perf_counter: Fix race in attaching counters to tasks and exiting
[deliverable/linux.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/ptrace.h>
20 #include <linux/percpu.h>
21 #include <linux/vmstat.h>
22 #include <linux/hardirq.h>
23 #include <linux/rculist.h>
24 #include <linux/uaccess.h>
25 #include <linux/syscalls.h>
26 #include <linux/anon_inodes.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/perf_counter.h>
29 #include <linux/dcache.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34 * Each CPU has a list of per CPU counters:
35 */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_tracking __read_mostly;
44 static atomic_t nr_munmap_tracking __read_mostly;
45 static atomic_t nr_comm_tracking __read_mostly;
46
47 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
49 int sysctl_perf_counter_limit __read_mostly = 100000; /* max NMIs per second */
50
51 /*
52 * Lock for (sysadmin-configurable) counter reservations:
53 */
54 static DEFINE_SPINLOCK(perf_resource_lock);
55
56 /*
57 * Architecture provided APIs - weak aliases:
58 */
59 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
60 {
61 return NULL;
62 }
63
64 void __weak hw_perf_disable(void) { barrier(); }
65 void __weak hw_perf_enable(void) { barrier(); }
66
67 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
68 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
69 struct perf_cpu_context *cpuctx,
70 struct perf_counter_context *ctx, int cpu)
71 {
72 return 0;
73 }
74
75 void __weak perf_counter_print_debug(void) { }
76
77 static DEFINE_PER_CPU(int, disable_count);
78
79 void __perf_disable(void)
80 {
81 __get_cpu_var(disable_count)++;
82 }
83
84 bool __perf_enable(void)
85 {
86 return !--__get_cpu_var(disable_count);
87 }
88
89 void perf_disable(void)
90 {
91 __perf_disable();
92 hw_perf_disable();
93 }
94
95 void perf_enable(void)
96 {
97 if (__perf_enable())
98 hw_perf_enable();
99 }
100
101 static void get_ctx(struct perf_counter_context *ctx)
102 {
103 atomic_inc(&ctx->refcount);
104 }
105
106 static void free_ctx(struct rcu_head *head)
107 {
108 struct perf_counter_context *ctx;
109
110 ctx = container_of(head, struct perf_counter_context, rcu_head);
111 kfree(ctx);
112 }
113
114 static void put_ctx(struct perf_counter_context *ctx)
115 {
116 if (atomic_dec_and_test(&ctx->refcount)) {
117 if (ctx->parent_ctx)
118 put_ctx(ctx->parent_ctx);
119 if (ctx->task)
120 put_task_struct(ctx->task);
121 call_rcu(&ctx->rcu_head, free_ctx);
122 }
123 }
124
125 /*
126 * Add a counter from the lists for its context.
127 * Must be called with ctx->mutex and ctx->lock held.
128 */
129 static void
130 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
131 {
132 struct perf_counter *group_leader = counter->group_leader;
133
134 /*
135 * Depending on whether it is a standalone or sibling counter,
136 * add it straight to the context's counter list, or to the group
137 * leader's sibling list:
138 */
139 if (group_leader == counter)
140 list_add_tail(&counter->list_entry, &ctx->counter_list);
141 else {
142 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
143 group_leader->nr_siblings++;
144 }
145
146 list_add_rcu(&counter->event_entry, &ctx->event_list);
147 ctx->nr_counters++;
148 }
149
150 /*
151 * Remove a counter from the lists for its context.
152 * Must be called with ctx->mutex and ctx->lock held.
153 */
154 static void
155 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
156 {
157 struct perf_counter *sibling, *tmp;
158
159 if (list_empty(&counter->list_entry))
160 return;
161 ctx->nr_counters--;
162
163 list_del_init(&counter->list_entry);
164 list_del_rcu(&counter->event_entry);
165
166 if (counter->group_leader != counter)
167 counter->group_leader->nr_siblings--;
168
169 /*
170 * If this was a group counter with sibling counters then
171 * upgrade the siblings to singleton counters by adding them
172 * to the context list directly:
173 */
174 list_for_each_entry_safe(sibling, tmp,
175 &counter->sibling_list, list_entry) {
176
177 list_move_tail(&sibling->list_entry, &ctx->counter_list);
178 sibling->group_leader = sibling;
179 }
180 }
181
182 static void
183 counter_sched_out(struct perf_counter *counter,
184 struct perf_cpu_context *cpuctx,
185 struct perf_counter_context *ctx)
186 {
187 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
188 return;
189
190 counter->state = PERF_COUNTER_STATE_INACTIVE;
191 counter->tstamp_stopped = ctx->time;
192 counter->pmu->disable(counter);
193 counter->oncpu = -1;
194
195 if (!is_software_counter(counter))
196 cpuctx->active_oncpu--;
197 ctx->nr_active--;
198 if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
199 cpuctx->exclusive = 0;
200 }
201
202 static void
203 group_sched_out(struct perf_counter *group_counter,
204 struct perf_cpu_context *cpuctx,
205 struct perf_counter_context *ctx)
206 {
207 struct perf_counter *counter;
208
209 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
210 return;
211
212 counter_sched_out(group_counter, cpuctx, ctx);
213
214 /*
215 * Schedule out siblings (if any):
216 */
217 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
218 counter_sched_out(counter, cpuctx, ctx);
219
220 if (group_counter->hw_event.exclusive)
221 cpuctx->exclusive = 0;
222 }
223
224 /*
225 * Cross CPU call to remove a performance counter
226 *
227 * We disable the counter on the hardware level first. After that we
228 * remove it from the context list.
229 */
230 static void __perf_counter_remove_from_context(void *info)
231 {
232 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
233 struct perf_counter *counter = info;
234 struct perf_counter_context *ctx = counter->ctx;
235 unsigned long flags;
236
237 /*
238 * If this is a task context, we need to check whether it is
239 * the current task context of this cpu. If not it has been
240 * scheduled out before the smp call arrived.
241 */
242 if (ctx->task && cpuctx->task_ctx != ctx)
243 return;
244
245 spin_lock_irqsave(&ctx->lock, flags);
246 /*
247 * Protect the list operation against NMI by disabling the
248 * counters on a global level.
249 */
250 perf_disable();
251
252 counter_sched_out(counter, cpuctx, ctx);
253
254 list_del_counter(counter, ctx);
255
256 if (!ctx->task) {
257 /*
258 * Allow more per task counters with respect to the
259 * reservation:
260 */
261 cpuctx->max_pertask =
262 min(perf_max_counters - ctx->nr_counters,
263 perf_max_counters - perf_reserved_percpu);
264 }
265
266 perf_enable();
267 spin_unlock_irqrestore(&ctx->lock, flags);
268 }
269
270
271 /*
272 * Remove the counter from a task's (or a CPU's) list of counters.
273 *
274 * Must be called with ctx->mutex held.
275 *
276 * CPU counters are removed with a smp call. For task counters we only
277 * call when the task is on a CPU.
278 *
279 * If counter->ctx is a cloned context, callers must make sure that
280 * every task struct that counter->ctx->task could possibly point to
281 * remains valid. This is OK when called from perf_release since
282 * that only calls us on the top-level context, which can't be a clone.
283 * When called from perf_counter_exit_task, it's OK because the
284 * context has been detached from its task.
285 */
286 static void perf_counter_remove_from_context(struct perf_counter *counter)
287 {
288 struct perf_counter_context *ctx = counter->ctx;
289 struct task_struct *task = ctx->task;
290
291 if (!task) {
292 /*
293 * Per cpu counters are removed via an smp call and
294 * the removal is always sucessful.
295 */
296 smp_call_function_single(counter->cpu,
297 __perf_counter_remove_from_context,
298 counter, 1);
299 return;
300 }
301
302 retry:
303 task_oncpu_function_call(task, __perf_counter_remove_from_context,
304 counter);
305
306 spin_lock_irq(&ctx->lock);
307 /*
308 * If the context is active we need to retry the smp call.
309 */
310 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
311 spin_unlock_irq(&ctx->lock);
312 goto retry;
313 }
314
315 /*
316 * The lock prevents that this context is scheduled in so we
317 * can remove the counter safely, if the call above did not
318 * succeed.
319 */
320 if (!list_empty(&counter->list_entry)) {
321 list_del_counter(counter, ctx);
322 }
323 spin_unlock_irq(&ctx->lock);
324 }
325
326 static inline u64 perf_clock(void)
327 {
328 return cpu_clock(smp_processor_id());
329 }
330
331 /*
332 * Update the record of the current time in a context.
333 */
334 static void update_context_time(struct perf_counter_context *ctx)
335 {
336 u64 now = perf_clock();
337
338 ctx->time += now - ctx->timestamp;
339 ctx->timestamp = now;
340 }
341
342 /*
343 * Update the total_time_enabled and total_time_running fields for a counter.
344 */
345 static void update_counter_times(struct perf_counter *counter)
346 {
347 struct perf_counter_context *ctx = counter->ctx;
348 u64 run_end;
349
350 if (counter->state < PERF_COUNTER_STATE_INACTIVE)
351 return;
352
353 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
354
355 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
356 run_end = counter->tstamp_stopped;
357 else
358 run_end = ctx->time;
359
360 counter->total_time_running = run_end - counter->tstamp_running;
361 }
362
363 /*
364 * Update total_time_enabled and total_time_running for all counters in a group.
365 */
366 static void update_group_times(struct perf_counter *leader)
367 {
368 struct perf_counter *counter;
369
370 update_counter_times(leader);
371 list_for_each_entry(counter, &leader->sibling_list, list_entry)
372 update_counter_times(counter);
373 }
374
375 /*
376 * Cross CPU call to disable a performance counter
377 */
378 static void __perf_counter_disable(void *info)
379 {
380 struct perf_counter *counter = info;
381 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
382 struct perf_counter_context *ctx = counter->ctx;
383 unsigned long flags;
384
385 /*
386 * If this is a per-task counter, need to check whether this
387 * counter's task is the current task on this cpu.
388 */
389 if (ctx->task && cpuctx->task_ctx != ctx)
390 return;
391
392 spin_lock_irqsave(&ctx->lock, flags);
393
394 /*
395 * If the counter is on, turn it off.
396 * If it is in error state, leave it in error state.
397 */
398 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
399 update_context_time(ctx);
400 update_counter_times(counter);
401 if (counter == counter->group_leader)
402 group_sched_out(counter, cpuctx, ctx);
403 else
404 counter_sched_out(counter, cpuctx, ctx);
405 counter->state = PERF_COUNTER_STATE_OFF;
406 }
407
408 spin_unlock_irqrestore(&ctx->lock, flags);
409 }
410
411 /*
412 * Disable a counter.
413 *
414 * If counter->ctx is a cloned context, callers must make sure that
415 * every task struct that counter->ctx->task could possibly point to
416 * remains valid. This condition is satisifed when called through
417 * perf_counter_for_each_child or perf_counter_for_each because they
418 * hold the top-level counter's child_mutex, so any descendant that
419 * goes to exit will block in sync_child_counter.
420 * When called from perf_pending_counter it's OK because counter->ctx
421 * is the current context on this CPU and preemption is disabled,
422 * hence we can't get into perf_counter_task_sched_out for this context.
423 */
424 static void perf_counter_disable(struct perf_counter *counter)
425 {
426 struct perf_counter_context *ctx = counter->ctx;
427 struct task_struct *task = ctx->task;
428
429 if (!task) {
430 /*
431 * Disable the counter on the cpu that it's on
432 */
433 smp_call_function_single(counter->cpu, __perf_counter_disable,
434 counter, 1);
435 return;
436 }
437
438 retry:
439 task_oncpu_function_call(task, __perf_counter_disable, counter);
440
441 spin_lock_irq(&ctx->lock);
442 /*
443 * If the counter is still active, we need to retry the cross-call.
444 */
445 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
446 spin_unlock_irq(&ctx->lock);
447 goto retry;
448 }
449
450 /*
451 * Since we have the lock this context can't be scheduled
452 * in, so we can change the state safely.
453 */
454 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
455 update_counter_times(counter);
456 counter->state = PERF_COUNTER_STATE_OFF;
457 }
458
459 spin_unlock_irq(&ctx->lock);
460 }
461
462 static int
463 counter_sched_in(struct perf_counter *counter,
464 struct perf_cpu_context *cpuctx,
465 struct perf_counter_context *ctx,
466 int cpu)
467 {
468 if (counter->state <= PERF_COUNTER_STATE_OFF)
469 return 0;
470
471 counter->state = PERF_COUNTER_STATE_ACTIVE;
472 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
473 /*
474 * The new state must be visible before we turn it on in the hardware:
475 */
476 smp_wmb();
477
478 if (counter->pmu->enable(counter)) {
479 counter->state = PERF_COUNTER_STATE_INACTIVE;
480 counter->oncpu = -1;
481 return -EAGAIN;
482 }
483
484 counter->tstamp_running += ctx->time - counter->tstamp_stopped;
485
486 if (!is_software_counter(counter))
487 cpuctx->active_oncpu++;
488 ctx->nr_active++;
489
490 if (counter->hw_event.exclusive)
491 cpuctx->exclusive = 1;
492
493 return 0;
494 }
495
496 static int
497 group_sched_in(struct perf_counter *group_counter,
498 struct perf_cpu_context *cpuctx,
499 struct perf_counter_context *ctx,
500 int cpu)
501 {
502 struct perf_counter *counter, *partial_group;
503 int ret;
504
505 if (group_counter->state == PERF_COUNTER_STATE_OFF)
506 return 0;
507
508 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
509 if (ret)
510 return ret < 0 ? ret : 0;
511
512 group_counter->prev_state = group_counter->state;
513 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
514 return -EAGAIN;
515
516 /*
517 * Schedule in siblings as one group (if any):
518 */
519 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
520 counter->prev_state = counter->state;
521 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
522 partial_group = counter;
523 goto group_error;
524 }
525 }
526
527 return 0;
528
529 group_error:
530 /*
531 * Groups can be scheduled in as one unit only, so undo any
532 * partial group before returning:
533 */
534 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
535 if (counter == partial_group)
536 break;
537 counter_sched_out(counter, cpuctx, ctx);
538 }
539 counter_sched_out(group_counter, cpuctx, ctx);
540
541 return -EAGAIN;
542 }
543
544 /*
545 * Return 1 for a group consisting entirely of software counters,
546 * 0 if the group contains any hardware counters.
547 */
548 static int is_software_only_group(struct perf_counter *leader)
549 {
550 struct perf_counter *counter;
551
552 if (!is_software_counter(leader))
553 return 0;
554
555 list_for_each_entry(counter, &leader->sibling_list, list_entry)
556 if (!is_software_counter(counter))
557 return 0;
558
559 return 1;
560 }
561
562 /*
563 * Work out whether we can put this counter group on the CPU now.
564 */
565 static int group_can_go_on(struct perf_counter *counter,
566 struct perf_cpu_context *cpuctx,
567 int can_add_hw)
568 {
569 /*
570 * Groups consisting entirely of software counters can always go on.
571 */
572 if (is_software_only_group(counter))
573 return 1;
574 /*
575 * If an exclusive group is already on, no other hardware
576 * counters can go on.
577 */
578 if (cpuctx->exclusive)
579 return 0;
580 /*
581 * If this group is exclusive and there are already
582 * counters on the CPU, it can't go on.
583 */
584 if (counter->hw_event.exclusive && cpuctx->active_oncpu)
585 return 0;
586 /*
587 * Otherwise, try to add it if all previous groups were able
588 * to go on.
589 */
590 return can_add_hw;
591 }
592
593 static void add_counter_to_ctx(struct perf_counter *counter,
594 struct perf_counter_context *ctx)
595 {
596 list_add_counter(counter, ctx);
597 counter->prev_state = PERF_COUNTER_STATE_OFF;
598 counter->tstamp_enabled = ctx->time;
599 counter->tstamp_running = ctx->time;
600 counter->tstamp_stopped = ctx->time;
601 }
602
603 /*
604 * Cross CPU call to install and enable a performance counter
605 *
606 * Must be called with ctx->mutex held
607 */
608 static void __perf_install_in_context(void *info)
609 {
610 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
611 struct perf_counter *counter = info;
612 struct perf_counter_context *ctx = counter->ctx;
613 struct perf_counter *leader = counter->group_leader;
614 int cpu = smp_processor_id();
615 unsigned long flags;
616 int err;
617
618 /*
619 * If this is a task context, we need to check whether it is
620 * the current task context of this cpu. If not it has been
621 * scheduled out before the smp call arrived.
622 * Or possibly this is the right context but it isn't
623 * on this cpu because it had no counters.
624 */
625 if (ctx->task && cpuctx->task_ctx != ctx) {
626 if (cpuctx->task_ctx || ctx->task != current)
627 return;
628 cpuctx->task_ctx = ctx;
629 }
630
631 spin_lock_irqsave(&ctx->lock, flags);
632 ctx->is_active = 1;
633 update_context_time(ctx);
634
635 /*
636 * Protect the list operation against NMI by disabling the
637 * counters on a global level. NOP for non NMI based counters.
638 */
639 perf_disable();
640
641 add_counter_to_ctx(counter, ctx);
642
643 /*
644 * Don't put the counter on if it is disabled or if
645 * it is in a group and the group isn't on.
646 */
647 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
648 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
649 goto unlock;
650
651 /*
652 * An exclusive counter can't go on if there are already active
653 * hardware counters, and no hardware counter can go on if there
654 * is already an exclusive counter on.
655 */
656 if (!group_can_go_on(counter, cpuctx, 1))
657 err = -EEXIST;
658 else
659 err = counter_sched_in(counter, cpuctx, ctx, cpu);
660
661 if (err) {
662 /*
663 * This counter couldn't go on. If it is in a group
664 * then we have to pull the whole group off.
665 * If the counter group is pinned then put it in error state.
666 */
667 if (leader != counter)
668 group_sched_out(leader, cpuctx, ctx);
669 if (leader->hw_event.pinned) {
670 update_group_times(leader);
671 leader->state = PERF_COUNTER_STATE_ERROR;
672 }
673 }
674
675 if (!err && !ctx->task && cpuctx->max_pertask)
676 cpuctx->max_pertask--;
677
678 unlock:
679 perf_enable();
680
681 spin_unlock_irqrestore(&ctx->lock, flags);
682 }
683
684 /*
685 * Attach a performance counter to a context
686 *
687 * First we add the counter to the list with the hardware enable bit
688 * in counter->hw_config cleared.
689 *
690 * If the counter is attached to a task which is on a CPU we use a smp
691 * call to enable it in the task context. The task might have been
692 * scheduled away, but we check this in the smp call again.
693 *
694 * Must be called with ctx->mutex held.
695 */
696 static void
697 perf_install_in_context(struct perf_counter_context *ctx,
698 struct perf_counter *counter,
699 int cpu)
700 {
701 struct task_struct *task = ctx->task;
702
703 if (!task) {
704 /*
705 * Per cpu counters are installed via an smp call and
706 * the install is always sucessful.
707 */
708 smp_call_function_single(cpu, __perf_install_in_context,
709 counter, 1);
710 return;
711 }
712
713 retry:
714 task_oncpu_function_call(task, __perf_install_in_context,
715 counter);
716
717 spin_lock_irq(&ctx->lock);
718 /*
719 * we need to retry the smp call.
720 */
721 if (ctx->is_active && list_empty(&counter->list_entry)) {
722 spin_unlock_irq(&ctx->lock);
723 goto retry;
724 }
725
726 /*
727 * The lock prevents that this context is scheduled in so we
728 * can add the counter safely, if it the call above did not
729 * succeed.
730 */
731 if (list_empty(&counter->list_entry))
732 add_counter_to_ctx(counter, ctx);
733 spin_unlock_irq(&ctx->lock);
734 }
735
736 /*
737 * Cross CPU call to enable a performance counter
738 */
739 static void __perf_counter_enable(void *info)
740 {
741 struct perf_counter *counter = info;
742 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
743 struct perf_counter_context *ctx = counter->ctx;
744 struct perf_counter *leader = counter->group_leader;
745 unsigned long flags;
746 int err;
747
748 /*
749 * If this is a per-task counter, need to check whether this
750 * counter's task is the current task on this cpu.
751 */
752 if (ctx->task && cpuctx->task_ctx != ctx) {
753 if (cpuctx->task_ctx || ctx->task != current)
754 return;
755 cpuctx->task_ctx = ctx;
756 }
757
758 spin_lock_irqsave(&ctx->lock, flags);
759 ctx->is_active = 1;
760 update_context_time(ctx);
761
762 counter->prev_state = counter->state;
763 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
764 goto unlock;
765 counter->state = PERF_COUNTER_STATE_INACTIVE;
766 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
767
768 /*
769 * If the counter is in a group and isn't the group leader,
770 * then don't put it on unless the group is on.
771 */
772 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
773 goto unlock;
774
775 if (!group_can_go_on(counter, cpuctx, 1)) {
776 err = -EEXIST;
777 } else {
778 perf_disable();
779 if (counter == leader)
780 err = group_sched_in(counter, cpuctx, ctx,
781 smp_processor_id());
782 else
783 err = counter_sched_in(counter, cpuctx, ctx,
784 smp_processor_id());
785 perf_enable();
786 }
787
788 if (err) {
789 /*
790 * If this counter can't go on and it's part of a
791 * group, then the whole group has to come off.
792 */
793 if (leader != counter)
794 group_sched_out(leader, cpuctx, ctx);
795 if (leader->hw_event.pinned) {
796 update_group_times(leader);
797 leader->state = PERF_COUNTER_STATE_ERROR;
798 }
799 }
800
801 unlock:
802 spin_unlock_irqrestore(&ctx->lock, flags);
803 }
804
805 /*
806 * Enable a counter.
807 *
808 * If counter->ctx is a cloned context, callers must make sure that
809 * every task struct that counter->ctx->task could possibly point to
810 * remains valid. This condition is satisfied when called through
811 * perf_counter_for_each_child or perf_counter_for_each as described
812 * for perf_counter_disable.
813 */
814 static void perf_counter_enable(struct perf_counter *counter)
815 {
816 struct perf_counter_context *ctx = counter->ctx;
817 struct task_struct *task = ctx->task;
818
819 if (!task) {
820 /*
821 * Enable the counter on the cpu that it's on
822 */
823 smp_call_function_single(counter->cpu, __perf_counter_enable,
824 counter, 1);
825 return;
826 }
827
828 spin_lock_irq(&ctx->lock);
829 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
830 goto out;
831
832 /*
833 * If the counter is in error state, clear that first.
834 * That way, if we see the counter in error state below, we
835 * know that it has gone back into error state, as distinct
836 * from the task having been scheduled away before the
837 * cross-call arrived.
838 */
839 if (counter->state == PERF_COUNTER_STATE_ERROR)
840 counter->state = PERF_COUNTER_STATE_OFF;
841
842 retry:
843 spin_unlock_irq(&ctx->lock);
844 task_oncpu_function_call(task, __perf_counter_enable, counter);
845
846 spin_lock_irq(&ctx->lock);
847
848 /*
849 * If the context is active and the counter is still off,
850 * we need to retry the cross-call.
851 */
852 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
853 goto retry;
854
855 /*
856 * Since we have the lock this context can't be scheduled
857 * in, so we can change the state safely.
858 */
859 if (counter->state == PERF_COUNTER_STATE_OFF) {
860 counter->state = PERF_COUNTER_STATE_INACTIVE;
861 counter->tstamp_enabled =
862 ctx->time - counter->total_time_enabled;
863 }
864 out:
865 spin_unlock_irq(&ctx->lock);
866 }
867
868 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
869 {
870 /*
871 * not supported on inherited counters
872 */
873 if (counter->hw_event.inherit)
874 return -EINVAL;
875
876 atomic_add(refresh, &counter->event_limit);
877 perf_counter_enable(counter);
878
879 return 0;
880 }
881
882 void __perf_counter_sched_out(struct perf_counter_context *ctx,
883 struct perf_cpu_context *cpuctx)
884 {
885 struct perf_counter *counter;
886
887 spin_lock(&ctx->lock);
888 ctx->is_active = 0;
889 if (likely(!ctx->nr_counters))
890 goto out;
891 update_context_time(ctx);
892
893 perf_disable();
894 if (ctx->nr_active) {
895 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
896 if (counter != counter->group_leader)
897 counter_sched_out(counter, cpuctx, ctx);
898 else
899 group_sched_out(counter, cpuctx, ctx);
900 }
901 }
902 perf_enable();
903 out:
904 spin_unlock(&ctx->lock);
905 }
906
907 /*
908 * Test whether two contexts are equivalent, i.e. whether they
909 * have both been cloned from the same version of the same context
910 * and they both have the same number of enabled counters.
911 * If the number of enabled counters is the same, then the set
912 * of enabled counters should be the same, because these are both
913 * inherited contexts, therefore we can't access individual counters
914 * in them directly with an fd; we can only enable/disable all
915 * counters via prctl, or enable/disable all counters in a family
916 * via ioctl, which will have the same effect on both contexts.
917 */
918 static int context_equiv(struct perf_counter_context *ctx1,
919 struct perf_counter_context *ctx2)
920 {
921 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
922 && ctx1->parent_gen == ctx2->parent_gen;
923 }
924
925 /*
926 * Called from scheduler to remove the counters of the current task,
927 * with interrupts disabled.
928 *
929 * We stop each counter and update the counter value in counter->count.
930 *
931 * This does not protect us against NMI, but disable()
932 * sets the disabled bit in the control field of counter _before_
933 * accessing the counter control register. If a NMI hits, then it will
934 * not restart the counter.
935 */
936 void perf_counter_task_sched_out(struct task_struct *task,
937 struct task_struct *next, int cpu)
938 {
939 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
940 struct perf_counter_context *ctx = task->perf_counter_ctxp;
941 struct perf_counter_context *next_ctx;
942 struct perf_counter_context *parent;
943 struct pt_regs *regs;
944 int do_switch = 1;
945
946 regs = task_pt_regs(task);
947 perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
948
949 if (likely(!ctx || !cpuctx->task_ctx))
950 return;
951
952 update_context_time(ctx);
953
954 rcu_read_lock();
955 parent = rcu_dereference(ctx->parent_ctx);
956 next_ctx = next->perf_counter_ctxp;
957 if (parent && next_ctx &&
958 rcu_dereference(next_ctx->parent_ctx) == parent) {
959 /*
960 * Looks like the two contexts are clones, so we might be
961 * able to optimize the context switch. We lock both
962 * contexts and check that they are clones under the
963 * lock (including re-checking that neither has been
964 * uncloned in the meantime). It doesn't matter which
965 * order we take the locks because no other cpu could
966 * be trying to lock both of these tasks.
967 */
968 spin_lock(&ctx->lock);
969 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
970 if (context_equiv(ctx, next_ctx)) {
971 task->perf_counter_ctxp = next_ctx;
972 next->perf_counter_ctxp = ctx;
973 ctx->task = next;
974 next_ctx->task = task;
975 do_switch = 0;
976 }
977 spin_unlock(&next_ctx->lock);
978 spin_unlock(&ctx->lock);
979 }
980 rcu_read_unlock();
981
982 if (do_switch) {
983 __perf_counter_sched_out(ctx, cpuctx);
984 cpuctx->task_ctx = NULL;
985 }
986 }
987
988 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
989 {
990 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
991
992 if (!cpuctx->task_ctx)
993 return;
994 __perf_counter_sched_out(ctx, cpuctx);
995 cpuctx->task_ctx = NULL;
996 }
997
998 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
999 {
1000 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1001 }
1002
1003 static void
1004 __perf_counter_sched_in(struct perf_counter_context *ctx,
1005 struct perf_cpu_context *cpuctx, int cpu)
1006 {
1007 struct perf_counter *counter;
1008 int can_add_hw = 1;
1009
1010 spin_lock(&ctx->lock);
1011 ctx->is_active = 1;
1012 if (likely(!ctx->nr_counters))
1013 goto out;
1014
1015 ctx->timestamp = perf_clock();
1016
1017 perf_disable();
1018
1019 /*
1020 * First go through the list and put on any pinned groups
1021 * in order to give them the best chance of going on.
1022 */
1023 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1024 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1025 !counter->hw_event.pinned)
1026 continue;
1027 if (counter->cpu != -1 && counter->cpu != cpu)
1028 continue;
1029
1030 if (counter != counter->group_leader)
1031 counter_sched_in(counter, cpuctx, ctx, cpu);
1032 else {
1033 if (group_can_go_on(counter, cpuctx, 1))
1034 group_sched_in(counter, cpuctx, ctx, cpu);
1035 }
1036
1037 /*
1038 * If this pinned group hasn't been scheduled,
1039 * put it in error state.
1040 */
1041 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1042 update_group_times(counter);
1043 counter->state = PERF_COUNTER_STATE_ERROR;
1044 }
1045 }
1046
1047 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1048 /*
1049 * Ignore counters in OFF or ERROR state, and
1050 * ignore pinned counters since we did them already.
1051 */
1052 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1053 counter->hw_event.pinned)
1054 continue;
1055
1056 /*
1057 * Listen to the 'cpu' scheduling filter constraint
1058 * of counters:
1059 */
1060 if (counter->cpu != -1 && counter->cpu != cpu)
1061 continue;
1062
1063 if (counter != counter->group_leader) {
1064 if (counter_sched_in(counter, cpuctx, ctx, cpu))
1065 can_add_hw = 0;
1066 } else {
1067 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1068 if (group_sched_in(counter, cpuctx, ctx, cpu))
1069 can_add_hw = 0;
1070 }
1071 }
1072 }
1073 perf_enable();
1074 out:
1075 spin_unlock(&ctx->lock);
1076 }
1077
1078 /*
1079 * Called from scheduler to add the counters of the current task
1080 * with interrupts disabled.
1081 *
1082 * We restore the counter value and then enable it.
1083 *
1084 * This does not protect us against NMI, but enable()
1085 * sets the enabled bit in the control field of counter _before_
1086 * accessing the counter control register. If a NMI hits, then it will
1087 * keep the counter running.
1088 */
1089 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1090 {
1091 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1092 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1093
1094 if (likely(!ctx))
1095 return;
1096 if (cpuctx->task_ctx == ctx)
1097 return;
1098 __perf_counter_sched_in(ctx, cpuctx, cpu);
1099 cpuctx->task_ctx = ctx;
1100 }
1101
1102 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1103 {
1104 struct perf_counter_context *ctx = &cpuctx->ctx;
1105
1106 __perf_counter_sched_in(ctx, cpuctx, cpu);
1107 }
1108
1109 #define MAX_INTERRUPTS (~0ULL)
1110
1111 static void perf_log_throttle(struct perf_counter *counter, int enable);
1112 static void perf_log_period(struct perf_counter *counter, u64 period);
1113
1114 static void perf_adjust_freq(struct perf_counter_context *ctx)
1115 {
1116 struct perf_counter *counter;
1117 u64 interrupts, irq_period;
1118 u64 events, period;
1119 s64 delta;
1120
1121 spin_lock(&ctx->lock);
1122 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1123 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1124 continue;
1125
1126 interrupts = counter->hw.interrupts;
1127 counter->hw.interrupts = 0;
1128
1129 if (interrupts == MAX_INTERRUPTS) {
1130 perf_log_throttle(counter, 1);
1131 counter->pmu->unthrottle(counter);
1132 interrupts = 2*sysctl_perf_counter_limit/HZ;
1133 }
1134
1135 if (!counter->hw_event.freq || !counter->hw_event.irq_freq)
1136 continue;
1137
1138 events = HZ * interrupts * counter->hw.irq_period;
1139 period = div64_u64(events, counter->hw_event.irq_freq);
1140
1141 delta = (s64)(1 + period - counter->hw.irq_period);
1142 delta >>= 1;
1143
1144 irq_period = counter->hw.irq_period + delta;
1145
1146 if (!irq_period)
1147 irq_period = 1;
1148
1149 perf_log_period(counter, irq_period);
1150
1151 counter->hw.irq_period = irq_period;
1152 }
1153 spin_unlock(&ctx->lock);
1154 }
1155
1156 /*
1157 * Round-robin a context's counters:
1158 */
1159 static void rotate_ctx(struct perf_counter_context *ctx)
1160 {
1161 struct perf_counter *counter;
1162
1163 if (!ctx->nr_counters)
1164 return;
1165
1166 spin_lock(&ctx->lock);
1167 /*
1168 * Rotate the first entry last (works just fine for group counters too):
1169 */
1170 perf_disable();
1171 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1172 list_move_tail(&counter->list_entry, &ctx->counter_list);
1173 break;
1174 }
1175 perf_enable();
1176
1177 spin_unlock(&ctx->lock);
1178 }
1179
1180 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1181 {
1182 struct perf_cpu_context *cpuctx;
1183 struct perf_counter_context *ctx;
1184
1185 if (!atomic_read(&nr_counters))
1186 return;
1187
1188 cpuctx = &per_cpu(perf_cpu_context, cpu);
1189 ctx = curr->perf_counter_ctxp;
1190
1191 perf_adjust_freq(&cpuctx->ctx);
1192 if (ctx)
1193 perf_adjust_freq(ctx);
1194
1195 perf_counter_cpu_sched_out(cpuctx);
1196 if (ctx)
1197 __perf_counter_task_sched_out(ctx);
1198
1199 rotate_ctx(&cpuctx->ctx);
1200 if (ctx)
1201 rotate_ctx(ctx);
1202
1203 perf_counter_cpu_sched_in(cpuctx, cpu);
1204 if (ctx)
1205 perf_counter_task_sched_in(curr, cpu);
1206 }
1207
1208 /*
1209 * Cross CPU call to read the hardware counter
1210 */
1211 static void __read(void *info)
1212 {
1213 struct perf_counter *counter = info;
1214 struct perf_counter_context *ctx = counter->ctx;
1215 unsigned long flags;
1216
1217 local_irq_save(flags);
1218 if (ctx->is_active)
1219 update_context_time(ctx);
1220 counter->pmu->read(counter);
1221 update_counter_times(counter);
1222 local_irq_restore(flags);
1223 }
1224
1225 static u64 perf_counter_read(struct perf_counter *counter)
1226 {
1227 /*
1228 * If counter is enabled and currently active on a CPU, update the
1229 * value in the counter structure:
1230 */
1231 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1232 smp_call_function_single(counter->oncpu,
1233 __read, counter, 1);
1234 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1235 update_counter_times(counter);
1236 }
1237
1238 return atomic64_read(&counter->count);
1239 }
1240
1241 /*
1242 * Initialize the perf_counter context in a task_struct:
1243 */
1244 static void
1245 __perf_counter_init_context(struct perf_counter_context *ctx,
1246 struct task_struct *task)
1247 {
1248 memset(ctx, 0, sizeof(*ctx));
1249 spin_lock_init(&ctx->lock);
1250 mutex_init(&ctx->mutex);
1251 INIT_LIST_HEAD(&ctx->counter_list);
1252 INIT_LIST_HEAD(&ctx->event_list);
1253 atomic_set(&ctx->refcount, 1);
1254 ctx->task = task;
1255 }
1256
1257 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1258 {
1259 struct perf_cpu_context *cpuctx;
1260 struct perf_counter_context *ctx;
1261 struct perf_counter_context *parent_ctx;
1262 struct task_struct *task;
1263 int err;
1264
1265 /*
1266 * If cpu is not a wildcard then this is a percpu counter:
1267 */
1268 if (cpu != -1) {
1269 /* Must be root to operate on a CPU counter: */
1270 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1271 return ERR_PTR(-EACCES);
1272
1273 if (cpu < 0 || cpu > num_possible_cpus())
1274 return ERR_PTR(-EINVAL);
1275
1276 /*
1277 * We could be clever and allow to attach a counter to an
1278 * offline CPU and activate it when the CPU comes up, but
1279 * that's for later.
1280 */
1281 if (!cpu_isset(cpu, cpu_online_map))
1282 return ERR_PTR(-ENODEV);
1283
1284 cpuctx = &per_cpu(perf_cpu_context, cpu);
1285 ctx = &cpuctx->ctx;
1286 get_ctx(ctx);
1287
1288 return ctx;
1289 }
1290
1291 rcu_read_lock();
1292 if (!pid)
1293 task = current;
1294 else
1295 task = find_task_by_vpid(pid);
1296 if (task)
1297 get_task_struct(task);
1298 rcu_read_unlock();
1299
1300 if (!task)
1301 return ERR_PTR(-ESRCH);
1302
1303 /*
1304 * Can't attach counters to a dying task.
1305 */
1306 err = -ESRCH;
1307 if (task->flags & PF_EXITING)
1308 goto errout;
1309
1310 /* Reuse ptrace permission checks for now. */
1311 err = -EACCES;
1312 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1313 goto errout;
1314
1315 retry_lock:
1316 rcu_read_lock();
1317 retry:
1318 ctx = rcu_dereference(task->perf_counter_ctxp);
1319 if (ctx) {
1320 /*
1321 * If this context is a clone of another, it might
1322 * get swapped for another underneath us by
1323 * perf_counter_task_sched_out, though the
1324 * rcu_read_lock() protects us from any context
1325 * getting freed. Lock the context and check if it
1326 * got swapped before we could get the lock, and retry
1327 * if so. If we locked the right context, then it
1328 * can't get swapped on us any more and we can
1329 * unclone it if necessary.
1330 * Once it's not a clone things will be stable.
1331 */
1332 spin_lock_irq(&ctx->lock);
1333 if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
1334 spin_unlock_irq(&ctx->lock);
1335 goto retry;
1336 }
1337 parent_ctx = ctx->parent_ctx;
1338 if (parent_ctx) {
1339 put_ctx(parent_ctx);
1340 ctx->parent_ctx = NULL; /* no longer a clone */
1341 }
1342 ++ctx->generation;
1343 /*
1344 * Get an extra reference before dropping the lock so that
1345 * this context won't get freed if the task exits.
1346 */
1347 get_ctx(ctx);
1348 spin_unlock_irq(&ctx->lock);
1349 }
1350 rcu_read_unlock();
1351
1352 if (!ctx) {
1353 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1354 err = -ENOMEM;
1355 if (!ctx)
1356 goto errout;
1357 __perf_counter_init_context(ctx, task);
1358 get_ctx(ctx);
1359 if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1360 /*
1361 * We raced with some other task; use
1362 * the context they set.
1363 */
1364 kfree(ctx);
1365 goto retry_lock;
1366 }
1367 get_task_struct(task);
1368 }
1369
1370 put_task_struct(task);
1371 return ctx;
1372
1373 errout:
1374 put_task_struct(task);
1375 return ERR_PTR(err);
1376 }
1377
1378 static void free_counter_rcu(struct rcu_head *head)
1379 {
1380 struct perf_counter *counter;
1381
1382 counter = container_of(head, struct perf_counter, rcu_head);
1383 kfree(counter);
1384 }
1385
1386 static void perf_pending_sync(struct perf_counter *counter);
1387
1388 static void free_counter(struct perf_counter *counter)
1389 {
1390 perf_pending_sync(counter);
1391
1392 atomic_dec(&nr_counters);
1393 if (counter->hw_event.mmap)
1394 atomic_dec(&nr_mmap_tracking);
1395 if (counter->hw_event.munmap)
1396 atomic_dec(&nr_munmap_tracking);
1397 if (counter->hw_event.comm)
1398 atomic_dec(&nr_comm_tracking);
1399
1400 if (counter->destroy)
1401 counter->destroy(counter);
1402
1403 put_ctx(counter->ctx);
1404 call_rcu(&counter->rcu_head, free_counter_rcu);
1405 }
1406
1407 /*
1408 * Called when the last reference to the file is gone.
1409 */
1410 static int perf_release(struct inode *inode, struct file *file)
1411 {
1412 struct perf_counter *counter = file->private_data;
1413 struct perf_counter_context *ctx = counter->ctx;
1414
1415 file->private_data = NULL;
1416
1417 mutex_lock(&ctx->mutex);
1418 perf_counter_remove_from_context(counter);
1419 mutex_unlock(&ctx->mutex);
1420
1421 mutex_lock(&counter->owner->perf_counter_mutex);
1422 list_del_init(&counter->owner_entry);
1423 mutex_unlock(&counter->owner->perf_counter_mutex);
1424 put_task_struct(counter->owner);
1425
1426 free_counter(counter);
1427
1428 return 0;
1429 }
1430
1431 /*
1432 * Read the performance counter - simple non blocking version for now
1433 */
1434 static ssize_t
1435 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1436 {
1437 u64 values[3];
1438 int n;
1439
1440 /*
1441 * Return end-of-file for a read on a counter that is in
1442 * error state (i.e. because it was pinned but it couldn't be
1443 * scheduled on to the CPU at some point).
1444 */
1445 if (counter->state == PERF_COUNTER_STATE_ERROR)
1446 return 0;
1447
1448 mutex_lock(&counter->child_mutex);
1449 values[0] = perf_counter_read(counter);
1450 n = 1;
1451 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1452 values[n++] = counter->total_time_enabled +
1453 atomic64_read(&counter->child_total_time_enabled);
1454 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1455 values[n++] = counter->total_time_running +
1456 atomic64_read(&counter->child_total_time_running);
1457 mutex_unlock(&counter->child_mutex);
1458
1459 if (count < n * sizeof(u64))
1460 return -EINVAL;
1461 count = n * sizeof(u64);
1462
1463 if (copy_to_user(buf, values, count))
1464 return -EFAULT;
1465
1466 return count;
1467 }
1468
1469 static ssize_t
1470 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1471 {
1472 struct perf_counter *counter = file->private_data;
1473
1474 return perf_read_hw(counter, buf, count);
1475 }
1476
1477 static unsigned int perf_poll(struct file *file, poll_table *wait)
1478 {
1479 struct perf_counter *counter = file->private_data;
1480 struct perf_mmap_data *data;
1481 unsigned int events = POLL_HUP;
1482
1483 rcu_read_lock();
1484 data = rcu_dereference(counter->data);
1485 if (data)
1486 events = atomic_xchg(&data->poll, 0);
1487 rcu_read_unlock();
1488
1489 poll_wait(file, &counter->waitq, wait);
1490
1491 return events;
1492 }
1493
1494 static void perf_counter_reset(struct perf_counter *counter)
1495 {
1496 (void)perf_counter_read(counter);
1497 atomic64_set(&counter->count, 0);
1498 perf_counter_update_userpage(counter);
1499 }
1500
1501 static void perf_counter_for_each_sibling(struct perf_counter *counter,
1502 void (*func)(struct perf_counter *))
1503 {
1504 struct perf_counter_context *ctx = counter->ctx;
1505 struct perf_counter *sibling;
1506
1507 mutex_lock(&ctx->mutex);
1508 counter = counter->group_leader;
1509
1510 func(counter);
1511 list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1512 func(sibling);
1513 mutex_unlock(&ctx->mutex);
1514 }
1515
1516 /*
1517 * Holding the top-level counter's child_mutex means that any
1518 * descendant process that has inherited this counter will block
1519 * in sync_child_counter if it goes to exit, thus satisfying the
1520 * task existence requirements of perf_counter_enable/disable.
1521 */
1522 static void perf_counter_for_each_child(struct perf_counter *counter,
1523 void (*func)(struct perf_counter *))
1524 {
1525 struct perf_counter *child;
1526
1527 mutex_lock(&counter->child_mutex);
1528 func(counter);
1529 list_for_each_entry(child, &counter->child_list, child_list)
1530 func(child);
1531 mutex_unlock(&counter->child_mutex);
1532 }
1533
1534 static void perf_counter_for_each(struct perf_counter *counter,
1535 void (*func)(struct perf_counter *))
1536 {
1537 struct perf_counter *child;
1538
1539 mutex_lock(&counter->child_mutex);
1540 perf_counter_for_each_sibling(counter, func);
1541 list_for_each_entry(child, &counter->child_list, child_list)
1542 perf_counter_for_each_sibling(child, func);
1543 mutex_unlock(&counter->child_mutex);
1544 }
1545
1546 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1547 {
1548 struct perf_counter *counter = file->private_data;
1549 void (*func)(struct perf_counter *);
1550 u32 flags = arg;
1551
1552 switch (cmd) {
1553 case PERF_COUNTER_IOC_ENABLE:
1554 func = perf_counter_enable;
1555 break;
1556 case PERF_COUNTER_IOC_DISABLE:
1557 func = perf_counter_disable;
1558 break;
1559 case PERF_COUNTER_IOC_RESET:
1560 func = perf_counter_reset;
1561 break;
1562
1563 case PERF_COUNTER_IOC_REFRESH:
1564 return perf_counter_refresh(counter, arg);
1565 default:
1566 return -ENOTTY;
1567 }
1568
1569 if (flags & PERF_IOC_FLAG_GROUP)
1570 perf_counter_for_each(counter, func);
1571 else
1572 perf_counter_for_each_child(counter, func);
1573
1574 return 0;
1575 }
1576
1577 int perf_counter_task_enable(void)
1578 {
1579 struct perf_counter *counter;
1580
1581 mutex_lock(&current->perf_counter_mutex);
1582 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1583 perf_counter_for_each_child(counter, perf_counter_enable);
1584 mutex_unlock(&current->perf_counter_mutex);
1585
1586 return 0;
1587 }
1588
1589 int perf_counter_task_disable(void)
1590 {
1591 struct perf_counter *counter;
1592
1593 mutex_lock(&current->perf_counter_mutex);
1594 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
1595 perf_counter_for_each_child(counter, perf_counter_disable);
1596 mutex_unlock(&current->perf_counter_mutex);
1597
1598 return 0;
1599 }
1600
1601 /*
1602 * Callers need to ensure there can be no nesting of this function, otherwise
1603 * the seqlock logic goes bad. We can not serialize this because the arch
1604 * code calls this from NMI context.
1605 */
1606 void perf_counter_update_userpage(struct perf_counter *counter)
1607 {
1608 struct perf_mmap_data *data;
1609 struct perf_counter_mmap_page *userpg;
1610
1611 rcu_read_lock();
1612 data = rcu_dereference(counter->data);
1613 if (!data)
1614 goto unlock;
1615
1616 userpg = data->user_page;
1617
1618 /*
1619 * Disable preemption so as to not let the corresponding user-space
1620 * spin too long if we get preempted.
1621 */
1622 preempt_disable();
1623 ++userpg->lock;
1624 barrier();
1625 userpg->index = counter->hw.idx;
1626 userpg->offset = atomic64_read(&counter->count);
1627 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1628 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1629
1630 barrier();
1631 ++userpg->lock;
1632 preempt_enable();
1633 unlock:
1634 rcu_read_unlock();
1635 }
1636
1637 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1638 {
1639 struct perf_counter *counter = vma->vm_file->private_data;
1640 struct perf_mmap_data *data;
1641 int ret = VM_FAULT_SIGBUS;
1642
1643 rcu_read_lock();
1644 data = rcu_dereference(counter->data);
1645 if (!data)
1646 goto unlock;
1647
1648 if (vmf->pgoff == 0) {
1649 vmf->page = virt_to_page(data->user_page);
1650 } else {
1651 int nr = vmf->pgoff - 1;
1652
1653 if ((unsigned)nr > data->nr_pages)
1654 goto unlock;
1655
1656 vmf->page = virt_to_page(data->data_pages[nr]);
1657 }
1658 get_page(vmf->page);
1659 ret = 0;
1660 unlock:
1661 rcu_read_unlock();
1662
1663 return ret;
1664 }
1665
1666 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1667 {
1668 struct perf_mmap_data *data;
1669 unsigned long size;
1670 int i;
1671
1672 WARN_ON(atomic_read(&counter->mmap_count));
1673
1674 size = sizeof(struct perf_mmap_data);
1675 size += nr_pages * sizeof(void *);
1676
1677 data = kzalloc(size, GFP_KERNEL);
1678 if (!data)
1679 goto fail;
1680
1681 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1682 if (!data->user_page)
1683 goto fail_user_page;
1684
1685 for (i = 0; i < nr_pages; i++) {
1686 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1687 if (!data->data_pages[i])
1688 goto fail_data_pages;
1689 }
1690
1691 data->nr_pages = nr_pages;
1692 atomic_set(&data->lock, -1);
1693
1694 rcu_assign_pointer(counter->data, data);
1695
1696 return 0;
1697
1698 fail_data_pages:
1699 for (i--; i >= 0; i--)
1700 free_page((unsigned long)data->data_pages[i]);
1701
1702 free_page((unsigned long)data->user_page);
1703
1704 fail_user_page:
1705 kfree(data);
1706
1707 fail:
1708 return -ENOMEM;
1709 }
1710
1711 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1712 {
1713 struct perf_mmap_data *data = container_of(rcu_head,
1714 struct perf_mmap_data, rcu_head);
1715 int i;
1716
1717 free_page((unsigned long)data->user_page);
1718 for (i = 0; i < data->nr_pages; i++)
1719 free_page((unsigned long)data->data_pages[i]);
1720 kfree(data);
1721 }
1722
1723 static void perf_mmap_data_free(struct perf_counter *counter)
1724 {
1725 struct perf_mmap_data *data = counter->data;
1726
1727 WARN_ON(atomic_read(&counter->mmap_count));
1728
1729 rcu_assign_pointer(counter->data, NULL);
1730 call_rcu(&data->rcu_head, __perf_mmap_data_free);
1731 }
1732
1733 static void perf_mmap_open(struct vm_area_struct *vma)
1734 {
1735 struct perf_counter *counter = vma->vm_file->private_data;
1736
1737 atomic_inc(&counter->mmap_count);
1738 }
1739
1740 static void perf_mmap_close(struct vm_area_struct *vma)
1741 {
1742 struct perf_counter *counter = vma->vm_file->private_data;
1743
1744 if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1745 &counter->mmap_mutex)) {
1746 struct user_struct *user = current_user();
1747
1748 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1749 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1750 perf_mmap_data_free(counter);
1751 mutex_unlock(&counter->mmap_mutex);
1752 }
1753 }
1754
1755 static struct vm_operations_struct perf_mmap_vmops = {
1756 .open = perf_mmap_open,
1757 .close = perf_mmap_close,
1758 .fault = perf_mmap_fault,
1759 };
1760
1761 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1762 {
1763 struct perf_counter *counter = file->private_data;
1764 struct user_struct *user = current_user();
1765 unsigned long vma_size;
1766 unsigned long nr_pages;
1767 unsigned long user_locked, user_lock_limit;
1768 unsigned long locked, lock_limit;
1769 long user_extra, extra;
1770 int ret = 0;
1771
1772 if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1773 return -EINVAL;
1774
1775 vma_size = vma->vm_end - vma->vm_start;
1776 nr_pages = (vma_size / PAGE_SIZE) - 1;
1777
1778 /*
1779 * If we have data pages ensure they're a power-of-two number, so we
1780 * can do bitmasks instead of modulo.
1781 */
1782 if (nr_pages != 0 && !is_power_of_2(nr_pages))
1783 return -EINVAL;
1784
1785 if (vma_size != PAGE_SIZE * (1 + nr_pages))
1786 return -EINVAL;
1787
1788 if (vma->vm_pgoff != 0)
1789 return -EINVAL;
1790
1791 mutex_lock(&counter->mmap_mutex);
1792 if (atomic_inc_not_zero(&counter->mmap_count)) {
1793 if (nr_pages != counter->data->nr_pages)
1794 ret = -EINVAL;
1795 goto unlock;
1796 }
1797
1798 user_extra = nr_pages + 1;
1799 user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1800
1801 /*
1802 * Increase the limit linearly with more CPUs:
1803 */
1804 user_lock_limit *= num_online_cpus();
1805
1806 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1807
1808 extra = 0;
1809 if (user_locked > user_lock_limit)
1810 extra = user_locked - user_lock_limit;
1811
1812 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1813 lock_limit >>= PAGE_SHIFT;
1814 locked = vma->vm_mm->locked_vm + extra;
1815
1816 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1817 ret = -EPERM;
1818 goto unlock;
1819 }
1820
1821 WARN_ON(counter->data);
1822 ret = perf_mmap_data_alloc(counter, nr_pages);
1823 if (ret)
1824 goto unlock;
1825
1826 atomic_set(&counter->mmap_count, 1);
1827 atomic_long_add(user_extra, &user->locked_vm);
1828 vma->vm_mm->locked_vm += extra;
1829 counter->data->nr_locked = extra;
1830 unlock:
1831 mutex_unlock(&counter->mmap_mutex);
1832
1833 vma->vm_flags &= ~VM_MAYWRITE;
1834 vma->vm_flags |= VM_RESERVED;
1835 vma->vm_ops = &perf_mmap_vmops;
1836
1837 return ret;
1838 }
1839
1840 static int perf_fasync(int fd, struct file *filp, int on)
1841 {
1842 struct perf_counter *counter = filp->private_data;
1843 struct inode *inode = filp->f_path.dentry->d_inode;
1844 int retval;
1845
1846 mutex_lock(&inode->i_mutex);
1847 retval = fasync_helper(fd, filp, on, &counter->fasync);
1848 mutex_unlock(&inode->i_mutex);
1849
1850 if (retval < 0)
1851 return retval;
1852
1853 return 0;
1854 }
1855
1856 static const struct file_operations perf_fops = {
1857 .release = perf_release,
1858 .read = perf_read,
1859 .poll = perf_poll,
1860 .unlocked_ioctl = perf_ioctl,
1861 .compat_ioctl = perf_ioctl,
1862 .mmap = perf_mmap,
1863 .fasync = perf_fasync,
1864 };
1865
1866 /*
1867 * Perf counter wakeup
1868 *
1869 * If there's data, ensure we set the poll() state and publish everything
1870 * to user-space before waking everybody up.
1871 */
1872
1873 void perf_counter_wakeup(struct perf_counter *counter)
1874 {
1875 wake_up_all(&counter->waitq);
1876
1877 if (counter->pending_kill) {
1878 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1879 counter->pending_kill = 0;
1880 }
1881 }
1882
1883 /*
1884 * Pending wakeups
1885 *
1886 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1887 *
1888 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1889 * single linked list and use cmpxchg() to add entries lockless.
1890 */
1891
1892 static void perf_pending_counter(struct perf_pending_entry *entry)
1893 {
1894 struct perf_counter *counter = container_of(entry,
1895 struct perf_counter, pending);
1896
1897 if (counter->pending_disable) {
1898 counter->pending_disable = 0;
1899 perf_counter_disable(counter);
1900 }
1901
1902 if (counter->pending_wakeup) {
1903 counter->pending_wakeup = 0;
1904 perf_counter_wakeup(counter);
1905 }
1906 }
1907
1908 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1909
1910 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1911 PENDING_TAIL,
1912 };
1913
1914 static void perf_pending_queue(struct perf_pending_entry *entry,
1915 void (*func)(struct perf_pending_entry *))
1916 {
1917 struct perf_pending_entry **head;
1918
1919 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1920 return;
1921
1922 entry->func = func;
1923
1924 head = &get_cpu_var(perf_pending_head);
1925
1926 do {
1927 entry->next = *head;
1928 } while (cmpxchg(head, entry->next, entry) != entry->next);
1929
1930 set_perf_counter_pending();
1931
1932 put_cpu_var(perf_pending_head);
1933 }
1934
1935 static int __perf_pending_run(void)
1936 {
1937 struct perf_pending_entry *list;
1938 int nr = 0;
1939
1940 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1941 while (list != PENDING_TAIL) {
1942 void (*func)(struct perf_pending_entry *);
1943 struct perf_pending_entry *entry = list;
1944
1945 list = list->next;
1946
1947 func = entry->func;
1948 entry->next = NULL;
1949 /*
1950 * Ensure we observe the unqueue before we issue the wakeup,
1951 * so that we won't be waiting forever.
1952 * -- see perf_not_pending().
1953 */
1954 smp_wmb();
1955
1956 func(entry);
1957 nr++;
1958 }
1959
1960 return nr;
1961 }
1962
1963 static inline int perf_not_pending(struct perf_counter *counter)
1964 {
1965 /*
1966 * If we flush on whatever cpu we run, there is a chance we don't
1967 * need to wait.
1968 */
1969 get_cpu();
1970 __perf_pending_run();
1971 put_cpu();
1972
1973 /*
1974 * Ensure we see the proper queue state before going to sleep
1975 * so that we do not miss the wakeup. -- see perf_pending_handle()
1976 */
1977 smp_rmb();
1978 return counter->pending.next == NULL;
1979 }
1980
1981 static void perf_pending_sync(struct perf_counter *counter)
1982 {
1983 wait_event(counter->waitq, perf_not_pending(counter));
1984 }
1985
1986 void perf_counter_do_pending(void)
1987 {
1988 __perf_pending_run();
1989 }
1990
1991 /*
1992 * Callchain support -- arch specific
1993 */
1994
1995 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1996 {
1997 return NULL;
1998 }
1999
2000 /*
2001 * Output
2002 */
2003
2004 struct perf_output_handle {
2005 struct perf_counter *counter;
2006 struct perf_mmap_data *data;
2007 unsigned int offset;
2008 unsigned int head;
2009 int nmi;
2010 int overflow;
2011 int locked;
2012 unsigned long flags;
2013 };
2014
2015 static void perf_output_wakeup(struct perf_output_handle *handle)
2016 {
2017 atomic_set(&handle->data->poll, POLL_IN);
2018
2019 if (handle->nmi) {
2020 handle->counter->pending_wakeup = 1;
2021 perf_pending_queue(&handle->counter->pending,
2022 perf_pending_counter);
2023 } else
2024 perf_counter_wakeup(handle->counter);
2025 }
2026
2027 /*
2028 * Curious locking construct.
2029 *
2030 * We need to ensure a later event doesn't publish a head when a former
2031 * event isn't done writing. However since we need to deal with NMIs we
2032 * cannot fully serialize things.
2033 *
2034 * What we do is serialize between CPUs so we only have to deal with NMI
2035 * nesting on a single CPU.
2036 *
2037 * We only publish the head (and generate a wakeup) when the outer-most
2038 * event completes.
2039 */
2040 static void perf_output_lock(struct perf_output_handle *handle)
2041 {
2042 struct perf_mmap_data *data = handle->data;
2043 int cpu;
2044
2045 handle->locked = 0;
2046
2047 local_irq_save(handle->flags);
2048 cpu = smp_processor_id();
2049
2050 if (in_nmi() && atomic_read(&data->lock) == cpu)
2051 return;
2052
2053 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2054 cpu_relax();
2055
2056 handle->locked = 1;
2057 }
2058
2059 static void perf_output_unlock(struct perf_output_handle *handle)
2060 {
2061 struct perf_mmap_data *data = handle->data;
2062 int head, cpu;
2063
2064 data->done_head = data->head;
2065
2066 if (!handle->locked)
2067 goto out;
2068
2069 again:
2070 /*
2071 * The xchg implies a full barrier that ensures all writes are done
2072 * before we publish the new head, matched by a rmb() in userspace when
2073 * reading this position.
2074 */
2075 while ((head = atomic_xchg(&data->done_head, 0)))
2076 data->user_page->data_head = head;
2077
2078 /*
2079 * NMI can happen here, which means we can miss a done_head update.
2080 */
2081
2082 cpu = atomic_xchg(&data->lock, -1);
2083 WARN_ON_ONCE(cpu != smp_processor_id());
2084
2085 /*
2086 * Therefore we have to validate we did not indeed do so.
2087 */
2088 if (unlikely(atomic_read(&data->done_head))) {
2089 /*
2090 * Since we had it locked, we can lock it again.
2091 */
2092 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2093 cpu_relax();
2094
2095 goto again;
2096 }
2097
2098 if (atomic_xchg(&data->wakeup, 0))
2099 perf_output_wakeup(handle);
2100 out:
2101 local_irq_restore(handle->flags);
2102 }
2103
2104 static int perf_output_begin(struct perf_output_handle *handle,
2105 struct perf_counter *counter, unsigned int size,
2106 int nmi, int overflow)
2107 {
2108 struct perf_mmap_data *data;
2109 unsigned int offset, head;
2110
2111 /*
2112 * For inherited counters we send all the output towards the parent.
2113 */
2114 if (counter->parent)
2115 counter = counter->parent;
2116
2117 rcu_read_lock();
2118 data = rcu_dereference(counter->data);
2119 if (!data)
2120 goto out;
2121
2122 handle->data = data;
2123 handle->counter = counter;
2124 handle->nmi = nmi;
2125 handle->overflow = overflow;
2126
2127 if (!data->nr_pages)
2128 goto fail;
2129
2130 perf_output_lock(handle);
2131
2132 do {
2133 offset = head = atomic_read(&data->head);
2134 head += size;
2135 } while (atomic_cmpxchg(&data->head, offset, head) != offset);
2136
2137 handle->offset = offset;
2138 handle->head = head;
2139
2140 if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2141 atomic_set(&data->wakeup, 1);
2142
2143 return 0;
2144
2145 fail:
2146 perf_output_wakeup(handle);
2147 out:
2148 rcu_read_unlock();
2149
2150 return -ENOSPC;
2151 }
2152
2153 static void perf_output_copy(struct perf_output_handle *handle,
2154 void *buf, unsigned int len)
2155 {
2156 unsigned int pages_mask;
2157 unsigned int offset;
2158 unsigned int size;
2159 void **pages;
2160
2161 offset = handle->offset;
2162 pages_mask = handle->data->nr_pages - 1;
2163 pages = handle->data->data_pages;
2164
2165 do {
2166 unsigned int page_offset;
2167 int nr;
2168
2169 nr = (offset >> PAGE_SHIFT) & pages_mask;
2170 page_offset = offset & (PAGE_SIZE - 1);
2171 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2172
2173 memcpy(pages[nr] + page_offset, buf, size);
2174
2175 len -= size;
2176 buf += size;
2177 offset += size;
2178 } while (len);
2179
2180 handle->offset = offset;
2181
2182 /*
2183 * Check we didn't copy past our reservation window, taking the
2184 * possible unsigned int wrap into account.
2185 */
2186 WARN_ON_ONCE(((int)(handle->head - handle->offset)) < 0);
2187 }
2188
2189 #define perf_output_put(handle, x) \
2190 perf_output_copy((handle), &(x), sizeof(x))
2191
2192 static void perf_output_end(struct perf_output_handle *handle)
2193 {
2194 struct perf_counter *counter = handle->counter;
2195 struct perf_mmap_data *data = handle->data;
2196
2197 int wakeup_events = counter->hw_event.wakeup_events;
2198
2199 if (handle->overflow && wakeup_events) {
2200 int events = atomic_inc_return(&data->events);
2201 if (events >= wakeup_events) {
2202 atomic_sub(wakeup_events, &data->events);
2203 atomic_set(&data->wakeup, 1);
2204 }
2205 }
2206
2207 perf_output_unlock(handle);
2208 rcu_read_unlock();
2209 }
2210
2211 static void perf_counter_output(struct perf_counter *counter,
2212 int nmi, struct pt_regs *regs, u64 addr)
2213 {
2214 int ret;
2215 u64 record_type = counter->hw_event.record_type;
2216 struct perf_output_handle handle;
2217 struct perf_event_header header;
2218 u64 ip;
2219 struct {
2220 u32 pid, tid;
2221 } tid_entry;
2222 struct {
2223 u64 event;
2224 u64 counter;
2225 } group_entry;
2226 struct perf_callchain_entry *callchain = NULL;
2227 int callchain_size = 0;
2228 u64 time;
2229 struct {
2230 u32 cpu, reserved;
2231 } cpu_entry;
2232
2233 header.type = 0;
2234 header.size = sizeof(header);
2235
2236 header.misc = PERF_EVENT_MISC_OVERFLOW;
2237 header.misc |= perf_misc_flags(regs);
2238
2239 if (record_type & PERF_RECORD_IP) {
2240 ip = perf_instruction_pointer(regs);
2241 header.type |= PERF_RECORD_IP;
2242 header.size += sizeof(ip);
2243 }
2244
2245 if (record_type & PERF_RECORD_TID) {
2246 /* namespace issues */
2247 tid_entry.pid = current->group_leader->pid;
2248 tid_entry.tid = current->pid;
2249
2250 header.type |= PERF_RECORD_TID;
2251 header.size += sizeof(tid_entry);
2252 }
2253
2254 if (record_type & PERF_RECORD_TIME) {
2255 /*
2256 * Maybe do better on x86 and provide cpu_clock_nmi()
2257 */
2258 time = sched_clock();
2259
2260 header.type |= PERF_RECORD_TIME;
2261 header.size += sizeof(u64);
2262 }
2263
2264 if (record_type & PERF_RECORD_ADDR) {
2265 header.type |= PERF_RECORD_ADDR;
2266 header.size += sizeof(u64);
2267 }
2268
2269 if (record_type & PERF_RECORD_CONFIG) {
2270 header.type |= PERF_RECORD_CONFIG;
2271 header.size += sizeof(u64);
2272 }
2273
2274 if (record_type & PERF_RECORD_CPU) {
2275 header.type |= PERF_RECORD_CPU;
2276 header.size += sizeof(cpu_entry);
2277
2278 cpu_entry.cpu = raw_smp_processor_id();
2279 }
2280
2281 if (record_type & PERF_RECORD_GROUP) {
2282 header.type |= PERF_RECORD_GROUP;
2283 header.size += sizeof(u64) +
2284 counter->nr_siblings * sizeof(group_entry);
2285 }
2286
2287 if (record_type & PERF_RECORD_CALLCHAIN) {
2288 callchain = perf_callchain(regs);
2289
2290 if (callchain) {
2291 callchain_size = (1 + callchain->nr) * sizeof(u64);
2292
2293 header.type |= PERF_RECORD_CALLCHAIN;
2294 header.size += callchain_size;
2295 }
2296 }
2297
2298 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2299 if (ret)
2300 return;
2301
2302 perf_output_put(&handle, header);
2303
2304 if (record_type & PERF_RECORD_IP)
2305 perf_output_put(&handle, ip);
2306
2307 if (record_type & PERF_RECORD_TID)
2308 perf_output_put(&handle, tid_entry);
2309
2310 if (record_type & PERF_RECORD_TIME)
2311 perf_output_put(&handle, time);
2312
2313 if (record_type & PERF_RECORD_ADDR)
2314 perf_output_put(&handle, addr);
2315
2316 if (record_type & PERF_RECORD_CONFIG)
2317 perf_output_put(&handle, counter->hw_event.config);
2318
2319 if (record_type & PERF_RECORD_CPU)
2320 perf_output_put(&handle, cpu_entry);
2321
2322 /*
2323 * XXX PERF_RECORD_GROUP vs inherited counters seems difficult.
2324 */
2325 if (record_type & PERF_RECORD_GROUP) {
2326 struct perf_counter *leader, *sub;
2327 u64 nr = counter->nr_siblings;
2328
2329 perf_output_put(&handle, nr);
2330
2331 leader = counter->group_leader;
2332 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2333 if (sub != counter)
2334 sub->pmu->read(sub);
2335
2336 group_entry.event = sub->hw_event.config;
2337 group_entry.counter = atomic64_read(&sub->count);
2338
2339 perf_output_put(&handle, group_entry);
2340 }
2341 }
2342
2343 if (callchain)
2344 perf_output_copy(&handle, callchain, callchain_size);
2345
2346 perf_output_end(&handle);
2347 }
2348
2349 /*
2350 * comm tracking
2351 */
2352
2353 struct perf_comm_event {
2354 struct task_struct *task;
2355 char *comm;
2356 int comm_size;
2357
2358 struct {
2359 struct perf_event_header header;
2360
2361 u32 pid;
2362 u32 tid;
2363 } event;
2364 };
2365
2366 static void perf_counter_comm_output(struct perf_counter *counter,
2367 struct perf_comm_event *comm_event)
2368 {
2369 struct perf_output_handle handle;
2370 int size = comm_event->event.header.size;
2371 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2372
2373 if (ret)
2374 return;
2375
2376 perf_output_put(&handle, comm_event->event);
2377 perf_output_copy(&handle, comm_event->comm,
2378 comm_event->comm_size);
2379 perf_output_end(&handle);
2380 }
2381
2382 static int perf_counter_comm_match(struct perf_counter *counter,
2383 struct perf_comm_event *comm_event)
2384 {
2385 if (counter->hw_event.comm &&
2386 comm_event->event.header.type == PERF_EVENT_COMM)
2387 return 1;
2388
2389 return 0;
2390 }
2391
2392 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2393 struct perf_comm_event *comm_event)
2394 {
2395 struct perf_counter *counter;
2396
2397 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2398 return;
2399
2400 rcu_read_lock();
2401 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2402 if (perf_counter_comm_match(counter, comm_event))
2403 perf_counter_comm_output(counter, comm_event);
2404 }
2405 rcu_read_unlock();
2406 }
2407
2408 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2409 {
2410 struct perf_cpu_context *cpuctx;
2411 unsigned int size;
2412 char *comm = comm_event->task->comm;
2413
2414 size = ALIGN(strlen(comm)+1, sizeof(u64));
2415
2416 comm_event->comm = comm;
2417 comm_event->comm_size = size;
2418
2419 comm_event->event.header.size = sizeof(comm_event->event) + size;
2420
2421 cpuctx = &get_cpu_var(perf_cpu_context);
2422 perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2423 put_cpu_var(perf_cpu_context);
2424
2425 perf_counter_comm_ctx(current->perf_counter_ctxp, comm_event);
2426 }
2427
2428 void perf_counter_comm(struct task_struct *task)
2429 {
2430 struct perf_comm_event comm_event;
2431
2432 if (!atomic_read(&nr_comm_tracking))
2433 return;
2434 if (!current->perf_counter_ctxp)
2435 return;
2436
2437 comm_event = (struct perf_comm_event){
2438 .task = task,
2439 .event = {
2440 .header = { .type = PERF_EVENT_COMM, },
2441 .pid = task->group_leader->pid,
2442 .tid = task->pid,
2443 },
2444 };
2445
2446 perf_counter_comm_event(&comm_event);
2447 }
2448
2449 /*
2450 * mmap tracking
2451 */
2452
2453 struct perf_mmap_event {
2454 struct file *file;
2455 char *file_name;
2456 int file_size;
2457
2458 struct {
2459 struct perf_event_header header;
2460
2461 u32 pid;
2462 u32 tid;
2463 u64 start;
2464 u64 len;
2465 u64 pgoff;
2466 } event;
2467 };
2468
2469 static void perf_counter_mmap_output(struct perf_counter *counter,
2470 struct perf_mmap_event *mmap_event)
2471 {
2472 struct perf_output_handle handle;
2473 int size = mmap_event->event.header.size;
2474 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2475
2476 if (ret)
2477 return;
2478
2479 perf_output_put(&handle, mmap_event->event);
2480 perf_output_copy(&handle, mmap_event->file_name,
2481 mmap_event->file_size);
2482 perf_output_end(&handle);
2483 }
2484
2485 static int perf_counter_mmap_match(struct perf_counter *counter,
2486 struct perf_mmap_event *mmap_event)
2487 {
2488 if (counter->hw_event.mmap &&
2489 mmap_event->event.header.type == PERF_EVENT_MMAP)
2490 return 1;
2491
2492 if (counter->hw_event.munmap &&
2493 mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2494 return 1;
2495
2496 return 0;
2497 }
2498
2499 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2500 struct perf_mmap_event *mmap_event)
2501 {
2502 struct perf_counter *counter;
2503
2504 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2505 return;
2506
2507 rcu_read_lock();
2508 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2509 if (perf_counter_mmap_match(counter, mmap_event))
2510 perf_counter_mmap_output(counter, mmap_event);
2511 }
2512 rcu_read_unlock();
2513 }
2514
2515 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2516 {
2517 struct perf_cpu_context *cpuctx;
2518 struct file *file = mmap_event->file;
2519 unsigned int size;
2520 char tmp[16];
2521 char *buf = NULL;
2522 char *name;
2523
2524 if (file) {
2525 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2526 if (!buf) {
2527 name = strncpy(tmp, "//enomem", sizeof(tmp));
2528 goto got_name;
2529 }
2530 name = d_path(&file->f_path, buf, PATH_MAX);
2531 if (IS_ERR(name)) {
2532 name = strncpy(tmp, "//toolong", sizeof(tmp));
2533 goto got_name;
2534 }
2535 } else {
2536 name = strncpy(tmp, "//anon", sizeof(tmp));
2537 goto got_name;
2538 }
2539
2540 got_name:
2541 size = ALIGN(strlen(name)+1, sizeof(u64));
2542
2543 mmap_event->file_name = name;
2544 mmap_event->file_size = size;
2545
2546 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2547
2548 cpuctx = &get_cpu_var(perf_cpu_context);
2549 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2550 put_cpu_var(perf_cpu_context);
2551
2552 perf_counter_mmap_ctx(current->perf_counter_ctxp, mmap_event);
2553
2554 kfree(buf);
2555 }
2556
2557 void perf_counter_mmap(unsigned long addr, unsigned long len,
2558 unsigned long pgoff, struct file *file)
2559 {
2560 struct perf_mmap_event mmap_event;
2561
2562 if (!atomic_read(&nr_mmap_tracking))
2563 return;
2564 if (!current->perf_counter_ctxp)
2565 return;
2566
2567 mmap_event = (struct perf_mmap_event){
2568 .file = file,
2569 .event = {
2570 .header = { .type = PERF_EVENT_MMAP, },
2571 .pid = current->group_leader->pid,
2572 .tid = current->pid,
2573 .start = addr,
2574 .len = len,
2575 .pgoff = pgoff,
2576 },
2577 };
2578
2579 perf_counter_mmap_event(&mmap_event);
2580 }
2581
2582 void perf_counter_munmap(unsigned long addr, unsigned long len,
2583 unsigned long pgoff, struct file *file)
2584 {
2585 struct perf_mmap_event mmap_event;
2586
2587 if (!atomic_read(&nr_munmap_tracking))
2588 return;
2589
2590 mmap_event = (struct perf_mmap_event){
2591 .file = file,
2592 .event = {
2593 .header = { .type = PERF_EVENT_MUNMAP, },
2594 .pid = current->group_leader->pid,
2595 .tid = current->pid,
2596 .start = addr,
2597 .len = len,
2598 .pgoff = pgoff,
2599 },
2600 };
2601
2602 perf_counter_mmap_event(&mmap_event);
2603 }
2604
2605 /*
2606 * Log irq_period changes so that analyzing tools can re-normalize the
2607 * event flow.
2608 */
2609
2610 static void perf_log_period(struct perf_counter *counter, u64 period)
2611 {
2612 struct perf_output_handle handle;
2613 int ret;
2614
2615 struct {
2616 struct perf_event_header header;
2617 u64 time;
2618 u64 period;
2619 } freq_event = {
2620 .header = {
2621 .type = PERF_EVENT_PERIOD,
2622 .misc = 0,
2623 .size = sizeof(freq_event),
2624 },
2625 .time = sched_clock(),
2626 .period = period,
2627 };
2628
2629 if (counter->hw.irq_period == period)
2630 return;
2631
2632 ret = perf_output_begin(&handle, counter, sizeof(freq_event), 0, 0);
2633 if (ret)
2634 return;
2635
2636 perf_output_put(&handle, freq_event);
2637 perf_output_end(&handle);
2638 }
2639
2640 /*
2641 * IRQ throttle logging
2642 */
2643
2644 static void perf_log_throttle(struct perf_counter *counter, int enable)
2645 {
2646 struct perf_output_handle handle;
2647 int ret;
2648
2649 struct {
2650 struct perf_event_header header;
2651 u64 time;
2652 } throttle_event = {
2653 .header = {
2654 .type = PERF_EVENT_THROTTLE + 1,
2655 .misc = 0,
2656 .size = sizeof(throttle_event),
2657 },
2658 .time = sched_clock(),
2659 };
2660
2661 ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
2662 if (ret)
2663 return;
2664
2665 perf_output_put(&handle, throttle_event);
2666 perf_output_end(&handle);
2667 }
2668
2669 /*
2670 * Generic counter overflow handling.
2671 */
2672
2673 int perf_counter_overflow(struct perf_counter *counter,
2674 int nmi, struct pt_regs *regs, u64 addr)
2675 {
2676 int events = atomic_read(&counter->event_limit);
2677 int throttle = counter->pmu->unthrottle != NULL;
2678 int ret = 0;
2679
2680 if (!throttle) {
2681 counter->hw.interrupts++;
2682 } else if (counter->hw.interrupts != MAX_INTERRUPTS) {
2683 counter->hw.interrupts++;
2684 if (HZ*counter->hw.interrupts > (u64)sysctl_perf_counter_limit) {
2685 counter->hw.interrupts = MAX_INTERRUPTS;
2686 perf_log_throttle(counter, 0);
2687 ret = 1;
2688 }
2689 }
2690
2691 /*
2692 * XXX event_limit might not quite work as expected on inherited
2693 * counters
2694 */
2695
2696 counter->pending_kill = POLL_IN;
2697 if (events && atomic_dec_and_test(&counter->event_limit)) {
2698 ret = 1;
2699 counter->pending_kill = POLL_HUP;
2700 if (nmi) {
2701 counter->pending_disable = 1;
2702 perf_pending_queue(&counter->pending,
2703 perf_pending_counter);
2704 } else
2705 perf_counter_disable(counter);
2706 }
2707
2708 perf_counter_output(counter, nmi, regs, addr);
2709 return ret;
2710 }
2711
2712 /*
2713 * Generic software counter infrastructure
2714 */
2715
2716 static void perf_swcounter_update(struct perf_counter *counter)
2717 {
2718 struct hw_perf_counter *hwc = &counter->hw;
2719 u64 prev, now;
2720 s64 delta;
2721
2722 again:
2723 prev = atomic64_read(&hwc->prev_count);
2724 now = atomic64_read(&hwc->count);
2725 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2726 goto again;
2727
2728 delta = now - prev;
2729
2730 atomic64_add(delta, &counter->count);
2731 atomic64_sub(delta, &hwc->period_left);
2732 }
2733
2734 static void perf_swcounter_set_period(struct perf_counter *counter)
2735 {
2736 struct hw_perf_counter *hwc = &counter->hw;
2737 s64 left = atomic64_read(&hwc->period_left);
2738 s64 period = hwc->irq_period;
2739
2740 if (unlikely(left <= -period)) {
2741 left = period;
2742 atomic64_set(&hwc->period_left, left);
2743 }
2744
2745 if (unlikely(left <= 0)) {
2746 left += period;
2747 atomic64_add(period, &hwc->period_left);
2748 }
2749
2750 atomic64_set(&hwc->prev_count, -left);
2751 atomic64_set(&hwc->count, -left);
2752 }
2753
2754 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2755 {
2756 enum hrtimer_restart ret = HRTIMER_RESTART;
2757 struct perf_counter *counter;
2758 struct pt_regs *regs;
2759 u64 period;
2760
2761 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2762 counter->pmu->read(counter);
2763
2764 regs = get_irq_regs();
2765 /*
2766 * In case we exclude kernel IPs or are somehow not in interrupt
2767 * context, provide the next best thing, the user IP.
2768 */
2769 if ((counter->hw_event.exclude_kernel || !regs) &&
2770 !counter->hw_event.exclude_user)
2771 regs = task_pt_regs(current);
2772
2773 if (regs) {
2774 if (perf_counter_overflow(counter, 0, regs, 0))
2775 ret = HRTIMER_NORESTART;
2776 }
2777
2778 period = max_t(u64, 10000, counter->hw.irq_period);
2779 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
2780
2781 return ret;
2782 }
2783
2784 static void perf_swcounter_overflow(struct perf_counter *counter,
2785 int nmi, struct pt_regs *regs, u64 addr)
2786 {
2787 perf_swcounter_update(counter);
2788 perf_swcounter_set_period(counter);
2789 if (perf_counter_overflow(counter, nmi, regs, addr))
2790 /* soft-disable the counter */
2791 ;
2792
2793 }
2794
2795 static int perf_swcounter_match(struct perf_counter *counter,
2796 enum perf_event_types type,
2797 u32 event, struct pt_regs *regs)
2798 {
2799 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2800 return 0;
2801
2802 if (perf_event_raw(&counter->hw_event))
2803 return 0;
2804
2805 if (perf_event_type(&counter->hw_event) != type)
2806 return 0;
2807
2808 if (perf_event_id(&counter->hw_event) != event)
2809 return 0;
2810
2811 if (counter->hw_event.exclude_user && user_mode(regs))
2812 return 0;
2813
2814 if (counter->hw_event.exclude_kernel && !user_mode(regs))
2815 return 0;
2816
2817 return 1;
2818 }
2819
2820 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2821 int nmi, struct pt_regs *regs, u64 addr)
2822 {
2823 int neg = atomic64_add_negative(nr, &counter->hw.count);
2824 if (counter->hw.irq_period && !neg)
2825 perf_swcounter_overflow(counter, nmi, regs, addr);
2826 }
2827
2828 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2829 enum perf_event_types type, u32 event,
2830 u64 nr, int nmi, struct pt_regs *regs,
2831 u64 addr)
2832 {
2833 struct perf_counter *counter;
2834
2835 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2836 return;
2837
2838 rcu_read_lock();
2839 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2840 if (perf_swcounter_match(counter, type, event, regs))
2841 perf_swcounter_add(counter, nr, nmi, regs, addr);
2842 }
2843 rcu_read_unlock();
2844 }
2845
2846 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2847 {
2848 if (in_nmi())
2849 return &cpuctx->recursion[3];
2850
2851 if (in_irq())
2852 return &cpuctx->recursion[2];
2853
2854 if (in_softirq())
2855 return &cpuctx->recursion[1];
2856
2857 return &cpuctx->recursion[0];
2858 }
2859
2860 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2861 u64 nr, int nmi, struct pt_regs *regs,
2862 u64 addr)
2863 {
2864 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2865 int *recursion = perf_swcounter_recursion_context(cpuctx);
2866
2867 if (*recursion)
2868 goto out;
2869
2870 (*recursion)++;
2871 barrier();
2872
2873 perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
2874 nr, nmi, regs, addr);
2875 if (cpuctx->task_ctx) {
2876 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2877 nr, nmi, regs, addr);
2878 }
2879
2880 barrier();
2881 (*recursion)--;
2882
2883 out:
2884 put_cpu_var(perf_cpu_context);
2885 }
2886
2887 void
2888 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2889 {
2890 __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2891 }
2892
2893 static void perf_swcounter_read(struct perf_counter *counter)
2894 {
2895 perf_swcounter_update(counter);
2896 }
2897
2898 static int perf_swcounter_enable(struct perf_counter *counter)
2899 {
2900 perf_swcounter_set_period(counter);
2901 return 0;
2902 }
2903
2904 static void perf_swcounter_disable(struct perf_counter *counter)
2905 {
2906 perf_swcounter_update(counter);
2907 }
2908
2909 static const struct pmu perf_ops_generic = {
2910 .enable = perf_swcounter_enable,
2911 .disable = perf_swcounter_disable,
2912 .read = perf_swcounter_read,
2913 };
2914
2915 /*
2916 * Software counter: cpu wall time clock
2917 */
2918
2919 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2920 {
2921 int cpu = raw_smp_processor_id();
2922 s64 prev;
2923 u64 now;
2924
2925 now = cpu_clock(cpu);
2926 prev = atomic64_read(&counter->hw.prev_count);
2927 atomic64_set(&counter->hw.prev_count, now);
2928 atomic64_add(now - prev, &counter->count);
2929 }
2930
2931 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2932 {
2933 struct hw_perf_counter *hwc = &counter->hw;
2934 int cpu = raw_smp_processor_id();
2935
2936 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2937 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2938 hwc->hrtimer.function = perf_swcounter_hrtimer;
2939 if (hwc->irq_period) {
2940 u64 period = max_t(u64, 10000, hwc->irq_period);
2941 __hrtimer_start_range_ns(&hwc->hrtimer,
2942 ns_to_ktime(period), 0,
2943 HRTIMER_MODE_REL, 0);
2944 }
2945
2946 return 0;
2947 }
2948
2949 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2950 {
2951 if (counter->hw.irq_period)
2952 hrtimer_cancel(&counter->hw.hrtimer);
2953 cpu_clock_perf_counter_update(counter);
2954 }
2955
2956 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2957 {
2958 cpu_clock_perf_counter_update(counter);
2959 }
2960
2961 static const struct pmu perf_ops_cpu_clock = {
2962 .enable = cpu_clock_perf_counter_enable,
2963 .disable = cpu_clock_perf_counter_disable,
2964 .read = cpu_clock_perf_counter_read,
2965 };
2966
2967 /*
2968 * Software counter: task time clock
2969 */
2970
2971 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2972 {
2973 u64 prev;
2974 s64 delta;
2975
2976 prev = atomic64_xchg(&counter->hw.prev_count, now);
2977 delta = now - prev;
2978 atomic64_add(delta, &counter->count);
2979 }
2980
2981 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2982 {
2983 struct hw_perf_counter *hwc = &counter->hw;
2984 u64 now;
2985
2986 now = counter->ctx->time;
2987
2988 atomic64_set(&hwc->prev_count, now);
2989 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2990 hwc->hrtimer.function = perf_swcounter_hrtimer;
2991 if (hwc->irq_period) {
2992 u64 period = max_t(u64, 10000, hwc->irq_period);
2993 __hrtimer_start_range_ns(&hwc->hrtimer,
2994 ns_to_ktime(period), 0,
2995 HRTIMER_MODE_REL, 0);
2996 }
2997
2998 return 0;
2999 }
3000
3001 static void task_clock_perf_counter_disable(struct perf_counter *counter)
3002 {
3003 if (counter->hw.irq_period)
3004 hrtimer_cancel(&counter->hw.hrtimer);
3005 task_clock_perf_counter_update(counter, counter->ctx->time);
3006
3007 }
3008
3009 static void task_clock_perf_counter_read(struct perf_counter *counter)
3010 {
3011 u64 time;
3012
3013 if (!in_nmi()) {
3014 update_context_time(counter->ctx);
3015 time = counter->ctx->time;
3016 } else {
3017 u64 now = perf_clock();
3018 u64 delta = now - counter->ctx->timestamp;
3019 time = counter->ctx->time + delta;
3020 }
3021
3022 task_clock_perf_counter_update(counter, time);
3023 }
3024
3025 static const struct pmu perf_ops_task_clock = {
3026 .enable = task_clock_perf_counter_enable,
3027 .disable = task_clock_perf_counter_disable,
3028 .read = task_clock_perf_counter_read,
3029 };
3030
3031 /*
3032 * Software counter: cpu migrations
3033 */
3034
3035 static inline u64 get_cpu_migrations(struct perf_counter *counter)
3036 {
3037 struct task_struct *curr = counter->ctx->task;
3038
3039 if (curr)
3040 return curr->se.nr_migrations;
3041 return cpu_nr_migrations(smp_processor_id());
3042 }
3043
3044 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
3045 {
3046 u64 prev, now;
3047 s64 delta;
3048
3049 prev = atomic64_read(&counter->hw.prev_count);
3050 now = get_cpu_migrations(counter);
3051
3052 atomic64_set(&counter->hw.prev_count, now);
3053
3054 delta = now - prev;
3055
3056 atomic64_add(delta, &counter->count);
3057 }
3058
3059 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
3060 {
3061 cpu_migrations_perf_counter_update(counter);
3062 }
3063
3064 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
3065 {
3066 if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
3067 atomic64_set(&counter->hw.prev_count,
3068 get_cpu_migrations(counter));
3069 return 0;
3070 }
3071
3072 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
3073 {
3074 cpu_migrations_perf_counter_update(counter);
3075 }
3076
3077 static const struct pmu perf_ops_cpu_migrations = {
3078 .enable = cpu_migrations_perf_counter_enable,
3079 .disable = cpu_migrations_perf_counter_disable,
3080 .read = cpu_migrations_perf_counter_read,
3081 };
3082
3083 #ifdef CONFIG_EVENT_PROFILE
3084 void perf_tpcounter_event(int event_id)
3085 {
3086 struct pt_regs *regs = get_irq_regs();
3087
3088 if (!regs)
3089 regs = task_pt_regs(current);
3090
3091 __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
3092 }
3093 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3094
3095 extern int ftrace_profile_enable(int);
3096 extern void ftrace_profile_disable(int);
3097
3098 static void tp_perf_counter_destroy(struct perf_counter *counter)
3099 {
3100 ftrace_profile_disable(perf_event_id(&counter->hw_event));
3101 }
3102
3103 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3104 {
3105 int event_id = perf_event_id(&counter->hw_event);
3106 int ret;
3107
3108 ret = ftrace_profile_enable(event_id);
3109 if (ret)
3110 return NULL;
3111
3112 counter->destroy = tp_perf_counter_destroy;
3113 counter->hw.irq_period = counter->hw_event.irq_period;
3114
3115 return &perf_ops_generic;
3116 }
3117 #else
3118 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3119 {
3120 return NULL;
3121 }
3122 #endif
3123
3124 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3125 {
3126 const struct pmu *pmu = NULL;
3127
3128 /*
3129 * Software counters (currently) can't in general distinguish
3130 * between user, kernel and hypervisor events.
3131 * However, context switches and cpu migrations are considered
3132 * to be kernel events, and page faults are never hypervisor
3133 * events.
3134 */
3135 switch (perf_event_id(&counter->hw_event)) {
3136 case PERF_COUNT_CPU_CLOCK:
3137 pmu = &perf_ops_cpu_clock;
3138
3139 break;
3140 case PERF_COUNT_TASK_CLOCK:
3141 /*
3142 * If the user instantiates this as a per-cpu counter,
3143 * use the cpu_clock counter instead.
3144 */
3145 if (counter->ctx->task)
3146 pmu = &perf_ops_task_clock;
3147 else
3148 pmu = &perf_ops_cpu_clock;
3149
3150 break;
3151 case PERF_COUNT_PAGE_FAULTS:
3152 case PERF_COUNT_PAGE_FAULTS_MIN:
3153 case PERF_COUNT_PAGE_FAULTS_MAJ:
3154 case PERF_COUNT_CONTEXT_SWITCHES:
3155 pmu = &perf_ops_generic;
3156 break;
3157 case PERF_COUNT_CPU_MIGRATIONS:
3158 if (!counter->hw_event.exclude_kernel)
3159 pmu = &perf_ops_cpu_migrations;
3160 break;
3161 }
3162
3163 return pmu;
3164 }
3165
3166 /*
3167 * Allocate and initialize a counter structure
3168 */
3169 static struct perf_counter *
3170 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
3171 int cpu,
3172 struct perf_counter_context *ctx,
3173 struct perf_counter *group_leader,
3174 gfp_t gfpflags)
3175 {
3176 const struct pmu *pmu;
3177 struct perf_counter *counter;
3178 struct hw_perf_counter *hwc;
3179 long err;
3180
3181 counter = kzalloc(sizeof(*counter), gfpflags);
3182 if (!counter)
3183 return ERR_PTR(-ENOMEM);
3184
3185 /*
3186 * Single counters are their own group leaders, with an
3187 * empty sibling list:
3188 */
3189 if (!group_leader)
3190 group_leader = counter;
3191
3192 mutex_init(&counter->child_mutex);
3193 INIT_LIST_HEAD(&counter->child_list);
3194
3195 INIT_LIST_HEAD(&counter->list_entry);
3196 INIT_LIST_HEAD(&counter->event_entry);
3197 INIT_LIST_HEAD(&counter->sibling_list);
3198 init_waitqueue_head(&counter->waitq);
3199
3200 mutex_init(&counter->mmap_mutex);
3201
3202 counter->cpu = cpu;
3203 counter->hw_event = *hw_event;
3204 counter->group_leader = group_leader;
3205 counter->pmu = NULL;
3206 counter->ctx = ctx;
3207 counter->oncpu = -1;
3208
3209 counter->state = PERF_COUNTER_STATE_INACTIVE;
3210 if (hw_event->disabled)
3211 counter->state = PERF_COUNTER_STATE_OFF;
3212
3213 pmu = NULL;
3214
3215 hwc = &counter->hw;
3216 if (hw_event->freq && hw_event->irq_freq)
3217 hwc->irq_period = div64_u64(TICK_NSEC, hw_event->irq_freq);
3218 else
3219 hwc->irq_period = hw_event->irq_period;
3220
3221 /*
3222 * we currently do not support PERF_RECORD_GROUP on inherited counters
3223 */
3224 if (hw_event->inherit && (hw_event->record_type & PERF_RECORD_GROUP))
3225 goto done;
3226
3227 if (perf_event_raw(hw_event)) {
3228 pmu = hw_perf_counter_init(counter);
3229 goto done;
3230 }
3231
3232 switch (perf_event_type(hw_event)) {
3233 case PERF_TYPE_HARDWARE:
3234 pmu = hw_perf_counter_init(counter);
3235 break;
3236
3237 case PERF_TYPE_SOFTWARE:
3238 pmu = sw_perf_counter_init(counter);
3239 break;
3240
3241 case PERF_TYPE_TRACEPOINT:
3242 pmu = tp_perf_counter_init(counter);
3243 break;
3244 }
3245 done:
3246 err = 0;
3247 if (!pmu)
3248 err = -EINVAL;
3249 else if (IS_ERR(pmu))
3250 err = PTR_ERR(pmu);
3251
3252 if (err) {
3253 kfree(counter);
3254 return ERR_PTR(err);
3255 }
3256
3257 counter->pmu = pmu;
3258
3259 atomic_inc(&nr_counters);
3260 if (counter->hw_event.mmap)
3261 atomic_inc(&nr_mmap_tracking);
3262 if (counter->hw_event.munmap)
3263 atomic_inc(&nr_munmap_tracking);
3264 if (counter->hw_event.comm)
3265 atomic_inc(&nr_comm_tracking);
3266
3267 return counter;
3268 }
3269
3270 /**
3271 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
3272 *
3273 * @hw_event_uptr: event type attributes for monitoring/sampling
3274 * @pid: target pid
3275 * @cpu: target cpu
3276 * @group_fd: group leader counter fd
3277 */
3278 SYSCALL_DEFINE5(perf_counter_open,
3279 const struct perf_counter_hw_event __user *, hw_event_uptr,
3280 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
3281 {
3282 struct perf_counter *counter, *group_leader;
3283 struct perf_counter_hw_event hw_event;
3284 struct perf_counter_context *ctx;
3285 struct file *counter_file = NULL;
3286 struct file *group_file = NULL;
3287 int fput_needed = 0;
3288 int fput_needed2 = 0;
3289 int ret;
3290
3291 /* for future expandability... */
3292 if (flags)
3293 return -EINVAL;
3294
3295 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
3296 return -EFAULT;
3297
3298 /*
3299 * Get the target context (task or percpu):
3300 */
3301 ctx = find_get_context(pid, cpu);
3302 if (IS_ERR(ctx))
3303 return PTR_ERR(ctx);
3304
3305 /*
3306 * Look up the group leader (we will attach this counter to it):
3307 */
3308 group_leader = NULL;
3309 if (group_fd != -1) {
3310 ret = -EINVAL;
3311 group_file = fget_light(group_fd, &fput_needed);
3312 if (!group_file)
3313 goto err_put_context;
3314 if (group_file->f_op != &perf_fops)
3315 goto err_put_context;
3316
3317 group_leader = group_file->private_data;
3318 /*
3319 * Do not allow a recursive hierarchy (this new sibling
3320 * becoming part of another group-sibling):
3321 */
3322 if (group_leader->group_leader != group_leader)
3323 goto err_put_context;
3324 /*
3325 * Do not allow to attach to a group in a different
3326 * task or CPU context:
3327 */
3328 if (group_leader->ctx != ctx)
3329 goto err_put_context;
3330 /*
3331 * Only a group leader can be exclusive or pinned
3332 */
3333 if (hw_event.exclusive || hw_event.pinned)
3334 goto err_put_context;
3335 }
3336
3337 counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
3338 GFP_KERNEL);
3339 ret = PTR_ERR(counter);
3340 if (IS_ERR(counter))
3341 goto err_put_context;
3342
3343 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
3344 if (ret < 0)
3345 goto err_free_put_context;
3346
3347 counter_file = fget_light(ret, &fput_needed2);
3348 if (!counter_file)
3349 goto err_free_put_context;
3350
3351 counter->filp = counter_file;
3352 mutex_lock(&ctx->mutex);
3353 perf_install_in_context(ctx, counter, cpu);
3354 mutex_unlock(&ctx->mutex);
3355
3356 counter->owner = current;
3357 get_task_struct(current);
3358 mutex_lock(&current->perf_counter_mutex);
3359 list_add_tail(&counter->owner_entry, &current->perf_counter_list);
3360 mutex_unlock(&current->perf_counter_mutex);
3361
3362 fput_light(counter_file, fput_needed2);
3363
3364 out_fput:
3365 fput_light(group_file, fput_needed);
3366
3367 return ret;
3368
3369 err_free_put_context:
3370 kfree(counter);
3371
3372 err_put_context:
3373 put_ctx(ctx);
3374
3375 goto out_fput;
3376 }
3377
3378 /*
3379 * inherit a counter from parent task to child task:
3380 */
3381 static struct perf_counter *
3382 inherit_counter(struct perf_counter *parent_counter,
3383 struct task_struct *parent,
3384 struct perf_counter_context *parent_ctx,
3385 struct task_struct *child,
3386 struct perf_counter *group_leader,
3387 struct perf_counter_context *child_ctx)
3388 {
3389 struct perf_counter *child_counter;
3390
3391 /*
3392 * Instead of creating recursive hierarchies of counters,
3393 * we link inherited counters back to the original parent,
3394 * which has a filp for sure, which we use as the reference
3395 * count:
3396 */
3397 if (parent_counter->parent)
3398 parent_counter = parent_counter->parent;
3399
3400 child_counter = perf_counter_alloc(&parent_counter->hw_event,
3401 parent_counter->cpu, child_ctx,
3402 group_leader, GFP_KERNEL);
3403 if (IS_ERR(child_counter))
3404 return child_counter;
3405 get_ctx(child_ctx);
3406
3407 /*
3408 * Make the child state follow the state of the parent counter,
3409 * not its hw_event.disabled bit. We hold the parent's mutex,
3410 * so we won't race with perf_counter_{en,dis}able_family.
3411 */
3412 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3413 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3414 else
3415 child_counter->state = PERF_COUNTER_STATE_OFF;
3416
3417 /*
3418 * Link it up in the child's context:
3419 */
3420 add_counter_to_ctx(child_counter, child_ctx);
3421
3422 child_counter->parent = parent_counter;
3423 /*
3424 * inherit into child's child as well:
3425 */
3426 child_counter->hw_event.inherit = 1;
3427
3428 /*
3429 * Get a reference to the parent filp - we will fput it
3430 * when the child counter exits. This is safe to do because
3431 * we are in the parent and we know that the filp still
3432 * exists and has a nonzero count:
3433 */
3434 atomic_long_inc(&parent_counter->filp->f_count);
3435
3436 /*
3437 * Link this into the parent counter's child list
3438 */
3439 mutex_lock(&parent_counter->child_mutex);
3440 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3441 mutex_unlock(&parent_counter->child_mutex);
3442
3443 return child_counter;
3444 }
3445
3446 static int inherit_group(struct perf_counter *parent_counter,
3447 struct task_struct *parent,
3448 struct perf_counter_context *parent_ctx,
3449 struct task_struct *child,
3450 struct perf_counter_context *child_ctx)
3451 {
3452 struct perf_counter *leader;
3453 struct perf_counter *sub;
3454 struct perf_counter *child_ctr;
3455
3456 leader = inherit_counter(parent_counter, parent, parent_ctx,
3457 child, NULL, child_ctx);
3458 if (IS_ERR(leader))
3459 return PTR_ERR(leader);
3460 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3461 child_ctr = inherit_counter(sub, parent, parent_ctx,
3462 child, leader, child_ctx);
3463 if (IS_ERR(child_ctr))
3464 return PTR_ERR(child_ctr);
3465 }
3466 return 0;
3467 }
3468
3469 static void sync_child_counter(struct perf_counter *child_counter,
3470 struct perf_counter *parent_counter)
3471 {
3472 u64 child_val;
3473
3474 child_val = atomic64_read(&child_counter->count);
3475
3476 /*
3477 * Add back the child's count to the parent's count:
3478 */
3479 atomic64_add(child_val, &parent_counter->count);
3480 atomic64_add(child_counter->total_time_enabled,
3481 &parent_counter->child_total_time_enabled);
3482 atomic64_add(child_counter->total_time_running,
3483 &parent_counter->child_total_time_running);
3484
3485 /*
3486 * Remove this counter from the parent's list
3487 */
3488 mutex_lock(&parent_counter->child_mutex);
3489 list_del_init(&child_counter->child_list);
3490 mutex_unlock(&parent_counter->child_mutex);
3491
3492 /*
3493 * Release the parent counter, if this was the last
3494 * reference to it.
3495 */
3496 fput(parent_counter->filp);
3497 }
3498
3499 static void
3500 __perf_counter_exit_task(struct task_struct *child,
3501 struct perf_counter *child_counter,
3502 struct perf_counter_context *child_ctx)
3503 {
3504 struct perf_counter *parent_counter;
3505
3506 update_counter_times(child_counter);
3507 perf_counter_remove_from_context(child_counter);
3508
3509 parent_counter = child_counter->parent;
3510 /*
3511 * It can happen that parent exits first, and has counters
3512 * that are still around due to the child reference. These
3513 * counters need to be zapped - but otherwise linger.
3514 */
3515 if (parent_counter) {
3516 sync_child_counter(child_counter, parent_counter);
3517 free_counter(child_counter);
3518 }
3519 }
3520
3521 /*
3522 * When a child task exits, feed back counter values to parent counters.
3523 */
3524 void perf_counter_exit_task(struct task_struct *child)
3525 {
3526 struct perf_counter *child_counter, *tmp;
3527 struct perf_counter_context *child_ctx;
3528 unsigned long flags;
3529
3530 child_ctx = child->perf_counter_ctxp;
3531
3532 if (likely(!child_ctx))
3533 return;
3534
3535 local_irq_save(flags);
3536 __perf_counter_task_sched_out(child_ctx);
3537
3538 /*
3539 * Take the context lock here so that if find_get_context is
3540 * reading child->perf_counter_ctxp, we wait until it has
3541 * incremented the context's refcount before we do put_ctx below.
3542 */
3543 spin_lock(&child_ctx->lock);
3544 child->perf_counter_ctxp = NULL;
3545 spin_unlock(&child_ctx->lock);
3546 local_irq_restore(flags);
3547
3548 mutex_lock(&child_ctx->mutex);
3549
3550 again:
3551 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3552 list_entry)
3553 __perf_counter_exit_task(child, child_counter, child_ctx);
3554
3555 /*
3556 * If the last counter was a group counter, it will have appended all
3557 * its siblings to the list, but we obtained 'tmp' before that which
3558 * will still point to the list head terminating the iteration.
3559 */
3560 if (!list_empty(&child_ctx->counter_list))
3561 goto again;
3562
3563 mutex_unlock(&child_ctx->mutex);
3564
3565 put_ctx(child_ctx);
3566 }
3567
3568 /*
3569 * Initialize the perf_counter context in task_struct
3570 */
3571 int perf_counter_init_task(struct task_struct *child)
3572 {
3573 struct perf_counter_context *child_ctx, *parent_ctx;
3574 struct perf_counter *counter;
3575 struct task_struct *parent = current;
3576 int inherited_all = 1;
3577 int ret = 0;
3578
3579 child->perf_counter_ctxp = NULL;
3580
3581 mutex_init(&child->perf_counter_mutex);
3582 INIT_LIST_HEAD(&child->perf_counter_list);
3583
3584 parent_ctx = parent->perf_counter_ctxp;
3585 if (likely(!parent_ctx || !parent_ctx->nr_counters))
3586 return 0;
3587
3588 /*
3589 * This is executed from the parent task context, so inherit
3590 * counters that have been marked for cloning.
3591 * First allocate and initialize a context for the child.
3592 */
3593
3594 child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
3595 if (!child_ctx)
3596 return -ENOMEM;
3597
3598 __perf_counter_init_context(child_ctx, child);
3599 child->perf_counter_ctxp = child_ctx;
3600 get_task_struct(child);
3601
3602 /*
3603 * Lock the parent list. No need to lock the child - not PID
3604 * hashed yet and not running, so nobody can access it.
3605 */
3606 mutex_lock(&parent_ctx->mutex);
3607
3608 /*
3609 * We dont have to disable NMIs - we are only looking at
3610 * the list, not manipulating it:
3611 */
3612 list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
3613 if (counter != counter->group_leader)
3614 continue;
3615
3616 if (!counter->hw_event.inherit) {
3617 inherited_all = 0;
3618 continue;
3619 }
3620
3621 ret = inherit_group(counter, parent, parent_ctx,
3622 child, child_ctx);
3623 if (ret) {
3624 inherited_all = 0;
3625 break;
3626 }
3627 }
3628
3629 if (inherited_all) {
3630 /*
3631 * Mark the child context as a clone of the parent
3632 * context, or of whatever the parent is a clone of.
3633 */
3634 if (parent_ctx->parent_ctx) {
3635 child_ctx->parent_ctx = parent_ctx->parent_ctx;
3636 child_ctx->parent_gen = parent_ctx->parent_gen;
3637 } else {
3638 child_ctx->parent_ctx = parent_ctx;
3639 child_ctx->parent_gen = parent_ctx->generation;
3640 }
3641 get_ctx(child_ctx->parent_ctx);
3642 }
3643
3644 mutex_unlock(&parent_ctx->mutex);
3645
3646 return ret;
3647 }
3648
3649 static void __cpuinit perf_counter_init_cpu(int cpu)
3650 {
3651 struct perf_cpu_context *cpuctx;
3652
3653 cpuctx = &per_cpu(perf_cpu_context, cpu);
3654 __perf_counter_init_context(&cpuctx->ctx, NULL);
3655
3656 spin_lock(&perf_resource_lock);
3657 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3658 spin_unlock(&perf_resource_lock);
3659
3660 hw_perf_counter_setup(cpu);
3661 }
3662
3663 #ifdef CONFIG_HOTPLUG_CPU
3664 static void __perf_counter_exit_cpu(void *info)
3665 {
3666 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3667 struct perf_counter_context *ctx = &cpuctx->ctx;
3668 struct perf_counter *counter, *tmp;
3669
3670 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3671 __perf_counter_remove_from_context(counter);
3672 }
3673 static void perf_counter_exit_cpu(int cpu)
3674 {
3675 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3676 struct perf_counter_context *ctx = &cpuctx->ctx;
3677
3678 mutex_lock(&ctx->mutex);
3679 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3680 mutex_unlock(&ctx->mutex);
3681 }
3682 #else
3683 static inline void perf_counter_exit_cpu(int cpu) { }
3684 #endif
3685
3686 static int __cpuinit
3687 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3688 {
3689 unsigned int cpu = (long)hcpu;
3690
3691 switch (action) {
3692
3693 case CPU_UP_PREPARE:
3694 case CPU_UP_PREPARE_FROZEN:
3695 perf_counter_init_cpu(cpu);
3696 break;
3697
3698 case CPU_DOWN_PREPARE:
3699 case CPU_DOWN_PREPARE_FROZEN:
3700 perf_counter_exit_cpu(cpu);
3701 break;
3702
3703 default:
3704 break;
3705 }
3706
3707 return NOTIFY_OK;
3708 }
3709
3710 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3711 .notifier_call = perf_cpu_notify,
3712 };
3713
3714 void __init perf_counter_init(void)
3715 {
3716 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3717 (void *)(long)smp_processor_id());
3718 register_cpu_notifier(&perf_cpu_nb);
3719 }
3720
3721 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3722 {
3723 return sprintf(buf, "%d\n", perf_reserved_percpu);
3724 }
3725
3726 static ssize_t
3727 perf_set_reserve_percpu(struct sysdev_class *class,
3728 const char *buf,
3729 size_t count)
3730 {
3731 struct perf_cpu_context *cpuctx;
3732 unsigned long val;
3733 int err, cpu, mpt;
3734
3735 err = strict_strtoul(buf, 10, &val);
3736 if (err)
3737 return err;
3738 if (val > perf_max_counters)
3739 return -EINVAL;
3740
3741 spin_lock(&perf_resource_lock);
3742 perf_reserved_percpu = val;
3743 for_each_online_cpu(cpu) {
3744 cpuctx = &per_cpu(perf_cpu_context, cpu);
3745 spin_lock_irq(&cpuctx->ctx.lock);
3746 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3747 perf_max_counters - perf_reserved_percpu);
3748 cpuctx->max_pertask = mpt;
3749 spin_unlock_irq(&cpuctx->ctx.lock);
3750 }
3751 spin_unlock(&perf_resource_lock);
3752
3753 return count;
3754 }
3755
3756 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3757 {
3758 return sprintf(buf, "%d\n", perf_overcommit);
3759 }
3760
3761 static ssize_t
3762 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3763 {
3764 unsigned long val;
3765 int err;
3766
3767 err = strict_strtoul(buf, 10, &val);
3768 if (err)
3769 return err;
3770 if (val > 1)
3771 return -EINVAL;
3772
3773 spin_lock(&perf_resource_lock);
3774 perf_overcommit = val;
3775 spin_unlock(&perf_resource_lock);
3776
3777 return count;
3778 }
3779
3780 static SYSDEV_CLASS_ATTR(
3781 reserve_percpu,
3782 0644,
3783 perf_show_reserve_percpu,
3784 perf_set_reserve_percpu
3785 );
3786
3787 static SYSDEV_CLASS_ATTR(
3788 overcommit,
3789 0644,
3790 perf_show_overcommit,
3791 perf_set_overcommit
3792 );
3793
3794 static struct attribute *perfclass_attrs[] = {
3795 &attr_reserve_percpu.attr,
3796 &attr_overcommit.attr,
3797 NULL
3798 };
3799
3800 static struct attribute_group perfclass_attr_group = {
3801 .attrs = perfclass_attrs,
3802 .name = "perf_counters",
3803 };
3804
3805 static int __init perf_counter_sysfs_init(void)
3806 {
3807 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3808 &perfclass_attr_group);
3809 }
3810 device_initcall(perf_counter_sysfs_init);
This page took 0.150725 seconds and 6 git commands to generate.