perf_event: Make software events work again
[deliverable/linux.git] / kernel / perf_event.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34 #include <linux/hw_breakpoint.h>
35
36 #include <asm/irq_regs.h>
37
38 /*
39 * Each CPU has a list of per CPU events:
40 */
41 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
42
43 int perf_max_events __read_mostly = 1;
44 static int perf_reserved_percpu __read_mostly;
45 static int perf_overcommit __read_mostly = 1;
46
47 static atomic_t nr_events __read_mostly;
48 static atomic_t nr_mmap_events __read_mostly;
49 static atomic_t nr_comm_events __read_mostly;
50 static atomic_t nr_task_events __read_mostly;
51
52 /*
53 * perf event paranoia level:
54 * -1 - not paranoid at all
55 * 0 - disallow raw tracepoint access for unpriv
56 * 1 - disallow cpu events for unpriv
57 * 2 - disallow kernel profiling for unpriv
58 */
59 int sysctl_perf_event_paranoid __read_mostly = 1;
60
61 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
62
63 /*
64 * max perf event sample rate
65 */
66 int sysctl_perf_event_sample_rate __read_mostly = 100000;
67
68 static atomic64_t perf_event_id;
69
70 /*
71 * Lock for (sysadmin-configurable) event reservations:
72 */
73 static DEFINE_SPINLOCK(perf_resource_lock);
74
75 /*
76 * Architecture provided APIs - weak aliases:
77 */
78 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
79 {
80 return NULL;
81 }
82
83 void __weak hw_perf_disable(void) { barrier(); }
84 void __weak hw_perf_enable(void) { barrier(); }
85
86 void __weak perf_event_print_debug(void) { }
87
88 static DEFINE_PER_CPU(int, perf_disable_count);
89
90 void perf_disable(void)
91 {
92 if (!__get_cpu_var(perf_disable_count)++)
93 hw_perf_disable();
94 }
95
96 void perf_enable(void)
97 {
98 if (!--__get_cpu_var(perf_disable_count))
99 hw_perf_enable();
100 }
101
102 static void get_ctx(struct perf_event_context *ctx)
103 {
104 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
105 }
106
107 static void free_ctx(struct rcu_head *head)
108 {
109 struct perf_event_context *ctx;
110
111 ctx = container_of(head, struct perf_event_context, rcu_head);
112 kfree(ctx);
113 }
114
115 static void put_ctx(struct perf_event_context *ctx)
116 {
117 if (atomic_dec_and_test(&ctx->refcount)) {
118 if (ctx->parent_ctx)
119 put_ctx(ctx->parent_ctx);
120 if (ctx->task)
121 put_task_struct(ctx->task);
122 call_rcu(&ctx->rcu_head, free_ctx);
123 }
124 }
125
126 static void unclone_ctx(struct perf_event_context *ctx)
127 {
128 if (ctx->parent_ctx) {
129 put_ctx(ctx->parent_ctx);
130 ctx->parent_ctx = NULL;
131 }
132 }
133
134 /*
135 * If we inherit events we want to return the parent event id
136 * to userspace.
137 */
138 static u64 primary_event_id(struct perf_event *event)
139 {
140 u64 id = event->id;
141
142 if (event->parent)
143 id = event->parent->id;
144
145 return id;
146 }
147
148 /*
149 * Get the perf_event_context for a task and lock it.
150 * This has to cope with with the fact that until it is locked,
151 * the context could get moved to another task.
152 */
153 static struct perf_event_context *
154 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
155 {
156 struct perf_event_context *ctx;
157
158 rcu_read_lock();
159 retry:
160 ctx = rcu_dereference(task->perf_event_ctxp);
161 if (ctx) {
162 /*
163 * If this context is a clone of another, it might
164 * get swapped for another underneath us by
165 * perf_event_task_sched_out, though the
166 * rcu_read_lock() protects us from any context
167 * getting freed. Lock the context and check if it
168 * got swapped before we could get the lock, and retry
169 * if so. If we locked the right context, then it
170 * can't get swapped on us any more.
171 */
172 raw_spin_lock_irqsave(&ctx->lock, *flags);
173 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
174 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
175 goto retry;
176 }
177
178 if (!atomic_inc_not_zero(&ctx->refcount)) {
179 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
180 ctx = NULL;
181 }
182 }
183 rcu_read_unlock();
184 return ctx;
185 }
186
187 /*
188 * Get the context for a task and increment its pin_count so it
189 * can't get swapped to another task. This also increments its
190 * reference count so that the context can't get freed.
191 */
192 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
193 {
194 struct perf_event_context *ctx;
195 unsigned long flags;
196
197 ctx = perf_lock_task_context(task, &flags);
198 if (ctx) {
199 ++ctx->pin_count;
200 raw_spin_unlock_irqrestore(&ctx->lock, flags);
201 }
202 return ctx;
203 }
204
205 static void perf_unpin_context(struct perf_event_context *ctx)
206 {
207 unsigned long flags;
208
209 raw_spin_lock_irqsave(&ctx->lock, flags);
210 --ctx->pin_count;
211 raw_spin_unlock_irqrestore(&ctx->lock, flags);
212 put_ctx(ctx);
213 }
214
215 static inline u64 perf_clock(void)
216 {
217 return cpu_clock(raw_smp_processor_id());
218 }
219
220 /*
221 * Update the record of the current time in a context.
222 */
223 static void update_context_time(struct perf_event_context *ctx)
224 {
225 u64 now = perf_clock();
226
227 ctx->time += now - ctx->timestamp;
228 ctx->timestamp = now;
229 }
230
231 /*
232 * Update the total_time_enabled and total_time_running fields for a event.
233 */
234 static void update_event_times(struct perf_event *event)
235 {
236 struct perf_event_context *ctx = event->ctx;
237 u64 run_end;
238
239 if (event->state < PERF_EVENT_STATE_INACTIVE ||
240 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
241 return;
242
243 if (ctx->is_active)
244 run_end = ctx->time;
245 else
246 run_end = event->tstamp_stopped;
247
248 event->total_time_enabled = run_end - event->tstamp_enabled;
249
250 if (event->state == PERF_EVENT_STATE_INACTIVE)
251 run_end = event->tstamp_stopped;
252 else
253 run_end = ctx->time;
254
255 event->total_time_running = run_end - event->tstamp_running;
256 }
257
258 static struct list_head *
259 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
260 {
261 if (event->attr.pinned)
262 return &ctx->pinned_groups;
263 else
264 return &ctx->flexible_groups;
265 }
266
267 /*
268 * Add a event from the lists for its context.
269 * Must be called with ctx->mutex and ctx->lock held.
270 */
271 static void
272 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
273 {
274 struct perf_event *group_leader = event->group_leader;
275
276 /*
277 * Depending on whether it is a standalone or sibling event,
278 * add it straight to the context's event list, or to the group
279 * leader's sibling list:
280 */
281 if (group_leader == event) {
282 struct list_head *list;
283
284 if (is_software_event(event))
285 event->group_flags |= PERF_GROUP_SOFTWARE;
286
287 list = ctx_group_list(event, ctx);
288 list_add_tail(&event->group_entry, list);
289 } else {
290 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
291 !is_software_event(event))
292 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
293
294 list_add_tail(&event->group_entry, &group_leader->sibling_list);
295 group_leader->nr_siblings++;
296 }
297
298 list_add_rcu(&event->event_entry, &ctx->event_list);
299 ctx->nr_events++;
300 if (event->attr.inherit_stat)
301 ctx->nr_stat++;
302 }
303
304 /*
305 * Remove a event from the lists for its context.
306 * Must be called with ctx->mutex and ctx->lock held.
307 */
308 static void
309 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
310 {
311 struct perf_event *sibling, *tmp;
312
313 if (list_empty(&event->group_entry))
314 return;
315 ctx->nr_events--;
316 if (event->attr.inherit_stat)
317 ctx->nr_stat--;
318
319 list_del_init(&event->group_entry);
320 list_del_rcu(&event->event_entry);
321
322 if (event->group_leader != event)
323 event->group_leader->nr_siblings--;
324
325 update_event_times(event);
326
327 /*
328 * If event was in error state, then keep it
329 * that way, otherwise bogus counts will be
330 * returned on read(). The only way to get out
331 * of error state is by explicit re-enabling
332 * of the event
333 */
334 if (event->state > PERF_EVENT_STATE_OFF)
335 event->state = PERF_EVENT_STATE_OFF;
336
337 if (event->state > PERF_EVENT_STATE_FREE)
338 return;
339
340 /*
341 * If this was a group event with sibling events then
342 * upgrade the siblings to singleton events by adding them
343 * to the context list directly:
344 */
345 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
346 struct list_head *list;
347
348 list = ctx_group_list(event, ctx);
349 list_move_tail(&sibling->group_entry, list);
350 sibling->group_leader = sibling;
351
352 /* Inherit group flags from the previous leader */
353 sibling->group_flags = event->group_flags;
354 }
355 }
356
357 static void
358 event_sched_out(struct perf_event *event,
359 struct perf_cpu_context *cpuctx,
360 struct perf_event_context *ctx)
361 {
362 if (event->state != PERF_EVENT_STATE_ACTIVE)
363 return;
364
365 event->state = PERF_EVENT_STATE_INACTIVE;
366 if (event->pending_disable) {
367 event->pending_disable = 0;
368 event->state = PERF_EVENT_STATE_OFF;
369 }
370 event->tstamp_stopped = ctx->time;
371 event->pmu->disable(event);
372 event->oncpu = -1;
373
374 if (!is_software_event(event))
375 cpuctx->active_oncpu--;
376 ctx->nr_active--;
377 if (event->attr.exclusive || !cpuctx->active_oncpu)
378 cpuctx->exclusive = 0;
379 }
380
381 static void
382 group_sched_out(struct perf_event *group_event,
383 struct perf_cpu_context *cpuctx,
384 struct perf_event_context *ctx)
385 {
386 struct perf_event *event;
387
388 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
389 return;
390
391 event_sched_out(group_event, cpuctx, ctx);
392
393 /*
394 * Schedule out siblings (if any):
395 */
396 list_for_each_entry(event, &group_event->sibling_list, group_entry)
397 event_sched_out(event, cpuctx, ctx);
398
399 if (group_event->attr.exclusive)
400 cpuctx->exclusive = 0;
401 }
402
403 /*
404 * Cross CPU call to remove a performance event
405 *
406 * We disable the event on the hardware level first. After that we
407 * remove it from the context list.
408 */
409 static void __perf_event_remove_from_context(void *info)
410 {
411 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
412 struct perf_event *event = info;
413 struct perf_event_context *ctx = event->ctx;
414
415 /*
416 * If this is a task context, we need to check whether it is
417 * the current task context of this cpu. If not it has been
418 * scheduled out before the smp call arrived.
419 */
420 if (ctx->task && cpuctx->task_ctx != ctx)
421 return;
422
423 raw_spin_lock(&ctx->lock);
424 /*
425 * Protect the list operation against NMI by disabling the
426 * events on a global level.
427 */
428 perf_disable();
429
430 event_sched_out(event, cpuctx, ctx);
431
432 list_del_event(event, ctx);
433
434 if (!ctx->task) {
435 /*
436 * Allow more per task events with respect to the
437 * reservation:
438 */
439 cpuctx->max_pertask =
440 min(perf_max_events - ctx->nr_events,
441 perf_max_events - perf_reserved_percpu);
442 }
443
444 perf_enable();
445 raw_spin_unlock(&ctx->lock);
446 }
447
448
449 /*
450 * Remove the event from a task's (or a CPU's) list of events.
451 *
452 * Must be called with ctx->mutex held.
453 *
454 * CPU events are removed with a smp call. For task events we only
455 * call when the task is on a CPU.
456 *
457 * If event->ctx is a cloned context, callers must make sure that
458 * every task struct that event->ctx->task could possibly point to
459 * remains valid. This is OK when called from perf_release since
460 * that only calls us on the top-level context, which can't be a clone.
461 * When called from perf_event_exit_task, it's OK because the
462 * context has been detached from its task.
463 */
464 static void perf_event_remove_from_context(struct perf_event *event)
465 {
466 struct perf_event_context *ctx = event->ctx;
467 struct task_struct *task = ctx->task;
468
469 if (!task) {
470 /*
471 * Per cpu events are removed via an smp call and
472 * the removal is always successful.
473 */
474 smp_call_function_single(event->cpu,
475 __perf_event_remove_from_context,
476 event, 1);
477 return;
478 }
479
480 retry:
481 task_oncpu_function_call(task, __perf_event_remove_from_context,
482 event);
483
484 raw_spin_lock_irq(&ctx->lock);
485 /*
486 * If the context is active we need to retry the smp call.
487 */
488 if (ctx->nr_active && !list_empty(&event->group_entry)) {
489 raw_spin_unlock_irq(&ctx->lock);
490 goto retry;
491 }
492
493 /*
494 * The lock prevents that this context is scheduled in so we
495 * can remove the event safely, if the call above did not
496 * succeed.
497 */
498 if (!list_empty(&event->group_entry))
499 list_del_event(event, ctx);
500 raw_spin_unlock_irq(&ctx->lock);
501 }
502
503 /*
504 * Update total_time_enabled and total_time_running for all events in a group.
505 */
506 static void update_group_times(struct perf_event *leader)
507 {
508 struct perf_event *event;
509
510 update_event_times(leader);
511 list_for_each_entry(event, &leader->sibling_list, group_entry)
512 update_event_times(event);
513 }
514
515 /*
516 * Cross CPU call to disable a performance event
517 */
518 static void __perf_event_disable(void *info)
519 {
520 struct perf_event *event = info;
521 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
522 struct perf_event_context *ctx = event->ctx;
523
524 /*
525 * If this is a per-task event, need to check whether this
526 * event's task is the current task on this cpu.
527 */
528 if (ctx->task && cpuctx->task_ctx != ctx)
529 return;
530
531 raw_spin_lock(&ctx->lock);
532
533 /*
534 * If the event is on, turn it off.
535 * If it is in error state, leave it in error state.
536 */
537 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
538 update_context_time(ctx);
539 update_group_times(event);
540 if (event == event->group_leader)
541 group_sched_out(event, cpuctx, ctx);
542 else
543 event_sched_out(event, cpuctx, ctx);
544 event->state = PERF_EVENT_STATE_OFF;
545 }
546
547 raw_spin_unlock(&ctx->lock);
548 }
549
550 /*
551 * Disable a event.
552 *
553 * If event->ctx is a cloned context, callers must make sure that
554 * every task struct that event->ctx->task could possibly point to
555 * remains valid. This condition is satisifed when called through
556 * perf_event_for_each_child or perf_event_for_each because they
557 * hold the top-level event's child_mutex, so any descendant that
558 * goes to exit will block in sync_child_event.
559 * When called from perf_pending_event it's OK because event->ctx
560 * is the current context on this CPU and preemption is disabled,
561 * hence we can't get into perf_event_task_sched_out for this context.
562 */
563 void perf_event_disable(struct perf_event *event)
564 {
565 struct perf_event_context *ctx = event->ctx;
566 struct task_struct *task = ctx->task;
567
568 if (!task) {
569 /*
570 * Disable the event on the cpu that it's on
571 */
572 smp_call_function_single(event->cpu, __perf_event_disable,
573 event, 1);
574 return;
575 }
576
577 retry:
578 task_oncpu_function_call(task, __perf_event_disable, event);
579
580 raw_spin_lock_irq(&ctx->lock);
581 /*
582 * If the event is still active, we need to retry the cross-call.
583 */
584 if (event->state == PERF_EVENT_STATE_ACTIVE) {
585 raw_spin_unlock_irq(&ctx->lock);
586 goto retry;
587 }
588
589 /*
590 * Since we have the lock this context can't be scheduled
591 * in, so we can change the state safely.
592 */
593 if (event->state == PERF_EVENT_STATE_INACTIVE) {
594 update_group_times(event);
595 event->state = PERF_EVENT_STATE_OFF;
596 }
597
598 raw_spin_unlock_irq(&ctx->lock);
599 }
600
601 static int
602 event_sched_in(struct perf_event *event,
603 struct perf_cpu_context *cpuctx,
604 struct perf_event_context *ctx)
605 {
606 if (event->state <= PERF_EVENT_STATE_OFF)
607 return 0;
608
609 event->state = PERF_EVENT_STATE_ACTIVE;
610 event->oncpu = smp_processor_id();
611 /*
612 * The new state must be visible before we turn it on in the hardware:
613 */
614 smp_wmb();
615
616 if (event->pmu->enable(event)) {
617 event->state = PERF_EVENT_STATE_INACTIVE;
618 event->oncpu = -1;
619 return -EAGAIN;
620 }
621
622 event->tstamp_running += ctx->time - event->tstamp_stopped;
623
624 if (!is_software_event(event))
625 cpuctx->active_oncpu++;
626 ctx->nr_active++;
627
628 if (event->attr.exclusive)
629 cpuctx->exclusive = 1;
630
631 return 0;
632 }
633
634 static int
635 group_sched_in(struct perf_event *group_event,
636 struct perf_cpu_context *cpuctx,
637 struct perf_event_context *ctx)
638 {
639 struct perf_event *event, *partial_group = NULL;
640 const struct pmu *pmu = group_event->pmu;
641 bool txn = false;
642 int ret;
643
644 if (group_event->state == PERF_EVENT_STATE_OFF)
645 return 0;
646
647 /* Check if group transaction availabe */
648 if (pmu->start_txn)
649 txn = true;
650
651 if (txn)
652 pmu->start_txn(pmu);
653
654 if (event_sched_in(group_event, cpuctx, ctx))
655 return -EAGAIN;
656
657 /*
658 * Schedule in siblings as one group (if any):
659 */
660 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
661 if (event_sched_in(event, cpuctx, ctx)) {
662 partial_group = event;
663 goto group_error;
664 }
665 }
666
667 if (!txn)
668 return 0;
669
670 ret = pmu->commit_txn(pmu);
671 if (!ret) {
672 pmu->cancel_txn(pmu);
673 return 0;
674 }
675
676 group_error:
677 if (txn)
678 pmu->cancel_txn(pmu);
679
680 /*
681 * Groups can be scheduled in as one unit only, so undo any
682 * partial group before returning:
683 */
684 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
685 if (event == partial_group)
686 break;
687 event_sched_out(event, cpuctx, ctx);
688 }
689 event_sched_out(group_event, cpuctx, ctx);
690
691 return -EAGAIN;
692 }
693
694 /*
695 * Work out whether we can put this event group on the CPU now.
696 */
697 static int group_can_go_on(struct perf_event *event,
698 struct perf_cpu_context *cpuctx,
699 int can_add_hw)
700 {
701 /*
702 * Groups consisting entirely of software events can always go on.
703 */
704 if (event->group_flags & PERF_GROUP_SOFTWARE)
705 return 1;
706 /*
707 * If an exclusive group is already on, no other hardware
708 * events can go on.
709 */
710 if (cpuctx->exclusive)
711 return 0;
712 /*
713 * If this group is exclusive and there are already
714 * events on the CPU, it can't go on.
715 */
716 if (event->attr.exclusive && cpuctx->active_oncpu)
717 return 0;
718 /*
719 * Otherwise, try to add it if all previous groups were able
720 * to go on.
721 */
722 return can_add_hw;
723 }
724
725 static void add_event_to_ctx(struct perf_event *event,
726 struct perf_event_context *ctx)
727 {
728 list_add_event(event, ctx);
729 event->tstamp_enabled = ctx->time;
730 event->tstamp_running = ctx->time;
731 event->tstamp_stopped = ctx->time;
732 }
733
734 /*
735 * Cross CPU call to install and enable a performance event
736 *
737 * Must be called with ctx->mutex held
738 */
739 static void __perf_install_in_context(void *info)
740 {
741 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
742 struct perf_event *event = info;
743 struct perf_event_context *ctx = event->ctx;
744 struct perf_event *leader = event->group_leader;
745 int err;
746
747 /*
748 * If this is a task context, we need to check whether it is
749 * the current task context of this cpu. If not it has been
750 * scheduled out before the smp call arrived.
751 * Or possibly this is the right context but it isn't
752 * on this cpu because it had no events.
753 */
754 if (ctx->task && cpuctx->task_ctx != ctx) {
755 if (cpuctx->task_ctx || ctx->task != current)
756 return;
757 cpuctx->task_ctx = ctx;
758 }
759
760 raw_spin_lock(&ctx->lock);
761 ctx->is_active = 1;
762 update_context_time(ctx);
763
764 /*
765 * Protect the list operation against NMI by disabling the
766 * events on a global level. NOP for non NMI based events.
767 */
768 perf_disable();
769
770 add_event_to_ctx(event, ctx);
771
772 if (event->cpu != -1 && event->cpu != smp_processor_id())
773 goto unlock;
774
775 /*
776 * Don't put the event on if it is disabled or if
777 * it is in a group and the group isn't on.
778 */
779 if (event->state != PERF_EVENT_STATE_INACTIVE ||
780 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
781 goto unlock;
782
783 /*
784 * An exclusive event can't go on if there are already active
785 * hardware events, and no hardware event can go on if there
786 * is already an exclusive event on.
787 */
788 if (!group_can_go_on(event, cpuctx, 1))
789 err = -EEXIST;
790 else
791 err = event_sched_in(event, cpuctx, ctx);
792
793 if (err) {
794 /*
795 * This event couldn't go on. If it is in a group
796 * then we have to pull the whole group off.
797 * If the event group is pinned then put it in error state.
798 */
799 if (leader != event)
800 group_sched_out(leader, cpuctx, ctx);
801 if (leader->attr.pinned) {
802 update_group_times(leader);
803 leader->state = PERF_EVENT_STATE_ERROR;
804 }
805 }
806
807 if (!err && !ctx->task && cpuctx->max_pertask)
808 cpuctx->max_pertask--;
809
810 unlock:
811 perf_enable();
812
813 raw_spin_unlock(&ctx->lock);
814 }
815
816 /*
817 * Attach a performance event to a context
818 *
819 * First we add the event to the list with the hardware enable bit
820 * in event->hw_config cleared.
821 *
822 * If the event is attached to a task which is on a CPU we use a smp
823 * call to enable it in the task context. The task might have been
824 * scheduled away, but we check this in the smp call again.
825 *
826 * Must be called with ctx->mutex held.
827 */
828 static void
829 perf_install_in_context(struct perf_event_context *ctx,
830 struct perf_event *event,
831 int cpu)
832 {
833 struct task_struct *task = ctx->task;
834
835 if (!task) {
836 /*
837 * Per cpu events are installed via an smp call and
838 * the install is always successful.
839 */
840 smp_call_function_single(cpu, __perf_install_in_context,
841 event, 1);
842 return;
843 }
844
845 retry:
846 task_oncpu_function_call(task, __perf_install_in_context,
847 event);
848
849 raw_spin_lock_irq(&ctx->lock);
850 /*
851 * we need to retry the smp call.
852 */
853 if (ctx->is_active && list_empty(&event->group_entry)) {
854 raw_spin_unlock_irq(&ctx->lock);
855 goto retry;
856 }
857
858 /*
859 * The lock prevents that this context is scheduled in so we
860 * can add the event safely, if it the call above did not
861 * succeed.
862 */
863 if (list_empty(&event->group_entry))
864 add_event_to_ctx(event, ctx);
865 raw_spin_unlock_irq(&ctx->lock);
866 }
867
868 /*
869 * Put a event into inactive state and update time fields.
870 * Enabling the leader of a group effectively enables all
871 * the group members that aren't explicitly disabled, so we
872 * have to update their ->tstamp_enabled also.
873 * Note: this works for group members as well as group leaders
874 * since the non-leader members' sibling_lists will be empty.
875 */
876 static void __perf_event_mark_enabled(struct perf_event *event,
877 struct perf_event_context *ctx)
878 {
879 struct perf_event *sub;
880
881 event->state = PERF_EVENT_STATE_INACTIVE;
882 event->tstamp_enabled = ctx->time - event->total_time_enabled;
883 list_for_each_entry(sub, &event->sibling_list, group_entry)
884 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
885 sub->tstamp_enabled =
886 ctx->time - sub->total_time_enabled;
887 }
888
889 /*
890 * Cross CPU call to enable a performance event
891 */
892 static void __perf_event_enable(void *info)
893 {
894 struct perf_event *event = info;
895 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
896 struct perf_event_context *ctx = event->ctx;
897 struct perf_event *leader = event->group_leader;
898 int err;
899
900 /*
901 * If this is a per-task event, need to check whether this
902 * event's task is the current task on this cpu.
903 */
904 if (ctx->task && cpuctx->task_ctx != ctx) {
905 if (cpuctx->task_ctx || ctx->task != current)
906 return;
907 cpuctx->task_ctx = ctx;
908 }
909
910 raw_spin_lock(&ctx->lock);
911 ctx->is_active = 1;
912 update_context_time(ctx);
913
914 if (event->state >= PERF_EVENT_STATE_INACTIVE)
915 goto unlock;
916 __perf_event_mark_enabled(event, ctx);
917
918 if (event->cpu != -1 && event->cpu != smp_processor_id())
919 goto unlock;
920
921 /*
922 * If the event is in a group and isn't the group leader,
923 * then don't put it on unless the group is on.
924 */
925 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
926 goto unlock;
927
928 if (!group_can_go_on(event, cpuctx, 1)) {
929 err = -EEXIST;
930 } else {
931 perf_disable();
932 if (event == leader)
933 err = group_sched_in(event, cpuctx, ctx);
934 else
935 err = event_sched_in(event, cpuctx, ctx);
936 perf_enable();
937 }
938
939 if (err) {
940 /*
941 * If this event can't go on and it's part of a
942 * group, then the whole group has to come off.
943 */
944 if (leader != event)
945 group_sched_out(leader, cpuctx, ctx);
946 if (leader->attr.pinned) {
947 update_group_times(leader);
948 leader->state = PERF_EVENT_STATE_ERROR;
949 }
950 }
951
952 unlock:
953 raw_spin_unlock(&ctx->lock);
954 }
955
956 /*
957 * Enable a event.
958 *
959 * If event->ctx is a cloned context, callers must make sure that
960 * every task struct that event->ctx->task could possibly point to
961 * remains valid. This condition is satisfied when called through
962 * perf_event_for_each_child or perf_event_for_each as described
963 * for perf_event_disable.
964 */
965 void perf_event_enable(struct perf_event *event)
966 {
967 struct perf_event_context *ctx = event->ctx;
968 struct task_struct *task = ctx->task;
969
970 if (!task) {
971 /*
972 * Enable the event on the cpu that it's on
973 */
974 smp_call_function_single(event->cpu, __perf_event_enable,
975 event, 1);
976 return;
977 }
978
979 raw_spin_lock_irq(&ctx->lock);
980 if (event->state >= PERF_EVENT_STATE_INACTIVE)
981 goto out;
982
983 /*
984 * If the event is in error state, clear that first.
985 * That way, if we see the event in error state below, we
986 * know that it has gone back into error state, as distinct
987 * from the task having been scheduled away before the
988 * cross-call arrived.
989 */
990 if (event->state == PERF_EVENT_STATE_ERROR)
991 event->state = PERF_EVENT_STATE_OFF;
992
993 retry:
994 raw_spin_unlock_irq(&ctx->lock);
995 task_oncpu_function_call(task, __perf_event_enable, event);
996
997 raw_spin_lock_irq(&ctx->lock);
998
999 /*
1000 * If the context is active and the event is still off,
1001 * we need to retry the cross-call.
1002 */
1003 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1004 goto retry;
1005
1006 /*
1007 * Since we have the lock this context can't be scheduled
1008 * in, so we can change the state safely.
1009 */
1010 if (event->state == PERF_EVENT_STATE_OFF)
1011 __perf_event_mark_enabled(event, ctx);
1012
1013 out:
1014 raw_spin_unlock_irq(&ctx->lock);
1015 }
1016
1017 static int perf_event_refresh(struct perf_event *event, int refresh)
1018 {
1019 /*
1020 * not supported on inherited events
1021 */
1022 if (event->attr.inherit)
1023 return -EINVAL;
1024
1025 atomic_add(refresh, &event->event_limit);
1026 perf_event_enable(event);
1027
1028 return 0;
1029 }
1030
1031 enum event_type_t {
1032 EVENT_FLEXIBLE = 0x1,
1033 EVENT_PINNED = 0x2,
1034 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1035 };
1036
1037 static void ctx_sched_out(struct perf_event_context *ctx,
1038 struct perf_cpu_context *cpuctx,
1039 enum event_type_t event_type)
1040 {
1041 struct perf_event *event;
1042
1043 raw_spin_lock(&ctx->lock);
1044 ctx->is_active = 0;
1045 if (likely(!ctx->nr_events))
1046 goto out;
1047 update_context_time(ctx);
1048
1049 perf_disable();
1050 if (!ctx->nr_active)
1051 goto out_enable;
1052
1053 if (event_type & EVENT_PINNED)
1054 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1055 group_sched_out(event, cpuctx, ctx);
1056
1057 if (event_type & EVENT_FLEXIBLE)
1058 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1059 group_sched_out(event, cpuctx, ctx);
1060
1061 out_enable:
1062 perf_enable();
1063 out:
1064 raw_spin_unlock(&ctx->lock);
1065 }
1066
1067 /*
1068 * Test whether two contexts are equivalent, i.e. whether they
1069 * have both been cloned from the same version of the same context
1070 * and they both have the same number of enabled events.
1071 * If the number of enabled events is the same, then the set
1072 * of enabled events should be the same, because these are both
1073 * inherited contexts, therefore we can't access individual events
1074 * in them directly with an fd; we can only enable/disable all
1075 * events via prctl, or enable/disable all events in a family
1076 * via ioctl, which will have the same effect on both contexts.
1077 */
1078 static int context_equiv(struct perf_event_context *ctx1,
1079 struct perf_event_context *ctx2)
1080 {
1081 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1082 && ctx1->parent_gen == ctx2->parent_gen
1083 && !ctx1->pin_count && !ctx2->pin_count;
1084 }
1085
1086 static void __perf_event_sync_stat(struct perf_event *event,
1087 struct perf_event *next_event)
1088 {
1089 u64 value;
1090
1091 if (!event->attr.inherit_stat)
1092 return;
1093
1094 /*
1095 * Update the event value, we cannot use perf_event_read()
1096 * because we're in the middle of a context switch and have IRQs
1097 * disabled, which upsets smp_call_function_single(), however
1098 * we know the event must be on the current CPU, therefore we
1099 * don't need to use it.
1100 */
1101 switch (event->state) {
1102 case PERF_EVENT_STATE_ACTIVE:
1103 event->pmu->read(event);
1104 /* fall-through */
1105
1106 case PERF_EVENT_STATE_INACTIVE:
1107 update_event_times(event);
1108 break;
1109
1110 default:
1111 break;
1112 }
1113
1114 /*
1115 * In order to keep per-task stats reliable we need to flip the event
1116 * values when we flip the contexts.
1117 */
1118 value = atomic64_read(&next_event->count);
1119 value = atomic64_xchg(&event->count, value);
1120 atomic64_set(&next_event->count, value);
1121
1122 swap(event->total_time_enabled, next_event->total_time_enabled);
1123 swap(event->total_time_running, next_event->total_time_running);
1124
1125 /*
1126 * Since we swizzled the values, update the user visible data too.
1127 */
1128 perf_event_update_userpage(event);
1129 perf_event_update_userpage(next_event);
1130 }
1131
1132 #define list_next_entry(pos, member) \
1133 list_entry(pos->member.next, typeof(*pos), member)
1134
1135 static void perf_event_sync_stat(struct perf_event_context *ctx,
1136 struct perf_event_context *next_ctx)
1137 {
1138 struct perf_event *event, *next_event;
1139
1140 if (!ctx->nr_stat)
1141 return;
1142
1143 update_context_time(ctx);
1144
1145 event = list_first_entry(&ctx->event_list,
1146 struct perf_event, event_entry);
1147
1148 next_event = list_first_entry(&next_ctx->event_list,
1149 struct perf_event, event_entry);
1150
1151 while (&event->event_entry != &ctx->event_list &&
1152 &next_event->event_entry != &next_ctx->event_list) {
1153
1154 __perf_event_sync_stat(event, next_event);
1155
1156 event = list_next_entry(event, event_entry);
1157 next_event = list_next_entry(next_event, event_entry);
1158 }
1159 }
1160
1161 /*
1162 * Called from scheduler to remove the events of the current task,
1163 * with interrupts disabled.
1164 *
1165 * We stop each event and update the event value in event->count.
1166 *
1167 * This does not protect us against NMI, but disable()
1168 * sets the disabled bit in the control field of event _before_
1169 * accessing the event control register. If a NMI hits, then it will
1170 * not restart the event.
1171 */
1172 void perf_event_task_sched_out(struct task_struct *task,
1173 struct task_struct *next)
1174 {
1175 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1176 struct perf_event_context *ctx = task->perf_event_ctxp;
1177 struct perf_event_context *next_ctx;
1178 struct perf_event_context *parent;
1179 int do_switch = 1;
1180
1181 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1182
1183 if (likely(!ctx || !cpuctx->task_ctx))
1184 return;
1185
1186 rcu_read_lock();
1187 parent = rcu_dereference(ctx->parent_ctx);
1188 next_ctx = next->perf_event_ctxp;
1189 if (parent && next_ctx &&
1190 rcu_dereference(next_ctx->parent_ctx) == parent) {
1191 /*
1192 * Looks like the two contexts are clones, so we might be
1193 * able to optimize the context switch. We lock both
1194 * contexts and check that they are clones under the
1195 * lock (including re-checking that neither has been
1196 * uncloned in the meantime). It doesn't matter which
1197 * order we take the locks because no other cpu could
1198 * be trying to lock both of these tasks.
1199 */
1200 raw_spin_lock(&ctx->lock);
1201 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1202 if (context_equiv(ctx, next_ctx)) {
1203 /*
1204 * XXX do we need a memory barrier of sorts
1205 * wrt to rcu_dereference() of perf_event_ctxp
1206 */
1207 task->perf_event_ctxp = next_ctx;
1208 next->perf_event_ctxp = ctx;
1209 ctx->task = next;
1210 next_ctx->task = task;
1211 do_switch = 0;
1212
1213 perf_event_sync_stat(ctx, next_ctx);
1214 }
1215 raw_spin_unlock(&next_ctx->lock);
1216 raw_spin_unlock(&ctx->lock);
1217 }
1218 rcu_read_unlock();
1219
1220 if (do_switch) {
1221 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1222 cpuctx->task_ctx = NULL;
1223 }
1224 }
1225
1226 static void task_ctx_sched_out(struct perf_event_context *ctx,
1227 enum event_type_t event_type)
1228 {
1229 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1230
1231 if (!cpuctx->task_ctx)
1232 return;
1233
1234 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1235 return;
1236
1237 ctx_sched_out(ctx, cpuctx, event_type);
1238 cpuctx->task_ctx = NULL;
1239 }
1240
1241 /*
1242 * Called with IRQs disabled
1243 */
1244 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1245 {
1246 task_ctx_sched_out(ctx, EVENT_ALL);
1247 }
1248
1249 /*
1250 * Called with IRQs disabled
1251 */
1252 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1253 enum event_type_t event_type)
1254 {
1255 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1256 }
1257
1258 static void
1259 ctx_pinned_sched_in(struct perf_event_context *ctx,
1260 struct perf_cpu_context *cpuctx)
1261 {
1262 struct perf_event *event;
1263
1264 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1265 if (event->state <= PERF_EVENT_STATE_OFF)
1266 continue;
1267 if (event->cpu != -1 && event->cpu != smp_processor_id())
1268 continue;
1269
1270 if (group_can_go_on(event, cpuctx, 1))
1271 group_sched_in(event, cpuctx, ctx);
1272
1273 /*
1274 * If this pinned group hasn't been scheduled,
1275 * put it in error state.
1276 */
1277 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1278 update_group_times(event);
1279 event->state = PERF_EVENT_STATE_ERROR;
1280 }
1281 }
1282 }
1283
1284 static void
1285 ctx_flexible_sched_in(struct perf_event_context *ctx,
1286 struct perf_cpu_context *cpuctx)
1287 {
1288 struct perf_event *event;
1289 int can_add_hw = 1;
1290
1291 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1292 /* Ignore events in OFF or ERROR state */
1293 if (event->state <= PERF_EVENT_STATE_OFF)
1294 continue;
1295 /*
1296 * Listen to the 'cpu' scheduling filter constraint
1297 * of events:
1298 */
1299 if (event->cpu != -1 && event->cpu != smp_processor_id())
1300 continue;
1301
1302 if (group_can_go_on(event, cpuctx, can_add_hw))
1303 if (group_sched_in(event, cpuctx, ctx))
1304 can_add_hw = 0;
1305 }
1306 }
1307
1308 static void
1309 ctx_sched_in(struct perf_event_context *ctx,
1310 struct perf_cpu_context *cpuctx,
1311 enum event_type_t event_type)
1312 {
1313 raw_spin_lock(&ctx->lock);
1314 ctx->is_active = 1;
1315 if (likely(!ctx->nr_events))
1316 goto out;
1317
1318 ctx->timestamp = perf_clock();
1319
1320 perf_disable();
1321
1322 /*
1323 * First go through the list and put on any pinned groups
1324 * in order to give them the best chance of going on.
1325 */
1326 if (event_type & EVENT_PINNED)
1327 ctx_pinned_sched_in(ctx, cpuctx);
1328
1329 /* Then walk through the lower prio flexible groups */
1330 if (event_type & EVENT_FLEXIBLE)
1331 ctx_flexible_sched_in(ctx, cpuctx);
1332
1333 perf_enable();
1334 out:
1335 raw_spin_unlock(&ctx->lock);
1336 }
1337
1338 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1339 enum event_type_t event_type)
1340 {
1341 struct perf_event_context *ctx = &cpuctx->ctx;
1342
1343 ctx_sched_in(ctx, cpuctx, event_type);
1344 }
1345
1346 static void task_ctx_sched_in(struct task_struct *task,
1347 enum event_type_t event_type)
1348 {
1349 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1350 struct perf_event_context *ctx = task->perf_event_ctxp;
1351
1352 if (likely(!ctx))
1353 return;
1354 if (cpuctx->task_ctx == ctx)
1355 return;
1356 ctx_sched_in(ctx, cpuctx, event_type);
1357 cpuctx->task_ctx = ctx;
1358 }
1359 /*
1360 * Called from scheduler to add the events of the current task
1361 * with interrupts disabled.
1362 *
1363 * We restore the event value and then enable it.
1364 *
1365 * This does not protect us against NMI, but enable()
1366 * sets the enabled bit in the control field of event _before_
1367 * accessing the event control register. If a NMI hits, then it will
1368 * keep the event running.
1369 */
1370 void perf_event_task_sched_in(struct task_struct *task)
1371 {
1372 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1373 struct perf_event_context *ctx = task->perf_event_ctxp;
1374
1375 if (likely(!ctx))
1376 return;
1377
1378 if (cpuctx->task_ctx == ctx)
1379 return;
1380
1381 perf_disable();
1382
1383 /*
1384 * We want to keep the following priority order:
1385 * cpu pinned (that don't need to move), task pinned,
1386 * cpu flexible, task flexible.
1387 */
1388 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1389
1390 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1391 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1392 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1393
1394 cpuctx->task_ctx = ctx;
1395
1396 perf_enable();
1397 }
1398
1399 #define MAX_INTERRUPTS (~0ULL)
1400
1401 static void perf_log_throttle(struct perf_event *event, int enable);
1402
1403 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1404 {
1405 u64 frequency = event->attr.sample_freq;
1406 u64 sec = NSEC_PER_SEC;
1407 u64 divisor, dividend;
1408
1409 int count_fls, nsec_fls, frequency_fls, sec_fls;
1410
1411 count_fls = fls64(count);
1412 nsec_fls = fls64(nsec);
1413 frequency_fls = fls64(frequency);
1414 sec_fls = 30;
1415
1416 /*
1417 * We got @count in @nsec, with a target of sample_freq HZ
1418 * the target period becomes:
1419 *
1420 * @count * 10^9
1421 * period = -------------------
1422 * @nsec * sample_freq
1423 *
1424 */
1425
1426 /*
1427 * Reduce accuracy by one bit such that @a and @b converge
1428 * to a similar magnitude.
1429 */
1430 #define REDUCE_FLS(a, b) \
1431 do { \
1432 if (a##_fls > b##_fls) { \
1433 a >>= 1; \
1434 a##_fls--; \
1435 } else { \
1436 b >>= 1; \
1437 b##_fls--; \
1438 } \
1439 } while (0)
1440
1441 /*
1442 * Reduce accuracy until either term fits in a u64, then proceed with
1443 * the other, so that finally we can do a u64/u64 division.
1444 */
1445 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1446 REDUCE_FLS(nsec, frequency);
1447 REDUCE_FLS(sec, count);
1448 }
1449
1450 if (count_fls + sec_fls > 64) {
1451 divisor = nsec * frequency;
1452
1453 while (count_fls + sec_fls > 64) {
1454 REDUCE_FLS(count, sec);
1455 divisor >>= 1;
1456 }
1457
1458 dividend = count * sec;
1459 } else {
1460 dividend = count * sec;
1461
1462 while (nsec_fls + frequency_fls > 64) {
1463 REDUCE_FLS(nsec, frequency);
1464 dividend >>= 1;
1465 }
1466
1467 divisor = nsec * frequency;
1468 }
1469
1470 return div64_u64(dividend, divisor);
1471 }
1472
1473 static void perf_event_stop(struct perf_event *event)
1474 {
1475 if (!event->pmu->stop)
1476 return event->pmu->disable(event);
1477
1478 return event->pmu->stop(event);
1479 }
1480
1481 static int perf_event_start(struct perf_event *event)
1482 {
1483 if (!event->pmu->start)
1484 return event->pmu->enable(event);
1485
1486 return event->pmu->start(event);
1487 }
1488
1489 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1490 {
1491 struct hw_perf_event *hwc = &event->hw;
1492 u64 period, sample_period;
1493 s64 delta;
1494
1495 period = perf_calculate_period(event, nsec, count);
1496
1497 delta = (s64)(period - hwc->sample_period);
1498 delta = (delta + 7) / 8; /* low pass filter */
1499
1500 sample_period = hwc->sample_period + delta;
1501
1502 if (!sample_period)
1503 sample_period = 1;
1504
1505 hwc->sample_period = sample_period;
1506
1507 if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1508 perf_disable();
1509 perf_event_stop(event);
1510 atomic64_set(&hwc->period_left, 0);
1511 perf_event_start(event);
1512 perf_enable();
1513 }
1514 }
1515
1516 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1517 {
1518 struct perf_event *event;
1519 struct hw_perf_event *hwc;
1520 u64 interrupts, now;
1521 s64 delta;
1522
1523 raw_spin_lock(&ctx->lock);
1524 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1525 if (event->state != PERF_EVENT_STATE_ACTIVE)
1526 continue;
1527
1528 if (event->cpu != -1 && event->cpu != smp_processor_id())
1529 continue;
1530
1531 hwc = &event->hw;
1532
1533 interrupts = hwc->interrupts;
1534 hwc->interrupts = 0;
1535
1536 /*
1537 * unthrottle events on the tick
1538 */
1539 if (interrupts == MAX_INTERRUPTS) {
1540 perf_log_throttle(event, 1);
1541 perf_disable();
1542 event->pmu->unthrottle(event);
1543 perf_enable();
1544 }
1545
1546 if (!event->attr.freq || !event->attr.sample_freq)
1547 continue;
1548
1549 perf_disable();
1550 event->pmu->read(event);
1551 now = atomic64_read(&event->count);
1552 delta = now - hwc->freq_count_stamp;
1553 hwc->freq_count_stamp = now;
1554
1555 if (delta > 0)
1556 perf_adjust_period(event, TICK_NSEC, delta);
1557 perf_enable();
1558 }
1559 raw_spin_unlock(&ctx->lock);
1560 }
1561
1562 /*
1563 * Round-robin a context's events:
1564 */
1565 static void rotate_ctx(struct perf_event_context *ctx)
1566 {
1567 raw_spin_lock(&ctx->lock);
1568
1569 /* Rotate the first entry last of non-pinned groups */
1570 list_rotate_left(&ctx->flexible_groups);
1571
1572 raw_spin_unlock(&ctx->lock);
1573 }
1574
1575 void perf_event_task_tick(struct task_struct *curr)
1576 {
1577 struct perf_cpu_context *cpuctx;
1578 struct perf_event_context *ctx;
1579 int rotate = 0;
1580
1581 if (!atomic_read(&nr_events))
1582 return;
1583
1584 cpuctx = &__get_cpu_var(perf_cpu_context);
1585 if (cpuctx->ctx.nr_events &&
1586 cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1587 rotate = 1;
1588
1589 ctx = curr->perf_event_ctxp;
1590 if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1591 rotate = 1;
1592
1593 perf_ctx_adjust_freq(&cpuctx->ctx);
1594 if (ctx)
1595 perf_ctx_adjust_freq(ctx);
1596
1597 if (!rotate)
1598 return;
1599
1600 perf_disable();
1601 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1602 if (ctx)
1603 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1604
1605 rotate_ctx(&cpuctx->ctx);
1606 if (ctx)
1607 rotate_ctx(ctx);
1608
1609 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1610 if (ctx)
1611 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1612 perf_enable();
1613 }
1614
1615 static int event_enable_on_exec(struct perf_event *event,
1616 struct perf_event_context *ctx)
1617 {
1618 if (!event->attr.enable_on_exec)
1619 return 0;
1620
1621 event->attr.enable_on_exec = 0;
1622 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1623 return 0;
1624
1625 __perf_event_mark_enabled(event, ctx);
1626
1627 return 1;
1628 }
1629
1630 /*
1631 * Enable all of a task's events that have been marked enable-on-exec.
1632 * This expects task == current.
1633 */
1634 static void perf_event_enable_on_exec(struct task_struct *task)
1635 {
1636 struct perf_event_context *ctx;
1637 struct perf_event *event;
1638 unsigned long flags;
1639 int enabled = 0;
1640 int ret;
1641
1642 local_irq_save(flags);
1643 ctx = task->perf_event_ctxp;
1644 if (!ctx || !ctx->nr_events)
1645 goto out;
1646
1647 __perf_event_task_sched_out(ctx);
1648
1649 raw_spin_lock(&ctx->lock);
1650
1651 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1652 ret = event_enable_on_exec(event, ctx);
1653 if (ret)
1654 enabled = 1;
1655 }
1656
1657 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1658 ret = event_enable_on_exec(event, ctx);
1659 if (ret)
1660 enabled = 1;
1661 }
1662
1663 /*
1664 * Unclone this context if we enabled any event.
1665 */
1666 if (enabled)
1667 unclone_ctx(ctx);
1668
1669 raw_spin_unlock(&ctx->lock);
1670
1671 perf_event_task_sched_in(task);
1672 out:
1673 local_irq_restore(flags);
1674 }
1675
1676 /*
1677 * Cross CPU call to read the hardware event
1678 */
1679 static void __perf_event_read(void *info)
1680 {
1681 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1682 struct perf_event *event = info;
1683 struct perf_event_context *ctx = event->ctx;
1684
1685 /*
1686 * If this is a task context, we need to check whether it is
1687 * the current task context of this cpu. If not it has been
1688 * scheduled out before the smp call arrived. In that case
1689 * event->count would have been updated to a recent sample
1690 * when the event was scheduled out.
1691 */
1692 if (ctx->task && cpuctx->task_ctx != ctx)
1693 return;
1694
1695 raw_spin_lock(&ctx->lock);
1696 update_context_time(ctx);
1697 update_event_times(event);
1698 raw_spin_unlock(&ctx->lock);
1699
1700 event->pmu->read(event);
1701 }
1702
1703 static u64 perf_event_read(struct perf_event *event)
1704 {
1705 /*
1706 * If event is enabled and currently active on a CPU, update the
1707 * value in the event structure:
1708 */
1709 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1710 smp_call_function_single(event->oncpu,
1711 __perf_event_read, event, 1);
1712 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1713 struct perf_event_context *ctx = event->ctx;
1714 unsigned long flags;
1715
1716 raw_spin_lock_irqsave(&ctx->lock, flags);
1717 update_context_time(ctx);
1718 update_event_times(event);
1719 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1720 }
1721
1722 return atomic64_read(&event->count);
1723 }
1724
1725 /*
1726 * Initialize the perf_event context in a task_struct:
1727 */
1728 static void
1729 __perf_event_init_context(struct perf_event_context *ctx,
1730 struct task_struct *task)
1731 {
1732 raw_spin_lock_init(&ctx->lock);
1733 mutex_init(&ctx->mutex);
1734 INIT_LIST_HEAD(&ctx->pinned_groups);
1735 INIT_LIST_HEAD(&ctx->flexible_groups);
1736 INIT_LIST_HEAD(&ctx->event_list);
1737 atomic_set(&ctx->refcount, 1);
1738 ctx->task = task;
1739 }
1740
1741 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1742 {
1743 struct perf_event_context *ctx;
1744 struct perf_cpu_context *cpuctx;
1745 struct task_struct *task;
1746 unsigned long flags;
1747 int err;
1748
1749 if (pid == -1 && cpu != -1) {
1750 /* Must be root to operate on a CPU event: */
1751 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1752 return ERR_PTR(-EACCES);
1753
1754 if (cpu < 0 || cpu >= nr_cpumask_bits)
1755 return ERR_PTR(-EINVAL);
1756
1757 /*
1758 * We could be clever and allow to attach a event to an
1759 * offline CPU and activate it when the CPU comes up, but
1760 * that's for later.
1761 */
1762 if (!cpu_online(cpu))
1763 return ERR_PTR(-ENODEV);
1764
1765 cpuctx = &per_cpu(perf_cpu_context, cpu);
1766 ctx = &cpuctx->ctx;
1767 get_ctx(ctx);
1768
1769 return ctx;
1770 }
1771
1772 rcu_read_lock();
1773 if (!pid)
1774 task = current;
1775 else
1776 task = find_task_by_vpid(pid);
1777 if (task)
1778 get_task_struct(task);
1779 rcu_read_unlock();
1780
1781 if (!task)
1782 return ERR_PTR(-ESRCH);
1783
1784 /*
1785 * Can't attach events to a dying task.
1786 */
1787 err = -ESRCH;
1788 if (task->flags & PF_EXITING)
1789 goto errout;
1790
1791 /* Reuse ptrace permission checks for now. */
1792 err = -EACCES;
1793 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1794 goto errout;
1795
1796 retry:
1797 ctx = perf_lock_task_context(task, &flags);
1798 if (ctx) {
1799 unclone_ctx(ctx);
1800 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1801 }
1802
1803 if (!ctx) {
1804 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1805 err = -ENOMEM;
1806 if (!ctx)
1807 goto errout;
1808 __perf_event_init_context(ctx, task);
1809 get_ctx(ctx);
1810 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1811 /*
1812 * We raced with some other task; use
1813 * the context they set.
1814 */
1815 kfree(ctx);
1816 goto retry;
1817 }
1818 get_task_struct(task);
1819 }
1820
1821 put_task_struct(task);
1822 return ctx;
1823
1824 errout:
1825 put_task_struct(task);
1826 return ERR_PTR(err);
1827 }
1828
1829 static void perf_event_free_filter(struct perf_event *event);
1830
1831 static void free_event_rcu(struct rcu_head *head)
1832 {
1833 struct perf_event *event;
1834
1835 event = container_of(head, struct perf_event, rcu_head);
1836 if (event->ns)
1837 put_pid_ns(event->ns);
1838 perf_event_free_filter(event);
1839 kfree(event);
1840 }
1841
1842 static void perf_pending_sync(struct perf_event *event);
1843
1844 static void free_event(struct perf_event *event)
1845 {
1846 perf_pending_sync(event);
1847
1848 if (!event->parent) {
1849 atomic_dec(&nr_events);
1850 if (event->attr.mmap)
1851 atomic_dec(&nr_mmap_events);
1852 if (event->attr.comm)
1853 atomic_dec(&nr_comm_events);
1854 if (event->attr.task)
1855 atomic_dec(&nr_task_events);
1856 }
1857
1858 if (event->output) {
1859 fput(event->output->filp);
1860 event->output = NULL;
1861 }
1862
1863 if (event->destroy)
1864 event->destroy(event);
1865
1866 put_ctx(event->ctx);
1867 call_rcu(&event->rcu_head, free_event_rcu);
1868 }
1869
1870 int perf_event_release_kernel(struct perf_event *event)
1871 {
1872 struct perf_event_context *ctx = event->ctx;
1873
1874 event->state = PERF_EVENT_STATE_FREE;
1875
1876 WARN_ON_ONCE(ctx->parent_ctx);
1877 /*
1878 * There are two ways this annotation is useful:
1879 *
1880 * 1) there is a lock recursion from perf_event_exit_task
1881 * see the comment there.
1882 *
1883 * 2) there is a lock-inversion with mmap_sem through
1884 * perf_event_read_group(), which takes faults while
1885 * holding ctx->mutex, however this is called after
1886 * the last filedesc died, so there is no possibility
1887 * to trigger the AB-BA case.
1888 */
1889 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
1890 perf_event_remove_from_context(event);
1891 mutex_unlock(&ctx->mutex);
1892
1893 mutex_lock(&event->owner->perf_event_mutex);
1894 list_del_init(&event->owner_entry);
1895 mutex_unlock(&event->owner->perf_event_mutex);
1896 put_task_struct(event->owner);
1897
1898 free_event(event);
1899
1900 return 0;
1901 }
1902 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1903
1904 /*
1905 * Called when the last reference to the file is gone.
1906 */
1907 static int perf_release(struct inode *inode, struct file *file)
1908 {
1909 struct perf_event *event = file->private_data;
1910
1911 file->private_data = NULL;
1912
1913 return perf_event_release_kernel(event);
1914 }
1915
1916 static int perf_event_read_size(struct perf_event *event)
1917 {
1918 int entry = sizeof(u64); /* value */
1919 int size = 0;
1920 int nr = 1;
1921
1922 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1923 size += sizeof(u64);
1924
1925 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1926 size += sizeof(u64);
1927
1928 if (event->attr.read_format & PERF_FORMAT_ID)
1929 entry += sizeof(u64);
1930
1931 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1932 nr += event->group_leader->nr_siblings;
1933 size += sizeof(u64);
1934 }
1935
1936 size += entry * nr;
1937
1938 return size;
1939 }
1940
1941 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1942 {
1943 struct perf_event *child;
1944 u64 total = 0;
1945
1946 *enabled = 0;
1947 *running = 0;
1948
1949 mutex_lock(&event->child_mutex);
1950 total += perf_event_read(event);
1951 *enabled += event->total_time_enabled +
1952 atomic64_read(&event->child_total_time_enabled);
1953 *running += event->total_time_running +
1954 atomic64_read(&event->child_total_time_running);
1955
1956 list_for_each_entry(child, &event->child_list, child_list) {
1957 total += perf_event_read(child);
1958 *enabled += child->total_time_enabled;
1959 *running += child->total_time_running;
1960 }
1961 mutex_unlock(&event->child_mutex);
1962
1963 return total;
1964 }
1965 EXPORT_SYMBOL_GPL(perf_event_read_value);
1966
1967 static int perf_event_read_group(struct perf_event *event,
1968 u64 read_format, char __user *buf)
1969 {
1970 struct perf_event *leader = event->group_leader, *sub;
1971 int n = 0, size = 0, ret = -EFAULT;
1972 struct perf_event_context *ctx = leader->ctx;
1973 u64 values[5];
1974 u64 count, enabled, running;
1975
1976 mutex_lock(&ctx->mutex);
1977 count = perf_event_read_value(leader, &enabled, &running);
1978
1979 values[n++] = 1 + leader->nr_siblings;
1980 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1981 values[n++] = enabled;
1982 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1983 values[n++] = running;
1984 values[n++] = count;
1985 if (read_format & PERF_FORMAT_ID)
1986 values[n++] = primary_event_id(leader);
1987
1988 size = n * sizeof(u64);
1989
1990 if (copy_to_user(buf, values, size))
1991 goto unlock;
1992
1993 ret = size;
1994
1995 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1996 n = 0;
1997
1998 values[n++] = perf_event_read_value(sub, &enabled, &running);
1999 if (read_format & PERF_FORMAT_ID)
2000 values[n++] = primary_event_id(sub);
2001
2002 size = n * sizeof(u64);
2003
2004 if (copy_to_user(buf + ret, values, size)) {
2005 ret = -EFAULT;
2006 goto unlock;
2007 }
2008
2009 ret += size;
2010 }
2011 unlock:
2012 mutex_unlock(&ctx->mutex);
2013
2014 return ret;
2015 }
2016
2017 static int perf_event_read_one(struct perf_event *event,
2018 u64 read_format, char __user *buf)
2019 {
2020 u64 enabled, running;
2021 u64 values[4];
2022 int n = 0;
2023
2024 values[n++] = perf_event_read_value(event, &enabled, &running);
2025 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2026 values[n++] = enabled;
2027 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2028 values[n++] = running;
2029 if (read_format & PERF_FORMAT_ID)
2030 values[n++] = primary_event_id(event);
2031
2032 if (copy_to_user(buf, values, n * sizeof(u64)))
2033 return -EFAULT;
2034
2035 return n * sizeof(u64);
2036 }
2037
2038 /*
2039 * Read the performance event - simple non blocking version for now
2040 */
2041 static ssize_t
2042 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2043 {
2044 u64 read_format = event->attr.read_format;
2045 int ret;
2046
2047 /*
2048 * Return end-of-file for a read on a event that is in
2049 * error state (i.e. because it was pinned but it couldn't be
2050 * scheduled on to the CPU at some point).
2051 */
2052 if (event->state == PERF_EVENT_STATE_ERROR)
2053 return 0;
2054
2055 if (count < perf_event_read_size(event))
2056 return -ENOSPC;
2057
2058 WARN_ON_ONCE(event->ctx->parent_ctx);
2059 if (read_format & PERF_FORMAT_GROUP)
2060 ret = perf_event_read_group(event, read_format, buf);
2061 else
2062 ret = perf_event_read_one(event, read_format, buf);
2063
2064 return ret;
2065 }
2066
2067 static ssize_t
2068 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2069 {
2070 struct perf_event *event = file->private_data;
2071
2072 return perf_read_hw(event, buf, count);
2073 }
2074
2075 static unsigned int perf_poll(struct file *file, poll_table *wait)
2076 {
2077 struct perf_event *event = file->private_data;
2078 struct perf_mmap_data *data;
2079 unsigned int events = POLL_HUP;
2080
2081 rcu_read_lock();
2082 data = rcu_dereference(event->data);
2083 if (data)
2084 events = atomic_xchg(&data->poll, 0);
2085 rcu_read_unlock();
2086
2087 poll_wait(file, &event->waitq, wait);
2088
2089 return events;
2090 }
2091
2092 static void perf_event_reset(struct perf_event *event)
2093 {
2094 (void)perf_event_read(event);
2095 atomic64_set(&event->count, 0);
2096 perf_event_update_userpage(event);
2097 }
2098
2099 /*
2100 * Holding the top-level event's child_mutex means that any
2101 * descendant process that has inherited this event will block
2102 * in sync_child_event if it goes to exit, thus satisfying the
2103 * task existence requirements of perf_event_enable/disable.
2104 */
2105 static void perf_event_for_each_child(struct perf_event *event,
2106 void (*func)(struct perf_event *))
2107 {
2108 struct perf_event *child;
2109
2110 WARN_ON_ONCE(event->ctx->parent_ctx);
2111 mutex_lock(&event->child_mutex);
2112 func(event);
2113 list_for_each_entry(child, &event->child_list, child_list)
2114 func(child);
2115 mutex_unlock(&event->child_mutex);
2116 }
2117
2118 static void perf_event_for_each(struct perf_event *event,
2119 void (*func)(struct perf_event *))
2120 {
2121 struct perf_event_context *ctx = event->ctx;
2122 struct perf_event *sibling;
2123
2124 WARN_ON_ONCE(ctx->parent_ctx);
2125 mutex_lock(&ctx->mutex);
2126 event = event->group_leader;
2127
2128 perf_event_for_each_child(event, func);
2129 func(event);
2130 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2131 perf_event_for_each_child(event, func);
2132 mutex_unlock(&ctx->mutex);
2133 }
2134
2135 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2136 {
2137 struct perf_event_context *ctx = event->ctx;
2138 unsigned long size;
2139 int ret = 0;
2140 u64 value;
2141
2142 if (!event->attr.sample_period)
2143 return -EINVAL;
2144
2145 size = copy_from_user(&value, arg, sizeof(value));
2146 if (size != sizeof(value))
2147 return -EFAULT;
2148
2149 if (!value)
2150 return -EINVAL;
2151
2152 raw_spin_lock_irq(&ctx->lock);
2153 if (event->attr.freq) {
2154 if (value > sysctl_perf_event_sample_rate) {
2155 ret = -EINVAL;
2156 goto unlock;
2157 }
2158
2159 event->attr.sample_freq = value;
2160 } else {
2161 event->attr.sample_period = value;
2162 event->hw.sample_period = value;
2163 }
2164 unlock:
2165 raw_spin_unlock_irq(&ctx->lock);
2166
2167 return ret;
2168 }
2169
2170 static int perf_event_set_output(struct perf_event *event, int output_fd);
2171 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2172
2173 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2174 {
2175 struct perf_event *event = file->private_data;
2176 void (*func)(struct perf_event *);
2177 u32 flags = arg;
2178
2179 switch (cmd) {
2180 case PERF_EVENT_IOC_ENABLE:
2181 func = perf_event_enable;
2182 break;
2183 case PERF_EVENT_IOC_DISABLE:
2184 func = perf_event_disable;
2185 break;
2186 case PERF_EVENT_IOC_RESET:
2187 func = perf_event_reset;
2188 break;
2189
2190 case PERF_EVENT_IOC_REFRESH:
2191 return perf_event_refresh(event, arg);
2192
2193 case PERF_EVENT_IOC_PERIOD:
2194 return perf_event_period(event, (u64 __user *)arg);
2195
2196 case PERF_EVENT_IOC_SET_OUTPUT:
2197 return perf_event_set_output(event, arg);
2198
2199 case PERF_EVENT_IOC_SET_FILTER:
2200 return perf_event_set_filter(event, (void __user *)arg);
2201
2202 default:
2203 return -ENOTTY;
2204 }
2205
2206 if (flags & PERF_IOC_FLAG_GROUP)
2207 perf_event_for_each(event, func);
2208 else
2209 perf_event_for_each_child(event, func);
2210
2211 return 0;
2212 }
2213
2214 int perf_event_task_enable(void)
2215 {
2216 struct perf_event *event;
2217
2218 mutex_lock(&current->perf_event_mutex);
2219 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2220 perf_event_for_each_child(event, perf_event_enable);
2221 mutex_unlock(&current->perf_event_mutex);
2222
2223 return 0;
2224 }
2225
2226 int perf_event_task_disable(void)
2227 {
2228 struct perf_event *event;
2229
2230 mutex_lock(&current->perf_event_mutex);
2231 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2232 perf_event_for_each_child(event, perf_event_disable);
2233 mutex_unlock(&current->perf_event_mutex);
2234
2235 return 0;
2236 }
2237
2238 #ifndef PERF_EVENT_INDEX_OFFSET
2239 # define PERF_EVENT_INDEX_OFFSET 0
2240 #endif
2241
2242 static int perf_event_index(struct perf_event *event)
2243 {
2244 if (event->state != PERF_EVENT_STATE_ACTIVE)
2245 return 0;
2246
2247 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2248 }
2249
2250 /*
2251 * Callers need to ensure there can be no nesting of this function, otherwise
2252 * the seqlock logic goes bad. We can not serialize this because the arch
2253 * code calls this from NMI context.
2254 */
2255 void perf_event_update_userpage(struct perf_event *event)
2256 {
2257 struct perf_event_mmap_page *userpg;
2258 struct perf_mmap_data *data;
2259
2260 rcu_read_lock();
2261 data = rcu_dereference(event->data);
2262 if (!data)
2263 goto unlock;
2264
2265 userpg = data->user_page;
2266
2267 /*
2268 * Disable preemption so as to not let the corresponding user-space
2269 * spin too long if we get preempted.
2270 */
2271 preempt_disable();
2272 ++userpg->lock;
2273 barrier();
2274 userpg->index = perf_event_index(event);
2275 userpg->offset = atomic64_read(&event->count);
2276 if (event->state == PERF_EVENT_STATE_ACTIVE)
2277 userpg->offset -= atomic64_read(&event->hw.prev_count);
2278
2279 userpg->time_enabled = event->total_time_enabled +
2280 atomic64_read(&event->child_total_time_enabled);
2281
2282 userpg->time_running = event->total_time_running +
2283 atomic64_read(&event->child_total_time_running);
2284
2285 barrier();
2286 ++userpg->lock;
2287 preempt_enable();
2288 unlock:
2289 rcu_read_unlock();
2290 }
2291
2292 static unsigned long perf_data_size(struct perf_mmap_data *data)
2293 {
2294 return data->nr_pages << (PAGE_SHIFT + data->data_order);
2295 }
2296
2297 #ifndef CONFIG_PERF_USE_VMALLOC
2298
2299 /*
2300 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2301 */
2302
2303 static struct page *
2304 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2305 {
2306 if (pgoff > data->nr_pages)
2307 return NULL;
2308
2309 if (pgoff == 0)
2310 return virt_to_page(data->user_page);
2311
2312 return virt_to_page(data->data_pages[pgoff - 1]);
2313 }
2314
2315 static struct perf_mmap_data *
2316 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2317 {
2318 struct perf_mmap_data *data;
2319 unsigned long size;
2320 int i;
2321
2322 WARN_ON(atomic_read(&event->mmap_count));
2323
2324 size = sizeof(struct perf_mmap_data);
2325 size += nr_pages * sizeof(void *);
2326
2327 data = kzalloc(size, GFP_KERNEL);
2328 if (!data)
2329 goto fail;
2330
2331 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2332 if (!data->user_page)
2333 goto fail_user_page;
2334
2335 for (i = 0; i < nr_pages; i++) {
2336 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2337 if (!data->data_pages[i])
2338 goto fail_data_pages;
2339 }
2340
2341 data->data_order = 0;
2342 data->nr_pages = nr_pages;
2343
2344 return data;
2345
2346 fail_data_pages:
2347 for (i--; i >= 0; i--)
2348 free_page((unsigned long)data->data_pages[i]);
2349
2350 free_page((unsigned long)data->user_page);
2351
2352 fail_user_page:
2353 kfree(data);
2354
2355 fail:
2356 return NULL;
2357 }
2358
2359 static void perf_mmap_free_page(unsigned long addr)
2360 {
2361 struct page *page = virt_to_page((void *)addr);
2362
2363 page->mapping = NULL;
2364 __free_page(page);
2365 }
2366
2367 static void perf_mmap_data_free(struct perf_mmap_data *data)
2368 {
2369 int i;
2370
2371 perf_mmap_free_page((unsigned long)data->user_page);
2372 for (i = 0; i < data->nr_pages; i++)
2373 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2374 kfree(data);
2375 }
2376
2377 #else
2378
2379 /*
2380 * Back perf_mmap() with vmalloc memory.
2381 *
2382 * Required for architectures that have d-cache aliasing issues.
2383 */
2384
2385 static struct page *
2386 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2387 {
2388 if (pgoff > (1UL << data->data_order))
2389 return NULL;
2390
2391 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2392 }
2393
2394 static void perf_mmap_unmark_page(void *addr)
2395 {
2396 struct page *page = vmalloc_to_page(addr);
2397
2398 page->mapping = NULL;
2399 }
2400
2401 static void perf_mmap_data_free_work(struct work_struct *work)
2402 {
2403 struct perf_mmap_data *data;
2404 void *base;
2405 int i, nr;
2406
2407 data = container_of(work, struct perf_mmap_data, work);
2408 nr = 1 << data->data_order;
2409
2410 base = data->user_page;
2411 for (i = 0; i < nr + 1; i++)
2412 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2413
2414 vfree(base);
2415 kfree(data);
2416 }
2417
2418 static void perf_mmap_data_free(struct perf_mmap_data *data)
2419 {
2420 schedule_work(&data->work);
2421 }
2422
2423 static struct perf_mmap_data *
2424 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2425 {
2426 struct perf_mmap_data *data;
2427 unsigned long size;
2428 void *all_buf;
2429
2430 WARN_ON(atomic_read(&event->mmap_count));
2431
2432 size = sizeof(struct perf_mmap_data);
2433 size += sizeof(void *);
2434
2435 data = kzalloc(size, GFP_KERNEL);
2436 if (!data)
2437 goto fail;
2438
2439 INIT_WORK(&data->work, perf_mmap_data_free_work);
2440
2441 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2442 if (!all_buf)
2443 goto fail_all_buf;
2444
2445 data->user_page = all_buf;
2446 data->data_pages[0] = all_buf + PAGE_SIZE;
2447 data->data_order = ilog2(nr_pages);
2448 data->nr_pages = 1;
2449
2450 return data;
2451
2452 fail_all_buf:
2453 kfree(data);
2454
2455 fail:
2456 return NULL;
2457 }
2458
2459 #endif
2460
2461 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2462 {
2463 struct perf_event *event = vma->vm_file->private_data;
2464 struct perf_mmap_data *data;
2465 int ret = VM_FAULT_SIGBUS;
2466
2467 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2468 if (vmf->pgoff == 0)
2469 ret = 0;
2470 return ret;
2471 }
2472
2473 rcu_read_lock();
2474 data = rcu_dereference(event->data);
2475 if (!data)
2476 goto unlock;
2477
2478 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2479 goto unlock;
2480
2481 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2482 if (!vmf->page)
2483 goto unlock;
2484
2485 get_page(vmf->page);
2486 vmf->page->mapping = vma->vm_file->f_mapping;
2487 vmf->page->index = vmf->pgoff;
2488
2489 ret = 0;
2490 unlock:
2491 rcu_read_unlock();
2492
2493 return ret;
2494 }
2495
2496 static void
2497 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2498 {
2499 long max_size = perf_data_size(data);
2500
2501 atomic_set(&data->lock, -1);
2502
2503 if (event->attr.watermark) {
2504 data->watermark = min_t(long, max_size,
2505 event->attr.wakeup_watermark);
2506 }
2507
2508 if (!data->watermark)
2509 data->watermark = max_size / 2;
2510
2511
2512 rcu_assign_pointer(event->data, data);
2513 }
2514
2515 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2516 {
2517 struct perf_mmap_data *data;
2518
2519 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2520 perf_mmap_data_free(data);
2521 }
2522
2523 static void perf_mmap_data_release(struct perf_event *event)
2524 {
2525 struct perf_mmap_data *data = event->data;
2526
2527 WARN_ON(atomic_read(&event->mmap_count));
2528
2529 rcu_assign_pointer(event->data, NULL);
2530 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2531 }
2532
2533 static void perf_mmap_open(struct vm_area_struct *vma)
2534 {
2535 struct perf_event *event = vma->vm_file->private_data;
2536
2537 atomic_inc(&event->mmap_count);
2538 }
2539
2540 static void perf_mmap_close(struct vm_area_struct *vma)
2541 {
2542 struct perf_event *event = vma->vm_file->private_data;
2543
2544 WARN_ON_ONCE(event->ctx->parent_ctx);
2545 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2546 unsigned long size = perf_data_size(event->data);
2547 struct user_struct *user = current_user();
2548
2549 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2550 vma->vm_mm->locked_vm -= event->data->nr_locked;
2551 perf_mmap_data_release(event);
2552 mutex_unlock(&event->mmap_mutex);
2553 }
2554 }
2555
2556 static const struct vm_operations_struct perf_mmap_vmops = {
2557 .open = perf_mmap_open,
2558 .close = perf_mmap_close,
2559 .fault = perf_mmap_fault,
2560 .page_mkwrite = perf_mmap_fault,
2561 };
2562
2563 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2564 {
2565 struct perf_event *event = file->private_data;
2566 unsigned long user_locked, user_lock_limit;
2567 struct user_struct *user = current_user();
2568 unsigned long locked, lock_limit;
2569 struct perf_mmap_data *data;
2570 unsigned long vma_size;
2571 unsigned long nr_pages;
2572 long user_extra, extra;
2573 int ret = 0;
2574
2575 if (!(vma->vm_flags & VM_SHARED))
2576 return -EINVAL;
2577
2578 vma_size = vma->vm_end - vma->vm_start;
2579 nr_pages = (vma_size / PAGE_SIZE) - 1;
2580
2581 /*
2582 * If we have data pages ensure they're a power-of-two number, so we
2583 * can do bitmasks instead of modulo.
2584 */
2585 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2586 return -EINVAL;
2587
2588 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2589 return -EINVAL;
2590
2591 if (vma->vm_pgoff != 0)
2592 return -EINVAL;
2593
2594 WARN_ON_ONCE(event->ctx->parent_ctx);
2595 mutex_lock(&event->mmap_mutex);
2596 if (event->output) {
2597 ret = -EINVAL;
2598 goto unlock;
2599 }
2600
2601 if (atomic_inc_not_zero(&event->mmap_count)) {
2602 if (nr_pages != event->data->nr_pages)
2603 ret = -EINVAL;
2604 goto unlock;
2605 }
2606
2607 user_extra = nr_pages + 1;
2608 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2609
2610 /*
2611 * Increase the limit linearly with more CPUs:
2612 */
2613 user_lock_limit *= num_online_cpus();
2614
2615 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2616
2617 extra = 0;
2618 if (user_locked > user_lock_limit)
2619 extra = user_locked - user_lock_limit;
2620
2621 lock_limit = rlimit(RLIMIT_MEMLOCK);
2622 lock_limit >>= PAGE_SHIFT;
2623 locked = vma->vm_mm->locked_vm + extra;
2624
2625 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2626 !capable(CAP_IPC_LOCK)) {
2627 ret = -EPERM;
2628 goto unlock;
2629 }
2630
2631 WARN_ON(event->data);
2632
2633 data = perf_mmap_data_alloc(event, nr_pages);
2634 ret = -ENOMEM;
2635 if (!data)
2636 goto unlock;
2637
2638 ret = 0;
2639 perf_mmap_data_init(event, data);
2640
2641 atomic_set(&event->mmap_count, 1);
2642 atomic_long_add(user_extra, &user->locked_vm);
2643 vma->vm_mm->locked_vm += extra;
2644 event->data->nr_locked = extra;
2645 if (vma->vm_flags & VM_WRITE)
2646 event->data->writable = 1;
2647
2648 unlock:
2649 mutex_unlock(&event->mmap_mutex);
2650
2651 vma->vm_flags |= VM_RESERVED;
2652 vma->vm_ops = &perf_mmap_vmops;
2653
2654 return ret;
2655 }
2656
2657 static int perf_fasync(int fd, struct file *filp, int on)
2658 {
2659 struct inode *inode = filp->f_path.dentry->d_inode;
2660 struct perf_event *event = filp->private_data;
2661 int retval;
2662
2663 mutex_lock(&inode->i_mutex);
2664 retval = fasync_helper(fd, filp, on, &event->fasync);
2665 mutex_unlock(&inode->i_mutex);
2666
2667 if (retval < 0)
2668 return retval;
2669
2670 return 0;
2671 }
2672
2673 static const struct file_operations perf_fops = {
2674 .llseek = no_llseek,
2675 .release = perf_release,
2676 .read = perf_read,
2677 .poll = perf_poll,
2678 .unlocked_ioctl = perf_ioctl,
2679 .compat_ioctl = perf_ioctl,
2680 .mmap = perf_mmap,
2681 .fasync = perf_fasync,
2682 };
2683
2684 /*
2685 * Perf event wakeup
2686 *
2687 * If there's data, ensure we set the poll() state and publish everything
2688 * to user-space before waking everybody up.
2689 */
2690
2691 void perf_event_wakeup(struct perf_event *event)
2692 {
2693 wake_up_all(&event->waitq);
2694
2695 if (event->pending_kill) {
2696 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2697 event->pending_kill = 0;
2698 }
2699 }
2700
2701 /*
2702 * Pending wakeups
2703 *
2704 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2705 *
2706 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2707 * single linked list and use cmpxchg() to add entries lockless.
2708 */
2709
2710 static void perf_pending_event(struct perf_pending_entry *entry)
2711 {
2712 struct perf_event *event = container_of(entry,
2713 struct perf_event, pending);
2714
2715 if (event->pending_disable) {
2716 event->pending_disable = 0;
2717 __perf_event_disable(event);
2718 }
2719
2720 if (event->pending_wakeup) {
2721 event->pending_wakeup = 0;
2722 perf_event_wakeup(event);
2723 }
2724 }
2725
2726 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2727
2728 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2729 PENDING_TAIL,
2730 };
2731
2732 static void perf_pending_queue(struct perf_pending_entry *entry,
2733 void (*func)(struct perf_pending_entry *))
2734 {
2735 struct perf_pending_entry **head;
2736
2737 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2738 return;
2739
2740 entry->func = func;
2741
2742 head = &get_cpu_var(perf_pending_head);
2743
2744 do {
2745 entry->next = *head;
2746 } while (cmpxchg(head, entry->next, entry) != entry->next);
2747
2748 set_perf_event_pending();
2749
2750 put_cpu_var(perf_pending_head);
2751 }
2752
2753 static int __perf_pending_run(void)
2754 {
2755 struct perf_pending_entry *list;
2756 int nr = 0;
2757
2758 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2759 while (list != PENDING_TAIL) {
2760 void (*func)(struct perf_pending_entry *);
2761 struct perf_pending_entry *entry = list;
2762
2763 list = list->next;
2764
2765 func = entry->func;
2766 entry->next = NULL;
2767 /*
2768 * Ensure we observe the unqueue before we issue the wakeup,
2769 * so that we won't be waiting forever.
2770 * -- see perf_not_pending().
2771 */
2772 smp_wmb();
2773
2774 func(entry);
2775 nr++;
2776 }
2777
2778 return nr;
2779 }
2780
2781 static inline int perf_not_pending(struct perf_event *event)
2782 {
2783 /*
2784 * If we flush on whatever cpu we run, there is a chance we don't
2785 * need to wait.
2786 */
2787 get_cpu();
2788 __perf_pending_run();
2789 put_cpu();
2790
2791 /*
2792 * Ensure we see the proper queue state before going to sleep
2793 * so that we do not miss the wakeup. -- see perf_pending_handle()
2794 */
2795 smp_rmb();
2796 return event->pending.next == NULL;
2797 }
2798
2799 static void perf_pending_sync(struct perf_event *event)
2800 {
2801 wait_event(event->waitq, perf_not_pending(event));
2802 }
2803
2804 void perf_event_do_pending(void)
2805 {
2806 __perf_pending_run();
2807 }
2808
2809 /*
2810 * Callchain support -- arch specific
2811 */
2812
2813 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2814 {
2815 return NULL;
2816 }
2817
2818 __weak
2819 void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
2820 {
2821 }
2822
2823
2824 /*
2825 * We assume there is only KVM supporting the callbacks.
2826 * Later on, we might change it to a list if there is
2827 * another virtualization implementation supporting the callbacks.
2828 */
2829 struct perf_guest_info_callbacks *perf_guest_cbs;
2830
2831 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2832 {
2833 perf_guest_cbs = cbs;
2834 return 0;
2835 }
2836 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
2837
2838 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2839 {
2840 perf_guest_cbs = NULL;
2841 return 0;
2842 }
2843 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
2844
2845 /*
2846 * Output
2847 */
2848 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2849 unsigned long offset, unsigned long head)
2850 {
2851 unsigned long mask;
2852
2853 if (!data->writable)
2854 return true;
2855
2856 mask = perf_data_size(data) - 1;
2857
2858 offset = (offset - tail) & mask;
2859 head = (head - tail) & mask;
2860
2861 if ((int)(head - offset) < 0)
2862 return false;
2863
2864 return true;
2865 }
2866
2867 static void perf_output_wakeup(struct perf_output_handle *handle)
2868 {
2869 atomic_set(&handle->data->poll, POLL_IN);
2870
2871 if (handle->nmi) {
2872 handle->event->pending_wakeup = 1;
2873 perf_pending_queue(&handle->event->pending,
2874 perf_pending_event);
2875 } else
2876 perf_event_wakeup(handle->event);
2877 }
2878
2879 /*
2880 * Curious locking construct.
2881 *
2882 * We need to ensure a later event_id doesn't publish a head when a former
2883 * event_id isn't done writing. However since we need to deal with NMIs we
2884 * cannot fully serialize things.
2885 *
2886 * What we do is serialize between CPUs so we only have to deal with NMI
2887 * nesting on a single CPU.
2888 *
2889 * We only publish the head (and generate a wakeup) when the outer-most
2890 * event_id completes.
2891 */
2892 static void perf_output_lock(struct perf_output_handle *handle)
2893 {
2894 struct perf_mmap_data *data = handle->data;
2895 int cur, cpu = get_cpu();
2896
2897 handle->locked = 0;
2898
2899 for (;;) {
2900 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2901 if (cur == -1) {
2902 handle->locked = 1;
2903 break;
2904 }
2905 if (cur == cpu)
2906 break;
2907
2908 cpu_relax();
2909 }
2910 }
2911
2912 static void perf_output_unlock(struct perf_output_handle *handle)
2913 {
2914 struct perf_mmap_data *data = handle->data;
2915 unsigned long head;
2916 int cpu;
2917
2918 data->done_head = data->head;
2919
2920 if (!handle->locked)
2921 goto out;
2922
2923 again:
2924 /*
2925 * The xchg implies a full barrier that ensures all writes are done
2926 * before we publish the new head, matched by a rmb() in userspace when
2927 * reading this position.
2928 */
2929 while ((head = atomic_long_xchg(&data->done_head, 0)))
2930 data->user_page->data_head = head;
2931
2932 /*
2933 * NMI can happen here, which means we can miss a done_head update.
2934 */
2935
2936 cpu = atomic_xchg(&data->lock, -1);
2937 WARN_ON_ONCE(cpu != smp_processor_id());
2938
2939 /*
2940 * Therefore we have to validate we did not indeed do so.
2941 */
2942 if (unlikely(atomic_long_read(&data->done_head))) {
2943 /*
2944 * Since we had it locked, we can lock it again.
2945 */
2946 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2947 cpu_relax();
2948
2949 goto again;
2950 }
2951
2952 if (atomic_xchg(&data->wakeup, 0))
2953 perf_output_wakeup(handle);
2954 out:
2955 put_cpu();
2956 }
2957
2958 void perf_output_copy(struct perf_output_handle *handle,
2959 const void *buf, unsigned int len)
2960 {
2961 unsigned int pages_mask;
2962 unsigned long offset;
2963 unsigned int size;
2964 void **pages;
2965
2966 offset = handle->offset;
2967 pages_mask = handle->data->nr_pages - 1;
2968 pages = handle->data->data_pages;
2969
2970 do {
2971 unsigned long page_offset;
2972 unsigned long page_size;
2973 int nr;
2974
2975 nr = (offset >> PAGE_SHIFT) & pages_mask;
2976 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2977 page_offset = offset & (page_size - 1);
2978 size = min_t(unsigned int, page_size - page_offset, len);
2979
2980 memcpy(pages[nr] + page_offset, buf, size);
2981
2982 len -= size;
2983 buf += size;
2984 offset += size;
2985 } while (len);
2986
2987 handle->offset = offset;
2988
2989 /*
2990 * Check we didn't copy past our reservation window, taking the
2991 * possible unsigned int wrap into account.
2992 */
2993 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2994 }
2995
2996 int perf_output_begin(struct perf_output_handle *handle,
2997 struct perf_event *event, unsigned int size,
2998 int nmi, int sample)
2999 {
3000 struct perf_event *output_event;
3001 struct perf_mmap_data *data;
3002 unsigned long tail, offset, head;
3003 int have_lost;
3004 struct {
3005 struct perf_event_header header;
3006 u64 id;
3007 u64 lost;
3008 } lost_event;
3009
3010 rcu_read_lock();
3011 /*
3012 * For inherited events we send all the output towards the parent.
3013 */
3014 if (event->parent)
3015 event = event->parent;
3016
3017 output_event = rcu_dereference(event->output);
3018 if (output_event)
3019 event = output_event;
3020
3021 data = rcu_dereference(event->data);
3022 if (!data)
3023 goto out;
3024
3025 handle->data = data;
3026 handle->event = event;
3027 handle->nmi = nmi;
3028 handle->sample = sample;
3029
3030 if (!data->nr_pages)
3031 goto fail;
3032
3033 have_lost = atomic_read(&data->lost);
3034 if (have_lost)
3035 size += sizeof(lost_event);
3036
3037 perf_output_lock(handle);
3038
3039 do {
3040 /*
3041 * Userspace could choose to issue a mb() before updating the
3042 * tail pointer. So that all reads will be completed before the
3043 * write is issued.
3044 */
3045 tail = ACCESS_ONCE(data->user_page->data_tail);
3046 smp_rmb();
3047 offset = head = atomic_long_read(&data->head);
3048 head += size;
3049 if (unlikely(!perf_output_space(data, tail, offset, head)))
3050 goto fail;
3051 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
3052
3053 handle->offset = offset;
3054 handle->head = head;
3055
3056 if (head - tail > data->watermark)
3057 atomic_set(&data->wakeup, 1);
3058
3059 if (have_lost) {
3060 lost_event.header.type = PERF_RECORD_LOST;
3061 lost_event.header.misc = 0;
3062 lost_event.header.size = sizeof(lost_event);
3063 lost_event.id = event->id;
3064 lost_event.lost = atomic_xchg(&data->lost, 0);
3065
3066 perf_output_put(handle, lost_event);
3067 }
3068
3069 return 0;
3070
3071 fail:
3072 atomic_inc(&data->lost);
3073 perf_output_unlock(handle);
3074 out:
3075 rcu_read_unlock();
3076
3077 return -ENOSPC;
3078 }
3079
3080 void perf_output_end(struct perf_output_handle *handle)
3081 {
3082 struct perf_event *event = handle->event;
3083 struct perf_mmap_data *data = handle->data;
3084
3085 int wakeup_events = event->attr.wakeup_events;
3086
3087 if (handle->sample && wakeup_events) {
3088 int events = atomic_inc_return(&data->events);
3089 if (events >= wakeup_events) {
3090 atomic_sub(wakeup_events, &data->events);
3091 atomic_set(&data->wakeup, 1);
3092 }
3093 }
3094
3095 perf_output_unlock(handle);
3096 rcu_read_unlock();
3097 }
3098
3099 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3100 {
3101 /*
3102 * only top level events have the pid namespace they were created in
3103 */
3104 if (event->parent)
3105 event = event->parent;
3106
3107 return task_tgid_nr_ns(p, event->ns);
3108 }
3109
3110 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3111 {
3112 /*
3113 * only top level events have the pid namespace they were created in
3114 */
3115 if (event->parent)
3116 event = event->parent;
3117
3118 return task_pid_nr_ns(p, event->ns);
3119 }
3120
3121 static void perf_output_read_one(struct perf_output_handle *handle,
3122 struct perf_event *event)
3123 {
3124 u64 read_format = event->attr.read_format;
3125 u64 values[4];
3126 int n = 0;
3127
3128 values[n++] = atomic64_read(&event->count);
3129 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3130 values[n++] = event->total_time_enabled +
3131 atomic64_read(&event->child_total_time_enabled);
3132 }
3133 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3134 values[n++] = event->total_time_running +
3135 atomic64_read(&event->child_total_time_running);
3136 }
3137 if (read_format & PERF_FORMAT_ID)
3138 values[n++] = primary_event_id(event);
3139
3140 perf_output_copy(handle, values, n * sizeof(u64));
3141 }
3142
3143 /*
3144 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3145 */
3146 static void perf_output_read_group(struct perf_output_handle *handle,
3147 struct perf_event *event)
3148 {
3149 struct perf_event *leader = event->group_leader, *sub;
3150 u64 read_format = event->attr.read_format;
3151 u64 values[5];
3152 int n = 0;
3153
3154 values[n++] = 1 + leader->nr_siblings;
3155
3156 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3157 values[n++] = leader->total_time_enabled;
3158
3159 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3160 values[n++] = leader->total_time_running;
3161
3162 if (leader != event)
3163 leader->pmu->read(leader);
3164
3165 values[n++] = atomic64_read(&leader->count);
3166 if (read_format & PERF_FORMAT_ID)
3167 values[n++] = primary_event_id(leader);
3168
3169 perf_output_copy(handle, values, n * sizeof(u64));
3170
3171 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3172 n = 0;
3173
3174 if (sub != event)
3175 sub->pmu->read(sub);
3176
3177 values[n++] = atomic64_read(&sub->count);
3178 if (read_format & PERF_FORMAT_ID)
3179 values[n++] = primary_event_id(sub);
3180
3181 perf_output_copy(handle, values, n * sizeof(u64));
3182 }
3183 }
3184
3185 static void perf_output_read(struct perf_output_handle *handle,
3186 struct perf_event *event)
3187 {
3188 if (event->attr.read_format & PERF_FORMAT_GROUP)
3189 perf_output_read_group(handle, event);
3190 else
3191 perf_output_read_one(handle, event);
3192 }
3193
3194 void perf_output_sample(struct perf_output_handle *handle,
3195 struct perf_event_header *header,
3196 struct perf_sample_data *data,
3197 struct perf_event *event)
3198 {
3199 u64 sample_type = data->type;
3200
3201 perf_output_put(handle, *header);
3202
3203 if (sample_type & PERF_SAMPLE_IP)
3204 perf_output_put(handle, data->ip);
3205
3206 if (sample_type & PERF_SAMPLE_TID)
3207 perf_output_put(handle, data->tid_entry);
3208
3209 if (sample_type & PERF_SAMPLE_TIME)
3210 perf_output_put(handle, data->time);
3211
3212 if (sample_type & PERF_SAMPLE_ADDR)
3213 perf_output_put(handle, data->addr);
3214
3215 if (sample_type & PERF_SAMPLE_ID)
3216 perf_output_put(handle, data->id);
3217
3218 if (sample_type & PERF_SAMPLE_STREAM_ID)
3219 perf_output_put(handle, data->stream_id);
3220
3221 if (sample_type & PERF_SAMPLE_CPU)
3222 perf_output_put(handle, data->cpu_entry);
3223
3224 if (sample_type & PERF_SAMPLE_PERIOD)
3225 perf_output_put(handle, data->period);
3226
3227 if (sample_type & PERF_SAMPLE_READ)
3228 perf_output_read(handle, event);
3229
3230 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3231 if (data->callchain) {
3232 int size = 1;
3233
3234 if (data->callchain)
3235 size += data->callchain->nr;
3236
3237 size *= sizeof(u64);
3238
3239 perf_output_copy(handle, data->callchain, size);
3240 } else {
3241 u64 nr = 0;
3242 perf_output_put(handle, nr);
3243 }
3244 }
3245
3246 if (sample_type & PERF_SAMPLE_RAW) {
3247 if (data->raw) {
3248 perf_output_put(handle, data->raw->size);
3249 perf_output_copy(handle, data->raw->data,
3250 data->raw->size);
3251 } else {
3252 struct {
3253 u32 size;
3254 u32 data;
3255 } raw = {
3256 .size = sizeof(u32),
3257 .data = 0,
3258 };
3259 perf_output_put(handle, raw);
3260 }
3261 }
3262 }
3263
3264 void perf_prepare_sample(struct perf_event_header *header,
3265 struct perf_sample_data *data,
3266 struct perf_event *event,
3267 struct pt_regs *regs)
3268 {
3269 u64 sample_type = event->attr.sample_type;
3270
3271 data->type = sample_type;
3272
3273 header->type = PERF_RECORD_SAMPLE;
3274 header->size = sizeof(*header);
3275
3276 header->misc = 0;
3277 header->misc |= perf_misc_flags(regs);
3278
3279 if (sample_type & PERF_SAMPLE_IP) {
3280 data->ip = perf_instruction_pointer(regs);
3281
3282 header->size += sizeof(data->ip);
3283 }
3284
3285 if (sample_type & PERF_SAMPLE_TID) {
3286 /* namespace issues */
3287 data->tid_entry.pid = perf_event_pid(event, current);
3288 data->tid_entry.tid = perf_event_tid(event, current);
3289
3290 header->size += sizeof(data->tid_entry);
3291 }
3292
3293 if (sample_type & PERF_SAMPLE_TIME) {
3294 data->time = perf_clock();
3295
3296 header->size += sizeof(data->time);
3297 }
3298
3299 if (sample_type & PERF_SAMPLE_ADDR)
3300 header->size += sizeof(data->addr);
3301
3302 if (sample_type & PERF_SAMPLE_ID) {
3303 data->id = primary_event_id(event);
3304
3305 header->size += sizeof(data->id);
3306 }
3307
3308 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3309 data->stream_id = event->id;
3310
3311 header->size += sizeof(data->stream_id);
3312 }
3313
3314 if (sample_type & PERF_SAMPLE_CPU) {
3315 data->cpu_entry.cpu = raw_smp_processor_id();
3316 data->cpu_entry.reserved = 0;
3317
3318 header->size += sizeof(data->cpu_entry);
3319 }
3320
3321 if (sample_type & PERF_SAMPLE_PERIOD)
3322 header->size += sizeof(data->period);
3323
3324 if (sample_type & PERF_SAMPLE_READ)
3325 header->size += perf_event_read_size(event);
3326
3327 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3328 int size = 1;
3329
3330 data->callchain = perf_callchain(regs);
3331
3332 if (data->callchain)
3333 size += data->callchain->nr;
3334
3335 header->size += size * sizeof(u64);
3336 }
3337
3338 if (sample_type & PERF_SAMPLE_RAW) {
3339 int size = sizeof(u32);
3340
3341 if (data->raw)
3342 size += data->raw->size;
3343 else
3344 size += sizeof(u32);
3345
3346 WARN_ON_ONCE(size & (sizeof(u64)-1));
3347 header->size += size;
3348 }
3349 }
3350
3351 static void perf_event_output(struct perf_event *event, int nmi,
3352 struct perf_sample_data *data,
3353 struct pt_regs *regs)
3354 {
3355 struct perf_output_handle handle;
3356 struct perf_event_header header;
3357
3358 perf_prepare_sample(&header, data, event, regs);
3359
3360 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3361 return;
3362
3363 perf_output_sample(&handle, &header, data, event);
3364
3365 perf_output_end(&handle);
3366 }
3367
3368 /*
3369 * read event_id
3370 */
3371
3372 struct perf_read_event {
3373 struct perf_event_header header;
3374
3375 u32 pid;
3376 u32 tid;
3377 };
3378
3379 static void
3380 perf_event_read_event(struct perf_event *event,
3381 struct task_struct *task)
3382 {
3383 struct perf_output_handle handle;
3384 struct perf_read_event read_event = {
3385 .header = {
3386 .type = PERF_RECORD_READ,
3387 .misc = 0,
3388 .size = sizeof(read_event) + perf_event_read_size(event),
3389 },
3390 .pid = perf_event_pid(event, task),
3391 .tid = perf_event_tid(event, task),
3392 };
3393 int ret;
3394
3395 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3396 if (ret)
3397 return;
3398
3399 perf_output_put(&handle, read_event);
3400 perf_output_read(&handle, event);
3401
3402 perf_output_end(&handle);
3403 }
3404
3405 /*
3406 * task tracking -- fork/exit
3407 *
3408 * enabled by: attr.comm | attr.mmap | attr.task
3409 */
3410
3411 struct perf_task_event {
3412 struct task_struct *task;
3413 struct perf_event_context *task_ctx;
3414
3415 struct {
3416 struct perf_event_header header;
3417
3418 u32 pid;
3419 u32 ppid;
3420 u32 tid;
3421 u32 ptid;
3422 u64 time;
3423 } event_id;
3424 };
3425
3426 static void perf_event_task_output(struct perf_event *event,
3427 struct perf_task_event *task_event)
3428 {
3429 struct perf_output_handle handle;
3430 struct task_struct *task = task_event->task;
3431 unsigned long flags;
3432 int size, ret;
3433
3434 /*
3435 * If this CPU attempts to acquire an rq lock held by a CPU spinning
3436 * in perf_output_lock() from interrupt context, it's game over.
3437 */
3438 local_irq_save(flags);
3439
3440 size = task_event->event_id.header.size;
3441 ret = perf_output_begin(&handle, event, size, 0, 0);
3442
3443 if (ret) {
3444 local_irq_restore(flags);
3445 return;
3446 }
3447
3448 task_event->event_id.pid = perf_event_pid(event, task);
3449 task_event->event_id.ppid = perf_event_pid(event, current);
3450
3451 task_event->event_id.tid = perf_event_tid(event, task);
3452 task_event->event_id.ptid = perf_event_tid(event, current);
3453
3454 perf_output_put(&handle, task_event->event_id);
3455
3456 perf_output_end(&handle);
3457 local_irq_restore(flags);
3458 }
3459
3460 static int perf_event_task_match(struct perf_event *event)
3461 {
3462 if (event->state < PERF_EVENT_STATE_INACTIVE)
3463 return 0;
3464
3465 if (event->cpu != -1 && event->cpu != smp_processor_id())
3466 return 0;
3467
3468 if (event->attr.comm || event->attr.mmap || event->attr.task)
3469 return 1;
3470
3471 return 0;
3472 }
3473
3474 static void perf_event_task_ctx(struct perf_event_context *ctx,
3475 struct perf_task_event *task_event)
3476 {
3477 struct perf_event *event;
3478
3479 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3480 if (perf_event_task_match(event))
3481 perf_event_task_output(event, task_event);
3482 }
3483 }
3484
3485 static void perf_event_task_event(struct perf_task_event *task_event)
3486 {
3487 struct perf_cpu_context *cpuctx;
3488 struct perf_event_context *ctx = task_event->task_ctx;
3489
3490 rcu_read_lock();
3491 cpuctx = &get_cpu_var(perf_cpu_context);
3492 perf_event_task_ctx(&cpuctx->ctx, task_event);
3493 if (!ctx)
3494 ctx = rcu_dereference(current->perf_event_ctxp);
3495 if (ctx)
3496 perf_event_task_ctx(ctx, task_event);
3497 put_cpu_var(perf_cpu_context);
3498 rcu_read_unlock();
3499 }
3500
3501 static void perf_event_task(struct task_struct *task,
3502 struct perf_event_context *task_ctx,
3503 int new)
3504 {
3505 struct perf_task_event task_event;
3506
3507 if (!atomic_read(&nr_comm_events) &&
3508 !atomic_read(&nr_mmap_events) &&
3509 !atomic_read(&nr_task_events))
3510 return;
3511
3512 task_event = (struct perf_task_event){
3513 .task = task,
3514 .task_ctx = task_ctx,
3515 .event_id = {
3516 .header = {
3517 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3518 .misc = 0,
3519 .size = sizeof(task_event.event_id),
3520 },
3521 /* .pid */
3522 /* .ppid */
3523 /* .tid */
3524 /* .ptid */
3525 .time = perf_clock(),
3526 },
3527 };
3528
3529 perf_event_task_event(&task_event);
3530 }
3531
3532 void perf_event_fork(struct task_struct *task)
3533 {
3534 perf_event_task(task, NULL, 1);
3535 }
3536
3537 /*
3538 * comm tracking
3539 */
3540
3541 struct perf_comm_event {
3542 struct task_struct *task;
3543 char *comm;
3544 int comm_size;
3545
3546 struct {
3547 struct perf_event_header header;
3548
3549 u32 pid;
3550 u32 tid;
3551 } event_id;
3552 };
3553
3554 static void perf_event_comm_output(struct perf_event *event,
3555 struct perf_comm_event *comm_event)
3556 {
3557 struct perf_output_handle handle;
3558 int size = comm_event->event_id.header.size;
3559 int ret = perf_output_begin(&handle, event, size, 0, 0);
3560
3561 if (ret)
3562 return;
3563
3564 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3565 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3566
3567 perf_output_put(&handle, comm_event->event_id);
3568 perf_output_copy(&handle, comm_event->comm,
3569 comm_event->comm_size);
3570 perf_output_end(&handle);
3571 }
3572
3573 static int perf_event_comm_match(struct perf_event *event)
3574 {
3575 if (event->state < PERF_EVENT_STATE_INACTIVE)
3576 return 0;
3577
3578 if (event->cpu != -1 && event->cpu != smp_processor_id())
3579 return 0;
3580
3581 if (event->attr.comm)
3582 return 1;
3583
3584 return 0;
3585 }
3586
3587 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3588 struct perf_comm_event *comm_event)
3589 {
3590 struct perf_event *event;
3591
3592 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3593 if (perf_event_comm_match(event))
3594 perf_event_comm_output(event, comm_event);
3595 }
3596 }
3597
3598 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3599 {
3600 struct perf_cpu_context *cpuctx;
3601 struct perf_event_context *ctx;
3602 unsigned int size;
3603 char comm[TASK_COMM_LEN];
3604
3605 memset(comm, 0, sizeof(comm));
3606 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3607 size = ALIGN(strlen(comm)+1, sizeof(u64));
3608
3609 comm_event->comm = comm;
3610 comm_event->comm_size = size;
3611
3612 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3613
3614 rcu_read_lock();
3615 cpuctx = &get_cpu_var(perf_cpu_context);
3616 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3617 ctx = rcu_dereference(current->perf_event_ctxp);
3618 if (ctx)
3619 perf_event_comm_ctx(ctx, comm_event);
3620 put_cpu_var(perf_cpu_context);
3621 rcu_read_unlock();
3622 }
3623
3624 void perf_event_comm(struct task_struct *task)
3625 {
3626 struct perf_comm_event comm_event;
3627
3628 if (task->perf_event_ctxp)
3629 perf_event_enable_on_exec(task);
3630
3631 if (!atomic_read(&nr_comm_events))
3632 return;
3633
3634 comm_event = (struct perf_comm_event){
3635 .task = task,
3636 /* .comm */
3637 /* .comm_size */
3638 .event_id = {
3639 .header = {
3640 .type = PERF_RECORD_COMM,
3641 .misc = 0,
3642 /* .size */
3643 },
3644 /* .pid */
3645 /* .tid */
3646 },
3647 };
3648
3649 perf_event_comm_event(&comm_event);
3650 }
3651
3652 /*
3653 * mmap tracking
3654 */
3655
3656 struct perf_mmap_event {
3657 struct vm_area_struct *vma;
3658
3659 const char *file_name;
3660 int file_size;
3661
3662 struct {
3663 struct perf_event_header header;
3664
3665 u32 pid;
3666 u32 tid;
3667 u64 start;
3668 u64 len;
3669 u64 pgoff;
3670 } event_id;
3671 };
3672
3673 static void perf_event_mmap_output(struct perf_event *event,
3674 struct perf_mmap_event *mmap_event)
3675 {
3676 struct perf_output_handle handle;
3677 int size = mmap_event->event_id.header.size;
3678 int ret = perf_output_begin(&handle, event, size, 0, 0);
3679
3680 if (ret)
3681 return;
3682
3683 mmap_event->event_id.pid = perf_event_pid(event, current);
3684 mmap_event->event_id.tid = perf_event_tid(event, current);
3685
3686 perf_output_put(&handle, mmap_event->event_id);
3687 perf_output_copy(&handle, mmap_event->file_name,
3688 mmap_event->file_size);
3689 perf_output_end(&handle);
3690 }
3691
3692 static int perf_event_mmap_match(struct perf_event *event,
3693 struct perf_mmap_event *mmap_event)
3694 {
3695 if (event->state < PERF_EVENT_STATE_INACTIVE)
3696 return 0;
3697
3698 if (event->cpu != -1 && event->cpu != smp_processor_id())
3699 return 0;
3700
3701 if (event->attr.mmap)
3702 return 1;
3703
3704 return 0;
3705 }
3706
3707 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3708 struct perf_mmap_event *mmap_event)
3709 {
3710 struct perf_event *event;
3711
3712 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3713 if (perf_event_mmap_match(event, mmap_event))
3714 perf_event_mmap_output(event, mmap_event);
3715 }
3716 }
3717
3718 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3719 {
3720 struct perf_cpu_context *cpuctx;
3721 struct perf_event_context *ctx;
3722 struct vm_area_struct *vma = mmap_event->vma;
3723 struct file *file = vma->vm_file;
3724 unsigned int size;
3725 char tmp[16];
3726 char *buf = NULL;
3727 const char *name;
3728
3729 memset(tmp, 0, sizeof(tmp));
3730
3731 if (file) {
3732 /*
3733 * d_path works from the end of the buffer backwards, so we
3734 * need to add enough zero bytes after the string to handle
3735 * the 64bit alignment we do later.
3736 */
3737 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3738 if (!buf) {
3739 name = strncpy(tmp, "//enomem", sizeof(tmp));
3740 goto got_name;
3741 }
3742 name = d_path(&file->f_path, buf, PATH_MAX);
3743 if (IS_ERR(name)) {
3744 name = strncpy(tmp, "//toolong", sizeof(tmp));
3745 goto got_name;
3746 }
3747 } else {
3748 if (arch_vma_name(mmap_event->vma)) {
3749 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3750 sizeof(tmp));
3751 goto got_name;
3752 }
3753
3754 if (!vma->vm_mm) {
3755 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3756 goto got_name;
3757 }
3758
3759 name = strncpy(tmp, "//anon", sizeof(tmp));
3760 goto got_name;
3761 }
3762
3763 got_name:
3764 size = ALIGN(strlen(name)+1, sizeof(u64));
3765
3766 mmap_event->file_name = name;
3767 mmap_event->file_size = size;
3768
3769 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3770
3771 rcu_read_lock();
3772 cpuctx = &get_cpu_var(perf_cpu_context);
3773 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3774 ctx = rcu_dereference(current->perf_event_ctxp);
3775 if (ctx)
3776 perf_event_mmap_ctx(ctx, mmap_event);
3777 put_cpu_var(perf_cpu_context);
3778 rcu_read_unlock();
3779
3780 kfree(buf);
3781 }
3782
3783 void __perf_event_mmap(struct vm_area_struct *vma)
3784 {
3785 struct perf_mmap_event mmap_event;
3786
3787 if (!atomic_read(&nr_mmap_events))
3788 return;
3789
3790 mmap_event = (struct perf_mmap_event){
3791 .vma = vma,
3792 /* .file_name */
3793 /* .file_size */
3794 .event_id = {
3795 .header = {
3796 .type = PERF_RECORD_MMAP,
3797 .misc = PERF_RECORD_MISC_USER,
3798 /* .size */
3799 },
3800 /* .pid */
3801 /* .tid */
3802 .start = vma->vm_start,
3803 .len = vma->vm_end - vma->vm_start,
3804 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
3805 },
3806 };
3807
3808 perf_event_mmap_event(&mmap_event);
3809 }
3810
3811 /*
3812 * IRQ throttle logging
3813 */
3814
3815 static void perf_log_throttle(struct perf_event *event, int enable)
3816 {
3817 struct perf_output_handle handle;
3818 int ret;
3819
3820 struct {
3821 struct perf_event_header header;
3822 u64 time;
3823 u64 id;
3824 u64 stream_id;
3825 } throttle_event = {
3826 .header = {
3827 .type = PERF_RECORD_THROTTLE,
3828 .misc = 0,
3829 .size = sizeof(throttle_event),
3830 },
3831 .time = perf_clock(),
3832 .id = primary_event_id(event),
3833 .stream_id = event->id,
3834 };
3835
3836 if (enable)
3837 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3838
3839 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3840 if (ret)
3841 return;
3842
3843 perf_output_put(&handle, throttle_event);
3844 perf_output_end(&handle);
3845 }
3846
3847 /*
3848 * Generic event overflow handling, sampling.
3849 */
3850
3851 static int __perf_event_overflow(struct perf_event *event, int nmi,
3852 int throttle, struct perf_sample_data *data,
3853 struct pt_regs *regs)
3854 {
3855 int events = atomic_read(&event->event_limit);
3856 struct hw_perf_event *hwc = &event->hw;
3857 int ret = 0;
3858
3859 throttle = (throttle && event->pmu->unthrottle != NULL);
3860
3861 if (!throttle) {
3862 hwc->interrupts++;
3863 } else {
3864 if (hwc->interrupts != MAX_INTERRUPTS) {
3865 hwc->interrupts++;
3866 if (HZ * hwc->interrupts >
3867 (u64)sysctl_perf_event_sample_rate) {
3868 hwc->interrupts = MAX_INTERRUPTS;
3869 perf_log_throttle(event, 0);
3870 ret = 1;
3871 }
3872 } else {
3873 /*
3874 * Keep re-disabling events even though on the previous
3875 * pass we disabled it - just in case we raced with a
3876 * sched-in and the event got enabled again:
3877 */
3878 ret = 1;
3879 }
3880 }
3881
3882 if (event->attr.freq) {
3883 u64 now = perf_clock();
3884 s64 delta = now - hwc->freq_time_stamp;
3885
3886 hwc->freq_time_stamp = now;
3887
3888 if (delta > 0 && delta < 2*TICK_NSEC)
3889 perf_adjust_period(event, delta, hwc->last_period);
3890 }
3891
3892 /*
3893 * XXX event_limit might not quite work as expected on inherited
3894 * events
3895 */
3896
3897 event->pending_kill = POLL_IN;
3898 if (events && atomic_dec_and_test(&event->event_limit)) {
3899 ret = 1;
3900 event->pending_kill = POLL_HUP;
3901 if (nmi) {
3902 event->pending_disable = 1;
3903 perf_pending_queue(&event->pending,
3904 perf_pending_event);
3905 } else
3906 perf_event_disable(event);
3907 }
3908
3909 if (event->overflow_handler)
3910 event->overflow_handler(event, nmi, data, regs);
3911 else
3912 perf_event_output(event, nmi, data, regs);
3913
3914 return ret;
3915 }
3916
3917 int perf_event_overflow(struct perf_event *event, int nmi,
3918 struct perf_sample_data *data,
3919 struct pt_regs *regs)
3920 {
3921 return __perf_event_overflow(event, nmi, 1, data, regs);
3922 }
3923
3924 /*
3925 * Generic software event infrastructure
3926 */
3927
3928 /*
3929 * We directly increment event->count and keep a second value in
3930 * event->hw.period_left to count intervals. This period event
3931 * is kept in the range [-sample_period, 0] so that we can use the
3932 * sign as trigger.
3933 */
3934
3935 static u64 perf_swevent_set_period(struct perf_event *event)
3936 {
3937 struct hw_perf_event *hwc = &event->hw;
3938 u64 period = hwc->last_period;
3939 u64 nr, offset;
3940 s64 old, val;
3941
3942 hwc->last_period = hwc->sample_period;
3943
3944 again:
3945 old = val = atomic64_read(&hwc->period_left);
3946 if (val < 0)
3947 return 0;
3948
3949 nr = div64_u64(period + val, period);
3950 offset = nr * period;
3951 val -= offset;
3952 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3953 goto again;
3954
3955 return nr;
3956 }
3957
3958 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3959 int nmi, struct perf_sample_data *data,
3960 struct pt_regs *regs)
3961 {
3962 struct hw_perf_event *hwc = &event->hw;
3963 int throttle = 0;
3964
3965 data->period = event->hw.last_period;
3966 if (!overflow)
3967 overflow = perf_swevent_set_period(event);
3968
3969 if (hwc->interrupts == MAX_INTERRUPTS)
3970 return;
3971
3972 for (; overflow; overflow--) {
3973 if (__perf_event_overflow(event, nmi, throttle,
3974 data, regs)) {
3975 /*
3976 * We inhibit the overflow from happening when
3977 * hwc->interrupts == MAX_INTERRUPTS.
3978 */
3979 break;
3980 }
3981 throttle = 1;
3982 }
3983 }
3984
3985 static void perf_swevent_unthrottle(struct perf_event *event)
3986 {
3987 /*
3988 * Nothing to do, we already reset hwc->interrupts.
3989 */
3990 }
3991
3992 static void perf_swevent_add(struct perf_event *event, u64 nr,
3993 int nmi, struct perf_sample_data *data,
3994 struct pt_regs *regs)
3995 {
3996 struct hw_perf_event *hwc = &event->hw;
3997
3998 atomic64_add(nr, &event->count);
3999
4000 if (!regs)
4001 return;
4002
4003 if (!hwc->sample_period)
4004 return;
4005
4006 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4007 return perf_swevent_overflow(event, 1, nmi, data, regs);
4008
4009 if (atomic64_add_negative(nr, &hwc->period_left))
4010 return;
4011
4012 perf_swevent_overflow(event, 0, nmi, data, regs);
4013 }
4014
4015 static int perf_tp_event_match(struct perf_event *event,
4016 struct perf_sample_data *data);
4017
4018 static int perf_exclude_event(struct perf_event *event,
4019 struct pt_regs *regs)
4020 {
4021 if (regs) {
4022 if (event->attr.exclude_user && user_mode(regs))
4023 return 1;
4024
4025 if (event->attr.exclude_kernel && !user_mode(regs))
4026 return 1;
4027 }
4028
4029 return 0;
4030 }
4031
4032 static int perf_swevent_match(struct perf_event *event,
4033 enum perf_type_id type,
4034 u32 event_id,
4035 struct perf_sample_data *data,
4036 struct pt_regs *regs)
4037 {
4038 if (event->attr.type != type)
4039 return 0;
4040
4041 if (event->attr.config != event_id)
4042 return 0;
4043
4044 if (perf_exclude_event(event, regs))
4045 return 0;
4046
4047 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
4048 !perf_tp_event_match(event, data))
4049 return 0;
4050
4051 return 1;
4052 }
4053
4054 static inline u64 swevent_hash(u64 type, u32 event_id)
4055 {
4056 u64 val = event_id | (type << 32);
4057
4058 return hash_64(val, SWEVENT_HLIST_BITS);
4059 }
4060
4061 static struct hlist_head *
4062 find_swevent_head(struct perf_cpu_context *ctx, u64 type, u32 event_id)
4063 {
4064 u64 hash;
4065 struct swevent_hlist *hlist;
4066
4067 hash = swevent_hash(type, event_id);
4068
4069 hlist = rcu_dereference(ctx->swevent_hlist);
4070 if (!hlist)
4071 return NULL;
4072
4073 return &hlist->heads[hash];
4074 }
4075
4076 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4077 u64 nr, int nmi,
4078 struct perf_sample_data *data,
4079 struct pt_regs *regs)
4080 {
4081 struct perf_cpu_context *cpuctx;
4082 struct perf_event *event;
4083 struct hlist_node *node;
4084 struct hlist_head *head;
4085
4086 cpuctx = &__get_cpu_var(perf_cpu_context);
4087
4088 rcu_read_lock();
4089
4090 head = find_swevent_head(cpuctx, type, event_id);
4091
4092 if (!head)
4093 goto end;
4094
4095 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4096 if (perf_swevent_match(event, type, event_id, data, regs))
4097 perf_swevent_add(event, nr, nmi, data, regs);
4098 }
4099 end:
4100 rcu_read_unlock();
4101 }
4102
4103 int perf_swevent_get_recursion_context(void)
4104 {
4105 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
4106 int rctx;
4107
4108 if (in_nmi())
4109 rctx = 3;
4110 else if (in_irq())
4111 rctx = 2;
4112 else if (in_softirq())
4113 rctx = 1;
4114 else
4115 rctx = 0;
4116
4117 if (cpuctx->recursion[rctx]) {
4118 put_cpu_var(perf_cpu_context);
4119 return -1;
4120 }
4121
4122 cpuctx->recursion[rctx]++;
4123 barrier();
4124
4125 return rctx;
4126 }
4127 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4128
4129 void perf_swevent_put_recursion_context(int rctx)
4130 {
4131 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4132 barrier();
4133 cpuctx->recursion[rctx]--;
4134 put_cpu_var(perf_cpu_context);
4135 }
4136 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
4137
4138
4139 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4140 struct pt_regs *regs, u64 addr)
4141 {
4142 struct perf_sample_data data;
4143 int rctx;
4144
4145 rctx = perf_swevent_get_recursion_context();
4146 if (rctx < 0)
4147 return;
4148
4149 perf_sample_data_init(&data, addr);
4150
4151 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4152
4153 perf_swevent_put_recursion_context(rctx);
4154 }
4155
4156 static void perf_swevent_read(struct perf_event *event)
4157 {
4158 }
4159
4160 static int perf_swevent_enable(struct perf_event *event)
4161 {
4162 struct hw_perf_event *hwc = &event->hw;
4163 struct perf_cpu_context *cpuctx;
4164 struct hlist_head *head;
4165
4166 cpuctx = &__get_cpu_var(perf_cpu_context);
4167
4168 if (hwc->sample_period) {
4169 hwc->last_period = hwc->sample_period;
4170 perf_swevent_set_period(event);
4171 }
4172
4173 head = find_swevent_head(cpuctx, event->attr.type, event->attr.config);
4174 if (WARN_ON_ONCE(!head))
4175 return -EINVAL;
4176
4177 hlist_add_head_rcu(&event->hlist_entry, head);
4178
4179 return 0;
4180 }
4181
4182 static void perf_swevent_disable(struct perf_event *event)
4183 {
4184 hlist_del_rcu(&event->hlist_entry);
4185 }
4186
4187 static const struct pmu perf_ops_generic = {
4188 .enable = perf_swevent_enable,
4189 .disable = perf_swevent_disable,
4190 .read = perf_swevent_read,
4191 .unthrottle = perf_swevent_unthrottle,
4192 };
4193
4194 /*
4195 * hrtimer based swevent callback
4196 */
4197
4198 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4199 {
4200 enum hrtimer_restart ret = HRTIMER_RESTART;
4201 struct perf_sample_data data;
4202 struct pt_regs *regs;
4203 struct perf_event *event;
4204 u64 period;
4205
4206 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4207 event->pmu->read(event);
4208
4209 perf_sample_data_init(&data, 0);
4210 data.period = event->hw.last_period;
4211 regs = get_irq_regs();
4212
4213 if (regs && !perf_exclude_event(event, regs)) {
4214 if (!(event->attr.exclude_idle && current->pid == 0))
4215 if (perf_event_overflow(event, 0, &data, regs))
4216 ret = HRTIMER_NORESTART;
4217 }
4218
4219 period = max_t(u64, 10000, event->hw.sample_period);
4220 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4221
4222 return ret;
4223 }
4224
4225 static void perf_swevent_start_hrtimer(struct perf_event *event)
4226 {
4227 struct hw_perf_event *hwc = &event->hw;
4228
4229 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4230 hwc->hrtimer.function = perf_swevent_hrtimer;
4231 if (hwc->sample_period) {
4232 u64 period;
4233
4234 if (hwc->remaining) {
4235 if (hwc->remaining < 0)
4236 period = 10000;
4237 else
4238 period = hwc->remaining;
4239 hwc->remaining = 0;
4240 } else {
4241 period = max_t(u64, 10000, hwc->sample_period);
4242 }
4243 __hrtimer_start_range_ns(&hwc->hrtimer,
4244 ns_to_ktime(period), 0,
4245 HRTIMER_MODE_REL, 0);
4246 }
4247 }
4248
4249 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4250 {
4251 struct hw_perf_event *hwc = &event->hw;
4252
4253 if (hwc->sample_period) {
4254 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4255 hwc->remaining = ktime_to_ns(remaining);
4256
4257 hrtimer_cancel(&hwc->hrtimer);
4258 }
4259 }
4260
4261 /*
4262 * Software event: cpu wall time clock
4263 */
4264
4265 static void cpu_clock_perf_event_update(struct perf_event *event)
4266 {
4267 int cpu = raw_smp_processor_id();
4268 s64 prev;
4269 u64 now;
4270
4271 now = cpu_clock(cpu);
4272 prev = atomic64_xchg(&event->hw.prev_count, now);
4273 atomic64_add(now - prev, &event->count);
4274 }
4275
4276 static int cpu_clock_perf_event_enable(struct perf_event *event)
4277 {
4278 struct hw_perf_event *hwc = &event->hw;
4279 int cpu = raw_smp_processor_id();
4280
4281 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4282 perf_swevent_start_hrtimer(event);
4283
4284 return 0;
4285 }
4286
4287 static void cpu_clock_perf_event_disable(struct perf_event *event)
4288 {
4289 perf_swevent_cancel_hrtimer(event);
4290 cpu_clock_perf_event_update(event);
4291 }
4292
4293 static void cpu_clock_perf_event_read(struct perf_event *event)
4294 {
4295 cpu_clock_perf_event_update(event);
4296 }
4297
4298 static const struct pmu perf_ops_cpu_clock = {
4299 .enable = cpu_clock_perf_event_enable,
4300 .disable = cpu_clock_perf_event_disable,
4301 .read = cpu_clock_perf_event_read,
4302 };
4303
4304 /*
4305 * Software event: task time clock
4306 */
4307
4308 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4309 {
4310 u64 prev;
4311 s64 delta;
4312
4313 prev = atomic64_xchg(&event->hw.prev_count, now);
4314 delta = now - prev;
4315 atomic64_add(delta, &event->count);
4316 }
4317
4318 static int task_clock_perf_event_enable(struct perf_event *event)
4319 {
4320 struct hw_perf_event *hwc = &event->hw;
4321 u64 now;
4322
4323 now = event->ctx->time;
4324
4325 atomic64_set(&hwc->prev_count, now);
4326
4327 perf_swevent_start_hrtimer(event);
4328
4329 return 0;
4330 }
4331
4332 static void task_clock_perf_event_disable(struct perf_event *event)
4333 {
4334 perf_swevent_cancel_hrtimer(event);
4335 task_clock_perf_event_update(event, event->ctx->time);
4336
4337 }
4338
4339 static void task_clock_perf_event_read(struct perf_event *event)
4340 {
4341 u64 time;
4342
4343 if (!in_nmi()) {
4344 update_context_time(event->ctx);
4345 time = event->ctx->time;
4346 } else {
4347 u64 now = perf_clock();
4348 u64 delta = now - event->ctx->timestamp;
4349 time = event->ctx->time + delta;
4350 }
4351
4352 task_clock_perf_event_update(event, time);
4353 }
4354
4355 static const struct pmu perf_ops_task_clock = {
4356 .enable = task_clock_perf_event_enable,
4357 .disable = task_clock_perf_event_disable,
4358 .read = task_clock_perf_event_read,
4359 };
4360
4361 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4362 {
4363 struct swevent_hlist *hlist;
4364
4365 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4366 kfree(hlist);
4367 }
4368
4369 static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
4370 {
4371 struct swevent_hlist *hlist;
4372
4373 if (!cpuctx->swevent_hlist)
4374 return;
4375
4376 hlist = cpuctx->swevent_hlist;
4377 rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
4378 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4379 }
4380
4381 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4382 {
4383 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4384
4385 mutex_lock(&cpuctx->hlist_mutex);
4386
4387 if (!--cpuctx->hlist_refcount)
4388 swevent_hlist_release(cpuctx);
4389
4390 mutex_unlock(&cpuctx->hlist_mutex);
4391 }
4392
4393 static void swevent_hlist_put(struct perf_event *event)
4394 {
4395 int cpu;
4396
4397 if (event->cpu != -1) {
4398 swevent_hlist_put_cpu(event, event->cpu);
4399 return;
4400 }
4401
4402 for_each_possible_cpu(cpu)
4403 swevent_hlist_put_cpu(event, cpu);
4404 }
4405
4406 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4407 {
4408 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4409 int err = 0;
4410
4411 mutex_lock(&cpuctx->hlist_mutex);
4412
4413 if (!cpuctx->swevent_hlist && cpu_online(cpu)) {
4414 struct swevent_hlist *hlist;
4415
4416 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4417 if (!hlist) {
4418 err = -ENOMEM;
4419 goto exit;
4420 }
4421 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
4422 }
4423 cpuctx->hlist_refcount++;
4424 exit:
4425 mutex_unlock(&cpuctx->hlist_mutex);
4426
4427 return err;
4428 }
4429
4430 static int swevent_hlist_get(struct perf_event *event)
4431 {
4432 int err;
4433 int cpu, failed_cpu;
4434
4435 if (event->cpu != -1)
4436 return swevent_hlist_get_cpu(event, event->cpu);
4437
4438 get_online_cpus();
4439 for_each_possible_cpu(cpu) {
4440 err = swevent_hlist_get_cpu(event, cpu);
4441 if (err) {
4442 failed_cpu = cpu;
4443 goto fail;
4444 }
4445 }
4446 put_online_cpus();
4447
4448 return 0;
4449 fail:
4450 for_each_possible_cpu(cpu) {
4451 if (cpu == failed_cpu)
4452 break;
4453 swevent_hlist_put_cpu(event, cpu);
4454 }
4455
4456 put_online_cpus();
4457 return err;
4458 }
4459
4460 #ifdef CONFIG_EVENT_TRACING
4461
4462 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4463 int entry_size, struct pt_regs *regs)
4464 {
4465 struct perf_sample_data data;
4466 struct perf_raw_record raw = {
4467 .size = entry_size,
4468 .data = record,
4469 };
4470
4471 perf_sample_data_init(&data, addr);
4472 data.raw = &raw;
4473
4474 /* Trace events already protected against recursion */
4475 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4476 &data, regs);
4477 }
4478 EXPORT_SYMBOL_GPL(perf_tp_event);
4479
4480 static int perf_tp_event_match(struct perf_event *event,
4481 struct perf_sample_data *data)
4482 {
4483 void *record = data->raw->data;
4484
4485 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4486 return 1;
4487 return 0;
4488 }
4489
4490 static void tp_perf_event_destroy(struct perf_event *event)
4491 {
4492 perf_trace_disable(event->attr.config);
4493 swevent_hlist_put(event);
4494 }
4495
4496 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4497 {
4498 int err;
4499
4500 /*
4501 * Raw tracepoint data is a severe data leak, only allow root to
4502 * have these.
4503 */
4504 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4505 perf_paranoid_tracepoint_raw() &&
4506 !capable(CAP_SYS_ADMIN))
4507 return ERR_PTR(-EPERM);
4508
4509 if (perf_trace_enable(event->attr.config))
4510 return NULL;
4511
4512 event->destroy = tp_perf_event_destroy;
4513 err = swevent_hlist_get(event);
4514 if (err) {
4515 perf_trace_disable(event->attr.config);
4516 return ERR_PTR(err);
4517 }
4518
4519 return &perf_ops_generic;
4520 }
4521
4522 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4523 {
4524 char *filter_str;
4525 int ret;
4526
4527 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4528 return -EINVAL;
4529
4530 filter_str = strndup_user(arg, PAGE_SIZE);
4531 if (IS_ERR(filter_str))
4532 return PTR_ERR(filter_str);
4533
4534 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4535
4536 kfree(filter_str);
4537 return ret;
4538 }
4539
4540 static void perf_event_free_filter(struct perf_event *event)
4541 {
4542 ftrace_profile_free_filter(event);
4543 }
4544
4545 #else
4546
4547 static int perf_tp_event_match(struct perf_event *event,
4548 struct perf_sample_data *data)
4549 {
4550 return 1;
4551 }
4552
4553 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4554 {
4555 return NULL;
4556 }
4557
4558 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4559 {
4560 return -ENOENT;
4561 }
4562
4563 static void perf_event_free_filter(struct perf_event *event)
4564 {
4565 }
4566
4567 #endif /* CONFIG_EVENT_TRACING */
4568
4569 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4570 static void bp_perf_event_destroy(struct perf_event *event)
4571 {
4572 release_bp_slot(event);
4573 }
4574
4575 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4576 {
4577 int err;
4578
4579 err = register_perf_hw_breakpoint(bp);
4580 if (err)
4581 return ERR_PTR(err);
4582
4583 bp->destroy = bp_perf_event_destroy;
4584
4585 return &perf_ops_bp;
4586 }
4587
4588 void perf_bp_event(struct perf_event *bp, void *data)
4589 {
4590 struct perf_sample_data sample;
4591 struct pt_regs *regs = data;
4592
4593 perf_sample_data_init(&sample, bp->attr.bp_addr);
4594
4595 if (!perf_exclude_event(bp, regs))
4596 perf_swevent_add(bp, 1, 1, &sample, regs);
4597 }
4598 #else
4599 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4600 {
4601 return NULL;
4602 }
4603
4604 void perf_bp_event(struct perf_event *bp, void *regs)
4605 {
4606 }
4607 #endif
4608
4609 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4610
4611 static void sw_perf_event_destroy(struct perf_event *event)
4612 {
4613 u64 event_id = event->attr.config;
4614
4615 WARN_ON(event->parent);
4616
4617 atomic_dec(&perf_swevent_enabled[event_id]);
4618 swevent_hlist_put(event);
4619 }
4620
4621 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4622 {
4623 const struct pmu *pmu = NULL;
4624 u64 event_id = event->attr.config;
4625
4626 /*
4627 * Software events (currently) can't in general distinguish
4628 * between user, kernel and hypervisor events.
4629 * However, context switches and cpu migrations are considered
4630 * to be kernel events, and page faults are never hypervisor
4631 * events.
4632 */
4633 switch (event_id) {
4634 case PERF_COUNT_SW_CPU_CLOCK:
4635 pmu = &perf_ops_cpu_clock;
4636
4637 break;
4638 case PERF_COUNT_SW_TASK_CLOCK:
4639 /*
4640 * If the user instantiates this as a per-cpu event,
4641 * use the cpu_clock event instead.
4642 */
4643 if (event->ctx->task)
4644 pmu = &perf_ops_task_clock;
4645 else
4646 pmu = &perf_ops_cpu_clock;
4647
4648 break;
4649 case PERF_COUNT_SW_PAGE_FAULTS:
4650 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4651 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4652 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4653 case PERF_COUNT_SW_CPU_MIGRATIONS:
4654 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4655 case PERF_COUNT_SW_EMULATION_FAULTS:
4656 if (!event->parent) {
4657 int err;
4658
4659 err = swevent_hlist_get(event);
4660 if (err)
4661 return ERR_PTR(err);
4662
4663 atomic_inc(&perf_swevent_enabled[event_id]);
4664 event->destroy = sw_perf_event_destroy;
4665 }
4666 pmu = &perf_ops_generic;
4667 break;
4668 }
4669
4670 return pmu;
4671 }
4672
4673 /*
4674 * Allocate and initialize a event structure
4675 */
4676 static struct perf_event *
4677 perf_event_alloc(struct perf_event_attr *attr,
4678 int cpu,
4679 struct perf_event_context *ctx,
4680 struct perf_event *group_leader,
4681 struct perf_event *parent_event,
4682 perf_overflow_handler_t overflow_handler,
4683 gfp_t gfpflags)
4684 {
4685 const struct pmu *pmu;
4686 struct perf_event *event;
4687 struct hw_perf_event *hwc;
4688 long err;
4689
4690 event = kzalloc(sizeof(*event), gfpflags);
4691 if (!event)
4692 return ERR_PTR(-ENOMEM);
4693
4694 /*
4695 * Single events are their own group leaders, with an
4696 * empty sibling list:
4697 */
4698 if (!group_leader)
4699 group_leader = event;
4700
4701 mutex_init(&event->child_mutex);
4702 INIT_LIST_HEAD(&event->child_list);
4703
4704 INIT_LIST_HEAD(&event->group_entry);
4705 INIT_LIST_HEAD(&event->event_entry);
4706 INIT_LIST_HEAD(&event->sibling_list);
4707 init_waitqueue_head(&event->waitq);
4708
4709 mutex_init(&event->mmap_mutex);
4710
4711 event->cpu = cpu;
4712 event->attr = *attr;
4713 event->group_leader = group_leader;
4714 event->pmu = NULL;
4715 event->ctx = ctx;
4716 event->oncpu = -1;
4717
4718 event->parent = parent_event;
4719
4720 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4721 event->id = atomic64_inc_return(&perf_event_id);
4722
4723 event->state = PERF_EVENT_STATE_INACTIVE;
4724
4725 if (!overflow_handler && parent_event)
4726 overflow_handler = parent_event->overflow_handler;
4727
4728 event->overflow_handler = overflow_handler;
4729
4730 if (attr->disabled)
4731 event->state = PERF_EVENT_STATE_OFF;
4732
4733 pmu = NULL;
4734
4735 hwc = &event->hw;
4736 hwc->sample_period = attr->sample_period;
4737 if (attr->freq && attr->sample_freq)
4738 hwc->sample_period = 1;
4739 hwc->last_period = hwc->sample_period;
4740
4741 atomic64_set(&hwc->period_left, hwc->sample_period);
4742
4743 /*
4744 * we currently do not support PERF_FORMAT_GROUP on inherited events
4745 */
4746 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4747 goto done;
4748
4749 switch (attr->type) {
4750 case PERF_TYPE_RAW:
4751 case PERF_TYPE_HARDWARE:
4752 case PERF_TYPE_HW_CACHE:
4753 pmu = hw_perf_event_init(event);
4754 break;
4755
4756 case PERF_TYPE_SOFTWARE:
4757 pmu = sw_perf_event_init(event);
4758 break;
4759
4760 case PERF_TYPE_TRACEPOINT:
4761 pmu = tp_perf_event_init(event);
4762 break;
4763
4764 case PERF_TYPE_BREAKPOINT:
4765 pmu = bp_perf_event_init(event);
4766 break;
4767
4768
4769 default:
4770 break;
4771 }
4772 done:
4773 err = 0;
4774 if (!pmu)
4775 err = -EINVAL;
4776 else if (IS_ERR(pmu))
4777 err = PTR_ERR(pmu);
4778
4779 if (err) {
4780 if (event->ns)
4781 put_pid_ns(event->ns);
4782 kfree(event);
4783 return ERR_PTR(err);
4784 }
4785
4786 event->pmu = pmu;
4787
4788 if (!event->parent) {
4789 atomic_inc(&nr_events);
4790 if (event->attr.mmap)
4791 atomic_inc(&nr_mmap_events);
4792 if (event->attr.comm)
4793 atomic_inc(&nr_comm_events);
4794 if (event->attr.task)
4795 atomic_inc(&nr_task_events);
4796 }
4797
4798 return event;
4799 }
4800
4801 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4802 struct perf_event_attr *attr)
4803 {
4804 u32 size;
4805 int ret;
4806
4807 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4808 return -EFAULT;
4809
4810 /*
4811 * zero the full structure, so that a short copy will be nice.
4812 */
4813 memset(attr, 0, sizeof(*attr));
4814
4815 ret = get_user(size, &uattr->size);
4816 if (ret)
4817 return ret;
4818
4819 if (size > PAGE_SIZE) /* silly large */
4820 goto err_size;
4821
4822 if (!size) /* abi compat */
4823 size = PERF_ATTR_SIZE_VER0;
4824
4825 if (size < PERF_ATTR_SIZE_VER0)
4826 goto err_size;
4827
4828 /*
4829 * If we're handed a bigger struct than we know of,
4830 * ensure all the unknown bits are 0 - i.e. new
4831 * user-space does not rely on any kernel feature
4832 * extensions we dont know about yet.
4833 */
4834 if (size > sizeof(*attr)) {
4835 unsigned char __user *addr;
4836 unsigned char __user *end;
4837 unsigned char val;
4838
4839 addr = (void __user *)uattr + sizeof(*attr);
4840 end = (void __user *)uattr + size;
4841
4842 for (; addr < end; addr++) {
4843 ret = get_user(val, addr);
4844 if (ret)
4845 return ret;
4846 if (val)
4847 goto err_size;
4848 }
4849 size = sizeof(*attr);
4850 }
4851
4852 ret = copy_from_user(attr, uattr, size);
4853 if (ret)
4854 return -EFAULT;
4855
4856 /*
4857 * If the type exists, the corresponding creation will verify
4858 * the attr->config.
4859 */
4860 if (attr->type >= PERF_TYPE_MAX)
4861 return -EINVAL;
4862
4863 if (attr->__reserved_1)
4864 return -EINVAL;
4865
4866 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4867 return -EINVAL;
4868
4869 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4870 return -EINVAL;
4871
4872 out:
4873 return ret;
4874
4875 err_size:
4876 put_user(sizeof(*attr), &uattr->size);
4877 ret = -E2BIG;
4878 goto out;
4879 }
4880
4881 static int perf_event_set_output(struct perf_event *event, int output_fd)
4882 {
4883 struct perf_event *output_event = NULL;
4884 struct file *output_file = NULL;
4885 struct perf_event *old_output;
4886 int fput_needed = 0;
4887 int ret = -EINVAL;
4888
4889 if (!output_fd)
4890 goto set;
4891
4892 output_file = fget_light(output_fd, &fput_needed);
4893 if (!output_file)
4894 return -EBADF;
4895
4896 if (output_file->f_op != &perf_fops)
4897 goto out;
4898
4899 output_event = output_file->private_data;
4900
4901 /* Don't chain output fds */
4902 if (output_event->output)
4903 goto out;
4904
4905 /* Don't set an output fd when we already have an output channel */
4906 if (event->data)
4907 goto out;
4908
4909 atomic_long_inc(&output_file->f_count);
4910
4911 set:
4912 mutex_lock(&event->mmap_mutex);
4913 old_output = event->output;
4914 rcu_assign_pointer(event->output, output_event);
4915 mutex_unlock(&event->mmap_mutex);
4916
4917 if (old_output) {
4918 /*
4919 * we need to make sure no existing perf_output_*()
4920 * is still referencing this event.
4921 */
4922 synchronize_rcu();
4923 fput(old_output->filp);
4924 }
4925
4926 ret = 0;
4927 out:
4928 fput_light(output_file, fput_needed);
4929 return ret;
4930 }
4931
4932 /**
4933 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4934 *
4935 * @attr_uptr: event_id type attributes for monitoring/sampling
4936 * @pid: target pid
4937 * @cpu: target cpu
4938 * @group_fd: group leader event fd
4939 */
4940 SYSCALL_DEFINE5(perf_event_open,
4941 struct perf_event_attr __user *, attr_uptr,
4942 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4943 {
4944 struct perf_event *event, *group_leader;
4945 struct perf_event_attr attr;
4946 struct perf_event_context *ctx;
4947 struct file *event_file = NULL;
4948 struct file *group_file = NULL;
4949 int fput_needed = 0;
4950 int fput_needed2 = 0;
4951 int err;
4952
4953 /* for future expandability... */
4954 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4955 return -EINVAL;
4956
4957 err = perf_copy_attr(attr_uptr, &attr);
4958 if (err)
4959 return err;
4960
4961 if (!attr.exclude_kernel) {
4962 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4963 return -EACCES;
4964 }
4965
4966 if (attr.freq) {
4967 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4968 return -EINVAL;
4969 }
4970
4971 /*
4972 * Get the target context (task or percpu):
4973 */
4974 ctx = find_get_context(pid, cpu);
4975 if (IS_ERR(ctx))
4976 return PTR_ERR(ctx);
4977
4978 /*
4979 * Look up the group leader (we will attach this event to it):
4980 */
4981 group_leader = NULL;
4982 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4983 err = -EINVAL;
4984 group_file = fget_light(group_fd, &fput_needed);
4985 if (!group_file)
4986 goto err_put_context;
4987 if (group_file->f_op != &perf_fops)
4988 goto err_put_context;
4989
4990 group_leader = group_file->private_data;
4991 /*
4992 * Do not allow a recursive hierarchy (this new sibling
4993 * becoming part of another group-sibling):
4994 */
4995 if (group_leader->group_leader != group_leader)
4996 goto err_put_context;
4997 /*
4998 * Do not allow to attach to a group in a different
4999 * task or CPU context:
5000 */
5001 if (group_leader->ctx != ctx)
5002 goto err_put_context;
5003 /*
5004 * Only a group leader can be exclusive or pinned
5005 */
5006 if (attr.exclusive || attr.pinned)
5007 goto err_put_context;
5008 }
5009
5010 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
5011 NULL, NULL, GFP_KERNEL);
5012 err = PTR_ERR(event);
5013 if (IS_ERR(event))
5014 goto err_put_context;
5015
5016 err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
5017 if (err < 0)
5018 goto err_free_put_context;
5019
5020 event_file = fget_light(err, &fput_needed2);
5021 if (!event_file)
5022 goto err_free_put_context;
5023
5024 if (flags & PERF_FLAG_FD_OUTPUT) {
5025 err = perf_event_set_output(event, group_fd);
5026 if (err)
5027 goto err_fput_free_put_context;
5028 }
5029
5030 event->filp = event_file;
5031 WARN_ON_ONCE(ctx->parent_ctx);
5032 mutex_lock(&ctx->mutex);
5033 perf_install_in_context(ctx, event, cpu);
5034 ++ctx->generation;
5035 mutex_unlock(&ctx->mutex);
5036
5037 event->owner = current;
5038 get_task_struct(current);
5039 mutex_lock(&current->perf_event_mutex);
5040 list_add_tail(&event->owner_entry, &current->perf_event_list);
5041 mutex_unlock(&current->perf_event_mutex);
5042
5043 err_fput_free_put_context:
5044 fput_light(event_file, fput_needed2);
5045
5046 err_free_put_context:
5047 if (err < 0)
5048 free_event(event);
5049
5050 err_put_context:
5051 if (err < 0)
5052 put_ctx(ctx);
5053
5054 fput_light(group_file, fput_needed);
5055
5056 return err;
5057 }
5058
5059 /**
5060 * perf_event_create_kernel_counter
5061 *
5062 * @attr: attributes of the counter to create
5063 * @cpu: cpu in which the counter is bound
5064 * @pid: task to profile
5065 */
5066 struct perf_event *
5067 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5068 pid_t pid,
5069 perf_overflow_handler_t overflow_handler)
5070 {
5071 struct perf_event *event;
5072 struct perf_event_context *ctx;
5073 int err;
5074
5075 /*
5076 * Get the target context (task or percpu):
5077 */
5078
5079 ctx = find_get_context(pid, cpu);
5080 if (IS_ERR(ctx)) {
5081 err = PTR_ERR(ctx);
5082 goto err_exit;
5083 }
5084
5085 event = perf_event_alloc(attr, cpu, ctx, NULL,
5086 NULL, overflow_handler, GFP_KERNEL);
5087 if (IS_ERR(event)) {
5088 err = PTR_ERR(event);
5089 goto err_put_context;
5090 }
5091
5092 event->filp = NULL;
5093 WARN_ON_ONCE(ctx->parent_ctx);
5094 mutex_lock(&ctx->mutex);
5095 perf_install_in_context(ctx, event, cpu);
5096 ++ctx->generation;
5097 mutex_unlock(&ctx->mutex);
5098
5099 event->owner = current;
5100 get_task_struct(current);
5101 mutex_lock(&current->perf_event_mutex);
5102 list_add_tail(&event->owner_entry, &current->perf_event_list);
5103 mutex_unlock(&current->perf_event_mutex);
5104
5105 return event;
5106
5107 err_put_context:
5108 put_ctx(ctx);
5109 err_exit:
5110 return ERR_PTR(err);
5111 }
5112 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5113
5114 /*
5115 * inherit a event from parent task to child task:
5116 */
5117 static struct perf_event *
5118 inherit_event(struct perf_event *parent_event,
5119 struct task_struct *parent,
5120 struct perf_event_context *parent_ctx,
5121 struct task_struct *child,
5122 struct perf_event *group_leader,
5123 struct perf_event_context *child_ctx)
5124 {
5125 struct perf_event *child_event;
5126
5127 /*
5128 * Instead of creating recursive hierarchies of events,
5129 * we link inherited events back to the original parent,
5130 * which has a filp for sure, which we use as the reference
5131 * count:
5132 */
5133 if (parent_event->parent)
5134 parent_event = parent_event->parent;
5135
5136 child_event = perf_event_alloc(&parent_event->attr,
5137 parent_event->cpu, child_ctx,
5138 group_leader, parent_event,
5139 NULL, GFP_KERNEL);
5140 if (IS_ERR(child_event))
5141 return child_event;
5142 get_ctx(child_ctx);
5143
5144 /*
5145 * Make the child state follow the state of the parent event,
5146 * not its attr.disabled bit. We hold the parent's mutex,
5147 * so we won't race with perf_event_{en, dis}able_family.
5148 */
5149 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5150 child_event->state = PERF_EVENT_STATE_INACTIVE;
5151 else
5152 child_event->state = PERF_EVENT_STATE_OFF;
5153
5154 if (parent_event->attr.freq) {
5155 u64 sample_period = parent_event->hw.sample_period;
5156 struct hw_perf_event *hwc = &child_event->hw;
5157
5158 hwc->sample_period = sample_period;
5159 hwc->last_period = sample_period;
5160
5161 atomic64_set(&hwc->period_left, sample_period);
5162 }
5163
5164 child_event->overflow_handler = parent_event->overflow_handler;
5165
5166 /*
5167 * Link it up in the child's context:
5168 */
5169 add_event_to_ctx(child_event, child_ctx);
5170
5171 /*
5172 * Get a reference to the parent filp - we will fput it
5173 * when the child event exits. This is safe to do because
5174 * we are in the parent and we know that the filp still
5175 * exists and has a nonzero count:
5176 */
5177 atomic_long_inc(&parent_event->filp->f_count);
5178
5179 /*
5180 * Link this into the parent event's child list
5181 */
5182 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5183 mutex_lock(&parent_event->child_mutex);
5184 list_add_tail(&child_event->child_list, &parent_event->child_list);
5185 mutex_unlock(&parent_event->child_mutex);
5186
5187 return child_event;
5188 }
5189
5190 static int inherit_group(struct perf_event *parent_event,
5191 struct task_struct *parent,
5192 struct perf_event_context *parent_ctx,
5193 struct task_struct *child,
5194 struct perf_event_context *child_ctx)
5195 {
5196 struct perf_event *leader;
5197 struct perf_event *sub;
5198 struct perf_event *child_ctr;
5199
5200 leader = inherit_event(parent_event, parent, parent_ctx,
5201 child, NULL, child_ctx);
5202 if (IS_ERR(leader))
5203 return PTR_ERR(leader);
5204 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5205 child_ctr = inherit_event(sub, parent, parent_ctx,
5206 child, leader, child_ctx);
5207 if (IS_ERR(child_ctr))
5208 return PTR_ERR(child_ctr);
5209 }
5210 return 0;
5211 }
5212
5213 static void sync_child_event(struct perf_event *child_event,
5214 struct task_struct *child)
5215 {
5216 struct perf_event *parent_event = child_event->parent;
5217 u64 child_val;
5218
5219 if (child_event->attr.inherit_stat)
5220 perf_event_read_event(child_event, child);
5221
5222 child_val = atomic64_read(&child_event->count);
5223
5224 /*
5225 * Add back the child's count to the parent's count:
5226 */
5227 atomic64_add(child_val, &parent_event->count);
5228 atomic64_add(child_event->total_time_enabled,
5229 &parent_event->child_total_time_enabled);
5230 atomic64_add(child_event->total_time_running,
5231 &parent_event->child_total_time_running);
5232
5233 /*
5234 * Remove this event from the parent's list
5235 */
5236 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5237 mutex_lock(&parent_event->child_mutex);
5238 list_del_init(&child_event->child_list);
5239 mutex_unlock(&parent_event->child_mutex);
5240
5241 /*
5242 * Release the parent event, if this was the last
5243 * reference to it.
5244 */
5245 fput(parent_event->filp);
5246 }
5247
5248 static void
5249 __perf_event_exit_task(struct perf_event *child_event,
5250 struct perf_event_context *child_ctx,
5251 struct task_struct *child)
5252 {
5253 struct perf_event *parent_event;
5254
5255 perf_event_remove_from_context(child_event);
5256
5257 parent_event = child_event->parent;
5258 /*
5259 * It can happen that parent exits first, and has events
5260 * that are still around due to the child reference. These
5261 * events need to be zapped - but otherwise linger.
5262 */
5263 if (parent_event) {
5264 sync_child_event(child_event, child);
5265 free_event(child_event);
5266 }
5267 }
5268
5269 /*
5270 * When a child task exits, feed back event values to parent events.
5271 */
5272 void perf_event_exit_task(struct task_struct *child)
5273 {
5274 struct perf_event *child_event, *tmp;
5275 struct perf_event_context *child_ctx;
5276 unsigned long flags;
5277
5278 if (likely(!child->perf_event_ctxp)) {
5279 perf_event_task(child, NULL, 0);
5280 return;
5281 }
5282
5283 local_irq_save(flags);
5284 /*
5285 * We can't reschedule here because interrupts are disabled,
5286 * and either child is current or it is a task that can't be
5287 * scheduled, so we are now safe from rescheduling changing
5288 * our context.
5289 */
5290 child_ctx = child->perf_event_ctxp;
5291 __perf_event_task_sched_out(child_ctx);
5292
5293 /*
5294 * Take the context lock here so that if find_get_context is
5295 * reading child->perf_event_ctxp, we wait until it has
5296 * incremented the context's refcount before we do put_ctx below.
5297 */
5298 raw_spin_lock(&child_ctx->lock);
5299 child->perf_event_ctxp = NULL;
5300 /*
5301 * If this context is a clone; unclone it so it can't get
5302 * swapped to another process while we're removing all
5303 * the events from it.
5304 */
5305 unclone_ctx(child_ctx);
5306 update_context_time(child_ctx);
5307 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5308
5309 /*
5310 * Report the task dead after unscheduling the events so that we
5311 * won't get any samples after PERF_RECORD_EXIT. We can however still
5312 * get a few PERF_RECORD_READ events.
5313 */
5314 perf_event_task(child, child_ctx, 0);
5315
5316 /*
5317 * We can recurse on the same lock type through:
5318 *
5319 * __perf_event_exit_task()
5320 * sync_child_event()
5321 * fput(parent_event->filp)
5322 * perf_release()
5323 * mutex_lock(&ctx->mutex)
5324 *
5325 * But since its the parent context it won't be the same instance.
5326 */
5327 mutex_lock(&child_ctx->mutex);
5328
5329 again:
5330 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5331 group_entry)
5332 __perf_event_exit_task(child_event, child_ctx, child);
5333
5334 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5335 group_entry)
5336 __perf_event_exit_task(child_event, child_ctx, child);
5337
5338 /*
5339 * If the last event was a group event, it will have appended all
5340 * its siblings to the list, but we obtained 'tmp' before that which
5341 * will still point to the list head terminating the iteration.
5342 */
5343 if (!list_empty(&child_ctx->pinned_groups) ||
5344 !list_empty(&child_ctx->flexible_groups))
5345 goto again;
5346
5347 mutex_unlock(&child_ctx->mutex);
5348
5349 put_ctx(child_ctx);
5350 }
5351
5352 static void perf_free_event(struct perf_event *event,
5353 struct perf_event_context *ctx)
5354 {
5355 struct perf_event *parent = event->parent;
5356
5357 if (WARN_ON_ONCE(!parent))
5358 return;
5359
5360 mutex_lock(&parent->child_mutex);
5361 list_del_init(&event->child_list);
5362 mutex_unlock(&parent->child_mutex);
5363
5364 fput(parent->filp);
5365
5366 list_del_event(event, ctx);
5367 free_event(event);
5368 }
5369
5370 /*
5371 * free an unexposed, unused context as created by inheritance by
5372 * init_task below, used by fork() in case of fail.
5373 */
5374 void perf_event_free_task(struct task_struct *task)
5375 {
5376 struct perf_event_context *ctx = task->perf_event_ctxp;
5377 struct perf_event *event, *tmp;
5378
5379 if (!ctx)
5380 return;
5381
5382 mutex_lock(&ctx->mutex);
5383 again:
5384 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5385 perf_free_event(event, ctx);
5386
5387 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5388 group_entry)
5389 perf_free_event(event, ctx);
5390
5391 if (!list_empty(&ctx->pinned_groups) ||
5392 !list_empty(&ctx->flexible_groups))
5393 goto again;
5394
5395 mutex_unlock(&ctx->mutex);
5396
5397 put_ctx(ctx);
5398 }
5399
5400 static int
5401 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5402 struct perf_event_context *parent_ctx,
5403 struct task_struct *child,
5404 int *inherited_all)
5405 {
5406 int ret;
5407 struct perf_event_context *child_ctx = child->perf_event_ctxp;
5408
5409 if (!event->attr.inherit) {
5410 *inherited_all = 0;
5411 return 0;
5412 }
5413
5414 if (!child_ctx) {
5415 /*
5416 * This is executed from the parent task context, so
5417 * inherit events that have been marked for cloning.
5418 * First allocate and initialize a context for the
5419 * child.
5420 */
5421
5422 child_ctx = kzalloc(sizeof(struct perf_event_context),
5423 GFP_KERNEL);
5424 if (!child_ctx)
5425 return -ENOMEM;
5426
5427 __perf_event_init_context(child_ctx, child);
5428 child->perf_event_ctxp = child_ctx;
5429 get_task_struct(child);
5430 }
5431
5432 ret = inherit_group(event, parent, parent_ctx,
5433 child, child_ctx);
5434
5435 if (ret)
5436 *inherited_all = 0;
5437
5438 return ret;
5439 }
5440
5441
5442 /*
5443 * Initialize the perf_event context in task_struct
5444 */
5445 int perf_event_init_task(struct task_struct *child)
5446 {
5447 struct perf_event_context *child_ctx, *parent_ctx;
5448 struct perf_event_context *cloned_ctx;
5449 struct perf_event *event;
5450 struct task_struct *parent = current;
5451 int inherited_all = 1;
5452 int ret = 0;
5453
5454 child->perf_event_ctxp = NULL;
5455
5456 mutex_init(&child->perf_event_mutex);
5457 INIT_LIST_HEAD(&child->perf_event_list);
5458
5459 if (likely(!parent->perf_event_ctxp))
5460 return 0;
5461
5462 /*
5463 * If the parent's context is a clone, pin it so it won't get
5464 * swapped under us.
5465 */
5466 parent_ctx = perf_pin_task_context(parent);
5467
5468 /*
5469 * No need to check if parent_ctx != NULL here; since we saw
5470 * it non-NULL earlier, the only reason for it to become NULL
5471 * is if we exit, and since we're currently in the middle of
5472 * a fork we can't be exiting at the same time.
5473 */
5474
5475 /*
5476 * Lock the parent list. No need to lock the child - not PID
5477 * hashed yet and not running, so nobody can access it.
5478 */
5479 mutex_lock(&parent_ctx->mutex);
5480
5481 /*
5482 * We dont have to disable NMIs - we are only looking at
5483 * the list, not manipulating it:
5484 */
5485 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5486 ret = inherit_task_group(event, parent, parent_ctx, child,
5487 &inherited_all);
5488 if (ret)
5489 break;
5490 }
5491
5492 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5493 ret = inherit_task_group(event, parent, parent_ctx, child,
5494 &inherited_all);
5495 if (ret)
5496 break;
5497 }
5498
5499 child_ctx = child->perf_event_ctxp;
5500
5501 if (child_ctx && inherited_all) {
5502 /*
5503 * Mark the child context as a clone of the parent
5504 * context, or of whatever the parent is a clone of.
5505 * Note that if the parent is a clone, it could get
5506 * uncloned at any point, but that doesn't matter
5507 * because the list of events and the generation
5508 * count can't have changed since we took the mutex.
5509 */
5510 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5511 if (cloned_ctx) {
5512 child_ctx->parent_ctx = cloned_ctx;
5513 child_ctx->parent_gen = parent_ctx->parent_gen;
5514 } else {
5515 child_ctx->parent_ctx = parent_ctx;
5516 child_ctx->parent_gen = parent_ctx->generation;
5517 }
5518 get_ctx(child_ctx->parent_ctx);
5519 }
5520
5521 mutex_unlock(&parent_ctx->mutex);
5522
5523 perf_unpin_context(parent_ctx);
5524
5525 return ret;
5526 }
5527
5528 static void __init perf_event_init_all_cpus(void)
5529 {
5530 int cpu;
5531 struct perf_cpu_context *cpuctx;
5532
5533 for_each_possible_cpu(cpu) {
5534 cpuctx = &per_cpu(perf_cpu_context, cpu);
5535 mutex_init(&cpuctx->hlist_mutex);
5536 __perf_event_init_context(&cpuctx->ctx, NULL);
5537 }
5538 }
5539
5540 static void __cpuinit perf_event_init_cpu(int cpu)
5541 {
5542 struct perf_cpu_context *cpuctx;
5543
5544 cpuctx = &per_cpu(perf_cpu_context, cpu);
5545
5546 spin_lock(&perf_resource_lock);
5547 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5548 spin_unlock(&perf_resource_lock);
5549
5550 mutex_lock(&cpuctx->hlist_mutex);
5551 if (cpuctx->hlist_refcount > 0) {
5552 struct swevent_hlist *hlist;
5553
5554 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5555 WARN_ON_ONCE(!hlist);
5556 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
5557 }
5558 mutex_unlock(&cpuctx->hlist_mutex);
5559 }
5560
5561 #ifdef CONFIG_HOTPLUG_CPU
5562 static void __perf_event_exit_cpu(void *info)
5563 {
5564 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5565 struct perf_event_context *ctx = &cpuctx->ctx;
5566 struct perf_event *event, *tmp;
5567
5568 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5569 __perf_event_remove_from_context(event);
5570 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5571 __perf_event_remove_from_context(event);
5572 }
5573 static void perf_event_exit_cpu(int cpu)
5574 {
5575 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5576 struct perf_event_context *ctx = &cpuctx->ctx;
5577
5578 mutex_lock(&cpuctx->hlist_mutex);
5579 swevent_hlist_release(cpuctx);
5580 mutex_unlock(&cpuctx->hlist_mutex);
5581
5582 mutex_lock(&ctx->mutex);
5583 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5584 mutex_unlock(&ctx->mutex);
5585 }
5586 #else
5587 static inline void perf_event_exit_cpu(int cpu) { }
5588 #endif
5589
5590 static int __cpuinit
5591 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5592 {
5593 unsigned int cpu = (long)hcpu;
5594
5595 switch (action) {
5596
5597 case CPU_UP_PREPARE:
5598 case CPU_UP_PREPARE_FROZEN:
5599 perf_event_init_cpu(cpu);
5600 break;
5601
5602 case CPU_DOWN_PREPARE:
5603 case CPU_DOWN_PREPARE_FROZEN:
5604 perf_event_exit_cpu(cpu);
5605 break;
5606
5607 default:
5608 break;
5609 }
5610
5611 return NOTIFY_OK;
5612 }
5613
5614 /*
5615 * This has to have a higher priority than migration_notifier in sched.c.
5616 */
5617 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5618 .notifier_call = perf_cpu_notify,
5619 .priority = 20,
5620 };
5621
5622 void __init perf_event_init(void)
5623 {
5624 perf_event_init_all_cpus();
5625 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5626 (void *)(long)smp_processor_id());
5627 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5628 (void *)(long)smp_processor_id());
5629 register_cpu_notifier(&perf_cpu_nb);
5630 }
5631
5632 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5633 struct sysdev_class_attribute *attr,
5634 char *buf)
5635 {
5636 return sprintf(buf, "%d\n", perf_reserved_percpu);
5637 }
5638
5639 static ssize_t
5640 perf_set_reserve_percpu(struct sysdev_class *class,
5641 struct sysdev_class_attribute *attr,
5642 const char *buf,
5643 size_t count)
5644 {
5645 struct perf_cpu_context *cpuctx;
5646 unsigned long val;
5647 int err, cpu, mpt;
5648
5649 err = strict_strtoul(buf, 10, &val);
5650 if (err)
5651 return err;
5652 if (val > perf_max_events)
5653 return -EINVAL;
5654
5655 spin_lock(&perf_resource_lock);
5656 perf_reserved_percpu = val;
5657 for_each_online_cpu(cpu) {
5658 cpuctx = &per_cpu(perf_cpu_context, cpu);
5659 raw_spin_lock_irq(&cpuctx->ctx.lock);
5660 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5661 perf_max_events - perf_reserved_percpu);
5662 cpuctx->max_pertask = mpt;
5663 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5664 }
5665 spin_unlock(&perf_resource_lock);
5666
5667 return count;
5668 }
5669
5670 static ssize_t perf_show_overcommit(struct sysdev_class *class,
5671 struct sysdev_class_attribute *attr,
5672 char *buf)
5673 {
5674 return sprintf(buf, "%d\n", perf_overcommit);
5675 }
5676
5677 static ssize_t
5678 perf_set_overcommit(struct sysdev_class *class,
5679 struct sysdev_class_attribute *attr,
5680 const char *buf, size_t count)
5681 {
5682 unsigned long val;
5683 int err;
5684
5685 err = strict_strtoul(buf, 10, &val);
5686 if (err)
5687 return err;
5688 if (val > 1)
5689 return -EINVAL;
5690
5691 spin_lock(&perf_resource_lock);
5692 perf_overcommit = val;
5693 spin_unlock(&perf_resource_lock);
5694
5695 return count;
5696 }
5697
5698 static SYSDEV_CLASS_ATTR(
5699 reserve_percpu,
5700 0644,
5701 perf_show_reserve_percpu,
5702 perf_set_reserve_percpu
5703 );
5704
5705 static SYSDEV_CLASS_ATTR(
5706 overcommit,
5707 0644,
5708 perf_show_overcommit,
5709 perf_set_overcommit
5710 );
5711
5712 static struct attribute *perfclass_attrs[] = {
5713 &attr_reserve_percpu.attr,
5714 &attr_overcommit.attr,
5715 NULL
5716 };
5717
5718 static struct attribute_group perfclass_attr_group = {
5719 .attrs = perfclass_attrs,
5720 .name = "perf_events",
5721 };
5722
5723 static int __init perf_event_sysfs_init(void)
5724 {
5725 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5726 &perfclass_attr_group);
5727 }
5728 device_initcall(perf_event_sysfs_init);
This page took 0.155745 seconds and 5 git commands to generate.