Merge branch 'pm-upstream/fixes' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/hardirq.h>
24 #include <linux/rculist.h>
25 #include <linux/uaccess.h>
26 #include <linux/syscalls.h>
27 #include <linux/anon_inodes.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/perf_counter.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34 * Each CPU has a list of per CPU counters:
35 */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_counters __read_mostly;
44 static atomic_t nr_comm_counters __read_mostly;
45 static atomic_t nr_task_counters __read_mostly;
46
47 /*
48 * perf counter paranoia level:
49 * 0 - not paranoid
50 * 1 - disallow cpu counters to unpriv
51 * 2 - disallow kernel profiling to unpriv
52 */
53 int sysctl_perf_counter_paranoid __read_mostly;
54
55 static inline bool perf_paranoid_cpu(void)
56 {
57 return sysctl_perf_counter_paranoid > 0;
58 }
59
60 static inline bool perf_paranoid_kernel(void)
61 {
62 return sysctl_perf_counter_paranoid > 1;
63 }
64
65 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
66
67 /*
68 * max perf counter sample rate
69 */
70 int sysctl_perf_counter_sample_rate __read_mostly = 100000;
71
72 static atomic64_t perf_counter_id;
73
74 /*
75 * Lock for (sysadmin-configurable) counter reservations:
76 */
77 static DEFINE_SPINLOCK(perf_resource_lock);
78
79 /*
80 * Architecture provided APIs - weak aliases:
81 */
82 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
83 {
84 return NULL;
85 }
86
87 void __weak hw_perf_disable(void) { barrier(); }
88 void __weak hw_perf_enable(void) { barrier(); }
89
90 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
91
92 int __weak
93 hw_perf_group_sched_in(struct perf_counter *group_leader,
94 struct perf_cpu_context *cpuctx,
95 struct perf_counter_context *ctx, int cpu)
96 {
97 return 0;
98 }
99
100 void __weak perf_counter_print_debug(void) { }
101
102 static DEFINE_PER_CPU(int, disable_count);
103
104 void __perf_disable(void)
105 {
106 __get_cpu_var(disable_count)++;
107 }
108
109 bool __perf_enable(void)
110 {
111 return !--__get_cpu_var(disable_count);
112 }
113
114 void perf_disable(void)
115 {
116 __perf_disable();
117 hw_perf_disable();
118 }
119
120 void perf_enable(void)
121 {
122 if (__perf_enable())
123 hw_perf_enable();
124 }
125
126 static void get_ctx(struct perf_counter_context *ctx)
127 {
128 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
129 }
130
131 static void free_ctx(struct rcu_head *head)
132 {
133 struct perf_counter_context *ctx;
134
135 ctx = container_of(head, struct perf_counter_context, rcu_head);
136 kfree(ctx);
137 }
138
139 static void put_ctx(struct perf_counter_context *ctx)
140 {
141 if (atomic_dec_and_test(&ctx->refcount)) {
142 if (ctx->parent_ctx)
143 put_ctx(ctx->parent_ctx);
144 if (ctx->task)
145 put_task_struct(ctx->task);
146 call_rcu(&ctx->rcu_head, free_ctx);
147 }
148 }
149
150 static void unclone_ctx(struct perf_counter_context *ctx)
151 {
152 if (ctx->parent_ctx) {
153 put_ctx(ctx->parent_ctx);
154 ctx->parent_ctx = NULL;
155 }
156 }
157
158 /*
159 * If we inherit counters we want to return the parent counter id
160 * to userspace.
161 */
162 static u64 primary_counter_id(struct perf_counter *counter)
163 {
164 u64 id = counter->id;
165
166 if (counter->parent)
167 id = counter->parent->id;
168
169 return id;
170 }
171
172 /*
173 * Get the perf_counter_context for a task and lock it.
174 * This has to cope with with the fact that until it is locked,
175 * the context could get moved to another task.
176 */
177 static struct perf_counter_context *
178 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
179 {
180 struct perf_counter_context *ctx;
181
182 rcu_read_lock();
183 retry:
184 ctx = rcu_dereference(task->perf_counter_ctxp);
185 if (ctx) {
186 /*
187 * If this context is a clone of another, it might
188 * get swapped for another underneath us by
189 * perf_counter_task_sched_out, though the
190 * rcu_read_lock() protects us from any context
191 * getting freed. Lock the context and check if it
192 * got swapped before we could get the lock, and retry
193 * if so. If we locked the right context, then it
194 * can't get swapped on us any more.
195 */
196 spin_lock_irqsave(&ctx->lock, *flags);
197 if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
198 spin_unlock_irqrestore(&ctx->lock, *flags);
199 goto retry;
200 }
201
202 if (!atomic_inc_not_zero(&ctx->refcount)) {
203 spin_unlock_irqrestore(&ctx->lock, *flags);
204 ctx = NULL;
205 }
206 }
207 rcu_read_unlock();
208 return ctx;
209 }
210
211 /*
212 * Get the context for a task and increment its pin_count so it
213 * can't get swapped to another task. This also increments its
214 * reference count so that the context can't get freed.
215 */
216 static struct perf_counter_context *perf_pin_task_context(struct task_struct *task)
217 {
218 struct perf_counter_context *ctx;
219 unsigned long flags;
220
221 ctx = perf_lock_task_context(task, &flags);
222 if (ctx) {
223 ++ctx->pin_count;
224 spin_unlock_irqrestore(&ctx->lock, flags);
225 }
226 return ctx;
227 }
228
229 static void perf_unpin_context(struct perf_counter_context *ctx)
230 {
231 unsigned long flags;
232
233 spin_lock_irqsave(&ctx->lock, flags);
234 --ctx->pin_count;
235 spin_unlock_irqrestore(&ctx->lock, flags);
236 put_ctx(ctx);
237 }
238
239 /*
240 * Add a counter from the lists for its context.
241 * Must be called with ctx->mutex and ctx->lock held.
242 */
243 static void
244 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
245 {
246 struct perf_counter *group_leader = counter->group_leader;
247
248 /*
249 * Depending on whether it is a standalone or sibling counter,
250 * add it straight to the context's counter list, or to the group
251 * leader's sibling list:
252 */
253 if (group_leader == counter)
254 list_add_tail(&counter->list_entry, &ctx->counter_list);
255 else {
256 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
257 group_leader->nr_siblings++;
258 }
259
260 list_add_rcu(&counter->event_entry, &ctx->event_list);
261 ctx->nr_counters++;
262 if (counter->attr.inherit_stat)
263 ctx->nr_stat++;
264 }
265
266 /*
267 * Remove a counter from the lists for its context.
268 * Must be called with ctx->mutex and ctx->lock held.
269 */
270 static void
271 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
272 {
273 struct perf_counter *sibling, *tmp;
274
275 if (list_empty(&counter->list_entry))
276 return;
277 ctx->nr_counters--;
278 if (counter->attr.inherit_stat)
279 ctx->nr_stat--;
280
281 list_del_init(&counter->list_entry);
282 list_del_rcu(&counter->event_entry);
283
284 if (counter->group_leader != counter)
285 counter->group_leader->nr_siblings--;
286
287 /*
288 * If this was a group counter with sibling counters then
289 * upgrade the siblings to singleton counters by adding them
290 * to the context list directly:
291 */
292 list_for_each_entry_safe(sibling, tmp,
293 &counter->sibling_list, list_entry) {
294
295 list_move_tail(&sibling->list_entry, &ctx->counter_list);
296 sibling->group_leader = sibling;
297 }
298 }
299
300 static void
301 counter_sched_out(struct perf_counter *counter,
302 struct perf_cpu_context *cpuctx,
303 struct perf_counter_context *ctx)
304 {
305 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
306 return;
307
308 counter->state = PERF_COUNTER_STATE_INACTIVE;
309 counter->tstamp_stopped = ctx->time;
310 counter->pmu->disable(counter);
311 counter->oncpu = -1;
312
313 if (!is_software_counter(counter))
314 cpuctx->active_oncpu--;
315 ctx->nr_active--;
316 if (counter->attr.exclusive || !cpuctx->active_oncpu)
317 cpuctx->exclusive = 0;
318 }
319
320 static void
321 group_sched_out(struct perf_counter *group_counter,
322 struct perf_cpu_context *cpuctx,
323 struct perf_counter_context *ctx)
324 {
325 struct perf_counter *counter;
326
327 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
328 return;
329
330 counter_sched_out(group_counter, cpuctx, ctx);
331
332 /*
333 * Schedule out siblings (if any):
334 */
335 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
336 counter_sched_out(counter, cpuctx, ctx);
337
338 if (group_counter->attr.exclusive)
339 cpuctx->exclusive = 0;
340 }
341
342 /*
343 * Cross CPU call to remove a performance counter
344 *
345 * We disable the counter on the hardware level first. After that we
346 * remove it from the context list.
347 */
348 static void __perf_counter_remove_from_context(void *info)
349 {
350 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
351 struct perf_counter *counter = info;
352 struct perf_counter_context *ctx = counter->ctx;
353
354 /*
355 * If this is a task context, we need to check whether it is
356 * the current task context of this cpu. If not it has been
357 * scheduled out before the smp call arrived.
358 */
359 if (ctx->task && cpuctx->task_ctx != ctx)
360 return;
361
362 spin_lock(&ctx->lock);
363 /*
364 * Protect the list operation against NMI by disabling the
365 * counters on a global level.
366 */
367 perf_disable();
368
369 counter_sched_out(counter, cpuctx, ctx);
370
371 list_del_counter(counter, ctx);
372
373 if (!ctx->task) {
374 /*
375 * Allow more per task counters with respect to the
376 * reservation:
377 */
378 cpuctx->max_pertask =
379 min(perf_max_counters - ctx->nr_counters,
380 perf_max_counters - perf_reserved_percpu);
381 }
382
383 perf_enable();
384 spin_unlock(&ctx->lock);
385 }
386
387
388 /*
389 * Remove the counter from a task's (or a CPU's) list of counters.
390 *
391 * Must be called with ctx->mutex held.
392 *
393 * CPU counters are removed with a smp call. For task counters we only
394 * call when the task is on a CPU.
395 *
396 * If counter->ctx is a cloned context, callers must make sure that
397 * every task struct that counter->ctx->task could possibly point to
398 * remains valid. This is OK when called from perf_release since
399 * that only calls us on the top-level context, which can't be a clone.
400 * When called from perf_counter_exit_task, it's OK because the
401 * context has been detached from its task.
402 */
403 static void perf_counter_remove_from_context(struct perf_counter *counter)
404 {
405 struct perf_counter_context *ctx = counter->ctx;
406 struct task_struct *task = ctx->task;
407
408 if (!task) {
409 /*
410 * Per cpu counters are removed via an smp call and
411 * the removal is always sucessful.
412 */
413 smp_call_function_single(counter->cpu,
414 __perf_counter_remove_from_context,
415 counter, 1);
416 return;
417 }
418
419 retry:
420 task_oncpu_function_call(task, __perf_counter_remove_from_context,
421 counter);
422
423 spin_lock_irq(&ctx->lock);
424 /*
425 * If the context is active we need to retry the smp call.
426 */
427 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
428 spin_unlock_irq(&ctx->lock);
429 goto retry;
430 }
431
432 /*
433 * The lock prevents that this context is scheduled in so we
434 * can remove the counter safely, if the call above did not
435 * succeed.
436 */
437 if (!list_empty(&counter->list_entry)) {
438 list_del_counter(counter, ctx);
439 }
440 spin_unlock_irq(&ctx->lock);
441 }
442
443 static inline u64 perf_clock(void)
444 {
445 return cpu_clock(smp_processor_id());
446 }
447
448 /*
449 * Update the record of the current time in a context.
450 */
451 static void update_context_time(struct perf_counter_context *ctx)
452 {
453 u64 now = perf_clock();
454
455 ctx->time += now - ctx->timestamp;
456 ctx->timestamp = now;
457 }
458
459 /*
460 * Update the total_time_enabled and total_time_running fields for a counter.
461 */
462 static void update_counter_times(struct perf_counter *counter)
463 {
464 struct perf_counter_context *ctx = counter->ctx;
465 u64 run_end;
466
467 if (counter->state < PERF_COUNTER_STATE_INACTIVE)
468 return;
469
470 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
471
472 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
473 run_end = counter->tstamp_stopped;
474 else
475 run_end = ctx->time;
476
477 counter->total_time_running = run_end - counter->tstamp_running;
478 }
479
480 /*
481 * Update total_time_enabled and total_time_running for all counters in a group.
482 */
483 static void update_group_times(struct perf_counter *leader)
484 {
485 struct perf_counter *counter;
486
487 update_counter_times(leader);
488 list_for_each_entry(counter, &leader->sibling_list, list_entry)
489 update_counter_times(counter);
490 }
491
492 /*
493 * Cross CPU call to disable a performance counter
494 */
495 static void __perf_counter_disable(void *info)
496 {
497 struct perf_counter *counter = info;
498 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
499 struct perf_counter_context *ctx = counter->ctx;
500
501 /*
502 * If this is a per-task counter, need to check whether this
503 * counter's task is the current task on this cpu.
504 */
505 if (ctx->task && cpuctx->task_ctx != ctx)
506 return;
507
508 spin_lock(&ctx->lock);
509
510 /*
511 * If the counter is on, turn it off.
512 * If it is in error state, leave it in error state.
513 */
514 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
515 update_context_time(ctx);
516 update_counter_times(counter);
517 if (counter == counter->group_leader)
518 group_sched_out(counter, cpuctx, ctx);
519 else
520 counter_sched_out(counter, cpuctx, ctx);
521 counter->state = PERF_COUNTER_STATE_OFF;
522 }
523
524 spin_unlock(&ctx->lock);
525 }
526
527 /*
528 * Disable a counter.
529 *
530 * If counter->ctx is a cloned context, callers must make sure that
531 * every task struct that counter->ctx->task could possibly point to
532 * remains valid. This condition is satisifed when called through
533 * perf_counter_for_each_child or perf_counter_for_each because they
534 * hold the top-level counter's child_mutex, so any descendant that
535 * goes to exit will block in sync_child_counter.
536 * When called from perf_pending_counter it's OK because counter->ctx
537 * is the current context on this CPU and preemption is disabled,
538 * hence we can't get into perf_counter_task_sched_out for this context.
539 */
540 static void perf_counter_disable(struct perf_counter *counter)
541 {
542 struct perf_counter_context *ctx = counter->ctx;
543 struct task_struct *task = ctx->task;
544
545 if (!task) {
546 /*
547 * Disable the counter on the cpu that it's on
548 */
549 smp_call_function_single(counter->cpu, __perf_counter_disable,
550 counter, 1);
551 return;
552 }
553
554 retry:
555 task_oncpu_function_call(task, __perf_counter_disable, counter);
556
557 spin_lock_irq(&ctx->lock);
558 /*
559 * If the counter is still active, we need to retry the cross-call.
560 */
561 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
562 spin_unlock_irq(&ctx->lock);
563 goto retry;
564 }
565
566 /*
567 * Since we have the lock this context can't be scheduled
568 * in, so we can change the state safely.
569 */
570 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
571 update_counter_times(counter);
572 counter->state = PERF_COUNTER_STATE_OFF;
573 }
574
575 spin_unlock_irq(&ctx->lock);
576 }
577
578 static int
579 counter_sched_in(struct perf_counter *counter,
580 struct perf_cpu_context *cpuctx,
581 struct perf_counter_context *ctx,
582 int cpu)
583 {
584 if (counter->state <= PERF_COUNTER_STATE_OFF)
585 return 0;
586
587 counter->state = PERF_COUNTER_STATE_ACTIVE;
588 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
589 /*
590 * The new state must be visible before we turn it on in the hardware:
591 */
592 smp_wmb();
593
594 if (counter->pmu->enable(counter)) {
595 counter->state = PERF_COUNTER_STATE_INACTIVE;
596 counter->oncpu = -1;
597 return -EAGAIN;
598 }
599
600 counter->tstamp_running += ctx->time - counter->tstamp_stopped;
601
602 if (!is_software_counter(counter))
603 cpuctx->active_oncpu++;
604 ctx->nr_active++;
605
606 if (counter->attr.exclusive)
607 cpuctx->exclusive = 1;
608
609 return 0;
610 }
611
612 static int
613 group_sched_in(struct perf_counter *group_counter,
614 struct perf_cpu_context *cpuctx,
615 struct perf_counter_context *ctx,
616 int cpu)
617 {
618 struct perf_counter *counter, *partial_group;
619 int ret;
620
621 if (group_counter->state == PERF_COUNTER_STATE_OFF)
622 return 0;
623
624 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
625 if (ret)
626 return ret < 0 ? ret : 0;
627
628 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
629 return -EAGAIN;
630
631 /*
632 * Schedule in siblings as one group (if any):
633 */
634 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
635 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
636 partial_group = counter;
637 goto group_error;
638 }
639 }
640
641 return 0;
642
643 group_error:
644 /*
645 * Groups can be scheduled in as one unit only, so undo any
646 * partial group before returning:
647 */
648 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
649 if (counter == partial_group)
650 break;
651 counter_sched_out(counter, cpuctx, ctx);
652 }
653 counter_sched_out(group_counter, cpuctx, ctx);
654
655 return -EAGAIN;
656 }
657
658 /*
659 * Return 1 for a group consisting entirely of software counters,
660 * 0 if the group contains any hardware counters.
661 */
662 static int is_software_only_group(struct perf_counter *leader)
663 {
664 struct perf_counter *counter;
665
666 if (!is_software_counter(leader))
667 return 0;
668
669 list_for_each_entry(counter, &leader->sibling_list, list_entry)
670 if (!is_software_counter(counter))
671 return 0;
672
673 return 1;
674 }
675
676 /*
677 * Work out whether we can put this counter group on the CPU now.
678 */
679 static int group_can_go_on(struct perf_counter *counter,
680 struct perf_cpu_context *cpuctx,
681 int can_add_hw)
682 {
683 /*
684 * Groups consisting entirely of software counters can always go on.
685 */
686 if (is_software_only_group(counter))
687 return 1;
688 /*
689 * If an exclusive group is already on, no other hardware
690 * counters can go on.
691 */
692 if (cpuctx->exclusive)
693 return 0;
694 /*
695 * If this group is exclusive and there are already
696 * counters on the CPU, it can't go on.
697 */
698 if (counter->attr.exclusive && cpuctx->active_oncpu)
699 return 0;
700 /*
701 * Otherwise, try to add it if all previous groups were able
702 * to go on.
703 */
704 return can_add_hw;
705 }
706
707 static void add_counter_to_ctx(struct perf_counter *counter,
708 struct perf_counter_context *ctx)
709 {
710 list_add_counter(counter, ctx);
711 counter->tstamp_enabled = ctx->time;
712 counter->tstamp_running = ctx->time;
713 counter->tstamp_stopped = ctx->time;
714 }
715
716 /*
717 * Cross CPU call to install and enable a performance counter
718 *
719 * Must be called with ctx->mutex held
720 */
721 static void __perf_install_in_context(void *info)
722 {
723 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
724 struct perf_counter *counter = info;
725 struct perf_counter_context *ctx = counter->ctx;
726 struct perf_counter *leader = counter->group_leader;
727 int cpu = smp_processor_id();
728 int err;
729
730 /*
731 * If this is a task context, we need to check whether it is
732 * the current task context of this cpu. If not it has been
733 * scheduled out before the smp call arrived.
734 * Or possibly this is the right context but it isn't
735 * on this cpu because it had no counters.
736 */
737 if (ctx->task && cpuctx->task_ctx != ctx) {
738 if (cpuctx->task_ctx || ctx->task != current)
739 return;
740 cpuctx->task_ctx = ctx;
741 }
742
743 spin_lock(&ctx->lock);
744 ctx->is_active = 1;
745 update_context_time(ctx);
746
747 /*
748 * Protect the list operation against NMI by disabling the
749 * counters on a global level. NOP for non NMI based counters.
750 */
751 perf_disable();
752
753 add_counter_to_ctx(counter, ctx);
754
755 /*
756 * Don't put the counter on if it is disabled or if
757 * it is in a group and the group isn't on.
758 */
759 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
760 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
761 goto unlock;
762
763 /*
764 * An exclusive counter can't go on if there are already active
765 * hardware counters, and no hardware counter can go on if there
766 * is already an exclusive counter on.
767 */
768 if (!group_can_go_on(counter, cpuctx, 1))
769 err = -EEXIST;
770 else
771 err = counter_sched_in(counter, cpuctx, ctx, cpu);
772
773 if (err) {
774 /*
775 * This counter couldn't go on. If it is in a group
776 * then we have to pull the whole group off.
777 * If the counter group is pinned then put it in error state.
778 */
779 if (leader != counter)
780 group_sched_out(leader, cpuctx, ctx);
781 if (leader->attr.pinned) {
782 update_group_times(leader);
783 leader->state = PERF_COUNTER_STATE_ERROR;
784 }
785 }
786
787 if (!err && !ctx->task && cpuctx->max_pertask)
788 cpuctx->max_pertask--;
789
790 unlock:
791 perf_enable();
792
793 spin_unlock(&ctx->lock);
794 }
795
796 /*
797 * Attach a performance counter to a context
798 *
799 * First we add the counter to the list with the hardware enable bit
800 * in counter->hw_config cleared.
801 *
802 * If the counter is attached to a task which is on a CPU we use a smp
803 * call to enable it in the task context. The task might have been
804 * scheduled away, but we check this in the smp call again.
805 *
806 * Must be called with ctx->mutex held.
807 */
808 static void
809 perf_install_in_context(struct perf_counter_context *ctx,
810 struct perf_counter *counter,
811 int cpu)
812 {
813 struct task_struct *task = ctx->task;
814
815 if (!task) {
816 /*
817 * Per cpu counters are installed via an smp call and
818 * the install is always sucessful.
819 */
820 smp_call_function_single(cpu, __perf_install_in_context,
821 counter, 1);
822 return;
823 }
824
825 retry:
826 task_oncpu_function_call(task, __perf_install_in_context,
827 counter);
828
829 spin_lock_irq(&ctx->lock);
830 /*
831 * we need to retry the smp call.
832 */
833 if (ctx->is_active && list_empty(&counter->list_entry)) {
834 spin_unlock_irq(&ctx->lock);
835 goto retry;
836 }
837
838 /*
839 * The lock prevents that this context is scheduled in so we
840 * can add the counter safely, if it the call above did not
841 * succeed.
842 */
843 if (list_empty(&counter->list_entry))
844 add_counter_to_ctx(counter, ctx);
845 spin_unlock_irq(&ctx->lock);
846 }
847
848 /*
849 * Cross CPU call to enable a performance counter
850 */
851 static void __perf_counter_enable(void *info)
852 {
853 struct perf_counter *counter = info;
854 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
855 struct perf_counter_context *ctx = counter->ctx;
856 struct perf_counter *leader = counter->group_leader;
857 int err;
858
859 /*
860 * If this is a per-task counter, need to check whether this
861 * counter's task is the current task on this cpu.
862 */
863 if (ctx->task && cpuctx->task_ctx != ctx) {
864 if (cpuctx->task_ctx || ctx->task != current)
865 return;
866 cpuctx->task_ctx = ctx;
867 }
868
869 spin_lock(&ctx->lock);
870 ctx->is_active = 1;
871 update_context_time(ctx);
872
873 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
874 goto unlock;
875 counter->state = PERF_COUNTER_STATE_INACTIVE;
876 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
877
878 /*
879 * If the counter is in a group and isn't the group leader,
880 * then don't put it on unless the group is on.
881 */
882 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
883 goto unlock;
884
885 if (!group_can_go_on(counter, cpuctx, 1)) {
886 err = -EEXIST;
887 } else {
888 perf_disable();
889 if (counter == leader)
890 err = group_sched_in(counter, cpuctx, ctx,
891 smp_processor_id());
892 else
893 err = counter_sched_in(counter, cpuctx, ctx,
894 smp_processor_id());
895 perf_enable();
896 }
897
898 if (err) {
899 /*
900 * If this counter can't go on and it's part of a
901 * group, then the whole group has to come off.
902 */
903 if (leader != counter)
904 group_sched_out(leader, cpuctx, ctx);
905 if (leader->attr.pinned) {
906 update_group_times(leader);
907 leader->state = PERF_COUNTER_STATE_ERROR;
908 }
909 }
910
911 unlock:
912 spin_unlock(&ctx->lock);
913 }
914
915 /*
916 * Enable a counter.
917 *
918 * If counter->ctx is a cloned context, callers must make sure that
919 * every task struct that counter->ctx->task could possibly point to
920 * remains valid. This condition is satisfied when called through
921 * perf_counter_for_each_child or perf_counter_for_each as described
922 * for perf_counter_disable.
923 */
924 static void perf_counter_enable(struct perf_counter *counter)
925 {
926 struct perf_counter_context *ctx = counter->ctx;
927 struct task_struct *task = ctx->task;
928
929 if (!task) {
930 /*
931 * Enable the counter on the cpu that it's on
932 */
933 smp_call_function_single(counter->cpu, __perf_counter_enable,
934 counter, 1);
935 return;
936 }
937
938 spin_lock_irq(&ctx->lock);
939 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
940 goto out;
941
942 /*
943 * If the counter is in error state, clear that first.
944 * That way, if we see the counter in error state below, we
945 * know that it has gone back into error state, as distinct
946 * from the task having been scheduled away before the
947 * cross-call arrived.
948 */
949 if (counter->state == PERF_COUNTER_STATE_ERROR)
950 counter->state = PERF_COUNTER_STATE_OFF;
951
952 retry:
953 spin_unlock_irq(&ctx->lock);
954 task_oncpu_function_call(task, __perf_counter_enable, counter);
955
956 spin_lock_irq(&ctx->lock);
957
958 /*
959 * If the context is active and the counter is still off,
960 * we need to retry the cross-call.
961 */
962 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
963 goto retry;
964
965 /*
966 * Since we have the lock this context can't be scheduled
967 * in, so we can change the state safely.
968 */
969 if (counter->state == PERF_COUNTER_STATE_OFF) {
970 counter->state = PERF_COUNTER_STATE_INACTIVE;
971 counter->tstamp_enabled =
972 ctx->time - counter->total_time_enabled;
973 }
974 out:
975 spin_unlock_irq(&ctx->lock);
976 }
977
978 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
979 {
980 /*
981 * not supported on inherited counters
982 */
983 if (counter->attr.inherit)
984 return -EINVAL;
985
986 atomic_add(refresh, &counter->event_limit);
987 perf_counter_enable(counter);
988
989 return 0;
990 }
991
992 void __perf_counter_sched_out(struct perf_counter_context *ctx,
993 struct perf_cpu_context *cpuctx)
994 {
995 struct perf_counter *counter;
996
997 spin_lock(&ctx->lock);
998 ctx->is_active = 0;
999 if (likely(!ctx->nr_counters))
1000 goto out;
1001 update_context_time(ctx);
1002
1003 perf_disable();
1004 if (ctx->nr_active) {
1005 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1006 if (counter != counter->group_leader)
1007 counter_sched_out(counter, cpuctx, ctx);
1008 else
1009 group_sched_out(counter, cpuctx, ctx);
1010 }
1011 }
1012 perf_enable();
1013 out:
1014 spin_unlock(&ctx->lock);
1015 }
1016
1017 /*
1018 * Test whether two contexts are equivalent, i.e. whether they
1019 * have both been cloned from the same version of the same context
1020 * and they both have the same number of enabled counters.
1021 * If the number of enabled counters is the same, then the set
1022 * of enabled counters should be the same, because these are both
1023 * inherited contexts, therefore we can't access individual counters
1024 * in them directly with an fd; we can only enable/disable all
1025 * counters via prctl, or enable/disable all counters in a family
1026 * via ioctl, which will have the same effect on both contexts.
1027 */
1028 static int context_equiv(struct perf_counter_context *ctx1,
1029 struct perf_counter_context *ctx2)
1030 {
1031 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1032 && ctx1->parent_gen == ctx2->parent_gen
1033 && !ctx1->pin_count && !ctx2->pin_count;
1034 }
1035
1036 static void __perf_counter_read(void *counter);
1037
1038 static void __perf_counter_sync_stat(struct perf_counter *counter,
1039 struct perf_counter *next_counter)
1040 {
1041 u64 value;
1042
1043 if (!counter->attr.inherit_stat)
1044 return;
1045
1046 /*
1047 * Update the counter value, we cannot use perf_counter_read()
1048 * because we're in the middle of a context switch and have IRQs
1049 * disabled, which upsets smp_call_function_single(), however
1050 * we know the counter must be on the current CPU, therefore we
1051 * don't need to use it.
1052 */
1053 switch (counter->state) {
1054 case PERF_COUNTER_STATE_ACTIVE:
1055 __perf_counter_read(counter);
1056 break;
1057
1058 case PERF_COUNTER_STATE_INACTIVE:
1059 update_counter_times(counter);
1060 break;
1061
1062 default:
1063 break;
1064 }
1065
1066 /*
1067 * In order to keep per-task stats reliable we need to flip the counter
1068 * values when we flip the contexts.
1069 */
1070 value = atomic64_read(&next_counter->count);
1071 value = atomic64_xchg(&counter->count, value);
1072 atomic64_set(&next_counter->count, value);
1073
1074 swap(counter->total_time_enabled, next_counter->total_time_enabled);
1075 swap(counter->total_time_running, next_counter->total_time_running);
1076
1077 /*
1078 * Since we swizzled the values, update the user visible data too.
1079 */
1080 perf_counter_update_userpage(counter);
1081 perf_counter_update_userpage(next_counter);
1082 }
1083
1084 #define list_next_entry(pos, member) \
1085 list_entry(pos->member.next, typeof(*pos), member)
1086
1087 static void perf_counter_sync_stat(struct perf_counter_context *ctx,
1088 struct perf_counter_context *next_ctx)
1089 {
1090 struct perf_counter *counter, *next_counter;
1091
1092 if (!ctx->nr_stat)
1093 return;
1094
1095 counter = list_first_entry(&ctx->event_list,
1096 struct perf_counter, event_entry);
1097
1098 next_counter = list_first_entry(&next_ctx->event_list,
1099 struct perf_counter, event_entry);
1100
1101 while (&counter->event_entry != &ctx->event_list &&
1102 &next_counter->event_entry != &next_ctx->event_list) {
1103
1104 __perf_counter_sync_stat(counter, next_counter);
1105
1106 counter = list_next_entry(counter, event_entry);
1107 next_counter = list_next_entry(next_counter, event_entry);
1108 }
1109 }
1110
1111 /*
1112 * Called from scheduler to remove the counters of the current task,
1113 * with interrupts disabled.
1114 *
1115 * We stop each counter and update the counter value in counter->count.
1116 *
1117 * This does not protect us against NMI, but disable()
1118 * sets the disabled bit in the control field of counter _before_
1119 * accessing the counter control register. If a NMI hits, then it will
1120 * not restart the counter.
1121 */
1122 void perf_counter_task_sched_out(struct task_struct *task,
1123 struct task_struct *next, int cpu)
1124 {
1125 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1126 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1127 struct perf_counter_context *next_ctx;
1128 struct perf_counter_context *parent;
1129 struct pt_regs *regs;
1130 int do_switch = 1;
1131
1132 regs = task_pt_regs(task);
1133 perf_swcounter_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1134
1135 if (likely(!ctx || !cpuctx->task_ctx))
1136 return;
1137
1138 update_context_time(ctx);
1139
1140 rcu_read_lock();
1141 parent = rcu_dereference(ctx->parent_ctx);
1142 next_ctx = next->perf_counter_ctxp;
1143 if (parent && next_ctx &&
1144 rcu_dereference(next_ctx->parent_ctx) == parent) {
1145 /*
1146 * Looks like the two contexts are clones, so we might be
1147 * able to optimize the context switch. We lock both
1148 * contexts and check that they are clones under the
1149 * lock (including re-checking that neither has been
1150 * uncloned in the meantime). It doesn't matter which
1151 * order we take the locks because no other cpu could
1152 * be trying to lock both of these tasks.
1153 */
1154 spin_lock(&ctx->lock);
1155 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1156 if (context_equiv(ctx, next_ctx)) {
1157 /*
1158 * XXX do we need a memory barrier of sorts
1159 * wrt to rcu_dereference() of perf_counter_ctxp
1160 */
1161 task->perf_counter_ctxp = next_ctx;
1162 next->perf_counter_ctxp = ctx;
1163 ctx->task = next;
1164 next_ctx->task = task;
1165 do_switch = 0;
1166
1167 perf_counter_sync_stat(ctx, next_ctx);
1168 }
1169 spin_unlock(&next_ctx->lock);
1170 spin_unlock(&ctx->lock);
1171 }
1172 rcu_read_unlock();
1173
1174 if (do_switch) {
1175 __perf_counter_sched_out(ctx, cpuctx);
1176 cpuctx->task_ctx = NULL;
1177 }
1178 }
1179
1180 /*
1181 * Called with IRQs disabled
1182 */
1183 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
1184 {
1185 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1186
1187 if (!cpuctx->task_ctx)
1188 return;
1189
1190 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1191 return;
1192
1193 __perf_counter_sched_out(ctx, cpuctx);
1194 cpuctx->task_ctx = NULL;
1195 }
1196
1197 /*
1198 * Called with IRQs disabled
1199 */
1200 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1201 {
1202 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1203 }
1204
1205 static void
1206 __perf_counter_sched_in(struct perf_counter_context *ctx,
1207 struct perf_cpu_context *cpuctx, int cpu)
1208 {
1209 struct perf_counter *counter;
1210 int can_add_hw = 1;
1211
1212 spin_lock(&ctx->lock);
1213 ctx->is_active = 1;
1214 if (likely(!ctx->nr_counters))
1215 goto out;
1216
1217 ctx->timestamp = perf_clock();
1218
1219 perf_disable();
1220
1221 /*
1222 * First go through the list and put on any pinned groups
1223 * in order to give them the best chance of going on.
1224 */
1225 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1226 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1227 !counter->attr.pinned)
1228 continue;
1229 if (counter->cpu != -1 && counter->cpu != cpu)
1230 continue;
1231
1232 if (counter != counter->group_leader)
1233 counter_sched_in(counter, cpuctx, ctx, cpu);
1234 else {
1235 if (group_can_go_on(counter, cpuctx, 1))
1236 group_sched_in(counter, cpuctx, ctx, cpu);
1237 }
1238
1239 /*
1240 * If this pinned group hasn't been scheduled,
1241 * put it in error state.
1242 */
1243 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1244 update_group_times(counter);
1245 counter->state = PERF_COUNTER_STATE_ERROR;
1246 }
1247 }
1248
1249 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1250 /*
1251 * Ignore counters in OFF or ERROR state, and
1252 * ignore pinned counters since we did them already.
1253 */
1254 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1255 counter->attr.pinned)
1256 continue;
1257
1258 /*
1259 * Listen to the 'cpu' scheduling filter constraint
1260 * of counters:
1261 */
1262 if (counter->cpu != -1 && counter->cpu != cpu)
1263 continue;
1264
1265 if (counter != counter->group_leader) {
1266 if (counter_sched_in(counter, cpuctx, ctx, cpu))
1267 can_add_hw = 0;
1268 } else {
1269 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1270 if (group_sched_in(counter, cpuctx, ctx, cpu))
1271 can_add_hw = 0;
1272 }
1273 }
1274 }
1275 perf_enable();
1276 out:
1277 spin_unlock(&ctx->lock);
1278 }
1279
1280 /*
1281 * Called from scheduler to add the counters of the current task
1282 * with interrupts disabled.
1283 *
1284 * We restore the counter value and then enable it.
1285 *
1286 * This does not protect us against NMI, but enable()
1287 * sets the enabled bit in the control field of counter _before_
1288 * accessing the counter control register. If a NMI hits, then it will
1289 * keep the counter running.
1290 */
1291 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1292 {
1293 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1294 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1295
1296 if (likely(!ctx))
1297 return;
1298 if (cpuctx->task_ctx == ctx)
1299 return;
1300 __perf_counter_sched_in(ctx, cpuctx, cpu);
1301 cpuctx->task_ctx = ctx;
1302 }
1303
1304 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1305 {
1306 struct perf_counter_context *ctx = &cpuctx->ctx;
1307
1308 __perf_counter_sched_in(ctx, cpuctx, cpu);
1309 }
1310
1311 #define MAX_INTERRUPTS (~0ULL)
1312
1313 static void perf_log_throttle(struct perf_counter *counter, int enable);
1314
1315 static void perf_adjust_period(struct perf_counter *counter, u64 events)
1316 {
1317 struct hw_perf_counter *hwc = &counter->hw;
1318 u64 period, sample_period;
1319 s64 delta;
1320
1321 events *= hwc->sample_period;
1322 period = div64_u64(events, counter->attr.sample_freq);
1323
1324 delta = (s64)(period - hwc->sample_period);
1325 delta = (delta + 7) / 8; /* low pass filter */
1326
1327 sample_period = hwc->sample_period + delta;
1328
1329 if (!sample_period)
1330 sample_period = 1;
1331
1332 hwc->sample_period = sample_period;
1333 }
1334
1335 static void perf_ctx_adjust_freq(struct perf_counter_context *ctx)
1336 {
1337 struct perf_counter *counter;
1338 struct hw_perf_counter *hwc;
1339 u64 interrupts, freq;
1340
1341 spin_lock(&ctx->lock);
1342 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1343 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1344 continue;
1345
1346 hwc = &counter->hw;
1347
1348 interrupts = hwc->interrupts;
1349 hwc->interrupts = 0;
1350
1351 /*
1352 * unthrottle counters on the tick
1353 */
1354 if (interrupts == MAX_INTERRUPTS) {
1355 perf_log_throttle(counter, 1);
1356 counter->pmu->unthrottle(counter);
1357 interrupts = 2*sysctl_perf_counter_sample_rate/HZ;
1358 }
1359
1360 if (!counter->attr.freq || !counter->attr.sample_freq)
1361 continue;
1362
1363 /*
1364 * if the specified freq < HZ then we need to skip ticks
1365 */
1366 if (counter->attr.sample_freq < HZ) {
1367 freq = counter->attr.sample_freq;
1368
1369 hwc->freq_count += freq;
1370 hwc->freq_interrupts += interrupts;
1371
1372 if (hwc->freq_count < HZ)
1373 continue;
1374
1375 interrupts = hwc->freq_interrupts;
1376 hwc->freq_interrupts = 0;
1377 hwc->freq_count -= HZ;
1378 } else
1379 freq = HZ;
1380
1381 perf_adjust_period(counter, freq * interrupts);
1382
1383 /*
1384 * In order to avoid being stalled by an (accidental) huge
1385 * sample period, force reset the sample period if we didn't
1386 * get any events in this freq period.
1387 */
1388 if (!interrupts) {
1389 perf_disable();
1390 counter->pmu->disable(counter);
1391 atomic64_set(&hwc->period_left, 0);
1392 counter->pmu->enable(counter);
1393 perf_enable();
1394 }
1395 }
1396 spin_unlock(&ctx->lock);
1397 }
1398
1399 /*
1400 * Round-robin a context's counters:
1401 */
1402 static void rotate_ctx(struct perf_counter_context *ctx)
1403 {
1404 struct perf_counter *counter;
1405
1406 if (!ctx->nr_counters)
1407 return;
1408
1409 spin_lock(&ctx->lock);
1410 /*
1411 * Rotate the first entry last (works just fine for group counters too):
1412 */
1413 perf_disable();
1414 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1415 list_move_tail(&counter->list_entry, &ctx->counter_list);
1416 break;
1417 }
1418 perf_enable();
1419
1420 spin_unlock(&ctx->lock);
1421 }
1422
1423 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1424 {
1425 struct perf_cpu_context *cpuctx;
1426 struct perf_counter_context *ctx;
1427
1428 if (!atomic_read(&nr_counters))
1429 return;
1430
1431 cpuctx = &per_cpu(perf_cpu_context, cpu);
1432 ctx = curr->perf_counter_ctxp;
1433
1434 perf_ctx_adjust_freq(&cpuctx->ctx);
1435 if (ctx)
1436 perf_ctx_adjust_freq(ctx);
1437
1438 perf_counter_cpu_sched_out(cpuctx);
1439 if (ctx)
1440 __perf_counter_task_sched_out(ctx);
1441
1442 rotate_ctx(&cpuctx->ctx);
1443 if (ctx)
1444 rotate_ctx(ctx);
1445
1446 perf_counter_cpu_sched_in(cpuctx, cpu);
1447 if (ctx)
1448 perf_counter_task_sched_in(curr, cpu);
1449 }
1450
1451 /*
1452 * Enable all of a task's counters that have been marked enable-on-exec.
1453 * This expects task == current.
1454 */
1455 static void perf_counter_enable_on_exec(struct task_struct *task)
1456 {
1457 struct perf_counter_context *ctx;
1458 struct perf_counter *counter;
1459 unsigned long flags;
1460 int enabled = 0;
1461
1462 local_irq_save(flags);
1463 ctx = task->perf_counter_ctxp;
1464 if (!ctx || !ctx->nr_counters)
1465 goto out;
1466
1467 __perf_counter_task_sched_out(ctx);
1468
1469 spin_lock(&ctx->lock);
1470
1471 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1472 if (!counter->attr.enable_on_exec)
1473 continue;
1474 counter->attr.enable_on_exec = 0;
1475 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
1476 continue;
1477 counter->state = PERF_COUNTER_STATE_INACTIVE;
1478 counter->tstamp_enabled =
1479 ctx->time - counter->total_time_enabled;
1480 enabled = 1;
1481 }
1482
1483 /*
1484 * Unclone this context if we enabled any counter.
1485 */
1486 if (enabled)
1487 unclone_ctx(ctx);
1488
1489 spin_unlock(&ctx->lock);
1490
1491 perf_counter_task_sched_in(task, smp_processor_id());
1492 out:
1493 local_irq_restore(flags);
1494 }
1495
1496 /*
1497 * Cross CPU call to read the hardware counter
1498 */
1499 static void __perf_counter_read(void *info)
1500 {
1501 struct perf_counter *counter = info;
1502 struct perf_counter_context *ctx = counter->ctx;
1503 unsigned long flags;
1504
1505 local_irq_save(flags);
1506 if (ctx->is_active)
1507 update_context_time(ctx);
1508 counter->pmu->read(counter);
1509 update_counter_times(counter);
1510 local_irq_restore(flags);
1511 }
1512
1513 static u64 perf_counter_read(struct perf_counter *counter)
1514 {
1515 /*
1516 * If counter is enabled and currently active on a CPU, update the
1517 * value in the counter structure:
1518 */
1519 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1520 smp_call_function_single(counter->oncpu,
1521 __perf_counter_read, counter, 1);
1522 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1523 update_counter_times(counter);
1524 }
1525
1526 return atomic64_read(&counter->count);
1527 }
1528
1529 /*
1530 * Initialize the perf_counter context in a task_struct:
1531 */
1532 static void
1533 __perf_counter_init_context(struct perf_counter_context *ctx,
1534 struct task_struct *task)
1535 {
1536 memset(ctx, 0, sizeof(*ctx));
1537 spin_lock_init(&ctx->lock);
1538 mutex_init(&ctx->mutex);
1539 INIT_LIST_HEAD(&ctx->counter_list);
1540 INIT_LIST_HEAD(&ctx->event_list);
1541 atomic_set(&ctx->refcount, 1);
1542 ctx->task = task;
1543 }
1544
1545 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1546 {
1547 struct perf_counter_context *ctx;
1548 struct perf_cpu_context *cpuctx;
1549 struct task_struct *task;
1550 unsigned long flags;
1551 int err;
1552
1553 /*
1554 * If cpu is not a wildcard then this is a percpu counter:
1555 */
1556 if (cpu != -1) {
1557 /* Must be root to operate on a CPU counter: */
1558 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1559 return ERR_PTR(-EACCES);
1560
1561 if (cpu < 0 || cpu > num_possible_cpus())
1562 return ERR_PTR(-EINVAL);
1563
1564 /*
1565 * We could be clever and allow to attach a counter to an
1566 * offline CPU and activate it when the CPU comes up, but
1567 * that's for later.
1568 */
1569 if (!cpu_isset(cpu, cpu_online_map))
1570 return ERR_PTR(-ENODEV);
1571
1572 cpuctx = &per_cpu(perf_cpu_context, cpu);
1573 ctx = &cpuctx->ctx;
1574 get_ctx(ctx);
1575
1576 return ctx;
1577 }
1578
1579 rcu_read_lock();
1580 if (!pid)
1581 task = current;
1582 else
1583 task = find_task_by_vpid(pid);
1584 if (task)
1585 get_task_struct(task);
1586 rcu_read_unlock();
1587
1588 if (!task)
1589 return ERR_PTR(-ESRCH);
1590
1591 /*
1592 * Can't attach counters to a dying task.
1593 */
1594 err = -ESRCH;
1595 if (task->flags & PF_EXITING)
1596 goto errout;
1597
1598 /* Reuse ptrace permission checks for now. */
1599 err = -EACCES;
1600 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1601 goto errout;
1602
1603 retry:
1604 ctx = perf_lock_task_context(task, &flags);
1605 if (ctx) {
1606 unclone_ctx(ctx);
1607 spin_unlock_irqrestore(&ctx->lock, flags);
1608 }
1609
1610 if (!ctx) {
1611 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1612 err = -ENOMEM;
1613 if (!ctx)
1614 goto errout;
1615 __perf_counter_init_context(ctx, task);
1616 get_ctx(ctx);
1617 if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1618 /*
1619 * We raced with some other task; use
1620 * the context they set.
1621 */
1622 kfree(ctx);
1623 goto retry;
1624 }
1625 get_task_struct(task);
1626 }
1627
1628 put_task_struct(task);
1629 return ctx;
1630
1631 errout:
1632 put_task_struct(task);
1633 return ERR_PTR(err);
1634 }
1635
1636 static void free_counter_rcu(struct rcu_head *head)
1637 {
1638 struct perf_counter *counter;
1639
1640 counter = container_of(head, struct perf_counter, rcu_head);
1641 if (counter->ns)
1642 put_pid_ns(counter->ns);
1643 kfree(counter);
1644 }
1645
1646 static void perf_pending_sync(struct perf_counter *counter);
1647
1648 static void free_counter(struct perf_counter *counter)
1649 {
1650 perf_pending_sync(counter);
1651
1652 if (!counter->parent) {
1653 atomic_dec(&nr_counters);
1654 if (counter->attr.mmap)
1655 atomic_dec(&nr_mmap_counters);
1656 if (counter->attr.comm)
1657 atomic_dec(&nr_comm_counters);
1658 if (counter->attr.task)
1659 atomic_dec(&nr_task_counters);
1660 }
1661
1662 if (counter->destroy)
1663 counter->destroy(counter);
1664
1665 put_ctx(counter->ctx);
1666 call_rcu(&counter->rcu_head, free_counter_rcu);
1667 }
1668
1669 /*
1670 * Called when the last reference to the file is gone.
1671 */
1672 static int perf_release(struct inode *inode, struct file *file)
1673 {
1674 struct perf_counter *counter = file->private_data;
1675 struct perf_counter_context *ctx = counter->ctx;
1676
1677 file->private_data = NULL;
1678
1679 WARN_ON_ONCE(ctx->parent_ctx);
1680 mutex_lock(&ctx->mutex);
1681 perf_counter_remove_from_context(counter);
1682 mutex_unlock(&ctx->mutex);
1683
1684 mutex_lock(&counter->owner->perf_counter_mutex);
1685 list_del_init(&counter->owner_entry);
1686 mutex_unlock(&counter->owner->perf_counter_mutex);
1687 put_task_struct(counter->owner);
1688
1689 free_counter(counter);
1690
1691 return 0;
1692 }
1693
1694 static u64 perf_counter_read_tree(struct perf_counter *counter)
1695 {
1696 struct perf_counter *child;
1697 u64 total = 0;
1698
1699 total += perf_counter_read(counter);
1700 list_for_each_entry(child, &counter->child_list, child_list)
1701 total += perf_counter_read(child);
1702
1703 return total;
1704 }
1705
1706 /*
1707 * Read the performance counter - simple non blocking version for now
1708 */
1709 static ssize_t
1710 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1711 {
1712 u64 values[4];
1713 int n;
1714
1715 /*
1716 * Return end-of-file for a read on a counter that is in
1717 * error state (i.e. because it was pinned but it couldn't be
1718 * scheduled on to the CPU at some point).
1719 */
1720 if (counter->state == PERF_COUNTER_STATE_ERROR)
1721 return 0;
1722
1723 WARN_ON_ONCE(counter->ctx->parent_ctx);
1724 mutex_lock(&counter->child_mutex);
1725 values[0] = perf_counter_read_tree(counter);
1726 n = 1;
1727 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1728 values[n++] = counter->total_time_enabled +
1729 atomic64_read(&counter->child_total_time_enabled);
1730 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1731 values[n++] = counter->total_time_running +
1732 atomic64_read(&counter->child_total_time_running);
1733 if (counter->attr.read_format & PERF_FORMAT_ID)
1734 values[n++] = primary_counter_id(counter);
1735 mutex_unlock(&counter->child_mutex);
1736
1737 if (count < n * sizeof(u64))
1738 return -EINVAL;
1739 count = n * sizeof(u64);
1740
1741 if (copy_to_user(buf, values, count))
1742 return -EFAULT;
1743
1744 return count;
1745 }
1746
1747 static ssize_t
1748 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1749 {
1750 struct perf_counter *counter = file->private_data;
1751
1752 return perf_read_hw(counter, buf, count);
1753 }
1754
1755 static unsigned int perf_poll(struct file *file, poll_table *wait)
1756 {
1757 struct perf_counter *counter = file->private_data;
1758 struct perf_mmap_data *data;
1759 unsigned int events = POLL_HUP;
1760
1761 rcu_read_lock();
1762 data = rcu_dereference(counter->data);
1763 if (data)
1764 events = atomic_xchg(&data->poll, 0);
1765 rcu_read_unlock();
1766
1767 poll_wait(file, &counter->waitq, wait);
1768
1769 return events;
1770 }
1771
1772 static void perf_counter_reset(struct perf_counter *counter)
1773 {
1774 (void)perf_counter_read(counter);
1775 atomic64_set(&counter->count, 0);
1776 perf_counter_update_userpage(counter);
1777 }
1778
1779 /*
1780 * Holding the top-level counter's child_mutex means that any
1781 * descendant process that has inherited this counter will block
1782 * in sync_child_counter if it goes to exit, thus satisfying the
1783 * task existence requirements of perf_counter_enable/disable.
1784 */
1785 static void perf_counter_for_each_child(struct perf_counter *counter,
1786 void (*func)(struct perf_counter *))
1787 {
1788 struct perf_counter *child;
1789
1790 WARN_ON_ONCE(counter->ctx->parent_ctx);
1791 mutex_lock(&counter->child_mutex);
1792 func(counter);
1793 list_for_each_entry(child, &counter->child_list, child_list)
1794 func(child);
1795 mutex_unlock(&counter->child_mutex);
1796 }
1797
1798 static void perf_counter_for_each(struct perf_counter *counter,
1799 void (*func)(struct perf_counter *))
1800 {
1801 struct perf_counter_context *ctx = counter->ctx;
1802 struct perf_counter *sibling;
1803
1804 WARN_ON_ONCE(ctx->parent_ctx);
1805 mutex_lock(&ctx->mutex);
1806 counter = counter->group_leader;
1807
1808 perf_counter_for_each_child(counter, func);
1809 func(counter);
1810 list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1811 perf_counter_for_each_child(counter, func);
1812 mutex_unlock(&ctx->mutex);
1813 }
1814
1815 static int perf_counter_period(struct perf_counter *counter, u64 __user *arg)
1816 {
1817 struct perf_counter_context *ctx = counter->ctx;
1818 unsigned long size;
1819 int ret = 0;
1820 u64 value;
1821
1822 if (!counter->attr.sample_period)
1823 return -EINVAL;
1824
1825 size = copy_from_user(&value, arg, sizeof(value));
1826 if (size != sizeof(value))
1827 return -EFAULT;
1828
1829 if (!value)
1830 return -EINVAL;
1831
1832 spin_lock_irq(&ctx->lock);
1833 if (counter->attr.freq) {
1834 if (value > sysctl_perf_counter_sample_rate) {
1835 ret = -EINVAL;
1836 goto unlock;
1837 }
1838
1839 counter->attr.sample_freq = value;
1840 } else {
1841 counter->attr.sample_period = value;
1842 counter->hw.sample_period = value;
1843 }
1844 unlock:
1845 spin_unlock_irq(&ctx->lock);
1846
1847 return ret;
1848 }
1849
1850 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1851 {
1852 struct perf_counter *counter = file->private_data;
1853 void (*func)(struct perf_counter *);
1854 u32 flags = arg;
1855
1856 switch (cmd) {
1857 case PERF_COUNTER_IOC_ENABLE:
1858 func = perf_counter_enable;
1859 break;
1860 case PERF_COUNTER_IOC_DISABLE:
1861 func = perf_counter_disable;
1862 break;
1863 case PERF_COUNTER_IOC_RESET:
1864 func = perf_counter_reset;
1865 break;
1866
1867 case PERF_COUNTER_IOC_REFRESH:
1868 return perf_counter_refresh(counter, arg);
1869
1870 case PERF_COUNTER_IOC_PERIOD:
1871 return perf_counter_period(counter, (u64 __user *)arg);
1872
1873 default:
1874 return -ENOTTY;
1875 }
1876
1877 if (flags & PERF_IOC_FLAG_GROUP)
1878 perf_counter_for_each(counter, func);
1879 else
1880 perf_counter_for_each_child(counter, func);
1881
1882 return 0;
1883 }
1884
1885 int perf_counter_task_enable(void)
1886 {
1887 struct perf_counter *counter;
1888
1889 mutex_lock(&current->perf_counter_mutex);
1890 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1891 perf_counter_for_each_child(counter, perf_counter_enable);
1892 mutex_unlock(&current->perf_counter_mutex);
1893
1894 return 0;
1895 }
1896
1897 int perf_counter_task_disable(void)
1898 {
1899 struct perf_counter *counter;
1900
1901 mutex_lock(&current->perf_counter_mutex);
1902 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1903 perf_counter_for_each_child(counter, perf_counter_disable);
1904 mutex_unlock(&current->perf_counter_mutex);
1905
1906 return 0;
1907 }
1908
1909 static int perf_counter_index(struct perf_counter *counter)
1910 {
1911 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1912 return 0;
1913
1914 return counter->hw.idx + 1 - PERF_COUNTER_INDEX_OFFSET;
1915 }
1916
1917 /*
1918 * Callers need to ensure there can be no nesting of this function, otherwise
1919 * the seqlock logic goes bad. We can not serialize this because the arch
1920 * code calls this from NMI context.
1921 */
1922 void perf_counter_update_userpage(struct perf_counter *counter)
1923 {
1924 struct perf_counter_mmap_page *userpg;
1925 struct perf_mmap_data *data;
1926
1927 rcu_read_lock();
1928 data = rcu_dereference(counter->data);
1929 if (!data)
1930 goto unlock;
1931
1932 userpg = data->user_page;
1933
1934 /*
1935 * Disable preemption so as to not let the corresponding user-space
1936 * spin too long if we get preempted.
1937 */
1938 preempt_disable();
1939 ++userpg->lock;
1940 barrier();
1941 userpg->index = perf_counter_index(counter);
1942 userpg->offset = atomic64_read(&counter->count);
1943 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1944 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1945
1946 userpg->time_enabled = counter->total_time_enabled +
1947 atomic64_read(&counter->child_total_time_enabled);
1948
1949 userpg->time_running = counter->total_time_running +
1950 atomic64_read(&counter->child_total_time_running);
1951
1952 barrier();
1953 ++userpg->lock;
1954 preempt_enable();
1955 unlock:
1956 rcu_read_unlock();
1957 }
1958
1959 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1960 {
1961 struct perf_counter *counter = vma->vm_file->private_data;
1962 struct perf_mmap_data *data;
1963 int ret = VM_FAULT_SIGBUS;
1964
1965 if (vmf->flags & FAULT_FLAG_MKWRITE) {
1966 if (vmf->pgoff == 0)
1967 ret = 0;
1968 return ret;
1969 }
1970
1971 rcu_read_lock();
1972 data = rcu_dereference(counter->data);
1973 if (!data)
1974 goto unlock;
1975
1976 if (vmf->pgoff == 0) {
1977 vmf->page = virt_to_page(data->user_page);
1978 } else {
1979 int nr = vmf->pgoff - 1;
1980
1981 if ((unsigned)nr > data->nr_pages)
1982 goto unlock;
1983
1984 if (vmf->flags & FAULT_FLAG_WRITE)
1985 goto unlock;
1986
1987 vmf->page = virt_to_page(data->data_pages[nr]);
1988 }
1989
1990 get_page(vmf->page);
1991 vmf->page->mapping = vma->vm_file->f_mapping;
1992 vmf->page->index = vmf->pgoff;
1993
1994 ret = 0;
1995 unlock:
1996 rcu_read_unlock();
1997
1998 return ret;
1999 }
2000
2001 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
2002 {
2003 struct perf_mmap_data *data;
2004 unsigned long size;
2005 int i;
2006
2007 WARN_ON(atomic_read(&counter->mmap_count));
2008
2009 size = sizeof(struct perf_mmap_data);
2010 size += nr_pages * sizeof(void *);
2011
2012 data = kzalloc(size, GFP_KERNEL);
2013 if (!data)
2014 goto fail;
2015
2016 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2017 if (!data->user_page)
2018 goto fail_user_page;
2019
2020 for (i = 0; i < nr_pages; i++) {
2021 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2022 if (!data->data_pages[i])
2023 goto fail_data_pages;
2024 }
2025
2026 data->nr_pages = nr_pages;
2027 atomic_set(&data->lock, -1);
2028
2029 rcu_assign_pointer(counter->data, data);
2030
2031 return 0;
2032
2033 fail_data_pages:
2034 for (i--; i >= 0; i--)
2035 free_page((unsigned long)data->data_pages[i]);
2036
2037 free_page((unsigned long)data->user_page);
2038
2039 fail_user_page:
2040 kfree(data);
2041
2042 fail:
2043 return -ENOMEM;
2044 }
2045
2046 static void perf_mmap_free_page(unsigned long addr)
2047 {
2048 struct page *page = virt_to_page((void *)addr);
2049
2050 page->mapping = NULL;
2051 __free_page(page);
2052 }
2053
2054 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
2055 {
2056 struct perf_mmap_data *data;
2057 int i;
2058
2059 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2060
2061 perf_mmap_free_page((unsigned long)data->user_page);
2062 for (i = 0; i < data->nr_pages; i++)
2063 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2064
2065 kfree(data);
2066 }
2067
2068 static void perf_mmap_data_free(struct perf_counter *counter)
2069 {
2070 struct perf_mmap_data *data = counter->data;
2071
2072 WARN_ON(atomic_read(&counter->mmap_count));
2073
2074 rcu_assign_pointer(counter->data, NULL);
2075 call_rcu(&data->rcu_head, __perf_mmap_data_free);
2076 }
2077
2078 static void perf_mmap_open(struct vm_area_struct *vma)
2079 {
2080 struct perf_counter *counter = vma->vm_file->private_data;
2081
2082 atomic_inc(&counter->mmap_count);
2083 }
2084
2085 static void perf_mmap_close(struct vm_area_struct *vma)
2086 {
2087 struct perf_counter *counter = vma->vm_file->private_data;
2088
2089 WARN_ON_ONCE(counter->ctx->parent_ctx);
2090 if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) {
2091 struct user_struct *user = current_user();
2092
2093 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
2094 vma->vm_mm->locked_vm -= counter->data->nr_locked;
2095 perf_mmap_data_free(counter);
2096 mutex_unlock(&counter->mmap_mutex);
2097 }
2098 }
2099
2100 static struct vm_operations_struct perf_mmap_vmops = {
2101 .open = perf_mmap_open,
2102 .close = perf_mmap_close,
2103 .fault = perf_mmap_fault,
2104 .page_mkwrite = perf_mmap_fault,
2105 };
2106
2107 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2108 {
2109 struct perf_counter *counter = file->private_data;
2110 unsigned long user_locked, user_lock_limit;
2111 struct user_struct *user = current_user();
2112 unsigned long locked, lock_limit;
2113 unsigned long vma_size;
2114 unsigned long nr_pages;
2115 long user_extra, extra;
2116 int ret = 0;
2117
2118 if (!(vma->vm_flags & VM_SHARED))
2119 return -EINVAL;
2120
2121 vma_size = vma->vm_end - vma->vm_start;
2122 nr_pages = (vma_size / PAGE_SIZE) - 1;
2123
2124 /*
2125 * If we have data pages ensure they're a power-of-two number, so we
2126 * can do bitmasks instead of modulo.
2127 */
2128 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2129 return -EINVAL;
2130
2131 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2132 return -EINVAL;
2133
2134 if (vma->vm_pgoff != 0)
2135 return -EINVAL;
2136
2137 WARN_ON_ONCE(counter->ctx->parent_ctx);
2138 mutex_lock(&counter->mmap_mutex);
2139 if (atomic_inc_not_zero(&counter->mmap_count)) {
2140 if (nr_pages != counter->data->nr_pages)
2141 ret = -EINVAL;
2142 goto unlock;
2143 }
2144
2145 user_extra = nr_pages + 1;
2146 user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
2147
2148 /*
2149 * Increase the limit linearly with more CPUs:
2150 */
2151 user_lock_limit *= num_online_cpus();
2152
2153 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2154
2155 extra = 0;
2156 if (user_locked > user_lock_limit)
2157 extra = user_locked - user_lock_limit;
2158
2159 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2160 lock_limit >>= PAGE_SHIFT;
2161 locked = vma->vm_mm->locked_vm + extra;
2162
2163 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
2164 ret = -EPERM;
2165 goto unlock;
2166 }
2167
2168 WARN_ON(counter->data);
2169 ret = perf_mmap_data_alloc(counter, nr_pages);
2170 if (ret)
2171 goto unlock;
2172
2173 atomic_set(&counter->mmap_count, 1);
2174 atomic_long_add(user_extra, &user->locked_vm);
2175 vma->vm_mm->locked_vm += extra;
2176 counter->data->nr_locked = extra;
2177 if (vma->vm_flags & VM_WRITE)
2178 counter->data->writable = 1;
2179
2180 unlock:
2181 mutex_unlock(&counter->mmap_mutex);
2182
2183 vma->vm_flags |= VM_RESERVED;
2184 vma->vm_ops = &perf_mmap_vmops;
2185
2186 return ret;
2187 }
2188
2189 static int perf_fasync(int fd, struct file *filp, int on)
2190 {
2191 struct inode *inode = filp->f_path.dentry->d_inode;
2192 struct perf_counter *counter = filp->private_data;
2193 int retval;
2194
2195 mutex_lock(&inode->i_mutex);
2196 retval = fasync_helper(fd, filp, on, &counter->fasync);
2197 mutex_unlock(&inode->i_mutex);
2198
2199 if (retval < 0)
2200 return retval;
2201
2202 return 0;
2203 }
2204
2205 static const struct file_operations perf_fops = {
2206 .release = perf_release,
2207 .read = perf_read,
2208 .poll = perf_poll,
2209 .unlocked_ioctl = perf_ioctl,
2210 .compat_ioctl = perf_ioctl,
2211 .mmap = perf_mmap,
2212 .fasync = perf_fasync,
2213 };
2214
2215 /*
2216 * Perf counter wakeup
2217 *
2218 * If there's data, ensure we set the poll() state and publish everything
2219 * to user-space before waking everybody up.
2220 */
2221
2222 void perf_counter_wakeup(struct perf_counter *counter)
2223 {
2224 wake_up_all(&counter->waitq);
2225
2226 if (counter->pending_kill) {
2227 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
2228 counter->pending_kill = 0;
2229 }
2230 }
2231
2232 /*
2233 * Pending wakeups
2234 *
2235 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2236 *
2237 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2238 * single linked list and use cmpxchg() to add entries lockless.
2239 */
2240
2241 static void perf_pending_counter(struct perf_pending_entry *entry)
2242 {
2243 struct perf_counter *counter = container_of(entry,
2244 struct perf_counter, pending);
2245
2246 if (counter->pending_disable) {
2247 counter->pending_disable = 0;
2248 perf_counter_disable(counter);
2249 }
2250
2251 if (counter->pending_wakeup) {
2252 counter->pending_wakeup = 0;
2253 perf_counter_wakeup(counter);
2254 }
2255 }
2256
2257 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2258
2259 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2260 PENDING_TAIL,
2261 };
2262
2263 static void perf_pending_queue(struct perf_pending_entry *entry,
2264 void (*func)(struct perf_pending_entry *))
2265 {
2266 struct perf_pending_entry **head;
2267
2268 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2269 return;
2270
2271 entry->func = func;
2272
2273 head = &get_cpu_var(perf_pending_head);
2274
2275 do {
2276 entry->next = *head;
2277 } while (cmpxchg(head, entry->next, entry) != entry->next);
2278
2279 set_perf_counter_pending();
2280
2281 put_cpu_var(perf_pending_head);
2282 }
2283
2284 static int __perf_pending_run(void)
2285 {
2286 struct perf_pending_entry *list;
2287 int nr = 0;
2288
2289 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2290 while (list != PENDING_TAIL) {
2291 void (*func)(struct perf_pending_entry *);
2292 struct perf_pending_entry *entry = list;
2293
2294 list = list->next;
2295
2296 func = entry->func;
2297 entry->next = NULL;
2298 /*
2299 * Ensure we observe the unqueue before we issue the wakeup,
2300 * so that we won't be waiting forever.
2301 * -- see perf_not_pending().
2302 */
2303 smp_wmb();
2304
2305 func(entry);
2306 nr++;
2307 }
2308
2309 return nr;
2310 }
2311
2312 static inline int perf_not_pending(struct perf_counter *counter)
2313 {
2314 /*
2315 * If we flush on whatever cpu we run, there is a chance we don't
2316 * need to wait.
2317 */
2318 get_cpu();
2319 __perf_pending_run();
2320 put_cpu();
2321
2322 /*
2323 * Ensure we see the proper queue state before going to sleep
2324 * so that we do not miss the wakeup. -- see perf_pending_handle()
2325 */
2326 smp_rmb();
2327 return counter->pending.next == NULL;
2328 }
2329
2330 static void perf_pending_sync(struct perf_counter *counter)
2331 {
2332 wait_event(counter->waitq, perf_not_pending(counter));
2333 }
2334
2335 void perf_counter_do_pending(void)
2336 {
2337 __perf_pending_run();
2338 }
2339
2340 /*
2341 * Callchain support -- arch specific
2342 */
2343
2344 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2345 {
2346 return NULL;
2347 }
2348
2349 /*
2350 * Output
2351 */
2352
2353 struct perf_output_handle {
2354 struct perf_counter *counter;
2355 struct perf_mmap_data *data;
2356 unsigned long head;
2357 unsigned long offset;
2358 int nmi;
2359 int sample;
2360 int locked;
2361 unsigned long flags;
2362 };
2363
2364 static bool perf_output_space(struct perf_mmap_data *data,
2365 unsigned int offset, unsigned int head)
2366 {
2367 unsigned long tail;
2368 unsigned long mask;
2369
2370 if (!data->writable)
2371 return true;
2372
2373 mask = (data->nr_pages << PAGE_SHIFT) - 1;
2374 /*
2375 * Userspace could choose to issue a mb() before updating the tail
2376 * pointer. So that all reads will be completed before the write is
2377 * issued.
2378 */
2379 tail = ACCESS_ONCE(data->user_page->data_tail);
2380 smp_rmb();
2381
2382 offset = (offset - tail) & mask;
2383 head = (head - tail) & mask;
2384
2385 if ((int)(head - offset) < 0)
2386 return false;
2387
2388 return true;
2389 }
2390
2391 static void perf_output_wakeup(struct perf_output_handle *handle)
2392 {
2393 atomic_set(&handle->data->poll, POLL_IN);
2394
2395 if (handle->nmi) {
2396 handle->counter->pending_wakeup = 1;
2397 perf_pending_queue(&handle->counter->pending,
2398 perf_pending_counter);
2399 } else
2400 perf_counter_wakeup(handle->counter);
2401 }
2402
2403 /*
2404 * Curious locking construct.
2405 *
2406 * We need to ensure a later event doesn't publish a head when a former
2407 * event isn't done writing. However since we need to deal with NMIs we
2408 * cannot fully serialize things.
2409 *
2410 * What we do is serialize between CPUs so we only have to deal with NMI
2411 * nesting on a single CPU.
2412 *
2413 * We only publish the head (and generate a wakeup) when the outer-most
2414 * event completes.
2415 */
2416 static void perf_output_lock(struct perf_output_handle *handle)
2417 {
2418 struct perf_mmap_data *data = handle->data;
2419 int cpu;
2420
2421 handle->locked = 0;
2422
2423 local_irq_save(handle->flags);
2424 cpu = smp_processor_id();
2425
2426 if (in_nmi() && atomic_read(&data->lock) == cpu)
2427 return;
2428
2429 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2430 cpu_relax();
2431
2432 handle->locked = 1;
2433 }
2434
2435 static void perf_output_unlock(struct perf_output_handle *handle)
2436 {
2437 struct perf_mmap_data *data = handle->data;
2438 unsigned long head;
2439 int cpu;
2440
2441 data->done_head = data->head;
2442
2443 if (!handle->locked)
2444 goto out;
2445
2446 again:
2447 /*
2448 * The xchg implies a full barrier that ensures all writes are done
2449 * before we publish the new head, matched by a rmb() in userspace when
2450 * reading this position.
2451 */
2452 while ((head = atomic_long_xchg(&data->done_head, 0)))
2453 data->user_page->data_head = head;
2454
2455 /*
2456 * NMI can happen here, which means we can miss a done_head update.
2457 */
2458
2459 cpu = atomic_xchg(&data->lock, -1);
2460 WARN_ON_ONCE(cpu != smp_processor_id());
2461
2462 /*
2463 * Therefore we have to validate we did not indeed do so.
2464 */
2465 if (unlikely(atomic_long_read(&data->done_head))) {
2466 /*
2467 * Since we had it locked, we can lock it again.
2468 */
2469 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2470 cpu_relax();
2471
2472 goto again;
2473 }
2474
2475 if (atomic_xchg(&data->wakeup, 0))
2476 perf_output_wakeup(handle);
2477 out:
2478 local_irq_restore(handle->flags);
2479 }
2480
2481 static void perf_output_copy(struct perf_output_handle *handle,
2482 const void *buf, unsigned int len)
2483 {
2484 unsigned int pages_mask;
2485 unsigned int offset;
2486 unsigned int size;
2487 void **pages;
2488
2489 offset = handle->offset;
2490 pages_mask = handle->data->nr_pages - 1;
2491 pages = handle->data->data_pages;
2492
2493 do {
2494 unsigned int page_offset;
2495 int nr;
2496
2497 nr = (offset >> PAGE_SHIFT) & pages_mask;
2498 page_offset = offset & (PAGE_SIZE - 1);
2499 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2500
2501 memcpy(pages[nr] + page_offset, buf, size);
2502
2503 len -= size;
2504 buf += size;
2505 offset += size;
2506 } while (len);
2507
2508 handle->offset = offset;
2509
2510 /*
2511 * Check we didn't copy past our reservation window, taking the
2512 * possible unsigned int wrap into account.
2513 */
2514 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2515 }
2516
2517 #define perf_output_put(handle, x) \
2518 perf_output_copy((handle), &(x), sizeof(x))
2519
2520 static int perf_output_begin(struct perf_output_handle *handle,
2521 struct perf_counter *counter, unsigned int size,
2522 int nmi, int sample)
2523 {
2524 struct perf_mmap_data *data;
2525 unsigned int offset, head;
2526 int have_lost;
2527 struct {
2528 struct perf_event_header header;
2529 u64 id;
2530 u64 lost;
2531 } lost_event;
2532
2533 /*
2534 * For inherited counters we send all the output towards the parent.
2535 */
2536 if (counter->parent)
2537 counter = counter->parent;
2538
2539 rcu_read_lock();
2540 data = rcu_dereference(counter->data);
2541 if (!data)
2542 goto out;
2543
2544 handle->data = data;
2545 handle->counter = counter;
2546 handle->nmi = nmi;
2547 handle->sample = sample;
2548
2549 if (!data->nr_pages)
2550 goto fail;
2551
2552 have_lost = atomic_read(&data->lost);
2553 if (have_lost)
2554 size += sizeof(lost_event);
2555
2556 perf_output_lock(handle);
2557
2558 do {
2559 offset = head = atomic_long_read(&data->head);
2560 head += size;
2561 if (unlikely(!perf_output_space(data, offset, head)))
2562 goto fail;
2563 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2564
2565 handle->offset = offset;
2566 handle->head = head;
2567
2568 if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2569 atomic_set(&data->wakeup, 1);
2570
2571 if (have_lost) {
2572 lost_event.header.type = PERF_EVENT_LOST;
2573 lost_event.header.misc = 0;
2574 lost_event.header.size = sizeof(lost_event);
2575 lost_event.id = counter->id;
2576 lost_event.lost = atomic_xchg(&data->lost, 0);
2577
2578 perf_output_put(handle, lost_event);
2579 }
2580
2581 return 0;
2582
2583 fail:
2584 atomic_inc(&data->lost);
2585 perf_output_unlock(handle);
2586 out:
2587 rcu_read_unlock();
2588
2589 return -ENOSPC;
2590 }
2591
2592 static void perf_output_end(struct perf_output_handle *handle)
2593 {
2594 struct perf_counter *counter = handle->counter;
2595 struct perf_mmap_data *data = handle->data;
2596
2597 int wakeup_events = counter->attr.wakeup_events;
2598
2599 if (handle->sample && wakeup_events) {
2600 int events = atomic_inc_return(&data->events);
2601 if (events >= wakeup_events) {
2602 atomic_sub(wakeup_events, &data->events);
2603 atomic_set(&data->wakeup, 1);
2604 }
2605 }
2606
2607 perf_output_unlock(handle);
2608 rcu_read_unlock();
2609 }
2610
2611 static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p)
2612 {
2613 /*
2614 * only top level counters have the pid namespace they were created in
2615 */
2616 if (counter->parent)
2617 counter = counter->parent;
2618
2619 return task_tgid_nr_ns(p, counter->ns);
2620 }
2621
2622 static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p)
2623 {
2624 /*
2625 * only top level counters have the pid namespace they were created in
2626 */
2627 if (counter->parent)
2628 counter = counter->parent;
2629
2630 return task_pid_nr_ns(p, counter->ns);
2631 }
2632
2633 static void perf_counter_output(struct perf_counter *counter, int nmi,
2634 struct perf_sample_data *data)
2635 {
2636 int ret;
2637 u64 sample_type = counter->attr.sample_type;
2638 struct perf_output_handle handle;
2639 struct perf_event_header header;
2640 u64 ip;
2641 struct {
2642 u32 pid, tid;
2643 } tid_entry;
2644 struct {
2645 u64 id;
2646 u64 counter;
2647 } group_entry;
2648 struct perf_callchain_entry *callchain = NULL;
2649 struct perf_tracepoint_record *tp;
2650 int callchain_size = 0;
2651 u64 time;
2652 struct {
2653 u32 cpu, reserved;
2654 } cpu_entry;
2655
2656 header.type = PERF_EVENT_SAMPLE;
2657 header.size = sizeof(header);
2658
2659 header.misc = 0;
2660 header.misc |= perf_misc_flags(data->regs);
2661
2662 if (sample_type & PERF_SAMPLE_IP) {
2663 ip = perf_instruction_pointer(data->regs);
2664 header.size += sizeof(ip);
2665 }
2666
2667 if (sample_type & PERF_SAMPLE_TID) {
2668 /* namespace issues */
2669 tid_entry.pid = perf_counter_pid(counter, current);
2670 tid_entry.tid = perf_counter_tid(counter, current);
2671
2672 header.size += sizeof(tid_entry);
2673 }
2674
2675 if (sample_type & PERF_SAMPLE_TIME) {
2676 /*
2677 * Maybe do better on x86 and provide cpu_clock_nmi()
2678 */
2679 time = sched_clock();
2680
2681 header.size += sizeof(u64);
2682 }
2683
2684 if (sample_type & PERF_SAMPLE_ADDR)
2685 header.size += sizeof(u64);
2686
2687 if (sample_type & PERF_SAMPLE_ID)
2688 header.size += sizeof(u64);
2689
2690 if (sample_type & PERF_SAMPLE_STREAM_ID)
2691 header.size += sizeof(u64);
2692
2693 if (sample_type & PERF_SAMPLE_CPU) {
2694 header.size += sizeof(cpu_entry);
2695
2696 cpu_entry.cpu = raw_smp_processor_id();
2697 cpu_entry.reserved = 0;
2698 }
2699
2700 if (sample_type & PERF_SAMPLE_PERIOD)
2701 header.size += sizeof(u64);
2702
2703 if (sample_type & PERF_SAMPLE_GROUP) {
2704 header.size += sizeof(u64) +
2705 counter->nr_siblings * sizeof(group_entry);
2706 }
2707
2708 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2709 callchain = perf_callchain(data->regs);
2710
2711 if (callchain) {
2712 callchain_size = (1 + callchain->nr) * sizeof(u64);
2713 header.size += callchain_size;
2714 } else
2715 header.size += sizeof(u64);
2716 }
2717
2718 if (sample_type & PERF_SAMPLE_TP_RECORD) {
2719 tp = data->private;
2720 header.size += tp->size;
2721 }
2722
2723 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2724 if (ret)
2725 return;
2726
2727 perf_output_put(&handle, header);
2728
2729 if (sample_type & PERF_SAMPLE_IP)
2730 perf_output_put(&handle, ip);
2731
2732 if (sample_type & PERF_SAMPLE_TID)
2733 perf_output_put(&handle, tid_entry);
2734
2735 if (sample_type & PERF_SAMPLE_TIME)
2736 perf_output_put(&handle, time);
2737
2738 if (sample_type & PERF_SAMPLE_ADDR)
2739 perf_output_put(&handle, data->addr);
2740
2741 if (sample_type & PERF_SAMPLE_ID) {
2742 u64 id = primary_counter_id(counter);
2743
2744 perf_output_put(&handle, id);
2745 }
2746
2747 if (sample_type & PERF_SAMPLE_STREAM_ID)
2748 perf_output_put(&handle, counter->id);
2749
2750 if (sample_type & PERF_SAMPLE_CPU)
2751 perf_output_put(&handle, cpu_entry);
2752
2753 if (sample_type & PERF_SAMPLE_PERIOD)
2754 perf_output_put(&handle, data->period);
2755
2756 /*
2757 * XXX PERF_SAMPLE_GROUP vs inherited counters seems difficult.
2758 */
2759 if (sample_type & PERF_SAMPLE_GROUP) {
2760 struct perf_counter *leader, *sub;
2761 u64 nr = counter->nr_siblings;
2762
2763 perf_output_put(&handle, nr);
2764
2765 leader = counter->group_leader;
2766 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2767 if (sub != counter)
2768 sub->pmu->read(sub);
2769
2770 group_entry.id = primary_counter_id(sub);
2771 group_entry.counter = atomic64_read(&sub->count);
2772
2773 perf_output_put(&handle, group_entry);
2774 }
2775 }
2776
2777 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2778 if (callchain)
2779 perf_output_copy(&handle, callchain, callchain_size);
2780 else {
2781 u64 nr = 0;
2782 perf_output_put(&handle, nr);
2783 }
2784 }
2785
2786 if (sample_type & PERF_SAMPLE_TP_RECORD)
2787 perf_output_copy(&handle, tp->record, tp->size);
2788
2789 perf_output_end(&handle);
2790 }
2791
2792 /*
2793 * read event
2794 */
2795
2796 struct perf_read_event {
2797 struct perf_event_header header;
2798
2799 u32 pid;
2800 u32 tid;
2801 u64 value;
2802 u64 format[3];
2803 };
2804
2805 static void
2806 perf_counter_read_event(struct perf_counter *counter,
2807 struct task_struct *task)
2808 {
2809 struct perf_output_handle handle;
2810 struct perf_read_event event = {
2811 .header = {
2812 .type = PERF_EVENT_READ,
2813 .misc = 0,
2814 .size = sizeof(event) - sizeof(event.format),
2815 },
2816 .pid = perf_counter_pid(counter, task),
2817 .tid = perf_counter_tid(counter, task),
2818 .value = atomic64_read(&counter->count),
2819 };
2820 int ret, i = 0;
2821
2822 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2823 event.header.size += sizeof(u64);
2824 event.format[i++] = counter->total_time_enabled;
2825 }
2826
2827 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2828 event.header.size += sizeof(u64);
2829 event.format[i++] = counter->total_time_running;
2830 }
2831
2832 if (counter->attr.read_format & PERF_FORMAT_ID) {
2833 event.header.size += sizeof(u64);
2834 event.format[i++] = primary_counter_id(counter);
2835 }
2836
2837 ret = perf_output_begin(&handle, counter, event.header.size, 0, 0);
2838 if (ret)
2839 return;
2840
2841 perf_output_copy(&handle, &event, event.header.size);
2842 perf_output_end(&handle);
2843 }
2844
2845 /*
2846 * task tracking -- fork/exit
2847 *
2848 * enabled by: attr.comm | attr.mmap | attr.task
2849 */
2850
2851 struct perf_task_event {
2852 struct task_struct *task;
2853
2854 struct {
2855 struct perf_event_header header;
2856
2857 u32 pid;
2858 u32 ppid;
2859 u32 tid;
2860 u32 ptid;
2861 } event;
2862 };
2863
2864 static void perf_counter_task_output(struct perf_counter *counter,
2865 struct perf_task_event *task_event)
2866 {
2867 struct perf_output_handle handle;
2868 int size = task_event->event.header.size;
2869 struct task_struct *task = task_event->task;
2870 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2871
2872 if (ret)
2873 return;
2874
2875 task_event->event.pid = perf_counter_pid(counter, task);
2876 task_event->event.ppid = perf_counter_pid(counter, task->real_parent);
2877
2878 task_event->event.tid = perf_counter_tid(counter, task);
2879 task_event->event.ptid = perf_counter_tid(counter, task->real_parent);
2880
2881 perf_output_put(&handle, task_event->event);
2882 perf_output_end(&handle);
2883 }
2884
2885 static int perf_counter_task_match(struct perf_counter *counter)
2886 {
2887 if (counter->attr.comm || counter->attr.mmap || counter->attr.task)
2888 return 1;
2889
2890 return 0;
2891 }
2892
2893 static void perf_counter_task_ctx(struct perf_counter_context *ctx,
2894 struct perf_task_event *task_event)
2895 {
2896 struct perf_counter *counter;
2897
2898 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2899 return;
2900
2901 rcu_read_lock();
2902 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2903 if (perf_counter_task_match(counter))
2904 perf_counter_task_output(counter, task_event);
2905 }
2906 rcu_read_unlock();
2907 }
2908
2909 static void perf_counter_task_event(struct perf_task_event *task_event)
2910 {
2911 struct perf_cpu_context *cpuctx;
2912 struct perf_counter_context *ctx;
2913
2914 cpuctx = &get_cpu_var(perf_cpu_context);
2915 perf_counter_task_ctx(&cpuctx->ctx, task_event);
2916 put_cpu_var(perf_cpu_context);
2917
2918 rcu_read_lock();
2919 /*
2920 * doesn't really matter which of the child contexts the
2921 * events ends up in.
2922 */
2923 ctx = rcu_dereference(current->perf_counter_ctxp);
2924 if (ctx)
2925 perf_counter_task_ctx(ctx, task_event);
2926 rcu_read_unlock();
2927 }
2928
2929 static void perf_counter_task(struct task_struct *task, int new)
2930 {
2931 struct perf_task_event task_event;
2932
2933 if (!atomic_read(&nr_comm_counters) &&
2934 !atomic_read(&nr_mmap_counters) &&
2935 !atomic_read(&nr_task_counters))
2936 return;
2937
2938 task_event = (struct perf_task_event){
2939 .task = task,
2940 .event = {
2941 .header = {
2942 .type = new ? PERF_EVENT_FORK : PERF_EVENT_EXIT,
2943 .misc = 0,
2944 .size = sizeof(task_event.event),
2945 },
2946 /* .pid */
2947 /* .ppid */
2948 /* .tid */
2949 /* .ptid */
2950 },
2951 };
2952
2953 perf_counter_task_event(&task_event);
2954 }
2955
2956 void perf_counter_fork(struct task_struct *task)
2957 {
2958 perf_counter_task(task, 1);
2959 }
2960
2961 /*
2962 * comm tracking
2963 */
2964
2965 struct perf_comm_event {
2966 struct task_struct *task;
2967 char *comm;
2968 int comm_size;
2969
2970 struct {
2971 struct perf_event_header header;
2972
2973 u32 pid;
2974 u32 tid;
2975 } event;
2976 };
2977
2978 static void perf_counter_comm_output(struct perf_counter *counter,
2979 struct perf_comm_event *comm_event)
2980 {
2981 struct perf_output_handle handle;
2982 int size = comm_event->event.header.size;
2983 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2984
2985 if (ret)
2986 return;
2987
2988 comm_event->event.pid = perf_counter_pid(counter, comm_event->task);
2989 comm_event->event.tid = perf_counter_tid(counter, comm_event->task);
2990
2991 perf_output_put(&handle, comm_event->event);
2992 perf_output_copy(&handle, comm_event->comm,
2993 comm_event->comm_size);
2994 perf_output_end(&handle);
2995 }
2996
2997 static int perf_counter_comm_match(struct perf_counter *counter)
2998 {
2999 if (counter->attr.comm)
3000 return 1;
3001
3002 return 0;
3003 }
3004
3005 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
3006 struct perf_comm_event *comm_event)
3007 {
3008 struct perf_counter *counter;
3009
3010 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3011 return;
3012
3013 rcu_read_lock();
3014 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3015 if (perf_counter_comm_match(counter))
3016 perf_counter_comm_output(counter, comm_event);
3017 }
3018 rcu_read_unlock();
3019 }
3020
3021 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
3022 {
3023 struct perf_cpu_context *cpuctx;
3024 struct perf_counter_context *ctx;
3025 unsigned int size;
3026 char comm[TASK_COMM_LEN];
3027
3028 memset(comm, 0, sizeof(comm));
3029 strncpy(comm, comm_event->task->comm, sizeof(comm));
3030 size = ALIGN(strlen(comm)+1, sizeof(u64));
3031
3032 comm_event->comm = comm;
3033 comm_event->comm_size = size;
3034
3035 comm_event->event.header.size = sizeof(comm_event->event) + size;
3036
3037 cpuctx = &get_cpu_var(perf_cpu_context);
3038 perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
3039 put_cpu_var(perf_cpu_context);
3040
3041 rcu_read_lock();
3042 /*
3043 * doesn't really matter which of the child contexts the
3044 * events ends up in.
3045 */
3046 ctx = rcu_dereference(current->perf_counter_ctxp);
3047 if (ctx)
3048 perf_counter_comm_ctx(ctx, comm_event);
3049 rcu_read_unlock();
3050 }
3051
3052 void perf_counter_comm(struct task_struct *task)
3053 {
3054 struct perf_comm_event comm_event;
3055
3056 if (task->perf_counter_ctxp)
3057 perf_counter_enable_on_exec(task);
3058
3059 if (!atomic_read(&nr_comm_counters))
3060 return;
3061
3062 comm_event = (struct perf_comm_event){
3063 .task = task,
3064 /* .comm */
3065 /* .comm_size */
3066 .event = {
3067 .header = {
3068 .type = PERF_EVENT_COMM,
3069 .misc = 0,
3070 /* .size */
3071 },
3072 /* .pid */
3073 /* .tid */
3074 },
3075 };
3076
3077 perf_counter_comm_event(&comm_event);
3078 }
3079
3080 /*
3081 * mmap tracking
3082 */
3083
3084 struct perf_mmap_event {
3085 struct vm_area_struct *vma;
3086
3087 const char *file_name;
3088 int file_size;
3089
3090 struct {
3091 struct perf_event_header header;
3092
3093 u32 pid;
3094 u32 tid;
3095 u64 start;
3096 u64 len;
3097 u64 pgoff;
3098 } event;
3099 };
3100
3101 static void perf_counter_mmap_output(struct perf_counter *counter,
3102 struct perf_mmap_event *mmap_event)
3103 {
3104 struct perf_output_handle handle;
3105 int size = mmap_event->event.header.size;
3106 int ret = perf_output_begin(&handle, counter, size, 0, 0);
3107
3108 if (ret)
3109 return;
3110
3111 mmap_event->event.pid = perf_counter_pid(counter, current);
3112 mmap_event->event.tid = perf_counter_tid(counter, current);
3113
3114 perf_output_put(&handle, mmap_event->event);
3115 perf_output_copy(&handle, mmap_event->file_name,
3116 mmap_event->file_size);
3117 perf_output_end(&handle);
3118 }
3119
3120 static int perf_counter_mmap_match(struct perf_counter *counter,
3121 struct perf_mmap_event *mmap_event)
3122 {
3123 if (counter->attr.mmap)
3124 return 1;
3125
3126 return 0;
3127 }
3128
3129 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
3130 struct perf_mmap_event *mmap_event)
3131 {
3132 struct perf_counter *counter;
3133
3134 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3135 return;
3136
3137 rcu_read_lock();
3138 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3139 if (perf_counter_mmap_match(counter, mmap_event))
3140 perf_counter_mmap_output(counter, mmap_event);
3141 }
3142 rcu_read_unlock();
3143 }
3144
3145 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
3146 {
3147 struct perf_cpu_context *cpuctx;
3148 struct perf_counter_context *ctx;
3149 struct vm_area_struct *vma = mmap_event->vma;
3150 struct file *file = vma->vm_file;
3151 unsigned int size;
3152 char tmp[16];
3153 char *buf = NULL;
3154 const char *name;
3155
3156 memset(tmp, 0, sizeof(tmp));
3157
3158 if (file) {
3159 /*
3160 * d_path works from the end of the buffer backwards, so we
3161 * need to add enough zero bytes after the string to handle
3162 * the 64bit alignment we do later.
3163 */
3164 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3165 if (!buf) {
3166 name = strncpy(tmp, "//enomem", sizeof(tmp));
3167 goto got_name;
3168 }
3169 name = d_path(&file->f_path, buf, PATH_MAX);
3170 if (IS_ERR(name)) {
3171 name = strncpy(tmp, "//toolong", sizeof(tmp));
3172 goto got_name;
3173 }
3174 } else {
3175 if (arch_vma_name(mmap_event->vma)) {
3176 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3177 sizeof(tmp));
3178 goto got_name;
3179 }
3180
3181 if (!vma->vm_mm) {
3182 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3183 goto got_name;
3184 }
3185
3186 name = strncpy(tmp, "//anon", sizeof(tmp));
3187 goto got_name;
3188 }
3189
3190 got_name:
3191 size = ALIGN(strlen(name)+1, sizeof(u64));
3192
3193 mmap_event->file_name = name;
3194 mmap_event->file_size = size;
3195
3196 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
3197
3198 cpuctx = &get_cpu_var(perf_cpu_context);
3199 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
3200 put_cpu_var(perf_cpu_context);
3201
3202 rcu_read_lock();
3203 /*
3204 * doesn't really matter which of the child contexts the
3205 * events ends up in.
3206 */
3207 ctx = rcu_dereference(current->perf_counter_ctxp);
3208 if (ctx)
3209 perf_counter_mmap_ctx(ctx, mmap_event);
3210 rcu_read_unlock();
3211
3212 kfree(buf);
3213 }
3214
3215 void __perf_counter_mmap(struct vm_area_struct *vma)
3216 {
3217 struct perf_mmap_event mmap_event;
3218
3219 if (!atomic_read(&nr_mmap_counters))
3220 return;
3221
3222 mmap_event = (struct perf_mmap_event){
3223 .vma = vma,
3224 /* .file_name */
3225 /* .file_size */
3226 .event = {
3227 .header = {
3228 .type = PERF_EVENT_MMAP,
3229 .misc = 0,
3230 /* .size */
3231 },
3232 /* .pid */
3233 /* .tid */
3234 .start = vma->vm_start,
3235 .len = vma->vm_end - vma->vm_start,
3236 .pgoff = vma->vm_pgoff,
3237 },
3238 };
3239
3240 perf_counter_mmap_event(&mmap_event);
3241 }
3242
3243 /*
3244 * IRQ throttle logging
3245 */
3246
3247 static void perf_log_throttle(struct perf_counter *counter, int enable)
3248 {
3249 struct perf_output_handle handle;
3250 int ret;
3251
3252 struct {
3253 struct perf_event_header header;
3254 u64 time;
3255 u64 id;
3256 u64 stream_id;
3257 } throttle_event = {
3258 .header = {
3259 .type = PERF_EVENT_THROTTLE,
3260 .misc = 0,
3261 .size = sizeof(throttle_event),
3262 },
3263 .time = sched_clock(),
3264 .id = primary_counter_id(counter),
3265 .stream_id = counter->id,
3266 };
3267
3268 if (enable)
3269 throttle_event.header.type = PERF_EVENT_UNTHROTTLE;
3270
3271 ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
3272 if (ret)
3273 return;
3274
3275 perf_output_put(&handle, throttle_event);
3276 perf_output_end(&handle);
3277 }
3278
3279 /*
3280 * Generic counter overflow handling, sampling.
3281 */
3282
3283 int perf_counter_overflow(struct perf_counter *counter, int nmi,
3284 struct perf_sample_data *data)
3285 {
3286 int events = atomic_read(&counter->event_limit);
3287 int throttle = counter->pmu->unthrottle != NULL;
3288 struct hw_perf_counter *hwc = &counter->hw;
3289 int ret = 0;
3290
3291 if (!throttle) {
3292 hwc->interrupts++;
3293 } else {
3294 if (hwc->interrupts != MAX_INTERRUPTS) {
3295 hwc->interrupts++;
3296 if (HZ * hwc->interrupts >
3297 (u64)sysctl_perf_counter_sample_rate) {
3298 hwc->interrupts = MAX_INTERRUPTS;
3299 perf_log_throttle(counter, 0);
3300 ret = 1;
3301 }
3302 } else {
3303 /*
3304 * Keep re-disabling counters even though on the previous
3305 * pass we disabled it - just in case we raced with a
3306 * sched-in and the counter got enabled again:
3307 */
3308 ret = 1;
3309 }
3310 }
3311
3312 if (counter->attr.freq) {
3313 u64 now = sched_clock();
3314 s64 delta = now - hwc->freq_stamp;
3315
3316 hwc->freq_stamp = now;
3317
3318 if (delta > 0 && delta < TICK_NSEC)
3319 perf_adjust_period(counter, NSEC_PER_SEC / (int)delta);
3320 }
3321
3322 /*
3323 * XXX event_limit might not quite work as expected on inherited
3324 * counters
3325 */
3326
3327 counter->pending_kill = POLL_IN;
3328 if (events && atomic_dec_and_test(&counter->event_limit)) {
3329 ret = 1;
3330 counter->pending_kill = POLL_HUP;
3331 if (nmi) {
3332 counter->pending_disable = 1;
3333 perf_pending_queue(&counter->pending,
3334 perf_pending_counter);
3335 } else
3336 perf_counter_disable(counter);
3337 }
3338
3339 perf_counter_output(counter, nmi, data);
3340 return ret;
3341 }
3342
3343 /*
3344 * Generic software counter infrastructure
3345 */
3346
3347 static void perf_swcounter_update(struct perf_counter *counter)
3348 {
3349 struct hw_perf_counter *hwc = &counter->hw;
3350 u64 prev, now;
3351 s64 delta;
3352
3353 again:
3354 prev = atomic64_read(&hwc->prev_count);
3355 now = atomic64_read(&hwc->count);
3356 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
3357 goto again;
3358
3359 delta = now - prev;
3360
3361 atomic64_add(delta, &counter->count);
3362 atomic64_sub(delta, &hwc->period_left);
3363 }
3364
3365 static void perf_swcounter_set_period(struct perf_counter *counter)
3366 {
3367 struct hw_perf_counter *hwc = &counter->hw;
3368 s64 left = atomic64_read(&hwc->period_left);
3369 s64 period = hwc->sample_period;
3370
3371 if (unlikely(left <= -period)) {
3372 left = period;
3373 atomic64_set(&hwc->period_left, left);
3374 hwc->last_period = period;
3375 }
3376
3377 if (unlikely(left <= 0)) {
3378 left += period;
3379 atomic64_add(period, &hwc->period_left);
3380 hwc->last_period = period;
3381 }
3382
3383 atomic64_set(&hwc->prev_count, -left);
3384 atomic64_set(&hwc->count, -left);
3385 }
3386
3387 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
3388 {
3389 enum hrtimer_restart ret = HRTIMER_RESTART;
3390 struct perf_sample_data data;
3391 struct perf_counter *counter;
3392 u64 period;
3393
3394 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
3395 counter->pmu->read(counter);
3396
3397 data.addr = 0;
3398 data.regs = get_irq_regs();
3399 /*
3400 * In case we exclude kernel IPs or are somehow not in interrupt
3401 * context, provide the next best thing, the user IP.
3402 */
3403 if ((counter->attr.exclude_kernel || !data.regs) &&
3404 !counter->attr.exclude_user)
3405 data.regs = task_pt_regs(current);
3406
3407 if (data.regs) {
3408 if (perf_counter_overflow(counter, 0, &data))
3409 ret = HRTIMER_NORESTART;
3410 }
3411
3412 period = max_t(u64, 10000, counter->hw.sample_period);
3413 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3414
3415 return ret;
3416 }
3417
3418 static void perf_swcounter_overflow(struct perf_counter *counter,
3419 int nmi, struct perf_sample_data *data)
3420 {
3421 data->period = counter->hw.last_period;
3422
3423 perf_swcounter_update(counter);
3424 perf_swcounter_set_period(counter);
3425 if (perf_counter_overflow(counter, nmi, data))
3426 /* soft-disable the counter */
3427 ;
3428 }
3429
3430 static int perf_swcounter_is_counting(struct perf_counter *counter)
3431 {
3432 struct perf_counter_context *ctx;
3433 unsigned long flags;
3434 int count;
3435
3436 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
3437 return 1;
3438
3439 if (counter->state != PERF_COUNTER_STATE_INACTIVE)
3440 return 0;
3441
3442 /*
3443 * If the counter is inactive, it could be just because
3444 * its task is scheduled out, or because it's in a group
3445 * which could not go on the PMU. We want to count in
3446 * the first case but not the second. If the context is
3447 * currently active then an inactive software counter must
3448 * be the second case. If it's not currently active then
3449 * we need to know whether the counter was active when the
3450 * context was last active, which we can determine by
3451 * comparing counter->tstamp_stopped with ctx->time.
3452 *
3453 * We are within an RCU read-side critical section,
3454 * which protects the existence of *ctx.
3455 */
3456 ctx = counter->ctx;
3457 spin_lock_irqsave(&ctx->lock, flags);
3458 count = 1;
3459 /* Re-check state now we have the lock */
3460 if (counter->state < PERF_COUNTER_STATE_INACTIVE ||
3461 counter->ctx->is_active ||
3462 counter->tstamp_stopped < ctx->time)
3463 count = 0;
3464 spin_unlock_irqrestore(&ctx->lock, flags);
3465 return count;
3466 }
3467
3468 static int perf_swcounter_match(struct perf_counter *counter,
3469 enum perf_type_id type,
3470 u32 event, struct pt_regs *regs)
3471 {
3472 if (!perf_swcounter_is_counting(counter))
3473 return 0;
3474
3475 if (counter->attr.type != type)
3476 return 0;
3477 if (counter->attr.config != event)
3478 return 0;
3479
3480 if (regs) {
3481 if (counter->attr.exclude_user && user_mode(regs))
3482 return 0;
3483
3484 if (counter->attr.exclude_kernel && !user_mode(regs))
3485 return 0;
3486 }
3487
3488 return 1;
3489 }
3490
3491 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
3492 int nmi, struct perf_sample_data *data)
3493 {
3494 int neg = atomic64_add_negative(nr, &counter->hw.count);
3495
3496 if (counter->hw.sample_period && !neg && data->regs)
3497 perf_swcounter_overflow(counter, nmi, data);
3498 }
3499
3500 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
3501 enum perf_type_id type,
3502 u32 event, u64 nr, int nmi,
3503 struct perf_sample_data *data)
3504 {
3505 struct perf_counter *counter;
3506
3507 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3508 return;
3509
3510 rcu_read_lock();
3511 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3512 if (perf_swcounter_match(counter, type, event, data->regs))
3513 perf_swcounter_add(counter, nr, nmi, data);
3514 }
3515 rcu_read_unlock();
3516 }
3517
3518 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
3519 {
3520 if (in_nmi())
3521 return &cpuctx->recursion[3];
3522
3523 if (in_irq())
3524 return &cpuctx->recursion[2];
3525
3526 if (in_softirq())
3527 return &cpuctx->recursion[1];
3528
3529 return &cpuctx->recursion[0];
3530 }
3531
3532 static void do_perf_swcounter_event(enum perf_type_id type, u32 event,
3533 u64 nr, int nmi,
3534 struct perf_sample_data *data)
3535 {
3536 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3537 int *recursion = perf_swcounter_recursion_context(cpuctx);
3538 struct perf_counter_context *ctx;
3539
3540 if (*recursion)
3541 goto out;
3542
3543 (*recursion)++;
3544 barrier();
3545
3546 perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
3547 nr, nmi, data);
3548 rcu_read_lock();
3549 /*
3550 * doesn't really matter which of the child contexts the
3551 * events ends up in.
3552 */
3553 ctx = rcu_dereference(current->perf_counter_ctxp);
3554 if (ctx)
3555 perf_swcounter_ctx_event(ctx, type, event, nr, nmi, data);
3556 rcu_read_unlock();
3557
3558 barrier();
3559 (*recursion)--;
3560
3561 out:
3562 put_cpu_var(perf_cpu_context);
3563 }
3564
3565 void __perf_swcounter_event(u32 event, u64 nr, int nmi,
3566 struct pt_regs *regs, u64 addr)
3567 {
3568 struct perf_sample_data data = {
3569 .regs = regs,
3570 .addr = addr,
3571 };
3572
3573 do_perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, &data);
3574 }
3575
3576 static void perf_swcounter_read(struct perf_counter *counter)
3577 {
3578 perf_swcounter_update(counter);
3579 }
3580
3581 static int perf_swcounter_enable(struct perf_counter *counter)
3582 {
3583 perf_swcounter_set_period(counter);
3584 return 0;
3585 }
3586
3587 static void perf_swcounter_disable(struct perf_counter *counter)
3588 {
3589 perf_swcounter_update(counter);
3590 }
3591
3592 static const struct pmu perf_ops_generic = {
3593 .enable = perf_swcounter_enable,
3594 .disable = perf_swcounter_disable,
3595 .read = perf_swcounter_read,
3596 };
3597
3598 /*
3599 * Software counter: cpu wall time clock
3600 */
3601
3602 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
3603 {
3604 int cpu = raw_smp_processor_id();
3605 s64 prev;
3606 u64 now;
3607
3608 now = cpu_clock(cpu);
3609 prev = atomic64_read(&counter->hw.prev_count);
3610 atomic64_set(&counter->hw.prev_count, now);
3611 atomic64_add(now - prev, &counter->count);
3612 }
3613
3614 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
3615 {
3616 struct hw_perf_counter *hwc = &counter->hw;
3617 int cpu = raw_smp_processor_id();
3618
3619 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3620 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3621 hwc->hrtimer.function = perf_swcounter_hrtimer;
3622 if (hwc->sample_period) {
3623 u64 period = max_t(u64, 10000, hwc->sample_period);
3624 __hrtimer_start_range_ns(&hwc->hrtimer,
3625 ns_to_ktime(period), 0,
3626 HRTIMER_MODE_REL, 0);
3627 }
3628
3629 return 0;
3630 }
3631
3632 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
3633 {
3634 if (counter->hw.sample_period)
3635 hrtimer_cancel(&counter->hw.hrtimer);
3636 cpu_clock_perf_counter_update(counter);
3637 }
3638
3639 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
3640 {
3641 cpu_clock_perf_counter_update(counter);
3642 }
3643
3644 static const struct pmu perf_ops_cpu_clock = {
3645 .enable = cpu_clock_perf_counter_enable,
3646 .disable = cpu_clock_perf_counter_disable,
3647 .read = cpu_clock_perf_counter_read,
3648 };
3649
3650 /*
3651 * Software counter: task time clock
3652 */
3653
3654 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
3655 {
3656 u64 prev;
3657 s64 delta;
3658
3659 prev = atomic64_xchg(&counter->hw.prev_count, now);
3660 delta = now - prev;
3661 atomic64_add(delta, &counter->count);
3662 }
3663
3664 static int task_clock_perf_counter_enable(struct perf_counter *counter)
3665 {
3666 struct hw_perf_counter *hwc = &counter->hw;
3667 u64 now;
3668
3669 now = counter->ctx->time;
3670
3671 atomic64_set(&hwc->prev_count, now);
3672 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3673 hwc->hrtimer.function = perf_swcounter_hrtimer;
3674 if (hwc->sample_period) {
3675 u64 period = max_t(u64, 10000, hwc->sample_period);
3676 __hrtimer_start_range_ns(&hwc->hrtimer,
3677 ns_to_ktime(period), 0,
3678 HRTIMER_MODE_REL, 0);
3679 }
3680
3681 return 0;
3682 }
3683
3684 static void task_clock_perf_counter_disable(struct perf_counter *counter)
3685 {
3686 if (counter->hw.sample_period)
3687 hrtimer_cancel(&counter->hw.hrtimer);
3688 task_clock_perf_counter_update(counter, counter->ctx->time);
3689
3690 }
3691
3692 static void task_clock_perf_counter_read(struct perf_counter *counter)
3693 {
3694 u64 time;
3695
3696 if (!in_nmi()) {
3697 update_context_time(counter->ctx);
3698 time = counter->ctx->time;
3699 } else {
3700 u64 now = perf_clock();
3701 u64 delta = now - counter->ctx->timestamp;
3702 time = counter->ctx->time + delta;
3703 }
3704
3705 task_clock_perf_counter_update(counter, time);
3706 }
3707
3708 static const struct pmu perf_ops_task_clock = {
3709 .enable = task_clock_perf_counter_enable,
3710 .disable = task_clock_perf_counter_disable,
3711 .read = task_clock_perf_counter_read,
3712 };
3713
3714 #ifdef CONFIG_EVENT_PROFILE
3715 void perf_tpcounter_event(int event_id, u64 addr, u64 count, void *record,
3716 int entry_size)
3717 {
3718 struct perf_tracepoint_record tp = {
3719 .size = entry_size,
3720 .record = record,
3721 };
3722
3723 struct perf_sample_data data = {
3724 .regs = get_irq_regs(),
3725 .addr = addr,
3726 .private = &tp,
3727 };
3728
3729 if (!data.regs)
3730 data.regs = task_pt_regs(current);
3731
3732 do_perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, count, 1, &data);
3733 }
3734 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3735
3736 extern int ftrace_profile_enable(int);
3737 extern void ftrace_profile_disable(int);
3738
3739 static void tp_perf_counter_destroy(struct perf_counter *counter)
3740 {
3741 ftrace_profile_disable(counter->attr.config);
3742 }
3743
3744 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3745 {
3746 if (ftrace_profile_enable(counter->attr.config))
3747 return NULL;
3748
3749 counter->destroy = tp_perf_counter_destroy;
3750
3751 return &perf_ops_generic;
3752 }
3753 #else
3754 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3755 {
3756 return NULL;
3757 }
3758 #endif
3759
3760 atomic_t perf_swcounter_enabled[PERF_COUNT_SW_MAX];
3761
3762 static void sw_perf_counter_destroy(struct perf_counter *counter)
3763 {
3764 u64 event = counter->attr.config;
3765
3766 WARN_ON(counter->parent);
3767
3768 atomic_dec(&perf_swcounter_enabled[event]);
3769 }
3770
3771 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3772 {
3773 const struct pmu *pmu = NULL;
3774 u64 event = counter->attr.config;
3775
3776 /*
3777 * Software counters (currently) can't in general distinguish
3778 * between user, kernel and hypervisor events.
3779 * However, context switches and cpu migrations are considered
3780 * to be kernel events, and page faults are never hypervisor
3781 * events.
3782 */
3783 switch (event) {
3784 case PERF_COUNT_SW_CPU_CLOCK:
3785 pmu = &perf_ops_cpu_clock;
3786
3787 break;
3788 case PERF_COUNT_SW_TASK_CLOCK:
3789 /*
3790 * If the user instantiates this as a per-cpu counter,
3791 * use the cpu_clock counter instead.
3792 */
3793 if (counter->ctx->task)
3794 pmu = &perf_ops_task_clock;
3795 else
3796 pmu = &perf_ops_cpu_clock;
3797
3798 break;
3799 case PERF_COUNT_SW_PAGE_FAULTS:
3800 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
3801 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
3802 case PERF_COUNT_SW_CONTEXT_SWITCHES:
3803 case PERF_COUNT_SW_CPU_MIGRATIONS:
3804 if (!counter->parent) {
3805 atomic_inc(&perf_swcounter_enabled[event]);
3806 counter->destroy = sw_perf_counter_destroy;
3807 }
3808 pmu = &perf_ops_generic;
3809 break;
3810 }
3811
3812 return pmu;
3813 }
3814
3815 /*
3816 * Allocate and initialize a counter structure
3817 */
3818 static struct perf_counter *
3819 perf_counter_alloc(struct perf_counter_attr *attr,
3820 int cpu,
3821 struct perf_counter_context *ctx,
3822 struct perf_counter *group_leader,
3823 struct perf_counter *parent_counter,
3824 gfp_t gfpflags)
3825 {
3826 const struct pmu *pmu;
3827 struct perf_counter *counter;
3828 struct hw_perf_counter *hwc;
3829 long err;
3830
3831 counter = kzalloc(sizeof(*counter), gfpflags);
3832 if (!counter)
3833 return ERR_PTR(-ENOMEM);
3834
3835 /*
3836 * Single counters are their own group leaders, with an
3837 * empty sibling list:
3838 */
3839 if (!group_leader)
3840 group_leader = counter;
3841
3842 mutex_init(&counter->child_mutex);
3843 INIT_LIST_HEAD(&counter->child_list);
3844
3845 INIT_LIST_HEAD(&counter->list_entry);
3846 INIT_LIST_HEAD(&counter->event_entry);
3847 INIT_LIST_HEAD(&counter->sibling_list);
3848 init_waitqueue_head(&counter->waitq);
3849
3850 mutex_init(&counter->mmap_mutex);
3851
3852 counter->cpu = cpu;
3853 counter->attr = *attr;
3854 counter->group_leader = group_leader;
3855 counter->pmu = NULL;
3856 counter->ctx = ctx;
3857 counter->oncpu = -1;
3858
3859 counter->parent = parent_counter;
3860
3861 counter->ns = get_pid_ns(current->nsproxy->pid_ns);
3862 counter->id = atomic64_inc_return(&perf_counter_id);
3863
3864 counter->state = PERF_COUNTER_STATE_INACTIVE;
3865
3866 if (attr->disabled)
3867 counter->state = PERF_COUNTER_STATE_OFF;
3868
3869 pmu = NULL;
3870
3871 hwc = &counter->hw;
3872 hwc->sample_period = attr->sample_period;
3873 if (attr->freq && attr->sample_freq)
3874 hwc->sample_period = 1;
3875
3876 atomic64_set(&hwc->period_left, hwc->sample_period);
3877
3878 /*
3879 * we currently do not support PERF_SAMPLE_GROUP on inherited counters
3880 */
3881 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_GROUP))
3882 goto done;
3883
3884 switch (attr->type) {
3885 case PERF_TYPE_RAW:
3886 case PERF_TYPE_HARDWARE:
3887 case PERF_TYPE_HW_CACHE:
3888 pmu = hw_perf_counter_init(counter);
3889 break;
3890
3891 case PERF_TYPE_SOFTWARE:
3892 pmu = sw_perf_counter_init(counter);
3893 break;
3894
3895 case PERF_TYPE_TRACEPOINT:
3896 pmu = tp_perf_counter_init(counter);
3897 break;
3898
3899 default:
3900 break;
3901 }
3902 done:
3903 err = 0;
3904 if (!pmu)
3905 err = -EINVAL;
3906 else if (IS_ERR(pmu))
3907 err = PTR_ERR(pmu);
3908
3909 if (err) {
3910 if (counter->ns)
3911 put_pid_ns(counter->ns);
3912 kfree(counter);
3913 return ERR_PTR(err);
3914 }
3915
3916 counter->pmu = pmu;
3917
3918 if (!counter->parent) {
3919 atomic_inc(&nr_counters);
3920 if (counter->attr.mmap)
3921 atomic_inc(&nr_mmap_counters);
3922 if (counter->attr.comm)
3923 atomic_inc(&nr_comm_counters);
3924 if (counter->attr.task)
3925 atomic_inc(&nr_task_counters);
3926 }
3927
3928 return counter;
3929 }
3930
3931 static int perf_copy_attr(struct perf_counter_attr __user *uattr,
3932 struct perf_counter_attr *attr)
3933 {
3934 int ret;
3935 u32 size;
3936
3937 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
3938 return -EFAULT;
3939
3940 /*
3941 * zero the full structure, so that a short copy will be nice.
3942 */
3943 memset(attr, 0, sizeof(*attr));
3944
3945 ret = get_user(size, &uattr->size);
3946 if (ret)
3947 return ret;
3948
3949 if (size > PAGE_SIZE) /* silly large */
3950 goto err_size;
3951
3952 if (!size) /* abi compat */
3953 size = PERF_ATTR_SIZE_VER0;
3954
3955 if (size < PERF_ATTR_SIZE_VER0)
3956 goto err_size;
3957
3958 /*
3959 * If we're handed a bigger struct than we know of,
3960 * ensure all the unknown bits are 0.
3961 */
3962 if (size > sizeof(*attr)) {
3963 unsigned long val;
3964 unsigned long __user *addr;
3965 unsigned long __user *end;
3966
3967 addr = PTR_ALIGN((void __user *)uattr + sizeof(*attr),
3968 sizeof(unsigned long));
3969 end = PTR_ALIGN((void __user *)uattr + size,
3970 sizeof(unsigned long));
3971
3972 for (; addr < end; addr += sizeof(unsigned long)) {
3973 ret = get_user(val, addr);
3974 if (ret)
3975 return ret;
3976 if (val)
3977 goto err_size;
3978 }
3979 }
3980
3981 ret = copy_from_user(attr, uattr, size);
3982 if (ret)
3983 return -EFAULT;
3984
3985 /*
3986 * If the type exists, the corresponding creation will verify
3987 * the attr->config.
3988 */
3989 if (attr->type >= PERF_TYPE_MAX)
3990 return -EINVAL;
3991
3992 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
3993 return -EINVAL;
3994
3995 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
3996 return -EINVAL;
3997
3998 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
3999 return -EINVAL;
4000
4001 out:
4002 return ret;
4003
4004 err_size:
4005 put_user(sizeof(*attr), &uattr->size);
4006 ret = -E2BIG;
4007 goto out;
4008 }
4009
4010 /**
4011 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
4012 *
4013 * @attr_uptr: event type attributes for monitoring/sampling
4014 * @pid: target pid
4015 * @cpu: target cpu
4016 * @group_fd: group leader counter fd
4017 */
4018 SYSCALL_DEFINE5(perf_counter_open,
4019 struct perf_counter_attr __user *, attr_uptr,
4020 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4021 {
4022 struct perf_counter *counter, *group_leader;
4023 struct perf_counter_attr attr;
4024 struct perf_counter_context *ctx;
4025 struct file *counter_file = NULL;
4026 struct file *group_file = NULL;
4027 int fput_needed = 0;
4028 int fput_needed2 = 0;
4029 int ret;
4030
4031 /* for future expandability... */
4032 if (flags)
4033 return -EINVAL;
4034
4035 ret = perf_copy_attr(attr_uptr, &attr);
4036 if (ret)
4037 return ret;
4038
4039 if (!attr.exclude_kernel) {
4040 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4041 return -EACCES;
4042 }
4043
4044 if (attr.freq) {
4045 if (attr.sample_freq > sysctl_perf_counter_sample_rate)
4046 return -EINVAL;
4047 }
4048
4049 /*
4050 * Get the target context (task or percpu):
4051 */
4052 ctx = find_get_context(pid, cpu);
4053 if (IS_ERR(ctx))
4054 return PTR_ERR(ctx);
4055
4056 /*
4057 * Look up the group leader (we will attach this counter to it):
4058 */
4059 group_leader = NULL;
4060 if (group_fd != -1) {
4061 ret = -EINVAL;
4062 group_file = fget_light(group_fd, &fput_needed);
4063 if (!group_file)
4064 goto err_put_context;
4065 if (group_file->f_op != &perf_fops)
4066 goto err_put_context;
4067
4068 group_leader = group_file->private_data;
4069 /*
4070 * Do not allow a recursive hierarchy (this new sibling
4071 * becoming part of another group-sibling):
4072 */
4073 if (group_leader->group_leader != group_leader)
4074 goto err_put_context;
4075 /*
4076 * Do not allow to attach to a group in a different
4077 * task or CPU context:
4078 */
4079 if (group_leader->ctx != ctx)
4080 goto err_put_context;
4081 /*
4082 * Only a group leader can be exclusive or pinned
4083 */
4084 if (attr.exclusive || attr.pinned)
4085 goto err_put_context;
4086 }
4087
4088 counter = perf_counter_alloc(&attr, cpu, ctx, group_leader,
4089 NULL, GFP_KERNEL);
4090 ret = PTR_ERR(counter);
4091 if (IS_ERR(counter))
4092 goto err_put_context;
4093
4094 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
4095 if (ret < 0)
4096 goto err_free_put_context;
4097
4098 counter_file = fget_light(ret, &fput_needed2);
4099 if (!counter_file)
4100 goto err_free_put_context;
4101
4102 counter->filp = counter_file;
4103 WARN_ON_ONCE(ctx->parent_ctx);
4104 mutex_lock(&ctx->mutex);
4105 perf_install_in_context(ctx, counter, cpu);
4106 ++ctx->generation;
4107 mutex_unlock(&ctx->mutex);
4108
4109 counter->owner = current;
4110 get_task_struct(current);
4111 mutex_lock(&current->perf_counter_mutex);
4112 list_add_tail(&counter->owner_entry, &current->perf_counter_list);
4113 mutex_unlock(&current->perf_counter_mutex);
4114
4115 fput_light(counter_file, fput_needed2);
4116
4117 out_fput:
4118 fput_light(group_file, fput_needed);
4119
4120 return ret;
4121
4122 err_free_put_context:
4123 kfree(counter);
4124
4125 err_put_context:
4126 put_ctx(ctx);
4127
4128 goto out_fput;
4129 }
4130
4131 /*
4132 * inherit a counter from parent task to child task:
4133 */
4134 static struct perf_counter *
4135 inherit_counter(struct perf_counter *parent_counter,
4136 struct task_struct *parent,
4137 struct perf_counter_context *parent_ctx,
4138 struct task_struct *child,
4139 struct perf_counter *group_leader,
4140 struct perf_counter_context *child_ctx)
4141 {
4142 struct perf_counter *child_counter;
4143
4144 /*
4145 * Instead of creating recursive hierarchies of counters,
4146 * we link inherited counters back to the original parent,
4147 * which has a filp for sure, which we use as the reference
4148 * count:
4149 */
4150 if (parent_counter->parent)
4151 parent_counter = parent_counter->parent;
4152
4153 child_counter = perf_counter_alloc(&parent_counter->attr,
4154 parent_counter->cpu, child_ctx,
4155 group_leader, parent_counter,
4156 GFP_KERNEL);
4157 if (IS_ERR(child_counter))
4158 return child_counter;
4159 get_ctx(child_ctx);
4160
4161 /*
4162 * Make the child state follow the state of the parent counter,
4163 * not its attr.disabled bit. We hold the parent's mutex,
4164 * so we won't race with perf_counter_{en, dis}able_family.
4165 */
4166 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
4167 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
4168 else
4169 child_counter->state = PERF_COUNTER_STATE_OFF;
4170
4171 if (parent_counter->attr.freq)
4172 child_counter->hw.sample_period = parent_counter->hw.sample_period;
4173
4174 /*
4175 * Link it up in the child's context:
4176 */
4177 add_counter_to_ctx(child_counter, child_ctx);
4178
4179 /*
4180 * Get a reference to the parent filp - we will fput it
4181 * when the child counter exits. This is safe to do because
4182 * we are in the parent and we know that the filp still
4183 * exists and has a nonzero count:
4184 */
4185 atomic_long_inc(&parent_counter->filp->f_count);
4186
4187 /*
4188 * Link this into the parent counter's child list
4189 */
4190 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
4191 mutex_lock(&parent_counter->child_mutex);
4192 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
4193 mutex_unlock(&parent_counter->child_mutex);
4194
4195 return child_counter;
4196 }
4197
4198 static int inherit_group(struct perf_counter *parent_counter,
4199 struct task_struct *parent,
4200 struct perf_counter_context *parent_ctx,
4201 struct task_struct *child,
4202 struct perf_counter_context *child_ctx)
4203 {
4204 struct perf_counter *leader;
4205 struct perf_counter *sub;
4206 struct perf_counter *child_ctr;
4207
4208 leader = inherit_counter(parent_counter, parent, parent_ctx,
4209 child, NULL, child_ctx);
4210 if (IS_ERR(leader))
4211 return PTR_ERR(leader);
4212 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
4213 child_ctr = inherit_counter(sub, parent, parent_ctx,
4214 child, leader, child_ctx);
4215 if (IS_ERR(child_ctr))
4216 return PTR_ERR(child_ctr);
4217 }
4218 return 0;
4219 }
4220
4221 static void sync_child_counter(struct perf_counter *child_counter,
4222 struct task_struct *child)
4223 {
4224 struct perf_counter *parent_counter = child_counter->parent;
4225 u64 child_val;
4226
4227 if (child_counter->attr.inherit_stat)
4228 perf_counter_read_event(child_counter, child);
4229
4230 child_val = atomic64_read(&child_counter->count);
4231
4232 /*
4233 * Add back the child's count to the parent's count:
4234 */
4235 atomic64_add(child_val, &parent_counter->count);
4236 atomic64_add(child_counter->total_time_enabled,
4237 &parent_counter->child_total_time_enabled);
4238 atomic64_add(child_counter->total_time_running,
4239 &parent_counter->child_total_time_running);
4240
4241 /*
4242 * Remove this counter from the parent's list
4243 */
4244 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
4245 mutex_lock(&parent_counter->child_mutex);
4246 list_del_init(&child_counter->child_list);
4247 mutex_unlock(&parent_counter->child_mutex);
4248
4249 /*
4250 * Release the parent counter, if this was the last
4251 * reference to it.
4252 */
4253 fput(parent_counter->filp);
4254 }
4255
4256 static void
4257 __perf_counter_exit_task(struct perf_counter *child_counter,
4258 struct perf_counter_context *child_ctx,
4259 struct task_struct *child)
4260 {
4261 struct perf_counter *parent_counter;
4262
4263 update_counter_times(child_counter);
4264 perf_counter_remove_from_context(child_counter);
4265
4266 parent_counter = child_counter->parent;
4267 /*
4268 * It can happen that parent exits first, and has counters
4269 * that are still around due to the child reference. These
4270 * counters need to be zapped - but otherwise linger.
4271 */
4272 if (parent_counter) {
4273 sync_child_counter(child_counter, child);
4274 free_counter(child_counter);
4275 }
4276 }
4277
4278 /*
4279 * When a child task exits, feed back counter values to parent counters.
4280 */
4281 void perf_counter_exit_task(struct task_struct *child)
4282 {
4283 struct perf_counter *child_counter, *tmp;
4284 struct perf_counter_context *child_ctx;
4285 unsigned long flags;
4286
4287 if (likely(!child->perf_counter_ctxp)) {
4288 perf_counter_task(child, 0);
4289 return;
4290 }
4291
4292 local_irq_save(flags);
4293 /*
4294 * We can't reschedule here because interrupts are disabled,
4295 * and either child is current or it is a task that can't be
4296 * scheduled, so we are now safe from rescheduling changing
4297 * our context.
4298 */
4299 child_ctx = child->perf_counter_ctxp;
4300 __perf_counter_task_sched_out(child_ctx);
4301
4302 /*
4303 * Take the context lock here so that if find_get_context is
4304 * reading child->perf_counter_ctxp, we wait until it has
4305 * incremented the context's refcount before we do put_ctx below.
4306 */
4307 spin_lock(&child_ctx->lock);
4308 /*
4309 * If this context is a clone; unclone it so it can't get
4310 * swapped to another process while we're removing all
4311 * the counters from it.
4312 */
4313 unclone_ctx(child_ctx);
4314 spin_unlock_irqrestore(&child_ctx->lock, flags);
4315
4316 /*
4317 * Report the task dead after unscheduling the counters so that we
4318 * won't get any samples after PERF_EVENT_EXIT. We can however still
4319 * get a few PERF_EVENT_READ events.
4320 */
4321 perf_counter_task(child, 0);
4322
4323 child->perf_counter_ctxp = NULL;
4324
4325 /*
4326 * We can recurse on the same lock type through:
4327 *
4328 * __perf_counter_exit_task()
4329 * sync_child_counter()
4330 * fput(parent_counter->filp)
4331 * perf_release()
4332 * mutex_lock(&ctx->mutex)
4333 *
4334 * But since its the parent context it won't be the same instance.
4335 */
4336 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4337
4338 again:
4339 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
4340 list_entry)
4341 __perf_counter_exit_task(child_counter, child_ctx, child);
4342
4343 /*
4344 * If the last counter was a group counter, it will have appended all
4345 * its siblings to the list, but we obtained 'tmp' before that which
4346 * will still point to the list head terminating the iteration.
4347 */
4348 if (!list_empty(&child_ctx->counter_list))
4349 goto again;
4350
4351 mutex_unlock(&child_ctx->mutex);
4352
4353 put_ctx(child_ctx);
4354 }
4355
4356 /*
4357 * free an unexposed, unused context as created by inheritance by
4358 * init_task below, used by fork() in case of fail.
4359 */
4360 void perf_counter_free_task(struct task_struct *task)
4361 {
4362 struct perf_counter_context *ctx = task->perf_counter_ctxp;
4363 struct perf_counter *counter, *tmp;
4364
4365 if (!ctx)
4366 return;
4367
4368 mutex_lock(&ctx->mutex);
4369 again:
4370 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) {
4371 struct perf_counter *parent = counter->parent;
4372
4373 if (WARN_ON_ONCE(!parent))
4374 continue;
4375
4376 mutex_lock(&parent->child_mutex);
4377 list_del_init(&counter->child_list);
4378 mutex_unlock(&parent->child_mutex);
4379
4380 fput(parent->filp);
4381
4382 list_del_counter(counter, ctx);
4383 free_counter(counter);
4384 }
4385
4386 if (!list_empty(&ctx->counter_list))
4387 goto again;
4388
4389 mutex_unlock(&ctx->mutex);
4390
4391 put_ctx(ctx);
4392 }
4393
4394 /*
4395 * Initialize the perf_counter context in task_struct
4396 */
4397 int perf_counter_init_task(struct task_struct *child)
4398 {
4399 struct perf_counter_context *child_ctx, *parent_ctx;
4400 struct perf_counter_context *cloned_ctx;
4401 struct perf_counter *counter;
4402 struct task_struct *parent = current;
4403 int inherited_all = 1;
4404 int ret = 0;
4405
4406 child->perf_counter_ctxp = NULL;
4407
4408 mutex_init(&child->perf_counter_mutex);
4409 INIT_LIST_HEAD(&child->perf_counter_list);
4410
4411 if (likely(!parent->perf_counter_ctxp))
4412 return 0;
4413
4414 /*
4415 * This is executed from the parent task context, so inherit
4416 * counters that have been marked for cloning.
4417 * First allocate and initialize a context for the child.
4418 */
4419
4420 child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
4421 if (!child_ctx)
4422 return -ENOMEM;
4423
4424 __perf_counter_init_context(child_ctx, child);
4425 child->perf_counter_ctxp = child_ctx;
4426 get_task_struct(child);
4427
4428 /*
4429 * If the parent's context is a clone, pin it so it won't get
4430 * swapped under us.
4431 */
4432 parent_ctx = perf_pin_task_context(parent);
4433
4434 /*
4435 * No need to check if parent_ctx != NULL here; since we saw
4436 * it non-NULL earlier, the only reason for it to become NULL
4437 * is if we exit, and since we're currently in the middle of
4438 * a fork we can't be exiting at the same time.
4439 */
4440
4441 /*
4442 * Lock the parent list. No need to lock the child - not PID
4443 * hashed yet and not running, so nobody can access it.
4444 */
4445 mutex_lock(&parent_ctx->mutex);
4446
4447 /*
4448 * We dont have to disable NMIs - we are only looking at
4449 * the list, not manipulating it:
4450 */
4451 list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
4452 if (counter != counter->group_leader)
4453 continue;
4454
4455 if (!counter->attr.inherit) {
4456 inherited_all = 0;
4457 continue;
4458 }
4459
4460 ret = inherit_group(counter, parent, parent_ctx,
4461 child, child_ctx);
4462 if (ret) {
4463 inherited_all = 0;
4464 break;
4465 }
4466 }
4467
4468 if (inherited_all) {
4469 /*
4470 * Mark the child context as a clone of the parent
4471 * context, or of whatever the parent is a clone of.
4472 * Note that if the parent is a clone, it could get
4473 * uncloned at any point, but that doesn't matter
4474 * because the list of counters and the generation
4475 * count can't have changed since we took the mutex.
4476 */
4477 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
4478 if (cloned_ctx) {
4479 child_ctx->parent_ctx = cloned_ctx;
4480 child_ctx->parent_gen = parent_ctx->parent_gen;
4481 } else {
4482 child_ctx->parent_ctx = parent_ctx;
4483 child_ctx->parent_gen = parent_ctx->generation;
4484 }
4485 get_ctx(child_ctx->parent_ctx);
4486 }
4487
4488 mutex_unlock(&parent_ctx->mutex);
4489
4490 perf_unpin_context(parent_ctx);
4491
4492 return ret;
4493 }
4494
4495 static void __cpuinit perf_counter_init_cpu(int cpu)
4496 {
4497 struct perf_cpu_context *cpuctx;
4498
4499 cpuctx = &per_cpu(perf_cpu_context, cpu);
4500 __perf_counter_init_context(&cpuctx->ctx, NULL);
4501
4502 spin_lock(&perf_resource_lock);
4503 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
4504 spin_unlock(&perf_resource_lock);
4505
4506 hw_perf_counter_setup(cpu);
4507 }
4508
4509 #ifdef CONFIG_HOTPLUG_CPU
4510 static void __perf_counter_exit_cpu(void *info)
4511 {
4512 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4513 struct perf_counter_context *ctx = &cpuctx->ctx;
4514 struct perf_counter *counter, *tmp;
4515
4516 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
4517 __perf_counter_remove_from_context(counter);
4518 }
4519 static void perf_counter_exit_cpu(int cpu)
4520 {
4521 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4522 struct perf_counter_context *ctx = &cpuctx->ctx;
4523
4524 mutex_lock(&ctx->mutex);
4525 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
4526 mutex_unlock(&ctx->mutex);
4527 }
4528 #else
4529 static inline void perf_counter_exit_cpu(int cpu) { }
4530 #endif
4531
4532 static int __cpuinit
4533 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
4534 {
4535 unsigned int cpu = (long)hcpu;
4536
4537 switch (action) {
4538
4539 case CPU_UP_PREPARE:
4540 case CPU_UP_PREPARE_FROZEN:
4541 perf_counter_init_cpu(cpu);
4542 break;
4543
4544 case CPU_DOWN_PREPARE:
4545 case CPU_DOWN_PREPARE_FROZEN:
4546 perf_counter_exit_cpu(cpu);
4547 break;
4548
4549 default:
4550 break;
4551 }
4552
4553 return NOTIFY_OK;
4554 }
4555
4556 /*
4557 * This has to have a higher priority than migration_notifier in sched.c.
4558 */
4559 static struct notifier_block __cpuinitdata perf_cpu_nb = {
4560 .notifier_call = perf_cpu_notify,
4561 .priority = 20,
4562 };
4563
4564 void __init perf_counter_init(void)
4565 {
4566 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
4567 (void *)(long)smp_processor_id());
4568 register_cpu_notifier(&perf_cpu_nb);
4569 }
4570
4571 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
4572 {
4573 return sprintf(buf, "%d\n", perf_reserved_percpu);
4574 }
4575
4576 static ssize_t
4577 perf_set_reserve_percpu(struct sysdev_class *class,
4578 const char *buf,
4579 size_t count)
4580 {
4581 struct perf_cpu_context *cpuctx;
4582 unsigned long val;
4583 int err, cpu, mpt;
4584
4585 err = strict_strtoul(buf, 10, &val);
4586 if (err)
4587 return err;
4588 if (val > perf_max_counters)
4589 return -EINVAL;
4590
4591 spin_lock(&perf_resource_lock);
4592 perf_reserved_percpu = val;
4593 for_each_online_cpu(cpu) {
4594 cpuctx = &per_cpu(perf_cpu_context, cpu);
4595 spin_lock_irq(&cpuctx->ctx.lock);
4596 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
4597 perf_max_counters - perf_reserved_percpu);
4598 cpuctx->max_pertask = mpt;
4599 spin_unlock_irq(&cpuctx->ctx.lock);
4600 }
4601 spin_unlock(&perf_resource_lock);
4602
4603 return count;
4604 }
4605
4606 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
4607 {
4608 return sprintf(buf, "%d\n", perf_overcommit);
4609 }
4610
4611 static ssize_t
4612 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
4613 {
4614 unsigned long val;
4615 int err;
4616
4617 err = strict_strtoul(buf, 10, &val);
4618 if (err)
4619 return err;
4620 if (val > 1)
4621 return -EINVAL;
4622
4623 spin_lock(&perf_resource_lock);
4624 perf_overcommit = val;
4625 spin_unlock(&perf_resource_lock);
4626
4627 return count;
4628 }
4629
4630 static SYSDEV_CLASS_ATTR(
4631 reserve_percpu,
4632 0644,
4633 perf_show_reserve_percpu,
4634 perf_set_reserve_percpu
4635 );
4636
4637 static SYSDEV_CLASS_ATTR(
4638 overcommit,
4639 0644,
4640 perf_show_overcommit,
4641 perf_set_overcommit
4642 );
4643
4644 static struct attribute *perfclass_attrs[] = {
4645 &attr_reserve_percpu.attr,
4646 &attr_overcommit.attr,
4647 NULL
4648 };
4649
4650 static struct attribute_group perfclass_attr_group = {
4651 .attrs = perfclass_attrs,
4652 .name = "perf_counters",
4653 };
4654
4655 static int __init perf_counter_sysfs_init(void)
4656 {
4657 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
4658 &perfclass_attr_group);
4659 }
4660 device_initcall(perf_counter_sysfs_init);
This page took 0.122112 seconds and 6 git commands to generate.