perf_counter: Rework the perf counter disable/enable
[deliverable/linux.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/ptrace.h>
20 #include <linux/percpu.h>
21 #include <linux/vmstat.h>
22 #include <linux/hardirq.h>
23 #include <linux/rculist.h>
24 #include <linux/uaccess.h>
25 #include <linux/syscalls.h>
26 #include <linux/anon_inodes.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/perf_counter.h>
29 #include <linux/dcache.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34 * Each CPU has a list of per CPU counters:
35 */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_tracking __read_mostly;
44 static atomic_t nr_munmap_tracking __read_mostly;
45 static atomic_t nr_comm_tracking __read_mostly;
46
47 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48 int sysctl_perf_counter_mlock __read_mostly = 128; /* 'free' kb per counter */
49
50 /*
51 * Lock for (sysadmin-configurable) counter reservations:
52 */
53 static DEFINE_SPINLOCK(perf_resource_lock);
54
55 /*
56 * Architecture provided APIs - weak aliases:
57 */
58 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
59 {
60 return NULL;
61 }
62
63 void __weak hw_perf_disable(void) { barrier(); }
64 void __weak hw_perf_enable(void) { barrier(); }
65
66 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
67 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
68 struct perf_cpu_context *cpuctx,
69 struct perf_counter_context *ctx, int cpu)
70 {
71 return 0;
72 }
73
74 void __weak perf_counter_print_debug(void) { }
75
76 static DEFINE_PER_CPU(int, disable_count);
77
78 void __perf_disable(void)
79 {
80 __get_cpu_var(disable_count)++;
81 }
82
83 bool __perf_enable(void)
84 {
85 return !--__get_cpu_var(disable_count);
86 }
87
88 void perf_disable(void)
89 {
90 __perf_disable();
91 hw_perf_disable();
92 }
93 EXPORT_SYMBOL_GPL(perf_disable); /* ACPI idle */
94
95 void perf_enable(void)
96 {
97 if (__perf_enable())
98 hw_perf_enable();
99 }
100 EXPORT_SYMBOL_GPL(perf_enable); /* ACPI idle */
101
102 static void
103 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
104 {
105 struct perf_counter *group_leader = counter->group_leader;
106
107 /*
108 * Depending on whether it is a standalone or sibling counter,
109 * add it straight to the context's counter list, or to the group
110 * leader's sibling list:
111 */
112 if (group_leader == counter)
113 list_add_tail(&counter->list_entry, &ctx->counter_list);
114 else {
115 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
116 group_leader->nr_siblings++;
117 }
118
119 list_add_rcu(&counter->event_entry, &ctx->event_list);
120 }
121
122 static void
123 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
124 {
125 struct perf_counter *sibling, *tmp;
126
127 list_del_init(&counter->list_entry);
128 list_del_rcu(&counter->event_entry);
129
130 if (counter->group_leader != counter)
131 counter->group_leader->nr_siblings--;
132
133 /*
134 * If this was a group counter with sibling counters then
135 * upgrade the siblings to singleton counters by adding them
136 * to the context list directly:
137 */
138 list_for_each_entry_safe(sibling, tmp,
139 &counter->sibling_list, list_entry) {
140
141 list_move_tail(&sibling->list_entry, &ctx->counter_list);
142 sibling->group_leader = sibling;
143 }
144 }
145
146 static void
147 counter_sched_out(struct perf_counter *counter,
148 struct perf_cpu_context *cpuctx,
149 struct perf_counter_context *ctx)
150 {
151 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
152 return;
153
154 counter->state = PERF_COUNTER_STATE_INACTIVE;
155 counter->tstamp_stopped = ctx->time;
156 counter->pmu->disable(counter);
157 counter->oncpu = -1;
158
159 if (!is_software_counter(counter))
160 cpuctx->active_oncpu--;
161 ctx->nr_active--;
162 if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
163 cpuctx->exclusive = 0;
164 }
165
166 static void
167 group_sched_out(struct perf_counter *group_counter,
168 struct perf_cpu_context *cpuctx,
169 struct perf_counter_context *ctx)
170 {
171 struct perf_counter *counter;
172
173 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
174 return;
175
176 counter_sched_out(group_counter, cpuctx, ctx);
177
178 /*
179 * Schedule out siblings (if any):
180 */
181 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
182 counter_sched_out(counter, cpuctx, ctx);
183
184 if (group_counter->hw_event.exclusive)
185 cpuctx->exclusive = 0;
186 }
187
188 /*
189 * Cross CPU call to remove a performance counter
190 *
191 * We disable the counter on the hardware level first. After that we
192 * remove it from the context list.
193 */
194 static void __perf_counter_remove_from_context(void *info)
195 {
196 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
197 struct perf_counter *counter = info;
198 struct perf_counter_context *ctx = counter->ctx;
199 unsigned long flags;
200
201 /*
202 * If this is a task context, we need to check whether it is
203 * the current task context of this cpu. If not it has been
204 * scheduled out before the smp call arrived.
205 */
206 if (ctx->task && cpuctx->task_ctx != ctx)
207 return;
208
209 spin_lock_irqsave(&ctx->lock, flags);
210
211 counter_sched_out(counter, cpuctx, ctx);
212
213 counter->task = NULL;
214 ctx->nr_counters--;
215
216 /*
217 * Protect the list operation against NMI by disabling the
218 * counters on a global level. NOP for non NMI based counters.
219 */
220 perf_disable();
221 list_del_counter(counter, ctx);
222 perf_enable();
223
224 if (!ctx->task) {
225 /*
226 * Allow more per task counters with respect to the
227 * reservation:
228 */
229 cpuctx->max_pertask =
230 min(perf_max_counters - ctx->nr_counters,
231 perf_max_counters - perf_reserved_percpu);
232 }
233
234 spin_unlock_irqrestore(&ctx->lock, flags);
235 }
236
237
238 /*
239 * Remove the counter from a task's (or a CPU's) list of counters.
240 *
241 * Must be called with counter->mutex and ctx->mutex held.
242 *
243 * CPU counters are removed with a smp call. For task counters we only
244 * call when the task is on a CPU.
245 */
246 static void perf_counter_remove_from_context(struct perf_counter *counter)
247 {
248 struct perf_counter_context *ctx = counter->ctx;
249 struct task_struct *task = ctx->task;
250
251 if (!task) {
252 /*
253 * Per cpu counters are removed via an smp call and
254 * the removal is always sucessful.
255 */
256 smp_call_function_single(counter->cpu,
257 __perf_counter_remove_from_context,
258 counter, 1);
259 return;
260 }
261
262 retry:
263 task_oncpu_function_call(task, __perf_counter_remove_from_context,
264 counter);
265
266 spin_lock_irq(&ctx->lock);
267 /*
268 * If the context is active we need to retry the smp call.
269 */
270 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
271 spin_unlock_irq(&ctx->lock);
272 goto retry;
273 }
274
275 /*
276 * The lock prevents that this context is scheduled in so we
277 * can remove the counter safely, if the call above did not
278 * succeed.
279 */
280 if (!list_empty(&counter->list_entry)) {
281 ctx->nr_counters--;
282 list_del_counter(counter, ctx);
283 counter->task = NULL;
284 }
285 spin_unlock_irq(&ctx->lock);
286 }
287
288 static inline u64 perf_clock(void)
289 {
290 return cpu_clock(smp_processor_id());
291 }
292
293 /*
294 * Update the record of the current time in a context.
295 */
296 static void update_context_time(struct perf_counter_context *ctx)
297 {
298 u64 now = perf_clock();
299
300 ctx->time += now - ctx->timestamp;
301 ctx->timestamp = now;
302 }
303
304 /*
305 * Update the total_time_enabled and total_time_running fields for a counter.
306 */
307 static void update_counter_times(struct perf_counter *counter)
308 {
309 struct perf_counter_context *ctx = counter->ctx;
310 u64 run_end;
311
312 if (counter->state < PERF_COUNTER_STATE_INACTIVE)
313 return;
314
315 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
316
317 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
318 run_end = counter->tstamp_stopped;
319 else
320 run_end = ctx->time;
321
322 counter->total_time_running = run_end - counter->tstamp_running;
323 }
324
325 /*
326 * Update total_time_enabled and total_time_running for all counters in a group.
327 */
328 static void update_group_times(struct perf_counter *leader)
329 {
330 struct perf_counter *counter;
331
332 update_counter_times(leader);
333 list_for_each_entry(counter, &leader->sibling_list, list_entry)
334 update_counter_times(counter);
335 }
336
337 /*
338 * Cross CPU call to disable a performance counter
339 */
340 static void __perf_counter_disable(void *info)
341 {
342 struct perf_counter *counter = info;
343 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
344 struct perf_counter_context *ctx = counter->ctx;
345 unsigned long flags;
346
347 /*
348 * If this is a per-task counter, need to check whether this
349 * counter's task is the current task on this cpu.
350 */
351 if (ctx->task && cpuctx->task_ctx != ctx)
352 return;
353
354 spin_lock_irqsave(&ctx->lock, flags);
355
356 /*
357 * If the counter is on, turn it off.
358 * If it is in error state, leave it in error state.
359 */
360 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
361 update_context_time(ctx);
362 update_counter_times(counter);
363 if (counter == counter->group_leader)
364 group_sched_out(counter, cpuctx, ctx);
365 else
366 counter_sched_out(counter, cpuctx, ctx);
367 counter->state = PERF_COUNTER_STATE_OFF;
368 }
369
370 spin_unlock_irqrestore(&ctx->lock, flags);
371 }
372
373 /*
374 * Disable a counter.
375 */
376 static void perf_counter_disable(struct perf_counter *counter)
377 {
378 struct perf_counter_context *ctx = counter->ctx;
379 struct task_struct *task = ctx->task;
380
381 if (!task) {
382 /*
383 * Disable the counter on the cpu that it's on
384 */
385 smp_call_function_single(counter->cpu, __perf_counter_disable,
386 counter, 1);
387 return;
388 }
389
390 retry:
391 task_oncpu_function_call(task, __perf_counter_disable, counter);
392
393 spin_lock_irq(&ctx->lock);
394 /*
395 * If the counter is still active, we need to retry the cross-call.
396 */
397 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
398 spin_unlock_irq(&ctx->lock);
399 goto retry;
400 }
401
402 /*
403 * Since we have the lock this context can't be scheduled
404 * in, so we can change the state safely.
405 */
406 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
407 update_counter_times(counter);
408 counter->state = PERF_COUNTER_STATE_OFF;
409 }
410
411 spin_unlock_irq(&ctx->lock);
412 }
413
414 static int
415 counter_sched_in(struct perf_counter *counter,
416 struct perf_cpu_context *cpuctx,
417 struct perf_counter_context *ctx,
418 int cpu)
419 {
420 if (counter->state <= PERF_COUNTER_STATE_OFF)
421 return 0;
422
423 counter->state = PERF_COUNTER_STATE_ACTIVE;
424 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
425 /*
426 * The new state must be visible before we turn it on in the hardware:
427 */
428 smp_wmb();
429
430 if (counter->pmu->enable(counter)) {
431 counter->state = PERF_COUNTER_STATE_INACTIVE;
432 counter->oncpu = -1;
433 return -EAGAIN;
434 }
435
436 counter->tstamp_running += ctx->time - counter->tstamp_stopped;
437
438 if (!is_software_counter(counter))
439 cpuctx->active_oncpu++;
440 ctx->nr_active++;
441
442 if (counter->hw_event.exclusive)
443 cpuctx->exclusive = 1;
444
445 return 0;
446 }
447
448 static int
449 group_sched_in(struct perf_counter *group_counter,
450 struct perf_cpu_context *cpuctx,
451 struct perf_counter_context *ctx,
452 int cpu)
453 {
454 struct perf_counter *counter, *partial_group;
455 int ret;
456
457 if (group_counter->state == PERF_COUNTER_STATE_OFF)
458 return 0;
459
460 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
461 if (ret)
462 return ret < 0 ? ret : 0;
463
464 group_counter->prev_state = group_counter->state;
465 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
466 return -EAGAIN;
467
468 /*
469 * Schedule in siblings as one group (if any):
470 */
471 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
472 counter->prev_state = counter->state;
473 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
474 partial_group = counter;
475 goto group_error;
476 }
477 }
478
479 return 0;
480
481 group_error:
482 /*
483 * Groups can be scheduled in as one unit only, so undo any
484 * partial group before returning:
485 */
486 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
487 if (counter == partial_group)
488 break;
489 counter_sched_out(counter, cpuctx, ctx);
490 }
491 counter_sched_out(group_counter, cpuctx, ctx);
492
493 return -EAGAIN;
494 }
495
496 /*
497 * Return 1 for a group consisting entirely of software counters,
498 * 0 if the group contains any hardware counters.
499 */
500 static int is_software_only_group(struct perf_counter *leader)
501 {
502 struct perf_counter *counter;
503
504 if (!is_software_counter(leader))
505 return 0;
506
507 list_for_each_entry(counter, &leader->sibling_list, list_entry)
508 if (!is_software_counter(counter))
509 return 0;
510
511 return 1;
512 }
513
514 /*
515 * Work out whether we can put this counter group on the CPU now.
516 */
517 static int group_can_go_on(struct perf_counter *counter,
518 struct perf_cpu_context *cpuctx,
519 int can_add_hw)
520 {
521 /*
522 * Groups consisting entirely of software counters can always go on.
523 */
524 if (is_software_only_group(counter))
525 return 1;
526 /*
527 * If an exclusive group is already on, no other hardware
528 * counters can go on.
529 */
530 if (cpuctx->exclusive)
531 return 0;
532 /*
533 * If this group is exclusive and there are already
534 * counters on the CPU, it can't go on.
535 */
536 if (counter->hw_event.exclusive && cpuctx->active_oncpu)
537 return 0;
538 /*
539 * Otherwise, try to add it if all previous groups were able
540 * to go on.
541 */
542 return can_add_hw;
543 }
544
545 static void add_counter_to_ctx(struct perf_counter *counter,
546 struct perf_counter_context *ctx)
547 {
548 list_add_counter(counter, ctx);
549 ctx->nr_counters++;
550 counter->prev_state = PERF_COUNTER_STATE_OFF;
551 counter->tstamp_enabled = ctx->time;
552 counter->tstamp_running = ctx->time;
553 counter->tstamp_stopped = ctx->time;
554 }
555
556 /*
557 * Cross CPU call to install and enable a performance counter
558 */
559 static void __perf_install_in_context(void *info)
560 {
561 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
562 struct perf_counter *counter = info;
563 struct perf_counter_context *ctx = counter->ctx;
564 struct perf_counter *leader = counter->group_leader;
565 int cpu = smp_processor_id();
566 unsigned long flags;
567 int err;
568
569 /*
570 * If this is a task context, we need to check whether it is
571 * the current task context of this cpu. If not it has been
572 * scheduled out before the smp call arrived.
573 */
574 if (ctx->task && cpuctx->task_ctx != ctx)
575 return;
576
577 spin_lock_irqsave(&ctx->lock, flags);
578 update_context_time(ctx);
579
580 /*
581 * Protect the list operation against NMI by disabling the
582 * counters on a global level. NOP for non NMI based counters.
583 */
584 perf_disable();
585
586 add_counter_to_ctx(counter, ctx);
587
588 /*
589 * Don't put the counter on if it is disabled or if
590 * it is in a group and the group isn't on.
591 */
592 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
593 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
594 goto unlock;
595
596 /*
597 * An exclusive counter can't go on if there are already active
598 * hardware counters, and no hardware counter can go on if there
599 * is already an exclusive counter on.
600 */
601 if (!group_can_go_on(counter, cpuctx, 1))
602 err = -EEXIST;
603 else
604 err = counter_sched_in(counter, cpuctx, ctx, cpu);
605
606 if (err) {
607 /*
608 * This counter couldn't go on. If it is in a group
609 * then we have to pull the whole group off.
610 * If the counter group is pinned then put it in error state.
611 */
612 if (leader != counter)
613 group_sched_out(leader, cpuctx, ctx);
614 if (leader->hw_event.pinned) {
615 update_group_times(leader);
616 leader->state = PERF_COUNTER_STATE_ERROR;
617 }
618 }
619
620 if (!err && !ctx->task && cpuctx->max_pertask)
621 cpuctx->max_pertask--;
622
623 unlock:
624 perf_enable();
625
626 spin_unlock_irqrestore(&ctx->lock, flags);
627 }
628
629 /*
630 * Attach a performance counter to a context
631 *
632 * First we add the counter to the list with the hardware enable bit
633 * in counter->hw_config cleared.
634 *
635 * If the counter is attached to a task which is on a CPU we use a smp
636 * call to enable it in the task context. The task might have been
637 * scheduled away, but we check this in the smp call again.
638 *
639 * Must be called with ctx->mutex held.
640 */
641 static void
642 perf_install_in_context(struct perf_counter_context *ctx,
643 struct perf_counter *counter,
644 int cpu)
645 {
646 struct task_struct *task = ctx->task;
647
648 if (!task) {
649 /*
650 * Per cpu counters are installed via an smp call and
651 * the install is always sucessful.
652 */
653 smp_call_function_single(cpu, __perf_install_in_context,
654 counter, 1);
655 return;
656 }
657
658 counter->task = task;
659 retry:
660 task_oncpu_function_call(task, __perf_install_in_context,
661 counter);
662
663 spin_lock_irq(&ctx->lock);
664 /*
665 * we need to retry the smp call.
666 */
667 if (ctx->is_active && list_empty(&counter->list_entry)) {
668 spin_unlock_irq(&ctx->lock);
669 goto retry;
670 }
671
672 /*
673 * The lock prevents that this context is scheduled in so we
674 * can add the counter safely, if it the call above did not
675 * succeed.
676 */
677 if (list_empty(&counter->list_entry))
678 add_counter_to_ctx(counter, ctx);
679 spin_unlock_irq(&ctx->lock);
680 }
681
682 /*
683 * Cross CPU call to enable a performance counter
684 */
685 static void __perf_counter_enable(void *info)
686 {
687 struct perf_counter *counter = info;
688 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
689 struct perf_counter_context *ctx = counter->ctx;
690 struct perf_counter *leader = counter->group_leader;
691 unsigned long flags;
692 int err;
693
694 /*
695 * If this is a per-task counter, need to check whether this
696 * counter's task is the current task on this cpu.
697 */
698 if (ctx->task && cpuctx->task_ctx != ctx)
699 return;
700
701 spin_lock_irqsave(&ctx->lock, flags);
702 update_context_time(ctx);
703
704 counter->prev_state = counter->state;
705 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
706 goto unlock;
707 counter->state = PERF_COUNTER_STATE_INACTIVE;
708 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
709
710 /*
711 * If the counter is in a group and isn't the group leader,
712 * then don't put it on unless the group is on.
713 */
714 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
715 goto unlock;
716
717 if (!group_can_go_on(counter, cpuctx, 1)) {
718 err = -EEXIST;
719 } else {
720 perf_disable();
721 if (counter == leader)
722 err = group_sched_in(counter, cpuctx, ctx,
723 smp_processor_id());
724 else
725 err = counter_sched_in(counter, cpuctx, ctx,
726 smp_processor_id());
727 perf_enable();
728 }
729
730 if (err) {
731 /*
732 * If this counter can't go on and it's part of a
733 * group, then the whole group has to come off.
734 */
735 if (leader != counter)
736 group_sched_out(leader, cpuctx, ctx);
737 if (leader->hw_event.pinned) {
738 update_group_times(leader);
739 leader->state = PERF_COUNTER_STATE_ERROR;
740 }
741 }
742
743 unlock:
744 spin_unlock_irqrestore(&ctx->lock, flags);
745 }
746
747 /*
748 * Enable a counter.
749 */
750 static void perf_counter_enable(struct perf_counter *counter)
751 {
752 struct perf_counter_context *ctx = counter->ctx;
753 struct task_struct *task = ctx->task;
754
755 if (!task) {
756 /*
757 * Enable the counter on the cpu that it's on
758 */
759 smp_call_function_single(counter->cpu, __perf_counter_enable,
760 counter, 1);
761 return;
762 }
763
764 spin_lock_irq(&ctx->lock);
765 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
766 goto out;
767
768 /*
769 * If the counter is in error state, clear that first.
770 * That way, if we see the counter in error state below, we
771 * know that it has gone back into error state, as distinct
772 * from the task having been scheduled away before the
773 * cross-call arrived.
774 */
775 if (counter->state == PERF_COUNTER_STATE_ERROR)
776 counter->state = PERF_COUNTER_STATE_OFF;
777
778 retry:
779 spin_unlock_irq(&ctx->lock);
780 task_oncpu_function_call(task, __perf_counter_enable, counter);
781
782 spin_lock_irq(&ctx->lock);
783
784 /*
785 * If the context is active and the counter is still off,
786 * we need to retry the cross-call.
787 */
788 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
789 goto retry;
790
791 /*
792 * Since we have the lock this context can't be scheduled
793 * in, so we can change the state safely.
794 */
795 if (counter->state == PERF_COUNTER_STATE_OFF) {
796 counter->state = PERF_COUNTER_STATE_INACTIVE;
797 counter->tstamp_enabled =
798 ctx->time - counter->total_time_enabled;
799 }
800 out:
801 spin_unlock_irq(&ctx->lock);
802 }
803
804 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
805 {
806 /*
807 * not supported on inherited counters
808 */
809 if (counter->hw_event.inherit)
810 return -EINVAL;
811
812 atomic_add(refresh, &counter->event_limit);
813 perf_counter_enable(counter);
814
815 return 0;
816 }
817
818 void __perf_counter_sched_out(struct perf_counter_context *ctx,
819 struct perf_cpu_context *cpuctx)
820 {
821 struct perf_counter *counter;
822
823 spin_lock(&ctx->lock);
824 ctx->is_active = 0;
825 if (likely(!ctx->nr_counters))
826 goto out;
827 update_context_time(ctx);
828
829 perf_disable();
830 if (ctx->nr_active) {
831 list_for_each_entry(counter, &ctx->counter_list, list_entry)
832 group_sched_out(counter, cpuctx, ctx);
833 }
834 perf_enable();
835 out:
836 spin_unlock(&ctx->lock);
837 }
838
839 /*
840 * Called from scheduler to remove the counters of the current task,
841 * with interrupts disabled.
842 *
843 * We stop each counter and update the counter value in counter->count.
844 *
845 * This does not protect us against NMI, but disable()
846 * sets the disabled bit in the control field of counter _before_
847 * accessing the counter control register. If a NMI hits, then it will
848 * not restart the counter.
849 */
850 void perf_counter_task_sched_out(struct task_struct *task, int cpu)
851 {
852 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
853 struct perf_counter_context *ctx = &task->perf_counter_ctx;
854 struct pt_regs *regs;
855
856 if (likely(!cpuctx->task_ctx))
857 return;
858
859 update_context_time(ctx);
860
861 regs = task_pt_regs(task);
862 perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
863 __perf_counter_sched_out(ctx, cpuctx);
864
865 cpuctx->task_ctx = NULL;
866 }
867
868 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
869 {
870 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
871
872 __perf_counter_sched_out(ctx, cpuctx);
873 cpuctx->task_ctx = NULL;
874 }
875
876 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
877 {
878 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
879 }
880
881 static void
882 __perf_counter_sched_in(struct perf_counter_context *ctx,
883 struct perf_cpu_context *cpuctx, int cpu)
884 {
885 struct perf_counter *counter;
886 int can_add_hw = 1;
887
888 spin_lock(&ctx->lock);
889 ctx->is_active = 1;
890 if (likely(!ctx->nr_counters))
891 goto out;
892
893 ctx->timestamp = perf_clock();
894
895 perf_disable();
896
897 /*
898 * First go through the list and put on any pinned groups
899 * in order to give them the best chance of going on.
900 */
901 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
902 if (counter->state <= PERF_COUNTER_STATE_OFF ||
903 !counter->hw_event.pinned)
904 continue;
905 if (counter->cpu != -1 && counter->cpu != cpu)
906 continue;
907
908 if (group_can_go_on(counter, cpuctx, 1))
909 group_sched_in(counter, cpuctx, ctx, cpu);
910
911 /*
912 * If this pinned group hasn't been scheduled,
913 * put it in error state.
914 */
915 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
916 update_group_times(counter);
917 counter->state = PERF_COUNTER_STATE_ERROR;
918 }
919 }
920
921 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
922 /*
923 * Ignore counters in OFF or ERROR state, and
924 * ignore pinned counters since we did them already.
925 */
926 if (counter->state <= PERF_COUNTER_STATE_OFF ||
927 counter->hw_event.pinned)
928 continue;
929
930 /*
931 * Listen to the 'cpu' scheduling filter constraint
932 * of counters:
933 */
934 if (counter->cpu != -1 && counter->cpu != cpu)
935 continue;
936
937 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
938 if (group_sched_in(counter, cpuctx, ctx, cpu))
939 can_add_hw = 0;
940 }
941 }
942 perf_enable();
943 out:
944 spin_unlock(&ctx->lock);
945 }
946
947 /*
948 * Called from scheduler to add the counters of the current task
949 * with interrupts disabled.
950 *
951 * We restore the counter value and then enable it.
952 *
953 * This does not protect us against NMI, but enable()
954 * sets the enabled bit in the control field of counter _before_
955 * accessing the counter control register. If a NMI hits, then it will
956 * keep the counter running.
957 */
958 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
959 {
960 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
961 struct perf_counter_context *ctx = &task->perf_counter_ctx;
962
963 __perf_counter_sched_in(ctx, cpuctx, cpu);
964 cpuctx->task_ctx = ctx;
965 }
966
967 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
968 {
969 struct perf_counter_context *ctx = &cpuctx->ctx;
970
971 __perf_counter_sched_in(ctx, cpuctx, cpu);
972 }
973
974 int perf_counter_task_disable(void)
975 {
976 struct task_struct *curr = current;
977 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
978 struct perf_counter *counter;
979 unsigned long flags;
980
981 if (likely(!ctx->nr_counters))
982 return 0;
983
984 local_irq_save(flags);
985
986 __perf_counter_task_sched_out(ctx);
987
988 spin_lock(&ctx->lock);
989
990 /*
991 * Disable all the counters:
992 */
993 perf_disable();
994
995 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
996 if (counter->state != PERF_COUNTER_STATE_ERROR) {
997 update_group_times(counter);
998 counter->state = PERF_COUNTER_STATE_OFF;
999 }
1000 }
1001
1002 perf_enable();
1003
1004 spin_unlock_irqrestore(&ctx->lock, flags);
1005
1006 return 0;
1007 }
1008
1009 int perf_counter_task_enable(void)
1010 {
1011 struct task_struct *curr = current;
1012 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
1013 struct perf_counter *counter;
1014 unsigned long flags;
1015 int cpu;
1016
1017 if (likely(!ctx->nr_counters))
1018 return 0;
1019
1020 local_irq_save(flags);
1021 cpu = smp_processor_id();
1022
1023 __perf_counter_task_sched_out(ctx);
1024
1025 spin_lock(&ctx->lock);
1026
1027 /*
1028 * Disable all the counters:
1029 */
1030 perf_disable();
1031
1032 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1033 if (counter->state > PERF_COUNTER_STATE_OFF)
1034 continue;
1035 counter->state = PERF_COUNTER_STATE_INACTIVE;
1036 counter->tstamp_enabled =
1037 ctx->time - counter->total_time_enabled;
1038 counter->hw_event.disabled = 0;
1039 }
1040 perf_enable();
1041
1042 spin_unlock(&ctx->lock);
1043
1044 perf_counter_task_sched_in(curr, cpu);
1045
1046 local_irq_restore(flags);
1047
1048 return 0;
1049 }
1050
1051 /*
1052 * Round-robin a context's counters:
1053 */
1054 static void rotate_ctx(struct perf_counter_context *ctx)
1055 {
1056 struct perf_counter *counter;
1057
1058 if (!ctx->nr_counters)
1059 return;
1060
1061 spin_lock(&ctx->lock);
1062 /*
1063 * Rotate the first entry last (works just fine for group counters too):
1064 */
1065 perf_disable();
1066 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1067 list_move_tail(&counter->list_entry, &ctx->counter_list);
1068 break;
1069 }
1070 perf_enable();
1071
1072 spin_unlock(&ctx->lock);
1073 }
1074
1075 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1076 {
1077 struct perf_cpu_context *cpuctx;
1078 struct perf_counter_context *ctx;
1079
1080 if (!atomic_read(&nr_counters))
1081 return;
1082
1083 cpuctx = &per_cpu(perf_cpu_context, cpu);
1084 ctx = &curr->perf_counter_ctx;
1085
1086 perf_counter_cpu_sched_out(cpuctx);
1087 __perf_counter_task_sched_out(ctx);
1088
1089 rotate_ctx(&cpuctx->ctx);
1090 rotate_ctx(ctx);
1091
1092 perf_counter_cpu_sched_in(cpuctx, cpu);
1093 perf_counter_task_sched_in(curr, cpu);
1094 }
1095
1096 /*
1097 * Cross CPU call to read the hardware counter
1098 */
1099 static void __read(void *info)
1100 {
1101 struct perf_counter *counter = info;
1102 struct perf_counter_context *ctx = counter->ctx;
1103 unsigned long flags;
1104
1105 local_irq_save(flags);
1106 if (ctx->is_active)
1107 update_context_time(ctx);
1108 counter->pmu->read(counter);
1109 update_counter_times(counter);
1110 local_irq_restore(flags);
1111 }
1112
1113 static u64 perf_counter_read(struct perf_counter *counter)
1114 {
1115 /*
1116 * If counter is enabled and currently active on a CPU, update the
1117 * value in the counter structure:
1118 */
1119 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1120 smp_call_function_single(counter->oncpu,
1121 __read, counter, 1);
1122 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1123 update_counter_times(counter);
1124 }
1125
1126 return atomic64_read(&counter->count);
1127 }
1128
1129 static void put_context(struct perf_counter_context *ctx)
1130 {
1131 if (ctx->task)
1132 put_task_struct(ctx->task);
1133 }
1134
1135 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1136 {
1137 struct perf_cpu_context *cpuctx;
1138 struct perf_counter_context *ctx;
1139 struct task_struct *task;
1140
1141 /*
1142 * If cpu is not a wildcard then this is a percpu counter:
1143 */
1144 if (cpu != -1) {
1145 /* Must be root to operate on a CPU counter: */
1146 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1147 return ERR_PTR(-EACCES);
1148
1149 if (cpu < 0 || cpu > num_possible_cpus())
1150 return ERR_PTR(-EINVAL);
1151
1152 /*
1153 * We could be clever and allow to attach a counter to an
1154 * offline CPU and activate it when the CPU comes up, but
1155 * that's for later.
1156 */
1157 if (!cpu_isset(cpu, cpu_online_map))
1158 return ERR_PTR(-ENODEV);
1159
1160 cpuctx = &per_cpu(perf_cpu_context, cpu);
1161 ctx = &cpuctx->ctx;
1162
1163 return ctx;
1164 }
1165
1166 rcu_read_lock();
1167 if (!pid)
1168 task = current;
1169 else
1170 task = find_task_by_vpid(pid);
1171 if (task)
1172 get_task_struct(task);
1173 rcu_read_unlock();
1174
1175 if (!task)
1176 return ERR_PTR(-ESRCH);
1177
1178 ctx = &task->perf_counter_ctx;
1179 ctx->task = task;
1180
1181 /* Reuse ptrace permission checks for now. */
1182 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1183 put_context(ctx);
1184 return ERR_PTR(-EACCES);
1185 }
1186
1187 return ctx;
1188 }
1189
1190 static void free_counter_rcu(struct rcu_head *head)
1191 {
1192 struct perf_counter *counter;
1193
1194 counter = container_of(head, struct perf_counter, rcu_head);
1195 kfree(counter);
1196 }
1197
1198 static void perf_pending_sync(struct perf_counter *counter);
1199
1200 static void free_counter(struct perf_counter *counter)
1201 {
1202 perf_pending_sync(counter);
1203
1204 atomic_dec(&nr_counters);
1205 if (counter->hw_event.mmap)
1206 atomic_dec(&nr_mmap_tracking);
1207 if (counter->hw_event.munmap)
1208 atomic_dec(&nr_munmap_tracking);
1209 if (counter->hw_event.comm)
1210 atomic_dec(&nr_comm_tracking);
1211
1212 if (counter->destroy)
1213 counter->destroy(counter);
1214
1215 call_rcu(&counter->rcu_head, free_counter_rcu);
1216 }
1217
1218 /*
1219 * Called when the last reference to the file is gone.
1220 */
1221 static int perf_release(struct inode *inode, struct file *file)
1222 {
1223 struct perf_counter *counter = file->private_data;
1224 struct perf_counter_context *ctx = counter->ctx;
1225
1226 file->private_data = NULL;
1227
1228 mutex_lock(&ctx->mutex);
1229 mutex_lock(&counter->mutex);
1230
1231 perf_counter_remove_from_context(counter);
1232
1233 mutex_unlock(&counter->mutex);
1234 mutex_unlock(&ctx->mutex);
1235
1236 free_counter(counter);
1237 put_context(ctx);
1238
1239 return 0;
1240 }
1241
1242 /*
1243 * Read the performance counter - simple non blocking version for now
1244 */
1245 static ssize_t
1246 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1247 {
1248 u64 values[3];
1249 int n;
1250
1251 /*
1252 * Return end-of-file for a read on a counter that is in
1253 * error state (i.e. because it was pinned but it couldn't be
1254 * scheduled on to the CPU at some point).
1255 */
1256 if (counter->state == PERF_COUNTER_STATE_ERROR)
1257 return 0;
1258
1259 mutex_lock(&counter->mutex);
1260 values[0] = perf_counter_read(counter);
1261 n = 1;
1262 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1263 values[n++] = counter->total_time_enabled +
1264 atomic64_read(&counter->child_total_time_enabled);
1265 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1266 values[n++] = counter->total_time_running +
1267 atomic64_read(&counter->child_total_time_running);
1268 mutex_unlock(&counter->mutex);
1269
1270 if (count < n * sizeof(u64))
1271 return -EINVAL;
1272 count = n * sizeof(u64);
1273
1274 if (copy_to_user(buf, values, count))
1275 return -EFAULT;
1276
1277 return count;
1278 }
1279
1280 static ssize_t
1281 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1282 {
1283 struct perf_counter *counter = file->private_data;
1284
1285 return perf_read_hw(counter, buf, count);
1286 }
1287
1288 static unsigned int perf_poll(struct file *file, poll_table *wait)
1289 {
1290 struct perf_counter *counter = file->private_data;
1291 struct perf_mmap_data *data;
1292 unsigned int events = POLL_HUP;
1293
1294 rcu_read_lock();
1295 data = rcu_dereference(counter->data);
1296 if (data)
1297 events = atomic_xchg(&data->poll, 0);
1298 rcu_read_unlock();
1299
1300 poll_wait(file, &counter->waitq, wait);
1301
1302 return events;
1303 }
1304
1305 static void perf_counter_reset(struct perf_counter *counter)
1306 {
1307 (void)perf_counter_read(counter);
1308 atomic64_set(&counter->count, 0);
1309 perf_counter_update_userpage(counter);
1310 }
1311
1312 static void perf_counter_for_each_sibling(struct perf_counter *counter,
1313 void (*func)(struct perf_counter *))
1314 {
1315 struct perf_counter_context *ctx = counter->ctx;
1316 struct perf_counter *sibling;
1317
1318 spin_lock_irq(&ctx->lock);
1319 counter = counter->group_leader;
1320
1321 func(counter);
1322 list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1323 func(sibling);
1324 spin_unlock_irq(&ctx->lock);
1325 }
1326
1327 static void perf_counter_for_each_child(struct perf_counter *counter,
1328 void (*func)(struct perf_counter *))
1329 {
1330 struct perf_counter *child;
1331
1332 mutex_lock(&counter->mutex);
1333 func(counter);
1334 list_for_each_entry(child, &counter->child_list, child_list)
1335 func(child);
1336 mutex_unlock(&counter->mutex);
1337 }
1338
1339 static void perf_counter_for_each(struct perf_counter *counter,
1340 void (*func)(struct perf_counter *))
1341 {
1342 struct perf_counter *child;
1343
1344 mutex_lock(&counter->mutex);
1345 perf_counter_for_each_sibling(counter, func);
1346 list_for_each_entry(child, &counter->child_list, child_list)
1347 perf_counter_for_each_sibling(child, func);
1348 mutex_unlock(&counter->mutex);
1349 }
1350
1351 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1352 {
1353 struct perf_counter *counter = file->private_data;
1354 void (*func)(struct perf_counter *);
1355 u32 flags = arg;
1356
1357 switch (cmd) {
1358 case PERF_COUNTER_IOC_ENABLE:
1359 func = perf_counter_enable;
1360 break;
1361 case PERF_COUNTER_IOC_DISABLE:
1362 func = perf_counter_disable;
1363 break;
1364 case PERF_COUNTER_IOC_RESET:
1365 func = perf_counter_reset;
1366 break;
1367
1368 case PERF_COUNTER_IOC_REFRESH:
1369 return perf_counter_refresh(counter, arg);
1370 default:
1371 return -ENOTTY;
1372 }
1373
1374 if (flags & PERF_IOC_FLAG_GROUP)
1375 perf_counter_for_each(counter, func);
1376 else
1377 perf_counter_for_each_child(counter, func);
1378
1379 return 0;
1380 }
1381
1382 /*
1383 * Callers need to ensure there can be no nesting of this function, otherwise
1384 * the seqlock logic goes bad. We can not serialize this because the arch
1385 * code calls this from NMI context.
1386 */
1387 void perf_counter_update_userpage(struct perf_counter *counter)
1388 {
1389 struct perf_mmap_data *data;
1390 struct perf_counter_mmap_page *userpg;
1391
1392 rcu_read_lock();
1393 data = rcu_dereference(counter->data);
1394 if (!data)
1395 goto unlock;
1396
1397 userpg = data->user_page;
1398
1399 /*
1400 * Disable preemption so as to not let the corresponding user-space
1401 * spin too long if we get preempted.
1402 */
1403 preempt_disable();
1404 ++userpg->lock;
1405 barrier();
1406 userpg->index = counter->hw.idx;
1407 userpg->offset = atomic64_read(&counter->count);
1408 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1409 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1410
1411 barrier();
1412 ++userpg->lock;
1413 preempt_enable();
1414 unlock:
1415 rcu_read_unlock();
1416 }
1417
1418 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1419 {
1420 struct perf_counter *counter = vma->vm_file->private_data;
1421 struct perf_mmap_data *data;
1422 int ret = VM_FAULT_SIGBUS;
1423
1424 rcu_read_lock();
1425 data = rcu_dereference(counter->data);
1426 if (!data)
1427 goto unlock;
1428
1429 if (vmf->pgoff == 0) {
1430 vmf->page = virt_to_page(data->user_page);
1431 } else {
1432 int nr = vmf->pgoff - 1;
1433
1434 if ((unsigned)nr > data->nr_pages)
1435 goto unlock;
1436
1437 vmf->page = virt_to_page(data->data_pages[nr]);
1438 }
1439 get_page(vmf->page);
1440 ret = 0;
1441 unlock:
1442 rcu_read_unlock();
1443
1444 return ret;
1445 }
1446
1447 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1448 {
1449 struct perf_mmap_data *data;
1450 unsigned long size;
1451 int i;
1452
1453 WARN_ON(atomic_read(&counter->mmap_count));
1454
1455 size = sizeof(struct perf_mmap_data);
1456 size += nr_pages * sizeof(void *);
1457
1458 data = kzalloc(size, GFP_KERNEL);
1459 if (!data)
1460 goto fail;
1461
1462 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1463 if (!data->user_page)
1464 goto fail_user_page;
1465
1466 for (i = 0; i < nr_pages; i++) {
1467 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1468 if (!data->data_pages[i])
1469 goto fail_data_pages;
1470 }
1471
1472 data->nr_pages = nr_pages;
1473 atomic_set(&data->lock, -1);
1474
1475 rcu_assign_pointer(counter->data, data);
1476
1477 return 0;
1478
1479 fail_data_pages:
1480 for (i--; i >= 0; i--)
1481 free_page((unsigned long)data->data_pages[i]);
1482
1483 free_page((unsigned long)data->user_page);
1484
1485 fail_user_page:
1486 kfree(data);
1487
1488 fail:
1489 return -ENOMEM;
1490 }
1491
1492 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1493 {
1494 struct perf_mmap_data *data = container_of(rcu_head,
1495 struct perf_mmap_data, rcu_head);
1496 int i;
1497
1498 free_page((unsigned long)data->user_page);
1499 for (i = 0; i < data->nr_pages; i++)
1500 free_page((unsigned long)data->data_pages[i]);
1501 kfree(data);
1502 }
1503
1504 static void perf_mmap_data_free(struct perf_counter *counter)
1505 {
1506 struct perf_mmap_data *data = counter->data;
1507
1508 WARN_ON(atomic_read(&counter->mmap_count));
1509
1510 rcu_assign_pointer(counter->data, NULL);
1511 call_rcu(&data->rcu_head, __perf_mmap_data_free);
1512 }
1513
1514 static void perf_mmap_open(struct vm_area_struct *vma)
1515 {
1516 struct perf_counter *counter = vma->vm_file->private_data;
1517
1518 atomic_inc(&counter->mmap_count);
1519 }
1520
1521 static void perf_mmap_close(struct vm_area_struct *vma)
1522 {
1523 struct perf_counter *counter = vma->vm_file->private_data;
1524
1525 if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1526 &counter->mmap_mutex)) {
1527 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1528 perf_mmap_data_free(counter);
1529 mutex_unlock(&counter->mmap_mutex);
1530 }
1531 }
1532
1533 static struct vm_operations_struct perf_mmap_vmops = {
1534 .open = perf_mmap_open,
1535 .close = perf_mmap_close,
1536 .fault = perf_mmap_fault,
1537 };
1538
1539 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1540 {
1541 struct perf_counter *counter = file->private_data;
1542 unsigned long vma_size;
1543 unsigned long nr_pages;
1544 unsigned long locked, lock_limit;
1545 int ret = 0;
1546 long extra;
1547
1548 if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1549 return -EINVAL;
1550
1551 vma_size = vma->vm_end - vma->vm_start;
1552 nr_pages = (vma_size / PAGE_SIZE) - 1;
1553
1554 /*
1555 * If we have data pages ensure they're a power-of-two number, so we
1556 * can do bitmasks instead of modulo.
1557 */
1558 if (nr_pages != 0 && !is_power_of_2(nr_pages))
1559 return -EINVAL;
1560
1561 if (vma_size != PAGE_SIZE * (1 + nr_pages))
1562 return -EINVAL;
1563
1564 if (vma->vm_pgoff != 0)
1565 return -EINVAL;
1566
1567 mutex_lock(&counter->mmap_mutex);
1568 if (atomic_inc_not_zero(&counter->mmap_count)) {
1569 if (nr_pages != counter->data->nr_pages)
1570 ret = -EINVAL;
1571 goto unlock;
1572 }
1573
1574 extra = nr_pages /* + 1 only account the data pages */;
1575 extra -= sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1576 if (extra < 0)
1577 extra = 0;
1578
1579 locked = vma->vm_mm->locked_vm + extra;
1580
1581 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1582 lock_limit >>= PAGE_SHIFT;
1583
1584 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1585 ret = -EPERM;
1586 goto unlock;
1587 }
1588
1589 WARN_ON(counter->data);
1590 ret = perf_mmap_data_alloc(counter, nr_pages);
1591 if (ret)
1592 goto unlock;
1593
1594 atomic_set(&counter->mmap_count, 1);
1595 vma->vm_mm->locked_vm += extra;
1596 counter->data->nr_locked = extra;
1597 unlock:
1598 mutex_unlock(&counter->mmap_mutex);
1599
1600 vma->vm_flags &= ~VM_MAYWRITE;
1601 vma->vm_flags |= VM_RESERVED;
1602 vma->vm_ops = &perf_mmap_vmops;
1603
1604 return ret;
1605 }
1606
1607 static int perf_fasync(int fd, struct file *filp, int on)
1608 {
1609 struct perf_counter *counter = filp->private_data;
1610 struct inode *inode = filp->f_path.dentry->d_inode;
1611 int retval;
1612
1613 mutex_lock(&inode->i_mutex);
1614 retval = fasync_helper(fd, filp, on, &counter->fasync);
1615 mutex_unlock(&inode->i_mutex);
1616
1617 if (retval < 0)
1618 return retval;
1619
1620 return 0;
1621 }
1622
1623 static const struct file_operations perf_fops = {
1624 .release = perf_release,
1625 .read = perf_read,
1626 .poll = perf_poll,
1627 .unlocked_ioctl = perf_ioctl,
1628 .compat_ioctl = perf_ioctl,
1629 .mmap = perf_mmap,
1630 .fasync = perf_fasync,
1631 };
1632
1633 /*
1634 * Perf counter wakeup
1635 *
1636 * If there's data, ensure we set the poll() state and publish everything
1637 * to user-space before waking everybody up.
1638 */
1639
1640 void perf_counter_wakeup(struct perf_counter *counter)
1641 {
1642 wake_up_all(&counter->waitq);
1643
1644 if (counter->pending_kill) {
1645 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1646 counter->pending_kill = 0;
1647 }
1648 }
1649
1650 /*
1651 * Pending wakeups
1652 *
1653 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1654 *
1655 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1656 * single linked list and use cmpxchg() to add entries lockless.
1657 */
1658
1659 static void perf_pending_counter(struct perf_pending_entry *entry)
1660 {
1661 struct perf_counter *counter = container_of(entry,
1662 struct perf_counter, pending);
1663
1664 if (counter->pending_disable) {
1665 counter->pending_disable = 0;
1666 perf_counter_disable(counter);
1667 }
1668
1669 if (counter->pending_wakeup) {
1670 counter->pending_wakeup = 0;
1671 perf_counter_wakeup(counter);
1672 }
1673 }
1674
1675 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1676
1677 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1678 PENDING_TAIL,
1679 };
1680
1681 static void perf_pending_queue(struct perf_pending_entry *entry,
1682 void (*func)(struct perf_pending_entry *))
1683 {
1684 struct perf_pending_entry **head;
1685
1686 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1687 return;
1688
1689 entry->func = func;
1690
1691 head = &get_cpu_var(perf_pending_head);
1692
1693 do {
1694 entry->next = *head;
1695 } while (cmpxchg(head, entry->next, entry) != entry->next);
1696
1697 set_perf_counter_pending();
1698
1699 put_cpu_var(perf_pending_head);
1700 }
1701
1702 static int __perf_pending_run(void)
1703 {
1704 struct perf_pending_entry *list;
1705 int nr = 0;
1706
1707 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1708 while (list != PENDING_TAIL) {
1709 void (*func)(struct perf_pending_entry *);
1710 struct perf_pending_entry *entry = list;
1711
1712 list = list->next;
1713
1714 func = entry->func;
1715 entry->next = NULL;
1716 /*
1717 * Ensure we observe the unqueue before we issue the wakeup,
1718 * so that we won't be waiting forever.
1719 * -- see perf_not_pending().
1720 */
1721 smp_wmb();
1722
1723 func(entry);
1724 nr++;
1725 }
1726
1727 return nr;
1728 }
1729
1730 static inline int perf_not_pending(struct perf_counter *counter)
1731 {
1732 /*
1733 * If we flush on whatever cpu we run, there is a chance we don't
1734 * need to wait.
1735 */
1736 get_cpu();
1737 __perf_pending_run();
1738 put_cpu();
1739
1740 /*
1741 * Ensure we see the proper queue state before going to sleep
1742 * so that we do not miss the wakeup. -- see perf_pending_handle()
1743 */
1744 smp_rmb();
1745 return counter->pending.next == NULL;
1746 }
1747
1748 static void perf_pending_sync(struct perf_counter *counter)
1749 {
1750 wait_event(counter->waitq, perf_not_pending(counter));
1751 }
1752
1753 void perf_counter_do_pending(void)
1754 {
1755 __perf_pending_run();
1756 }
1757
1758 /*
1759 * Callchain support -- arch specific
1760 */
1761
1762 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1763 {
1764 return NULL;
1765 }
1766
1767 /*
1768 * Output
1769 */
1770
1771 struct perf_output_handle {
1772 struct perf_counter *counter;
1773 struct perf_mmap_data *data;
1774 unsigned int offset;
1775 unsigned int head;
1776 int nmi;
1777 int overflow;
1778 int locked;
1779 unsigned long flags;
1780 };
1781
1782 static void perf_output_wakeup(struct perf_output_handle *handle)
1783 {
1784 atomic_set(&handle->data->poll, POLL_IN);
1785
1786 if (handle->nmi) {
1787 handle->counter->pending_wakeup = 1;
1788 perf_pending_queue(&handle->counter->pending,
1789 perf_pending_counter);
1790 } else
1791 perf_counter_wakeup(handle->counter);
1792 }
1793
1794 /*
1795 * Curious locking construct.
1796 *
1797 * We need to ensure a later event doesn't publish a head when a former
1798 * event isn't done writing. However since we need to deal with NMIs we
1799 * cannot fully serialize things.
1800 *
1801 * What we do is serialize between CPUs so we only have to deal with NMI
1802 * nesting on a single CPU.
1803 *
1804 * We only publish the head (and generate a wakeup) when the outer-most
1805 * event completes.
1806 */
1807 static void perf_output_lock(struct perf_output_handle *handle)
1808 {
1809 struct perf_mmap_data *data = handle->data;
1810 int cpu;
1811
1812 handle->locked = 0;
1813
1814 local_irq_save(handle->flags);
1815 cpu = smp_processor_id();
1816
1817 if (in_nmi() && atomic_read(&data->lock) == cpu)
1818 return;
1819
1820 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1821 cpu_relax();
1822
1823 handle->locked = 1;
1824 }
1825
1826 static void perf_output_unlock(struct perf_output_handle *handle)
1827 {
1828 struct perf_mmap_data *data = handle->data;
1829 int head, cpu;
1830
1831 data->done_head = data->head;
1832
1833 if (!handle->locked)
1834 goto out;
1835
1836 again:
1837 /*
1838 * The xchg implies a full barrier that ensures all writes are done
1839 * before we publish the new head, matched by a rmb() in userspace when
1840 * reading this position.
1841 */
1842 while ((head = atomic_xchg(&data->done_head, 0)))
1843 data->user_page->data_head = head;
1844
1845 /*
1846 * NMI can happen here, which means we can miss a done_head update.
1847 */
1848
1849 cpu = atomic_xchg(&data->lock, -1);
1850 WARN_ON_ONCE(cpu != smp_processor_id());
1851
1852 /*
1853 * Therefore we have to validate we did not indeed do so.
1854 */
1855 if (unlikely(atomic_read(&data->done_head))) {
1856 /*
1857 * Since we had it locked, we can lock it again.
1858 */
1859 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
1860 cpu_relax();
1861
1862 goto again;
1863 }
1864
1865 if (atomic_xchg(&data->wakeup, 0))
1866 perf_output_wakeup(handle);
1867 out:
1868 local_irq_restore(handle->flags);
1869 }
1870
1871 static int perf_output_begin(struct perf_output_handle *handle,
1872 struct perf_counter *counter, unsigned int size,
1873 int nmi, int overflow)
1874 {
1875 struct perf_mmap_data *data;
1876 unsigned int offset, head;
1877
1878 /*
1879 * For inherited counters we send all the output towards the parent.
1880 */
1881 if (counter->parent)
1882 counter = counter->parent;
1883
1884 rcu_read_lock();
1885 data = rcu_dereference(counter->data);
1886 if (!data)
1887 goto out;
1888
1889 handle->data = data;
1890 handle->counter = counter;
1891 handle->nmi = nmi;
1892 handle->overflow = overflow;
1893
1894 if (!data->nr_pages)
1895 goto fail;
1896
1897 perf_output_lock(handle);
1898
1899 do {
1900 offset = head = atomic_read(&data->head);
1901 head += size;
1902 } while (atomic_cmpxchg(&data->head, offset, head) != offset);
1903
1904 handle->offset = offset;
1905 handle->head = head;
1906
1907 if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
1908 atomic_set(&data->wakeup, 1);
1909
1910 return 0;
1911
1912 fail:
1913 perf_output_wakeup(handle);
1914 out:
1915 rcu_read_unlock();
1916
1917 return -ENOSPC;
1918 }
1919
1920 static void perf_output_copy(struct perf_output_handle *handle,
1921 void *buf, unsigned int len)
1922 {
1923 unsigned int pages_mask;
1924 unsigned int offset;
1925 unsigned int size;
1926 void **pages;
1927
1928 offset = handle->offset;
1929 pages_mask = handle->data->nr_pages - 1;
1930 pages = handle->data->data_pages;
1931
1932 do {
1933 unsigned int page_offset;
1934 int nr;
1935
1936 nr = (offset >> PAGE_SHIFT) & pages_mask;
1937 page_offset = offset & (PAGE_SIZE - 1);
1938 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
1939
1940 memcpy(pages[nr] + page_offset, buf, size);
1941
1942 len -= size;
1943 buf += size;
1944 offset += size;
1945 } while (len);
1946
1947 handle->offset = offset;
1948
1949 /*
1950 * Check we didn't copy past our reservation window, taking the
1951 * possible unsigned int wrap into account.
1952 */
1953 WARN_ON_ONCE(((int)(handle->head - handle->offset)) < 0);
1954 }
1955
1956 #define perf_output_put(handle, x) \
1957 perf_output_copy((handle), &(x), sizeof(x))
1958
1959 static void perf_output_end(struct perf_output_handle *handle)
1960 {
1961 struct perf_counter *counter = handle->counter;
1962 struct perf_mmap_data *data = handle->data;
1963
1964 int wakeup_events = counter->hw_event.wakeup_events;
1965
1966 if (handle->overflow && wakeup_events) {
1967 int events = atomic_inc_return(&data->events);
1968 if (events >= wakeup_events) {
1969 atomic_sub(wakeup_events, &data->events);
1970 atomic_set(&data->wakeup, 1);
1971 }
1972 }
1973
1974 perf_output_unlock(handle);
1975 rcu_read_unlock();
1976 }
1977
1978 static void perf_counter_output(struct perf_counter *counter,
1979 int nmi, struct pt_regs *regs, u64 addr)
1980 {
1981 int ret;
1982 u64 record_type = counter->hw_event.record_type;
1983 struct perf_output_handle handle;
1984 struct perf_event_header header;
1985 u64 ip;
1986 struct {
1987 u32 pid, tid;
1988 } tid_entry;
1989 struct {
1990 u64 event;
1991 u64 counter;
1992 } group_entry;
1993 struct perf_callchain_entry *callchain = NULL;
1994 int callchain_size = 0;
1995 u64 time;
1996 struct {
1997 u32 cpu, reserved;
1998 } cpu_entry;
1999
2000 header.type = 0;
2001 header.size = sizeof(header);
2002
2003 header.misc = PERF_EVENT_MISC_OVERFLOW;
2004 header.misc |= user_mode(regs) ?
2005 PERF_EVENT_MISC_USER : PERF_EVENT_MISC_KERNEL;
2006
2007 if (record_type & PERF_RECORD_IP) {
2008 ip = instruction_pointer(regs);
2009 header.type |= PERF_RECORD_IP;
2010 header.size += sizeof(ip);
2011 }
2012
2013 if (record_type & PERF_RECORD_TID) {
2014 /* namespace issues */
2015 tid_entry.pid = current->group_leader->pid;
2016 tid_entry.tid = current->pid;
2017
2018 header.type |= PERF_RECORD_TID;
2019 header.size += sizeof(tid_entry);
2020 }
2021
2022 if (record_type & PERF_RECORD_TIME) {
2023 /*
2024 * Maybe do better on x86 and provide cpu_clock_nmi()
2025 */
2026 time = sched_clock();
2027
2028 header.type |= PERF_RECORD_TIME;
2029 header.size += sizeof(u64);
2030 }
2031
2032 if (record_type & PERF_RECORD_ADDR) {
2033 header.type |= PERF_RECORD_ADDR;
2034 header.size += sizeof(u64);
2035 }
2036
2037 if (record_type & PERF_RECORD_CONFIG) {
2038 header.type |= PERF_RECORD_CONFIG;
2039 header.size += sizeof(u64);
2040 }
2041
2042 if (record_type & PERF_RECORD_CPU) {
2043 header.type |= PERF_RECORD_CPU;
2044 header.size += sizeof(cpu_entry);
2045
2046 cpu_entry.cpu = raw_smp_processor_id();
2047 }
2048
2049 if (record_type & PERF_RECORD_GROUP) {
2050 header.type |= PERF_RECORD_GROUP;
2051 header.size += sizeof(u64) +
2052 counter->nr_siblings * sizeof(group_entry);
2053 }
2054
2055 if (record_type & PERF_RECORD_CALLCHAIN) {
2056 callchain = perf_callchain(regs);
2057
2058 if (callchain) {
2059 callchain_size = (1 + callchain->nr) * sizeof(u64);
2060
2061 header.type |= PERF_RECORD_CALLCHAIN;
2062 header.size += callchain_size;
2063 }
2064 }
2065
2066 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2067 if (ret)
2068 return;
2069
2070 perf_output_put(&handle, header);
2071
2072 if (record_type & PERF_RECORD_IP)
2073 perf_output_put(&handle, ip);
2074
2075 if (record_type & PERF_RECORD_TID)
2076 perf_output_put(&handle, tid_entry);
2077
2078 if (record_type & PERF_RECORD_TIME)
2079 perf_output_put(&handle, time);
2080
2081 if (record_type & PERF_RECORD_ADDR)
2082 perf_output_put(&handle, addr);
2083
2084 if (record_type & PERF_RECORD_CONFIG)
2085 perf_output_put(&handle, counter->hw_event.config);
2086
2087 if (record_type & PERF_RECORD_CPU)
2088 perf_output_put(&handle, cpu_entry);
2089
2090 /*
2091 * XXX PERF_RECORD_GROUP vs inherited counters seems difficult.
2092 */
2093 if (record_type & PERF_RECORD_GROUP) {
2094 struct perf_counter *leader, *sub;
2095 u64 nr = counter->nr_siblings;
2096
2097 perf_output_put(&handle, nr);
2098
2099 leader = counter->group_leader;
2100 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2101 if (sub != counter)
2102 sub->pmu->read(sub);
2103
2104 group_entry.event = sub->hw_event.config;
2105 group_entry.counter = atomic64_read(&sub->count);
2106
2107 perf_output_put(&handle, group_entry);
2108 }
2109 }
2110
2111 if (callchain)
2112 perf_output_copy(&handle, callchain, callchain_size);
2113
2114 perf_output_end(&handle);
2115 }
2116
2117 /*
2118 * comm tracking
2119 */
2120
2121 struct perf_comm_event {
2122 struct task_struct *task;
2123 char *comm;
2124 int comm_size;
2125
2126 struct {
2127 struct perf_event_header header;
2128
2129 u32 pid;
2130 u32 tid;
2131 } event;
2132 };
2133
2134 static void perf_counter_comm_output(struct perf_counter *counter,
2135 struct perf_comm_event *comm_event)
2136 {
2137 struct perf_output_handle handle;
2138 int size = comm_event->event.header.size;
2139 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2140
2141 if (ret)
2142 return;
2143
2144 perf_output_put(&handle, comm_event->event);
2145 perf_output_copy(&handle, comm_event->comm,
2146 comm_event->comm_size);
2147 perf_output_end(&handle);
2148 }
2149
2150 static int perf_counter_comm_match(struct perf_counter *counter,
2151 struct perf_comm_event *comm_event)
2152 {
2153 if (counter->hw_event.comm &&
2154 comm_event->event.header.type == PERF_EVENT_COMM)
2155 return 1;
2156
2157 return 0;
2158 }
2159
2160 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2161 struct perf_comm_event *comm_event)
2162 {
2163 struct perf_counter *counter;
2164
2165 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2166 return;
2167
2168 rcu_read_lock();
2169 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2170 if (perf_counter_comm_match(counter, comm_event))
2171 perf_counter_comm_output(counter, comm_event);
2172 }
2173 rcu_read_unlock();
2174 }
2175
2176 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2177 {
2178 struct perf_cpu_context *cpuctx;
2179 unsigned int size;
2180 char *comm = comm_event->task->comm;
2181
2182 size = ALIGN(strlen(comm)+1, sizeof(u64));
2183
2184 comm_event->comm = comm;
2185 comm_event->comm_size = size;
2186
2187 comm_event->event.header.size = sizeof(comm_event->event) + size;
2188
2189 cpuctx = &get_cpu_var(perf_cpu_context);
2190 perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2191 put_cpu_var(perf_cpu_context);
2192
2193 perf_counter_comm_ctx(&current->perf_counter_ctx, comm_event);
2194 }
2195
2196 void perf_counter_comm(struct task_struct *task)
2197 {
2198 struct perf_comm_event comm_event;
2199
2200 if (!atomic_read(&nr_comm_tracking))
2201 return;
2202
2203 comm_event = (struct perf_comm_event){
2204 .task = task,
2205 .event = {
2206 .header = { .type = PERF_EVENT_COMM, },
2207 .pid = task->group_leader->pid,
2208 .tid = task->pid,
2209 },
2210 };
2211
2212 perf_counter_comm_event(&comm_event);
2213 }
2214
2215 /*
2216 * mmap tracking
2217 */
2218
2219 struct perf_mmap_event {
2220 struct file *file;
2221 char *file_name;
2222 int file_size;
2223
2224 struct {
2225 struct perf_event_header header;
2226
2227 u32 pid;
2228 u32 tid;
2229 u64 start;
2230 u64 len;
2231 u64 pgoff;
2232 } event;
2233 };
2234
2235 static void perf_counter_mmap_output(struct perf_counter *counter,
2236 struct perf_mmap_event *mmap_event)
2237 {
2238 struct perf_output_handle handle;
2239 int size = mmap_event->event.header.size;
2240 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2241
2242 if (ret)
2243 return;
2244
2245 perf_output_put(&handle, mmap_event->event);
2246 perf_output_copy(&handle, mmap_event->file_name,
2247 mmap_event->file_size);
2248 perf_output_end(&handle);
2249 }
2250
2251 static int perf_counter_mmap_match(struct perf_counter *counter,
2252 struct perf_mmap_event *mmap_event)
2253 {
2254 if (counter->hw_event.mmap &&
2255 mmap_event->event.header.type == PERF_EVENT_MMAP)
2256 return 1;
2257
2258 if (counter->hw_event.munmap &&
2259 mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2260 return 1;
2261
2262 return 0;
2263 }
2264
2265 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2266 struct perf_mmap_event *mmap_event)
2267 {
2268 struct perf_counter *counter;
2269
2270 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2271 return;
2272
2273 rcu_read_lock();
2274 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2275 if (perf_counter_mmap_match(counter, mmap_event))
2276 perf_counter_mmap_output(counter, mmap_event);
2277 }
2278 rcu_read_unlock();
2279 }
2280
2281 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2282 {
2283 struct perf_cpu_context *cpuctx;
2284 struct file *file = mmap_event->file;
2285 unsigned int size;
2286 char tmp[16];
2287 char *buf = NULL;
2288 char *name;
2289
2290 if (file) {
2291 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2292 if (!buf) {
2293 name = strncpy(tmp, "//enomem", sizeof(tmp));
2294 goto got_name;
2295 }
2296 name = d_path(&file->f_path, buf, PATH_MAX);
2297 if (IS_ERR(name)) {
2298 name = strncpy(tmp, "//toolong", sizeof(tmp));
2299 goto got_name;
2300 }
2301 } else {
2302 name = strncpy(tmp, "//anon", sizeof(tmp));
2303 goto got_name;
2304 }
2305
2306 got_name:
2307 size = ALIGN(strlen(name)+1, sizeof(u64));
2308
2309 mmap_event->file_name = name;
2310 mmap_event->file_size = size;
2311
2312 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2313
2314 cpuctx = &get_cpu_var(perf_cpu_context);
2315 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2316 put_cpu_var(perf_cpu_context);
2317
2318 perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);
2319
2320 kfree(buf);
2321 }
2322
2323 void perf_counter_mmap(unsigned long addr, unsigned long len,
2324 unsigned long pgoff, struct file *file)
2325 {
2326 struct perf_mmap_event mmap_event;
2327
2328 if (!atomic_read(&nr_mmap_tracking))
2329 return;
2330
2331 mmap_event = (struct perf_mmap_event){
2332 .file = file,
2333 .event = {
2334 .header = { .type = PERF_EVENT_MMAP, },
2335 .pid = current->group_leader->pid,
2336 .tid = current->pid,
2337 .start = addr,
2338 .len = len,
2339 .pgoff = pgoff,
2340 },
2341 };
2342
2343 perf_counter_mmap_event(&mmap_event);
2344 }
2345
2346 void perf_counter_munmap(unsigned long addr, unsigned long len,
2347 unsigned long pgoff, struct file *file)
2348 {
2349 struct perf_mmap_event mmap_event;
2350
2351 if (!atomic_read(&nr_munmap_tracking))
2352 return;
2353
2354 mmap_event = (struct perf_mmap_event){
2355 .file = file,
2356 .event = {
2357 .header = { .type = PERF_EVENT_MUNMAP, },
2358 .pid = current->group_leader->pid,
2359 .tid = current->pid,
2360 .start = addr,
2361 .len = len,
2362 .pgoff = pgoff,
2363 },
2364 };
2365
2366 perf_counter_mmap_event(&mmap_event);
2367 }
2368
2369 /*
2370 * Generic counter overflow handling.
2371 */
2372
2373 int perf_counter_overflow(struct perf_counter *counter,
2374 int nmi, struct pt_regs *regs, u64 addr)
2375 {
2376 int events = atomic_read(&counter->event_limit);
2377 int ret = 0;
2378
2379 /*
2380 * XXX event_limit might not quite work as expected on inherited
2381 * counters
2382 */
2383
2384 counter->pending_kill = POLL_IN;
2385 if (events && atomic_dec_and_test(&counter->event_limit)) {
2386 ret = 1;
2387 counter->pending_kill = POLL_HUP;
2388 if (nmi) {
2389 counter->pending_disable = 1;
2390 perf_pending_queue(&counter->pending,
2391 perf_pending_counter);
2392 } else
2393 perf_counter_disable(counter);
2394 }
2395
2396 perf_counter_output(counter, nmi, regs, addr);
2397 return ret;
2398 }
2399
2400 /*
2401 * Generic software counter infrastructure
2402 */
2403
2404 static void perf_swcounter_update(struct perf_counter *counter)
2405 {
2406 struct hw_perf_counter *hwc = &counter->hw;
2407 u64 prev, now;
2408 s64 delta;
2409
2410 again:
2411 prev = atomic64_read(&hwc->prev_count);
2412 now = atomic64_read(&hwc->count);
2413 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2414 goto again;
2415
2416 delta = now - prev;
2417
2418 atomic64_add(delta, &counter->count);
2419 atomic64_sub(delta, &hwc->period_left);
2420 }
2421
2422 static void perf_swcounter_set_period(struct perf_counter *counter)
2423 {
2424 struct hw_perf_counter *hwc = &counter->hw;
2425 s64 left = atomic64_read(&hwc->period_left);
2426 s64 period = hwc->irq_period;
2427
2428 if (unlikely(left <= -period)) {
2429 left = period;
2430 atomic64_set(&hwc->period_left, left);
2431 }
2432
2433 if (unlikely(left <= 0)) {
2434 left += period;
2435 atomic64_add(period, &hwc->period_left);
2436 }
2437
2438 atomic64_set(&hwc->prev_count, -left);
2439 atomic64_set(&hwc->count, -left);
2440 }
2441
2442 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2443 {
2444 enum hrtimer_restart ret = HRTIMER_RESTART;
2445 struct perf_counter *counter;
2446 struct pt_regs *regs;
2447
2448 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2449 counter->pmu->read(counter);
2450
2451 regs = get_irq_regs();
2452 /*
2453 * In case we exclude kernel IPs or are somehow not in interrupt
2454 * context, provide the next best thing, the user IP.
2455 */
2456 if ((counter->hw_event.exclude_kernel || !regs) &&
2457 !counter->hw_event.exclude_user)
2458 regs = task_pt_regs(current);
2459
2460 if (regs) {
2461 if (perf_counter_overflow(counter, 0, regs, 0))
2462 ret = HRTIMER_NORESTART;
2463 }
2464
2465 hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
2466
2467 return ret;
2468 }
2469
2470 static void perf_swcounter_overflow(struct perf_counter *counter,
2471 int nmi, struct pt_regs *regs, u64 addr)
2472 {
2473 perf_swcounter_update(counter);
2474 perf_swcounter_set_period(counter);
2475 if (perf_counter_overflow(counter, nmi, regs, addr))
2476 /* soft-disable the counter */
2477 ;
2478
2479 }
2480
2481 static int perf_swcounter_match(struct perf_counter *counter,
2482 enum perf_event_types type,
2483 u32 event, struct pt_regs *regs)
2484 {
2485 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2486 return 0;
2487
2488 if (perf_event_raw(&counter->hw_event))
2489 return 0;
2490
2491 if (perf_event_type(&counter->hw_event) != type)
2492 return 0;
2493
2494 if (perf_event_id(&counter->hw_event) != event)
2495 return 0;
2496
2497 if (counter->hw_event.exclude_user && user_mode(regs))
2498 return 0;
2499
2500 if (counter->hw_event.exclude_kernel && !user_mode(regs))
2501 return 0;
2502
2503 return 1;
2504 }
2505
2506 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2507 int nmi, struct pt_regs *regs, u64 addr)
2508 {
2509 int neg = atomic64_add_negative(nr, &counter->hw.count);
2510 if (counter->hw.irq_period && !neg)
2511 perf_swcounter_overflow(counter, nmi, regs, addr);
2512 }
2513
2514 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2515 enum perf_event_types type, u32 event,
2516 u64 nr, int nmi, struct pt_regs *regs,
2517 u64 addr)
2518 {
2519 struct perf_counter *counter;
2520
2521 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2522 return;
2523
2524 rcu_read_lock();
2525 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2526 if (perf_swcounter_match(counter, type, event, regs))
2527 perf_swcounter_add(counter, nr, nmi, regs, addr);
2528 }
2529 rcu_read_unlock();
2530 }
2531
2532 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2533 {
2534 if (in_nmi())
2535 return &cpuctx->recursion[3];
2536
2537 if (in_irq())
2538 return &cpuctx->recursion[2];
2539
2540 if (in_softirq())
2541 return &cpuctx->recursion[1];
2542
2543 return &cpuctx->recursion[0];
2544 }
2545
2546 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2547 u64 nr, int nmi, struct pt_regs *regs,
2548 u64 addr)
2549 {
2550 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2551 int *recursion = perf_swcounter_recursion_context(cpuctx);
2552
2553 if (*recursion)
2554 goto out;
2555
2556 (*recursion)++;
2557 barrier();
2558
2559 perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
2560 nr, nmi, regs, addr);
2561 if (cpuctx->task_ctx) {
2562 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2563 nr, nmi, regs, addr);
2564 }
2565
2566 barrier();
2567 (*recursion)--;
2568
2569 out:
2570 put_cpu_var(perf_cpu_context);
2571 }
2572
2573 void
2574 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2575 {
2576 __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2577 }
2578
2579 static void perf_swcounter_read(struct perf_counter *counter)
2580 {
2581 perf_swcounter_update(counter);
2582 }
2583
2584 static int perf_swcounter_enable(struct perf_counter *counter)
2585 {
2586 perf_swcounter_set_period(counter);
2587 return 0;
2588 }
2589
2590 static void perf_swcounter_disable(struct perf_counter *counter)
2591 {
2592 perf_swcounter_update(counter);
2593 }
2594
2595 static const struct pmu perf_ops_generic = {
2596 .enable = perf_swcounter_enable,
2597 .disable = perf_swcounter_disable,
2598 .read = perf_swcounter_read,
2599 };
2600
2601 /*
2602 * Software counter: cpu wall time clock
2603 */
2604
2605 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2606 {
2607 int cpu = raw_smp_processor_id();
2608 s64 prev;
2609 u64 now;
2610
2611 now = cpu_clock(cpu);
2612 prev = atomic64_read(&counter->hw.prev_count);
2613 atomic64_set(&counter->hw.prev_count, now);
2614 atomic64_add(now - prev, &counter->count);
2615 }
2616
2617 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2618 {
2619 struct hw_perf_counter *hwc = &counter->hw;
2620 int cpu = raw_smp_processor_id();
2621
2622 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2623 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2624 hwc->hrtimer.function = perf_swcounter_hrtimer;
2625 if (hwc->irq_period) {
2626 __hrtimer_start_range_ns(&hwc->hrtimer,
2627 ns_to_ktime(hwc->irq_period), 0,
2628 HRTIMER_MODE_REL, 0);
2629 }
2630
2631 return 0;
2632 }
2633
2634 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2635 {
2636 hrtimer_cancel(&counter->hw.hrtimer);
2637 cpu_clock_perf_counter_update(counter);
2638 }
2639
2640 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2641 {
2642 cpu_clock_perf_counter_update(counter);
2643 }
2644
2645 static const struct pmu perf_ops_cpu_clock = {
2646 .enable = cpu_clock_perf_counter_enable,
2647 .disable = cpu_clock_perf_counter_disable,
2648 .read = cpu_clock_perf_counter_read,
2649 };
2650
2651 /*
2652 * Software counter: task time clock
2653 */
2654
2655 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2656 {
2657 u64 prev;
2658 s64 delta;
2659
2660 prev = atomic64_xchg(&counter->hw.prev_count, now);
2661 delta = now - prev;
2662 atomic64_add(delta, &counter->count);
2663 }
2664
2665 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2666 {
2667 struct hw_perf_counter *hwc = &counter->hw;
2668 u64 now;
2669
2670 now = counter->ctx->time;
2671
2672 atomic64_set(&hwc->prev_count, now);
2673 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2674 hwc->hrtimer.function = perf_swcounter_hrtimer;
2675 if (hwc->irq_period) {
2676 __hrtimer_start_range_ns(&hwc->hrtimer,
2677 ns_to_ktime(hwc->irq_period), 0,
2678 HRTIMER_MODE_REL, 0);
2679 }
2680
2681 return 0;
2682 }
2683
2684 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2685 {
2686 hrtimer_cancel(&counter->hw.hrtimer);
2687 task_clock_perf_counter_update(counter, counter->ctx->time);
2688
2689 }
2690
2691 static void task_clock_perf_counter_read(struct perf_counter *counter)
2692 {
2693 u64 time;
2694
2695 if (!in_nmi()) {
2696 update_context_time(counter->ctx);
2697 time = counter->ctx->time;
2698 } else {
2699 u64 now = perf_clock();
2700 u64 delta = now - counter->ctx->timestamp;
2701 time = counter->ctx->time + delta;
2702 }
2703
2704 task_clock_perf_counter_update(counter, time);
2705 }
2706
2707 static const struct pmu perf_ops_task_clock = {
2708 .enable = task_clock_perf_counter_enable,
2709 .disable = task_clock_perf_counter_disable,
2710 .read = task_clock_perf_counter_read,
2711 };
2712
2713 /*
2714 * Software counter: cpu migrations
2715 */
2716
2717 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2718 {
2719 struct task_struct *curr = counter->ctx->task;
2720
2721 if (curr)
2722 return curr->se.nr_migrations;
2723 return cpu_nr_migrations(smp_processor_id());
2724 }
2725
2726 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2727 {
2728 u64 prev, now;
2729 s64 delta;
2730
2731 prev = atomic64_read(&counter->hw.prev_count);
2732 now = get_cpu_migrations(counter);
2733
2734 atomic64_set(&counter->hw.prev_count, now);
2735
2736 delta = now - prev;
2737
2738 atomic64_add(delta, &counter->count);
2739 }
2740
2741 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2742 {
2743 cpu_migrations_perf_counter_update(counter);
2744 }
2745
2746 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2747 {
2748 if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2749 atomic64_set(&counter->hw.prev_count,
2750 get_cpu_migrations(counter));
2751 return 0;
2752 }
2753
2754 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2755 {
2756 cpu_migrations_perf_counter_update(counter);
2757 }
2758
2759 static const struct pmu perf_ops_cpu_migrations = {
2760 .enable = cpu_migrations_perf_counter_enable,
2761 .disable = cpu_migrations_perf_counter_disable,
2762 .read = cpu_migrations_perf_counter_read,
2763 };
2764
2765 #ifdef CONFIG_EVENT_PROFILE
2766 void perf_tpcounter_event(int event_id)
2767 {
2768 struct pt_regs *regs = get_irq_regs();
2769
2770 if (!regs)
2771 regs = task_pt_regs(current);
2772
2773 __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
2774 }
2775 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
2776
2777 extern int ftrace_profile_enable(int);
2778 extern void ftrace_profile_disable(int);
2779
2780 static void tp_perf_counter_destroy(struct perf_counter *counter)
2781 {
2782 ftrace_profile_disable(perf_event_id(&counter->hw_event));
2783 }
2784
2785 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2786 {
2787 int event_id = perf_event_id(&counter->hw_event);
2788 int ret;
2789
2790 ret = ftrace_profile_enable(event_id);
2791 if (ret)
2792 return NULL;
2793
2794 counter->destroy = tp_perf_counter_destroy;
2795 counter->hw.irq_period = counter->hw_event.irq_period;
2796
2797 return &perf_ops_generic;
2798 }
2799 #else
2800 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
2801 {
2802 return NULL;
2803 }
2804 #endif
2805
2806 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
2807 {
2808 struct perf_counter_hw_event *hw_event = &counter->hw_event;
2809 const struct pmu *pmu = NULL;
2810 struct hw_perf_counter *hwc = &counter->hw;
2811
2812 /*
2813 * Software counters (currently) can't in general distinguish
2814 * between user, kernel and hypervisor events.
2815 * However, context switches and cpu migrations are considered
2816 * to be kernel events, and page faults are never hypervisor
2817 * events.
2818 */
2819 switch (perf_event_id(&counter->hw_event)) {
2820 case PERF_COUNT_CPU_CLOCK:
2821 pmu = &perf_ops_cpu_clock;
2822
2823 if (hw_event->irq_period && hw_event->irq_period < 10000)
2824 hw_event->irq_period = 10000;
2825 break;
2826 case PERF_COUNT_TASK_CLOCK:
2827 /*
2828 * If the user instantiates this as a per-cpu counter,
2829 * use the cpu_clock counter instead.
2830 */
2831 if (counter->ctx->task)
2832 pmu = &perf_ops_task_clock;
2833 else
2834 pmu = &perf_ops_cpu_clock;
2835
2836 if (hw_event->irq_period && hw_event->irq_period < 10000)
2837 hw_event->irq_period = 10000;
2838 break;
2839 case PERF_COUNT_PAGE_FAULTS:
2840 case PERF_COUNT_PAGE_FAULTS_MIN:
2841 case PERF_COUNT_PAGE_FAULTS_MAJ:
2842 case PERF_COUNT_CONTEXT_SWITCHES:
2843 pmu = &perf_ops_generic;
2844 break;
2845 case PERF_COUNT_CPU_MIGRATIONS:
2846 if (!counter->hw_event.exclude_kernel)
2847 pmu = &perf_ops_cpu_migrations;
2848 break;
2849 }
2850
2851 if (pmu)
2852 hwc->irq_period = hw_event->irq_period;
2853
2854 return pmu;
2855 }
2856
2857 /*
2858 * Allocate and initialize a counter structure
2859 */
2860 static struct perf_counter *
2861 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
2862 int cpu,
2863 struct perf_counter_context *ctx,
2864 struct perf_counter *group_leader,
2865 gfp_t gfpflags)
2866 {
2867 const struct pmu *pmu;
2868 struct perf_counter *counter;
2869 long err;
2870
2871 counter = kzalloc(sizeof(*counter), gfpflags);
2872 if (!counter)
2873 return ERR_PTR(-ENOMEM);
2874
2875 /*
2876 * Single counters are their own group leaders, with an
2877 * empty sibling list:
2878 */
2879 if (!group_leader)
2880 group_leader = counter;
2881
2882 mutex_init(&counter->mutex);
2883 INIT_LIST_HEAD(&counter->list_entry);
2884 INIT_LIST_HEAD(&counter->event_entry);
2885 INIT_LIST_HEAD(&counter->sibling_list);
2886 init_waitqueue_head(&counter->waitq);
2887
2888 mutex_init(&counter->mmap_mutex);
2889
2890 INIT_LIST_HEAD(&counter->child_list);
2891
2892 counter->cpu = cpu;
2893 counter->hw_event = *hw_event;
2894 counter->group_leader = group_leader;
2895 counter->pmu = NULL;
2896 counter->ctx = ctx;
2897
2898 counter->state = PERF_COUNTER_STATE_INACTIVE;
2899 if (hw_event->disabled)
2900 counter->state = PERF_COUNTER_STATE_OFF;
2901
2902 pmu = NULL;
2903
2904 /*
2905 * we currently do not support PERF_RECORD_GROUP on inherited counters
2906 */
2907 if (hw_event->inherit && (hw_event->record_type & PERF_RECORD_GROUP))
2908 goto done;
2909
2910 if (perf_event_raw(hw_event)) {
2911 pmu = hw_perf_counter_init(counter);
2912 goto done;
2913 }
2914
2915 switch (perf_event_type(hw_event)) {
2916 case PERF_TYPE_HARDWARE:
2917 pmu = hw_perf_counter_init(counter);
2918 break;
2919
2920 case PERF_TYPE_SOFTWARE:
2921 pmu = sw_perf_counter_init(counter);
2922 break;
2923
2924 case PERF_TYPE_TRACEPOINT:
2925 pmu = tp_perf_counter_init(counter);
2926 break;
2927 }
2928 done:
2929 err = 0;
2930 if (!pmu)
2931 err = -EINVAL;
2932 else if (IS_ERR(pmu))
2933 err = PTR_ERR(pmu);
2934
2935 if (err) {
2936 kfree(counter);
2937 return ERR_PTR(err);
2938 }
2939
2940 counter->pmu = pmu;
2941
2942 atomic_inc(&nr_counters);
2943 if (counter->hw_event.mmap)
2944 atomic_inc(&nr_mmap_tracking);
2945 if (counter->hw_event.munmap)
2946 atomic_inc(&nr_munmap_tracking);
2947 if (counter->hw_event.comm)
2948 atomic_inc(&nr_comm_tracking);
2949
2950 return counter;
2951 }
2952
2953 /**
2954 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
2955 *
2956 * @hw_event_uptr: event type attributes for monitoring/sampling
2957 * @pid: target pid
2958 * @cpu: target cpu
2959 * @group_fd: group leader counter fd
2960 */
2961 SYSCALL_DEFINE5(perf_counter_open,
2962 const struct perf_counter_hw_event __user *, hw_event_uptr,
2963 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
2964 {
2965 struct perf_counter *counter, *group_leader;
2966 struct perf_counter_hw_event hw_event;
2967 struct perf_counter_context *ctx;
2968 struct file *counter_file = NULL;
2969 struct file *group_file = NULL;
2970 int fput_needed = 0;
2971 int fput_needed2 = 0;
2972 int ret;
2973
2974 /* for future expandability... */
2975 if (flags)
2976 return -EINVAL;
2977
2978 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
2979 return -EFAULT;
2980
2981 /*
2982 * Get the target context (task or percpu):
2983 */
2984 ctx = find_get_context(pid, cpu);
2985 if (IS_ERR(ctx))
2986 return PTR_ERR(ctx);
2987
2988 /*
2989 * Look up the group leader (we will attach this counter to it):
2990 */
2991 group_leader = NULL;
2992 if (group_fd != -1) {
2993 ret = -EINVAL;
2994 group_file = fget_light(group_fd, &fput_needed);
2995 if (!group_file)
2996 goto err_put_context;
2997 if (group_file->f_op != &perf_fops)
2998 goto err_put_context;
2999
3000 group_leader = group_file->private_data;
3001 /*
3002 * Do not allow a recursive hierarchy (this new sibling
3003 * becoming part of another group-sibling):
3004 */
3005 if (group_leader->group_leader != group_leader)
3006 goto err_put_context;
3007 /*
3008 * Do not allow to attach to a group in a different
3009 * task or CPU context:
3010 */
3011 if (group_leader->ctx != ctx)
3012 goto err_put_context;
3013 /*
3014 * Only a group leader can be exclusive or pinned
3015 */
3016 if (hw_event.exclusive || hw_event.pinned)
3017 goto err_put_context;
3018 }
3019
3020 counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
3021 GFP_KERNEL);
3022 ret = PTR_ERR(counter);
3023 if (IS_ERR(counter))
3024 goto err_put_context;
3025
3026 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
3027 if (ret < 0)
3028 goto err_free_put_context;
3029
3030 counter_file = fget_light(ret, &fput_needed2);
3031 if (!counter_file)
3032 goto err_free_put_context;
3033
3034 counter->filp = counter_file;
3035 mutex_lock(&ctx->mutex);
3036 perf_install_in_context(ctx, counter, cpu);
3037 mutex_unlock(&ctx->mutex);
3038
3039 fput_light(counter_file, fput_needed2);
3040
3041 out_fput:
3042 fput_light(group_file, fput_needed);
3043
3044 return ret;
3045
3046 err_free_put_context:
3047 kfree(counter);
3048
3049 err_put_context:
3050 put_context(ctx);
3051
3052 goto out_fput;
3053 }
3054
3055 /*
3056 * Initialize the perf_counter context in a task_struct:
3057 */
3058 static void
3059 __perf_counter_init_context(struct perf_counter_context *ctx,
3060 struct task_struct *task)
3061 {
3062 memset(ctx, 0, sizeof(*ctx));
3063 spin_lock_init(&ctx->lock);
3064 mutex_init(&ctx->mutex);
3065 INIT_LIST_HEAD(&ctx->counter_list);
3066 INIT_LIST_HEAD(&ctx->event_list);
3067 ctx->task = task;
3068 }
3069
3070 /*
3071 * inherit a counter from parent task to child task:
3072 */
3073 static struct perf_counter *
3074 inherit_counter(struct perf_counter *parent_counter,
3075 struct task_struct *parent,
3076 struct perf_counter_context *parent_ctx,
3077 struct task_struct *child,
3078 struct perf_counter *group_leader,
3079 struct perf_counter_context *child_ctx)
3080 {
3081 struct perf_counter *child_counter;
3082
3083 /*
3084 * Instead of creating recursive hierarchies of counters,
3085 * we link inherited counters back to the original parent,
3086 * which has a filp for sure, which we use as the reference
3087 * count:
3088 */
3089 if (parent_counter->parent)
3090 parent_counter = parent_counter->parent;
3091
3092 child_counter = perf_counter_alloc(&parent_counter->hw_event,
3093 parent_counter->cpu, child_ctx,
3094 group_leader, GFP_KERNEL);
3095 if (IS_ERR(child_counter))
3096 return child_counter;
3097
3098 /*
3099 * Link it up in the child's context:
3100 */
3101 child_counter->task = child;
3102 add_counter_to_ctx(child_counter, child_ctx);
3103
3104 child_counter->parent = parent_counter;
3105 /*
3106 * inherit into child's child as well:
3107 */
3108 child_counter->hw_event.inherit = 1;
3109
3110 /*
3111 * Get a reference to the parent filp - we will fput it
3112 * when the child counter exits. This is safe to do because
3113 * we are in the parent and we know that the filp still
3114 * exists and has a nonzero count:
3115 */
3116 atomic_long_inc(&parent_counter->filp->f_count);
3117
3118 /*
3119 * Link this into the parent counter's child list
3120 */
3121 mutex_lock(&parent_counter->mutex);
3122 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3123
3124 /*
3125 * Make the child state follow the state of the parent counter,
3126 * not its hw_event.disabled bit. We hold the parent's mutex,
3127 * so we won't race with perf_counter_{en,dis}able_family.
3128 */
3129 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3130 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3131 else
3132 child_counter->state = PERF_COUNTER_STATE_OFF;
3133
3134 mutex_unlock(&parent_counter->mutex);
3135
3136 return child_counter;
3137 }
3138
3139 static int inherit_group(struct perf_counter *parent_counter,
3140 struct task_struct *parent,
3141 struct perf_counter_context *parent_ctx,
3142 struct task_struct *child,
3143 struct perf_counter_context *child_ctx)
3144 {
3145 struct perf_counter *leader;
3146 struct perf_counter *sub;
3147 struct perf_counter *child_ctr;
3148
3149 leader = inherit_counter(parent_counter, parent, parent_ctx,
3150 child, NULL, child_ctx);
3151 if (IS_ERR(leader))
3152 return PTR_ERR(leader);
3153 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3154 child_ctr = inherit_counter(sub, parent, parent_ctx,
3155 child, leader, child_ctx);
3156 if (IS_ERR(child_ctr))
3157 return PTR_ERR(child_ctr);
3158 }
3159 return 0;
3160 }
3161
3162 static void sync_child_counter(struct perf_counter *child_counter,
3163 struct perf_counter *parent_counter)
3164 {
3165 u64 parent_val, child_val;
3166
3167 parent_val = atomic64_read(&parent_counter->count);
3168 child_val = atomic64_read(&child_counter->count);
3169
3170 /*
3171 * Add back the child's count to the parent's count:
3172 */
3173 atomic64_add(child_val, &parent_counter->count);
3174 atomic64_add(child_counter->total_time_enabled,
3175 &parent_counter->child_total_time_enabled);
3176 atomic64_add(child_counter->total_time_running,
3177 &parent_counter->child_total_time_running);
3178
3179 /*
3180 * Remove this counter from the parent's list
3181 */
3182 mutex_lock(&parent_counter->mutex);
3183 list_del_init(&child_counter->child_list);
3184 mutex_unlock(&parent_counter->mutex);
3185
3186 /*
3187 * Release the parent counter, if this was the last
3188 * reference to it.
3189 */
3190 fput(parent_counter->filp);
3191 }
3192
3193 static void
3194 __perf_counter_exit_task(struct task_struct *child,
3195 struct perf_counter *child_counter,
3196 struct perf_counter_context *child_ctx)
3197 {
3198 struct perf_counter *parent_counter;
3199 struct perf_counter *sub, *tmp;
3200
3201 /*
3202 * If we do not self-reap then we have to wait for the
3203 * child task to unschedule (it will happen for sure),
3204 * so that its counter is at its final count. (This
3205 * condition triggers rarely - child tasks usually get
3206 * off their CPU before the parent has a chance to
3207 * get this far into the reaping action)
3208 */
3209 if (child != current) {
3210 wait_task_inactive(child, 0);
3211 list_del_init(&child_counter->list_entry);
3212 update_counter_times(child_counter);
3213 } else {
3214 struct perf_cpu_context *cpuctx;
3215 unsigned long flags;
3216
3217 /*
3218 * Disable and unlink this counter.
3219 *
3220 * Be careful about zapping the list - IRQ/NMI context
3221 * could still be processing it:
3222 */
3223 local_irq_save(flags);
3224 perf_disable();
3225
3226 cpuctx = &__get_cpu_var(perf_cpu_context);
3227
3228 group_sched_out(child_counter, cpuctx, child_ctx);
3229 update_counter_times(child_counter);
3230
3231 list_del_init(&child_counter->list_entry);
3232
3233 child_ctx->nr_counters--;
3234
3235 perf_enable();
3236 local_irq_restore(flags);
3237 }
3238
3239 parent_counter = child_counter->parent;
3240 /*
3241 * It can happen that parent exits first, and has counters
3242 * that are still around due to the child reference. These
3243 * counters need to be zapped - but otherwise linger.
3244 */
3245 if (parent_counter) {
3246 sync_child_counter(child_counter, parent_counter);
3247 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
3248 list_entry) {
3249 if (sub->parent) {
3250 sync_child_counter(sub, sub->parent);
3251 free_counter(sub);
3252 }
3253 }
3254 free_counter(child_counter);
3255 }
3256 }
3257
3258 /*
3259 * When a child task exits, feed back counter values to parent counters.
3260 *
3261 * Note: we may be running in child context, but the PID is not hashed
3262 * anymore so new counters will not be added.
3263 */
3264 void perf_counter_exit_task(struct task_struct *child)
3265 {
3266 struct perf_counter *child_counter, *tmp;
3267 struct perf_counter_context *child_ctx;
3268
3269 child_ctx = &child->perf_counter_ctx;
3270
3271 if (likely(!child_ctx->nr_counters))
3272 return;
3273
3274 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3275 list_entry)
3276 __perf_counter_exit_task(child, child_counter, child_ctx);
3277 }
3278
3279 /*
3280 * Initialize the perf_counter context in task_struct
3281 */
3282 void perf_counter_init_task(struct task_struct *child)
3283 {
3284 struct perf_counter_context *child_ctx, *parent_ctx;
3285 struct perf_counter *counter;
3286 struct task_struct *parent = current;
3287
3288 child_ctx = &child->perf_counter_ctx;
3289 parent_ctx = &parent->perf_counter_ctx;
3290
3291 __perf_counter_init_context(child_ctx, child);
3292
3293 /*
3294 * This is executed from the parent task context, so inherit
3295 * counters that have been marked for cloning:
3296 */
3297
3298 if (likely(!parent_ctx->nr_counters))
3299 return;
3300
3301 /*
3302 * Lock the parent list. No need to lock the child - not PID
3303 * hashed yet and not running, so nobody can access it.
3304 */
3305 mutex_lock(&parent_ctx->mutex);
3306
3307 /*
3308 * We dont have to disable NMIs - we are only looking at
3309 * the list, not manipulating it:
3310 */
3311 list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
3312 if (!counter->hw_event.inherit)
3313 continue;
3314
3315 if (inherit_group(counter, parent,
3316 parent_ctx, child, child_ctx))
3317 break;
3318 }
3319
3320 mutex_unlock(&parent_ctx->mutex);
3321 }
3322
3323 static void __cpuinit perf_counter_init_cpu(int cpu)
3324 {
3325 struct perf_cpu_context *cpuctx;
3326
3327 cpuctx = &per_cpu(perf_cpu_context, cpu);
3328 __perf_counter_init_context(&cpuctx->ctx, NULL);
3329
3330 spin_lock(&perf_resource_lock);
3331 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3332 spin_unlock(&perf_resource_lock);
3333
3334 hw_perf_counter_setup(cpu);
3335 }
3336
3337 #ifdef CONFIG_HOTPLUG_CPU
3338 static void __perf_counter_exit_cpu(void *info)
3339 {
3340 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3341 struct perf_counter_context *ctx = &cpuctx->ctx;
3342 struct perf_counter *counter, *tmp;
3343
3344 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3345 __perf_counter_remove_from_context(counter);
3346 }
3347 static void perf_counter_exit_cpu(int cpu)
3348 {
3349 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3350 struct perf_counter_context *ctx = &cpuctx->ctx;
3351
3352 mutex_lock(&ctx->mutex);
3353 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3354 mutex_unlock(&ctx->mutex);
3355 }
3356 #else
3357 static inline void perf_counter_exit_cpu(int cpu) { }
3358 #endif
3359
3360 static int __cpuinit
3361 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3362 {
3363 unsigned int cpu = (long)hcpu;
3364
3365 switch (action) {
3366
3367 case CPU_UP_PREPARE:
3368 case CPU_UP_PREPARE_FROZEN:
3369 perf_counter_init_cpu(cpu);
3370 break;
3371
3372 case CPU_DOWN_PREPARE:
3373 case CPU_DOWN_PREPARE_FROZEN:
3374 perf_counter_exit_cpu(cpu);
3375 break;
3376
3377 default:
3378 break;
3379 }
3380
3381 return NOTIFY_OK;
3382 }
3383
3384 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3385 .notifier_call = perf_cpu_notify,
3386 };
3387
3388 void __init perf_counter_init(void)
3389 {
3390 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3391 (void *)(long)smp_processor_id());
3392 register_cpu_notifier(&perf_cpu_nb);
3393 }
3394
3395 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3396 {
3397 return sprintf(buf, "%d\n", perf_reserved_percpu);
3398 }
3399
3400 static ssize_t
3401 perf_set_reserve_percpu(struct sysdev_class *class,
3402 const char *buf,
3403 size_t count)
3404 {
3405 struct perf_cpu_context *cpuctx;
3406 unsigned long val;
3407 int err, cpu, mpt;
3408
3409 err = strict_strtoul(buf, 10, &val);
3410 if (err)
3411 return err;
3412 if (val > perf_max_counters)
3413 return -EINVAL;
3414
3415 spin_lock(&perf_resource_lock);
3416 perf_reserved_percpu = val;
3417 for_each_online_cpu(cpu) {
3418 cpuctx = &per_cpu(perf_cpu_context, cpu);
3419 spin_lock_irq(&cpuctx->ctx.lock);
3420 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3421 perf_max_counters - perf_reserved_percpu);
3422 cpuctx->max_pertask = mpt;
3423 spin_unlock_irq(&cpuctx->ctx.lock);
3424 }
3425 spin_unlock(&perf_resource_lock);
3426
3427 return count;
3428 }
3429
3430 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3431 {
3432 return sprintf(buf, "%d\n", perf_overcommit);
3433 }
3434
3435 static ssize_t
3436 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3437 {
3438 unsigned long val;
3439 int err;
3440
3441 err = strict_strtoul(buf, 10, &val);
3442 if (err)
3443 return err;
3444 if (val > 1)
3445 return -EINVAL;
3446
3447 spin_lock(&perf_resource_lock);
3448 perf_overcommit = val;
3449 spin_unlock(&perf_resource_lock);
3450
3451 return count;
3452 }
3453
3454 static SYSDEV_CLASS_ATTR(
3455 reserve_percpu,
3456 0644,
3457 perf_show_reserve_percpu,
3458 perf_set_reserve_percpu
3459 );
3460
3461 static SYSDEV_CLASS_ATTR(
3462 overcommit,
3463 0644,
3464 perf_show_overcommit,
3465 perf_set_overcommit
3466 );
3467
3468 static struct attribute *perfclass_attrs[] = {
3469 &attr_reserve_percpu.attr,
3470 &attr_overcommit.attr,
3471 NULL
3472 };
3473
3474 static struct attribute_group perfclass_attr_group = {
3475 .attrs = perfclass_attrs,
3476 .name = "perf_counters",
3477 };
3478
3479 static int __init perf_counter_sysfs_init(void)
3480 {
3481 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3482 &perfclass_attr_group);
3483 }
3484 device_initcall(perf_counter_sysfs_init);
This page took 0.14173 seconds and 6 git commands to generate.