
2080 return ret;
2081 }
2082
2083 /*
2084 * Generic software counter infrastructure
2085 */
2086
2087 static void perf_swcounter_update(struct perf_counter *counter)
2088 {
2089 struct hw_perf_counter *hwc = &counter->hw;
2090 u64 prev, now;
2091 s64 delta;
2092
2093 again:
2094 prev = atomic64_read(&hwc->prev_count);
2095 now = atomic64_read(&hwc->count);
2096 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2097 goto again;
2098
2099 delta = now - prev;
2100
2101 atomic64_add(delta, &counter->count);
2102 atomic64_sub(delta, &hwc->period_left);
2103 }
2104
2105 static void perf_swcounter_set_period(struct perf_counter *counter)
2106 {
2107 struct hw_perf_counter *hwc = &counter->hw;
2108 s64 left = atomic64_read(&hwc->period_left);
2109 s64 period = hwc->irq_period;
2110
2111 if (unlikely(left <= -period)) {
2112 left = period;
2113 atomic64_set(&hwc->period_left, left);
2114 }
2115
2116 if (unlikely(left <= 0)) {
2117 left += period;
2118 atomic64_add(period, &hwc->period_left);
2119 }
2120
2121 atomic64_set(&hwc->prev_count, -left);
2122 atomic64_set(&hwc->count, -left);
2123 }
2124
2125 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2126 {
2127 enum hrtimer_restart ret = HRTIMER_RESTART;
2128 struct perf_counter *counter;
2129 struct pt_regs *regs;
2130
2131 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2132 counter->hw_ops->read(counter);
2133
2134 regs = get_irq_regs();
2135 /*
2136 * In case we exclude kernel IPs or are somehow not in interrupt
2137 * context, provide the next best thing, the user IP.
2138 */
2139 if ((counter->hw_event.exclude_kernel || !regs) &&
2140 !counter->hw_event.exclude_user)
2141 regs = task_pt_regs(current);
2142
2143 if (regs) {
2144 if (perf_counter_overflow(counter, 0, regs))
2145 ret = HRTIMER_NORESTART;
2146 }
2147
2148 hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
2149
2150 return ret;
2151 }
2152
2153 static void perf_swcounter_overflow(struct perf_counter *counter,
2154 int nmi, struct pt_regs *regs)
2155 {
2156 perf_swcounter_update(counter);
2157 perf_swcounter_set_period(counter);
2158 if (perf_counter_overflow(counter, nmi, regs))
2159 /* soft-disable the counter */
2160 ;
2161
2162 }
2163
2164 static int perf_swcounter_match(struct perf_counter *counter,
2165 enum perf_event_types type,
2166 u32 event, struct pt_regs *regs)
2167 {
2168 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2169 return 0;
2170
2171 if (perf_event_raw(&counter->hw_event))
2172 return 0;
2173
2174 if (perf_event_type(&counter->hw_event) != type)
2175 return 0;
2176
2177 if (perf_event_id(&counter->hw_event) != event)
2178 return 0;
2179
2180 if (counter->hw_event.exclude_user && user_mode(regs))
2181 return 0;
2182
2183 if (counter->hw_event.exclude_kernel && !user_mode(regs))
2184 return 0;
2185
2186 return 1;
2187 }
2188
2189 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2190 int nmi, struct pt_regs *regs)
2191 {
2192 int neg = atomic64_add_negative(nr, &counter->hw.count);
2193 if (counter->hw.irq_period && !neg)
2194 perf_swcounter_overflow(counter, nmi, regs);
2195 }
2196
2197 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2198 enum perf_event_types type, u32 event,
2199 u64 nr, int nmi, struct pt_regs *regs)
2200 {
2201 struct perf_counter *counter;
2202
2203 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2204 return;
2205
2206 rcu_read_lock();
2207 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2208 if (perf_swcounter_match(counter, type, event, regs))
2209 perf_swcounter_add(counter, nr, nmi, regs);
2210 }
2211 rcu_read_unlock();
2212 }
2213
2214 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2215 {
2216 if (in_nmi())
2217 return &cpuctx->recursion[3];
2218
2219 if (in_irq())
2220 return &cpuctx->recursion[2];
2221
2222 if (in_softirq())
2223 return &cpuctx->recursion[1];
2224
2225 return &cpuctx->recursion[0];
2226 }
2227
2228 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2229 u64 nr, int nmi, struct pt_regs *regs)
2230 {
2231 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2232 int *recursion = perf_swcounter_recursion_context(cpuctx);
2233
2234 if (*recursion)
2235 goto out;
2236
2237 (*recursion)++;
2238 barrier();
2239
2240 perf_swcounter_ctx_event(&cpuctx->ctx, type, event, nr, nmi, regs);
2241 if (cpuctx->task_ctx) {
2242 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2243 nr, nmi, regs);
2244 }
2245
2246 barrier();
2247 (*recursion)--;
2248
2249 out:
2250 put_cpu_var(perf_cpu_context);
2251 }
2252
2253 void perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs)
2254 {
2255 __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs);
2256 }
2257
2258 static void perf_swcounter_read(struct perf_counter *counter)
2259 {
2260 perf_swcounter_update(counter);
2261 }
2262
2263 static int perf_swcounter_enable(struct perf_counter *counter)
2264 {
2265 perf_swcounter_set_period(counter);
2266 return 0;
2267 }
2268
2269 static void perf_swcounter_disable(struct perf_counter *counter)
2270 {
2271 perf_swcounter_update(counter);
2272 }
2273
2274 static const struct hw_perf_counter_ops perf_ops_generic = {
2275 .enable = perf_swcounter_enable,
2276 .disable = perf_swcounter_disable,
2277 .read = perf_swcounter_read,
2278 };
2279
2280 /*
2281 * Software counter: cpu wall time clock
2282 */
2283
2284 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2285 {
2286 int cpu = raw_smp_processor_id();
2287 s64 prev;
2288 u64 now;
2289
2290 now = cpu_clock(cpu);
2291 prev = atomic64_read(&counter->hw.prev_count);
2292 atomic64_set(&counter->hw.prev_count, now);
2293 atomic64_add(now - prev, &counter->count);
2294 }
2295
2296 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2297 {
2298 struct hw_perf_counter *hwc = &counter->hw;
2299 int cpu = raw_smp_processor_id();
2300
2301 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2302 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2303 hwc->hrtimer.function = perf_swcounter_hrtimer;
2304 if (hwc->irq_period) {
2305 __hrtimer_start_range_ns(&hwc->hrtimer,
2306 ns_to_ktime(hwc->irq_period), 0,
2307 HRTIMER_MODE_REL, 0);
2308 }
2309
2310 return 0;
2311 }
2312
2313 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2314 {
2315 hrtimer_cancel(&counter->hw.hrtimer);
2316 cpu_clock_perf_counter_update(counter);
2317 }
2318
2319 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2320 {
2321 cpu_clock_perf_counter_update(counter);
2322 }
2323
2324 static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
2325 .enable = cpu_clock_perf_counter_enable,
2326 .disable = cpu_clock_perf_counter_disable,
2327 .read = cpu_clock_perf_counter_read,
2328 };
2329
2330 /*
2331 * Software counter: task time clock
2332 */
2333
2334 static void task_clock_perf_counter_update(struct perf_counter *counter)
2335 {
2336 u64 prev, now;
2337 s64 delta;
2338
2339 update_context_time(counter->ctx);
2340 now = counter->ctx->time;
2341
2342 prev = atomic64_xchg(&counter->hw.prev_count, now);
2343 delta = now - prev;
2344 atomic64_add(delta, &counter->count);
2345 }
2346
2347 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2348 {
2349 struct hw_perf_counter *hwc = &counter->hw;
2350 u64 now;
2351
2352 update_context_time(counter->ctx);
2353 now = counter->ctx->time;
2354
2355 atomic64_set(&hwc->prev_count, now);
2356 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2357 hwc->hrtimer.function = perf_swcounter_hrtimer;
2358 if (hwc->irq_period) {
2359 __hrtimer_start_range_ns(&hwc->hrtimer,
2360 ns_to_ktime(hwc->irq_period), 0,
2361 HRTIMER_MODE_REL, 0);
2362 }
2363
2364 return 0;
2365 }
2366
2367 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2368 {
2369 hrtimer_cancel(&counter->hw.hrtimer);
2370 task_clock_perf_counter_update(counter);
2371 }
2372
2373 static void task_clock_perf_counter_read(struct perf_counter *counter)
2374 {
2375 task_clock_perf_counter_update(counter);
2376 }
2377
2378 static const struct hw_perf_counter_ops perf_ops_task_clock = {
2379 .enable = task_clock_perf_counter_enable,
2380 .disable = task_clock_perf_counter_disable,
2381 .read = task_clock_perf_counter_read,
2382 };
2383
2384 /*
2385 * Software counter: cpu migrations
2386 */
2387
2388 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2389 {
2390 struct task_struct *curr = counter->ctx->task;
2391
2392 if (curr)
2393 return curr->se.nr_migrations;
2394 return cpu_nr_migrations(smp_processor_id());
2395 }
2396
2397 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2398 {
2399 u64 prev, now;
2400 s64 delta;
2401
2402 prev = atomic64_read(&counter->hw.prev_count);
2403 now = get_cpu_migrations(counter);
2404
2405 atomic64_set(&counter->hw.prev_count, now);
2406
2407 delta = now - prev;
2408
2409 atomic64_add(delta, &counter->count);
2410 }
2411
2412 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2413 {
2414 cpu_migrations_perf_counter_update(counter);
2415 }
2416
2417 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2418 {
2419 if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2420 atomic64_set(&counter->hw.prev_count,
2421 get_cpu_migrations(counter));
2422 return 0;
2423 }
2424
2425 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2426 {
2427 cpu_migrations_perf_counter_update(counter);
2428 }
2429
2430 static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
2431 .enable = cpu_migrations_perf_counter_enable,
2432 .disable = cpu_migrations_perf_counter_disable,
2433 .read = cpu_migrations_perf_counter_read,
2434 };
2435
2436 #ifdef CONFIG_EVENT_PROFILE
2437 void perf_tpcounter_event(int event_id)
2438 {
2439 struct pt_regs *regs = get_irq_regs();
2440
2441 if (!regs)
2442 regs = task_pt_regs(current);
2443
2444 __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs);
2445 }
2446
2447 extern int ftrace_profile_enable(int);
2448 extern void ftrace_profile_disable(int);
2449
2450 static void tp_perf_counter_destroy(struct perf_counter *counter)
2451 {
2452 ftrace_profile_disable(perf_event_id(&counter->hw_event));
2453 }
2454
2455 static const struct hw_perf_counter_ops *
2456 tp_perf_counter_init(struct perf_counter *counter)
2457 {
2458 int event_id = perf_event_id(&counter->hw_event);
2459 int ret;
2460
2461 ret = ftrace_profile_enable(event_id);
2462 if (ret)
2463 return NULL;
2464
2465 counter->destroy = tp_perf_counter_destroy;
2466 counter->hw.irq_period = counter->hw_event.irq_period;
2467
2468 return &perf_ops_generic;
2469 }
2470 #else
2471 static const struct hw_perf_counter_ops *
2472 tp_perf_counter_init(struct perf_counter *counter)
2473 {
2474 return NULL;
2475 }
2476 #endif
2477
2478 static const struct hw_perf_counter_ops *
2479 sw_perf_counter_init(struct perf_counter *counter)
2480 {
2481 struct perf_counter_hw_event *hw_event = &counter->hw_event;
2482 const struct hw_perf_counter_ops *hw_ops = NULL;
2483 struct hw_perf_counter *hwc = &counter->hw;
2484
2485 /*
2486 * Software counters (currently) can't in general distinguish
2487 * between user, kernel and hypervisor events.
2488 * However, context switches and cpu migrations are considered
2489 * to be kernel events, and page faults are never hypervisor
2490 * events.
2491 */
2492 switch (perf_event_id(&counter->hw_event)) {
2493 case PERF_COUNT_CPU_CLOCK:
2494 hw_ops = &perf_ops_cpu_clock;
2495
2496 if (hw_event->irq_period && hw_event->irq_period < 10000)
2497 hw_event->irq_period = 10000;
2498 break;
2499 case PERF_COUNT_TASK_CLOCK:
2500 /*
2501 * If the user instantiates this as a per-cpu counter,
2502 * use the cpu_clock counter instead.
2503 */
2504 if (counter->ctx->task)
2505 hw_ops = &perf_ops_task_clock;
2506 else
2507 hw_ops = &perf_ops_cpu_clock;
2508
2509 if (hw_event->irq_period && hw_event->irq_period < 10000)
2510 hw_event->irq_period = 10000;
2511 break;
2512 case PERF_COUNT_PAGE_FAULTS:
2513 case PERF_COUNT_PAGE_FAULTS_MIN:
2514 case PERF_COUNT_PAGE_FAULTS_MAJ:
2515 case PERF_COUNT_CONTEXT_SWITCHES:
2516 hw_ops = &perf_ops_generic;
2517 break;
2518 case PERF_COUNT_CPU_MIGRATIONS:
2519 if (!counter->hw_event.exclude_kernel)
2520 hw_ops = &perf_ops_cpu_migrations;
2521 break;
2522 }
2523
2524 if (hw_ops)
2525 hwc->irq_period = hw_event->irq_period;
2526
2527 return hw_ops;
2528 }
2529
2530 /*
2531 * Allocate and initialize a counter structure
2532 */
2533 static struct perf_counter *
2534 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
2535 int cpu,
2536 struct perf_counter_context *ctx,
2537 struct perf_counter *group_leader,
2538 gfp_t gfpflags)
2539 {
2540 const struct hw_perf_counter_ops *hw_ops;
2541 struct perf_counter *counter;
2542 long err;
2543
2544 counter = kzalloc(sizeof(*counter), gfpflags);
2545 if (!counter)
2546 return ERR_PTR(-ENOMEM);
2547
2548 /*
2549 * Single counters are their own group leaders, with an
2550 * empty sibling list:
2551 */
2552 if (!group_leader)
2553 group_leader = counter;
2554
2555 mutex_init(&counter->mutex);
2556 INIT_LIST_HEAD(&counter->list_entry);
2557 INIT_LIST_HEAD(&counter->event_entry);
2558 INIT_LIST_HEAD(&counter->sibling_list);
2559 init_waitqueue_head(&counter->waitq);
2560
2561 mutex_init(&counter->mmap_mutex);
2562
2563 INIT_LIST_HEAD(&counter->child_list);
2564
2565 counter->cpu = cpu;
2566 counter->hw_event = *hw_event;
2567 counter->group_leader = group_leader;
2568 counter->hw_ops = NULL;
2569 counter->ctx = ctx;
2570
2571 counter->state = PERF_COUNTER_STATE_INACTIVE;
2572 if (hw_event->disabled)
2573 counter->state = PERF_COUNTER_STATE_OFF;
2574
2575 hw_ops = NULL;
2576
2577 if (perf_event_raw(hw_event)) {
2578 hw_ops = hw_perf_counter_init(counter);
2579 goto done;
2580 }
2581
2582 switch (perf_event_type(hw_event)) {
2583 case PERF_TYPE_HARDWARE:
2584 hw_ops = hw_perf_counter_init(counter);
2585 break;
2586
2587 case PERF_TYPE_SOFTWARE:
2588 hw_ops = sw_perf_counter_init(counter);
2589 break;
2590
2591 case PERF_TYPE_TRACEPOINT:
2592 hw_ops = tp_perf_counter_init(counter);
2593 break;
2594 }
2595 done:
2596 err = 0;
2597 if (!hw_ops)
2598 err = -EINVAL;
2599 else if (IS_ERR(hw_ops))
2600 err = PTR_ERR(hw_ops);
2601
2602 if (err) {
2603 kfree(counter);
2604 return ERR_PTR(err);
2605 }
2606
2607 counter->hw_ops = hw_ops;
2608
2609 return counter;
2610 }
2611
2612 /**
2613 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
2614 *
2615 * @hw_event_uptr: event type attributes for monitoring/sampling
2616 * @pid: target pid
2617 * @cpu: target cpu
2618 * @group_fd: group leader counter fd
2619 */
2620 SYSCALL_DEFINE5(perf_counter_open,
2621 const struct perf_counter_hw_event __user *, hw_event_uptr,
2622 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
2623 {
2624 struct perf_counter *counter, *group_leader;
2625 struct perf_counter_hw_event hw_event;
2626 struct perf_counter_context *ctx;
2627 struct file *counter_file = NULL;
2628 struct file *group_file = NULL;
2629 int fput_needed = 0;
2630 int fput_needed2 = 0;
2631 int ret;
2632
2633 /* for future expandability... */
2634 if (flags)
2635 return -EINVAL;
2636
2637 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2638 return -EFAULT;
2639
2640 /*
2641 * Get the target context (task or percpu):
2642 */
2643 ctx = find_get_context(pid, cpu);
2644 if (IS_ERR(ctx))
2645 return PTR_ERR(ctx);
2646
2647 /*
2648 * Look up the group leader (we will attach this counter to it):
2649 */
2650 group_leader = NULL;
2651 if (group_fd != -1) {
2652 ret = -EINVAL;
2653 group_file = fget_light(group_fd, &fput_needed);
2654 if (!group_file)
2655 goto err_put_context;
2656 if (group_file->f_op != &perf_fops)
2657 goto err_put_context;
2658
2659 group_leader = group_file->private_data;
2660 /*
2661 * Do not allow a recursive hierarchy (this new sibling
2662 * becoming part of another group-sibling):
2663 */
2664 if (group_leader->group_leader != group_leader)
2665 goto err_put_context;
2666 /*
2667 * Do not allow to attach to a group in a different
2668 * task or CPU context:
2669 */
2670 if (group_leader->ctx != ctx)
2671 goto err_put_context;
2672 /*
2673 * Only a group leader can be exclusive or pinned
2674 */
2675 if (hw_event.exclusive || hw_event.pinned)
2676 goto err_put_context;
2677 }
2678
2679 counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
2680 GFP_KERNEL);
2681 ret = PTR_ERR(counter);
2682 if (IS_ERR(counter))
2683 goto err_put_context;
2684
2685 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
2686 if (ret < 0)
2687 goto err_free_put_context;
2688
2689 counter_file = fget_light(ret, &fput_needed2);
2690 if (!counter_file)
2691 goto err_free_put_context;
2692
2693 counter->filp = counter_file;
2694 mutex_lock(&ctx->mutex);
2695 perf_install_in_context(ctx, counter, cpu);
2696 mutex_unlock(&ctx->mutex);
2697
2698 fput_light(counter_file, fput_needed2);
2699
2700 out_fput:
2701 fput_light(group_file, fput_needed);
2702
2703 return ret;
2704
2705 err_free_put_context:
2706 kfree(counter);
2707
2708 err_put_context:
2709 put_context(ctx);
2710
2711 goto out_fput;
2712 }
2713
2714 /*
2715 * Initialize the perf_counter context in a task_struct:
2716 */
2717 static void
2718 __perf_counter_init_context(struct perf_counter_context *ctx,
2719 struct task_struct *task)
2720 {
2721 memset(ctx, 0, sizeof(*ctx));
2722 spin_lock_init(&ctx->lock);
2723 mutex_init(&ctx->mutex);
2724 INIT_LIST_HEAD(&ctx->counter_list);
2725 INIT_LIST_HEAD(&ctx->event_list);
2726 ctx->task = task;
2727 }
2728
2729 /*
2730 * inherit a counter from parent task to child task:
2731 */
2732 static struct perf_counter *
2733 inherit_counter(struct perf_counter *parent_counter,
2734 struct task_struct *parent,
2735 struct perf_counter_context *parent_ctx,
2736 struct task_struct *child,
2737 struct perf_counter *group_leader,
2738 struct perf_counter_context *child_ctx)
2739 {
2740 struct perf_counter *child_counter;
2741
2742 /*
2743 * Instead of creating recursive hierarchies of counters,
2744 * we link inherited counters back to the original parent,
2745 * which has a filp for sure, which we use as the reference
2746 * count:
2747 */
2748 if (parent_counter->parent)
2749 parent_counter = parent_counter->parent;
2750
2751 child_counter = perf_counter_alloc(&parent_counter->hw_event,
2752 parent_counter->cpu, child_ctx,
2753 group_leader, GFP_KERNEL);
2754 if (IS_ERR(child_counter))
2755 return child_counter;
2756
2757 /*
2758 * Link it up in the child's context:
2759 */
2760 child_counter->task = child;
2761 add_counter_to_ctx(child_counter, child_ctx);
2762
2763 child_counter->parent = parent_counter;
2764 /*
2765 * inherit into child's child as well:
2766 */
2767 child_counter->hw_event.inherit = 1;
2768
2769 /*
2770 * Get a reference to the parent filp - we will fput it
2771 * when the child counter exits. This is safe to do because
2772 * we are in the parent and we know that the filp still
2773 * exists and has a nonzero count:
2774 */
2775 atomic_long_inc(&parent_counter->filp->f_count);
2776
2777 /*
2778 * Link this into the parent counter's child list
2779 */
2780 mutex_lock(&parent_counter->mutex);
2781 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
2782
2783 /*
2784 * Make the child state follow the state of the parent counter,
2785 * not its hw_event.disabled bit. We hold the parent's mutex,
2786 * so we won't race with perf_counter_{en,dis}able_family.
2787 */
2788 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
2789 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
2790 else
2791 child_counter->state = PERF_COUNTER_STATE_OFF;
2792
2793 mutex_unlock(&parent_counter->mutex);
2794
2795 return child_counter;
2796 }
2797
2798 static int inherit_group(struct perf_counter *parent_counter,
2799 struct task_struct *parent,
2800 struct perf_counter_context *parent_ctx,
2801 struct task_struct *child,
2802 struct perf_counter_context *child_ctx)
2803 {
2804 struct perf_counter *leader;
2805 struct perf_counter *sub;
2806 struct perf_counter *child_ctr;
2807
2808 leader = inherit_counter(parent_counter, parent, parent_ctx,
2809 child, NULL, child_ctx);
2810 if (IS_ERR(leader))
2811 return PTR_ERR(leader);
2812 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
2813 child_ctr = inherit_counter(sub, parent, parent_ctx,
2814 child, leader, child_ctx);
2815 if (IS_ERR(child_ctr))
2816 return PTR_ERR(child_ctr);
2817 }
2818 return 0;
2819 }
2820
2821 static void sync_child_counter(struct perf_counter *child_counter,
2822 struct perf_counter *parent_counter)
2823 {
2824 u64 parent_val, child_val;
2825
2826 parent_val = atomic64_read(&parent_counter->count);
2827 child_val = atomic64_read(&child_counter->count);
2828
2829 /*
2830 * Add back the child's count to the parent's count:
2831 */
2832 atomic64_add(child_val, &parent_counter->count);
2833 atomic64_add(child_counter->total_time_enabled,
2834 &parent_counter->child_total_time_enabled);
2835 atomic64_add(child_counter->total_time_running,
2836 &parent_counter->child_total_time_running);
2837
2838 /*
2839 * Remove this counter from the parent's list
2840 */
2841 mutex_lock(&parent_counter->mutex);
2842 list_del_init(&child_counter->child_list);
2843 mutex_unlock(&parent_counter->mutex);
2844
2845 /*
2846 * Release the parent counter, if this was the last
2847 * reference to it.
2848 */
2849 fput(parent_counter->filp);
2850 }
2851
2852 static void
2853 __perf_counter_exit_task(struct task_struct *child,
2854 struct perf_counter *child_counter,
2855 struct perf_counter_context *child_ctx)
2856 {
2857 struct perf_counter *parent_counter;
2858 struct perf_counter *sub, *tmp;
2859
2860 /*
2861 * If we do not self-reap then we have to wait for the
2862 * child task to unschedule (it will happen for sure),
2863 * so that its counter is at its final count. (This
2864 * condition triggers rarely - child tasks usually get
2865 * off their CPU before the parent has a chance to
2866 * get this far into the reaping action)
2867 */
2868 if (child != current) {
2869 wait_task_inactive(child, 0);
2870 list_del_init(&child_counter->list_entry);
2871 update_counter_times(child_counter);
2872 } else {
2873 struct perf_cpu_context *cpuctx;
2874 unsigned long flags;
2875 u64 perf_flags;
2876
2877 /*
2878 * Disable and unlink this counter.
2879 *
2880 * Be careful about zapping the list - IRQ/NMI context
2881 * could still be processing it:
2882 */
2883 local_irq_save(flags);
2884 perf_flags = hw_perf_save_disable();
2885
2886 cpuctx = &__get_cpu_var(perf_cpu_context);
2887
2888 group_sched_out(child_counter, cpuctx, child_ctx);
2889 update_counter_times(child_counter);
2890
2891 list_del_init(&child_counter->list_entry);
2892
2893 child_ctx->nr_counters--;
2894
2895 hw_perf_restore(perf_flags);
2896 local_irq_restore(flags);
2897 }
2898
2899 parent_counter = child_counter->parent;
2900 /*
2901 * It can happen that parent exits first, and has counters
2902 * that are still around due to the child reference. These
2903 * counters need to be zapped - but otherwise linger.
2904 */
2905 if (parent_counter) {
2906 sync_child_counter(child_counter, parent_counter);
2907 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
2908 list_entry) {
2909 if (sub->parent) {
2910 sync_child_counter(sub, sub->parent);
2911 free_counter(sub);
2912 }
2913 }
2914 free_counter(child_counter);
2915 }
2916 }
2917
2918 /*
2919 * When a child task exits, feed back counter values to parent counters.
2920 *
2921 * Note: we may be running in child context, but the PID is not hashed
2922 * anymore so new counters will not be added.
2923 */
2924 void perf_counter_exit_task(struct task_struct *child)
2925 {
2926 struct perf_counter *child_counter, *tmp;
2927 struct perf_counter_context *child_ctx;
2928
2929 child_ctx = &child->perf_counter_ctx;
2930
2931 if (likely(!child_ctx->nr_counters))
2932 return;
2933
2934 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
2935 list_entry)
2936 __perf_counter_exit_task(child, child_counter, child_ctx);
2937 }
2938
2939 /*
2940 * Initialize the perf_counter context in task_struct
2941 */
2942 void perf_counter_init_task(struct task_struct *child)
2943 {
2944 struct perf_counter_context *child_ctx, *parent_ctx;
2945 struct perf_counter *counter;
2946 struct task_struct *parent = current;
2947
2948 child_ctx = &child->perf_counter_ctx;
2949 parent_ctx = &parent->perf_counter_ctx;
2950
2951 __perf_counter_init_context(child_ctx, child);
2952
2953 /*
2954 * This is executed from the parent task context, so inherit
2955 * counters that have been marked for cloning:
2956 */
2957
2958 if (likely(!parent_ctx->nr_counters))
2959 return;
2960
2961 /*
2962 * Lock the parent list. No need to lock the child - not PID
2963 * hashed yet and not running, so nobody can access it.
2964 */
2965 mutex_lock(&parent_ctx->mutex);
2966
2967 /*
2968 * We dont have to disable NMIs - we are only looking at
2969 * the list, not manipulating it:
2970 */
2971 list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
2972 if (!counter->hw_event.inherit)
2973 continue;
2974
2975 if (inherit_group(counter, parent,
2976 parent_ctx, child, child_ctx))
2977 break;
2978 }
2979
2980 mutex_unlock(&parent_ctx->mutex);
2981 }
2982
2983 static void __cpuinit perf_counter_init_cpu(int cpu)
2984 {
2985 struct perf_cpu_context *cpuctx;
2986
2987 cpuctx = &per_cpu(perf_cpu_context, cpu);
2988 __perf_counter_init_context(&cpuctx->ctx, NULL);
2989
2990 mutex_lock(&perf_resource_mutex);
2991 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
2992 mutex_unlock(&perf_resource_mutex);
2993
2994 hw_perf_counter_setup(cpu);
2995 }
2996
2997 #ifdef CONFIG_HOTPLUG_CPU
2998 static void __perf_counter_exit_cpu(void *info)
2999 {
3000 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3001 struct perf_counter_context *ctx = &cpuctx->ctx;
3002 struct perf_counter *counter, *tmp;
3003
3004 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3005 __perf_counter_remove_from_context(counter);
3006 }
3007 static void perf_counter_exit_cpu(int cpu)
3008 {
3009 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3010 struct perf_counter_context *ctx = &cpuctx->ctx;
3011
3012 mutex_lock(&ctx->mutex);
3013 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3014 mutex_unlock(&ctx->mutex);
3015 }
3016 #else
3017 static inline void perf_counter_exit_cpu(int cpu) { }
3018 #endif
3019
3020 static int __cpuinit
3021 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3022 {
3023 unsigned int cpu = (long)hcpu;
3024
3025 switch (action) {
3026
3027 case CPU_UP_PREPARE:
3028 case CPU_UP_PREPARE_FROZEN:
3029 perf_counter_init_cpu(cpu);
3030 break;
3031
3032 case CPU_DOWN_PREPARE:
3033 case CPU_DOWN_PREPARE_FROZEN:
3034 perf_counter_exit_cpu(cpu);
3035 break;
3036
3037 default:
3038 break;
3039 }
3040
3041 return NOTIFY_OK;
3042 }
3043
3044 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3045 .notifier_call = perf_cpu_notify,
3046 };
3047
3048 static int __init perf_counter_init(void)
3049 {
3050 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3051 (void *)(long)smp_processor_id());
3052 register_cpu_notifier(&perf_cpu_nb);
3053
3054 return 0;
3055 }
3056 early_initcall(perf_counter_init);
3057
3058 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3059 {
3060 return sprintf(buf, "%d\n", perf_reserved_percpu);
3061 }
3062
3063 static ssize_t
3064 perf_set_reserve_percpu(struct sysdev_class *class,
3065 const char *buf,
3066 size_t count)
3067 {
3068 struct perf_cpu_context *cpuctx;
3069 unsigned long val;
3070 int err, cpu, mpt;
3071
3072 err = strict_strtoul(buf, 10, &val);
3073 if (err)
3074 return err;
3075 if (val > perf_max_counters)
3076 return -EINVAL;
3077
3078 mutex_lock(&perf_resource_mutex);
3079 perf_reserved_percpu = val;
3080 for_each_online_cpu(cpu) {
3081 cpuctx = &per_cpu(perf_cpu_context, cpu);
3082 spin_lock_irq(&cpuctx->ctx.lock);
3083 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3084 perf_max_counters - perf_reserved_percpu);
3085 cpuctx->max_pertask = mpt;
3086 spin_unlock_irq(&cpuctx->ctx.lock);
3087 }
3088 mutex_unlock(&perf_resource_mutex);
3089
3090 return count;
3091 }
3092
3093 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3094 {
3095 return sprintf(buf, "%d\n", perf_overcommit);
3096 }
3097
3098 static ssize_t
3099 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3100 {
3101 unsigned long val;
3102 int err;
3103
3104 err = strict_strtoul(buf, 10, &val);
3105 if (err)
3106 return err;
3107 if (val > 1)
3108 return -EINVAL;
3109
3110 mutex_lock(&perf_resource_mutex);
3111 perf_overcommit = val;
3112 mutex_unlock(&perf_resource_mutex);
3113
3114 return count;
3115 }
3116
3117 static SYSDEV_CLASS_ATTR(
3118 reserve_percpu,
3119 0644,
3120 perf_show_reserve_percpu,
3121 perf_set_reserve_percpu
3122 );
3123
3124 static SYSDEV_CLASS_ATTR(
3125 overcommit,
3126 0644,
3127 perf_show_overcommit,
3128 perf_set_overcommit
3129 );
3130
3131 static struct attribute *perfclass_attrs[] = {
3132 &attr_reserve_percpu.attr,
3133 &attr_overcommit.attr,
3134 NULL
3135 };
3136
3137 static struct attribute_group perfclass_attr_group = {
3138 .attrs = perfclass_attrs,
3139 .name = "perf_counters",
3140 };
3141
3142 static int __init perf_counter_sysfs_init(void)
3143 {
3144 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3145 &perfclass_attr_group);
3146 }
3147 device_initcall(perf_counter_sysfs_init);
This page took 0.117586 seconds and 6 git commands to generate.