perf_counter: Fix dynamic irq_period logging
[deliverable/linux.git] / kernel / perf_counter.c
1 /*
2 * Performance counter core code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/ptrace.h>
20 #include <linux/percpu.h>
21 #include <linux/vmstat.h>
22 #include <linux/hardirq.h>
23 #include <linux/rculist.h>
24 #include <linux/uaccess.h>
25 #include <linux/syscalls.h>
26 #include <linux/anon_inodes.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/perf_counter.h>
29 #include <linux/dcache.h>
30
31 #include <asm/irq_regs.h>
32
33 /*
34 * Each CPU has a list of per CPU counters:
35 */
36 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
37
38 int perf_max_counters __read_mostly = 1;
39 static int perf_reserved_percpu __read_mostly;
40 static int perf_overcommit __read_mostly = 1;
41
42 static atomic_t nr_counters __read_mostly;
43 static atomic_t nr_mmap_tracking __read_mostly;
44 static atomic_t nr_munmap_tracking __read_mostly;
45 static atomic_t nr_comm_tracking __read_mostly;
46
47 int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
48 int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */
49
50 /*
51 * Lock for (sysadmin-configurable) counter reservations:
52 */
53 static DEFINE_SPINLOCK(perf_resource_lock);
54
55 /*
56 * Architecture provided APIs - weak aliases:
57 */
58 extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
59 {
60 return NULL;
61 }
62
63 void __weak hw_perf_disable(void) { barrier(); }
64 void __weak hw_perf_enable(void) { barrier(); }
65
66 void __weak hw_perf_counter_setup(int cpu) { barrier(); }
67 int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
68 struct perf_cpu_context *cpuctx,
69 struct perf_counter_context *ctx, int cpu)
70 {
71 return 0;
72 }
73
74 void __weak perf_counter_print_debug(void) { }
75
76 static DEFINE_PER_CPU(int, disable_count);
77
78 void __perf_disable(void)
79 {
80 __get_cpu_var(disable_count)++;
81 }
82
83 bool __perf_enable(void)
84 {
85 return !--__get_cpu_var(disable_count);
86 }
87
88 void perf_disable(void)
89 {
90 __perf_disable();
91 hw_perf_disable();
92 }
93
94 void perf_enable(void)
95 {
96 if (__perf_enable())
97 hw_perf_enable();
98 }
99
100 static void get_ctx(struct perf_counter_context *ctx)
101 {
102 atomic_inc(&ctx->refcount);
103 }
104
105 static void put_ctx(struct perf_counter_context *ctx)
106 {
107 if (atomic_dec_and_test(&ctx->refcount)) {
108 if (ctx->parent_ctx)
109 put_ctx(ctx->parent_ctx);
110 kfree(ctx);
111 }
112 }
113
114 static void
115 list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
116 {
117 struct perf_counter *group_leader = counter->group_leader;
118
119 /*
120 * Depending on whether it is a standalone or sibling counter,
121 * add it straight to the context's counter list, or to the group
122 * leader's sibling list:
123 */
124 if (group_leader == counter)
125 list_add_tail(&counter->list_entry, &ctx->counter_list);
126 else {
127 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
128 group_leader->nr_siblings++;
129 }
130
131 list_add_rcu(&counter->event_entry, &ctx->event_list);
132 ctx->nr_counters++;
133 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
134 ctx->nr_enabled++;
135 }
136
137 /*
138 * Remove a counter from the lists for its context.
139 * Must be called with counter->mutex and ctx->mutex held.
140 */
141 static void
142 list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
143 {
144 struct perf_counter *sibling, *tmp;
145
146 if (list_empty(&counter->list_entry))
147 return;
148 ctx->nr_counters--;
149 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
150 ctx->nr_enabled--;
151
152 list_del_init(&counter->list_entry);
153 list_del_rcu(&counter->event_entry);
154
155 if (counter->group_leader != counter)
156 counter->group_leader->nr_siblings--;
157
158 /*
159 * If this was a group counter with sibling counters then
160 * upgrade the siblings to singleton counters by adding them
161 * to the context list directly:
162 */
163 list_for_each_entry_safe(sibling, tmp,
164 &counter->sibling_list, list_entry) {
165
166 list_move_tail(&sibling->list_entry, &ctx->counter_list);
167 sibling->group_leader = sibling;
168 }
169 }
170
171 static void
172 counter_sched_out(struct perf_counter *counter,
173 struct perf_cpu_context *cpuctx,
174 struct perf_counter_context *ctx)
175 {
176 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
177 return;
178
179 counter->state = PERF_COUNTER_STATE_INACTIVE;
180 counter->tstamp_stopped = ctx->time;
181 counter->pmu->disable(counter);
182 counter->oncpu = -1;
183
184 if (!is_software_counter(counter))
185 cpuctx->active_oncpu--;
186 ctx->nr_active--;
187 if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
188 cpuctx->exclusive = 0;
189 }
190
191 static void
192 group_sched_out(struct perf_counter *group_counter,
193 struct perf_cpu_context *cpuctx,
194 struct perf_counter_context *ctx)
195 {
196 struct perf_counter *counter;
197
198 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
199 return;
200
201 counter_sched_out(group_counter, cpuctx, ctx);
202
203 /*
204 * Schedule out siblings (if any):
205 */
206 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
207 counter_sched_out(counter, cpuctx, ctx);
208
209 if (group_counter->hw_event.exclusive)
210 cpuctx->exclusive = 0;
211 }
212
213 /*
214 * Mark this context as not being a clone of another.
215 * Called when counters are added to or removed from this context.
216 * We also increment our generation number so that anything that
217 * was cloned from this context before this will not match anything
218 * cloned from this context after this.
219 */
220 static void unclone_ctx(struct perf_counter_context *ctx)
221 {
222 ++ctx->generation;
223 if (!ctx->parent_ctx)
224 return;
225 put_ctx(ctx->parent_ctx);
226 ctx->parent_ctx = NULL;
227 }
228
229 /*
230 * Cross CPU call to remove a performance counter
231 *
232 * We disable the counter on the hardware level first. After that we
233 * remove it from the context list.
234 */
235 static void __perf_counter_remove_from_context(void *info)
236 {
237 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
238 struct perf_counter *counter = info;
239 struct perf_counter_context *ctx = counter->ctx;
240 unsigned long flags;
241
242 /*
243 * If this is a task context, we need to check whether it is
244 * the current task context of this cpu. If not it has been
245 * scheduled out before the smp call arrived.
246 */
247 if (ctx->task && cpuctx->task_ctx != ctx)
248 return;
249
250 spin_lock_irqsave(&ctx->lock, flags);
251 /*
252 * Protect the list operation against NMI by disabling the
253 * counters on a global level.
254 */
255 perf_disable();
256
257 counter_sched_out(counter, cpuctx, ctx);
258
259 list_del_counter(counter, ctx);
260
261 if (!ctx->task) {
262 /*
263 * Allow more per task counters with respect to the
264 * reservation:
265 */
266 cpuctx->max_pertask =
267 min(perf_max_counters - ctx->nr_counters,
268 perf_max_counters - perf_reserved_percpu);
269 }
270
271 perf_enable();
272 spin_unlock_irqrestore(&ctx->lock, flags);
273 }
274
275
276 /*
277 * Remove the counter from a task's (or a CPU's) list of counters.
278 *
279 * Must be called with counter->mutex and ctx->mutex held.
280 *
281 * CPU counters are removed with a smp call. For task counters we only
282 * call when the task is on a CPU.
283 */
284 static void perf_counter_remove_from_context(struct perf_counter *counter)
285 {
286 struct perf_counter_context *ctx = counter->ctx;
287 struct task_struct *task = ctx->task;
288
289 unclone_ctx(ctx);
290 if (!task) {
291 /*
292 * Per cpu counters are removed via an smp call and
293 * the removal is always sucessful.
294 */
295 smp_call_function_single(counter->cpu,
296 __perf_counter_remove_from_context,
297 counter, 1);
298 return;
299 }
300
301 retry:
302 task_oncpu_function_call(task, __perf_counter_remove_from_context,
303 counter);
304
305 spin_lock_irq(&ctx->lock);
306 /*
307 * If the context is active we need to retry the smp call.
308 */
309 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
310 spin_unlock_irq(&ctx->lock);
311 goto retry;
312 }
313
314 /*
315 * The lock prevents that this context is scheduled in so we
316 * can remove the counter safely, if the call above did not
317 * succeed.
318 */
319 if (!list_empty(&counter->list_entry)) {
320 list_del_counter(counter, ctx);
321 }
322 spin_unlock_irq(&ctx->lock);
323 }
324
325 static inline u64 perf_clock(void)
326 {
327 return cpu_clock(smp_processor_id());
328 }
329
330 /*
331 * Update the record of the current time in a context.
332 */
333 static void update_context_time(struct perf_counter_context *ctx)
334 {
335 u64 now = perf_clock();
336
337 ctx->time += now - ctx->timestamp;
338 ctx->timestamp = now;
339 }
340
341 /*
342 * Update the total_time_enabled and total_time_running fields for a counter.
343 */
344 static void update_counter_times(struct perf_counter *counter)
345 {
346 struct perf_counter_context *ctx = counter->ctx;
347 u64 run_end;
348
349 if (counter->state < PERF_COUNTER_STATE_INACTIVE)
350 return;
351
352 counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
353
354 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
355 run_end = counter->tstamp_stopped;
356 else
357 run_end = ctx->time;
358
359 counter->total_time_running = run_end - counter->tstamp_running;
360 }
361
362 /*
363 * Update total_time_enabled and total_time_running for all counters in a group.
364 */
365 static void update_group_times(struct perf_counter *leader)
366 {
367 struct perf_counter *counter;
368
369 update_counter_times(leader);
370 list_for_each_entry(counter, &leader->sibling_list, list_entry)
371 update_counter_times(counter);
372 }
373
374 /*
375 * Cross CPU call to disable a performance counter
376 */
377 static void __perf_counter_disable(void *info)
378 {
379 struct perf_counter *counter = info;
380 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
381 struct perf_counter_context *ctx = counter->ctx;
382 unsigned long flags;
383
384 /*
385 * If this is a per-task counter, need to check whether this
386 * counter's task is the current task on this cpu.
387 */
388 if (ctx->task && cpuctx->task_ctx != ctx)
389 return;
390
391 spin_lock_irqsave(&ctx->lock, flags);
392
393 /*
394 * If the counter is on, turn it off.
395 * If it is in error state, leave it in error state.
396 */
397 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
398 update_context_time(ctx);
399 update_counter_times(counter);
400 if (counter == counter->group_leader)
401 group_sched_out(counter, cpuctx, ctx);
402 else
403 counter_sched_out(counter, cpuctx, ctx);
404 counter->state = PERF_COUNTER_STATE_OFF;
405 ctx->nr_enabled--;
406 }
407
408 spin_unlock_irqrestore(&ctx->lock, flags);
409 }
410
411 /*
412 * Disable a counter.
413 */
414 static void perf_counter_disable(struct perf_counter *counter)
415 {
416 struct perf_counter_context *ctx = counter->ctx;
417 struct task_struct *task = ctx->task;
418
419 if (!task) {
420 /*
421 * Disable the counter on the cpu that it's on
422 */
423 smp_call_function_single(counter->cpu, __perf_counter_disable,
424 counter, 1);
425 return;
426 }
427
428 retry:
429 task_oncpu_function_call(task, __perf_counter_disable, counter);
430
431 spin_lock_irq(&ctx->lock);
432 /*
433 * If the counter is still active, we need to retry the cross-call.
434 */
435 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
436 spin_unlock_irq(&ctx->lock);
437 goto retry;
438 }
439
440 /*
441 * Since we have the lock this context can't be scheduled
442 * in, so we can change the state safely.
443 */
444 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
445 update_counter_times(counter);
446 counter->state = PERF_COUNTER_STATE_OFF;
447 ctx->nr_enabled--;
448 }
449
450 spin_unlock_irq(&ctx->lock);
451 }
452
453 static int
454 counter_sched_in(struct perf_counter *counter,
455 struct perf_cpu_context *cpuctx,
456 struct perf_counter_context *ctx,
457 int cpu)
458 {
459 if (counter->state <= PERF_COUNTER_STATE_OFF)
460 return 0;
461
462 counter->state = PERF_COUNTER_STATE_ACTIVE;
463 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
464 /*
465 * The new state must be visible before we turn it on in the hardware:
466 */
467 smp_wmb();
468
469 if (counter->pmu->enable(counter)) {
470 counter->state = PERF_COUNTER_STATE_INACTIVE;
471 counter->oncpu = -1;
472 return -EAGAIN;
473 }
474
475 counter->tstamp_running += ctx->time - counter->tstamp_stopped;
476
477 if (!is_software_counter(counter))
478 cpuctx->active_oncpu++;
479 ctx->nr_active++;
480
481 if (counter->hw_event.exclusive)
482 cpuctx->exclusive = 1;
483
484 return 0;
485 }
486
487 static int
488 group_sched_in(struct perf_counter *group_counter,
489 struct perf_cpu_context *cpuctx,
490 struct perf_counter_context *ctx,
491 int cpu)
492 {
493 struct perf_counter *counter, *partial_group;
494 int ret;
495
496 if (group_counter->state == PERF_COUNTER_STATE_OFF)
497 return 0;
498
499 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
500 if (ret)
501 return ret < 0 ? ret : 0;
502
503 group_counter->prev_state = group_counter->state;
504 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
505 return -EAGAIN;
506
507 /*
508 * Schedule in siblings as one group (if any):
509 */
510 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
511 counter->prev_state = counter->state;
512 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
513 partial_group = counter;
514 goto group_error;
515 }
516 }
517
518 return 0;
519
520 group_error:
521 /*
522 * Groups can be scheduled in as one unit only, so undo any
523 * partial group before returning:
524 */
525 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
526 if (counter == partial_group)
527 break;
528 counter_sched_out(counter, cpuctx, ctx);
529 }
530 counter_sched_out(group_counter, cpuctx, ctx);
531
532 return -EAGAIN;
533 }
534
535 /*
536 * Return 1 for a group consisting entirely of software counters,
537 * 0 if the group contains any hardware counters.
538 */
539 static int is_software_only_group(struct perf_counter *leader)
540 {
541 struct perf_counter *counter;
542
543 if (!is_software_counter(leader))
544 return 0;
545
546 list_for_each_entry(counter, &leader->sibling_list, list_entry)
547 if (!is_software_counter(counter))
548 return 0;
549
550 return 1;
551 }
552
553 /*
554 * Work out whether we can put this counter group on the CPU now.
555 */
556 static int group_can_go_on(struct perf_counter *counter,
557 struct perf_cpu_context *cpuctx,
558 int can_add_hw)
559 {
560 /*
561 * Groups consisting entirely of software counters can always go on.
562 */
563 if (is_software_only_group(counter))
564 return 1;
565 /*
566 * If an exclusive group is already on, no other hardware
567 * counters can go on.
568 */
569 if (cpuctx->exclusive)
570 return 0;
571 /*
572 * If this group is exclusive and there are already
573 * counters on the CPU, it can't go on.
574 */
575 if (counter->hw_event.exclusive && cpuctx->active_oncpu)
576 return 0;
577 /*
578 * Otherwise, try to add it if all previous groups were able
579 * to go on.
580 */
581 return can_add_hw;
582 }
583
584 static void add_counter_to_ctx(struct perf_counter *counter,
585 struct perf_counter_context *ctx)
586 {
587 list_add_counter(counter, ctx);
588 counter->prev_state = PERF_COUNTER_STATE_OFF;
589 counter->tstamp_enabled = ctx->time;
590 counter->tstamp_running = ctx->time;
591 counter->tstamp_stopped = ctx->time;
592 }
593
594 /*
595 * Cross CPU call to install and enable a performance counter
596 */
597 static void __perf_install_in_context(void *info)
598 {
599 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
600 struct perf_counter *counter = info;
601 struct perf_counter_context *ctx = counter->ctx;
602 struct perf_counter *leader = counter->group_leader;
603 int cpu = smp_processor_id();
604 unsigned long flags;
605 int err;
606
607 /*
608 * If this is a task context, we need to check whether it is
609 * the current task context of this cpu. If not it has been
610 * scheduled out before the smp call arrived.
611 * Or possibly this is the right context but it isn't
612 * on this cpu because it had no counters.
613 */
614 if (ctx->task && cpuctx->task_ctx != ctx) {
615 if (cpuctx->task_ctx || ctx->task != current)
616 return;
617 cpuctx->task_ctx = ctx;
618 }
619
620 spin_lock_irqsave(&ctx->lock, flags);
621 ctx->is_active = 1;
622 update_context_time(ctx);
623
624 /*
625 * Protect the list operation against NMI by disabling the
626 * counters on a global level. NOP for non NMI based counters.
627 */
628 perf_disable();
629
630 add_counter_to_ctx(counter, ctx);
631
632 /*
633 * Don't put the counter on if it is disabled or if
634 * it is in a group and the group isn't on.
635 */
636 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
637 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
638 goto unlock;
639
640 /*
641 * An exclusive counter can't go on if there are already active
642 * hardware counters, and no hardware counter can go on if there
643 * is already an exclusive counter on.
644 */
645 if (!group_can_go_on(counter, cpuctx, 1))
646 err = -EEXIST;
647 else
648 err = counter_sched_in(counter, cpuctx, ctx, cpu);
649
650 if (err) {
651 /*
652 * This counter couldn't go on. If it is in a group
653 * then we have to pull the whole group off.
654 * If the counter group is pinned then put it in error state.
655 */
656 if (leader != counter)
657 group_sched_out(leader, cpuctx, ctx);
658 if (leader->hw_event.pinned) {
659 update_group_times(leader);
660 leader->state = PERF_COUNTER_STATE_ERROR;
661 }
662 }
663
664 if (!err && !ctx->task && cpuctx->max_pertask)
665 cpuctx->max_pertask--;
666
667 unlock:
668 perf_enable();
669
670 spin_unlock_irqrestore(&ctx->lock, flags);
671 }
672
673 /*
674 * Attach a performance counter to a context
675 *
676 * First we add the counter to the list with the hardware enable bit
677 * in counter->hw_config cleared.
678 *
679 * If the counter is attached to a task which is on a CPU we use a smp
680 * call to enable it in the task context. The task might have been
681 * scheduled away, but we check this in the smp call again.
682 *
683 * Must be called with ctx->mutex held.
684 */
685 static void
686 perf_install_in_context(struct perf_counter_context *ctx,
687 struct perf_counter *counter,
688 int cpu)
689 {
690 struct task_struct *task = ctx->task;
691
692 if (!task) {
693 /*
694 * Per cpu counters are installed via an smp call and
695 * the install is always sucessful.
696 */
697 smp_call_function_single(cpu, __perf_install_in_context,
698 counter, 1);
699 return;
700 }
701
702 retry:
703 task_oncpu_function_call(task, __perf_install_in_context,
704 counter);
705
706 spin_lock_irq(&ctx->lock);
707 /*
708 * we need to retry the smp call.
709 */
710 if (ctx->is_active && list_empty(&counter->list_entry)) {
711 spin_unlock_irq(&ctx->lock);
712 goto retry;
713 }
714
715 /*
716 * The lock prevents that this context is scheduled in so we
717 * can add the counter safely, if it the call above did not
718 * succeed.
719 */
720 if (list_empty(&counter->list_entry))
721 add_counter_to_ctx(counter, ctx);
722 spin_unlock_irq(&ctx->lock);
723 }
724
725 /*
726 * Cross CPU call to enable a performance counter
727 */
728 static void __perf_counter_enable(void *info)
729 {
730 struct perf_counter *counter = info;
731 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
732 struct perf_counter_context *ctx = counter->ctx;
733 struct perf_counter *leader = counter->group_leader;
734 unsigned long flags;
735 int err;
736
737 /*
738 * If this is a per-task counter, need to check whether this
739 * counter's task is the current task on this cpu.
740 */
741 if (ctx->task && cpuctx->task_ctx != ctx) {
742 if (cpuctx->task_ctx || ctx->task != current)
743 return;
744 cpuctx->task_ctx = ctx;
745 }
746
747 spin_lock_irqsave(&ctx->lock, flags);
748 ctx->is_active = 1;
749 update_context_time(ctx);
750
751 counter->prev_state = counter->state;
752 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
753 goto unlock;
754 counter->state = PERF_COUNTER_STATE_INACTIVE;
755 counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
756 ctx->nr_enabled++;
757
758 /*
759 * If the counter is in a group and isn't the group leader,
760 * then don't put it on unless the group is on.
761 */
762 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
763 goto unlock;
764
765 if (!group_can_go_on(counter, cpuctx, 1)) {
766 err = -EEXIST;
767 } else {
768 perf_disable();
769 if (counter == leader)
770 err = group_sched_in(counter, cpuctx, ctx,
771 smp_processor_id());
772 else
773 err = counter_sched_in(counter, cpuctx, ctx,
774 smp_processor_id());
775 perf_enable();
776 }
777
778 if (err) {
779 /*
780 * If this counter can't go on and it's part of a
781 * group, then the whole group has to come off.
782 */
783 if (leader != counter)
784 group_sched_out(leader, cpuctx, ctx);
785 if (leader->hw_event.pinned) {
786 update_group_times(leader);
787 leader->state = PERF_COUNTER_STATE_ERROR;
788 }
789 }
790
791 unlock:
792 spin_unlock_irqrestore(&ctx->lock, flags);
793 }
794
795 /*
796 * Enable a counter.
797 */
798 static void perf_counter_enable(struct perf_counter *counter)
799 {
800 struct perf_counter_context *ctx = counter->ctx;
801 struct task_struct *task = ctx->task;
802
803 if (!task) {
804 /*
805 * Enable the counter on the cpu that it's on
806 */
807 smp_call_function_single(counter->cpu, __perf_counter_enable,
808 counter, 1);
809 return;
810 }
811
812 spin_lock_irq(&ctx->lock);
813 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
814 goto out;
815
816 /*
817 * If the counter is in error state, clear that first.
818 * That way, if we see the counter in error state below, we
819 * know that it has gone back into error state, as distinct
820 * from the task having been scheduled away before the
821 * cross-call arrived.
822 */
823 if (counter->state == PERF_COUNTER_STATE_ERROR)
824 counter->state = PERF_COUNTER_STATE_OFF;
825
826 retry:
827 spin_unlock_irq(&ctx->lock);
828 task_oncpu_function_call(task, __perf_counter_enable, counter);
829
830 spin_lock_irq(&ctx->lock);
831
832 /*
833 * If the context is active and the counter is still off,
834 * we need to retry the cross-call.
835 */
836 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
837 goto retry;
838
839 /*
840 * Since we have the lock this context can't be scheduled
841 * in, so we can change the state safely.
842 */
843 if (counter->state == PERF_COUNTER_STATE_OFF) {
844 counter->state = PERF_COUNTER_STATE_INACTIVE;
845 counter->tstamp_enabled =
846 ctx->time - counter->total_time_enabled;
847 ctx->nr_enabled++;
848 }
849 out:
850 spin_unlock_irq(&ctx->lock);
851 }
852
853 static int perf_counter_refresh(struct perf_counter *counter, int refresh)
854 {
855 /*
856 * not supported on inherited counters
857 */
858 if (counter->hw_event.inherit)
859 return -EINVAL;
860
861 atomic_add(refresh, &counter->event_limit);
862 perf_counter_enable(counter);
863
864 return 0;
865 }
866
867 void __perf_counter_sched_out(struct perf_counter_context *ctx,
868 struct perf_cpu_context *cpuctx)
869 {
870 struct perf_counter *counter;
871
872 spin_lock(&ctx->lock);
873 ctx->is_active = 0;
874 if (likely(!ctx->nr_counters))
875 goto out;
876 update_context_time(ctx);
877
878 perf_disable();
879 if (ctx->nr_active) {
880 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
881 if (counter != counter->group_leader)
882 counter_sched_out(counter, cpuctx, ctx);
883 else
884 group_sched_out(counter, cpuctx, ctx);
885 }
886 }
887 perf_enable();
888 out:
889 spin_unlock(&ctx->lock);
890 }
891
892 /*
893 * Test whether two contexts are equivalent, i.e. whether they
894 * have both been cloned from the same version of the same context
895 * and they both have the same number of enabled counters.
896 * If the number of enabled counters is the same, then the set
897 * of enabled counters should be the same, because these are both
898 * inherited contexts, therefore we can't access individual counters
899 * in them directly with an fd; we can only enable/disable all
900 * counters via prctl, or enable/disable all counters in a family
901 * via ioctl, which will have the same effect on both contexts.
902 */
903 static int context_equiv(struct perf_counter_context *ctx1,
904 struct perf_counter_context *ctx2)
905 {
906 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
907 && ctx1->parent_gen == ctx2->parent_gen
908 && ctx1->nr_enabled == ctx2->nr_enabled;
909 }
910
911 /*
912 * Called from scheduler to remove the counters of the current task,
913 * with interrupts disabled.
914 *
915 * We stop each counter and update the counter value in counter->count.
916 *
917 * This does not protect us against NMI, but disable()
918 * sets the disabled bit in the control field of counter _before_
919 * accessing the counter control register. If a NMI hits, then it will
920 * not restart the counter.
921 */
922 void perf_counter_task_sched_out(struct task_struct *task,
923 struct task_struct *next, int cpu)
924 {
925 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
926 struct perf_counter_context *ctx = task->perf_counter_ctxp;
927 struct perf_counter_context *next_ctx;
928 struct pt_regs *regs;
929
930 if (likely(!ctx || !cpuctx->task_ctx))
931 return;
932
933 update_context_time(ctx);
934
935 regs = task_pt_regs(task);
936 perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
937
938 next_ctx = next->perf_counter_ctxp;
939 if (next_ctx && context_equiv(ctx, next_ctx)) {
940 task->perf_counter_ctxp = next_ctx;
941 next->perf_counter_ctxp = ctx;
942 ctx->task = next;
943 next_ctx->task = task;
944 return;
945 }
946
947 __perf_counter_sched_out(ctx, cpuctx);
948
949 cpuctx->task_ctx = NULL;
950 }
951
952 static void __perf_counter_task_sched_out(struct perf_counter_context *ctx)
953 {
954 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
955
956 if (!cpuctx->task_ctx)
957 return;
958 __perf_counter_sched_out(ctx, cpuctx);
959 cpuctx->task_ctx = NULL;
960 }
961
962 static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
963 {
964 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
965 }
966
967 static void
968 __perf_counter_sched_in(struct perf_counter_context *ctx,
969 struct perf_cpu_context *cpuctx, int cpu)
970 {
971 struct perf_counter *counter;
972 int can_add_hw = 1;
973
974 spin_lock(&ctx->lock);
975 ctx->is_active = 1;
976 if (likely(!ctx->nr_counters))
977 goto out;
978
979 ctx->timestamp = perf_clock();
980
981 perf_disable();
982
983 /*
984 * First go through the list and put on any pinned groups
985 * in order to give them the best chance of going on.
986 */
987 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
988 if (counter->state <= PERF_COUNTER_STATE_OFF ||
989 !counter->hw_event.pinned)
990 continue;
991 if (counter->cpu != -1 && counter->cpu != cpu)
992 continue;
993
994 if (counter != counter->group_leader)
995 counter_sched_in(counter, cpuctx, ctx, cpu);
996 else {
997 if (group_can_go_on(counter, cpuctx, 1))
998 group_sched_in(counter, cpuctx, ctx, cpu);
999 }
1000
1001 /*
1002 * If this pinned group hasn't been scheduled,
1003 * put it in error state.
1004 */
1005 if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1006 update_group_times(counter);
1007 counter->state = PERF_COUNTER_STATE_ERROR;
1008 }
1009 }
1010
1011 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1012 /*
1013 * Ignore counters in OFF or ERROR state, and
1014 * ignore pinned counters since we did them already.
1015 */
1016 if (counter->state <= PERF_COUNTER_STATE_OFF ||
1017 counter->hw_event.pinned)
1018 continue;
1019
1020 /*
1021 * Listen to the 'cpu' scheduling filter constraint
1022 * of counters:
1023 */
1024 if (counter->cpu != -1 && counter->cpu != cpu)
1025 continue;
1026
1027 if (counter != counter->group_leader) {
1028 if (counter_sched_in(counter, cpuctx, ctx, cpu))
1029 can_add_hw = 0;
1030 } else {
1031 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
1032 if (group_sched_in(counter, cpuctx, ctx, cpu))
1033 can_add_hw = 0;
1034 }
1035 }
1036 }
1037 perf_enable();
1038 out:
1039 spin_unlock(&ctx->lock);
1040 }
1041
1042 /*
1043 * Called from scheduler to add the counters of the current task
1044 * with interrupts disabled.
1045 *
1046 * We restore the counter value and then enable it.
1047 *
1048 * This does not protect us against NMI, but enable()
1049 * sets the enabled bit in the control field of counter _before_
1050 * accessing the counter control register. If a NMI hits, then it will
1051 * keep the counter running.
1052 */
1053 void perf_counter_task_sched_in(struct task_struct *task, int cpu)
1054 {
1055 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1056 struct perf_counter_context *ctx = task->perf_counter_ctxp;
1057
1058 if (likely(!ctx))
1059 return;
1060 if (cpuctx->task_ctx == ctx)
1061 return;
1062 __perf_counter_sched_in(ctx, cpuctx, cpu);
1063 cpuctx->task_ctx = ctx;
1064 }
1065
1066 static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1067 {
1068 struct perf_counter_context *ctx = &cpuctx->ctx;
1069
1070 __perf_counter_sched_in(ctx, cpuctx, cpu);
1071 }
1072
1073 int perf_counter_task_disable(void)
1074 {
1075 struct task_struct *curr = current;
1076 struct perf_counter_context *ctx = curr->perf_counter_ctxp;
1077 struct perf_counter *counter;
1078 unsigned long flags;
1079
1080 if (!ctx || !ctx->nr_counters)
1081 return 0;
1082
1083 local_irq_save(flags);
1084
1085 __perf_counter_task_sched_out(ctx);
1086
1087 spin_lock(&ctx->lock);
1088
1089 /*
1090 * Disable all the counters:
1091 */
1092 perf_disable();
1093
1094 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1095 if (counter->state != PERF_COUNTER_STATE_ERROR) {
1096 update_group_times(counter);
1097 counter->state = PERF_COUNTER_STATE_OFF;
1098 }
1099 }
1100
1101 perf_enable();
1102
1103 spin_unlock_irqrestore(&ctx->lock, flags);
1104
1105 return 0;
1106 }
1107
1108 int perf_counter_task_enable(void)
1109 {
1110 struct task_struct *curr = current;
1111 struct perf_counter_context *ctx = curr->perf_counter_ctxp;
1112 struct perf_counter *counter;
1113 unsigned long flags;
1114 int cpu;
1115
1116 if (!ctx || !ctx->nr_counters)
1117 return 0;
1118
1119 local_irq_save(flags);
1120 cpu = smp_processor_id();
1121
1122 __perf_counter_task_sched_out(ctx);
1123
1124 spin_lock(&ctx->lock);
1125
1126 /*
1127 * Disable all the counters:
1128 */
1129 perf_disable();
1130
1131 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1132 if (counter->state > PERF_COUNTER_STATE_OFF)
1133 continue;
1134 counter->state = PERF_COUNTER_STATE_INACTIVE;
1135 counter->tstamp_enabled =
1136 ctx->time - counter->total_time_enabled;
1137 counter->hw_event.disabled = 0;
1138 }
1139 perf_enable();
1140
1141 spin_unlock(&ctx->lock);
1142
1143 perf_counter_task_sched_in(curr, cpu);
1144
1145 local_irq_restore(flags);
1146
1147 return 0;
1148 }
1149
1150 static void perf_log_period(struct perf_counter *counter, u64 period);
1151
1152 static void perf_adjust_freq(struct perf_counter_context *ctx)
1153 {
1154 struct perf_counter *counter;
1155 u64 irq_period;
1156 u64 events, period;
1157 s64 delta;
1158
1159 spin_lock(&ctx->lock);
1160 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1161 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1162 continue;
1163
1164 if (!counter->hw_event.freq || !counter->hw_event.irq_freq)
1165 continue;
1166
1167 events = HZ * counter->hw.interrupts * counter->hw.irq_period;
1168 period = div64_u64(events, counter->hw_event.irq_freq);
1169
1170 delta = (s64)(1 + period - counter->hw.irq_period);
1171 delta >>= 1;
1172
1173 irq_period = counter->hw.irq_period + delta;
1174
1175 if (!irq_period)
1176 irq_period = 1;
1177
1178 perf_log_period(counter, irq_period);
1179
1180 counter->hw.irq_period = irq_period;
1181 counter->hw.interrupts = 0;
1182 }
1183 spin_unlock(&ctx->lock);
1184 }
1185
1186 /*
1187 * Round-robin a context's counters:
1188 */
1189 static void rotate_ctx(struct perf_counter_context *ctx)
1190 {
1191 struct perf_counter *counter;
1192
1193 if (!ctx->nr_counters)
1194 return;
1195
1196 spin_lock(&ctx->lock);
1197 /*
1198 * Rotate the first entry last (works just fine for group counters too):
1199 */
1200 perf_disable();
1201 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
1202 list_move_tail(&counter->list_entry, &ctx->counter_list);
1203 break;
1204 }
1205 perf_enable();
1206
1207 spin_unlock(&ctx->lock);
1208 }
1209
1210 void perf_counter_task_tick(struct task_struct *curr, int cpu)
1211 {
1212 struct perf_cpu_context *cpuctx;
1213 struct perf_counter_context *ctx;
1214
1215 if (!atomic_read(&nr_counters))
1216 return;
1217
1218 cpuctx = &per_cpu(perf_cpu_context, cpu);
1219 ctx = curr->perf_counter_ctxp;
1220
1221 perf_adjust_freq(&cpuctx->ctx);
1222 if (ctx)
1223 perf_adjust_freq(ctx);
1224
1225 perf_counter_cpu_sched_out(cpuctx);
1226 if (ctx)
1227 __perf_counter_task_sched_out(ctx);
1228
1229 rotate_ctx(&cpuctx->ctx);
1230 if (ctx)
1231 rotate_ctx(ctx);
1232
1233 perf_counter_cpu_sched_in(cpuctx, cpu);
1234 if (ctx)
1235 perf_counter_task_sched_in(curr, cpu);
1236 }
1237
1238 /*
1239 * Cross CPU call to read the hardware counter
1240 */
1241 static void __read(void *info)
1242 {
1243 struct perf_counter *counter = info;
1244 struct perf_counter_context *ctx = counter->ctx;
1245 unsigned long flags;
1246
1247 local_irq_save(flags);
1248 if (ctx->is_active)
1249 update_context_time(ctx);
1250 counter->pmu->read(counter);
1251 update_counter_times(counter);
1252 local_irq_restore(flags);
1253 }
1254
1255 static u64 perf_counter_read(struct perf_counter *counter)
1256 {
1257 /*
1258 * If counter is enabled and currently active on a CPU, update the
1259 * value in the counter structure:
1260 */
1261 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
1262 smp_call_function_single(counter->oncpu,
1263 __read, counter, 1);
1264 } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
1265 update_counter_times(counter);
1266 }
1267
1268 return atomic64_read(&counter->count);
1269 }
1270
1271 /*
1272 * Initialize the perf_counter context in a task_struct:
1273 */
1274 static void
1275 __perf_counter_init_context(struct perf_counter_context *ctx,
1276 struct task_struct *task)
1277 {
1278 memset(ctx, 0, sizeof(*ctx));
1279 spin_lock_init(&ctx->lock);
1280 mutex_init(&ctx->mutex);
1281 INIT_LIST_HEAD(&ctx->counter_list);
1282 INIT_LIST_HEAD(&ctx->event_list);
1283 atomic_set(&ctx->refcount, 1);
1284 ctx->task = task;
1285 }
1286
1287 static void put_context(struct perf_counter_context *ctx)
1288 {
1289 if (ctx->task)
1290 put_task_struct(ctx->task);
1291 }
1292
1293 static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1294 {
1295 struct perf_cpu_context *cpuctx;
1296 struct perf_counter_context *ctx;
1297 struct perf_counter_context *tctx;
1298 struct task_struct *task;
1299
1300 /*
1301 * If cpu is not a wildcard then this is a percpu counter:
1302 */
1303 if (cpu != -1) {
1304 /* Must be root to operate on a CPU counter: */
1305 if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
1306 return ERR_PTR(-EACCES);
1307
1308 if (cpu < 0 || cpu > num_possible_cpus())
1309 return ERR_PTR(-EINVAL);
1310
1311 /*
1312 * We could be clever and allow to attach a counter to an
1313 * offline CPU and activate it when the CPU comes up, but
1314 * that's for later.
1315 */
1316 if (!cpu_isset(cpu, cpu_online_map))
1317 return ERR_PTR(-ENODEV);
1318
1319 cpuctx = &per_cpu(perf_cpu_context, cpu);
1320 ctx = &cpuctx->ctx;
1321
1322 return ctx;
1323 }
1324
1325 rcu_read_lock();
1326 if (!pid)
1327 task = current;
1328 else
1329 task = find_task_by_vpid(pid);
1330 if (task)
1331 get_task_struct(task);
1332 rcu_read_unlock();
1333
1334 if (!task)
1335 return ERR_PTR(-ESRCH);
1336
1337 /* Reuse ptrace permission checks for now. */
1338 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1339 put_task_struct(task);
1340 return ERR_PTR(-EACCES);
1341 }
1342
1343 ctx = task->perf_counter_ctxp;
1344 if (!ctx) {
1345 ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
1346 if (!ctx) {
1347 put_task_struct(task);
1348 return ERR_PTR(-ENOMEM);
1349 }
1350 __perf_counter_init_context(ctx, task);
1351 /*
1352 * Make sure other cpus see correct values for *ctx
1353 * once task->perf_counter_ctxp is visible to them.
1354 */
1355 smp_wmb();
1356 tctx = cmpxchg(&task->perf_counter_ctxp, NULL, ctx);
1357 if (tctx) {
1358 /*
1359 * We raced with some other task; use
1360 * the context they set.
1361 */
1362 kfree(ctx);
1363 ctx = tctx;
1364 }
1365 }
1366
1367 return ctx;
1368 }
1369
1370 static void free_counter_rcu(struct rcu_head *head)
1371 {
1372 struct perf_counter *counter;
1373
1374 counter = container_of(head, struct perf_counter, rcu_head);
1375 put_ctx(counter->ctx);
1376 kfree(counter);
1377 }
1378
1379 static void perf_pending_sync(struct perf_counter *counter);
1380
1381 static void free_counter(struct perf_counter *counter)
1382 {
1383 perf_pending_sync(counter);
1384
1385 atomic_dec(&nr_counters);
1386 if (counter->hw_event.mmap)
1387 atomic_dec(&nr_mmap_tracking);
1388 if (counter->hw_event.munmap)
1389 atomic_dec(&nr_munmap_tracking);
1390 if (counter->hw_event.comm)
1391 atomic_dec(&nr_comm_tracking);
1392
1393 if (counter->destroy)
1394 counter->destroy(counter);
1395
1396 call_rcu(&counter->rcu_head, free_counter_rcu);
1397 }
1398
1399 /*
1400 * Called when the last reference to the file is gone.
1401 */
1402 static int perf_release(struct inode *inode, struct file *file)
1403 {
1404 struct perf_counter *counter = file->private_data;
1405 struct perf_counter_context *ctx = counter->ctx;
1406
1407 file->private_data = NULL;
1408
1409 mutex_lock(&ctx->mutex);
1410 mutex_lock(&counter->mutex);
1411
1412 perf_counter_remove_from_context(counter);
1413
1414 mutex_unlock(&counter->mutex);
1415 mutex_unlock(&ctx->mutex);
1416
1417 free_counter(counter);
1418 put_context(ctx);
1419
1420 return 0;
1421 }
1422
1423 /*
1424 * Read the performance counter - simple non blocking version for now
1425 */
1426 static ssize_t
1427 perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1428 {
1429 u64 values[3];
1430 int n;
1431
1432 /*
1433 * Return end-of-file for a read on a counter that is in
1434 * error state (i.e. because it was pinned but it couldn't be
1435 * scheduled on to the CPU at some point).
1436 */
1437 if (counter->state == PERF_COUNTER_STATE_ERROR)
1438 return 0;
1439
1440 mutex_lock(&counter->mutex);
1441 values[0] = perf_counter_read(counter);
1442 n = 1;
1443 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1444 values[n++] = counter->total_time_enabled +
1445 atomic64_read(&counter->child_total_time_enabled);
1446 if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1447 values[n++] = counter->total_time_running +
1448 atomic64_read(&counter->child_total_time_running);
1449 mutex_unlock(&counter->mutex);
1450
1451 if (count < n * sizeof(u64))
1452 return -EINVAL;
1453 count = n * sizeof(u64);
1454
1455 if (copy_to_user(buf, values, count))
1456 return -EFAULT;
1457
1458 return count;
1459 }
1460
1461 static ssize_t
1462 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1463 {
1464 struct perf_counter *counter = file->private_data;
1465
1466 return perf_read_hw(counter, buf, count);
1467 }
1468
1469 static unsigned int perf_poll(struct file *file, poll_table *wait)
1470 {
1471 struct perf_counter *counter = file->private_data;
1472 struct perf_mmap_data *data;
1473 unsigned int events = POLL_HUP;
1474
1475 rcu_read_lock();
1476 data = rcu_dereference(counter->data);
1477 if (data)
1478 events = atomic_xchg(&data->poll, 0);
1479 rcu_read_unlock();
1480
1481 poll_wait(file, &counter->waitq, wait);
1482
1483 return events;
1484 }
1485
1486 static void perf_counter_reset(struct perf_counter *counter)
1487 {
1488 (void)perf_counter_read(counter);
1489 atomic64_set(&counter->count, 0);
1490 perf_counter_update_userpage(counter);
1491 }
1492
1493 static void perf_counter_for_each_sibling(struct perf_counter *counter,
1494 void (*func)(struct perf_counter *))
1495 {
1496 struct perf_counter_context *ctx = counter->ctx;
1497 struct perf_counter *sibling;
1498
1499 spin_lock_irq(&ctx->lock);
1500 counter = counter->group_leader;
1501
1502 func(counter);
1503 list_for_each_entry(sibling, &counter->sibling_list, list_entry)
1504 func(sibling);
1505 spin_unlock_irq(&ctx->lock);
1506 }
1507
1508 static void perf_counter_for_each_child(struct perf_counter *counter,
1509 void (*func)(struct perf_counter *))
1510 {
1511 struct perf_counter *child;
1512
1513 mutex_lock(&counter->mutex);
1514 func(counter);
1515 list_for_each_entry(child, &counter->child_list, child_list)
1516 func(child);
1517 mutex_unlock(&counter->mutex);
1518 }
1519
1520 static void perf_counter_for_each(struct perf_counter *counter,
1521 void (*func)(struct perf_counter *))
1522 {
1523 struct perf_counter *child;
1524
1525 mutex_lock(&counter->mutex);
1526 perf_counter_for_each_sibling(counter, func);
1527 list_for_each_entry(child, &counter->child_list, child_list)
1528 perf_counter_for_each_sibling(child, func);
1529 mutex_unlock(&counter->mutex);
1530 }
1531
1532 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1533 {
1534 struct perf_counter *counter = file->private_data;
1535 void (*func)(struct perf_counter *);
1536 u32 flags = arg;
1537
1538 switch (cmd) {
1539 case PERF_COUNTER_IOC_ENABLE:
1540 func = perf_counter_enable;
1541 break;
1542 case PERF_COUNTER_IOC_DISABLE:
1543 func = perf_counter_disable;
1544 break;
1545 case PERF_COUNTER_IOC_RESET:
1546 func = perf_counter_reset;
1547 break;
1548
1549 case PERF_COUNTER_IOC_REFRESH:
1550 return perf_counter_refresh(counter, arg);
1551 default:
1552 return -ENOTTY;
1553 }
1554
1555 if (flags & PERF_IOC_FLAG_GROUP)
1556 perf_counter_for_each(counter, func);
1557 else
1558 perf_counter_for_each_child(counter, func);
1559
1560 return 0;
1561 }
1562
1563 /*
1564 * Callers need to ensure there can be no nesting of this function, otherwise
1565 * the seqlock logic goes bad. We can not serialize this because the arch
1566 * code calls this from NMI context.
1567 */
1568 void perf_counter_update_userpage(struct perf_counter *counter)
1569 {
1570 struct perf_mmap_data *data;
1571 struct perf_counter_mmap_page *userpg;
1572
1573 rcu_read_lock();
1574 data = rcu_dereference(counter->data);
1575 if (!data)
1576 goto unlock;
1577
1578 userpg = data->user_page;
1579
1580 /*
1581 * Disable preemption so as to not let the corresponding user-space
1582 * spin too long if we get preempted.
1583 */
1584 preempt_disable();
1585 ++userpg->lock;
1586 barrier();
1587 userpg->index = counter->hw.idx;
1588 userpg->offset = atomic64_read(&counter->count);
1589 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1590 userpg->offset -= atomic64_read(&counter->hw.prev_count);
1591
1592 barrier();
1593 ++userpg->lock;
1594 preempt_enable();
1595 unlock:
1596 rcu_read_unlock();
1597 }
1598
1599 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1600 {
1601 struct perf_counter *counter = vma->vm_file->private_data;
1602 struct perf_mmap_data *data;
1603 int ret = VM_FAULT_SIGBUS;
1604
1605 rcu_read_lock();
1606 data = rcu_dereference(counter->data);
1607 if (!data)
1608 goto unlock;
1609
1610 if (vmf->pgoff == 0) {
1611 vmf->page = virt_to_page(data->user_page);
1612 } else {
1613 int nr = vmf->pgoff - 1;
1614
1615 if ((unsigned)nr > data->nr_pages)
1616 goto unlock;
1617
1618 vmf->page = virt_to_page(data->data_pages[nr]);
1619 }
1620 get_page(vmf->page);
1621 ret = 0;
1622 unlock:
1623 rcu_read_unlock();
1624
1625 return ret;
1626 }
1627
1628 static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1629 {
1630 struct perf_mmap_data *data;
1631 unsigned long size;
1632 int i;
1633
1634 WARN_ON(atomic_read(&counter->mmap_count));
1635
1636 size = sizeof(struct perf_mmap_data);
1637 size += nr_pages * sizeof(void *);
1638
1639 data = kzalloc(size, GFP_KERNEL);
1640 if (!data)
1641 goto fail;
1642
1643 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1644 if (!data->user_page)
1645 goto fail_user_page;
1646
1647 for (i = 0; i < nr_pages; i++) {
1648 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1649 if (!data->data_pages[i])
1650 goto fail_data_pages;
1651 }
1652
1653 data->nr_pages = nr_pages;
1654 atomic_set(&data->lock, -1);
1655
1656 rcu_assign_pointer(counter->data, data);
1657
1658 return 0;
1659
1660 fail_data_pages:
1661 for (i--; i >= 0; i--)
1662 free_page((unsigned long)data->data_pages[i]);
1663
1664 free_page((unsigned long)data->user_page);
1665
1666 fail_user_page:
1667 kfree(data);
1668
1669 fail:
1670 return -ENOMEM;
1671 }
1672
1673 static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1674 {
1675 struct perf_mmap_data *data = container_of(rcu_head,
1676 struct perf_mmap_data, rcu_head);
1677 int i;
1678
1679 free_page((unsigned long)data->user_page);
1680 for (i = 0; i < data->nr_pages; i++)
1681 free_page((unsigned long)data->data_pages[i]);
1682 kfree(data);
1683 }
1684
1685 static void perf_mmap_data_free(struct perf_counter *counter)
1686 {
1687 struct perf_mmap_data *data = counter->data;
1688
1689 WARN_ON(atomic_read(&counter->mmap_count));
1690
1691 rcu_assign_pointer(counter->data, NULL);
1692 call_rcu(&data->rcu_head, __perf_mmap_data_free);
1693 }
1694
1695 static void perf_mmap_open(struct vm_area_struct *vma)
1696 {
1697 struct perf_counter *counter = vma->vm_file->private_data;
1698
1699 atomic_inc(&counter->mmap_count);
1700 }
1701
1702 static void perf_mmap_close(struct vm_area_struct *vma)
1703 {
1704 struct perf_counter *counter = vma->vm_file->private_data;
1705
1706 if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1707 &counter->mmap_mutex)) {
1708 struct user_struct *user = current_user();
1709
1710 atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm);
1711 vma->vm_mm->locked_vm -= counter->data->nr_locked;
1712 perf_mmap_data_free(counter);
1713 mutex_unlock(&counter->mmap_mutex);
1714 }
1715 }
1716
1717 static struct vm_operations_struct perf_mmap_vmops = {
1718 .open = perf_mmap_open,
1719 .close = perf_mmap_close,
1720 .fault = perf_mmap_fault,
1721 };
1722
1723 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1724 {
1725 struct perf_counter *counter = file->private_data;
1726 struct user_struct *user = current_user();
1727 unsigned long vma_size;
1728 unsigned long nr_pages;
1729 unsigned long user_locked, user_lock_limit;
1730 unsigned long locked, lock_limit;
1731 long user_extra, extra;
1732 int ret = 0;
1733
1734 if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1735 return -EINVAL;
1736
1737 vma_size = vma->vm_end - vma->vm_start;
1738 nr_pages = (vma_size / PAGE_SIZE) - 1;
1739
1740 /*
1741 * If we have data pages ensure they're a power-of-two number, so we
1742 * can do bitmasks instead of modulo.
1743 */
1744 if (nr_pages != 0 && !is_power_of_2(nr_pages))
1745 return -EINVAL;
1746
1747 if (vma_size != PAGE_SIZE * (1 + nr_pages))
1748 return -EINVAL;
1749
1750 if (vma->vm_pgoff != 0)
1751 return -EINVAL;
1752
1753 mutex_lock(&counter->mmap_mutex);
1754 if (atomic_inc_not_zero(&counter->mmap_count)) {
1755 if (nr_pages != counter->data->nr_pages)
1756 ret = -EINVAL;
1757 goto unlock;
1758 }
1759
1760 user_extra = nr_pages + 1;
1761 user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
1762 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
1763
1764 extra = 0;
1765 if (user_locked > user_lock_limit)
1766 extra = user_locked - user_lock_limit;
1767
1768 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1769 lock_limit >>= PAGE_SHIFT;
1770 locked = vma->vm_mm->locked_vm + extra;
1771
1772 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
1773 ret = -EPERM;
1774 goto unlock;
1775 }
1776
1777 WARN_ON(counter->data);
1778 ret = perf_mmap_data_alloc(counter, nr_pages);
1779 if (ret)
1780 goto unlock;
1781
1782 atomic_set(&counter->mmap_count, 1);
1783 atomic_long_add(user_extra, &user->locked_vm);
1784 vma->vm_mm->locked_vm += extra;
1785 counter->data->nr_locked = extra;
1786 unlock:
1787 mutex_unlock(&counter->mmap_mutex);
1788
1789 vma->vm_flags &= ~VM_MAYWRITE;
1790 vma->vm_flags |= VM_RESERVED;
1791 vma->vm_ops = &perf_mmap_vmops;
1792
1793 return ret;
1794 }
1795
1796 static int perf_fasync(int fd, struct file *filp, int on)
1797 {
1798 struct perf_counter *counter = filp->private_data;
1799 struct inode *inode = filp->f_path.dentry->d_inode;
1800 int retval;
1801
1802 mutex_lock(&inode->i_mutex);
1803 retval = fasync_helper(fd, filp, on, &counter->fasync);
1804 mutex_unlock(&inode->i_mutex);
1805
1806 if (retval < 0)
1807 return retval;
1808
1809 return 0;
1810 }
1811
1812 static const struct file_operations perf_fops = {
1813 .release = perf_release,
1814 .read = perf_read,
1815 .poll = perf_poll,
1816 .unlocked_ioctl = perf_ioctl,
1817 .compat_ioctl = perf_ioctl,
1818 .mmap = perf_mmap,
1819 .fasync = perf_fasync,
1820 };
1821
1822 /*
1823 * Perf counter wakeup
1824 *
1825 * If there's data, ensure we set the poll() state and publish everything
1826 * to user-space before waking everybody up.
1827 */
1828
1829 void perf_counter_wakeup(struct perf_counter *counter)
1830 {
1831 wake_up_all(&counter->waitq);
1832
1833 if (counter->pending_kill) {
1834 kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
1835 counter->pending_kill = 0;
1836 }
1837 }
1838
1839 /*
1840 * Pending wakeups
1841 *
1842 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
1843 *
1844 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
1845 * single linked list and use cmpxchg() to add entries lockless.
1846 */
1847
1848 static void perf_pending_counter(struct perf_pending_entry *entry)
1849 {
1850 struct perf_counter *counter = container_of(entry,
1851 struct perf_counter, pending);
1852
1853 if (counter->pending_disable) {
1854 counter->pending_disable = 0;
1855 perf_counter_disable(counter);
1856 }
1857
1858 if (counter->pending_wakeup) {
1859 counter->pending_wakeup = 0;
1860 perf_counter_wakeup(counter);
1861 }
1862 }
1863
1864 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
1865
1866 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
1867 PENDING_TAIL,
1868 };
1869
1870 static void perf_pending_queue(struct perf_pending_entry *entry,
1871 void (*func)(struct perf_pending_entry *))
1872 {
1873 struct perf_pending_entry **head;
1874
1875 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
1876 return;
1877
1878 entry->func = func;
1879
1880 head = &get_cpu_var(perf_pending_head);
1881
1882 do {
1883 entry->next = *head;
1884 } while (cmpxchg(head, entry->next, entry) != entry->next);
1885
1886 set_perf_counter_pending();
1887
1888 put_cpu_var(perf_pending_head);
1889 }
1890
1891 static int __perf_pending_run(void)
1892 {
1893 struct perf_pending_entry *list;
1894 int nr = 0;
1895
1896 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
1897 while (list != PENDING_TAIL) {
1898 void (*func)(struct perf_pending_entry *);
1899 struct perf_pending_entry *entry = list;
1900
1901 list = list->next;
1902
1903 func = entry->func;
1904 entry->next = NULL;
1905 /*
1906 * Ensure we observe the unqueue before we issue the wakeup,
1907 * so that we won't be waiting forever.
1908 * -- see perf_not_pending().
1909 */
1910 smp_wmb();
1911
1912 func(entry);
1913 nr++;
1914 }
1915
1916 return nr;
1917 }
1918
1919 static inline int perf_not_pending(struct perf_counter *counter)
1920 {
1921 /*
1922 * If we flush on whatever cpu we run, there is a chance we don't
1923 * need to wait.
1924 */
1925 get_cpu();
1926 __perf_pending_run();
1927 put_cpu();
1928
1929 /*
1930 * Ensure we see the proper queue state before going to sleep
1931 * so that we do not miss the wakeup. -- see perf_pending_handle()
1932 */
1933 smp_rmb();
1934 return counter->pending.next == NULL;
1935 }
1936
1937 static void perf_pending_sync(struct perf_counter *counter)
1938 {
1939 wait_event(counter->waitq, perf_not_pending(counter));
1940 }
1941
1942 void perf_counter_do_pending(void)
1943 {
1944 __perf_pending_run();
1945 }
1946
1947 /*
1948 * Callchain support -- arch specific
1949 */
1950
1951 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1952 {
1953 return NULL;
1954 }
1955
1956 /*
1957 * Output
1958 */
1959
1960 struct perf_output_handle {
1961 struct perf_counter *counter;
1962 struct perf_mmap_data *data;
1963 unsigned int offset;
1964 unsigned int head;
1965 int nmi;
1966 int overflow;
1967 int locked;
1968 unsigned long flags;
1969 };
1970
1971 static void perf_output_wakeup(struct perf_output_handle *handle)
1972 {
1973 atomic_set(&handle->data->poll, POLL_IN);
1974
1975 if (handle->nmi) {
1976 handle->counter->pending_wakeup = 1;
1977 perf_pending_queue(&handle->counter->pending,
1978 perf_pending_counter);
1979 } else
1980 perf_counter_wakeup(handle->counter);
1981 }
1982
1983 /*
1984 * Curious locking construct.
1985 *
1986 * We need to ensure a later event doesn't publish a head when a former
1987 * event isn't done writing. However since we need to deal with NMIs we
1988 * cannot fully serialize things.
1989 *
1990 * What we do is serialize between CPUs so we only have to deal with NMI
1991 * nesting on a single CPU.
1992 *
1993 * We only publish the head (and generate a wakeup) when the outer-most
1994 * event completes.
1995 */
1996 static void perf_output_lock(struct perf_output_handle *handle)
1997 {
1998 struct perf_mmap_data *data = handle->data;
1999 int cpu;
2000
2001 handle->locked = 0;
2002
2003 local_irq_save(handle->flags);
2004 cpu = smp_processor_id();
2005
2006 if (in_nmi() && atomic_read(&data->lock) == cpu)
2007 return;
2008
2009 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2010 cpu_relax();
2011
2012 handle->locked = 1;
2013 }
2014
2015 static void perf_output_unlock(struct perf_output_handle *handle)
2016 {
2017 struct perf_mmap_data *data = handle->data;
2018 int head, cpu;
2019
2020 data->done_head = data->head;
2021
2022 if (!handle->locked)
2023 goto out;
2024
2025 again:
2026 /*
2027 * The xchg implies a full barrier that ensures all writes are done
2028 * before we publish the new head, matched by a rmb() in userspace when
2029 * reading this position.
2030 */
2031 while ((head = atomic_xchg(&data->done_head, 0)))
2032 data->user_page->data_head = head;
2033
2034 /*
2035 * NMI can happen here, which means we can miss a done_head update.
2036 */
2037
2038 cpu = atomic_xchg(&data->lock, -1);
2039 WARN_ON_ONCE(cpu != smp_processor_id());
2040
2041 /*
2042 * Therefore we have to validate we did not indeed do so.
2043 */
2044 if (unlikely(atomic_read(&data->done_head))) {
2045 /*
2046 * Since we had it locked, we can lock it again.
2047 */
2048 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2049 cpu_relax();
2050
2051 goto again;
2052 }
2053
2054 if (atomic_xchg(&data->wakeup, 0))
2055 perf_output_wakeup(handle);
2056 out:
2057 local_irq_restore(handle->flags);
2058 }
2059
2060 static int perf_output_begin(struct perf_output_handle *handle,
2061 struct perf_counter *counter, unsigned int size,
2062 int nmi, int overflow)
2063 {
2064 struct perf_mmap_data *data;
2065 unsigned int offset, head;
2066
2067 /*
2068 * For inherited counters we send all the output towards the parent.
2069 */
2070 if (counter->parent)
2071 counter = counter->parent;
2072
2073 rcu_read_lock();
2074 data = rcu_dereference(counter->data);
2075 if (!data)
2076 goto out;
2077
2078 handle->data = data;
2079 handle->counter = counter;
2080 handle->nmi = nmi;
2081 handle->overflow = overflow;
2082
2083 if (!data->nr_pages)
2084 goto fail;
2085
2086 perf_output_lock(handle);
2087
2088 do {
2089 offset = head = atomic_read(&data->head);
2090 head += size;
2091 } while (atomic_cmpxchg(&data->head, offset, head) != offset);
2092
2093 handle->offset = offset;
2094 handle->head = head;
2095
2096 if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
2097 atomic_set(&data->wakeup, 1);
2098
2099 return 0;
2100
2101 fail:
2102 perf_output_wakeup(handle);
2103 out:
2104 rcu_read_unlock();
2105
2106 return -ENOSPC;
2107 }
2108
2109 static void perf_output_copy(struct perf_output_handle *handle,
2110 void *buf, unsigned int len)
2111 {
2112 unsigned int pages_mask;
2113 unsigned int offset;
2114 unsigned int size;
2115 void **pages;
2116
2117 offset = handle->offset;
2118 pages_mask = handle->data->nr_pages - 1;
2119 pages = handle->data->data_pages;
2120
2121 do {
2122 unsigned int page_offset;
2123 int nr;
2124
2125 nr = (offset >> PAGE_SHIFT) & pages_mask;
2126 page_offset = offset & (PAGE_SIZE - 1);
2127 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
2128
2129 memcpy(pages[nr] + page_offset, buf, size);
2130
2131 len -= size;
2132 buf += size;
2133 offset += size;
2134 } while (len);
2135
2136 handle->offset = offset;
2137
2138 /*
2139 * Check we didn't copy past our reservation window, taking the
2140 * possible unsigned int wrap into account.
2141 */
2142 WARN_ON_ONCE(((int)(handle->head - handle->offset)) < 0);
2143 }
2144
2145 #define perf_output_put(handle, x) \
2146 perf_output_copy((handle), &(x), sizeof(x))
2147
2148 static void perf_output_end(struct perf_output_handle *handle)
2149 {
2150 struct perf_counter *counter = handle->counter;
2151 struct perf_mmap_data *data = handle->data;
2152
2153 int wakeup_events = counter->hw_event.wakeup_events;
2154
2155 if (handle->overflow && wakeup_events) {
2156 int events = atomic_inc_return(&data->events);
2157 if (events >= wakeup_events) {
2158 atomic_sub(wakeup_events, &data->events);
2159 atomic_set(&data->wakeup, 1);
2160 }
2161 }
2162
2163 perf_output_unlock(handle);
2164 rcu_read_unlock();
2165 }
2166
2167 static void perf_counter_output(struct perf_counter *counter,
2168 int nmi, struct pt_regs *regs, u64 addr)
2169 {
2170 int ret;
2171 u64 record_type = counter->hw_event.record_type;
2172 struct perf_output_handle handle;
2173 struct perf_event_header header;
2174 u64 ip;
2175 struct {
2176 u32 pid, tid;
2177 } tid_entry;
2178 struct {
2179 u64 event;
2180 u64 counter;
2181 } group_entry;
2182 struct perf_callchain_entry *callchain = NULL;
2183 int callchain_size = 0;
2184 u64 time;
2185 struct {
2186 u32 cpu, reserved;
2187 } cpu_entry;
2188
2189 header.type = 0;
2190 header.size = sizeof(header);
2191
2192 header.misc = PERF_EVENT_MISC_OVERFLOW;
2193 header.misc |= perf_misc_flags(regs);
2194
2195 if (record_type & PERF_RECORD_IP) {
2196 ip = perf_instruction_pointer(regs);
2197 header.type |= PERF_RECORD_IP;
2198 header.size += sizeof(ip);
2199 }
2200
2201 if (record_type & PERF_RECORD_TID) {
2202 /* namespace issues */
2203 tid_entry.pid = current->group_leader->pid;
2204 tid_entry.tid = current->pid;
2205
2206 header.type |= PERF_RECORD_TID;
2207 header.size += sizeof(tid_entry);
2208 }
2209
2210 if (record_type & PERF_RECORD_TIME) {
2211 /*
2212 * Maybe do better on x86 and provide cpu_clock_nmi()
2213 */
2214 time = sched_clock();
2215
2216 header.type |= PERF_RECORD_TIME;
2217 header.size += sizeof(u64);
2218 }
2219
2220 if (record_type & PERF_RECORD_ADDR) {
2221 header.type |= PERF_RECORD_ADDR;
2222 header.size += sizeof(u64);
2223 }
2224
2225 if (record_type & PERF_RECORD_CONFIG) {
2226 header.type |= PERF_RECORD_CONFIG;
2227 header.size += sizeof(u64);
2228 }
2229
2230 if (record_type & PERF_RECORD_CPU) {
2231 header.type |= PERF_RECORD_CPU;
2232 header.size += sizeof(cpu_entry);
2233
2234 cpu_entry.cpu = raw_smp_processor_id();
2235 }
2236
2237 if (record_type & PERF_RECORD_GROUP) {
2238 header.type |= PERF_RECORD_GROUP;
2239 header.size += sizeof(u64) +
2240 counter->nr_siblings * sizeof(group_entry);
2241 }
2242
2243 if (record_type & PERF_RECORD_CALLCHAIN) {
2244 callchain = perf_callchain(regs);
2245
2246 if (callchain) {
2247 callchain_size = (1 + callchain->nr) * sizeof(u64);
2248
2249 header.type |= PERF_RECORD_CALLCHAIN;
2250 header.size += callchain_size;
2251 }
2252 }
2253
2254 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2255 if (ret)
2256 return;
2257
2258 perf_output_put(&handle, header);
2259
2260 if (record_type & PERF_RECORD_IP)
2261 perf_output_put(&handle, ip);
2262
2263 if (record_type & PERF_RECORD_TID)
2264 perf_output_put(&handle, tid_entry);
2265
2266 if (record_type & PERF_RECORD_TIME)
2267 perf_output_put(&handle, time);
2268
2269 if (record_type & PERF_RECORD_ADDR)
2270 perf_output_put(&handle, addr);
2271
2272 if (record_type & PERF_RECORD_CONFIG)
2273 perf_output_put(&handle, counter->hw_event.config);
2274
2275 if (record_type & PERF_RECORD_CPU)
2276 perf_output_put(&handle, cpu_entry);
2277
2278 /*
2279 * XXX PERF_RECORD_GROUP vs inherited counters seems difficult.
2280 */
2281 if (record_type & PERF_RECORD_GROUP) {
2282 struct perf_counter *leader, *sub;
2283 u64 nr = counter->nr_siblings;
2284
2285 perf_output_put(&handle, nr);
2286
2287 leader = counter->group_leader;
2288 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2289 if (sub != counter)
2290 sub->pmu->read(sub);
2291
2292 group_entry.event = sub->hw_event.config;
2293 group_entry.counter = atomic64_read(&sub->count);
2294
2295 perf_output_put(&handle, group_entry);
2296 }
2297 }
2298
2299 if (callchain)
2300 perf_output_copy(&handle, callchain, callchain_size);
2301
2302 perf_output_end(&handle);
2303 }
2304
2305 /*
2306 * comm tracking
2307 */
2308
2309 struct perf_comm_event {
2310 struct task_struct *task;
2311 char *comm;
2312 int comm_size;
2313
2314 struct {
2315 struct perf_event_header header;
2316
2317 u32 pid;
2318 u32 tid;
2319 } event;
2320 };
2321
2322 static void perf_counter_comm_output(struct perf_counter *counter,
2323 struct perf_comm_event *comm_event)
2324 {
2325 struct perf_output_handle handle;
2326 int size = comm_event->event.header.size;
2327 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2328
2329 if (ret)
2330 return;
2331
2332 perf_output_put(&handle, comm_event->event);
2333 perf_output_copy(&handle, comm_event->comm,
2334 comm_event->comm_size);
2335 perf_output_end(&handle);
2336 }
2337
2338 static int perf_counter_comm_match(struct perf_counter *counter,
2339 struct perf_comm_event *comm_event)
2340 {
2341 if (counter->hw_event.comm &&
2342 comm_event->event.header.type == PERF_EVENT_COMM)
2343 return 1;
2344
2345 return 0;
2346 }
2347
2348 static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
2349 struct perf_comm_event *comm_event)
2350 {
2351 struct perf_counter *counter;
2352
2353 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2354 return;
2355
2356 rcu_read_lock();
2357 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2358 if (perf_counter_comm_match(counter, comm_event))
2359 perf_counter_comm_output(counter, comm_event);
2360 }
2361 rcu_read_unlock();
2362 }
2363
2364 static void perf_counter_comm_event(struct perf_comm_event *comm_event)
2365 {
2366 struct perf_cpu_context *cpuctx;
2367 unsigned int size;
2368 char *comm = comm_event->task->comm;
2369
2370 size = ALIGN(strlen(comm)+1, sizeof(u64));
2371
2372 comm_event->comm = comm;
2373 comm_event->comm_size = size;
2374
2375 comm_event->event.header.size = sizeof(comm_event->event) + size;
2376
2377 cpuctx = &get_cpu_var(perf_cpu_context);
2378 perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
2379 put_cpu_var(perf_cpu_context);
2380
2381 perf_counter_comm_ctx(current->perf_counter_ctxp, comm_event);
2382 }
2383
2384 void perf_counter_comm(struct task_struct *task)
2385 {
2386 struct perf_comm_event comm_event;
2387
2388 if (!atomic_read(&nr_comm_tracking))
2389 return;
2390 if (!current->perf_counter_ctxp)
2391 return;
2392
2393 comm_event = (struct perf_comm_event){
2394 .task = task,
2395 .event = {
2396 .header = { .type = PERF_EVENT_COMM, },
2397 .pid = task->group_leader->pid,
2398 .tid = task->pid,
2399 },
2400 };
2401
2402 perf_counter_comm_event(&comm_event);
2403 }
2404
2405 /*
2406 * mmap tracking
2407 */
2408
2409 struct perf_mmap_event {
2410 struct file *file;
2411 char *file_name;
2412 int file_size;
2413
2414 struct {
2415 struct perf_event_header header;
2416
2417 u32 pid;
2418 u32 tid;
2419 u64 start;
2420 u64 len;
2421 u64 pgoff;
2422 } event;
2423 };
2424
2425 static void perf_counter_mmap_output(struct perf_counter *counter,
2426 struct perf_mmap_event *mmap_event)
2427 {
2428 struct perf_output_handle handle;
2429 int size = mmap_event->event.header.size;
2430 int ret = perf_output_begin(&handle, counter, size, 0, 0);
2431
2432 if (ret)
2433 return;
2434
2435 perf_output_put(&handle, mmap_event->event);
2436 perf_output_copy(&handle, mmap_event->file_name,
2437 mmap_event->file_size);
2438 perf_output_end(&handle);
2439 }
2440
2441 static int perf_counter_mmap_match(struct perf_counter *counter,
2442 struct perf_mmap_event *mmap_event)
2443 {
2444 if (counter->hw_event.mmap &&
2445 mmap_event->event.header.type == PERF_EVENT_MMAP)
2446 return 1;
2447
2448 if (counter->hw_event.munmap &&
2449 mmap_event->event.header.type == PERF_EVENT_MUNMAP)
2450 return 1;
2451
2452 return 0;
2453 }
2454
2455 static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
2456 struct perf_mmap_event *mmap_event)
2457 {
2458 struct perf_counter *counter;
2459
2460 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2461 return;
2462
2463 rcu_read_lock();
2464 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2465 if (perf_counter_mmap_match(counter, mmap_event))
2466 perf_counter_mmap_output(counter, mmap_event);
2467 }
2468 rcu_read_unlock();
2469 }
2470
2471 static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
2472 {
2473 struct perf_cpu_context *cpuctx;
2474 struct file *file = mmap_event->file;
2475 unsigned int size;
2476 char tmp[16];
2477 char *buf = NULL;
2478 char *name;
2479
2480 if (file) {
2481 buf = kzalloc(PATH_MAX, GFP_KERNEL);
2482 if (!buf) {
2483 name = strncpy(tmp, "//enomem", sizeof(tmp));
2484 goto got_name;
2485 }
2486 name = d_path(&file->f_path, buf, PATH_MAX);
2487 if (IS_ERR(name)) {
2488 name = strncpy(tmp, "//toolong", sizeof(tmp));
2489 goto got_name;
2490 }
2491 } else {
2492 name = strncpy(tmp, "//anon", sizeof(tmp));
2493 goto got_name;
2494 }
2495
2496 got_name:
2497 size = ALIGN(strlen(name)+1, sizeof(u64));
2498
2499 mmap_event->file_name = name;
2500 mmap_event->file_size = size;
2501
2502 mmap_event->event.header.size = sizeof(mmap_event->event) + size;
2503
2504 cpuctx = &get_cpu_var(perf_cpu_context);
2505 perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
2506 put_cpu_var(perf_cpu_context);
2507
2508 perf_counter_mmap_ctx(current->perf_counter_ctxp, mmap_event);
2509
2510 kfree(buf);
2511 }
2512
2513 void perf_counter_mmap(unsigned long addr, unsigned long len,
2514 unsigned long pgoff, struct file *file)
2515 {
2516 struct perf_mmap_event mmap_event;
2517
2518 if (!atomic_read(&nr_mmap_tracking))
2519 return;
2520 if (!current->perf_counter_ctxp)
2521 return;
2522
2523 mmap_event = (struct perf_mmap_event){
2524 .file = file,
2525 .event = {
2526 .header = { .type = PERF_EVENT_MMAP, },
2527 .pid = current->group_leader->pid,
2528 .tid = current->pid,
2529 .start = addr,
2530 .len = len,
2531 .pgoff = pgoff,
2532 },
2533 };
2534
2535 perf_counter_mmap_event(&mmap_event);
2536 }
2537
2538 void perf_counter_munmap(unsigned long addr, unsigned long len,
2539 unsigned long pgoff, struct file *file)
2540 {
2541 struct perf_mmap_event mmap_event;
2542
2543 if (!atomic_read(&nr_munmap_tracking))
2544 return;
2545
2546 mmap_event = (struct perf_mmap_event){
2547 .file = file,
2548 .event = {
2549 .header = { .type = PERF_EVENT_MUNMAP, },
2550 .pid = current->group_leader->pid,
2551 .tid = current->pid,
2552 .start = addr,
2553 .len = len,
2554 .pgoff = pgoff,
2555 },
2556 };
2557
2558 perf_counter_mmap_event(&mmap_event);
2559 }
2560
2561 /*
2562 * Log irq_period changes so that analyzing tools can re-normalize the
2563 * event flow.
2564 */
2565
2566 static void perf_log_period(struct perf_counter *counter, u64 period)
2567 {
2568 struct perf_output_handle handle;
2569 int ret;
2570
2571 struct {
2572 struct perf_event_header header;
2573 u64 time;
2574 u64 period;
2575 } freq_event = {
2576 .header = {
2577 .type = PERF_EVENT_PERIOD,
2578 .misc = 0,
2579 .size = sizeof(freq_event),
2580 },
2581 .time = sched_clock(),
2582 .period = period,
2583 };
2584
2585 if (counter->hw.irq_period == period)
2586 return;
2587
2588 ret = perf_output_begin(&handle, counter, sizeof(freq_event), 0, 0);
2589 if (ret)
2590 return;
2591
2592 perf_output_put(&handle, freq_event);
2593 perf_output_end(&handle);
2594 }
2595
2596 /*
2597 * Generic counter overflow handling.
2598 */
2599
2600 int perf_counter_overflow(struct perf_counter *counter,
2601 int nmi, struct pt_regs *regs, u64 addr)
2602 {
2603 int events = atomic_read(&counter->event_limit);
2604 int ret = 0;
2605
2606 counter->hw.interrupts++;
2607
2608 /*
2609 * XXX event_limit might not quite work as expected on inherited
2610 * counters
2611 */
2612
2613 counter->pending_kill = POLL_IN;
2614 if (events && atomic_dec_and_test(&counter->event_limit)) {
2615 ret = 1;
2616 counter->pending_kill = POLL_HUP;
2617 if (nmi) {
2618 counter->pending_disable = 1;
2619 perf_pending_queue(&counter->pending,
2620 perf_pending_counter);
2621 } else
2622 perf_counter_disable(counter);
2623 }
2624
2625 perf_counter_output(counter, nmi, regs, addr);
2626 return ret;
2627 }
2628
2629 /*
2630 * Generic software counter infrastructure
2631 */
2632
2633 static void perf_swcounter_update(struct perf_counter *counter)
2634 {
2635 struct hw_perf_counter *hwc = &counter->hw;
2636 u64 prev, now;
2637 s64 delta;
2638
2639 again:
2640 prev = atomic64_read(&hwc->prev_count);
2641 now = atomic64_read(&hwc->count);
2642 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
2643 goto again;
2644
2645 delta = now - prev;
2646
2647 atomic64_add(delta, &counter->count);
2648 atomic64_sub(delta, &hwc->period_left);
2649 }
2650
2651 static void perf_swcounter_set_period(struct perf_counter *counter)
2652 {
2653 struct hw_perf_counter *hwc = &counter->hw;
2654 s64 left = atomic64_read(&hwc->period_left);
2655 s64 period = hwc->irq_period;
2656
2657 if (unlikely(left <= -period)) {
2658 left = period;
2659 atomic64_set(&hwc->period_left, left);
2660 }
2661
2662 if (unlikely(left <= 0)) {
2663 left += period;
2664 atomic64_add(period, &hwc->period_left);
2665 }
2666
2667 atomic64_set(&hwc->prev_count, -left);
2668 atomic64_set(&hwc->count, -left);
2669 }
2670
2671 static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
2672 {
2673 enum hrtimer_restart ret = HRTIMER_RESTART;
2674 struct perf_counter *counter;
2675 struct pt_regs *regs;
2676 u64 period;
2677
2678 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
2679 counter->pmu->read(counter);
2680
2681 regs = get_irq_regs();
2682 /*
2683 * In case we exclude kernel IPs or are somehow not in interrupt
2684 * context, provide the next best thing, the user IP.
2685 */
2686 if ((counter->hw_event.exclude_kernel || !regs) &&
2687 !counter->hw_event.exclude_user)
2688 regs = task_pt_regs(current);
2689
2690 if (regs) {
2691 if (perf_counter_overflow(counter, 0, regs, 0))
2692 ret = HRTIMER_NORESTART;
2693 }
2694
2695 period = max_t(u64, 10000, counter->hw.irq_period);
2696 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
2697
2698 return ret;
2699 }
2700
2701 static void perf_swcounter_overflow(struct perf_counter *counter,
2702 int nmi, struct pt_regs *regs, u64 addr)
2703 {
2704 perf_swcounter_update(counter);
2705 perf_swcounter_set_period(counter);
2706 if (perf_counter_overflow(counter, nmi, regs, addr))
2707 /* soft-disable the counter */
2708 ;
2709
2710 }
2711
2712 static int perf_swcounter_match(struct perf_counter *counter,
2713 enum perf_event_types type,
2714 u32 event, struct pt_regs *regs)
2715 {
2716 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
2717 return 0;
2718
2719 if (perf_event_raw(&counter->hw_event))
2720 return 0;
2721
2722 if (perf_event_type(&counter->hw_event) != type)
2723 return 0;
2724
2725 if (perf_event_id(&counter->hw_event) != event)
2726 return 0;
2727
2728 if (counter->hw_event.exclude_user && user_mode(regs))
2729 return 0;
2730
2731 if (counter->hw_event.exclude_kernel && !user_mode(regs))
2732 return 0;
2733
2734 return 1;
2735 }
2736
2737 static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
2738 int nmi, struct pt_regs *regs, u64 addr)
2739 {
2740 int neg = atomic64_add_negative(nr, &counter->hw.count);
2741 if (counter->hw.irq_period && !neg)
2742 perf_swcounter_overflow(counter, nmi, regs, addr);
2743 }
2744
2745 static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
2746 enum perf_event_types type, u32 event,
2747 u64 nr, int nmi, struct pt_regs *regs,
2748 u64 addr)
2749 {
2750 struct perf_counter *counter;
2751
2752 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
2753 return;
2754
2755 rcu_read_lock();
2756 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
2757 if (perf_swcounter_match(counter, type, event, regs))
2758 perf_swcounter_add(counter, nr, nmi, regs, addr);
2759 }
2760 rcu_read_unlock();
2761 }
2762
2763 static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
2764 {
2765 if (in_nmi())
2766 return &cpuctx->recursion[3];
2767
2768 if (in_irq())
2769 return &cpuctx->recursion[2];
2770
2771 if (in_softirq())
2772 return &cpuctx->recursion[1];
2773
2774 return &cpuctx->recursion[0];
2775 }
2776
2777 static void __perf_swcounter_event(enum perf_event_types type, u32 event,
2778 u64 nr, int nmi, struct pt_regs *regs,
2779 u64 addr)
2780 {
2781 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
2782 int *recursion = perf_swcounter_recursion_context(cpuctx);
2783
2784 if (*recursion)
2785 goto out;
2786
2787 (*recursion)++;
2788 barrier();
2789
2790 perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
2791 nr, nmi, regs, addr);
2792 if (cpuctx->task_ctx) {
2793 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
2794 nr, nmi, regs, addr);
2795 }
2796
2797 barrier();
2798 (*recursion)--;
2799
2800 out:
2801 put_cpu_var(perf_cpu_context);
2802 }
2803
2804 void
2805 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
2806 {
2807 __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
2808 }
2809
2810 static void perf_swcounter_read(struct perf_counter *counter)
2811 {
2812 perf_swcounter_update(counter);
2813 }
2814
2815 static int perf_swcounter_enable(struct perf_counter *counter)
2816 {
2817 perf_swcounter_set_period(counter);
2818 return 0;
2819 }
2820
2821 static void perf_swcounter_disable(struct perf_counter *counter)
2822 {
2823 perf_swcounter_update(counter);
2824 }
2825
2826 static const struct pmu perf_ops_generic = {
2827 .enable = perf_swcounter_enable,
2828 .disable = perf_swcounter_disable,
2829 .read = perf_swcounter_read,
2830 };
2831
2832 /*
2833 * Software counter: cpu wall time clock
2834 */
2835
2836 static void cpu_clock_perf_counter_update(struct perf_counter *counter)
2837 {
2838 int cpu = raw_smp_processor_id();
2839 s64 prev;
2840 u64 now;
2841
2842 now = cpu_clock(cpu);
2843 prev = atomic64_read(&counter->hw.prev_count);
2844 atomic64_set(&counter->hw.prev_count, now);
2845 atomic64_add(now - prev, &counter->count);
2846 }
2847
2848 static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
2849 {
2850 struct hw_perf_counter *hwc = &counter->hw;
2851 int cpu = raw_smp_processor_id();
2852
2853 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
2854 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2855 hwc->hrtimer.function = perf_swcounter_hrtimer;
2856 if (hwc->irq_period) {
2857 u64 period = max_t(u64, 10000, hwc->irq_period);
2858 __hrtimer_start_range_ns(&hwc->hrtimer,
2859 ns_to_ktime(period), 0,
2860 HRTIMER_MODE_REL, 0);
2861 }
2862
2863 return 0;
2864 }
2865
2866 static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
2867 {
2868 if (counter->hw.irq_period)
2869 hrtimer_cancel(&counter->hw.hrtimer);
2870 cpu_clock_perf_counter_update(counter);
2871 }
2872
2873 static void cpu_clock_perf_counter_read(struct perf_counter *counter)
2874 {
2875 cpu_clock_perf_counter_update(counter);
2876 }
2877
2878 static const struct pmu perf_ops_cpu_clock = {
2879 .enable = cpu_clock_perf_counter_enable,
2880 .disable = cpu_clock_perf_counter_disable,
2881 .read = cpu_clock_perf_counter_read,
2882 };
2883
2884 /*
2885 * Software counter: task time clock
2886 */
2887
2888 static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
2889 {
2890 u64 prev;
2891 s64 delta;
2892
2893 prev = atomic64_xchg(&counter->hw.prev_count, now);
2894 delta = now - prev;
2895 atomic64_add(delta, &counter->count);
2896 }
2897
2898 static int task_clock_perf_counter_enable(struct perf_counter *counter)
2899 {
2900 struct hw_perf_counter *hwc = &counter->hw;
2901 u64 now;
2902
2903 now = counter->ctx->time;
2904
2905 atomic64_set(&hwc->prev_count, now);
2906 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2907 hwc->hrtimer.function = perf_swcounter_hrtimer;
2908 if (hwc->irq_period) {
2909 u64 period = max_t(u64, 10000, hwc->irq_period);
2910 __hrtimer_start_range_ns(&hwc->hrtimer,
2911 ns_to_ktime(period), 0,
2912 HRTIMER_MODE_REL, 0);
2913 }
2914
2915 return 0;
2916 }
2917
2918 static void task_clock_perf_counter_disable(struct perf_counter *counter)
2919 {
2920 if (counter->hw.irq_period)
2921 hrtimer_cancel(&counter->hw.hrtimer);
2922 task_clock_perf_counter_update(counter, counter->ctx->time);
2923
2924 }
2925
2926 static void task_clock_perf_counter_read(struct perf_counter *counter)
2927 {
2928 u64 time;
2929
2930 if (!in_nmi()) {
2931 update_context_time(counter->ctx);
2932 time = counter->ctx->time;
2933 } else {
2934 u64 now = perf_clock();
2935 u64 delta = now - counter->ctx->timestamp;
2936 time = counter->ctx->time + delta;
2937 }
2938
2939 task_clock_perf_counter_update(counter, time);
2940 }
2941
2942 static const struct pmu perf_ops_task_clock = {
2943 .enable = task_clock_perf_counter_enable,
2944 .disable = task_clock_perf_counter_disable,
2945 .read = task_clock_perf_counter_read,
2946 };
2947
2948 /*
2949 * Software counter: cpu migrations
2950 */
2951
2952 static inline u64 get_cpu_migrations(struct perf_counter *counter)
2953 {
2954 struct task_struct *curr = counter->ctx->task;
2955
2956 if (curr)
2957 return curr->se.nr_migrations;
2958 return cpu_nr_migrations(smp_processor_id());
2959 }
2960
2961 static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
2962 {
2963 u64 prev, now;
2964 s64 delta;
2965
2966 prev = atomic64_read(&counter->hw.prev_count);
2967 now = get_cpu_migrations(counter);
2968
2969 atomic64_set(&counter->hw.prev_count, now);
2970
2971 delta = now - prev;
2972
2973 atomic64_add(delta, &counter->count);
2974 }
2975
2976 static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
2977 {
2978 cpu_migrations_perf_counter_update(counter);
2979 }
2980
2981 static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
2982 {
2983 if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
2984 atomic64_set(&counter->hw.prev_count,
2985 get_cpu_migrations(counter));
2986 return 0;
2987 }
2988
2989 static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
2990 {
2991 cpu_migrations_perf_counter_update(counter);
2992 }
2993
2994 static const struct pmu perf_ops_cpu_migrations = {
2995 .enable = cpu_migrations_perf_counter_enable,
2996 .disable = cpu_migrations_perf_counter_disable,
2997 .read = cpu_migrations_perf_counter_read,
2998 };
2999
3000 #ifdef CONFIG_EVENT_PROFILE
3001 void perf_tpcounter_event(int event_id)
3002 {
3003 struct pt_regs *regs = get_irq_regs();
3004
3005 if (!regs)
3006 regs = task_pt_regs(current);
3007
3008 __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
3009 }
3010 EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3011
3012 extern int ftrace_profile_enable(int);
3013 extern void ftrace_profile_disable(int);
3014
3015 static void tp_perf_counter_destroy(struct perf_counter *counter)
3016 {
3017 ftrace_profile_disable(perf_event_id(&counter->hw_event));
3018 }
3019
3020 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3021 {
3022 int event_id = perf_event_id(&counter->hw_event);
3023 int ret;
3024
3025 ret = ftrace_profile_enable(event_id);
3026 if (ret)
3027 return NULL;
3028
3029 counter->destroy = tp_perf_counter_destroy;
3030 counter->hw.irq_period = counter->hw_event.irq_period;
3031
3032 return &perf_ops_generic;
3033 }
3034 #else
3035 static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3036 {
3037 return NULL;
3038 }
3039 #endif
3040
3041 static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
3042 {
3043 const struct pmu *pmu = NULL;
3044
3045 /*
3046 * Software counters (currently) can't in general distinguish
3047 * between user, kernel and hypervisor events.
3048 * However, context switches and cpu migrations are considered
3049 * to be kernel events, and page faults are never hypervisor
3050 * events.
3051 */
3052 switch (perf_event_id(&counter->hw_event)) {
3053 case PERF_COUNT_CPU_CLOCK:
3054 pmu = &perf_ops_cpu_clock;
3055
3056 break;
3057 case PERF_COUNT_TASK_CLOCK:
3058 /*
3059 * If the user instantiates this as a per-cpu counter,
3060 * use the cpu_clock counter instead.
3061 */
3062 if (counter->ctx->task)
3063 pmu = &perf_ops_task_clock;
3064 else
3065 pmu = &perf_ops_cpu_clock;
3066
3067 break;
3068 case PERF_COUNT_PAGE_FAULTS:
3069 case PERF_COUNT_PAGE_FAULTS_MIN:
3070 case PERF_COUNT_PAGE_FAULTS_MAJ:
3071 case PERF_COUNT_CONTEXT_SWITCHES:
3072 pmu = &perf_ops_generic;
3073 break;
3074 case PERF_COUNT_CPU_MIGRATIONS:
3075 if (!counter->hw_event.exclude_kernel)
3076 pmu = &perf_ops_cpu_migrations;
3077 break;
3078 }
3079
3080 return pmu;
3081 }
3082
3083 /*
3084 * Allocate and initialize a counter structure
3085 */
3086 static struct perf_counter *
3087 perf_counter_alloc(struct perf_counter_hw_event *hw_event,
3088 int cpu,
3089 struct perf_counter_context *ctx,
3090 struct perf_counter *group_leader,
3091 gfp_t gfpflags)
3092 {
3093 const struct pmu *pmu;
3094 struct perf_counter *counter;
3095 struct hw_perf_counter *hwc;
3096 long err;
3097
3098 counter = kzalloc(sizeof(*counter), gfpflags);
3099 if (!counter)
3100 return ERR_PTR(-ENOMEM);
3101
3102 /*
3103 * Single counters are their own group leaders, with an
3104 * empty sibling list:
3105 */
3106 if (!group_leader)
3107 group_leader = counter;
3108
3109 mutex_init(&counter->mutex);
3110 INIT_LIST_HEAD(&counter->list_entry);
3111 INIT_LIST_HEAD(&counter->event_entry);
3112 INIT_LIST_HEAD(&counter->sibling_list);
3113 init_waitqueue_head(&counter->waitq);
3114
3115 mutex_init(&counter->mmap_mutex);
3116
3117 INIT_LIST_HEAD(&counter->child_list);
3118
3119 counter->cpu = cpu;
3120 counter->hw_event = *hw_event;
3121 counter->group_leader = group_leader;
3122 counter->pmu = NULL;
3123 counter->ctx = ctx;
3124 get_ctx(ctx);
3125
3126 counter->state = PERF_COUNTER_STATE_INACTIVE;
3127 if (hw_event->disabled)
3128 counter->state = PERF_COUNTER_STATE_OFF;
3129
3130 pmu = NULL;
3131
3132 hwc = &counter->hw;
3133 if (hw_event->freq && hw_event->irq_freq)
3134 hwc->irq_period = div64_u64(TICK_NSEC, hw_event->irq_freq);
3135 else
3136 hwc->irq_period = hw_event->irq_period;
3137
3138 /*
3139 * we currently do not support PERF_RECORD_GROUP on inherited counters
3140 */
3141 if (hw_event->inherit && (hw_event->record_type & PERF_RECORD_GROUP))
3142 goto done;
3143
3144 if (perf_event_raw(hw_event)) {
3145 pmu = hw_perf_counter_init(counter);
3146 goto done;
3147 }
3148
3149 switch (perf_event_type(hw_event)) {
3150 case PERF_TYPE_HARDWARE:
3151 pmu = hw_perf_counter_init(counter);
3152 break;
3153
3154 case PERF_TYPE_SOFTWARE:
3155 pmu = sw_perf_counter_init(counter);
3156 break;
3157
3158 case PERF_TYPE_TRACEPOINT:
3159 pmu = tp_perf_counter_init(counter);
3160 break;
3161 }
3162 done:
3163 err = 0;
3164 if (!pmu)
3165 err = -EINVAL;
3166 else if (IS_ERR(pmu))
3167 err = PTR_ERR(pmu);
3168
3169 if (err) {
3170 kfree(counter);
3171 return ERR_PTR(err);
3172 }
3173
3174 counter->pmu = pmu;
3175
3176 atomic_inc(&nr_counters);
3177 if (counter->hw_event.mmap)
3178 atomic_inc(&nr_mmap_tracking);
3179 if (counter->hw_event.munmap)
3180 atomic_inc(&nr_munmap_tracking);
3181 if (counter->hw_event.comm)
3182 atomic_inc(&nr_comm_tracking);
3183
3184 return counter;
3185 }
3186
3187 /**
3188 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
3189 *
3190 * @hw_event_uptr: event type attributes for monitoring/sampling
3191 * @pid: target pid
3192 * @cpu: target cpu
3193 * @group_fd: group leader counter fd
3194 */
3195 SYSCALL_DEFINE5(perf_counter_open,
3196 const struct perf_counter_hw_event __user *, hw_event_uptr,
3197 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
3198 {
3199 struct perf_counter *counter, *group_leader;
3200 struct perf_counter_hw_event hw_event;
3201 struct perf_counter_context *ctx;
3202 struct file *counter_file = NULL;
3203 struct file *group_file = NULL;
3204 int fput_needed = 0;
3205 int fput_needed2 = 0;
3206 int ret;
3207
3208 /* for future expandability... */
3209 if (flags)
3210 return -EINVAL;
3211
3212 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
3213 return -EFAULT;
3214
3215 /*
3216 * Get the target context (task or percpu):
3217 */
3218 ctx = find_get_context(pid, cpu);
3219 if (IS_ERR(ctx))
3220 return PTR_ERR(ctx);
3221
3222 /*
3223 * Look up the group leader (we will attach this counter to it):
3224 */
3225 group_leader = NULL;
3226 if (group_fd != -1) {
3227 ret = -EINVAL;
3228 group_file = fget_light(group_fd, &fput_needed);
3229 if (!group_file)
3230 goto err_put_context;
3231 if (group_file->f_op != &perf_fops)
3232 goto err_put_context;
3233
3234 group_leader = group_file->private_data;
3235 /*
3236 * Do not allow a recursive hierarchy (this new sibling
3237 * becoming part of another group-sibling):
3238 */
3239 if (group_leader->group_leader != group_leader)
3240 goto err_put_context;
3241 /*
3242 * Do not allow to attach to a group in a different
3243 * task or CPU context:
3244 */
3245 if (group_leader->ctx != ctx)
3246 goto err_put_context;
3247 /*
3248 * Only a group leader can be exclusive or pinned
3249 */
3250 if (hw_event.exclusive || hw_event.pinned)
3251 goto err_put_context;
3252 }
3253
3254 counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
3255 GFP_KERNEL);
3256 ret = PTR_ERR(counter);
3257 if (IS_ERR(counter))
3258 goto err_put_context;
3259
3260 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
3261 if (ret < 0)
3262 goto err_free_put_context;
3263
3264 counter_file = fget_light(ret, &fput_needed2);
3265 if (!counter_file)
3266 goto err_free_put_context;
3267
3268 counter->filp = counter_file;
3269 mutex_lock(&ctx->mutex);
3270 perf_install_in_context(ctx, counter, cpu);
3271 mutex_unlock(&ctx->mutex);
3272
3273 fput_light(counter_file, fput_needed2);
3274
3275 out_fput:
3276 fput_light(group_file, fput_needed);
3277
3278 return ret;
3279
3280 err_free_put_context:
3281 kfree(counter);
3282
3283 err_put_context:
3284 put_context(ctx);
3285
3286 goto out_fput;
3287 }
3288
3289 /*
3290 * inherit a counter from parent task to child task:
3291 */
3292 static struct perf_counter *
3293 inherit_counter(struct perf_counter *parent_counter,
3294 struct task_struct *parent,
3295 struct perf_counter_context *parent_ctx,
3296 struct task_struct *child,
3297 struct perf_counter *group_leader,
3298 struct perf_counter_context *child_ctx)
3299 {
3300 struct perf_counter *child_counter;
3301
3302 /*
3303 * Instead of creating recursive hierarchies of counters,
3304 * we link inherited counters back to the original parent,
3305 * which has a filp for sure, which we use as the reference
3306 * count:
3307 */
3308 if (parent_counter->parent)
3309 parent_counter = parent_counter->parent;
3310
3311 child_counter = perf_counter_alloc(&parent_counter->hw_event,
3312 parent_counter->cpu, child_ctx,
3313 group_leader, GFP_KERNEL);
3314 if (IS_ERR(child_counter))
3315 return child_counter;
3316
3317 /*
3318 * Make the child state follow the state of the parent counter,
3319 * not its hw_event.disabled bit. We hold the parent's mutex,
3320 * so we won't race with perf_counter_{en,dis}able_family.
3321 */
3322 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
3323 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
3324 else
3325 child_counter->state = PERF_COUNTER_STATE_OFF;
3326
3327 /*
3328 * Link it up in the child's context:
3329 */
3330 add_counter_to_ctx(child_counter, child_ctx);
3331
3332 child_counter->parent = parent_counter;
3333 /*
3334 * inherit into child's child as well:
3335 */
3336 child_counter->hw_event.inherit = 1;
3337
3338 /*
3339 * Get a reference to the parent filp - we will fput it
3340 * when the child counter exits. This is safe to do because
3341 * we are in the parent and we know that the filp still
3342 * exists and has a nonzero count:
3343 */
3344 atomic_long_inc(&parent_counter->filp->f_count);
3345
3346 /*
3347 * Link this into the parent counter's child list
3348 */
3349 mutex_lock(&parent_counter->mutex);
3350 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
3351
3352 mutex_unlock(&parent_counter->mutex);
3353
3354 return child_counter;
3355 }
3356
3357 static int inherit_group(struct perf_counter *parent_counter,
3358 struct task_struct *parent,
3359 struct perf_counter_context *parent_ctx,
3360 struct task_struct *child,
3361 struct perf_counter_context *child_ctx)
3362 {
3363 struct perf_counter *leader;
3364 struct perf_counter *sub;
3365 struct perf_counter *child_ctr;
3366
3367 leader = inherit_counter(parent_counter, parent, parent_ctx,
3368 child, NULL, child_ctx);
3369 if (IS_ERR(leader))
3370 return PTR_ERR(leader);
3371 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
3372 child_ctr = inherit_counter(sub, parent, parent_ctx,
3373 child, leader, child_ctx);
3374 if (IS_ERR(child_ctr))
3375 return PTR_ERR(child_ctr);
3376 }
3377 return 0;
3378 }
3379
3380 static void sync_child_counter(struct perf_counter *child_counter,
3381 struct perf_counter *parent_counter)
3382 {
3383 u64 child_val;
3384
3385 child_val = atomic64_read(&child_counter->count);
3386
3387 /*
3388 * Add back the child's count to the parent's count:
3389 */
3390 atomic64_add(child_val, &parent_counter->count);
3391 atomic64_add(child_counter->total_time_enabled,
3392 &parent_counter->child_total_time_enabled);
3393 atomic64_add(child_counter->total_time_running,
3394 &parent_counter->child_total_time_running);
3395
3396 /*
3397 * Remove this counter from the parent's list
3398 */
3399 mutex_lock(&parent_counter->mutex);
3400 list_del_init(&child_counter->child_list);
3401 mutex_unlock(&parent_counter->mutex);
3402
3403 /*
3404 * Release the parent counter, if this was the last
3405 * reference to it.
3406 */
3407 fput(parent_counter->filp);
3408 }
3409
3410 static void
3411 __perf_counter_exit_task(struct task_struct *child,
3412 struct perf_counter *child_counter,
3413 struct perf_counter_context *child_ctx)
3414 {
3415 struct perf_counter *parent_counter;
3416
3417 /*
3418 * Protect against concurrent operations on child_counter
3419 * due its fd getting closed, etc.
3420 */
3421 mutex_lock(&child_counter->mutex);
3422
3423 update_counter_times(child_counter);
3424 list_del_counter(child_counter, child_ctx);
3425
3426 mutex_unlock(&child_counter->mutex);
3427
3428 parent_counter = child_counter->parent;
3429 /*
3430 * It can happen that parent exits first, and has counters
3431 * that are still around due to the child reference. These
3432 * counters need to be zapped - but otherwise linger.
3433 */
3434 if (parent_counter) {
3435 sync_child_counter(child_counter, parent_counter);
3436 free_counter(child_counter);
3437 }
3438 }
3439
3440 /*
3441 * When a child task exits, feed back counter values to parent counters.
3442 *
3443 * Note: we may be running in child context, but the PID is not hashed
3444 * anymore so new counters will not be added.
3445 * (XXX not sure that is true when we get called from flush_old_exec.
3446 * -- paulus)
3447 */
3448 void perf_counter_exit_task(struct task_struct *child)
3449 {
3450 struct perf_counter *child_counter, *tmp;
3451 struct perf_counter_context *child_ctx;
3452 unsigned long flags;
3453
3454 WARN_ON_ONCE(child != current);
3455
3456 child_ctx = child->perf_counter_ctxp;
3457
3458 if (likely(!child_ctx))
3459 return;
3460
3461 local_irq_save(flags);
3462 __perf_counter_task_sched_out(child_ctx);
3463 child->perf_counter_ctxp = NULL;
3464 local_irq_restore(flags);
3465
3466 mutex_lock(&child_ctx->mutex);
3467
3468 again:
3469 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
3470 list_entry)
3471 __perf_counter_exit_task(child, child_counter, child_ctx);
3472
3473 /*
3474 * If the last counter was a group counter, it will have appended all
3475 * its siblings to the list, but we obtained 'tmp' before that which
3476 * will still point to the list head terminating the iteration.
3477 */
3478 if (!list_empty(&child_ctx->counter_list))
3479 goto again;
3480
3481 mutex_unlock(&child_ctx->mutex);
3482
3483 put_ctx(child_ctx);
3484 }
3485
3486 /*
3487 * Initialize the perf_counter context in task_struct
3488 */
3489 void perf_counter_init_task(struct task_struct *child)
3490 {
3491 struct perf_counter_context *child_ctx, *parent_ctx;
3492 struct perf_counter *counter;
3493 struct task_struct *parent = current;
3494 int inherited_all = 1;
3495
3496 child->perf_counter_ctxp = NULL;
3497
3498 /*
3499 * This is executed from the parent task context, so inherit
3500 * counters that have been marked for cloning.
3501 * First allocate and initialize a context for the child.
3502 */
3503
3504 child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL);
3505 if (!child_ctx)
3506 return;
3507
3508 parent_ctx = parent->perf_counter_ctxp;
3509 if (likely(!parent_ctx || !parent_ctx->nr_counters))
3510 return;
3511
3512 __perf_counter_init_context(child_ctx, child);
3513 child->perf_counter_ctxp = child_ctx;
3514
3515 /*
3516 * Lock the parent list. No need to lock the child - not PID
3517 * hashed yet and not running, so nobody can access it.
3518 */
3519 mutex_lock(&parent_ctx->mutex);
3520
3521 /*
3522 * We dont have to disable NMIs - we are only looking at
3523 * the list, not manipulating it:
3524 */
3525 list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) {
3526 if (counter != counter->group_leader)
3527 continue;
3528
3529 if (!counter->hw_event.inherit) {
3530 inherited_all = 0;
3531 continue;
3532 }
3533
3534 if (inherit_group(counter, parent,
3535 parent_ctx, child, child_ctx)) {
3536 inherited_all = 0;
3537 break;
3538 }
3539 }
3540
3541 if (inherited_all) {
3542 /*
3543 * Mark the child context as a clone of the parent
3544 * context, or of whatever the parent is a clone of.
3545 */
3546 if (parent_ctx->parent_ctx) {
3547 child_ctx->parent_ctx = parent_ctx->parent_ctx;
3548 child_ctx->parent_gen = parent_ctx->parent_gen;
3549 } else {
3550 child_ctx->parent_ctx = parent_ctx;
3551 child_ctx->parent_gen = parent_ctx->generation;
3552 }
3553 get_ctx(child_ctx->parent_ctx);
3554 }
3555
3556 mutex_unlock(&parent_ctx->mutex);
3557 }
3558
3559 static void __cpuinit perf_counter_init_cpu(int cpu)
3560 {
3561 struct perf_cpu_context *cpuctx;
3562
3563 cpuctx = &per_cpu(perf_cpu_context, cpu);
3564 __perf_counter_init_context(&cpuctx->ctx, NULL);
3565
3566 spin_lock(&perf_resource_lock);
3567 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
3568 spin_unlock(&perf_resource_lock);
3569
3570 hw_perf_counter_setup(cpu);
3571 }
3572
3573 #ifdef CONFIG_HOTPLUG_CPU
3574 static void __perf_counter_exit_cpu(void *info)
3575 {
3576 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3577 struct perf_counter_context *ctx = &cpuctx->ctx;
3578 struct perf_counter *counter, *tmp;
3579
3580 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
3581 __perf_counter_remove_from_context(counter);
3582 }
3583 static void perf_counter_exit_cpu(int cpu)
3584 {
3585 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
3586 struct perf_counter_context *ctx = &cpuctx->ctx;
3587
3588 mutex_lock(&ctx->mutex);
3589 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
3590 mutex_unlock(&ctx->mutex);
3591 }
3592 #else
3593 static inline void perf_counter_exit_cpu(int cpu) { }
3594 #endif
3595
3596 static int __cpuinit
3597 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
3598 {
3599 unsigned int cpu = (long)hcpu;
3600
3601 switch (action) {
3602
3603 case CPU_UP_PREPARE:
3604 case CPU_UP_PREPARE_FROZEN:
3605 perf_counter_init_cpu(cpu);
3606 break;
3607
3608 case CPU_DOWN_PREPARE:
3609 case CPU_DOWN_PREPARE_FROZEN:
3610 perf_counter_exit_cpu(cpu);
3611 break;
3612
3613 default:
3614 break;
3615 }
3616
3617 return NOTIFY_OK;
3618 }
3619
3620 static struct notifier_block __cpuinitdata perf_cpu_nb = {
3621 .notifier_call = perf_cpu_notify,
3622 };
3623
3624 void __init perf_counter_init(void)
3625 {
3626 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
3627 (void *)(long)smp_processor_id());
3628 register_cpu_notifier(&perf_cpu_nb);
3629 }
3630
3631 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
3632 {
3633 return sprintf(buf, "%d\n", perf_reserved_percpu);
3634 }
3635
3636 static ssize_t
3637 perf_set_reserve_percpu(struct sysdev_class *class,
3638 const char *buf,
3639 size_t count)
3640 {
3641 struct perf_cpu_context *cpuctx;
3642 unsigned long val;
3643 int err, cpu, mpt;
3644
3645 err = strict_strtoul(buf, 10, &val);
3646 if (err)
3647 return err;
3648 if (val > perf_max_counters)
3649 return -EINVAL;
3650
3651 spin_lock(&perf_resource_lock);
3652 perf_reserved_percpu = val;
3653 for_each_online_cpu(cpu) {
3654 cpuctx = &per_cpu(perf_cpu_context, cpu);
3655 spin_lock_irq(&cpuctx->ctx.lock);
3656 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
3657 perf_max_counters - perf_reserved_percpu);
3658 cpuctx->max_pertask = mpt;
3659 spin_unlock_irq(&cpuctx->ctx.lock);
3660 }
3661 spin_unlock(&perf_resource_lock);
3662
3663 return count;
3664 }
3665
3666 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
3667 {
3668 return sprintf(buf, "%d\n", perf_overcommit);
3669 }
3670
3671 static ssize_t
3672 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
3673 {
3674 unsigned long val;
3675 int err;
3676
3677 err = strict_strtoul(buf, 10, &val);
3678 if (err)
3679 return err;
3680 if (val > 1)
3681 return -EINVAL;
3682
3683 spin_lock(&perf_resource_lock);
3684 perf_overcommit = val;
3685 spin_unlock(&perf_resource_lock);
3686
3687 return count;
3688 }
3689
3690 static SYSDEV_CLASS_ATTR(
3691 reserve_percpu,
3692 0644,
3693 perf_show_reserve_percpu,
3694 perf_set_reserve_percpu
3695 );
3696
3697 static SYSDEV_CLASS_ATTR(
3698 overcommit,
3699 0644,
3700 perf_show_overcommit,
3701 perf_set_overcommit
3702 );
3703
3704 static struct attribute *perfclass_attrs[] = {
3705 &attr_reserve_percpu.attr,
3706 &attr_overcommit.attr,
3707 NULL
3708 };
3709
3710 static struct attribute_group perfclass_attr_group = {
3711 .attrs = perfclass_attrs,
3712 .name = "perf_counters",
3713 };
3714
3715 static int __init perf_counter_sysfs_init(void)
3716 {
3717 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
3718 &perfclass_attr_group);
3719 }
3720 device_initcall(perf_counter_sysfs_init);
This page took 0.106648 seconds and 6 git commands to generate.