perf_counter: Fix up swcounter throttling
[deliverable/linux.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/hardirq.h>
24 #include <linux/rculist.h>
25 #include <linux/uaccess.h>
26 #include <linux/syscalls.h>
27 #include <linux/anon_inodes.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/perf_counter.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34 * Each CPU has a list of per CPU counters:
35 */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_counters __read_mostly;
44 static atomic_t nr_comm_counters __read_mostly;
45 static atomic_t nr_task_counters __read_mostly;
46
47 /*
48 * perf counter paranoia level:
49 * -1 - not paranoid at all
50 * 0 - disallow raw tracepoint access for unpriv
51 * 1 - disallow cpu counters for unpriv
52 * 2 - disallow kernel profiling for unpriv
53 */
54 int sysctl_perf_counter_paranoid __read_mostly = 1;
55
56 static inline bool perf_paranoid_tracepoint_raw(void)
57 {
58 return sysctl_perf_counter_paranoid > -1;
59 }
60
61 static inline bool perf_paranoid_cpu(void)
62 {
63 return sysctl_perf_counter_paranoid > 0;
64 }
65
66 static inline bool perf_paranoid_kernel(void)
67 {
68 return sysctl_perf_counter_paranoid > 1;
69 }
70
71 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
72
73 /*
74 * max perf counter sample rate
75 */
76 int sysctl_perf_counter_sample_rate __read_mostly = 100000;
77
78 static atomic64_t perf_counter_id;
79
80 /*
81 * Lock for (sysadmin-configurable) counter reservations:
82 */
83 static DEFINE_SPINLOCK(perf_resource_lock);
84
85 /*
86 * Architecture provided APIs - weak aliases:
87 */
88 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
89 {
90 return NULL;
91 }
92
93 void __weak hw_perf_disable(void) { barrier(); }
94 void __weak hw_perf_enable(void) { barrier(); }
95
96 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
97 void __weak hw_perf_counter_setup_online(int cpu) { barrier(); }
98
99 int __weak
100 hw_perf_group_sched_in(struct perf_counter *group_leader,
101 struct perf_cpu_context *cpuctx,
102 struct perf_counter_context *ctx, int cpu)
103 {
104 return 0;
105 }
106
107 void __weak perf_counter_print_debug(void) { }
108
109 static DEFINE_PER_CPU(int, disable_count);
110
111 void __perf_disable(void)
112 {
113 __get_cpu_var(disable_count)++;
114 }
115
116 bool __perf_enable(void)
117 {
118 return !--__get_cpu_var(disable_count);
119 }
120
121 void perf_disable(void)
122 {
123 __perf_disable();
124 hw_perf_disable();
125 }
126
127 void perf_enable(void)
128 {
129 if (__perf_enable())
130 hw_perf_enable();
131 }
132
133 static void get_ctx(struct perf_counter_context *ctx)
134 {
135 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
136 }
137
138 static void free_ctx(struct rcu_head *head)
139 {
140 struct perf_counter_context *ctx;
141
142 ctx = container_of(head, struct perf_counter_context, rcu_head);
143 kfree(ctx);
144 }
145
146 static void put_ctx(struct perf_counter_context *ctx)
147 {
148 if (atomic_dec_and_test(&ctx->refcount)) {
149 if (ctx->parent_ctx)
150 put_ctx(ctx->parent_ctx);
151 if (ctx->task)
152 put_task_struct(ctx->task);
153 call_rcu(&ctx->rcu_head, free_ctx);
154 }
155 }
156
157 static void unclone_ctx(struct perf_counter_context *ctx)
158 {
159 if (ctx->parent_ctx) {
160 put_ctx(ctx->parent_ctx);
161 ctx->parent_ctx = NULL;
162 }
163 }
164
165 /*
166 * If we inherit counters we want to return the parent counter id
167 * to userspace.
168 */
169 static u64 primary_counter_id(struct perf_counter *counter)
170 {
171 u64 id = counter->id;
172
173 if (counter->parent)
174 id = counter->parent->id;
175
176 return id;
177 }
178
179 /*
180 * Get the perf_counter_context for a task and lock it.
181 * This has to cope with with the fact that until it is locked,
182 * the context could get moved to another task.
183 */
184 static struct perf_counter_context *
185 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
186 {
187 struct perf_counter_context *ctx;
188
189 rcu_read_lock();
190 retry:
191 ctx = rcu_dereference(task->perf_counter_ctxp);
192 if (ctx) {
193 /*
194 * If this context is a clone of another, it might
195 * get swapped for another underneath us by
196 * perf_counter_task_sched_out, though the
197 * rcu_read_lock() protects us from any context
198 * getting freed. Lock the context and check if it
199 * got swapped before we could get the lock, and retry
200 * if so. If we locked the right context, then it
201 * can't get swapped on us any more.
202 */
203 spin_lock_irqsave(&ctx->lock, *flags);
204 if (ctx != rcu_dereference(task->perf_counter_ctxp)) {
205 spin_unlock_irqrestore(&ctx->lock, *flags);
206 goto retry;
207 }
208
209 if (!atomic_inc_not_zero(&ctx->refcount)) {
210 spin_unlock_irqrestore(&ctx->lock, *flags);
211 ctx = NULL;
212 }
213 }
214 rcu_read_unlock();
215 return ctx;
216 }
217
218 /*
219 * Get the context for a task and increment its pin_count so it
220 * can't get swapped to another task. This also increments its
221 * reference count so that the context can't get freed.
222 */
223 static struct perf_counter_context *perf_pin_task_context(struct task_struct *task)
224 {
225 struct perf_counter_context *ctx;
226 unsigned long flags;
227
228 ctx = perf_lock_task_context(task, &flags);
229 if (ctx) {
230 ++ctx->pin_count;
231 spin_unlock_irqrestore(&ctx->lock, flags);
232 }
233 return ctx;
234 }
235
236 static void perf_unpin_context(struct perf_counter_context *ctx)
237 {
238 unsigned long flags;
239
240 spin_lock_irqsave(&ctx->lock, flags);
241 --ctx->pin_count;
242 spin_unlock_irqrestore(&ctx->lock, flags);
243 put_ctx(ctx);
244 }
245
246 /*
247 * Add a counter from the lists for its context.
248 * Must be called with ctx->mutex and ctx->lock held.
249 */
250 static void
251 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
252 {
253 struct perf_counter *group_leader = counter->group_leader;
254
255 /*
256 * Depending on whether it is a standalone or sibling counter,
257 * add it straight to the context's counter list, or to the group
258 * leader's sibling list:
259 */
260 if (group_leader == counter)
261 list_add_tail(&counter->list_entry, &ctx->counter_list);
262 else {
263 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
264 group_leader->nr_siblings++;
265 }
266
267 list_add_rcu(&counter->event_entry, &ctx->event_list);
268 ctx->nr_counters++;
269 if (counter->attr.inherit_stat)
270 ctx->nr_stat++;
271 }
272
273 /*
274 * Remove a counter from the lists for its context.
275 * Must be called with ctx->mutex and ctx->lock held.
276 */
277 static void
278 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
279 {
280 struct perf_counter *sibling, *tmp;
281
282 if (list_empty(&counter->list_entry))
283 return;
284 ctx->nr_counters--;
285 if (counter->attr.inherit_stat)
286 ctx->nr_stat--;
287
288 list_del_init(&counter->list_entry);
289 list_del_rcu(&counter->event_entry);
290
291 if (counter->group_leader != counter)
292 counter->group_leader->nr_siblings--;
293
294 /*
295 * If this was a group counter with sibling counters then
296 * upgrade the siblings to singleton counters by adding them
297 * to the context list directly:
298 */
299 list_for_each_entry_safe(sibling, tmp,
300 &counter->sibling_list, list_entry) {
301
302 list_move_tail(&sibling->list_entry, &ctx->counter_list);
303 sibling->group_leader = sibling;
304 }
305 }
306
307 static void
308 counter_sched_out(struct perf_counter *counter,
309 struct perf_cpu_context *cpuctx,
310 struct perf_counter_context *ctx)
311 {
312 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
313 return;
314
315 counter->state = PERF_COUNTER_STATE_INACTIVE;
316 if (counter->pending_disable) {
317 counter->pending_disable = 0;
318 counter->state = PERF_COUNTER_STATE_OFF;
319 }
320 counter->tstamp_stopped = ctx->time;
321 counter->pmu->disable(counter);
322 counter->oncpu = -1;
323
324 if (!is_software_counter(counter))
325 cpuctx->active_oncpu--;
326 ctx->nr_active--;
327 if (counter->attr.exclusive || !cpuctx->active_oncpu)
328 cpuctx->exclusive = 0;
329 }
330
331 static void
332 group_sched_out(struct perf_counter *group_counter,
333 struct perf_cpu_context *cpuctx,
334 struct perf_counter_context *ctx)
335 {
336 struct perf_counter *counter;
337
338 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
339 return;
340
341 counter_sched_out(group_counter, cpuctx, ctx);
342
343 /*
344 * Schedule out siblings (if any):
345 */
346 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
347 counter_sched_out(counter, cpuctx, ctx);
348
349 if (group_counter->attr.exclusive)
350 cpuctx->exclusive = 0;
351 }
352
353 /*
354 * Cross CPU call to remove a performance counter
355 *
356 * We disable the counter on the hardware level first. After that we
357 * remove it from the context list.
358 */
359 static void __perf_counter_remove_from_context(void *info)
360 {
361 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
362 struct perf_counter *counter = info;
363 struct perf_counter_context *ctx = counter->ctx;
364
365 /*
366 * If this is a task context, we need to check whether it is
367 * the current task context of this cpu. If not it has been
368 * scheduled out before the smp call arrived.
369 */
370 if (ctx->task && cpuctx->task_ctx != ctx)
371 return;
372
373 spin_lock(&ctx->lock);
374 /*
375 * Protect the list operation against NMI by disabling the
376 * counters on a global level.
377 */
378 perf_disable();
379
380 counter_sched_out(counter, cpuctx, ctx);
381
382 list_del_counter(counter, ctx);
383
384 if (!ctx->task) {
385 /*
386 * Allow more per task counters with respect to the
387 * reservation:
388 */
389 cpuctx->max_pertask =
390 min(perf_max_counters - ctx->nr_counters,
391 perf_max_counters - perf_reserved_percpu);
392 }
393
394 perf_enable();
395 spin_unlock(&ctx->lock);
396 }
397
398
399 /*
400 * Remove the counter from a task's (or a CPU's) list of counters.
401 *
402 * Must be called with ctx->mutex held.
403 *
404 * CPU counters are removed with a smp call. For task counters we only
405 * call when the task is on a CPU.
406 *
407 * If counter->ctx is a cloned context, callers must make sure that
408 * every task struct that counter->ctx->task could possibly point to
409 * remains valid. This is OK when called from perf_release since
410 * that only calls us on the top-level context, which can't be a clone.
411 * When called from perf_counter_exit_task, it's OK because the
412 * context has been detached from its task.
413 */
414 static void perf_counter_remove_from_context(struct perf_counter *counter)
415 {
416 struct perf_counter_context *ctx = counter->ctx;
417 struct task_struct *task = ctx->task;
418
419 if (!task) {
420 /*
421 * Per cpu counters are removed via an smp call and
422 * the removal is always sucessful.
423 */
424 smp_call_function_single(counter->cpu,
425 __perf_counter_remove_from_context,
426 counter, 1);
427 return;
428 }
429
430 retry:
431 task_oncpu_function_call(task, __perf_counter_remove_from_context,
432 counter);
433
434 spin_lock_irq(&ctx->lock);
435 /*
436 * If the context is active we need to retry the smp call.
437 */
438 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
439 spin_unlock_irq(&ctx->lock);
440 goto retry;
441 }
442
443 /*
444 * The lock prevents that this context is scheduled in so we
445 * can remove the counter safely, if the call above did not
446 * succeed.
447 */
448 if (!list_empty(&counter->list_entry)) {
449 list_del_counter(counter, ctx);
450 }
451 spin_unlock_irq(&ctx->lock);
452 }
453
454 static inline u64 perf_clock(void)
455 {
456 return cpu_clock(smp_processor_id());
457 }
458
459 /*
460 * Update the record of the current time in a context.
461 */
462 static void update_context_time(struct perf_counter_context *ctx)
463 {
464 u64 now = perf_clock();
465
466 ctx->time += now - ctx->timestamp;
467 ctx->timestamp = now;
468 }
469
470 /*
471 * Update the total_time_enabled and total_time_running fields for a counter.
472 */
473 static void update_counter_times(struct perf_counter *counter)
474 {
475 struct perf_counter_context *ctx = counter->ctx;
476 u64 run_end;
477
478 if (counter->state < PERF_COUNTER_STATE_INACTIVE ||
479 counter->group_leader->state < PERF_COUNTER_STATE_INACTIVE)
480 return;
481
482 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
483
484 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
485 run_end = counter->tstamp_stopped;
486 else
487 run_end = ctx->time;
488
489 counter->total_time_running = run_end - counter->tstamp_running;
490 }
491
492 /*
493 * Update total_time_enabled and total_time_running for all counters in a group.
494 */
495 static void update_group_times(struct perf_counter *leader)
496 {
497 struct perf_counter *counter;
498
499 update_counter_times(leader);
500 list_for_each_entry(counter, &leader->sibling_list, list_entry)
501 update_counter_times(counter);
502 }
503
504 /*
505 * Cross CPU call to disable a performance counter
506 */
507 static void __perf_counter_disable(void *info)
508 {
509 struct perf_counter *counter = info;
510 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
511 struct perf_counter_context *ctx = counter->ctx;
512
513 /*
514 * If this is a per-task counter, need to check whether this
515 * counter's task is the current task on this cpu.
516 */
517 if (ctx->task && cpuctx->task_ctx != ctx)
518 return;
519
520 spin_lock(&ctx->lock);
521
522 /*
523 * If the counter is on, turn it off.
524 * If it is in error state, leave it in error state.
525 */
526 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
527 update_context_time(ctx);
528 update_group_times(counter);
529 if (counter == counter->group_leader)
530 group_sched_out(counter, cpuctx, ctx);
531 else
532 counter_sched_out(counter, cpuctx, ctx);
533 counter->state = PERF_COUNTER_STATE_OFF;
534 }
535
536 spin_unlock(&ctx->lock);
537 }
538
539 /*
540 * Disable a counter.
541 *
542 * If counter->ctx is a cloned context, callers must make sure that
543 * every task struct that counter->ctx->task could possibly point to
544 * remains valid. This condition is satisifed when called through
545 * perf_counter_for_each_child or perf_counter_for_each because they
546 * hold the top-level counter's child_mutex, so any descendant that
547 * goes to exit will block in sync_child_counter.
548 * When called from perf_pending_counter it's OK because counter->ctx
549 * is the current context on this CPU and preemption is disabled,
550 * hence we can't get into perf_counter_task_sched_out for this context.
551 */
552 static void perf_counter_disable(struct perf_counter *counter)
553 {
554 struct perf_counter_context *ctx = counter->ctx;
555 struct task_struct *task = ctx->task;
556
557 if (!task) {
558 /*
559 * Disable the counter on the cpu that it's on
560 */
561 smp_call_function_single(counter->cpu, __perf_counter_disable,
562 counter, 1);
563 return;
564 }
565
566 retry:
567 task_oncpu_function_call(task, __perf_counter_disable, counter);
568
569 spin_lock_irq(&ctx->lock);
570 /*
571 * If the counter is still active, we need to retry the cross-call.
572 */
573 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
574 spin_unlock_irq(&ctx->lock);
575 goto retry;
576 }
577
578 /*
579 * Since we have the lock this context can't be scheduled
580 * in, so we can change the state safely.
581 */
582 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
583 update_group_times(counter);
584 counter->state = PERF_COUNTER_STATE_OFF;
585 }
586
587 spin_unlock_irq(&ctx->lock);
588 }
589
590 static int
591 counter_sched_in(struct perf_counter *counter,
592 struct perf_cpu_context *cpuctx,
593 struct perf_counter_context *ctx,
594 int cpu)
595 {
596 if (counter->state <= PERF_COUNTER_STATE_OFF)
597 return 0;
598
599 counter->state = PERF_COUNTER_STATE_ACTIVE;
600 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
601 /*
602 * The new state must be visible before we turn it on in the hardware:
603 */
604 smp_wmb();
605
606 if (counter->pmu->enable(counter)) {
607 counter->state = PERF_COUNTER_STATE_INACTIVE;
608 counter->oncpu = -1;
609 return -EAGAIN;
610 }
611
612 counter->tstamp_running += ctx->time - counter->tstamp_stopped;
613
614 if (!is_software_counter(counter))
615 cpuctx->active_oncpu++;
616 ctx->nr_active++;
617
618 if (counter->attr.exclusive)
619 cpuctx->exclusive = 1;
620
621 return 0;
622 }
623
624 static int
625 group_sched_in(struct perf_counter *group_counter,
626 struct perf_cpu_context *cpuctx,
627 struct perf_counter_context *ctx,
628 int cpu)
629 {
630 struct perf_counter *counter, *partial_group;
631 int ret;
632
633 if (group_counter->state == PERF_COUNTER_STATE_OFF)
634 return 0;
635
636 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
637 if (ret)
638 return ret < 0 ? ret : 0;
639
640 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
641 return -EAGAIN;
642
643 /*
644 * Schedule in siblings as one group (if any):
645 */
646 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
647 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
648 partial_group = counter;
649 goto group_error;
650 }
651 }
652
653 return 0;
654
655 group_error:
656 /*
657 * Groups can be scheduled in as one unit only, so undo any
658 * partial group before returning:
659 */
660 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
661 if (counter == partial_group)
662 break;
663 counter_sched_out(counter, cpuctx, ctx);
664 }
665 counter_sched_out(group_counter, cpuctx, ctx);
666
667 return -EAGAIN;
668 }
669
670 /*
671 * Return 1 for a group consisting entirely of software counters,
672 * 0 if the group contains any hardware counters.
673 */
674 static int is_software_only_group(struct perf_counter *leader)
675 {
676 struct perf_counter *counter;
677
678 if (!is_software_counter(leader))
679 return 0;
680
681 list_for_each_entry(counter, &leader->sibling_list, list_entry)
682 if (!is_software_counter(counter))
683 return 0;
684
685 return 1;
686 }
687
688 /*
689 * Work out whether we can put this counter group on the CPU now.
690 */
691 static int group_can_go_on(struct perf_counter *counter,
692 struct perf_cpu_context *cpuctx,
693 int can_add_hw)
694 {
695 /*
696 * Groups consisting entirely of software counters can always go on.
697 */
698 if (is_software_only_group(counter))
699 return 1;
700 /*
701 * If an exclusive group is already on, no other hardware
702 * counters can go on.
703 */
704 if (cpuctx->exclusive)
705 return 0;
706 /*
707 * If this group is exclusive and there are already
708 * counters on the CPU, it can't go on.
709 */
710 if (counter->attr.exclusive && cpuctx->active_oncpu)
711 return 0;
712 /*
713 * Otherwise, try to add it if all previous groups were able
714 * to go on.
715 */
716 return can_add_hw;
717 }
718
719 static void add_counter_to_ctx(struct perf_counter *counter,
720 struct perf_counter_context *ctx)
721 {
722 list_add_counter(counter, ctx);
723 counter->tstamp_enabled = ctx->time;
724 counter->tstamp_running = ctx->time;
725 counter->tstamp_stopped = ctx->time;
726 }
727
728 /*
729 * Cross CPU call to install and enable a performance counter
730 *
731 * Must be called with ctx->mutex held
732 */
733 static void __perf_install_in_context(void *info)
734 {
735 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
736 struct perf_counter *counter = info;
737 struct perf_counter_context *ctx = counter->ctx;
738 struct perf_counter *leader = counter->group_leader;
739 int cpu = smp_processor_id();
740 int err;
741
742 /*
743 * If this is a task context, we need to check whether it is
744 * the current task context of this cpu. If not it has been
745 * scheduled out before the smp call arrived.
746 * Or possibly this is the right context but it isn't
747 * on this cpu because it had no counters.
748 */
749 if (ctx->task && cpuctx->task_ctx != ctx) {
750 if (cpuctx->task_ctx || ctx->task != current)
751 return;
752 cpuctx->task_ctx = ctx;
753 }
754
755 spin_lock(&ctx->lock);
756 ctx->is_active = 1;
757 update_context_time(ctx);
758
759 /*
760 * Protect the list operation against NMI by disabling the
761 * counters on a global level. NOP for non NMI based counters.
762 */
763 perf_disable();
764
765 add_counter_to_ctx(counter, ctx);
766
767 /*
768 * Don't put the counter on if it is disabled or if
769 * it is in a group and the group isn't on.
770 */
771 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
772 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
773 goto unlock;
774
775 /*
776 * An exclusive counter can't go on if there are already active
777 * hardware counters, and no hardware counter can go on if there
778 * is already an exclusive counter on.
779 */
780 if (!group_can_go_on(counter, cpuctx, 1))
781 err = -EEXIST;
782 else
783 err = counter_sched_in(counter, cpuctx, ctx, cpu);
784
785 if (err) {
786 /*
787 * This counter couldn't go on. If it is in a group
788 * then we have to pull the whole group off.
789 * If the counter group is pinned then put it in error state.
790 */
791 if (leader != counter)
792 group_sched_out(leader, cpuctx, ctx);
793 if (leader->attr.pinned) {
794 update_group_times(leader);
795 leader->state = PERF_COUNTER_STATE_ERROR;
796 }
797 }
798
799 if (!err && !ctx->task && cpuctx->max_pertask)
800 cpuctx->max_pertask--;
801
802 unlock:
803 perf_enable();
804
805 spin_unlock(&ctx->lock);
806 }
807
808 /*
809 * Attach a performance counter to a context
810 *
811 * First we add the counter to the list with the hardware enable bit
812 * in counter->hw_config cleared.
813 *
814 * If the counter is attached to a task which is on a CPU we use a smp
815 * call to enable it in the task context. The task might have been
816 * scheduled away, but we check this in the smp call again.
817 *
818 * Must be called with ctx->mutex held.
819 */
820 static void
821 perf_install_in_context(struct perf_counter_context *ctx,
822 struct perf_counter *counter,
823 int cpu)
824 {
825 struct task_struct *task = ctx->task;
826
827 if (!task) {
828 /*
829 * Per cpu counters are installed via an smp call and
830 * the install is always sucessful.
831 */
832 smp_call_function_single(cpu, __perf_install_in_context,
833 counter, 1);
834 return;
835 }
836
837 retry:
838 task_oncpu_function_call(task, __perf_install_in_context,
839 counter);
840
841 spin_lock_irq(&ctx->lock);
842 /*
843 * we need to retry the smp call.
844 */
845 if (ctx->is_active && list_empty(&counter->list_entry)) {
846 spin_unlock_irq(&ctx->lock);
847 goto retry;
848 }
849
850 /*
851 * The lock prevents that this context is scheduled in so we
852 * can add the counter safely, if it the call above did not
853 * succeed.
854 */
855 if (list_empty(&counter->list_entry))
856 add_counter_to_ctx(counter, ctx);
857 spin_unlock_irq(&ctx->lock);
858 }
859
860 /*
861 * Put a counter into inactive state and update time fields.
862 * Enabling the leader of a group effectively enables all
863 * the group members that aren't explicitly disabled, so we
864 * have to update their ->tstamp_enabled also.
865 * Note: this works for group members as well as group leaders
866 * since the non-leader members' sibling_lists will be empty.
867 */
868 static void __perf_counter_mark_enabled(struct perf_counter *counter,
869 struct perf_counter_context *ctx)
870 {
871 struct perf_counter *sub;
872
873 counter->state = PERF_COUNTER_STATE_INACTIVE;
874 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
875 list_for_each_entry(sub, &counter->sibling_list, list_entry)
876 if (sub->state >= PERF_COUNTER_STATE_INACTIVE)
877 sub->tstamp_enabled =
878 ctx->time - sub->total_time_enabled;
879 }
880
881 /*
882 * Cross CPU call to enable a performance counter
883 */
884 static void __perf_counter_enable(void *info)
885 {
886 struct perf_counter *counter = info;
887 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
888 struct perf_counter_context *ctx = counter->ctx;
889 struct perf_counter *leader = counter->group_leader;
890 int err;
891
892 /*
893 * If this is a per-task counter, need to check whether this
894 * counter's task is the current task on this cpu.
895 */
896 if (ctx->task && cpuctx->task_ctx != ctx) {
897 if (cpuctx->task_ctx || ctx->task != current)
898 return;
899 cpuctx->task_ctx = ctx;
900 }
901
902 spin_lock(&ctx->lock);
903 ctx->is_active = 1;
904 update_context_time(ctx);
905
906 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
907 goto unlock;
908 __perf_counter_mark_enabled(counter, ctx);
909
910 /*
911 * If the counter is in a group and isn't the group leader,
912 * then don't put it on unless the group is on.
913 */
914 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
915 goto unlock;
916
917 if (!group_can_go_on(counter, cpuctx, 1)) {
918 err = -EEXIST;
919 } else {
920 perf_disable();
921 if (counter == leader)
922 err = group_sched_in(counter, cpuctx, ctx,
923 smp_processor_id());
924 else
925 err = counter_sched_in(counter, cpuctx, ctx,
926 smp_processor_id());
927 perf_enable();
928 }
929
930 if (err) {
931 /*
932 * If this counter can't go on and it's part of a
933 * group, then the whole group has to come off.
934 */
935 if (leader != counter)
936 group_sched_out(leader, cpuctx, ctx);
937 if (leader->attr.pinned) {
938 update_group_times(leader);
939 leader->state = PERF_COUNTER_STATE_ERROR;
940 }
941 }
942
943 unlock:
944 spin_unlock(&ctx->lock);
945 }
946
947 /*
948 * Enable a counter.
949 *
950 * If counter->ctx is a cloned context, callers must make sure that
951 * every task struct that counter->ctx->task could possibly point to
952 * remains valid. This condition is satisfied when called through
953 * perf_counter_for_each_child or perf_counter_for_each as described
954 * for perf_counter_disable.
955 */
956 static void perf_counter_enable(struct perf_counter *counter)
957 {
958 struct perf_counter_context *ctx = counter->ctx;
959 struct task_struct *task = ctx->task;
960
961 if (!task) {
962 /*
963 * Enable the counter on the cpu that it's on
964 */
965 smp_call_function_single(counter->cpu, __perf_counter_enable,
966 counter, 1);
967 return;
968 }
969
970 spin_lock_irq(&ctx->lock);
971 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
972 goto out;
973
974 /*
975 * If the counter is in error state, clear that first.
976 * That way, if we see the counter in error state below, we
977 * know that it has gone back into error state, as distinct
978 * from the task having been scheduled away before the
979 * cross-call arrived.
980 */
981 if (counter->state == PERF_COUNTER_STATE_ERROR)
982 counter->state = PERF_COUNTER_STATE_OFF;
983
984 retry:
985 spin_unlock_irq(&ctx->lock);
986 task_oncpu_function_call(task, __perf_counter_enable, counter);
987
988 spin_lock_irq(&ctx->lock);
989
990 /*
991 * If the context is active and the counter is still off,
992 * we need to retry the cross-call.
993 */
994 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
995 goto retry;
996
997 /*
998 * Since we have the lock this context can't be scheduled
999 * in, so we can change the state safely.
1000 */
1001 if (counter->state == PERF_COUNTER_STATE_OFF)
1002 __perf_counter_mark_enabled(counter, ctx);
1003
1004 out:
1005 spin_unlock_irq(&ctx->lock);
1006 }
1007
1008 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
1009 {
1010 /*
1011 * not supported on inherited counters
1012 */
1013 if (counter->attr.inherit)
1014 return -EINVAL;
1015
1016 atomic_add(refresh, &counter->event_limit);
1017 perf_counter_enable(counter);
1018
1019 return 0;
1020 }
1021
1022 void __perf_counter_sched_out(struct perf_counter_context *ctx,
1023 struct perf_cpu_context *cpuctx)
1024 {
1025 struct perf_counter *counter;
1026
1027 spin_lock(&ctx->lock);
1028 ctx->is_active = 0;
1029 if (likely(!ctx->nr_counters))
1030 goto out;
1031 update_context_time(ctx);
1032
1033 perf_disable();
1034 if (ctx->nr_active) {
1035 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1036 if (counter != counter->group_leader)
1037 counter_sched_out(counter, cpuctx, ctx);
1038 else
1039 group_sched_out(counter, cpuctx, ctx);
1040 }
1041 }
1042 perf_enable();
1043 out:
1044 spin_unlock(&ctx->lock);
1045 }
1046
1047 /*
1048 * Test whether two contexts are equivalent, i.e. whether they
1049 * have both been cloned from the same version of the same context
1050 * and they both have the same number of enabled counters.
1051 * If the number of enabled counters is the same, then the set
1052 * of enabled counters should be the same, because these are both
1053 * inherited contexts, therefore we can't access individual counters
1054 * in them directly with an fd; we can only enable/disable all
1055 * counters via prctl, or enable/disable all counters in a family
1056 * via ioctl, which will have the same effect on both contexts.
1057 */
1058 static int context_equiv(struct perf_counter_context *ctx1,
1059 struct perf_counter_context *ctx2)
1060 {
1061 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1062 && ctx1->parent_gen == ctx2->parent_gen
1063 && !ctx1->pin_count && !ctx2->pin_count;
1064 }
1065
1066 static void __perf_counter_read(void *counter);
1067
1068 static void __perf_counter_sync_stat(struct perf_counter *counter,
1069 struct perf_counter *next_counter)
1070 {
1071 u64 value;
1072
1073 if (!counter->attr.inherit_stat)
1074 return;
1075
1076 /*
1077 * Update the counter value, we cannot use perf_counter_read()
1078 * because we're in the middle of a context switch and have IRQs
1079 * disabled, which upsets smp_call_function_single(), however
1080 * we know the counter must be on the current CPU, therefore we
1081 * don't need to use it.
1082 */
1083 switch (counter->state) {
1084 case PERF_COUNTER_STATE_ACTIVE:
1085 __perf_counter_read(counter);
1086 break;
1087
1088 case PERF_COUNTER_STATE_INACTIVE:
1089 update_counter_times(counter);
1090 break;
1091
1092 default:
1093 break;
1094 }
1095
1096 /*
1097 * In order to keep per-task stats reliable we need to flip the counter
1098 * values when we flip the contexts.
1099 */
1100 value = atomic64_read(&next_counter->count);
1101 value = atomic64_xchg(&counter->count, value);
1102 atomic64_set(&next_counter->count, value);
1103
1104 swap(counter->total_time_enabled, next_counter->total_time_enabled);
1105 swap(counter->total_time_running, next_counter->total_time_running);
1106
1107 /*
1108 * Since we swizzled the values, update the user visible data too.
1109 */
1110 perf_counter_update_userpage(counter);
1111 perf_counter_update_userpage(next_counter);
1112 }
1113
1114 #define list_next_entry(pos, member) \
1115 list_entry(pos->member.next, typeof(*pos), member)
1116
1117 static void perf_counter_sync_stat(struct perf_counter_context *ctx,
1118 struct perf_counter_context *next_ctx)
1119 {
1120 struct perf_counter *counter, *next_counter;
1121
1122 if (!ctx->nr_stat)
1123 return;
1124
1125 counter = list_first_entry(&ctx->event_list,
1126 struct perf_counter, event_entry);
1127
1128 next_counter = list_first_entry(&next_ctx->event_list,
1129 struct perf_counter, event_entry);
1130
1131 while (&counter->event_entry != &ctx->event_list &&
1132 &next_counter->event_entry != &next_ctx->event_list) {
1133
1134 __perf_counter_sync_stat(counter, next_counter);
1135
1136 counter = list_next_entry(counter, event_entry);
1137 next_counter = list_next_entry(next_counter, event_entry);
1138 }
1139 }
1140
1141 /*
1142 * Called from scheduler to remove the counters of the current task,
1143 * with interrupts disabled.
1144 *
1145 * We stop each counter and update the counter value in counter->count.
1146 *
1147 * This does not protect us against NMI, but disable()
1148 * sets the disabled bit in the control field of counter _before_
1149 * accessing the counter control register. If a NMI hits, then it will
1150 * not restart the counter.
1151 */
1152 void perf_counter_task_sched_out(struct task_struct *task,
1153 struct task_struct *next, int cpu)
1154 {
1155 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1156 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1157 struct perf_counter_context *next_ctx;
1158 struct perf_counter_context *parent;
1159 struct pt_regs *regs;
1160 int do_switch = 1;
1161
1162 regs = task_pt_regs(task);
1163 perf_swcounter_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1164
1165 if (likely(!ctx || !cpuctx->task_ctx))
1166 return;
1167
1168 update_context_time(ctx);
1169
1170 rcu_read_lock();
1171 parent = rcu_dereference(ctx->parent_ctx);
1172 next_ctx = next->perf_counter_ctxp;
1173 if (parent && next_ctx &&
1174 rcu_dereference(next_ctx->parent_ctx) == parent) {
1175 /*
1176 * Looks like the two contexts are clones, so we might be
1177 * able to optimize the context switch. We lock both
1178 * contexts and check that they are clones under the
1179 * lock (including re-checking that neither has been
1180 * uncloned in the meantime). It doesn't matter which
1181 * order we take the locks because no other cpu could
1182 * be trying to lock both of these tasks.
1183 */
1184 spin_lock(&ctx->lock);
1185 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1186 if (context_equiv(ctx, next_ctx)) {
1187 /*
1188 * XXX do we need a memory barrier of sorts
1189 * wrt to rcu_dereference() of perf_counter_ctxp
1190 */
1191 task->perf_counter_ctxp = next_ctx;
1192 next->perf_counter_ctxp = ctx;
1193 ctx->task = next;
1194 next_ctx->task = task;
1195 do_switch = 0;
1196
1197 perf_counter_sync_stat(ctx, next_ctx);
1198 }
1199 spin_unlock(&next_ctx->lock);
1200 spin_unlock(&ctx->lock);
1201 }
1202 rcu_read_unlock();
1203
1204 if (do_switch) {
1205 __perf_counter_sched_out(ctx, cpuctx);
1206 cpuctx->task_ctx = NULL;
1207 }
1208 }
1209
1210 /*
1211 * Called with IRQs disabled
1212 */
1213 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
1214 {
1215 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1216
1217 if (!cpuctx->task_ctx)
1218 return;
1219
1220 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1221 return;
1222
1223 __perf_counter_sched_out(ctx, cpuctx);
1224 cpuctx->task_ctx = NULL;
1225 }
1226
1227 /*
1228 * Called with IRQs disabled
1229 */
1230 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
1231 {
1232 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
1233 }
1234
1235 static void
1236 __perf_counter_sched_in(struct perf_counter_context *ctx,
1237 struct perf_cpu_context *cpuctx, int cpu)
1238 {
1239 struct perf_counter *counter;
1240 int can_add_hw = 1;
1241
1242 spin_lock(&ctx->lock);
1243 ctx->is_active = 1;
1244 if (likely(!ctx->nr_counters))
1245 goto out;
1246
1247 ctx->timestamp = perf_clock();
1248
1249 perf_disable();
1250
1251 /*
1252 * First go through the list and put on any pinned groups
1253 * in order to give them the best chance of going on.
1254 */
1255 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1256 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1257 !counter->attr.pinned)
1258 continue;
1259 if (counter->cpu != -1 && counter->cpu != cpu)
1260 continue;
1261
1262 if (counter != counter->group_leader)
1263 counter_sched_in(counter, cpuctx, ctx, cpu);
1264 else {
1265 if (group_can_go_on(counter, cpuctx, 1))
1266 group_sched_in(counter, cpuctx, ctx, cpu);
1267 }
1268
1269 /*
1270 * If this pinned group hasn't been scheduled,
1271 * put it in error state.
1272 */
1273 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1274 update_group_times(counter);
1275 counter->state = PERF_COUNTER_STATE_ERROR;
1276 }
1277 }
1278
1279 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1280 /*
1281 * Ignore counters in OFF or ERROR state, and
1282 * ignore pinned counters since we did them already.
1283 */
1284 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1285 counter->attr.pinned)
1286 continue;
1287
1288 /*
1289 * Listen to the 'cpu' scheduling filter constraint
1290 * of counters:
1291 */
1292 if (counter->cpu != -1 && counter->cpu != cpu)
1293 continue;
1294
1295 if (counter != counter->group_leader) {
1296 if (counter_sched_in(counter, cpuctx, ctx, cpu))
1297 can_add_hw = 0;
1298 } else {
1299 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1300 if (group_sched_in(counter, cpuctx, ctx, cpu))
1301 can_add_hw = 0;
1302 }
1303 }
1304 }
1305 perf_enable();
1306 out:
1307 spin_unlock(&ctx->lock);
1308 }
1309
1310 /*
1311 * Called from scheduler to add the counters of the current task
1312 * with interrupts disabled.
1313 *
1314 * We restore the counter value and then enable it.
1315 *
1316 * This does not protect us against NMI, but enable()
1317 * sets the enabled bit in the control field of counter _before_
1318 * accessing the counter control register. If a NMI hits, then it will
1319 * keep the counter running.
1320 */
1321 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1322 {
1323 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1324 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1325
1326 if (likely(!ctx))
1327 return;
1328 if (cpuctx->task_ctx == ctx)
1329 return;
1330 __perf_counter_sched_in(ctx, cpuctx, cpu);
1331 cpuctx->task_ctx = ctx;
1332 }
1333
1334 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1335 {
1336 struct perf_counter_context *ctx = &cpuctx->ctx;
1337
1338 __perf_counter_sched_in(ctx, cpuctx, cpu);
1339 }
1340
1341 #define MAX_INTERRUPTS (~0ULL)
1342
1343 static void perf_log_throttle(struct perf_counter *counter, int enable);
1344
1345 static void perf_adjust_period(struct perf_counter *counter, u64 events)
1346 {
1347 struct hw_perf_counter *hwc = &counter->hw;
1348 u64 period, sample_period;
1349 s64 delta;
1350
1351 events *= hwc->sample_period;
1352 period = div64_u64(events, counter->attr.sample_freq);
1353
1354 delta = (s64)(period - hwc->sample_period);
1355 delta = (delta + 7) / 8; /* low pass filter */
1356
1357 sample_period = hwc->sample_period + delta;
1358
1359 if (!sample_period)
1360 sample_period = 1;
1361
1362 hwc->sample_period = sample_period;
1363 }
1364
1365 static void perf_ctx_adjust_freq(struct perf_counter_context *ctx)
1366 {
1367 struct perf_counter *counter;
1368 struct hw_perf_counter *hwc;
1369 u64 interrupts, freq;
1370
1371 spin_lock(&ctx->lock);
1372 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1373 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1374 continue;
1375
1376 hwc = &counter->hw;
1377
1378 interrupts = hwc->interrupts;
1379 hwc->interrupts = 0;
1380
1381 /*
1382 * unthrottle counters on the tick
1383 */
1384 if (interrupts == MAX_INTERRUPTS) {
1385 perf_log_throttle(counter, 1);
1386 counter->pmu->unthrottle(counter);
1387 interrupts = 2*sysctl_perf_counter_sample_rate/HZ;
1388 }
1389
1390 if (!counter->attr.freq || !counter->attr.sample_freq)
1391 continue;
1392
1393 /*
1394 * if the specified freq < HZ then we need to skip ticks
1395 */
1396 if (counter->attr.sample_freq < HZ) {
1397 freq = counter->attr.sample_freq;
1398
1399 hwc->freq_count += freq;
1400 hwc->freq_interrupts += interrupts;
1401
1402 if (hwc->freq_count < HZ)
1403 continue;
1404
1405 interrupts = hwc->freq_interrupts;
1406 hwc->freq_interrupts = 0;
1407 hwc->freq_count -= HZ;
1408 } else
1409 freq = HZ;
1410
1411 perf_adjust_period(counter, freq * interrupts);
1412
1413 /*
1414 * In order to avoid being stalled by an (accidental) huge
1415 * sample period, force reset the sample period if we didn't
1416 * get any events in this freq period.
1417 */
1418 if (!interrupts) {
1419 perf_disable();
1420 counter->pmu->disable(counter);
1421 atomic64_set(&hwc->period_left, 0);
1422 counter->pmu->enable(counter);
1423 perf_enable();
1424 }
1425 }
1426 spin_unlock(&ctx->lock);
1427 }
1428
1429 /*
1430 * Round-robin a context's counters:
1431 */
1432 static void rotate_ctx(struct perf_counter_context *ctx)
1433 {
1434 struct perf_counter *counter;
1435
1436 if (!ctx->nr_counters)
1437 return;
1438
1439 spin_lock(&ctx->lock);
1440 /*
1441 * Rotate the first entry last (works just fine for group counters too):
1442 */
1443 perf_disable();
1444 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1445 list_move_tail(&counter->list_entry, &ctx->counter_list);
1446 break;
1447 }
1448 perf_enable();
1449
1450 spin_unlock(&ctx->lock);
1451 }
1452
1453 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1454 {
1455 struct perf_cpu_context *cpuctx;
1456 struct perf_counter_context *ctx;
1457
1458 if (!atomic_read(&nr_counters))
1459 return;
1460
1461 cpuctx = &per_cpu(perf_cpu_context, cpu);
1462 ctx = curr->perf_counter_ctxp;
1463
1464 perf_ctx_adjust_freq(&cpuctx->ctx);
1465 if (ctx)
1466 perf_ctx_adjust_freq(ctx);
1467
1468 perf_counter_cpu_sched_out(cpuctx);
1469 if (ctx)
1470 __perf_counter_task_sched_out(ctx);
1471
1472 rotate_ctx(&cpuctx->ctx);
1473 if (ctx)
1474 rotate_ctx(ctx);
1475
1476 perf_counter_cpu_sched_in(cpuctx, cpu);
1477 if (ctx)
1478 perf_counter_task_sched_in(curr, cpu);
1479 }
1480
1481 /*
1482 * Enable all of a task's counters that have been marked enable-on-exec.
1483 * This expects task == current.
1484 */
1485 static void perf_counter_enable_on_exec(struct task_struct *task)
1486 {
1487 struct perf_counter_context *ctx;
1488 struct perf_counter *counter;
1489 unsigned long flags;
1490 int enabled = 0;
1491
1492 local_irq_save(flags);
1493 ctx = task->perf_counter_ctxp;
1494 if (!ctx || !ctx->nr_counters)
1495 goto out;
1496
1497 __perf_counter_task_sched_out(ctx);
1498
1499 spin_lock(&ctx->lock);
1500
1501 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1502 if (!counter->attr.enable_on_exec)
1503 continue;
1504 counter->attr.enable_on_exec = 0;
1505 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
1506 continue;
1507 __perf_counter_mark_enabled(counter, ctx);
1508 enabled = 1;
1509 }
1510
1511 /*
1512 * Unclone this context if we enabled any counter.
1513 */
1514 if (enabled)
1515 unclone_ctx(ctx);
1516
1517 spin_unlock(&ctx->lock);
1518
1519 perf_counter_task_sched_in(task, smp_processor_id());
1520 out:
1521 local_irq_restore(flags);
1522 }
1523
1524 /*
1525 * Cross CPU call to read the hardware counter
1526 */
1527 static void __perf_counter_read(void *info)
1528 {
1529 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1530 struct perf_counter *counter = info;
1531 struct perf_counter_context *ctx = counter->ctx;
1532 unsigned long flags;
1533
1534 /*
1535 * If this is a task context, we need to check whether it is
1536 * the current task context of this cpu. If not it has been
1537 * scheduled out before the smp call arrived. In that case
1538 * counter->count would have been updated to a recent sample
1539 * when the counter was scheduled out.
1540 */
1541 if (ctx->task && cpuctx->task_ctx != ctx)
1542 return;
1543
1544 local_irq_save(flags);
1545 if (ctx->is_active)
1546 update_context_time(ctx);
1547 counter->pmu->read(counter);
1548 update_counter_times(counter);
1549 local_irq_restore(flags);
1550 }
1551
1552 static u64 perf_counter_read(struct perf_counter *counter)
1553 {
1554 /*
1555 * If counter is enabled and currently active on a CPU, update the
1556 * value in the counter structure:
1557 */
1558 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1559 smp_call_function_single(counter->oncpu,
1560 __perf_counter_read, counter, 1);
1561 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1562 update_counter_times(counter);
1563 }
1564
1565 return atomic64_read(&counter->count);
1566 }
1567
1568 /*
1569 * Initialize the perf_counter context in a task_struct:
1570 */
1571 static void
1572 __perf_counter_init_context(struct perf_counter_context *ctx,
1573 struct task_struct *task)
1574 {
1575 memset(ctx, 0, sizeof(*ctx));
1576 spin_lock_init(&ctx->lock);
1577 mutex_init(&ctx->mutex);
1578 INIT_LIST_HEAD(&ctx->counter_list);
1579 INIT_LIST_HEAD(&ctx->event_list);
1580 atomic_set(&ctx->refcount, 1);
1581 ctx->task = task;
1582 }
1583
1584 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1585 {
1586 struct perf_counter_context *ctx;
1587 struct perf_cpu_context *cpuctx;
1588 struct task_struct *task;
1589 unsigned long flags;
1590 int err;
1591
1592 /*
1593 * If cpu is not a wildcard then this is a percpu counter:
1594 */
1595 if (cpu != -1) {
1596 /* Must be root to operate on a CPU counter: */
1597 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1598 return ERR_PTR(-EACCES);
1599
1600 if (cpu < 0 || cpu > num_possible_cpus())
1601 return ERR_PTR(-EINVAL);
1602
1603 /*
1604 * We could be clever and allow to attach a counter to an
1605 * offline CPU and activate it when the CPU comes up, but
1606 * that's for later.
1607 */
1608 if (!cpu_isset(cpu, cpu_online_map))
1609 return ERR_PTR(-ENODEV);
1610
1611 cpuctx = &per_cpu(perf_cpu_context, cpu);
1612 ctx = &cpuctx->ctx;
1613 get_ctx(ctx);
1614
1615 return ctx;
1616 }
1617
1618 rcu_read_lock();
1619 if (!pid)
1620 task = current;
1621 else
1622 task = find_task_by_vpid(pid);
1623 if (task)
1624 get_task_struct(task);
1625 rcu_read_unlock();
1626
1627 if (!task)
1628 return ERR_PTR(-ESRCH);
1629
1630 /*
1631 * Can't attach counters to a dying task.
1632 */
1633 err = -ESRCH;
1634 if (task->flags & PF_EXITING)
1635 goto errout;
1636
1637 /* Reuse ptrace permission checks for now. */
1638 err = -EACCES;
1639 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1640 goto errout;
1641
1642 retry:
1643 ctx = perf_lock_task_context(task, &flags);
1644 if (ctx) {
1645 unclone_ctx(ctx);
1646 spin_unlock_irqrestore(&ctx->lock, flags);
1647 }
1648
1649 if (!ctx) {
1650 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1651 err = -ENOMEM;
1652 if (!ctx)
1653 goto errout;
1654 __perf_counter_init_context(ctx, task);
1655 get_ctx(ctx);
1656 if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) {
1657 /*
1658 * We raced with some other task; use
1659 * the context they set.
1660 */
1661 kfree(ctx);
1662 goto retry;
1663 }
1664 get_task_struct(task);
1665 }
1666
1667 put_task_struct(task);
1668 return ctx;
1669
1670 errout:
1671 put_task_struct(task);
1672 return ERR_PTR(err);
1673 }
1674
1675 static void free_counter_rcu(struct rcu_head *head)
1676 {
1677 struct perf_counter *counter;
1678
1679 counter = container_of(head, struct perf_counter, rcu_head);
1680 if (counter->ns)
1681 put_pid_ns(counter->ns);
1682 kfree(counter);
1683 }
1684
1685 static void perf_pending_sync(struct perf_counter *counter);
1686
1687 static void free_counter(struct perf_counter *counter)
1688 {
1689 perf_pending_sync(counter);
1690
1691 if (!counter->parent) {
1692 atomic_dec(&nr_counters);
1693 if (counter->attr.mmap)
1694 atomic_dec(&nr_mmap_counters);
1695 if (counter->attr.comm)
1696 atomic_dec(&nr_comm_counters);
1697 if (counter->attr.task)
1698 atomic_dec(&nr_task_counters);
1699 }
1700
1701 if (counter->output) {
1702 fput(counter->output->filp);
1703 counter->output = NULL;
1704 }
1705
1706 if (counter->destroy)
1707 counter->destroy(counter);
1708
1709 put_ctx(counter->ctx);
1710 call_rcu(&counter->rcu_head, free_counter_rcu);
1711 }
1712
1713 /*
1714 * Called when the last reference to the file is gone.
1715 */
1716 static int perf_release(struct inode *inode, struct file *file)
1717 {
1718 struct perf_counter *counter = file->private_data;
1719 struct perf_counter_context *ctx = counter->ctx;
1720
1721 file->private_data = NULL;
1722
1723 WARN_ON_ONCE(ctx->parent_ctx);
1724 mutex_lock(&ctx->mutex);
1725 perf_counter_remove_from_context(counter);
1726 mutex_unlock(&ctx->mutex);
1727
1728 mutex_lock(&counter->owner->perf_counter_mutex);
1729 list_del_init(&counter->owner_entry);
1730 mutex_unlock(&counter->owner->perf_counter_mutex);
1731 put_task_struct(counter->owner);
1732
1733 free_counter(counter);
1734
1735 return 0;
1736 }
1737
1738 static int perf_counter_read_size(struct perf_counter *counter)
1739 {
1740 int entry = sizeof(u64); /* value */
1741 int size = 0;
1742 int nr = 1;
1743
1744 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1745 size += sizeof(u64);
1746
1747 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1748 size += sizeof(u64);
1749
1750 if (counter->attr.read_format & PERF_FORMAT_ID)
1751 entry += sizeof(u64);
1752
1753 if (counter->attr.read_format & PERF_FORMAT_GROUP) {
1754 nr += counter->group_leader->nr_siblings;
1755 size += sizeof(u64);
1756 }
1757
1758 size += entry * nr;
1759
1760 return size;
1761 }
1762
1763 static u64 perf_counter_read_value(struct perf_counter *counter)
1764 {
1765 struct perf_counter *child;
1766 u64 total = 0;
1767
1768 total += perf_counter_read(counter);
1769 list_for_each_entry(child, &counter->child_list, child_list)
1770 total += perf_counter_read(child);
1771
1772 return total;
1773 }
1774
1775 static int perf_counter_read_entry(struct perf_counter *counter,
1776 u64 read_format, char __user *buf)
1777 {
1778 int n = 0, count = 0;
1779 u64 values[2];
1780
1781 values[n++] = perf_counter_read_value(counter);
1782 if (read_format & PERF_FORMAT_ID)
1783 values[n++] = primary_counter_id(counter);
1784
1785 count = n * sizeof(u64);
1786
1787 if (copy_to_user(buf, values, count))
1788 return -EFAULT;
1789
1790 return count;
1791 }
1792
1793 static int perf_counter_read_group(struct perf_counter *counter,
1794 u64 read_format, char __user *buf)
1795 {
1796 struct perf_counter *leader = counter->group_leader, *sub;
1797 int n = 0, size = 0, err = -EFAULT;
1798 u64 values[3];
1799
1800 values[n++] = 1 + leader->nr_siblings;
1801 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1802 values[n++] = leader->total_time_enabled +
1803 atomic64_read(&leader->child_total_time_enabled);
1804 }
1805 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1806 values[n++] = leader->total_time_running +
1807 atomic64_read(&leader->child_total_time_running);
1808 }
1809
1810 size = n * sizeof(u64);
1811
1812 if (copy_to_user(buf, values, size))
1813 return -EFAULT;
1814
1815 err = perf_counter_read_entry(leader, read_format, buf + size);
1816 if (err < 0)
1817 return err;
1818
1819 size += err;
1820
1821 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
1822 err = perf_counter_read_entry(sub, read_format,
1823 buf + size);
1824 if (err < 0)
1825 return err;
1826
1827 size += err;
1828 }
1829
1830 return size;
1831 }
1832
1833 static int perf_counter_read_one(struct perf_counter *counter,
1834 u64 read_format, char __user *buf)
1835 {
1836 u64 values[4];
1837 int n = 0;
1838
1839 values[n++] = perf_counter_read_value(counter);
1840 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1841 values[n++] = counter->total_time_enabled +
1842 atomic64_read(&counter->child_total_time_enabled);
1843 }
1844 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1845 values[n++] = counter->total_time_running +
1846 atomic64_read(&counter->child_total_time_running);
1847 }
1848 if (read_format & PERF_FORMAT_ID)
1849 values[n++] = primary_counter_id(counter);
1850
1851 if (copy_to_user(buf, values, n * sizeof(u64)))
1852 return -EFAULT;
1853
1854 return n * sizeof(u64);
1855 }
1856
1857 /*
1858 * Read the performance counter - simple non blocking version for now
1859 */
1860 static ssize_t
1861 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1862 {
1863 u64 read_format = counter->attr.read_format;
1864 int ret;
1865
1866 /*
1867 * Return end-of-file for a read on a counter that is in
1868 * error state (i.e. because it was pinned but it couldn't be
1869 * scheduled on to the CPU at some point).
1870 */
1871 if (counter->state == PERF_COUNTER_STATE_ERROR)
1872 return 0;
1873
1874 if (count < perf_counter_read_size(counter))
1875 return -ENOSPC;
1876
1877 WARN_ON_ONCE(counter->ctx->parent_ctx);
1878 mutex_lock(&counter->child_mutex);
1879 if (read_format & PERF_FORMAT_GROUP)
1880 ret = perf_counter_read_group(counter, read_format, buf);
1881 else
1882 ret = perf_counter_read_one(counter, read_format, buf);
1883 mutex_unlock(&counter->child_mutex);
1884
1885 return ret;
1886 }
1887
1888 static ssize_t
1889 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1890 {
1891 struct perf_counter *counter = file->private_data;
1892
1893 return perf_read_hw(counter, buf, count);
1894 }
1895
1896 static unsigned int perf_poll(struct file *file, poll_table *wait)
1897 {
1898 struct perf_counter *counter = file->private_data;
1899 struct perf_mmap_data *data;
1900 unsigned int events = POLL_HUP;
1901
1902 rcu_read_lock();
1903 data = rcu_dereference(counter->data);
1904 if (data)
1905 events = atomic_xchg(&data->poll, 0);
1906 rcu_read_unlock();
1907
1908 poll_wait(file, &counter->waitq, wait);
1909
1910 return events;
1911 }
1912
1913 static void perf_counter_reset(struct perf_counter *counter)
1914 {
1915 (void)perf_counter_read(counter);
1916 atomic64_set(&counter->count, 0);
1917 perf_counter_update_userpage(counter);
1918 }
1919
1920 /*
1921 * Holding the top-level counter's child_mutex means that any
1922 * descendant process that has inherited this counter will block
1923 * in sync_child_counter if it goes to exit, thus satisfying the
1924 * task existence requirements of perf_counter_enable/disable.
1925 */
1926 static void perf_counter_for_each_child(struct perf_counter *counter,
1927 void (*func)(struct perf_counter *))
1928 {
1929 struct perf_counter *child;
1930
1931 WARN_ON_ONCE(counter->ctx->parent_ctx);
1932 mutex_lock(&counter->child_mutex);
1933 func(counter);
1934 list_for_each_entry(child, &counter->child_list, child_list)
1935 func(child);
1936 mutex_unlock(&counter->child_mutex);
1937 }
1938
1939 static void perf_counter_for_each(struct perf_counter *counter,
1940 void (*func)(struct perf_counter *))
1941 {
1942 struct perf_counter_context *ctx = counter->ctx;
1943 struct perf_counter *sibling;
1944
1945 WARN_ON_ONCE(ctx->parent_ctx);
1946 mutex_lock(&ctx->mutex);
1947 counter = counter->group_leader;
1948
1949 perf_counter_for_each_child(counter, func);
1950 func(counter);
1951 list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1952 perf_counter_for_each_child(counter, func);
1953 mutex_unlock(&ctx->mutex);
1954 }
1955
1956 static int perf_counter_period(struct perf_counter *counter, u64 __user *arg)
1957 {
1958 struct perf_counter_context *ctx = counter->ctx;
1959 unsigned long size;
1960 int ret = 0;
1961 u64 value;
1962
1963 if (!counter->attr.sample_period)
1964 return -EINVAL;
1965
1966 size = copy_from_user(&value, arg, sizeof(value));
1967 if (size != sizeof(value))
1968 return -EFAULT;
1969
1970 if (!value)
1971 return -EINVAL;
1972
1973 spin_lock_irq(&ctx->lock);
1974 if (counter->attr.freq) {
1975 if (value > sysctl_perf_counter_sample_rate) {
1976 ret = -EINVAL;
1977 goto unlock;
1978 }
1979
1980 counter->attr.sample_freq = value;
1981 } else {
1982 counter->attr.sample_period = value;
1983 counter->hw.sample_period = value;
1984 }
1985 unlock:
1986 spin_unlock_irq(&ctx->lock);
1987
1988 return ret;
1989 }
1990
1991 int perf_counter_set_output(struct perf_counter *counter, int output_fd);
1992
1993 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1994 {
1995 struct perf_counter *counter = file->private_data;
1996 void (*func)(struct perf_counter *);
1997 u32 flags = arg;
1998
1999 switch (cmd) {
2000 case PERF_COUNTER_IOC_ENABLE:
2001 func = perf_counter_enable;
2002 break;
2003 case PERF_COUNTER_IOC_DISABLE:
2004 func = perf_counter_disable;
2005 break;
2006 case PERF_COUNTER_IOC_RESET:
2007 func = perf_counter_reset;
2008 break;
2009
2010 case PERF_COUNTER_IOC_REFRESH:
2011 return perf_counter_refresh(counter, arg);
2012
2013 case PERF_COUNTER_IOC_PERIOD:
2014 return perf_counter_period(counter, (u64 __user *)arg);
2015
2016 case PERF_COUNTER_IOC_SET_OUTPUT:
2017 return perf_counter_set_output(counter, arg);
2018
2019 default:
2020 return -ENOTTY;
2021 }
2022
2023 if (flags & PERF_IOC_FLAG_GROUP)
2024 perf_counter_for_each(counter, func);
2025 else
2026 perf_counter_for_each_child(counter, func);
2027
2028 return 0;
2029 }
2030
2031 int perf_counter_task_enable(void)
2032 {
2033 struct perf_counter *counter;
2034
2035 mutex_lock(&current->perf_counter_mutex);
2036 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
2037 perf_counter_for_each_child(counter, perf_counter_enable);
2038 mutex_unlock(&current->perf_counter_mutex);
2039
2040 return 0;
2041 }
2042
2043 int perf_counter_task_disable(void)
2044 {
2045 struct perf_counter *counter;
2046
2047 mutex_lock(&current->perf_counter_mutex);
2048 list_for_each_entry(counter, &current->perf_counter_list, owner_entry)
2049 perf_counter_for_each_child(counter, perf_counter_disable);
2050 mutex_unlock(&current->perf_counter_mutex);
2051
2052 return 0;
2053 }
2054
2055 #ifndef PERF_COUNTER_INDEX_OFFSET
2056 # define PERF_COUNTER_INDEX_OFFSET 0
2057 #endif
2058
2059 static int perf_counter_index(struct perf_counter *counter)
2060 {
2061 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2062 return 0;
2063
2064 return counter->hw.idx + 1 - PERF_COUNTER_INDEX_OFFSET;
2065 }
2066
2067 /*
2068 * Callers need to ensure there can be no nesting of this function, otherwise
2069 * the seqlock logic goes bad. We can not serialize this because the arch
2070 * code calls this from NMI context.
2071 */
2072 void perf_counter_update_userpage(struct perf_counter *counter)
2073 {
2074 struct perf_counter_mmap_page *userpg;
2075 struct perf_mmap_data *data;
2076
2077 rcu_read_lock();
2078 data = rcu_dereference(counter->data);
2079 if (!data)
2080 goto unlock;
2081
2082 userpg = data->user_page;
2083
2084 /*
2085 * Disable preemption so as to not let the corresponding user-space
2086 * spin too long if we get preempted.
2087 */
2088 preempt_disable();
2089 ++userpg->lock;
2090 barrier();
2091 userpg->index = perf_counter_index(counter);
2092 userpg->offset = atomic64_read(&counter->count);
2093 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
2094 userpg->offset -= atomic64_read(&counter->hw.prev_count);
2095
2096 userpg->time_enabled = counter->total_time_enabled +
2097 atomic64_read(&counter->child_total_time_enabled);
2098
2099 userpg->time_running = counter->total_time_running +
2100 atomic64_read(&counter->child_total_time_running);
2101
2102 barrier();
2103 ++userpg->lock;
2104 preempt_enable();
2105 unlock:
2106 rcu_read_unlock();
2107 }
2108
2109 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2110 {
2111 struct perf_counter *counter = vma->vm_file->private_data;
2112 struct perf_mmap_data *data;
2113 int ret = VM_FAULT_SIGBUS;
2114
2115 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2116 if (vmf->pgoff == 0)
2117 ret = 0;
2118 return ret;
2119 }
2120
2121 rcu_read_lock();
2122 data = rcu_dereference(counter->data);
2123 if (!data)
2124 goto unlock;
2125
2126 if (vmf->pgoff == 0) {
2127 vmf->page = virt_to_page(data->user_page);
2128 } else {
2129 int nr = vmf->pgoff - 1;
2130
2131 if ((unsigned)nr > data->nr_pages)
2132 goto unlock;
2133
2134 if (vmf->flags & FAULT_FLAG_WRITE)
2135 goto unlock;
2136
2137 vmf->page = virt_to_page(data->data_pages[nr]);
2138 }
2139
2140 get_page(vmf->page);
2141 vmf->page->mapping = vma->vm_file->f_mapping;
2142 vmf->page->index = vmf->pgoff;
2143
2144 ret = 0;
2145 unlock:
2146 rcu_read_unlock();
2147
2148 return ret;
2149 }
2150
2151 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
2152 {
2153 struct perf_mmap_data *data;
2154 unsigned long size;
2155 int i;
2156
2157 WARN_ON(atomic_read(&counter->mmap_count));
2158
2159 size = sizeof(struct perf_mmap_data);
2160 size += nr_pages * sizeof(void *);
2161
2162 data = kzalloc(size, GFP_KERNEL);
2163 if (!data)
2164 goto fail;
2165
2166 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2167 if (!data->user_page)
2168 goto fail_user_page;
2169
2170 for (i = 0; i < nr_pages; i++) {
2171 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2172 if (!data->data_pages[i])
2173 goto fail_data_pages;
2174 }
2175
2176 data->nr_pages = nr_pages;
2177 atomic_set(&data->lock, -1);
2178
2179 if (counter->attr.watermark) {
2180 data->watermark = min_t(long, PAGE_SIZE * nr_pages,
2181 counter->attr.wakeup_watermark);
2182 }
2183 if (!data->watermark)
2184 data->watermark = max(PAGE_SIZE, PAGE_SIZE * nr_pages / 4);
2185
2186 rcu_assign_pointer(counter->data, data);
2187
2188 return 0;
2189
2190 fail_data_pages:
2191 for (i--; i >= 0; i--)
2192 free_page((unsigned long)data->data_pages[i]);
2193
2194 free_page((unsigned long)data->user_page);
2195
2196 fail_user_page:
2197 kfree(data);
2198
2199 fail:
2200 return -ENOMEM;
2201 }
2202
2203 static void perf_mmap_free_page(unsigned long addr)
2204 {
2205 struct page *page = virt_to_page((void *)addr);
2206
2207 page->mapping = NULL;
2208 __free_page(page);
2209 }
2210
2211 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
2212 {
2213 struct perf_mmap_data *data;
2214 int i;
2215
2216 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2217
2218 perf_mmap_free_page((unsigned long)data->user_page);
2219 for (i = 0; i < data->nr_pages; i++)
2220 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2221
2222 kfree(data);
2223 }
2224
2225 static void perf_mmap_data_free(struct perf_counter *counter)
2226 {
2227 struct perf_mmap_data *data = counter->data;
2228
2229 WARN_ON(atomic_read(&counter->mmap_count));
2230
2231 rcu_assign_pointer(counter->data, NULL);
2232 call_rcu(&data->rcu_head, __perf_mmap_data_free);
2233 }
2234
2235 static void perf_mmap_open(struct vm_area_struct *vma)
2236 {
2237 struct perf_counter *counter = vma->vm_file->private_data;
2238
2239 atomic_inc(&counter->mmap_count);
2240 }
2241
2242 static void perf_mmap_close(struct vm_area_struct *vma)
2243 {
2244 struct perf_counter *counter = vma->vm_file->private_data;
2245
2246 WARN_ON_ONCE(counter->ctx->parent_ctx);
2247 if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) {
2248 struct user_struct *user = current_user();
2249
2250 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
2251 vma->vm_mm->locked_vm -= counter->data->nr_locked;
2252 perf_mmap_data_free(counter);
2253 mutex_unlock(&counter->mmap_mutex);
2254 }
2255 }
2256
2257 static struct vm_operations_struct perf_mmap_vmops = {
2258 .open = perf_mmap_open,
2259 .close = perf_mmap_close,
2260 .fault = perf_mmap_fault,
2261 .page_mkwrite = perf_mmap_fault,
2262 };
2263
2264 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2265 {
2266 struct perf_counter *counter = file->private_data;
2267 unsigned long user_locked, user_lock_limit;
2268 struct user_struct *user = current_user();
2269 unsigned long locked, lock_limit;
2270 unsigned long vma_size;
2271 unsigned long nr_pages;
2272 long user_extra, extra;
2273 int ret = 0;
2274
2275 if (!(vma->vm_flags & VM_SHARED))
2276 return -EINVAL;
2277
2278 vma_size = vma->vm_end - vma->vm_start;
2279 nr_pages = (vma_size / PAGE_SIZE) - 1;
2280
2281 /*
2282 * If we have data pages ensure they're a power-of-two number, so we
2283 * can do bitmasks instead of modulo.
2284 */
2285 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2286 return -EINVAL;
2287
2288 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2289 return -EINVAL;
2290
2291 if (vma->vm_pgoff != 0)
2292 return -EINVAL;
2293
2294 WARN_ON_ONCE(counter->ctx->parent_ctx);
2295 mutex_lock(&counter->mmap_mutex);
2296 if (counter->output) {
2297 ret = -EINVAL;
2298 goto unlock;
2299 }
2300
2301 if (atomic_inc_not_zero(&counter->mmap_count)) {
2302 if (nr_pages != counter->data->nr_pages)
2303 ret = -EINVAL;
2304 goto unlock;
2305 }
2306
2307 user_extra = nr_pages + 1;
2308 user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
2309
2310 /*
2311 * Increase the limit linearly with more CPUs:
2312 */
2313 user_lock_limit *= num_online_cpus();
2314
2315 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2316
2317 extra = 0;
2318 if (user_locked > user_lock_limit)
2319 extra = user_locked - user_lock_limit;
2320
2321 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2322 lock_limit >>= PAGE_SHIFT;
2323 locked = vma->vm_mm->locked_vm + extra;
2324
2325 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2326 !capable(CAP_IPC_LOCK)) {
2327 ret = -EPERM;
2328 goto unlock;
2329 }
2330
2331 WARN_ON(counter->data);
2332 ret = perf_mmap_data_alloc(counter, nr_pages);
2333 if (ret)
2334 goto unlock;
2335
2336 atomic_set(&counter->mmap_count, 1);
2337 atomic_long_add(user_extra, &user->locked_vm);
2338 vma->vm_mm->locked_vm += extra;
2339 counter->data->nr_locked = extra;
2340 if (vma->vm_flags & VM_WRITE)
2341 counter->data->writable = 1;
2342
2343 unlock:
2344 mutex_unlock(&counter->mmap_mutex);
2345
2346 vma->vm_flags |= VM_RESERVED;
2347 vma->vm_ops = &perf_mmap_vmops;
2348
2349 return ret;
2350 }
2351
2352 static int perf_fasync(int fd, struct file *filp, int on)
2353 {
2354 struct inode *inode = filp->f_path.dentry->d_inode;
2355 struct perf_counter *counter = filp->private_data;
2356 int retval;
2357
2358 mutex_lock(&inode->i_mutex);
2359 retval = fasync_helper(fd, filp, on, &counter->fasync);
2360 mutex_unlock(&inode->i_mutex);
2361
2362 if (retval < 0)
2363 return retval;
2364
2365 return 0;
2366 }
2367
2368 static const struct file_operations perf_fops = {
2369 .release = perf_release,
2370 .read = perf_read,
2371 .poll = perf_poll,
2372 .unlocked_ioctl = perf_ioctl,
2373 .compat_ioctl = perf_ioctl,
2374 .mmap = perf_mmap,
2375 .fasync = perf_fasync,
2376 };
2377
2378 /*
2379 * Perf counter wakeup
2380 *
2381 * If there's data, ensure we set the poll() state and publish everything
2382 * to user-space before waking everybody up.
2383 */
2384
2385 void perf_counter_wakeup(struct perf_counter *counter)
2386 {
2387 wake_up_all(&counter->waitq);
2388
2389 if (counter->pending_kill) {
2390 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
2391 counter->pending_kill = 0;
2392 }
2393 }
2394
2395 /*
2396 * Pending wakeups
2397 *
2398 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2399 *
2400 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2401 * single linked list and use cmpxchg() to add entries lockless.
2402 */
2403
2404 static void perf_pending_counter(struct perf_pending_entry *entry)
2405 {
2406 struct perf_counter *counter = container_of(entry,
2407 struct perf_counter, pending);
2408
2409 if (counter->pending_disable) {
2410 counter->pending_disable = 0;
2411 __perf_counter_disable(counter);
2412 }
2413
2414 if (counter->pending_wakeup) {
2415 counter->pending_wakeup = 0;
2416 perf_counter_wakeup(counter);
2417 }
2418 }
2419
2420 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2421
2422 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2423 PENDING_TAIL,
2424 };
2425
2426 static void perf_pending_queue(struct perf_pending_entry *entry,
2427 void (*func)(struct perf_pending_entry *))
2428 {
2429 struct perf_pending_entry **head;
2430
2431 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2432 return;
2433
2434 entry->func = func;
2435
2436 head = &get_cpu_var(perf_pending_head);
2437
2438 do {
2439 entry->next = *head;
2440 } while (cmpxchg(head, entry->next, entry) != entry->next);
2441
2442 set_perf_counter_pending();
2443
2444 put_cpu_var(perf_pending_head);
2445 }
2446
2447 static int __perf_pending_run(void)
2448 {
2449 struct perf_pending_entry *list;
2450 int nr = 0;
2451
2452 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2453 while (list != PENDING_TAIL) {
2454 void (*func)(struct perf_pending_entry *);
2455 struct perf_pending_entry *entry = list;
2456
2457 list = list->next;
2458
2459 func = entry->func;
2460 entry->next = NULL;
2461 /*
2462 * Ensure we observe the unqueue before we issue the wakeup,
2463 * so that we won't be waiting forever.
2464 * -- see perf_not_pending().
2465 */
2466 smp_wmb();
2467
2468 func(entry);
2469 nr++;
2470 }
2471
2472 return nr;
2473 }
2474
2475 static inline int perf_not_pending(struct perf_counter *counter)
2476 {
2477 /*
2478 * If we flush on whatever cpu we run, there is a chance we don't
2479 * need to wait.
2480 */
2481 get_cpu();
2482 __perf_pending_run();
2483 put_cpu();
2484
2485 /*
2486 * Ensure we see the proper queue state before going to sleep
2487 * so that we do not miss the wakeup. -- see perf_pending_handle()
2488 */
2489 smp_rmb();
2490 return counter->pending.next == NULL;
2491 }
2492
2493 static void perf_pending_sync(struct perf_counter *counter)
2494 {
2495 wait_event(counter->waitq, perf_not_pending(counter));
2496 }
2497
2498 void perf_counter_do_pending(void)
2499 {
2500 __perf_pending_run();
2501 }
2502
2503 /*
2504 * Callchain support -- arch specific
2505 */
2506
2507 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2508 {
2509 return NULL;
2510 }
2511
2512 /*
2513 * Output
2514 */
2515 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2516 unsigned long offset, unsigned long head)
2517 {
2518 unsigned long mask;
2519
2520 if (!data->writable)
2521 return true;
2522
2523 mask = (data->nr_pages << PAGE_SHIFT) - 1;
2524
2525 offset = (offset - tail) & mask;
2526 head = (head - tail) & mask;
2527
2528 if ((int)(head - offset) < 0)
2529 return false;
2530
2531 return true;
2532 }
2533
2534 static void perf_output_wakeup(struct perf_output_handle *handle)
2535 {
2536 atomic_set(&handle->data->poll, POLL_IN);
2537
2538 if (handle->nmi) {
2539 handle->counter->pending_wakeup = 1;
2540 perf_pending_queue(&handle->counter->pending,
2541 perf_pending_counter);
2542 } else
2543 perf_counter_wakeup(handle->counter);
2544 }
2545
2546 /*
2547 * Curious locking construct.
2548 *
2549 * We need to ensure a later event doesn't publish a head when a former
2550 * event isn't done writing. However since we need to deal with NMIs we
2551 * cannot fully serialize things.
2552 *
2553 * What we do is serialize between CPUs so we only have to deal with NMI
2554 * nesting on a single CPU.
2555 *
2556 * We only publish the head (and generate a wakeup) when the outer-most
2557 * event completes.
2558 */
2559 static void perf_output_lock(struct perf_output_handle *handle)
2560 {
2561 struct perf_mmap_data *data = handle->data;
2562 int cpu;
2563
2564 handle->locked = 0;
2565
2566 local_irq_save(handle->flags);
2567 cpu = smp_processor_id();
2568
2569 if (in_nmi() && atomic_read(&data->lock) == cpu)
2570 return;
2571
2572 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2573 cpu_relax();
2574
2575 handle->locked = 1;
2576 }
2577
2578 static void perf_output_unlock(struct perf_output_handle *handle)
2579 {
2580 struct perf_mmap_data *data = handle->data;
2581 unsigned long head;
2582 int cpu;
2583
2584 data->done_head = data->head;
2585
2586 if (!handle->locked)
2587 goto out;
2588
2589 again:
2590 /*
2591 * The xchg implies a full barrier that ensures all writes are done
2592 * before we publish the new head, matched by a rmb() in userspace when
2593 * reading this position.
2594 */
2595 while ((head = atomic_long_xchg(&data->done_head, 0)))
2596 data->user_page->data_head = head;
2597
2598 /*
2599 * NMI can happen here, which means we can miss a done_head update.
2600 */
2601
2602 cpu = atomic_xchg(&data->lock, -1);
2603 WARN_ON_ONCE(cpu != smp_processor_id());
2604
2605 /*
2606 * Therefore we have to validate we did not indeed do so.
2607 */
2608 if (unlikely(atomic_long_read(&data->done_head))) {
2609 /*
2610 * Since we had it locked, we can lock it again.
2611 */
2612 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2613 cpu_relax();
2614
2615 goto again;
2616 }
2617
2618 if (atomic_xchg(&data->wakeup, 0))
2619 perf_output_wakeup(handle);
2620 out:
2621 local_irq_restore(handle->flags);
2622 }
2623
2624 void perf_output_copy(struct perf_output_handle *handle,
2625 const void *buf, unsigned int len)
2626 {
2627 unsigned int pages_mask;
2628 unsigned int offset;
2629 unsigned int size;
2630 void **pages;
2631
2632 offset = handle->offset;
2633 pages_mask = handle->data->nr_pages - 1;
2634 pages = handle->data->data_pages;
2635
2636 do {
2637 unsigned int page_offset;
2638 int nr;
2639
2640 nr = (offset >> PAGE_SHIFT) & pages_mask;
2641 page_offset = offset & (PAGE_SIZE - 1);
2642 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2643
2644 memcpy(pages[nr] + page_offset, buf, size);
2645
2646 len -= size;
2647 buf += size;
2648 offset += size;
2649 } while (len);
2650
2651 handle->offset = offset;
2652
2653 /*
2654 * Check we didn't copy past our reservation window, taking the
2655 * possible unsigned int wrap into account.
2656 */
2657 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2658 }
2659
2660 int perf_output_begin(struct perf_output_handle *handle,
2661 struct perf_counter *counter, unsigned int size,
2662 int nmi, int sample)
2663 {
2664 struct perf_counter *output_counter;
2665 struct perf_mmap_data *data;
2666 unsigned long tail, offset, head;
2667 int have_lost;
2668 struct {
2669 struct perf_event_header header;
2670 u64 id;
2671 u64 lost;
2672 } lost_event;
2673
2674 rcu_read_lock();
2675 /*
2676 * For inherited counters we send all the output towards the parent.
2677 */
2678 if (counter->parent)
2679 counter = counter->parent;
2680
2681 output_counter = rcu_dereference(counter->output);
2682 if (output_counter)
2683 counter = output_counter;
2684
2685 data = rcu_dereference(counter->data);
2686 if (!data)
2687 goto out;
2688
2689 handle->data = data;
2690 handle->counter = counter;
2691 handle->nmi = nmi;
2692 handle->sample = sample;
2693
2694 if (!data->nr_pages)
2695 goto fail;
2696
2697 have_lost = atomic_read(&data->lost);
2698 if (have_lost)
2699 size += sizeof(lost_event);
2700
2701 perf_output_lock(handle);
2702
2703 do {
2704 /*
2705 * Userspace could choose to issue a mb() before updating the
2706 * tail pointer. So that all reads will be completed before the
2707 * write is issued.
2708 */
2709 tail = ACCESS_ONCE(data->user_page->data_tail);
2710 smp_rmb();
2711 offset = head = atomic_long_read(&data->head);
2712 head += size;
2713 if (unlikely(!perf_output_space(data, tail, offset, head)))
2714 goto fail;
2715 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2716
2717 handle->offset = offset;
2718 handle->head = head;
2719
2720 if (head - tail > data->watermark)
2721 atomic_set(&data->wakeup, 1);
2722
2723 if (have_lost) {
2724 lost_event.header.type = PERF_EVENT_LOST;
2725 lost_event.header.misc = 0;
2726 lost_event.header.size = sizeof(lost_event);
2727 lost_event.id = counter->id;
2728 lost_event.lost = atomic_xchg(&data->lost, 0);
2729
2730 perf_output_put(handle, lost_event);
2731 }
2732
2733 return 0;
2734
2735 fail:
2736 atomic_inc(&data->lost);
2737 perf_output_unlock(handle);
2738 out:
2739 rcu_read_unlock();
2740
2741 return -ENOSPC;
2742 }
2743
2744 void perf_output_end(struct perf_output_handle *handle)
2745 {
2746 struct perf_counter *counter = handle->counter;
2747 struct perf_mmap_data *data = handle->data;
2748
2749 int wakeup_events = counter->attr.wakeup_events;
2750
2751 if (handle->sample && wakeup_events) {
2752 int events = atomic_inc_return(&data->events);
2753 if (events >= wakeup_events) {
2754 atomic_sub(wakeup_events, &data->events);
2755 atomic_set(&data->wakeup, 1);
2756 }
2757 }
2758
2759 perf_output_unlock(handle);
2760 rcu_read_unlock();
2761 }
2762
2763 static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p)
2764 {
2765 /*
2766 * only top level counters have the pid namespace they were created in
2767 */
2768 if (counter->parent)
2769 counter = counter->parent;
2770
2771 return task_tgid_nr_ns(p, counter->ns);
2772 }
2773
2774 static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p)
2775 {
2776 /*
2777 * only top level counters have the pid namespace they were created in
2778 */
2779 if (counter->parent)
2780 counter = counter->parent;
2781
2782 return task_pid_nr_ns(p, counter->ns);
2783 }
2784
2785 static void perf_output_read_one(struct perf_output_handle *handle,
2786 struct perf_counter *counter)
2787 {
2788 u64 read_format = counter->attr.read_format;
2789 u64 values[4];
2790 int n = 0;
2791
2792 values[n++] = atomic64_read(&counter->count);
2793 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2794 values[n++] = counter->total_time_enabled +
2795 atomic64_read(&counter->child_total_time_enabled);
2796 }
2797 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2798 values[n++] = counter->total_time_running +
2799 atomic64_read(&counter->child_total_time_running);
2800 }
2801 if (read_format & PERF_FORMAT_ID)
2802 values[n++] = primary_counter_id(counter);
2803
2804 perf_output_copy(handle, values, n * sizeof(u64));
2805 }
2806
2807 /*
2808 * XXX PERF_FORMAT_GROUP vs inherited counters seems difficult.
2809 */
2810 static void perf_output_read_group(struct perf_output_handle *handle,
2811 struct perf_counter *counter)
2812 {
2813 struct perf_counter *leader = counter->group_leader, *sub;
2814 u64 read_format = counter->attr.read_format;
2815 u64 values[5];
2816 int n = 0;
2817
2818 values[n++] = 1 + leader->nr_siblings;
2819
2820 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2821 values[n++] = leader->total_time_enabled;
2822
2823 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2824 values[n++] = leader->total_time_running;
2825
2826 if (leader != counter)
2827 leader->pmu->read(leader);
2828
2829 values[n++] = atomic64_read(&leader->count);
2830 if (read_format & PERF_FORMAT_ID)
2831 values[n++] = primary_counter_id(leader);
2832
2833 perf_output_copy(handle, values, n * sizeof(u64));
2834
2835 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2836 n = 0;
2837
2838 if (sub != counter)
2839 sub->pmu->read(sub);
2840
2841 values[n++] = atomic64_read(&sub->count);
2842 if (read_format & PERF_FORMAT_ID)
2843 values[n++] = primary_counter_id(sub);
2844
2845 perf_output_copy(handle, values, n * sizeof(u64));
2846 }
2847 }
2848
2849 static void perf_output_read(struct perf_output_handle *handle,
2850 struct perf_counter *counter)
2851 {
2852 if (counter->attr.read_format & PERF_FORMAT_GROUP)
2853 perf_output_read_group(handle, counter);
2854 else
2855 perf_output_read_one(handle, counter);
2856 }
2857
2858 void perf_output_sample(struct perf_output_handle *handle,
2859 struct perf_event_header *header,
2860 struct perf_sample_data *data,
2861 struct perf_counter *counter)
2862 {
2863 u64 sample_type = data->type;
2864
2865 perf_output_put(handle, *header);
2866
2867 if (sample_type & PERF_SAMPLE_IP)
2868 perf_output_put(handle, data->ip);
2869
2870 if (sample_type & PERF_SAMPLE_TID)
2871 perf_output_put(handle, data->tid_entry);
2872
2873 if (sample_type & PERF_SAMPLE_TIME)
2874 perf_output_put(handle, data->time);
2875
2876 if (sample_type & PERF_SAMPLE_ADDR)
2877 perf_output_put(handle, data->addr);
2878
2879 if (sample_type & PERF_SAMPLE_ID)
2880 perf_output_put(handle, data->id);
2881
2882 if (sample_type & PERF_SAMPLE_STREAM_ID)
2883 perf_output_put(handle, data->stream_id);
2884
2885 if (sample_type & PERF_SAMPLE_CPU)
2886 perf_output_put(handle, data->cpu_entry);
2887
2888 if (sample_type & PERF_SAMPLE_PERIOD)
2889 perf_output_put(handle, data->period);
2890
2891 if (sample_type & PERF_SAMPLE_READ)
2892 perf_output_read(handle, counter);
2893
2894 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2895 if (data->callchain) {
2896 int size = 1;
2897
2898 if (data->callchain)
2899 size += data->callchain->nr;
2900
2901 size *= sizeof(u64);
2902
2903 perf_output_copy(handle, data->callchain, size);
2904 } else {
2905 u64 nr = 0;
2906 perf_output_put(handle, nr);
2907 }
2908 }
2909
2910 if (sample_type & PERF_SAMPLE_RAW) {
2911 if (data->raw) {
2912 perf_output_put(handle, data->raw->size);
2913 perf_output_copy(handle, data->raw->data,
2914 data->raw->size);
2915 } else {
2916 struct {
2917 u32 size;
2918 u32 data;
2919 } raw = {
2920 .size = sizeof(u32),
2921 .data = 0,
2922 };
2923 perf_output_put(handle, raw);
2924 }
2925 }
2926 }
2927
2928 void perf_prepare_sample(struct perf_event_header *header,
2929 struct perf_sample_data *data,
2930 struct perf_counter *counter,
2931 struct pt_regs *regs)
2932 {
2933 u64 sample_type = counter->attr.sample_type;
2934
2935 data->type = sample_type;
2936
2937 header->type = PERF_EVENT_SAMPLE;
2938 header->size = sizeof(*header);
2939
2940 header->misc = 0;
2941 header->misc |= perf_misc_flags(regs);
2942
2943 if (sample_type & PERF_SAMPLE_IP) {
2944 data->ip = perf_instruction_pointer(regs);
2945
2946 header->size += sizeof(data->ip);
2947 }
2948
2949 if (sample_type & PERF_SAMPLE_TID) {
2950 /* namespace issues */
2951 data->tid_entry.pid = perf_counter_pid(counter, current);
2952 data->tid_entry.tid = perf_counter_tid(counter, current);
2953
2954 header->size += sizeof(data->tid_entry);
2955 }
2956
2957 if (sample_type & PERF_SAMPLE_TIME) {
2958 /*
2959 * Maybe do better on x86 and provide cpu_clock_nmi()
2960 */
2961 data->time = sched_clock();
2962
2963 header->size += sizeof(data->time);
2964 }
2965
2966 if (sample_type & PERF_SAMPLE_ADDR)
2967 header->size += sizeof(data->addr);
2968
2969 if (sample_type & PERF_SAMPLE_ID) {
2970 data->id = primary_counter_id(counter);
2971
2972 header->size += sizeof(data->id);
2973 }
2974
2975 if (sample_type & PERF_SAMPLE_STREAM_ID) {
2976 data->stream_id = counter->id;
2977
2978 header->size += sizeof(data->stream_id);
2979 }
2980
2981 if (sample_type & PERF_SAMPLE_CPU) {
2982 data->cpu_entry.cpu = raw_smp_processor_id();
2983 data->cpu_entry.reserved = 0;
2984
2985 header->size += sizeof(data->cpu_entry);
2986 }
2987
2988 if (sample_type & PERF_SAMPLE_PERIOD)
2989 header->size += sizeof(data->period);
2990
2991 if (sample_type & PERF_SAMPLE_READ)
2992 header->size += perf_counter_read_size(counter);
2993
2994 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2995 int size = 1;
2996
2997 data->callchain = perf_callchain(regs);
2998
2999 if (data->callchain)
3000 size += data->callchain->nr;
3001
3002 header->size += size * sizeof(u64);
3003 }
3004
3005 if (sample_type & PERF_SAMPLE_RAW) {
3006 int size = sizeof(u32);
3007
3008 if (data->raw)
3009 size += data->raw->size;
3010 else
3011 size += sizeof(u32);
3012
3013 WARN_ON_ONCE(size & (sizeof(u64)-1));
3014 header->size += size;
3015 }
3016 }
3017
3018 static void perf_counter_output(struct perf_counter *counter, int nmi,
3019 struct perf_sample_data *data,
3020 struct pt_regs *regs)
3021 {
3022 struct perf_output_handle handle;
3023 struct perf_event_header header;
3024
3025 perf_prepare_sample(&header, data, counter, regs);
3026
3027 if (perf_output_begin(&handle, counter, header.size, nmi, 1))
3028 return;
3029
3030 perf_output_sample(&handle, &header, data, counter);
3031
3032 perf_output_end(&handle);
3033 }
3034
3035 /*
3036 * read event
3037 */
3038
3039 struct perf_read_event {
3040 struct perf_event_header header;
3041
3042 u32 pid;
3043 u32 tid;
3044 };
3045
3046 static void
3047 perf_counter_read_event(struct perf_counter *counter,
3048 struct task_struct *task)
3049 {
3050 struct perf_output_handle handle;
3051 struct perf_read_event event = {
3052 .header = {
3053 .type = PERF_EVENT_READ,
3054 .misc = 0,
3055 .size = sizeof(event) + perf_counter_read_size(counter),
3056 },
3057 .pid = perf_counter_pid(counter, task),
3058 .tid = perf_counter_tid(counter, task),
3059 };
3060 int ret;
3061
3062 ret = perf_output_begin(&handle, counter, event.header.size, 0, 0);
3063 if (ret)
3064 return;
3065
3066 perf_output_put(&handle, event);
3067 perf_output_read(&handle, counter);
3068
3069 perf_output_end(&handle);
3070 }
3071
3072 /*
3073 * task tracking -- fork/exit
3074 *
3075 * enabled by: attr.comm | attr.mmap | attr.task
3076 */
3077
3078 struct perf_task_event {
3079 struct task_struct *task;
3080 struct perf_counter_context *task_ctx;
3081
3082 struct {
3083 struct perf_event_header header;
3084
3085 u32 pid;
3086 u32 ppid;
3087 u32 tid;
3088 u32 ptid;
3089 } event;
3090 };
3091
3092 static void perf_counter_task_output(struct perf_counter *counter,
3093 struct perf_task_event *task_event)
3094 {
3095 struct perf_output_handle handle;
3096 int size = task_event->event.header.size;
3097 struct task_struct *task = task_event->task;
3098 int ret = perf_output_begin(&handle, counter, size, 0, 0);
3099
3100 if (ret)
3101 return;
3102
3103 task_event->event.pid = perf_counter_pid(counter, task);
3104 task_event->event.ppid = perf_counter_pid(counter, current);
3105
3106 task_event->event.tid = perf_counter_tid(counter, task);
3107 task_event->event.ptid = perf_counter_tid(counter, current);
3108
3109 perf_output_put(&handle, task_event->event);
3110 perf_output_end(&handle);
3111 }
3112
3113 static int perf_counter_task_match(struct perf_counter *counter)
3114 {
3115 if (counter->attr.comm || counter->attr.mmap || counter->attr.task)
3116 return 1;
3117
3118 return 0;
3119 }
3120
3121 static void perf_counter_task_ctx(struct perf_counter_context *ctx,
3122 struct perf_task_event *task_event)
3123 {
3124 struct perf_counter *counter;
3125
3126 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3127 return;
3128
3129 rcu_read_lock();
3130 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3131 if (perf_counter_task_match(counter))
3132 perf_counter_task_output(counter, task_event);
3133 }
3134 rcu_read_unlock();
3135 }
3136
3137 static void perf_counter_task_event(struct perf_task_event *task_event)
3138 {
3139 struct perf_cpu_context *cpuctx;
3140 struct perf_counter_context *ctx = task_event->task_ctx;
3141
3142 cpuctx = &get_cpu_var(perf_cpu_context);
3143 perf_counter_task_ctx(&cpuctx->ctx, task_event);
3144 put_cpu_var(perf_cpu_context);
3145
3146 rcu_read_lock();
3147 if (!ctx)
3148 ctx = rcu_dereference(task_event->task->perf_counter_ctxp);
3149 if (ctx)
3150 perf_counter_task_ctx(ctx, task_event);
3151 rcu_read_unlock();
3152 }
3153
3154 static void perf_counter_task(struct task_struct *task,
3155 struct perf_counter_context *task_ctx,
3156 int new)
3157 {
3158 struct perf_task_event task_event;
3159
3160 if (!atomic_read(&nr_comm_counters) &&
3161 !atomic_read(&nr_mmap_counters) &&
3162 !atomic_read(&nr_task_counters))
3163 return;
3164
3165 task_event = (struct perf_task_event){
3166 .task = task,
3167 .task_ctx = task_ctx,
3168 .event = {
3169 .header = {
3170 .type = new ? PERF_EVENT_FORK : PERF_EVENT_EXIT,
3171 .misc = 0,
3172 .size = sizeof(task_event.event),
3173 },
3174 /* .pid */
3175 /* .ppid */
3176 /* .tid */
3177 /* .ptid */
3178 },
3179 };
3180
3181 perf_counter_task_event(&task_event);
3182 }
3183
3184 void perf_counter_fork(struct task_struct *task)
3185 {
3186 perf_counter_task(task, NULL, 1);
3187 }
3188
3189 /*
3190 * comm tracking
3191 */
3192
3193 struct perf_comm_event {
3194 struct task_struct *task;
3195 char *comm;
3196 int comm_size;
3197
3198 struct {
3199 struct perf_event_header header;
3200
3201 u32 pid;
3202 u32 tid;
3203 } event;
3204 };
3205
3206 static void perf_counter_comm_output(struct perf_counter *counter,
3207 struct perf_comm_event *comm_event)
3208 {
3209 struct perf_output_handle handle;
3210 int size = comm_event->event.header.size;
3211 int ret = perf_output_begin(&handle, counter, size, 0, 0);
3212
3213 if (ret)
3214 return;
3215
3216 comm_event->event.pid = perf_counter_pid(counter, comm_event->task);
3217 comm_event->event.tid = perf_counter_tid(counter, comm_event->task);
3218
3219 perf_output_put(&handle, comm_event->event);
3220 perf_output_copy(&handle, comm_event->comm,
3221 comm_event->comm_size);
3222 perf_output_end(&handle);
3223 }
3224
3225 static int perf_counter_comm_match(struct perf_counter *counter)
3226 {
3227 if (counter->attr.comm)
3228 return 1;
3229
3230 return 0;
3231 }
3232
3233 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
3234 struct perf_comm_event *comm_event)
3235 {
3236 struct perf_counter *counter;
3237
3238 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3239 return;
3240
3241 rcu_read_lock();
3242 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3243 if (perf_counter_comm_match(counter))
3244 perf_counter_comm_output(counter, comm_event);
3245 }
3246 rcu_read_unlock();
3247 }
3248
3249 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
3250 {
3251 struct perf_cpu_context *cpuctx;
3252 struct perf_counter_context *ctx;
3253 unsigned int size;
3254 char comm[TASK_COMM_LEN];
3255
3256 memset(comm, 0, sizeof(comm));
3257 strncpy(comm, comm_event->task->comm, sizeof(comm));
3258 size = ALIGN(strlen(comm)+1, sizeof(u64));
3259
3260 comm_event->comm = comm;
3261 comm_event->comm_size = size;
3262
3263 comm_event->event.header.size = sizeof(comm_event->event) + size;
3264
3265 cpuctx = &get_cpu_var(perf_cpu_context);
3266 perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
3267 put_cpu_var(perf_cpu_context);
3268
3269 rcu_read_lock();
3270 /*
3271 * doesn't really matter which of the child contexts the
3272 * events ends up in.
3273 */
3274 ctx = rcu_dereference(current->perf_counter_ctxp);
3275 if (ctx)
3276 perf_counter_comm_ctx(ctx, comm_event);
3277 rcu_read_unlock();
3278 }
3279
3280 void perf_counter_comm(struct task_struct *task)
3281 {
3282 struct perf_comm_event comm_event;
3283
3284 if (task->perf_counter_ctxp)
3285 perf_counter_enable_on_exec(task);
3286
3287 if (!atomic_read(&nr_comm_counters))
3288 return;
3289
3290 comm_event = (struct perf_comm_event){
3291 .task = task,
3292 /* .comm */
3293 /* .comm_size */
3294 .event = {
3295 .header = {
3296 .type = PERF_EVENT_COMM,
3297 .misc = 0,
3298 /* .size */
3299 },
3300 /* .pid */
3301 /* .tid */
3302 },
3303 };
3304
3305 perf_counter_comm_event(&comm_event);
3306 }
3307
3308 /*
3309 * mmap tracking
3310 */
3311
3312 struct perf_mmap_event {
3313 struct vm_area_struct *vma;
3314
3315 const char *file_name;
3316 int file_size;
3317
3318 struct {
3319 struct perf_event_header header;
3320
3321 u32 pid;
3322 u32 tid;
3323 u64 start;
3324 u64 len;
3325 u64 pgoff;
3326 } event;
3327 };
3328
3329 static void perf_counter_mmap_output(struct perf_counter *counter,
3330 struct perf_mmap_event *mmap_event)
3331 {
3332 struct perf_output_handle handle;
3333 int size = mmap_event->event.header.size;
3334 int ret = perf_output_begin(&handle, counter, size, 0, 0);
3335
3336 if (ret)
3337 return;
3338
3339 mmap_event->event.pid = perf_counter_pid(counter, current);
3340 mmap_event->event.tid = perf_counter_tid(counter, current);
3341
3342 perf_output_put(&handle, mmap_event->event);
3343 perf_output_copy(&handle, mmap_event->file_name,
3344 mmap_event->file_size);
3345 perf_output_end(&handle);
3346 }
3347
3348 static int perf_counter_mmap_match(struct perf_counter *counter,
3349 struct perf_mmap_event *mmap_event)
3350 {
3351 if (counter->attr.mmap)
3352 return 1;
3353
3354 return 0;
3355 }
3356
3357 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
3358 struct perf_mmap_event *mmap_event)
3359 {
3360 struct perf_counter *counter;
3361
3362 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3363 return;
3364
3365 rcu_read_lock();
3366 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3367 if (perf_counter_mmap_match(counter, mmap_event))
3368 perf_counter_mmap_output(counter, mmap_event);
3369 }
3370 rcu_read_unlock();
3371 }
3372
3373 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
3374 {
3375 struct perf_cpu_context *cpuctx;
3376 struct perf_counter_context *ctx;
3377 struct vm_area_struct *vma = mmap_event->vma;
3378 struct file *file = vma->vm_file;
3379 unsigned int size;
3380 char tmp[16];
3381 char *buf = NULL;
3382 const char *name;
3383
3384 memset(tmp, 0, sizeof(tmp));
3385
3386 if (file) {
3387 /*
3388 * d_path works from the end of the buffer backwards, so we
3389 * need to add enough zero bytes after the string to handle
3390 * the 64bit alignment we do later.
3391 */
3392 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3393 if (!buf) {
3394 name = strncpy(tmp, "//enomem", sizeof(tmp));
3395 goto got_name;
3396 }
3397 name = d_path(&file->f_path, buf, PATH_MAX);
3398 if (IS_ERR(name)) {
3399 name = strncpy(tmp, "//toolong", sizeof(tmp));
3400 goto got_name;
3401 }
3402 } else {
3403 if (arch_vma_name(mmap_event->vma)) {
3404 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3405 sizeof(tmp));
3406 goto got_name;
3407 }
3408
3409 if (!vma->vm_mm) {
3410 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3411 goto got_name;
3412 }
3413
3414 name = strncpy(tmp, "//anon", sizeof(tmp));
3415 goto got_name;
3416 }
3417
3418 got_name:
3419 size = ALIGN(strlen(name)+1, sizeof(u64));
3420
3421 mmap_event->file_name = name;
3422 mmap_event->file_size = size;
3423
3424 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
3425
3426 cpuctx = &get_cpu_var(perf_cpu_context);
3427 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
3428 put_cpu_var(perf_cpu_context);
3429
3430 rcu_read_lock();
3431 /*
3432 * doesn't really matter which of the child contexts the
3433 * events ends up in.
3434 */
3435 ctx = rcu_dereference(current->perf_counter_ctxp);
3436 if (ctx)
3437 perf_counter_mmap_ctx(ctx, mmap_event);
3438 rcu_read_unlock();
3439
3440 kfree(buf);
3441 }
3442
3443 void __perf_counter_mmap(struct vm_area_struct *vma)
3444 {
3445 struct perf_mmap_event mmap_event;
3446
3447 if (!atomic_read(&nr_mmap_counters))
3448 return;
3449
3450 mmap_event = (struct perf_mmap_event){
3451 .vma = vma,
3452 /* .file_name */
3453 /* .file_size */
3454 .event = {
3455 .header = {
3456 .type = PERF_EVENT_MMAP,
3457 .misc = 0,
3458 /* .size */
3459 },
3460 /* .pid */
3461 /* .tid */
3462 .start = vma->vm_start,
3463 .len = vma->vm_end - vma->vm_start,
3464 .pgoff = vma->vm_pgoff,
3465 },
3466 };
3467
3468 perf_counter_mmap_event(&mmap_event);
3469 }
3470
3471 /*
3472 * IRQ throttle logging
3473 */
3474
3475 static void perf_log_throttle(struct perf_counter *counter, int enable)
3476 {
3477 struct perf_output_handle handle;
3478 int ret;
3479
3480 struct {
3481 struct perf_event_header header;
3482 u64 time;
3483 u64 id;
3484 u64 stream_id;
3485 } throttle_event = {
3486 .header = {
3487 .type = PERF_EVENT_THROTTLE,
3488 .misc = 0,
3489 .size = sizeof(throttle_event),
3490 },
3491 .time = sched_clock(),
3492 .id = primary_counter_id(counter),
3493 .stream_id = counter->id,
3494 };
3495
3496 if (enable)
3497 throttle_event.header.type = PERF_EVENT_UNTHROTTLE;
3498
3499 ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0);
3500 if (ret)
3501 return;
3502
3503 perf_output_put(&handle, throttle_event);
3504 perf_output_end(&handle);
3505 }
3506
3507 /*
3508 * Generic counter overflow handling, sampling.
3509 */
3510
3511 static int __perf_counter_overflow(struct perf_counter *counter, int nmi,
3512 int throttle, struct perf_sample_data *data,
3513 struct pt_regs *regs)
3514 {
3515 int events = atomic_read(&counter->event_limit);
3516 struct hw_perf_counter *hwc = &counter->hw;
3517 int ret = 0;
3518
3519 throttle = (throttle && counter->pmu->unthrottle != NULL);
3520
3521 if (!throttle) {
3522 hwc->interrupts++;
3523 } else {
3524 if (hwc->interrupts != MAX_INTERRUPTS) {
3525 hwc->interrupts++;
3526 if (HZ * hwc->interrupts >
3527 (u64)sysctl_perf_counter_sample_rate) {
3528 hwc->interrupts = MAX_INTERRUPTS;
3529 perf_log_throttle(counter, 0);
3530 ret = 1;
3531 }
3532 } else {
3533 /*
3534 * Keep re-disabling counters even though on the previous
3535 * pass we disabled it - just in case we raced with a
3536 * sched-in and the counter got enabled again:
3537 */
3538 ret = 1;
3539 }
3540 }
3541
3542 if (counter->attr.freq) {
3543 u64 now = sched_clock();
3544 s64 delta = now - hwc->freq_stamp;
3545
3546 hwc->freq_stamp = now;
3547
3548 if (delta > 0 && delta < TICK_NSEC)
3549 perf_adjust_period(counter, NSEC_PER_SEC / (int)delta);
3550 }
3551
3552 /*
3553 * XXX event_limit might not quite work as expected on inherited
3554 * counters
3555 */
3556
3557 counter->pending_kill = POLL_IN;
3558 if (events && atomic_dec_and_test(&counter->event_limit)) {
3559 ret = 1;
3560 counter->pending_kill = POLL_HUP;
3561 if (nmi) {
3562 counter->pending_disable = 1;
3563 perf_pending_queue(&counter->pending,
3564 perf_pending_counter);
3565 } else
3566 perf_counter_disable(counter);
3567 }
3568
3569 perf_counter_output(counter, nmi, data, regs);
3570 return ret;
3571 }
3572
3573 int perf_counter_overflow(struct perf_counter *counter, int nmi,
3574 struct perf_sample_data *data,
3575 struct pt_regs *regs)
3576 {
3577 return __perf_counter_overflow(counter, nmi, 1, data, regs);
3578 }
3579
3580 /*
3581 * Generic software counter infrastructure
3582 */
3583
3584 /*
3585 * We directly increment counter->count and keep a second value in
3586 * counter->hw.period_left to count intervals. This period counter
3587 * is kept in the range [-sample_period, 0] so that we can use the
3588 * sign as trigger.
3589 */
3590
3591 static u64 perf_swcounter_set_period(struct perf_counter *counter)
3592 {
3593 struct hw_perf_counter *hwc = &counter->hw;
3594 u64 period = hwc->last_period;
3595 u64 nr, offset;
3596 s64 old, val;
3597
3598 hwc->last_period = hwc->sample_period;
3599
3600 again:
3601 old = val = atomic64_read(&hwc->period_left);
3602 if (val < 0)
3603 return 0;
3604
3605 nr = div64_u64(period + val, period);
3606 offset = nr * period;
3607 val -= offset;
3608 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3609 goto again;
3610
3611 return nr;
3612 }
3613
3614 static void perf_swcounter_overflow(struct perf_counter *counter,
3615 int nmi, struct perf_sample_data *data,
3616 struct pt_regs *regs)
3617 {
3618 struct hw_perf_counter *hwc = &counter->hw;
3619 int throttle = 0;
3620 u64 overflow;
3621
3622 data->period = counter->hw.last_period;
3623 overflow = perf_swcounter_set_period(counter);
3624
3625 if (hwc->interrupts == MAX_INTERRUPTS)
3626 return;
3627
3628 for (; overflow; overflow--) {
3629 if (__perf_counter_overflow(counter, nmi, throttle,
3630 data, regs)) {
3631 /*
3632 * We inhibit the overflow from happening when
3633 * hwc->interrupts == MAX_INTERRUPTS.
3634 */
3635 break;
3636 }
3637 throttle = 1;
3638 }
3639 }
3640
3641 static void perf_swcounter_unthrottle(struct perf_counter *counter)
3642 {
3643 /*
3644 * Nothing to do, we already reset hwc->interrupts.
3645 */
3646 }
3647
3648 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
3649 int nmi, struct perf_sample_data *data,
3650 struct pt_regs *regs)
3651 {
3652 struct hw_perf_counter *hwc = &counter->hw;
3653
3654 atomic64_add(nr, &counter->count);
3655
3656 if (!hwc->sample_period)
3657 return;
3658
3659 if (!regs)
3660 return;
3661
3662 if (!atomic64_add_negative(nr, &hwc->period_left))
3663 perf_swcounter_overflow(counter, nmi, data, regs);
3664 }
3665
3666 static int perf_swcounter_is_counting(struct perf_counter *counter)
3667 {
3668 /*
3669 * The counter is active, we're good!
3670 */
3671 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
3672 return 1;
3673
3674 /*
3675 * The counter is off/error, not counting.
3676 */
3677 if (counter->state != PERF_COUNTER_STATE_INACTIVE)
3678 return 0;
3679
3680 /*
3681 * The counter is inactive, if the context is active
3682 * we're part of a group that didn't make it on the 'pmu',
3683 * not counting.
3684 */
3685 if (counter->ctx->is_active)
3686 return 0;
3687
3688 /*
3689 * We're inactive and the context is too, this means the
3690 * task is scheduled out, we're counting events that happen
3691 * to us, like migration events.
3692 */
3693 return 1;
3694 }
3695
3696 static int perf_swcounter_match(struct perf_counter *counter,
3697 enum perf_type_id type,
3698 u32 event, struct pt_regs *regs)
3699 {
3700 if (!perf_swcounter_is_counting(counter))
3701 return 0;
3702
3703 if (counter->attr.type != type)
3704 return 0;
3705 if (counter->attr.config != event)
3706 return 0;
3707
3708 if (regs) {
3709 if (counter->attr.exclude_user && user_mode(regs))
3710 return 0;
3711
3712 if (counter->attr.exclude_kernel && !user_mode(regs))
3713 return 0;
3714 }
3715
3716 return 1;
3717 }
3718
3719 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
3720 enum perf_type_id type,
3721 u32 event, u64 nr, int nmi,
3722 struct perf_sample_data *data,
3723 struct pt_regs *regs)
3724 {
3725 struct perf_counter *counter;
3726
3727 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
3728 return;
3729
3730 rcu_read_lock();
3731 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
3732 if (perf_swcounter_match(counter, type, event, regs))
3733 perf_swcounter_add(counter, nr, nmi, data, regs);
3734 }
3735 rcu_read_unlock();
3736 }
3737
3738 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
3739 {
3740 if (in_nmi())
3741 return &cpuctx->recursion[3];
3742
3743 if (in_irq())
3744 return &cpuctx->recursion[2];
3745
3746 if (in_softirq())
3747 return &cpuctx->recursion[1];
3748
3749 return &cpuctx->recursion[0];
3750 }
3751
3752 static void do_perf_swcounter_event(enum perf_type_id type, u32 event,
3753 u64 nr, int nmi,
3754 struct perf_sample_data *data,
3755 struct pt_regs *regs)
3756 {
3757 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3758 int *recursion = perf_swcounter_recursion_context(cpuctx);
3759 struct perf_counter_context *ctx;
3760
3761 if (*recursion)
3762 goto out;
3763
3764 (*recursion)++;
3765 barrier();
3766
3767 perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
3768 nr, nmi, data, regs);
3769 rcu_read_lock();
3770 /*
3771 * doesn't really matter which of the child contexts the
3772 * events ends up in.
3773 */
3774 ctx = rcu_dereference(current->perf_counter_ctxp);
3775 if (ctx)
3776 perf_swcounter_ctx_event(ctx, type, event, nr, nmi, data, regs);
3777 rcu_read_unlock();
3778
3779 barrier();
3780 (*recursion)--;
3781
3782 out:
3783 put_cpu_var(perf_cpu_context);
3784 }
3785
3786 void __perf_swcounter_event(u32 event, u64 nr, int nmi,
3787 struct pt_regs *regs, u64 addr)
3788 {
3789 struct perf_sample_data data = {
3790 .addr = addr,
3791 };
3792
3793 do_perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi,
3794 &data, regs);
3795 }
3796
3797 static void perf_swcounter_read(struct perf_counter *counter)
3798 {
3799 }
3800
3801 static int perf_swcounter_enable(struct perf_counter *counter)
3802 {
3803 struct hw_perf_counter *hwc = &counter->hw;
3804
3805 if (hwc->sample_period) {
3806 hwc->last_period = hwc->sample_period;
3807 perf_swcounter_set_period(counter);
3808 }
3809 return 0;
3810 }
3811
3812 static void perf_swcounter_disable(struct perf_counter *counter)
3813 {
3814 }
3815
3816 static const struct pmu perf_ops_generic = {
3817 .enable = perf_swcounter_enable,
3818 .disable = perf_swcounter_disable,
3819 .read = perf_swcounter_read,
3820 .unthrottle = perf_swcounter_unthrottle,
3821 };
3822
3823 /*
3824 * hrtimer based swcounter callback
3825 */
3826
3827 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
3828 {
3829 enum hrtimer_restart ret = HRTIMER_RESTART;
3830 struct perf_sample_data data;
3831 struct pt_regs *regs;
3832 struct perf_counter *counter;
3833 u64 period;
3834
3835 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
3836 counter->pmu->read(counter);
3837
3838 data.addr = 0;
3839 regs = get_irq_regs();
3840 /*
3841 * In case we exclude kernel IPs or are somehow not in interrupt
3842 * context, provide the next best thing, the user IP.
3843 */
3844 if ((counter->attr.exclude_kernel || !regs) &&
3845 !counter->attr.exclude_user)
3846 regs = task_pt_regs(current);
3847
3848 if (regs) {
3849 if (perf_counter_overflow(counter, 0, &data, regs))
3850 ret = HRTIMER_NORESTART;
3851 }
3852
3853 period = max_t(u64, 10000, counter->hw.sample_period);
3854 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3855
3856 return ret;
3857 }
3858
3859 /*
3860 * Software counter: cpu wall time clock
3861 */
3862
3863 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
3864 {
3865 int cpu = raw_smp_processor_id();
3866 s64 prev;
3867 u64 now;
3868
3869 now = cpu_clock(cpu);
3870 prev = atomic64_read(&counter->hw.prev_count);
3871 atomic64_set(&counter->hw.prev_count, now);
3872 atomic64_add(now - prev, &counter->count);
3873 }
3874
3875 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
3876 {
3877 struct hw_perf_counter *hwc = &counter->hw;
3878 int cpu = raw_smp_processor_id();
3879
3880 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
3881 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3882 hwc->hrtimer.function = perf_swcounter_hrtimer;
3883 if (hwc->sample_period) {
3884 u64 period = max_t(u64, 10000, hwc->sample_period);
3885 __hrtimer_start_range_ns(&hwc->hrtimer,
3886 ns_to_ktime(period), 0,
3887 HRTIMER_MODE_REL, 0);
3888 }
3889
3890 return 0;
3891 }
3892
3893 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
3894 {
3895 if (counter->hw.sample_period)
3896 hrtimer_cancel(&counter->hw.hrtimer);
3897 cpu_clock_perf_counter_update(counter);
3898 }
3899
3900 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
3901 {
3902 cpu_clock_perf_counter_update(counter);
3903 }
3904
3905 static const struct pmu perf_ops_cpu_clock = {
3906 .enable = cpu_clock_perf_counter_enable,
3907 .disable = cpu_clock_perf_counter_disable,
3908 .read = cpu_clock_perf_counter_read,
3909 };
3910
3911 /*
3912 * Software counter: task time clock
3913 */
3914
3915 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
3916 {
3917 u64 prev;
3918 s64 delta;
3919
3920 prev = atomic64_xchg(&counter->hw.prev_count, now);
3921 delta = now - prev;
3922 atomic64_add(delta, &counter->count);
3923 }
3924
3925 static int task_clock_perf_counter_enable(struct perf_counter *counter)
3926 {
3927 struct hw_perf_counter *hwc = &counter->hw;
3928 u64 now;
3929
3930 now = counter->ctx->time;
3931
3932 atomic64_set(&hwc->prev_count, now);
3933 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3934 hwc->hrtimer.function = perf_swcounter_hrtimer;
3935 if (hwc->sample_period) {
3936 u64 period = max_t(u64, 10000, hwc->sample_period);
3937 __hrtimer_start_range_ns(&hwc->hrtimer,
3938 ns_to_ktime(period), 0,
3939 HRTIMER_MODE_REL, 0);
3940 }
3941
3942 return 0;
3943 }
3944
3945 static void task_clock_perf_counter_disable(struct perf_counter *counter)
3946 {
3947 if (counter->hw.sample_period)
3948 hrtimer_cancel(&counter->hw.hrtimer);
3949 task_clock_perf_counter_update(counter, counter->ctx->time);
3950
3951 }
3952
3953 static void task_clock_perf_counter_read(struct perf_counter *counter)
3954 {
3955 u64 time;
3956
3957 if (!in_nmi()) {
3958 update_context_time(counter->ctx);
3959 time = counter->ctx->time;
3960 } else {
3961 u64 now = perf_clock();
3962 u64 delta = now - counter->ctx->timestamp;
3963 time = counter->ctx->time + delta;
3964 }
3965
3966 task_clock_perf_counter_update(counter, time);
3967 }
3968
3969 static const struct pmu perf_ops_task_clock = {
3970 .enable = task_clock_perf_counter_enable,
3971 .disable = task_clock_perf_counter_disable,
3972 .read = task_clock_perf_counter_read,
3973 };
3974
3975 #ifdef CONFIG_EVENT_PROFILE
3976 void perf_tpcounter_event(int event_id, u64 addr, u64 count, void *record,
3977 int entry_size)
3978 {
3979 struct perf_raw_record raw = {
3980 .size = entry_size,
3981 .data = record,
3982 };
3983
3984 struct perf_sample_data data = {
3985 .addr = addr,
3986 .raw = &raw,
3987 };
3988
3989 struct pt_regs *regs = get_irq_regs();
3990
3991 if (!regs)
3992 regs = task_pt_regs(current);
3993
3994 do_perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
3995 &data, regs);
3996 }
3997 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3998
3999 extern int ftrace_profile_enable(int);
4000 extern void ftrace_profile_disable(int);
4001
4002 static void tp_perf_counter_destroy(struct perf_counter *counter)
4003 {
4004 ftrace_profile_disable(counter->attr.config);
4005 }
4006
4007 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
4008 {
4009 /*
4010 * Raw tracepoint data is a severe data leak, only allow root to
4011 * have these.
4012 */
4013 if ((counter->attr.sample_type & PERF_SAMPLE_RAW) &&
4014 perf_paranoid_tracepoint_raw() &&
4015 !capable(CAP_SYS_ADMIN))
4016 return ERR_PTR(-EPERM);
4017
4018 if (ftrace_profile_enable(counter->attr.config))
4019 return NULL;
4020
4021 counter->destroy = tp_perf_counter_destroy;
4022
4023 return &perf_ops_generic;
4024 }
4025 #else
4026 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
4027 {
4028 return NULL;
4029 }
4030 #endif
4031
4032 atomic_t perf_swcounter_enabled[PERF_COUNT_SW_MAX];
4033
4034 static void sw_perf_counter_destroy(struct perf_counter *counter)
4035 {
4036 u64 event = counter->attr.config;
4037
4038 WARN_ON(counter->parent);
4039
4040 atomic_dec(&perf_swcounter_enabled[event]);
4041 }
4042
4043 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
4044 {
4045 const struct pmu *pmu = NULL;
4046 u64 event = counter->attr.config;
4047
4048 /*
4049 * Software counters (currently) can't in general distinguish
4050 * between user, kernel and hypervisor events.
4051 * However, context switches and cpu migrations are considered
4052 * to be kernel events, and page faults are never hypervisor
4053 * events.
4054 */
4055 switch (event) {
4056 case PERF_COUNT_SW_CPU_CLOCK:
4057 pmu = &perf_ops_cpu_clock;
4058
4059 break;
4060 case PERF_COUNT_SW_TASK_CLOCK:
4061 /*
4062 * If the user instantiates this as a per-cpu counter,
4063 * use the cpu_clock counter instead.
4064 */
4065 if (counter->ctx->task)
4066 pmu = &perf_ops_task_clock;
4067 else
4068 pmu = &perf_ops_cpu_clock;
4069
4070 break;
4071 case PERF_COUNT_SW_PAGE_FAULTS:
4072 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4073 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4074 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4075 case PERF_COUNT_SW_CPU_MIGRATIONS:
4076 if (!counter->parent) {
4077 atomic_inc(&perf_swcounter_enabled[event]);
4078 counter->destroy = sw_perf_counter_destroy;
4079 }
4080 pmu = &perf_ops_generic;
4081 break;
4082 }
4083
4084 return pmu;
4085 }
4086
4087 /*
4088 * Allocate and initialize a counter structure
4089 */
4090 static struct perf_counter *
4091 perf_counter_alloc(struct perf_counter_attr *attr,
4092 int cpu,
4093 struct perf_counter_context *ctx,
4094 struct perf_counter *group_leader,
4095 struct perf_counter *parent_counter,
4096 gfp_t gfpflags)
4097 {
4098 const struct pmu *pmu;
4099 struct perf_counter *counter;
4100 struct hw_perf_counter *hwc;
4101 long err;
4102
4103 counter = kzalloc(sizeof(*counter), gfpflags);
4104 if (!counter)
4105 return ERR_PTR(-ENOMEM);
4106
4107 /*
4108 * Single counters are their own group leaders, with an
4109 * empty sibling list:
4110 */
4111 if (!group_leader)
4112 group_leader = counter;
4113
4114 mutex_init(&counter->child_mutex);
4115 INIT_LIST_HEAD(&counter->child_list);
4116
4117 INIT_LIST_HEAD(&counter->list_entry);
4118 INIT_LIST_HEAD(&counter->event_entry);
4119 INIT_LIST_HEAD(&counter->sibling_list);
4120 init_waitqueue_head(&counter->waitq);
4121
4122 mutex_init(&counter->mmap_mutex);
4123
4124 counter->cpu = cpu;
4125 counter->attr = *attr;
4126 counter->group_leader = group_leader;
4127 counter->pmu = NULL;
4128 counter->ctx = ctx;
4129 counter->oncpu = -1;
4130
4131 counter->parent = parent_counter;
4132
4133 counter->ns = get_pid_ns(current->nsproxy->pid_ns);
4134 counter->id = atomic64_inc_return(&perf_counter_id);
4135
4136 counter->state = PERF_COUNTER_STATE_INACTIVE;
4137
4138 if (attr->disabled)
4139 counter->state = PERF_COUNTER_STATE_OFF;
4140
4141 pmu = NULL;
4142
4143 hwc = &counter->hw;
4144 hwc->sample_period = attr->sample_period;
4145 if (attr->freq && attr->sample_freq)
4146 hwc->sample_period = 1;
4147 hwc->last_period = hwc->sample_period;
4148
4149 atomic64_set(&hwc->period_left, hwc->sample_period);
4150
4151 /*
4152 * we currently do not support PERF_FORMAT_GROUP on inherited counters
4153 */
4154 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4155 goto done;
4156
4157 switch (attr->type) {
4158 case PERF_TYPE_RAW:
4159 case PERF_TYPE_HARDWARE:
4160 case PERF_TYPE_HW_CACHE:
4161 pmu = hw_perf_counter_init(counter);
4162 break;
4163
4164 case PERF_TYPE_SOFTWARE:
4165 pmu = sw_perf_counter_init(counter);
4166 break;
4167
4168 case PERF_TYPE_TRACEPOINT:
4169 pmu = tp_perf_counter_init(counter);
4170 break;
4171
4172 default:
4173 break;
4174 }
4175 done:
4176 err = 0;
4177 if (!pmu)
4178 err = -EINVAL;
4179 else if (IS_ERR(pmu))
4180 err = PTR_ERR(pmu);
4181
4182 if (err) {
4183 if (counter->ns)
4184 put_pid_ns(counter->ns);
4185 kfree(counter);
4186 return ERR_PTR(err);
4187 }
4188
4189 counter->pmu = pmu;
4190
4191 if (!counter->parent) {
4192 atomic_inc(&nr_counters);
4193 if (counter->attr.mmap)
4194 atomic_inc(&nr_mmap_counters);
4195 if (counter->attr.comm)
4196 atomic_inc(&nr_comm_counters);
4197 if (counter->attr.task)
4198 atomic_inc(&nr_task_counters);
4199 }
4200
4201 return counter;
4202 }
4203
4204 static int perf_copy_attr(struct perf_counter_attr __user *uattr,
4205 struct perf_counter_attr *attr)
4206 {
4207 int ret;
4208 u32 size;
4209
4210 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4211 return -EFAULT;
4212
4213 /*
4214 * zero the full structure, so that a short copy will be nice.
4215 */
4216 memset(attr, 0, sizeof(*attr));
4217
4218 ret = get_user(size, &uattr->size);
4219 if (ret)
4220 return ret;
4221
4222 if (size > PAGE_SIZE) /* silly large */
4223 goto err_size;
4224
4225 if (!size) /* abi compat */
4226 size = PERF_ATTR_SIZE_VER0;
4227
4228 if (size < PERF_ATTR_SIZE_VER0)
4229 goto err_size;
4230
4231 /*
4232 * If we're handed a bigger struct than we know of,
4233 * ensure all the unknown bits are 0.
4234 */
4235 if (size > sizeof(*attr)) {
4236 unsigned long val;
4237 unsigned long __user *addr;
4238 unsigned long __user *end;
4239
4240 addr = PTR_ALIGN((void __user *)uattr + sizeof(*attr),
4241 sizeof(unsigned long));
4242 end = PTR_ALIGN((void __user *)uattr + size,
4243 sizeof(unsigned long));
4244
4245 for (; addr < end; addr += sizeof(unsigned long)) {
4246 ret = get_user(val, addr);
4247 if (ret)
4248 return ret;
4249 if (val)
4250 goto err_size;
4251 }
4252 }
4253
4254 ret = copy_from_user(attr, uattr, size);
4255 if (ret)
4256 return -EFAULT;
4257
4258 /*
4259 * If the type exists, the corresponding creation will verify
4260 * the attr->config.
4261 */
4262 if (attr->type >= PERF_TYPE_MAX)
4263 return -EINVAL;
4264
4265 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
4266 return -EINVAL;
4267
4268 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4269 return -EINVAL;
4270
4271 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4272 return -EINVAL;
4273
4274 out:
4275 return ret;
4276
4277 err_size:
4278 put_user(sizeof(*attr), &uattr->size);
4279 ret = -E2BIG;
4280 goto out;
4281 }
4282
4283 int perf_counter_set_output(struct perf_counter *counter, int output_fd)
4284 {
4285 struct perf_counter *output_counter = NULL;
4286 struct file *output_file = NULL;
4287 struct perf_counter *old_output;
4288 int fput_needed = 0;
4289 int ret = -EINVAL;
4290
4291 if (!output_fd)
4292 goto set;
4293
4294 output_file = fget_light(output_fd, &fput_needed);
4295 if (!output_file)
4296 return -EBADF;
4297
4298 if (output_file->f_op != &perf_fops)
4299 goto out;
4300
4301 output_counter = output_file->private_data;
4302
4303 /* Don't chain output fds */
4304 if (output_counter->output)
4305 goto out;
4306
4307 /* Don't set an output fd when we already have an output channel */
4308 if (counter->data)
4309 goto out;
4310
4311 atomic_long_inc(&output_file->f_count);
4312
4313 set:
4314 mutex_lock(&counter->mmap_mutex);
4315 old_output = counter->output;
4316 rcu_assign_pointer(counter->output, output_counter);
4317 mutex_unlock(&counter->mmap_mutex);
4318
4319 if (old_output) {
4320 /*
4321 * we need to make sure no existing perf_output_*()
4322 * is still referencing this counter.
4323 */
4324 synchronize_rcu();
4325 fput(old_output->filp);
4326 }
4327
4328 ret = 0;
4329 out:
4330 fput_light(output_file, fput_needed);
4331 return ret;
4332 }
4333
4334 /**
4335 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
4336 *
4337 * @attr_uptr: event type attributes for monitoring/sampling
4338 * @pid: target pid
4339 * @cpu: target cpu
4340 * @group_fd: group leader counter fd
4341 */
4342 SYSCALL_DEFINE5(perf_counter_open,
4343 struct perf_counter_attr __user *, attr_uptr,
4344 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4345 {
4346 struct perf_counter *counter, *group_leader;
4347 struct perf_counter_attr attr;
4348 struct perf_counter_context *ctx;
4349 struct file *counter_file = NULL;
4350 struct file *group_file = NULL;
4351 int fput_needed = 0;
4352 int fput_needed2 = 0;
4353 int err;
4354
4355 /* for future expandability... */
4356 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4357 return -EINVAL;
4358
4359 err = perf_copy_attr(attr_uptr, &attr);
4360 if (err)
4361 return err;
4362
4363 if (!attr.exclude_kernel) {
4364 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4365 return -EACCES;
4366 }
4367
4368 if (attr.freq) {
4369 if (attr.sample_freq > sysctl_perf_counter_sample_rate)
4370 return -EINVAL;
4371 }
4372
4373 /*
4374 * Get the target context (task or percpu):
4375 */
4376 ctx = find_get_context(pid, cpu);
4377 if (IS_ERR(ctx))
4378 return PTR_ERR(ctx);
4379
4380 /*
4381 * Look up the group leader (we will attach this counter to it):
4382 */
4383 group_leader = NULL;
4384 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4385 err = -EINVAL;
4386 group_file = fget_light(group_fd, &fput_needed);
4387 if (!group_file)
4388 goto err_put_context;
4389 if (group_file->f_op != &perf_fops)
4390 goto err_put_context;
4391
4392 group_leader = group_file->private_data;
4393 /*
4394 * Do not allow a recursive hierarchy (this new sibling
4395 * becoming part of another group-sibling):
4396 */
4397 if (group_leader->group_leader != group_leader)
4398 goto err_put_context;
4399 /*
4400 * Do not allow to attach to a group in a different
4401 * task or CPU context:
4402 */
4403 if (group_leader->ctx != ctx)
4404 goto err_put_context;
4405 /*
4406 * Only a group leader can be exclusive or pinned
4407 */
4408 if (attr.exclusive || attr.pinned)
4409 goto err_put_context;
4410 }
4411
4412 counter = perf_counter_alloc(&attr, cpu, ctx, group_leader,
4413 NULL, GFP_KERNEL);
4414 err = PTR_ERR(counter);
4415 if (IS_ERR(counter))
4416 goto err_put_context;
4417
4418 err = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
4419 if (err < 0)
4420 goto err_free_put_context;
4421
4422 counter_file = fget_light(err, &fput_needed2);
4423 if (!counter_file)
4424 goto err_free_put_context;
4425
4426 if (flags & PERF_FLAG_FD_OUTPUT) {
4427 err = perf_counter_set_output(counter, group_fd);
4428 if (err)
4429 goto err_fput_free_put_context;
4430 }
4431
4432 counter->filp = counter_file;
4433 WARN_ON_ONCE(ctx->parent_ctx);
4434 mutex_lock(&ctx->mutex);
4435 perf_install_in_context(ctx, counter, cpu);
4436 ++ctx->generation;
4437 mutex_unlock(&ctx->mutex);
4438
4439 counter->owner = current;
4440 get_task_struct(current);
4441 mutex_lock(&current->perf_counter_mutex);
4442 list_add_tail(&counter->owner_entry, &current->perf_counter_list);
4443 mutex_unlock(&current->perf_counter_mutex);
4444
4445 err_fput_free_put_context:
4446 fput_light(counter_file, fput_needed2);
4447
4448 err_free_put_context:
4449 if (err < 0)
4450 kfree(counter);
4451
4452 err_put_context:
4453 if (err < 0)
4454 put_ctx(ctx);
4455
4456 fput_light(group_file, fput_needed);
4457
4458 return err;
4459 }
4460
4461 /*
4462 * inherit a counter from parent task to child task:
4463 */
4464 static struct perf_counter *
4465 inherit_counter(struct perf_counter *parent_counter,
4466 struct task_struct *parent,
4467 struct perf_counter_context *parent_ctx,
4468 struct task_struct *child,
4469 struct perf_counter *group_leader,
4470 struct perf_counter_context *child_ctx)
4471 {
4472 struct perf_counter *child_counter;
4473
4474 /*
4475 * Instead of creating recursive hierarchies of counters,
4476 * we link inherited counters back to the original parent,
4477 * which has a filp for sure, which we use as the reference
4478 * count:
4479 */
4480 if (parent_counter->parent)
4481 parent_counter = parent_counter->parent;
4482
4483 child_counter = perf_counter_alloc(&parent_counter->attr,
4484 parent_counter->cpu, child_ctx,
4485 group_leader, parent_counter,
4486 GFP_KERNEL);
4487 if (IS_ERR(child_counter))
4488 return child_counter;
4489 get_ctx(child_ctx);
4490
4491 /*
4492 * Make the child state follow the state of the parent counter,
4493 * not its attr.disabled bit. We hold the parent's mutex,
4494 * so we won't race with perf_counter_{en, dis}able_family.
4495 */
4496 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
4497 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
4498 else
4499 child_counter->state = PERF_COUNTER_STATE_OFF;
4500
4501 if (parent_counter->attr.freq)
4502 child_counter->hw.sample_period = parent_counter->hw.sample_period;
4503
4504 /*
4505 * Link it up in the child's context:
4506 */
4507 add_counter_to_ctx(child_counter, child_ctx);
4508
4509 /*
4510 * Get a reference to the parent filp - we will fput it
4511 * when the child counter exits. This is safe to do because
4512 * we are in the parent and we know that the filp still
4513 * exists and has a nonzero count:
4514 */
4515 atomic_long_inc(&parent_counter->filp->f_count);
4516
4517 /*
4518 * Link this into the parent counter's child list
4519 */
4520 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
4521 mutex_lock(&parent_counter->child_mutex);
4522 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
4523 mutex_unlock(&parent_counter->child_mutex);
4524
4525 return child_counter;
4526 }
4527
4528 static int inherit_group(struct perf_counter *parent_counter,
4529 struct task_struct *parent,
4530 struct perf_counter_context *parent_ctx,
4531 struct task_struct *child,
4532 struct perf_counter_context *child_ctx)
4533 {
4534 struct perf_counter *leader;
4535 struct perf_counter *sub;
4536 struct perf_counter *child_ctr;
4537
4538 leader = inherit_counter(parent_counter, parent, parent_ctx,
4539 child, NULL, child_ctx);
4540 if (IS_ERR(leader))
4541 return PTR_ERR(leader);
4542 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
4543 child_ctr = inherit_counter(sub, parent, parent_ctx,
4544 child, leader, child_ctx);
4545 if (IS_ERR(child_ctr))
4546 return PTR_ERR(child_ctr);
4547 }
4548 return 0;
4549 }
4550
4551 static void sync_child_counter(struct perf_counter *child_counter,
4552 struct task_struct *child)
4553 {
4554 struct perf_counter *parent_counter = child_counter->parent;
4555 u64 child_val;
4556
4557 if (child_counter->attr.inherit_stat)
4558 perf_counter_read_event(child_counter, child);
4559
4560 child_val = atomic64_read(&child_counter->count);
4561
4562 /*
4563 * Add back the child's count to the parent's count:
4564 */
4565 atomic64_add(child_val, &parent_counter->count);
4566 atomic64_add(child_counter->total_time_enabled,
4567 &parent_counter->child_total_time_enabled);
4568 atomic64_add(child_counter->total_time_running,
4569 &parent_counter->child_total_time_running);
4570
4571 /*
4572 * Remove this counter from the parent's list
4573 */
4574 WARN_ON_ONCE(parent_counter->ctx->parent_ctx);
4575 mutex_lock(&parent_counter->child_mutex);
4576 list_del_init(&child_counter->child_list);
4577 mutex_unlock(&parent_counter->child_mutex);
4578
4579 /*
4580 * Release the parent counter, if this was the last
4581 * reference to it.
4582 */
4583 fput(parent_counter->filp);
4584 }
4585
4586 static void
4587 __perf_counter_exit_task(struct perf_counter *child_counter,
4588 struct perf_counter_context *child_ctx,
4589 struct task_struct *child)
4590 {
4591 struct perf_counter *parent_counter;
4592
4593 update_counter_times(child_counter);
4594 perf_counter_remove_from_context(child_counter);
4595
4596 parent_counter = child_counter->parent;
4597 /*
4598 * It can happen that parent exits first, and has counters
4599 * that are still around due to the child reference. These
4600 * counters need to be zapped - but otherwise linger.
4601 */
4602 if (parent_counter) {
4603 sync_child_counter(child_counter, child);
4604 free_counter(child_counter);
4605 }
4606 }
4607
4608 /*
4609 * When a child task exits, feed back counter values to parent counters.
4610 */
4611 void perf_counter_exit_task(struct task_struct *child)
4612 {
4613 struct perf_counter *child_counter, *tmp;
4614 struct perf_counter_context *child_ctx;
4615 unsigned long flags;
4616
4617 if (likely(!child->perf_counter_ctxp)) {
4618 perf_counter_task(child, NULL, 0);
4619 return;
4620 }
4621
4622 local_irq_save(flags);
4623 /*
4624 * We can't reschedule here because interrupts are disabled,
4625 * and either child is current or it is a task that can't be
4626 * scheduled, so we are now safe from rescheduling changing
4627 * our context.
4628 */
4629 child_ctx = child->perf_counter_ctxp;
4630 __perf_counter_task_sched_out(child_ctx);
4631
4632 /*
4633 * Take the context lock here so that if find_get_context is
4634 * reading child->perf_counter_ctxp, we wait until it has
4635 * incremented the context's refcount before we do put_ctx below.
4636 */
4637 spin_lock(&child_ctx->lock);
4638 child->perf_counter_ctxp = NULL;
4639 /*
4640 * If this context is a clone; unclone it so it can't get
4641 * swapped to another process while we're removing all
4642 * the counters from it.
4643 */
4644 unclone_ctx(child_ctx);
4645 spin_unlock_irqrestore(&child_ctx->lock, flags);
4646
4647 /*
4648 * Report the task dead after unscheduling the counters so that we
4649 * won't get any samples after PERF_EVENT_EXIT. We can however still
4650 * get a few PERF_EVENT_READ events.
4651 */
4652 perf_counter_task(child, child_ctx, 0);
4653
4654 /*
4655 * We can recurse on the same lock type through:
4656 *
4657 * __perf_counter_exit_task()
4658 * sync_child_counter()
4659 * fput(parent_counter->filp)
4660 * perf_release()
4661 * mutex_lock(&ctx->mutex)
4662 *
4663 * But since its the parent context it won't be the same instance.
4664 */
4665 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4666
4667 again:
4668 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
4669 list_entry)
4670 __perf_counter_exit_task(child_counter, child_ctx, child);
4671
4672 /*
4673 * If the last counter was a group counter, it will have appended all
4674 * its siblings to the list, but we obtained 'tmp' before that which
4675 * will still point to the list head terminating the iteration.
4676 */
4677 if (!list_empty(&child_ctx->counter_list))
4678 goto again;
4679
4680 mutex_unlock(&child_ctx->mutex);
4681
4682 put_ctx(child_ctx);
4683 }
4684
4685 /*
4686 * free an unexposed, unused context as created by inheritance by
4687 * init_task below, used by fork() in case of fail.
4688 */
4689 void perf_counter_free_task(struct task_struct *task)
4690 {
4691 struct perf_counter_context *ctx = task->perf_counter_ctxp;
4692 struct perf_counter *counter, *tmp;
4693
4694 if (!ctx)
4695 return;
4696
4697 mutex_lock(&ctx->mutex);
4698 again:
4699 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) {
4700 struct perf_counter *parent = counter->parent;
4701
4702 if (WARN_ON_ONCE(!parent))
4703 continue;
4704
4705 mutex_lock(&parent->child_mutex);
4706 list_del_init(&counter->child_list);
4707 mutex_unlock(&parent->child_mutex);
4708
4709 fput(parent->filp);
4710
4711 list_del_counter(counter, ctx);
4712 free_counter(counter);
4713 }
4714
4715 if (!list_empty(&ctx->counter_list))
4716 goto again;
4717
4718 mutex_unlock(&ctx->mutex);
4719
4720 put_ctx(ctx);
4721 }
4722
4723 /*
4724 * Initialize the perf_counter context in task_struct
4725 */
4726 int perf_counter_init_task(struct task_struct *child)
4727 {
4728 struct perf_counter_context *child_ctx, *parent_ctx;
4729 struct perf_counter_context *cloned_ctx;
4730 struct perf_counter *counter;
4731 struct task_struct *parent = current;
4732 int inherited_all = 1;
4733 int ret = 0;
4734
4735 child->perf_counter_ctxp = NULL;
4736
4737 mutex_init(&child->perf_counter_mutex);
4738 INIT_LIST_HEAD(&child->perf_counter_list);
4739
4740 if (likely(!parent->perf_counter_ctxp))
4741 return 0;
4742
4743 /*
4744 * This is executed from the parent task context, so inherit
4745 * counters that have been marked for cloning.
4746 * First allocate and initialize a context for the child.
4747 */
4748
4749 child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
4750 if (!child_ctx)
4751 return -ENOMEM;
4752
4753 __perf_counter_init_context(child_ctx, child);
4754 child->perf_counter_ctxp = child_ctx;
4755 get_task_struct(child);
4756
4757 /*
4758 * If the parent's context is a clone, pin it so it won't get
4759 * swapped under us.
4760 */
4761 parent_ctx = perf_pin_task_context(parent);
4762
4763 /*
4764 * No need to check if parent_ctx != NULL here; since we saw
4765 * it non-NULL earlier, the only reason for it to become NULL
4766 * is if we exit, and since we're currently in the middle of
4767 * a fork we can't be exiting at the same time.
4768 */
4769
4770 /*
4771 * Lock the parent list. No need to lock the child - not PID
4772 * hashed yet and not running, so nobody can access it.
4773 */
4774 mutex_lock(&parent_ctx->mutex);
4775
4776 /*
4777 * We dont have to disable NMIs - we are only looking at
4778 * the list, not manipulating it:
4779 */
4780 list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
4781 if (counter != counter->group_leader)
4782 continue;
4783
4784 if (!counter->attr.inherit) {
4785 inherited_all = 0;
4786 continue;
4787 }
4788
4789 ret = inherit_group(counter, parent, parent_ctx,
4790 child, child_ctx);
4791 if (ret) {
4792 inherited_all = 0;
4793 break;
4794 }
4795 }
4796
4797 if (inherited_all) {
4798 /*
4799 * Mark the child context as a clone of the parent
4800 * context, or of whatever the parent is a clone of.
4801 * Note that if the parent is a clone, it could get
4802 * uncloned at any point, but that doesn't matter
4803 * because the list of counters and the generation
4804 * count can't have changed since we took the mutex.
4805 */
4806 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
4807 if (cloned_ctx) {
4808 child_ctx->parent_ctx = cloned_ctx;
4809 child_ctx->parent_gen = parent_ctx->parent_gen;
4810 } else {
4811 child_ctx->parent_ctx = parent_ctx;
4812 child_ctx->parent_gen = parent_ctx->generation;
4813 }
4814 get_ctx(child_ctx->parent_ctx);
4815 }
4816
4817 mutex_unlock(&parent_ctx->mutex);
4818
4819 perf_unpin_context(parent_ctx);
4820
4821 return ret;
4822 }
4823
4824 static void __cpuinit perf_counter_init_cpu(int cpu)
4825 {
4826 struct perf_cpu_context *cpuctx;
4827
4828 cpuctx = &per_cpu(perf_cpu_context, cpu);
4829 __perf_counter_init_context(&cpuctx->ctx, NULL);
4830
4831 spin_lock(&perf_resource_lock);
4832 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
4833 spin_unlock(&perf_resource_lock);
4834
4835 hw_perf_counter_setup(cpu);
4836 }
4837
4838 #ifdef CONFIG_HOTPLUG_CPU
4839 static void __perf_counter_exit_cpu(void *info)
4840 {
4841 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4842 struct perf_counter_context *ctx = &cpuctx->ctx;
4843 struct perf_counter *counter, *tmp;
4844
4845 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
4846 __perf_counter_remove_from_context(counter);
4847 }
4848 static void perf_counter_exit_cpu(int cpu)
4849 {
4850 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4851 struct perf_counter_context *ctx = &cpuctx->ctx;
4852
4853 mutex_lock(&ctx->mutex);
4854 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
4855 mutex_unlock(&ctx->mutex);
4856 }
4857 #else
4858 static inline void perf_counter_exit_cpu(int cpu) { }
4859 #endif
4860
4861 static int __cpuinit
4862 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
4863 {
4864 unsigned int cpu = (long)hcpu;
4865
4866 switch (action) {
4867
4868 case CPU_UP_PREPARE:
4869 case CPU_UP_PREPARE_FROZEN:
4870 perf_counter_init_cpu(cpu);
4871 break;
4872
4873 case CPU_ONLINE:
4874 case CPU_ONLINE_FROZEN:
4875 hw_perf_counter_setup_online(cpu);
4876 break;
4877
4878 case CPU_DOWN_PREPARE:
4879 case CPU_DOWN_PREPARE_FROZEN:
4880 perf_counter_exit_cpu(cpu);
4881 break;
4882
4883 default:
4884 break;
4885 }
4886
4887 return NOTIFY_OK;
4888 }
4889
4890 /*
4891 * This has to have a higher priority than migration_notifier in sched.c.
4892 */
4893 static struct notifier_block __cpuinitdata perf_cpu_nb = {
4894 .notifier_call = perf_cpu_notify,
4895 .priority = 20,
4896 };
4897
4898 void __init perf_counter_init(void)
4899 {
4900 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
4901 (void *)(long)smp_processor_id());
4902 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
4903 (void *)(long)smp_processor_id());
4904 register_cpu_notifier(&perf_cpu_nb);
4905 }
4906
4907 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
4908 {
4909 return sprintf(buf, "%d\n", perf_reserved_percpu);
4910 }
4911
4912 static ssize_t
4913 perf_set_reserve_percpu(struct sysdev_class *class,
4914 const char *buf,
4915 size_t count)
4916 {
4917 struct perf_cpu_context *cpuctx;
4918 unsigned long val;
4919 int err, cpu, mpt;
4920
4921 err = strict_strtoul(buf, 10, &val);
4922 if (err)
4923 return err;
4924 if (val > perf_max_counters)
4925 return -EINVAL;
4926
4927 spin_lock(&perf_resource_lock);
4928 perf_reserved_percpu = val;
4929 for_each_online_cpu(cpu) {
4930 cpuctx = &per_cpu(perf_cpu_context, cpu);
4931 spin_lock_irq(&cpuctx->ctx.lock);
4932 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
4933 perf_max_counters - perf_reserved_percpu);
4934 cpuctx->max_pertask = mpt;
4935 spin_unlock_irq(&cpuctx->ctx.lock);
4936 }
4937 spin_unlock(&perf_resource_lock);
4938
4939 return count;
4940 }
4941
4942 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
4943 {
4944 return sprintf(buf, "%d\n", perf_overcommit);
4945 }
4946
4947 static ssize_t
4948 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
4949 {
4950 unsigned long val;
4951 int err;
4952
4953 err = strict_strtoul(buf, 10, &val);
4954 if (err)
4955 return err;
4956 if (val > 1)
4957 return -EINVAL;
4958
4959 spin_lock(&perf_resource_lock);
4960 perf_overcommit = val;
4961 spin_unlock(&perf_resource_lock);
4962
4963 return count;
4964 }
4965
4966 static SYSDEV_CLASS_ATTR(
4967 reserve_percpu,
4968 0644,
4969 perf_show_reserve_percpu,
4970 perf_set_reserve_percpu
4971 );
4972
4973 static SYSDEV_CLASS_ATTR(
4974 overcommit,
4975 0644,
4976 perf_show_overcommit,
4977 perf_set_overcommit
4978 );
4979
4980 static struct attribute *perfclass_attrs[] = {
4981 &attr_reserve_percpu.attr,
4982 &attr_overcommit.attr,
4983 NULL
4984 };
4985
4986 static struct attribute_group perfclass_attr_group = {
4987 .attrs = perfclass_attrs,
4988 .name = "perf_counters",
4989 };
4990
4991 static int __init perf_counter_sysfs_init(void)
4992 {
4993 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
4994 &perfclass_attr_group);
4995 }
4996 device_initcall(perf_counter_sysfs_init);
This page took 0.188929 seconds and 6 git commands to generate.