perf_events: Fix transaction recovery in group_sched_in()
[deliverable/linux.git] / kernel / perf_event.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34
35 #include <asm/irq_regs.h>
36
37 static atomic_t nr_events __read_mostly;
38 static atomic_t nr_mmap_events __read_mostly;
39 static atomic_t nr_comm_events __read_mostly;
40 static atomic_t nr_task_events __read_mostly;
41
42 static LIST_HEAD(pmus);
43 static DEFINE_MUTEX(pmus_lock);
44 static struct srcu_struct pmus_srcu;
45
46 /*
47 * perf event paranoia level:
48 * -1 - not paranoid at all
49 * 0 - disallow raw tracepoint access for unpriv
50 * 1 - disallow cpu events for unpriv
51 * 2 - disallow kernel profiling for unpriv
52 */
53 int sysctl_perf_event_paranoid __read_mostly = 1;
54
55 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
56
57 /*
58 * max perf event sample rate
59 */
60 int sysctl_perf_event_sample_rate __read_mostly = 100000;
61
62 static atomic64_t perf_event_id;
63
64 void __weak perf_event_print_debug(void) { }
65
66 extern __weak const char *perf_pmu_name(void)
67 {
68 return "pmu";
69 }
70
71 void perf_pmu_disable(struct pmu *pmu)
72 {
73 int *count = this_cpu_ptr(pmu->pmu_disable_count);
74 if (!(*count)++)
75 pmu->pmu_disable(pmu);
76 }
77
78 void perf_pmu_enable(struct pmu *pmu)
79 {
80 int *count = this_cpu_ptr(pmu->pmu_disable_count);
81 if (!--(*count))
82 pmu->pmu_enable(pmu);
83 }
84
85 static DEFINE_PER_CPU(struct list_head, rotation_list);
86
87 /*
88 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
89 * because they're strictly cpu affine and rotate_start is called with IRQs
90 * disabled, while rotate_context is called from IRQ context.
91 */
92 static void perf_pmu_rotate_start(struct pmu *pmu)
93 {
94 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95 struct list_head *head = &__get_cpu_var(rotation_list);
96
97 WARN_ON(!irqs_disabled());
98
99 if (list_empty(&cpuctx->rotation_list))
100 list_add(&cpuctx->rotation_list, head);
101 }
102
103 static void get_ctx(struct perf_event_context *ctx)
104 {
105 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
106 }
107
108 static void free_ctx(struct rcu_head *head)
109 {
110 struct perf_event_context *ctx;
111
112 ctx = container_of(head, struct perf_event_context, rcu_head);
113 kfree(ctx);
114 }
115
116 static void put_ctx(struct perf_event_context *ctx)
117 {
118 if (atomic_dec_and_test(&ctx->refcount)) {
119 if (ctx->parent_ctx)
120 put_ctx(ctx->parent_ctx);
121 if (ctx->task)
122 put_task_struct(ctx->task);
123 call_rcu(&ctx->rcu_head, free_ctx);
124 }
125 }
126
127 static void unclone_ctx(struct perf_event_context *ctx)
128 {
129 if (ctx->parent_ctx) {
130 put_ctx(ctx->parent_ctx);
131 ctx->parent_ctx = NULL;
132 }
133 }
134
135 /*
136 * If we inherit events we want to return the parent event id
137 * to userspace.
138 */
139 static u64 primary_event_id(struct perf_event *event)
140 {
141 u64 id = event->id;
142
143 if (event->parent)
144 id = event->parent->id;
145
146 return id;
147 }
148
149 /*
150 * Get the perf_event_context for a task and lock it.
151 * This has to cope with with the fact that until it is locked,
152 * the context could get moved to another task.
153 */
154 static struct perf_event_context *
155 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
156 {
157 struct perf_event_context *ctx;
158
159 rcu_read_lock();
160 retry:
161 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
162 if (ctx) {
163 /*
164 * If this context is a clone of another, it might
165 * get swapped for another underneath us by
166 * perf_event_task_sched_out, though the
167 * rcu_read_lock() protects us from any context
168 * getting freed. Lock the context and check if it
169 * got swapped before we could get the lock, and retry
170 * if so. If we locked the right context, then it
171 * can't get swapped on us any more.
172 */
173 raw_spin_lock_irqsave(&ctx->lock, *flags);
174 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
175 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
176 goto retry;
177 }
178
179 if (!atomic_inc_not_zero(&ctx->refcount)) {
180 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
181 ctx = NULL;
182 }
183 }
184 rcu_read_unlock();
185 return ctx;
186 }
187
188 /*
189 * Get the context for a task and increment its pin_count so it
190 * can't get swapped to another task. This also increments its
191 * reference count so that the context can't get freed.
192 */
193 static struct perf_event_context *
194 perf_pin_task_context(struct task_struct *task, int ctxn)
195 {
196 struct perf_event_context *ctx;
197 unsigned long flags;
198
199 ctx = perf_lock_task_context(task, ctxn, &flags);
200 if (ctx) {
201 ++ctx->pin_count;
202 raw_spin_unlock_irqrestore(&ctx->lock, flags);
203 }
204 return ctx;
205 }
206
207 static void perf_unpin_context(struct perf_event_context *ctx)
208 {
209 unsigned long flags;
210
211 raw_spin_lock_irqsave(&ctx->lock, flags);
212 --ctx->pin_count;
213 raw_spin_unlock_irqrestore(&ctx->lock, flags);
214 put_ctx(ctx);
215 }
216
217 static inline u64 perf_clock(void)
218 {
219 return local_clock();
220 }
221
222 /*
223 * Update the record of the current time in a context.
224 */
225 static void update_context_time(struct perf_event_context *ctx)
226 {
227 u64 now = perf_clock();
228
229 ctx->time += now - ctx->timestamp;
230 ctx->timestamp = now;
231 }
232
233 /*
234 * Update the total_time_enabled and total_time_running fields for a event.
235 */
236 static void update_event_times(struct perf_event *event)
237 {
238 struct perf_event_context *ctx = event->ctx;
239 u64 run_end;
240
241 if (event->state < PERF_EVENT_STATE_INACTIVE ||
242 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
243 return;
244
245 if (ctx->is_active)
246 run_end = ctx->time;
247 else
248 run_end = event->tstamp_stopped;
249
250 event->total_time_enabled = run_end - event->tstamp_enabled;
251
252 if (event->state == PERF_EVENT_STATE_INACTIVE)
253 run_end = event->tstamp_stopped;
254 else
255 run_end = ctx->time;
256
257 event->total_time_running = run_end - event->tstamp_running;
258 }
259
260 /*
261 * Update total_time_enabled and total_time_running for all events in a group.
262 */
263 static void update_group_times(struct perf_event *leader)
264 {
265 struct perf_event *event;
266
267 update_event_times(leader);
268 list_for_each_entry(event, &leader->sibling_list, group_entry)
269 update_event_times(event);
270 }
271
272 static struct list_head *
273 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
274 {
275 if (event->attr.pinned)
276 return &ctx->pinned_groups;
277 else
278 return &ctx->flexible_groups;
279 }
280
281 /*
282 * Add a event from the lists for its context.
283 * Must be called with ctx->mutex and ctx->lock held.
284 */
285 static void
286 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
287 {
288 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
289 event->attach_state |= PERF_ATTACH_CONTEXT;
290
291 /*
292 * If we're a stand alone event or group leader, we go to the context
293 * list, group events are kept attached to the group so that
294 * perf_group_detach can, at all times, locate all siblings.
295 */
296 if (event->group_leader == event) {
297 struct list_head *list;
298
299 if (is_software_event(event))
300 event->group_flags |= PERF_GROUP_SOFTWARE;
301
302 list = ctx_group_list(event, ctx);
303 list_add_tail(&event->group_entry, list);
304 }
305
306 list_add_rcu(&event->event_entry, &ctx->event_list);
307 if (!ctx->nr_events)
308 perf_pmu_rotate_start(ctx->pmu);
309 ctx->nr_events++;
310 if (event->attr.inherit_stat)
311 ctx->nr_stat++;
312 }
313
314 static void perf_group_attach(struct perf_event *event)
315 {
316 struct perf_event *group_leader = event->group_leader;
317
318 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
319 event->attach_state |= PERF_ATTACH_GROUP;
320
321 if (group_leader == event)
322 return;
323
324 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
325 !is_software_event(event))
326 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
327
328 list_add_tail(&event->group_entry, &group_leader->sibling_list);
329 group_leader->nr_siblings++;
330 }
331
332 /*
333 * Remove a event from the lists for its context.
334 * Must be called with ctx->mutex and ctx->lock held.
335 */
336 static void
337 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
338 {
339 /*
340 * We can have double detach due to exit/hot-unplug + close.
341 */
342 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
343 return;
344
345 event->attach_state &= ~PERF_ATTACH_CONTEXT;
346
347 ctx->nr_events--;
348 if (event->attr.inherit_stat)
349 ctx->nr_stat--;
350
351 list_del_rcu(&event->event_entry);
352
353 if (event->group_leader == event)
354 list_del_init(&event->group_entry);
355
356 update_group_times(event);
357
358 /*
359 * If event was in error state, then keep it
360 * that way, otherwise bogus counts will be
361 * returned on read(). The only way to get out
362 * of error state is by explicit re-enabling
363 * of the event
364 */
365 if (event->state > PERF_EVENT_STATE_OFF)
366 event->state = PERF_EVENT_STATE_OFF;
367 }
368
369 static void perf_group_detach(struct perf_event *event)
370 {
371 struct perf_event *sibling, *tmp;
372 struct list_head *list = NULL;
373
374 /*
375 * We can have double detach due to exit/hot-unplug + close.
376 */
377 if (!(event->attach_state & PERF_ATTACH_GROUP))
378 return;
379
380 event->attach_state &= ~PERF_ATTACH_GROUP;
381
382 /*
383 * If this is a sibling, remove it from its group.
384 */
385 if (event->group_leader != event) {
386 list_del_init(&event->group_entry);
387 event->group_leader->nr_siblings--;
388 return;
389 }
390
391 if (!list_empty(&event->group_entry))
392 list = &event->group_entry;
393
394 /*
395 * If this was a group event with sibling events then
396 * upgrade the siblings to singleton events by adding them
397 * to whatever list we are on.
398 */
399 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
400 if (list)
401 list_move_tail(&sibling->group_entry, list);
402 sibling->group_leader = sibling;
403
404 /* Inherit group flags from the previous leader */
405 sibling->group_flags = event->group_flags;
406 }
407 }
408
409 static inline int
410 event_filter_match(struct perf_event *event)
411 {
412 return event->cpu == -1 || event->cpu == smp_processor_id();
413 }
414
415 static int
416 __event_sched_out(struct perf_event *event,
417 struct perf_cpu_context *cpuctx,
418 struct perf_event_context *ctx)
419 {
420 u64 delta;
421 /*
422 * An event which could not be activated because of
423 * filter mismatch still needs to have its timings
424 * maintained, otherwise bogus information is return
425 * via read() for time_enabled, time_running:
426 */
427 if (event->state == PERF_EVENT_STATE_INACTIVE
428 && !event_filter_match(event)) {
429 delta = ctx->time - event->tstamp_stopped;
430 event->tstamp_running += delta;
431 event->tstamp_stopped = ctx->time;
432 }
433
434 if (event->state != PERF_EVENT_STATE_ACTIVE)
435 return 0;
436
437 event->state = PERF_EVENT_STATE_INACTIVE;
438 if (event->pending_disable) {
439 event->pending_disable = 0;
440 event->state = PERF_EVENT_STATE_OFF;
441 }
442 event->pmu->del(event, 0);
443 event->oncpu = -1;
444
445 if (!is_software_event(event))
446 cpuctx->active_oncpu--;
447 ctx->nr_active--;
448 if (event->attr.exclusive || !cpuctx->active_oncpu)
449 cpuctx->exclusive = 0;
450 return 1;
451 }
452
453 static void
454 event_sched_out(struct perf_event *event,
455 struct perf_cpu_context *cpuctx,
456 struct perf_event_context *ctx)
457 {
458 int ret;
459
460 ret = __event_sched_out(event, cpuctx, ctx);
461 if (ret)
462 event->tstamp_stopped = ctx->time;
463 }
464
465 static void
466 group_sched_out(struct perf_event *group_event,
467 struct perf_cpu_context *cpuctx,
468 struct perf_event_context *ctx)
469 {
470 struct perf_event *event;
471 int state = group_event->state;
472
473 event_sched_out(group_event, cpuctx, ctx);
474
475 /*
476 * Schedule out siblings (if any):
477 */
478 list_for_each_entry(event, &group_event->sibling_list, group_entry)
479 event_sched_out(event, cpuctx, ctx);
480
481 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
482 cpuctx->exclusive = 0;
483 }
484
485 static inline struct perf_cpu_context *
486 __get_cpu_context(struct perf_event_context *ctx)
487 {
488 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
489 }
490
491 /*
492 * Cross CPU call to remove a performance event
493 *
494 * We disable the event on the hardware level first. After that we
495 * remove it from the context list.
496 */
497 static void __perf_event_remove_from_context(void *info)
498 {
499 struct perf_event *event = info;
500 struct perf_event_context *ctx = event->ctx;
501 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
502
503 /*
504 * If this is a task context, we need to check whether it is
505 * the current task context of this cpu. If not it has been
506 * scheduled out before the smp call arrived.
507 */
508 if (ctx->task && cpuctx->task_ctx != ctx)
509 return;
510
511 raw_spin_lock(&ctx->lock);
512
513 event_sched_out(event, cpuctx, ctx);
514
515 list_del_event(event, ctx);
516
517 raw_spin_unlock(&ctx->lock);
518 }
519
520
521 /*
522 * Remove the event from a task's (or a CPU's) list of events.
523 *
524 * Must be called with ctx->mutex held.
525 *
526 * CPU events are removed with a smp call. For task events we only
527 * call when the task is on a CPU.
528 *
529 * If event->ctx is a cloned context, callers must make sure that
530 * every task struct that event->ctx->task could possibly point to
531 * remains valid. This is OK when called from perf_release since
532 * that only calls us on the top-level context, which can't be a clone.
533 * When called from perf_event_exit_task, it's OK because the
534 * context has been detached from its task.
535 */
536 static void perf_event_remove_from_context(struct perf_event *event)
537 {
538 struct perf_event_context *ctx = event->ctx;
539 struct task_struct *task = ctx->task;
540
541 if (!task) {
542 /*
543 * Per cpu events are removed via an smp call and
544 * the removal is always successful.
545 */
546 smp_call_function_single(event->cpu,
547 __perf_event_remove_from_context,
548 event, 1);
549 return;
550 }
551
552 retry:
553 task_oncpu_function_call(task, __perf_event_remove_from_context,
554 event);
555
556 raw_spin_lock_irq(&ctx->lock);
557 /*
558 * If the context is active we need to retry the smp call.
559 */
560 if (ctx->nr_active && !list_empty(&event->group_entry)) {
561 raw_spin_unlock_irq(&ctx->lock);
562 goto retry;
563 }
564
565 /*
566 * The lock prevents that this context is scheduled in so we
567 * can remove the event safely, if the call above did not
568 * succeed.
569 */
570 if (!list_empty(&event->group_entry))
571 list_del_event(event, ctx);
572 raw_spin_unlock_irq(&ctx->lock);
573 }
574
575 /*
576 * Cross CPU call to disable a performance event
577 */
578 static void __perf_event_disable(void *info)
579 {
580 struct perf_event *event = info;
581 struct perf_event_context *ctx = event->ctx;
582 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
583
584 /*
585 * If this is a per-task event, need to check whether this
586 * event's task is the current task on this cpu.
587 */
588 if (ctx->task && cpuctx->task_ctx != ctx)
589 return;
590
591 raw_spin_lock(&ctx->lock);
592
593 /*
594 * If the event is on, turn it off.
595 * If it is in error state, leave it in error state.
596 */
597 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
598 update_context_time(ctx);
599 update_group_times(event);
600 if (event == event->group_leader)
601 group_sched_out(event, cpuctx, ctx);
602 else
603 event_sched_out(event, cpuctx, ctx);
604 event->state = PERF_EVENT_STATE_OFF;
605 }
606
607 raw_spin_unlock(&ctx->lock);
608 }
609
610 /*
611 * Disable a event.
612 *
613 * If event->ctx is a cloned context, callers must make sure that
614 * every task struct that event->ctx->task could possibly point to
615 * remains valid. This condition is satisifed when called through
616 * perf_event_for_each_child or perf_event_for_each because they
617 * hold the top-level event's child_mutex, so any descendant that
618 * goes to exit will block in sync_child_event.
619 * When called from perf_pending_event it's OK because event->ctx
620 * is the current context on this CPU and preemption is disabled,
621 * hence we can't get into perf_event_task_sched_out for this context.
622 */
623 void perf_event_disable(struct perf_event *event)
624 {
625 struct perf_event_context *ctx = event->ctx;
626 struct task_struct *task = ctx->task;
627
628 if (!task) {
629 /*
630 * Disable the event on the cpu that it's on
631 */
632 smp_call_function_single(event->cpu, __perf_event_disable,
633 event, 1);
634 return;
635 }
636
637 retry:
638 task_oncpu_function_call(task, __perf_event_disable, event);
639
640 raw_spin_lock_irq(&ctx->lock);
641 /*
642 * If the event is still active, we need to retry the cross-call.
643 */
644 if (event->state == PERF_EVENT_STATE_ACTIVE) {
645 raw_spin_unlock_irq(&ctx->lock);
646 goto retry;
647 }
648
649 /*
650 * Since we have the lock this context can't be scheduled
651 * in, so we can change the state safely.
652 */
653 if (event->state == PERF_EVENT_STATE_INACTIVE) {
654 update_group_times(event);
655 event->state = PERF_EVENT_STATE_OFF;
656 }
657
658 raw_spin_unlock_irq(&ctx->lock);
659 }
660
661 static int
662 __event_sched_in(struct perf_event *event,
663 struct perf_cpu_context *cpuctx,
664 struct perf_event_context *ctx)
665 {
666 if (event->state <= PERF_EVENT_STATE_OFF)
667 return 0;
668
669 event->state = PERF_EVENT_STATE_ACTIVE;
670 event->oncpu = smp_processor_id();
671 /*
672 * The new state must be visible before we turn it on in the hardware:
673 */
674 smp_wmb();
675
676 if (event->pmu->add(event, PERF_EF_START)) {
677 event->state = PERF_EVENT_STATE_INACTIVE;
678 event->oncpu = -1;
679 return -EAGAIN;
680 }
681
682 if (!is_software_event(event))
683 cpuctx->active_oncpu++;
684 ctx->nr_active++;
685
686 if (event->attr.exclusive)
687 cpuctx->exclusive = 1;
688
689 return 0;
690 }
691
692 static inline int
693 event_sched_in(struct perf_event *event,
694 struct perf_cpu_context *cpuctx,
695 struct perf_event_context *ctx)
696 {
697 int ret = __event_sched_in(event, cpuctx, ctx);
698 if (ret)
699 return ret;
700 event->tstamp_running += ctx->time - event->tstamp_stopped;
701 return 0;
702 }
703
704 static void
705 group_commit_event_sched_in(struct perf_event *group_event,
706 struct perf_cpu_context *cpuctx,
707 struct perf_event_context *ctx)
708 {
709 struct perf_event *event;
710 u64 now = ctx->time;
711
712 group_event->tstamp_running += now - group_event->tstamp_stopped;
713 /*
714 * Schedule in siblings as one group (if any):
715 */
716 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
717 event->tstamp_running += now - event->tstamp_stopped;
718 }
719 }
720
721 static int
722 group_sched_in(struct perf_event *group_event,
723 struct perf_cpu_context *cpuctx,
724 struct perf_event_context *ctx)
725 {
726 struct perf_event *event, *partial_group = NULL;
727 struct pmu *pmu = group_event->pmu;
728
729 if (group_event->state == PERF_EVENT_STATE_OFF)
730 return 0;
731
732 pmu->start_txn(pmu);
733
734 /*
735 * use __event_sched_in() to delay updating tstamp_running
736 * until the transaction is committed. In case of failure
737 * we will keep an unmodified tstamp_running which is a
738 * requirement to get correct timing information
739 */
740 if (__event_sched_in(group_event, cpuctx, ctx)) {
741 pmu->cancel_txn(pmu);
742 return -EAGAIN;
743 }
744
745 /*
746 * Schedule in siblings as one group (if any):
747 */
748 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
749 if (__event_sched_in(event, cpuctx, ctx)) {
750 partial_group = event;
751 goto group_error;
752 }
753 }
754
755 if (!pmu->commit_txn(pmu)) {
756 /* commit tstamp_running */
757 group_commit_event_sched_in(group_event, cpuctx, ctx);
758 return 0;
759 }
760 group_error:
761 /*
762 * Groups can be scheduled in as one unit only, so undo any
763 * partial group before returning:
764 *
765 * use __event_sched_out() to avoid updating tstamp_stopped
766 * because the event never actually ran
767 */
768 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
769 if (event == partial_group)
770 break;
771 __event_sched_out(event, cpuctx, ctx);
772 }
773 __event_sched_out(group_event, cpuctx, ctx);
774
775 pmu->cancel_txn(pmu);
776
777 return -EAGAIN;
778 }
779
780 /*
781 * Work out whether we can put this event group on the CPU now.
782 */
783 static int group_can_go_on(struct perf_event *event,
784 struct perf_cpu_context *cpuctx,
785 int can_add_hw)
786 {
787 /*
788 * Groups consisting entirely of software events can always go on.
789 */
790 if (event->group_flags & PERF_GROUP_SOFTWARE)
791 return 1;
792 /*
793 * If an exclusive group is already on, no other hardware
794 * events can go on.
795 */
796 if (cpuctx->exclusive)
797 return 0;
798 /*
799 * If this group is exclusive and there are already
800 * events on the CPU, it can't go on.
801 */
802 if (event->attr.exclusive && cpuctx->active_oncpu)
803 return 0;
804 /*
805 * Otherwise, try to add it if all previous groups were able
806 * to go on.
807 */
808 return can_add_hw;
809 }
810
811 static void add_event_to_ctx(struct perf_event *event,
812 struct perf_event_context *ctx)
813 {
814 list_add_event(event, ctx);
815 perf_group_attach(event);
816 event->tstamp_enabled = ctx->time;
817 event->tstamp_running = ctx->time;
818 event->tstamp_stopped = ctx->time;
819 }
820
821 /*
822 * Cross CPU call to install and enable a performance event
823 *
824 * Must be called with ctx->mutex held
825 */
826 static void __perf_install_in_context(void *info)
827 {
828 struct perf_event *event = info;
829 struct perf_event_context *ctx = event->ctx;
830 struct perf_event *leader = event->group_leader;
831 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
832 int err;
833
834 /*
835 * If this is a task context, we need to check whether it is
836 * the current task context of this cpu. If not it has been
837 * scheduled out before the smp call arrived.
838 * Or possibly this is the right context but it isn't
839 * on this cpu because it had no events.
840 */
841 if (ctx->task && cpuctx->task_ctx != ctx) {
842 if (cpuctx->task_ctx || ctx->task != current)
843 return;
844 cpuctx->task_ctx = ctx;
845 }
846
847 raw_spin_lock(&ctx->lock);
848 ctx->is_active = 1;
849 update_context_time(ctx);
850
851 add_event_to_ctx(event, ctx);
852
853 if (event->cpu != -1 && event->cpu != smp_processor_id())
854 goto unlock;
855
856 /*
857 * Don't put the event on if it is disabled or if
858 * it is in a group and the group isn't on.
859 */
860 if (event->state != PERF_EVENT_STATE_INACTIVE ||
861 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
862 goto unlock;
863
864 /*
865 * An exclusive event can't go on if there are already active
866 * hardware events, and no hardware event can go on if there
867 * is already an exclusive event on.
868 */
869 if (!group_can_go_on(event, cpuctx, 1))
870 err = -EEXIST;
871 else
872 err = event_sched_in(event, cpuctx, ctx);
873
874 if (err) {
875 /*
876 * This event couldn't go on. If it is in a group
877 * then we have to pull the whole group off.
878 * If the event group is pinned then put it in error state.
879 */
880 if (leader != event)
881 group_sched_out(leader, cpuctx, ctx);
882 if (leader->attr.pinned) {
883 update_group_times(leader);
884 leader->state = PERF_EVENT_STATE_ERROR;
885 }
886 }
887
888 unlock:
889 raw_spin_unlock(&ctx->lock);
890 }
891
892 /*
893 * Attach a performance event to a context
894 *
895 * First we add the event to the list with the hardware enable bit
896 * in event->hw_config cleared.
897 *
898 * If the event is attached to a task which is on a CPU we use a smp
899 * call to enable it in the task context. The task might have been
900 * scheduled away, but we check this in the smp call again.
901 *
902 * Must be called with ctx->mutex held.
903 */
904 static void
905 perf_install_in_context(struct perf_event_context *ctx,
906 struct perf_event *event,
907 int cpu)
908 {
909 struct task_struct *task = ctx->task;
910
911 event->ctx = ctx;
912
913 if (!task) {
914 /*
915 * Per cpu events are installed via an smp call and
916 * the install is always successful.
917 */
918 smp_call_function_single(cpu, __perf_install_in_context,
919 event, 1);
920 return;
921 }
922
923 retry:
924 task_oncpu_function_call(task, __perf_install_in_context,
925 event);
926
927 raw_spin_lock_irq(&ctx->lock);
928 /*
929 * we need to retry the smp call.
930 */
931 if (ctx->is_active && list_empty(&event->group_entry)) {
932 raw_spin_unlock_irq(&ctx->lock);
933 goto retry;
934 }
935
936 /*
937 * The lock prevents that this context is scheduled in so we
938 * can add the event safely, if it the call above did not
939 * succeed.
940 */
941 if (list_empty(&event->group_entry))
942 add_event_to_ctx(event, ctx);
943 raw_spin_unlock_irq(&ctx->lock);
944 }
945
946 /*
947 * Put a event into inactive state and update time fields.
948 * Enabling the leader of a group effectively enables all
949 * the group members that aren't explicitly disabled, so we
950 * have to update their ->tstamp_enabled also.
951 * Note: this works for group members as well as group leaders
952 * since the non-leader members' sibling_lists will be empty.
953 */
954 static void __perf_event_mark_enabled(struct perf_event *event,
955 struct perf_event_context *ctx)
956 {
957 struct perf_event *sub;
958
959 event->state = PERF_EVENT_STATE_INACTIVE;
960 event->tstamp_enabled = ctx->time - event->total_time_enabled;
961 list_for_each_entry(sub, &event->sibling_list, group_entry) {
962 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
963 sub->tstamp_enabled =
964 ctx->time - sub->total_time_enabled;
965 }
966 }
967 }
968
969 /*
970 * Cross CPU call to enable a performance event
971 */
972 static void __perf_event_enable(void *info)
973 {
974 struct perf_event *event = info;
975 struct perf_event_context *ctx = event->ctx;
976 struct perf_event *leader = event->group_leader;
977 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
978 int err;
979
980 /*
981 * If this is a per-task event, need to check whether this
982 * event's task is the current task on this cpu.
983 */
984 if (ctx->task && cpuctx->task_ctx != ctx) {
985 if (cpuctx->task_ctx || ctx->task != current)
986 return;
987 cpuctx->task_ctx = ctx;
988 }
989
990 raw_spin_lock(&ctx->lock);
991 ctx->is_active = 1;
992 update_context_time(ctx);
993
994 if (event->state >= PERF_EVENT_STATE_INACTIVE)
995 goto unlock;
996 __perf_event_mark_enabled(event, ctx);
997
998 if (event->cpu != -1 && event->cpu != smp_processor_id())
999 goto unlock;
1000
1001 /*
1002 * If the event is in a group and isn't the group leader,
1003 * then don't put it on unless the group is on.
1004 */
1005 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1006 goto unlock;
1007
1008 if (!group_can_go_on(event, cpuctx, 1)) {
1009 err = -EEXIST;
1010 } else {
1011 if (event == leader)
1012 err = group_sched_in(event, cpuctx, ctx);
1013 else
1014 err = event_sched_in(event, cpuctx, ctx);
1015 }
1016
1017 if (err) {
1018 /*
1019 * If this event can't go on and it's part of a
1020 * group, then the whole group has to come off.
1021 */
1022 if (leader != event)
1023 group_sched_out(leader, cpuctx, ctx);
1024 if (leader->attr.pinned) {
1025 update_group_times(leader);
1026 leader->state = PERF_EVENT_STATE_ERROR;
1027 }
1028 }
1029
1030 unlock:
1031 raw_spin_unlock(&ctx->lock);
1032 }
1033
1034 /*
1035 * Enable a event.
1036 *
1037 * If event->ctx is a cloned context, callers must make sure that
1038 * every task struct that event->ctx->task could possibly point to
1039 * remains valid. This condition is satisfied when called through
1040 * perf_event_for_each_child or perf_event_for_each as described
1041 * for perf_event_disable.
1042 */
1043 void perf_event_enable(struct perf_event *event)
1044 {
1045 struct perf_event_context *ctx = event->ctx;
1046 struct task_struct *task = ctx->task;
1047
1048 if (!task) {
1049 /*
1050 * Enable the event on the cpu that it's on
1051 */
1052 smp_call_function_single(event->cpu, __perf_event_enable,
1053 event, 1);
1054 return;
1055 }
1056
1057 raw_spin_lock_irq(&ctx->lock);
1058 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1059 goto out;
1060
1061 /*
1062 * If the event is in error state, clear that first.
1063 * That way, if we see the event in error state below, we
1064 * know that it has gone back into error state, as distinct
1065 * from the task having been scheduled away before the
1066 * cross-call arrived.
1067 */
1068 if (event->state == PERF_EVENT_STATE_ERROR)
1069 event->state = PERF_EVENT_STATE_OFF;
1070
1071 retry:
1072 raw_spin_unlock_irq(&ctx->lock);
1073 task_oncpu_function_call(task, __perf_event_enable, event);
1074
1075 raw_spin_lock_irq(&ctx->lock);
1076
1077 /*
1078 * If the context is active and the event is still off,
1079 * we need to retry the cross-call.
1080 */
1081 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1082 goto retry;
1083
1084 /*
1085 * Since we have the lock this context can't be scheduled
1086 * in, so we can change the state safely.
1087 */
1088 if (event->state == PERF_EVENT_STATE_OFF)
1089 __perf_event_mark_enabled(event, ctx);
1090
1091 out:
1092 raw_spin_unlock_irq(&ctx->lock);
1093 }
1094
1095 static int perf_event_refresh(struct perf_event *event, int refresh)
1096 {
1097 /*
1098 * not supported on inherited events
1099 */
1100 if (event->attr.inherit)
1101 return -EINVAL;
1102
1103 atomic_add(refresh, &event->event_limit);
1104 perf_event_enable(event);
1105
1106 return 0;
1107 }
1108
1109 enum event_type_t {
1110 EVENT_FLEXIBLE = 0x1,
1111 EVENT_PINNED = 0x2,
1112 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1113 };
1114
1115 static void ctx_sched_out(struct perf_event_context *ctx,
1116 struct perf_cpu_context *cpuctx,
1117 enum event_type_t event_type)
1118 {
1119 struct perf_event *event;
1120
1121 raw_spin_lock(&ctx->lock);
1122 perf_pmu_disable(ctx->pmu);
1123 ctx->is_active = 0;
1124 if (likely(!ctx->nr_events))
1125 goto out;
1126 update_context_time(ctx);
1127
1128 if (!ctx->nr_active)
1129 goto out;
1130
1131 if (event_type & EVENT_PINNED) {
1132 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1133 group_sched_out(event, cpuctx, ctx);
1134 }
1135
1136 if (event_type & EVENT_FLEXIBLE) {
1137 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1138 group_sched_out(event, cpuctx, ctx);
1139 }
1140 out:
1141 perf_pmu_enable(ctx->pmu);
1142 raw_spin_unlock(&ctx->lock);
1143 }
1144
1145 /*
1146 * Test whether two contexts are equivalent, i.e. whether they
1147 * have both been cloned from the same version of the same context
1148 * and they both have the same number of enabled events.
1149 * If the number of enabled events is the same, then the set
1150 * of enabled events should be the same, because these are both
1151 * inherited contexts, therefore we can't access individual events
1152 * in them directly with an fd; we can only enable/disable all
1153 * events via prctl, or enable/disable all events in a family
1154 * via ioctl, which will have the same effect on both contexts.
1155 */
1156 static int context_equiv(struct perf_event_context *ctx1,
1157 struct perf_event_context *ctx2)
1158 {
1159 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1160 && ctx1->parent_gen == ctx2->parent_gen
1161 && !ctx1->pin_count && !ctx2->pin_count;
1162 }
1163
1164 static void __perf_event_sync_stat(struct perf_event *event,
1165 struct perf_event *next_event)
1166 {
1167 u64 value;
1168
1169 if (!event->attr.inherit_stat)
1170 return;
1171
1172 /*
1173 * Update the event value, we cannot use perf_event_read()
1174 * because we're in the middle of a context switch and have IRQs
1175 * disabled, which upsets smp_call_function_single(), however
1176 * we know the event must be on the current CPU, therefore we
1177 * don't need to use it.
1178 */
1179 switch (event->state) {
1180 case PERF_EVENT_STATE_ACTIVE:
1181 event->pmu->read(event);
1182 /* fall-through */
1183
1184 case PERF_EVENT_STATE_INACTIVE:
1185 update_event_times(event);
1186 break;
1187
1188 default:
1189 break;
1190 }
1191
1192 /*
1193 * In order to keep per-task stats reliable we need to flip the event
1194 * values when we flip the contexts.
1195 */
1196 value = local64_read(&next_event->count);
1197 value = local64_xchg(&event->count, value);
1198 local64_set(&next_event->count, value);
1199
1200 swap(event->total_time_enabled, next_event->total_time_enabled);
1201 swap(event->total_time_running, next_event->total_time_running);
1202
1203 /*
1204 * Since we swizzled the values, update the user visible data too.
1205 */
1206 perf_event_update_userpage(event);
1207 perf_event_update_userpage(next_event);
1208 }
1209
1210 #define list_next_entry(pos, member) \
1211 list_entry(pos->member.next, typeof(*pos), member)
1212
1213 static void perf_event_sync_stat(struct perf_event_context *ctx,
1214 struct perf_event_context *next_ctx)
1215 {
1216 struct perf_event *event, *next_event;
1217
1218 if (!ctx->nr_stat)
1219 return;
1220
1221 update_context_time(ctx);
1222
1223 event = list_first_entry(&ctx->event_list,
1224 struct perf_event, event_entry);
1225
1226 next_event = list_first_entry(&next_ctx->event_list,
1227 struct perf_event, event_entry);
1228
1229 while (&event->event_entry != &ctx->event_list &&
1230 &next_event->event_entry != &next_ctx->event_list) {
1231
1232 __perf_event_sync_stat(event, next_event);
1233
1234 event = list_next_entry(event, event_entry);
1235 next_event = list_next_entry(next_event, event_entry);
1236 }
1237 }
1238
1239 void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1240 struct task_struct *next)
1241 {
1242 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1243 struct perf_event_context *next_ctx;
1244 struct perf_event_context *parent;
1245 struct perf_cpu_context *cpuctx;
1246 int do_switch = 1;
1247
1248 if (likely(!ctx))
1249 return;
1250
1251 cpuctx = __get_cpu_context(ctx);
1252 if (!cpuctx->task_ctx)
1253 return;
1254
1255 rcu_read_lock();
1256 parent = rcu_dereference(ctx->parent_ctx);
1257 next_ctx = next->perf_event_ctxp[ctxn];
1258 if (parent && next_ctx &&
1259 rcu_dereference(next_ctx->parent_ctx) == parent) {
1260 /*
1261 * Looks like the two contexts are clones, so we might be
1262 * able to optimize the context switch. We lock both
1263 * contexts and check that they are clones under the
1264 * lock (including re-checking that neither has been
1265 * uncloned in the meantime). It doesn't matter which
1266 * order we take the locks because no other cpu could
1267 * be trying to lock both of these tasks.
1268 */
1269 raw_spin_lock(&ctx->lock);
1270 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1271 if (context_equiv(ctx, next_ctx)) {
1272 /*
1273 * XXX do we need a memory barrier of sorts
1274 * wrt to rcu_dereference() of perf_event_ctxp
1275 */
1276 task->perf_event_ctxp[ctxn] = next_ctx;
1277 next->perf_event_ctxp[ctxn] = ctx;
1278 ctx->task = next;
1279 next_ctx->task = task;
1280 do_switch = 0;
1281
1282 perf_event_sync_stat(ctx, next_ctx);
1283 }
1284 raw_spin_unlock(&next_ctx->lock);
1285 raw_spin_unlock(&ctx->lock);
1286 }
1287 rcu_read_unlock();
1288
1289 if (do_switch) {
1290 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1291 cpuctx->task_ctx = NULL;
1292 }
1293 }
1294
1295 #define for_each_task_context_nr(ctxn) \
1296 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1297
1298 /*
1299 * Called from scheduler to remove the events of the current task,
1300 * with interrupts disabled.
1301 *
1302 * We stop each event and update the event value in event->count.
1303 *
1304 * This does not protect us against NMI, but disable()
1305 * sets the disabled bit in the control field of event _before_
1306 * accessing the event control register. If a NMI hits, then it will
1307 * not restart the event.
1308 */
1309 void perf_event_task_sched_out(struct task_struct *task,
1310 struct task_struct *next)
1311 {
1312 int ctxn;
1313
1314 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1315
1316 for_each_task_context_nr(ctxn)
1317 perf_event_context_sched_out(task, ctxn, next);
1318 }
1319
1320 static void task_ctx_sched_out(struct perf_event_context *ctx,
1321 enum event_type_t event_type)
1322 {
1323 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1324
1325 if (!cpuctx->task_ctx)
1326 return;
1327
1328 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1329 return;
1330
1331 ctx_sched_out(ctx, cpuctx, event_type);
1332 cpuctx->task_ctx = NULL;
1333 }
1334
1335 /*
1336 * Called with IRQs disabled
1337 */
1338 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1339 {
1340 task_ctx_sched_out(ctx, EVENT_ALL);
1341 }
1342
1343 /*
1344 * Called with IRQs disabled
1345 */
1346 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1347 enum event_type_t event_type)
1348 {
1349 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1350 }
1351
1352 static void
1353 ctx_pinned_sched_in(struct perf_event_context *ctx,
1354 struct perf_cpu_context *cpuctx)
1355 {
1356 struct perf_event *event;
1357
1358 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1359 if (event->state <= PERF_EVENT_STATE_OFF)
1360 continue;
1361 if (event->cpu != -1 && event->cpu != smp_processor_id())
1362 continue;
1363
1364 if (group_can_go_on(event, cpuctx, 1))
1365 group_sched_in(event, cpuctx, ctx);
1366
1367 /*
1368 * If this pinned group hasn't been scheduled,
1369 * put it in error state.
1370 */
1371 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1372 update_group_times(event);
1373 event->state = PERF_EVENT_STATE_ERROR;
1374 }
1375 }
1376 }
1377
1378 static void
1379 ctx_flexible_sched_in(struct perf_event_context *ctx,
1380 struct perf_cpu_context *cpuctx)
1381 {
1382 struct perf_event *event;
1383 int can_add_hw = 1;
1384
1385 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1386 /* Ignore events in OFF or ERROR state */
1387 if (event->state <= PERF_EVENT_STATE_OFF)
1388 continue;
1389 /*
1390 * Listen to the 'cpu' scheduling filter constraint
1391 * of events:
1392 */
1393 if (event->cpu != -1 && event->cpu != smp_processor_id())
1394 continue;
1395
1396 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1397 if (group_sched_in(event, cpuctx, ctx))
1398 can_add_hw = 0;
1399 }
1400 }
1401 }
1402
1403 static void
1404 ctx_sched_in(struct perf_event_context *ctx,
1405 struct perf_cpu_context *cpuctx,
1406 enum event_type_t event_type)
1407 {
1408 raw_spin_lock(&ctx->lock);
1409 ctx->is_active = 1;
1410 if (likely(!ctx->nr_events))
1411 goto out;
1412
1413 ctx->timestamp = perf_clock();
1414
1415 /*
1416 * First go through the list and put on any pinned groups
1417 * in order to give them the best chance of going on.
1418 */
1419 if (event_type & EVENT_PINNED)
1420 ctx_pinned_sched_in(ctx, cpuctx);
1421
1422 /* Then walk through the lower prio flexible groups */
1423 if (event_type & EVENT_FLEXIBLE)
1424 ctx_flexible_sched_in(ctx, cpuctx);
1425
1426 out:
1427 raw_spin_unlock(&ctx->lock);
1428 }
1429
1430 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1431 enum event_type_t event_type)
1432 {
1433 struct perf_event_context *ctx = &cpuctx->ctx;
1434
1435 ctx_sched_in(ctx, cpuctx, event_type);
1436 }
1437
1438 static void task_ctx_sched_in(struct perf_event_context *ctx,
1439 enum event_type_t event_type)
1440 {
1441 struct perf_cpu_context *cpuctx;
1442
1443 cpuctx = __get_cpu_context(ctx);
1444 if (cpuctx->task_ctx == ctx)
1445 return;
1446
1447 ctx_sched_in(ctx, cpuctx, event_type);
1448 cpuctx->task_ctx = ctx;
1449 }
1450
1451 void perf_event_context_sched_in(struct perf_event_context *ctx)
1452 {
1453 struct perf_cpu_context *cpuctx;
1454
1455 cpuctx = __get_cpu_context(ctx);
1456 if (cpuctx->task_ctx == ctx)
1457 return;
1458
1459 perf_pmu_disable(ctx->pmu);
1460 /*
1461 * We want to keep the following priority order:
1462 * cpu pinned (that don't need to move), task pinned,
1463 * cpu flexible, task flexible.
1464 */
1465 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1466
1467 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1468 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1469 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1470
1471 cpuctx->task_ctx = ctx;
1472
1473 /*
1474 * Since these rotations are per-cpu, we need to ensure the
1475 * cpu-context we got scheduled on is actually rotating.
1476 */
1477 perf_pmu_rotate_start(ctx->pmu);
1478 perf_pmu_enable(ctx->pmu);
1479 }
1480
1481 /*
1482 * Called from scheduler to add the events of the current task
1483 * with interrupts disabled.
1484 *
1485 * We restore the event value and then enable it.
1486 *
1487 * This does not protect us against NMI, but enable()
1488 * sets the enabled bit in the control field of event _before_
1489 * accessing the event control register. If a NMI hits, then it will
1490 * keep the event running.
1491 */
1492 void perf_event_task_sched_in(struct task_struct *task)
1493 {
1494 struct perf_event_context *ctx;
1495 int ctxn;
1496
1497 for_each_task_context_nr(ctxn) {
1498 ctx = task->perf_event_ctxp[ctxn];
1499 if (likely(!ctx))
1500 continue;
1501
1502 perf_event_context_sched_in(ctx);
1503 }
1504 }
1505
1506 #define MAX_INTERRUPTS (~0ULL)
1507
1508 static void perf_log_throttle(struct perf_event *event, int enable);
1509
1510 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1511 {
1512 u64 frequency = event->attr.sample_freq;
1513 u64 sec = NSEC_PER_SEC;
1514 u64 divisor, dividend;
1515
1516 int count_fls, nsec_fls, frequency_fls, sec_fls;
1517
1518 count_fls = fls64(count);
1519 nsec_fls = fls64(nsec);
1520 frequency_fls = fls64(frequency);
1521 sec_fls = 30;
1522
1523 /*
1524 * We got @count in @nsec, with a target of sample_freq HZ
1525 * the target period becomes:
1526 *
1527 * @count * 10^9
1528 * period = -------------------
1529 * @nsec * sample_freq
1530 *
1531 */
1532
1533 /*
1534 * Reduce accuracy by one bit such that @a and @b converge
1535 * to a similar magnitude.
1536 */
1537 #define REDUCE_FLS(a, b) \
1538 do { \
1539 if (a##_fls > b##_fls) { \
1540 a >>= 1; \
1541 a##_fls--; \
1542 } else { \
1543 b >>= 1; \
1544 b##_fls--; \
1545 } \
1546 } while (0)
1547
1548 /*
1549 * Reduce accuracy until either term fits in a u64, then proceed with
1550 * the other, so that finally we can do a u64/u64 division.
1551 */
1552 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1553 REDUCE_FLS(nsec, frequency);
1554 REDUCE_FLS(sec, count);
1555 }
1556
1557 if (count_fls + sec_fls > 64) {
1558 divisor = nsec * frequency;
1559
1560 while (count_fls + sec_fls > 64) {
1561 REDUCE_FLS(count, sec);
1562 divisor >>= 1;
1563 }
1564
1565 dividend = count * sec;
1566 } else {
1567 dividend = count * sec;
1568
1569 while (nsec_fls + frequency_fls > 64) {
1570 REDUCE_FLS(nsec, frequency);
1571 dividend >>= 1;
1572 }
1573
1574 divisor = nsec * frequency;
1575 }
1576
1577 if (!divisor)
1578 return dividend;
1579
1580 return div64_u64(dividend, divisor);
1581 }
1582
1583 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1584 {
1585 struct hw_perf_event *hwc = &event->hw;
1586 s64 period, sample_period;
1587 s64 delta;
1588
1589 period = perf_calculate_period(event, nsec, count);
1590
1591 delta = (s64)(period - hwc->sample_period);
1592 delta = (delta + 7) / 8; /* low pass filter */
1593
1594 sample_period = hwc->sample_period + delta;
1595
1596 if (!sample_period)
1597 sample_period = 1;
1598
1599 hwc->sample_period = sample_period;
1600
1601 if (local64_read(&hwc->period_left) > 8*sample_period) {
1602 event->pmu->stop(event, PERF_EF_UPDATE);
1603 local64_set(&hwc->period_left, 0);
1604 event->pmu->start(event, PERF_EF_RELOAD);
1605 }
1606 }
1607
1608 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1609 {
1610 struct perf_event *event;
1611 struct hw_perf_event *hwc;
1612 u64 interrupts, now;
1613 s64 delta;
1614
1615 raw_spin_lock(&ctx->lock);
1616 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1617 if (event->state != PERF_EVENT_STATE_ACTIVE)
1618 continue;
1619
1620 if (event->cpu != -1 && event->cpu != smp_processor_id())
1621 continue;
1622
1623 hwc = &event->hw;
1624
1625 interrupts = hwc->interrupts;
1626 hwc->interrupts = 0;
1627
1628 /*
1629 * unthrottle events on the tick
1630 */
1631 if (interrupts == MAX_INTERRUPTS) {
1632 perf_log_throttle(event, 1);
1633 event->pmu->start(event, 0);
1634 }
1635
1636 if (!event->attr.freq || !event->attr.sample_freq)
1637 continue;
1638
1639 event->pmu->read(event);
1640 now = local64_read(&event->count);
1641 delta = now - hwc->freq_count_stamp;
1642 hwc->freq_count_stamp = now;
1643
1644 if (delta > 0)
1645 perf_adjust_period(event, period, delta);
1646 }
1647 raw_spin_unlock(&ctx->lock);
1648 }
1649
1650 /*
1651 * Round-robin a context's events:
1652 */
1653 static void rotate_ctx(struct perf_event_context *ctx)
1654 {
1655 raw_spin_lock(&ctx->lock);
1656
1657 /* Rotate the first entry last of non-pinned groups */
1658 list_rotate_left(&ctx->flexible_groups);
1659
1660 raw_spin_unlock(&ctx->lock);
1661 }
1662
1663 /*
1664 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
1665 * because they're strictly cpu affine and rotate_start is called with IRQs
1666 * disabled, while rotate_context is called from IRQ context.
1667 */
1668 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
1669 {
1670 u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
1671 struct perf_event_context *ctx = NULL;
1672 int rotate = 0, remove = 1;
1673
1674 if (cpuctx->ctx.nr_events) {
1675 remove = 0;
1676 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1677 rotate = 1;
1678 }
1679
1680 ctx = cpuctx->task_ctx;
1681 if (ctx && ctx->nr_events) {
1682 remove = 0;
1683 if (ctx->nr_events != ctx->nr_active)
1684 rotate = 1;
1685 }
1686
1687 perf_pmu_disable(cpuctx->ctx.pmu);
1688 perf_ctx_adjust_freq(&cpuctx->ctx, interval);
1689 if (ctx)
1690 perf_ctx_adjust_freq(ctx, interval);
1691
1692 if (!rotate)
1693 goto done;
1694
1695 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1696 if (ctx)
1697 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1698
1699 rotate_ctx(&cpuctx->ctx);
1700 if (ctx)
1701 rotate_ctx(ctx);
1702
1703 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1704 if (ctx)
1705 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1706
1707 done:
1708 if (remove)
1709 list_del_init(&cpuctx->rotation_list);
1710
1711 perf_pmu_enable(cpuctx->ctx.pmu);
1712 }
1713
1714 void perf_event_task_tick(void)
1715 {
1716 struct list_head *head = &__get_cpu_var(rotation_list);
1717 struct perf_cpu_context *cpuctx, *tmp;
1718
1719 WARN_ON(!irqs_disabled());
1720
1721 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
1722 if (cpuctx->jiffies_interval == 1 ||
1723 !(jiffies % cpuctx->jiffies_interval))
1724 perf_rotate_context(cpuctx);
1725 }
1726 }
1727
1728 static int event_enable_on_exec(struct perf_event *event,
1729 struct perf_event_context *ctx)
1730 {
1731 if (!event->attr.enable_on_exec)
1732 return 0;
1733
1734 event->attr.enable_on_exec = 0;
1735 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1736 return 0;
1737
1738 __perf_event_mark_enabled(event, ctx);
1739
1740 return 1;
1741 }
1742
1743 /*
1744 * Enable all of a task's events that have been marked enable-on-exec.
1745 * This expects task == current.
1746 */
1747 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1748 {
1749 struct perf_event *event;
1750 unsigned long flags;
1751 int enabled = 0;
1752 int ret;
1753
1754 local_irq_save(flags);
1755 if (!ctx || !ctx->nr_events)
1756 goto out;
1757
1758 task_ctx_sched_out(ctx, EVENT_ALL);
1759
1760 raw_spin_lock(&ctx->lock);
1761
1762 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1763 ret = event_enable_on_exec(event, ctx);
1764 if (ret)
1765 enabled = 1;
1766 }
1767
1768 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1769 ret = event_enable_on_exec(event, ctx);
1770 if (ret)
1771 enabled = 1;
1772 }
1773
1774 /*
1775 * Unclone this context if we enabled any event.
1776 */
1777 if (enabled)
1778 unclone_ctx(ctx);
1779
1780 raw_spin_unlock(&ctx->lock);
1781
1782 perf_event_context_sched_in(ctx);
1783 out:
1784 local_irq_restore(flags);
1785 }
1786
1787 /*
1788 * Cross CPU call to read the hardware event
1789 */
1790 static void __perf_event_read(void *info)
1791 {
1792 struct perf_event *event = info;
1793 struct perf_event_context *ctx = event->ctx;
1794 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1795
1796 /*
1797 * If this is a task context, we need to check whether it is
1798 * the current task context of this cpu. If not it has been
1799 * scheduled out before the smp call arrived. In that case
1800 * event->count would have been updated to a recent sample
1801 * when the event was scheduled out.
1802 */
1803 if (ctx->task && cpuctx->task_ctx != ctx)
1804 return;
1805
1806 raw_spin_lock(&ctx->lock);
1807 update_context_time(ctx);
1808 update_event_times(event);
1809 raw_spin_unlock(&ctx->lock);
1810
1811 event->pmu->read(event);
1812 }
1813
1814 static inline u64 perf_event_count(struct perf_event *event)
1815 {
1816 return local64_read(&event->count) + atomic64_read(&event->child_count);
1817 }
1818
1819 static u64 perf_event_read(struct perf_event *event)
1820 {
1821 /*
1822 * If event is enabled and currently active on a CPU, update the
1823 * value in the event structure:
1824 */
1825 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1826 smp_call_function_single(event->oncpu,
1827 __perf_event_read, event, 1);
1828 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1829 struct perf_event_context *ctx = event->ctx;
1830 unsigned long flags;
1831
1832 raw_spin_lock_irqsave(&ctx->lock, flags);
1833 /*
1834 * may read while context is not active
1835 * (e.g., thread is blocked), in that case
1836 * we cannot update context time
1837 */
1838 if (ctx->is_active)
1839 update_context_time(ctx);
1840 update_event_times(event);
1841 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1842 }
1843
1844 return perf_event_count(event);
1845 }
1846
1847 /*
1848 * Callchain support
1849 */
1850
1851 struct callchain_cpus_entries {
1852 struct rcu_head rcu_head;
1853 struct perf_callchain_entry *cpu_entries[0];
1854 };
1855
1856 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1857 static atomic_t nr_callchain_events;
1858 static DEFINE_MUTEX(callchain_mutex);
1859 struct callchain_cpus_entries *callchain_cpus_entries;
1860
1861
1862 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1863 struct pt_regs *regs)
1864 {
1865 }
1866
1867 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1868 struct pt_regs *regs)
1869 {
1870 }
1871
1872 static void release_callchain_buffers_rcu(struct rcu_head *head)
1873 {
1874 struct callchain_cpus_entries *entries;
1875 int cpu;
1876
1877 entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1878
1879 for_each_possible_cpu(cpu)
1880 kfree(entries->cpu_entries[cpu]);
1881
1882 kfree(entries);
1883 }
1884
1885 static void release_callchain_buffers(void)
1886 {
1887 struct callchain_cpus_entries *entries;
1888
1889 entries = callchain_cpus_entries;
1890 rcu_assign_pointer(callchain_cpus_entries, NULL);
1891 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1892 }
1893
1894 static int alloc_callchain_buffers(void)
1895 {
1896 int cpu;
1897 int size;
1898 struct callchain_cpus_entries *entries;
1899
1900 /*
1901 * We can't use the percpu allocation API for data that can be
1902 * accessed from NMI. Use a temporary manual per cpu allocation
1903 * until that gets sorted out.
1904 */
1905 size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
1906 num_possible_cpus();
1907
1908 entries = kzalloc(size, GFP_KERNEL);
1909 if (!entries)
1910 return -ENOMEM;
1911
1912 size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1913
1914 for_each_possible_cpu(cpu) {
1915 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
1916 cpu_to_node(cpu));
1917 if (!entries->cpu_entries[cpu])
1918 goto fail;
1919 }
1920
1921 rcu_assign_pointer(callchain_cpus_entries, entries);
1922
1923 return 0;
1924
1925 fail:
1926 for_each_possible_cpu(cpu)
1927 kfree(entries->cpu_entries[cpu]);
1928 kfree(entries);
1929
1930 return -ENOMEM;
1931 }
1932
1933 static int get_callchain_buffers(void)
1934 {
1935 int err = 0;
1936 int count;
1937
1938 mutex_lock(&callchain_mutex);
1939
1940 count = atomic_inc_return(&nr_callchain_events);
1941 if (WARN_ON_ONCE(count < 1)) {
1942 err = -EINVAL;
1943 goto exit;
1944 }
1945
1946 if (count > 1) {
1947 /* If the allocation failed, give up */
1948 if (!callchain_cpus_entries)
1949 err = -ENOMEM;
1950 goto exit;
1951 }
1952
1953 err = alloc_callchain_buffers();
1954 if (err)
1955 release_callchain_buffers();
1956 exit:
1957 mutex_unlock(&callchain_mutex);
1958
1959 return err;
1960 }
1961
1962 static void put_callchain_buffers(void)
1963 {
1964 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
1965 release_callchain_buffers();
1966 mutex_unlock(&callchain_mutex);
1967 }
1968 }
1969
1970 static int get_recursion_context(int *recursion)
1971 {
1972 int rctx;
1973
1974 if (in_nmi())
1975 rctx = 3;
1976 else if (in_irq())
1977 rctx = 2;
1978 else if (in_softirq())
1979 rctx = 1;
1980 else
1981 rctx = 0;
1982
1983 if (recursion[rctx])
1984 return -1;
1985
1986 recursion[rctx]++;
1987 barrier();
1988
1989 return rctx;
1990 }
1991
1992 static inline void put_recursion_context(int *recursion, int rctx)
1993 {
1994 barrier();
1995 recursion[rctx]--;
1996 }
1997
1998 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
1999 {
2000 int cpu;
2001 struct callchain_cpus_entries *entries;
2002
2003 *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
2004 if (*rctx == -1)
2005 return NULL;
2006
2007 entries = rcu_dereference(callchain_cpus_entries);
2008 if (!entries)
2009 return NULL;
2010
2011 cpu = smp_processor_id();
2012
2013 return &entries->cpu_entries[cpu][*rctx];
2014 }
2015
2016 static void
2017 put_callchain_entry(int rctx)
2018 {
2019 put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
2020 }
2021
2022 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2023 {
2024 int rctx;
2025 struct perf_callchain_entry *entry;
2026
2027
2028 entry = get_callchain_entry(&rctx);
2029 if (rctx == -1)
2030 return NULL;
2031
2032 if (!entry)
2033 goto exit_put;
2034
2035 entry->nr = 0;
2036
2037 if (!user_mode(regs)) {
2038 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2039 perf_callchain_kernel(entry, regs);
2040 if (current->mm)
2041 regs = task_pt_regs(current);
2042 else
2043 regs = NULL;
2044 }
2045
2046 if (regs) {
2047 perf_callchain_store(entry, PERF_CONTEXT_USER);
2048 perf_callchain_user(entry, regs);
2049 }
2050
2051 exit_put:
2052 put_callchain_entry(rctx);
2053
2054 return entry;
2055 }
2056
2057 /*
2058 * Initialize the perf_event context in a task_struct:
2059 */
2060 static void __perf_event_init_context(struct perf_event_context *ctx)
2061 {
2062 raw_spin_lock_init(&ctx->lock);
2063 mutex_init(&ctx->mutex);
2064 INIT_LIST_HEAD(&ctx->pinned_groups);
2065 INIT_LIST_HEAD(&ctx->flexible_groups);
2066 INIT_LIST_HEAD(&ctx->event_list);
2067 atomic_set(&ctx->refcount, 1);
2068 }
2069
2070 static struct perf_event_context *
2071 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2072 {
2073 struct perf_event_context *ctx;
2074
2075 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2076 if (!ctx)
2077 return NULL;
2078
2079 __perf_event_init_context(ctx);
2080 if (task) {
2081 ctx->task = task;
2082 get_task_struct(task);
2083 }
2084 ctx->pmu = pmu;
2085
2086 return ctx;
2087 }
2088
2089 static struct task_struct *
2090 find_lively_task_by_vpid(pid_t vpid)
2091 {
2092 struct task_struct *task;
2093 int err;
2094
2095 rcu_read_lock();
2096 if (!vpid)
2097 task = current;
2098 else
2099 task = find_task_by_vpid(vpid);
2100 if (task)
2101 get_task_struct(task);
2102 rcu_read_unlock();
2103
2104 if (!task)
2105 return ERR_PTR(-ESRCH);
2106
2107 /*
2108 * Can't attach events to a dying task.
2109 */
2110 err = -ESRCH;
2111 if (task->flags & PF_EXITING)
2112 goto errout;
2113
2114 /* Reuse ptrace permission checks for now. */
2115 err = -EACCES;
2116 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2117 goto errout;
2118
2119 return task;
2120 errout:
2121 put_task_struct(task);
2122 return ERR_PTR(err);
2123
2124 }
2125
2126 static struct perf_event_context *
2127 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2128 {
2129 struct perf_event_context *ctx;
2130 struct perf_cpu_context *cpuctx;
2131 unsigned long flags;
2132 int ctxn, err;
2133
2134 if (!task && cpu != -1) {
2135 /* Must be root to operate on a CPU event: */
2136 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2137 return ERR_PTR(-EACCES);
2138
2139 if (cpu < 0 || cpu >= nr_cpumask_bits)
2140 return ERR_PTR(-EINVAL);
2141
2142 /*
2143 * We could be clever and allow to attach a event to an
2144 * offline CPU and activate it when the CPU comes up, but
2145 * that's for later.
2146 */
2147 if (!cpu_online(cpu))
2148 return ERR_PTR(-ENODEV);
2149
2150 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2151 ctx = &cpuctx->ctx;
2152 get_ctx(ctx);
2153
2154 return ctx;
2155 }
2156
2157 err = -EINVAL;
2158 ctxn = pmu->task_ctx_nr;
2159 if (ctxn < 0)
2160 goto errout;
2161
2162 retry:
2163 ctx = perf_lock_task_context(task, ctxn, &flags);
2164 if (ctx) {
2165 unclone_ctx(ctx);
2166 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2167 }
2168
2169 if (!ctx) {
2170 ctx = alloc_perf_context(pmu, task);
2171 err = -ENOMEM;
2172 if (!ctx)
2173 goto errout;
2174
2175 get_ctx(ctx);
2176
2177 if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2178 /*
2179 * We raced with some other task; use
2180 * the context they set.
2181 */
2182 put_task_struct(task);
2183 kfree(ctx);
2184 goto retry;
2185 }
2186 }
2187
2188 put_task_struct(task);
2189 return ctx;
2190
2191 errout:
2192 put_task_struct(task);
2193 return ERR_PTR(err);
2194 }
2195
2196 static void perf_event_free_filter(struct perf_event *event);
2197
2198 static void free_event_rcu(struct rcu_head *head)
2199 {
2200 struct perf_event *event;
2201
2202 event = container_of(head, struct perf_event, rcu_head);
2203 if (event->ns)
2204 put_pid_ns(event->ns);
2205 perf_event_free_filter(event);
2206 kfree(event);
2207 }
2208
2209 static void perf_pending_sync(struct perf_event *event);
2210 static void perf_buffer_put(struct perf_buffer *buffer);
2211
2212 static void free_event(struct perf_event *event)
2213 {
2214 perf_pending_sync(event);
2215
2216 if (!event->parent) {
2217 atomic_dec(&nr_events);
2218 if (event->attr.mmap || event->attr.mmap_data)
2219 atomic_dec(&nr_mmap_events);
2220 if (event->attr.comm)
2221 atomic_dec(&nr_comm_events);
2222 if (event->attr.task)
2223 atomic_dec(&nr_task_events);
2224 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2225 put_callchain_buffers();
2226 }
2227
2228 if (event->buffer) {
2229 perf_buffer_put(event->buffer);
2230 event->buffer = NULL;
2231 }
2232
2233 if (event->destroy)
2234 event->destroy(event);
2235
2236 if (event->ctx)
2237 put_ctx(event->ctx);
2238
2239 call_rcu(&event->rcu_head, free_event_rcu);
2240 }
2241
2242 int perf_event_release_kernel(struct perf_event *event)
2243 {
2244 struct perf_event_context *ctx = event->ctx;
2245
2246 /*
2247 * Remove from the PMU, can't get re-enabled since we got
2248 * here because the last ref went.
2249 */
2250 perf_event_disable(event);
2251
2252 WARN_ON_ONCE(ctx->parent_ctx);
2253 /*
2254 * There are two ways this annotation is useful:
2255 *
2256 * 1) there is a lock recursion from perf_event_exit_task
2257 * see the comment there.
2258 *
2259 * 2) there is a lock-inversion with mmap_sem through
2260 * perf_event_read_group(), which takes faults while
2261 * holding ctx->mutex, however this is called after
2262 * the last filedesc died, so there is no possibility
2263 * to trigger the AB-BA case.
2264 */
2265 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2266 raw_spin_lock_irq(&ctx->lock);
2267 perf_group_detach(event);
2268 list_del_event(event, ctx);
2269 raw_spin_unlock_irq(&ctx->lock);
2270 mutex_unlock(&ctx->mutex);
2271
2272 mutex_lock(&event->owner->perf_event_mutex);
2273 list_del_init(&event->owner_entry);
2274 mutex_unlock(&event->owner->perf_event_mutex);
2275 put_task_struct(event->owner);
2276
2277 free_event(event);
2278
2279 return 0;
2280 }
2281 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2282
2283 /*
2284 * Called when the last reference to the file is gone.
2285 */
2286 static int perf_release(struct inode *inode, struct file *file)
2287 {
2288 struct perf_event *event = file->private_data;
2289
2290 file->private_data = NULL;
2291
2292 return perf_event_release_kernel(event);
2293 }
2294
2295 static int perf_event_read_size(struct perf_event *event)
2296 {
2297 int entry = sizeof(u64); /* value */
2298 int size = 0;
2299 int nr = 1;
2300
2301 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2302 size += sizeof(u64);
2303
2304 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2305 size += sizeof(u64);
2306
2307 if (event->attr.read_format & PERF_FORMAT_ID)
2308 entry += sizeof(u64);
2309
2310 if (event->attr.read_format & PERF_FORMAT_GROUP) {
2311 nr += event->group_leader->nr_siblings;
2312 size += sizeof(u64);
2313 }
2314
2315 size += entry * nr;
2316
2317 return size;
2318 }
2319
2320 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2321 {
2322 struct perf_event *child;
2323 u64 total = 0;
2324
2325 *enabled = 0;
2326 *running = 0;
2327
2328 mutex_lock(&event->child_mutex);
2329 total += perf_event_read(event);
2330 *enabled += event->total_time_enabled +
2331 atomic64_read(&event->child_total_time_enabled);
2332 *running += event->total_time_running +
2333 atomic64_read(&event->child_total_time_running);
2334
2335 list_for_each_entry(child, &event->child_list, child_list) {
2336 total += perf_event_read(child);
2337 *enabled += child->total_time_enabled;
2338 *running += child->total_time_running;
2339 }
2340 mutex_unlock(&event->child_mutex);
2341
2342 return total;
2343 }
2344 EXPORT_SYMBOL_GPL(perf_event_read_value);
2345
2346 static int perf_event_read_group(struct perf_event *event,
2347 u64 read_format, char __user *buf)
2348 {
2349 struct perf_event *leader = event->group_leader, *sub;
2350 int n = 0, size = 0, ret = -EFAULT;
2351 struct perf_event_context *ctx = leader->ctx;
2352 u64 values[5];
2353 u64 count, enabled, running;
2354
2355 mutex_lock(&ctx->mutex);
2356 count = perf_event_read_value(leader, &enabled, &running);
2357
2358 values[n++] = 1 + leader->nr_siblings;
2359 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2360 values[n++] = enabled;
2361 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2362 values[n++] = running;
2363 values[n++] = count;
2364 if (read_format & PERF_FORMAT_ID)
2365 values[n++] = primary_event_id(leader);
2366
2367 size = n * sizeof(u64);
2368
2369 if (copy_to_user(buf, values, size))
2370 goto unlock;
2371
2372 ret = size;
2373
2374 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2375 n = 0;
2376
2377 values[n++] = perf_event_read_value(sub, &enabled, &running);
2378 if (read_format & PERF_FORMAT_ID)
2379 values[n++] = primary_event_id(sub);
2380
2381 size = n * sizeof(u64);
2382
2383 if (copy_to_user(buf + ret, values, size)) {
2384 ret = -EFAULT;
2385 goto unlock;
2386 }
2387
2388 ret += size;
2389 }
2390 unlock:
2391 mutex_unlock(&ctx->mutex);
2392
2393 return ret;
2394 }
2395
2396 static int perf_event_read_one(struct perf_event *event,
2397 u64 read_format, char __user *buf)
2398 {
2399 u64 enabled, running;
2400 u64 values[4];
2401 int n = 0;
2402
2403 values[n++] = perf_event_read_value(event, &enabled, &running);
2404 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2405 values[n++] = enabled;
2406 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2407 values[n++] = running;
2408 if (read_format & PERF_FORMAT_ID)
2409 values[n++] = primary_event_id(event);
2410
2411 if (copy_to_user(buf, values, n * sizeof(u64)))
2412 return -EFAULT;
2413
2414 return n * sizeof(u64);
2415 }
2416
2417 /*
2418 * Read the performance event - simple non blocking version for now
2419 */
2420 static ssize_t
2421 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2422 {
2423 u64 read_format = event->attr.read_format;
2424 int ret;
2425
2426 /*
2427 * Return end-of-file for a read on a event that is in
2428 * error state (i.e. because it was pinned but it couldn't be
2429 * scheduled on to the CPU at some point).
2430 */
2431 if (event->state == PERF_EVENT_STATE_ERROR)
2432 return 0;
2433
2434 if (count < perf_event_read_size(event))
2435 return -ENOSPC;
2436
2437 WARN_ON_ONCE(event->ctx->parent_ctx);
2438 if (read_format & PERF_FORMAT_GROUP)
2439 ret = perf_event_read_group(event, read_format, buf);
2440 else
2441 ret = perf_event_read_one(event, read_format, buf);
2442
2443 return ret;
2444 }
2445
2446 static ssize_t
2447 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2448 {
2449 struct perf_event *event = file->private_data;
2450
2451 return perf_read_hw(event, buf, count);
2452 }
2453
2454 static unsigned int perf_poll(struct file *file, poll_table *wait)
2455 {
2456 struct perf_event *event = file->private_data;
2457 struct perf_buffer *buffer;
2458 unsigned int events = POLL_HUP;
2459
2460 rcu_read_lock();
2461 buffer = rcu_dereference(event->buffer);
2462 if (buffer)
2463 events = atomic_xchg(&buffer->poll, 0);
2464 rcu_read_unlock();
2465
2466 poll_wait(file, &event->waitq, wait);
2467
2468 return events;
2469 }
2470
2471 static void perf_event_reset(struct perf_event *event)
2472 {
2473 (void)perf_event_read(event);
2474 local64_set(&event->count, 0);
2475 perf_event_update_userpage(event);
2476 }
2477
2478 /*
2479 * Holding the top-level event's child_mutex means that any
2480 * descendant process that has inherited this event will block
2481 * in sync_child_event if it goes to exit, thus satisfying the
2482 * task existence requirements of perf_event_enable/disable.
2483 */
2484 static void perf_event_for_each_child(struct perf_event *event,
2485 void (*func)(struct perf_event *))
2486 {
2487 struct perf_event *child;
2488
2489 WARN_ON_ONCE(event->ctx->parent_ctx);
2490 mutex_lock(&event->child_mutex);
2491 func(event);
2492 list_for_each_entry(child, &event->child_list, child_list)
2493 func(child);
2494 mutex_unlock(&event->child_mutex);
2495 }
2496
2497 static void perf_event_for_each(struct perf_event *event,
2498 void (*func)(struct perf_event *))
2499 {
2500 struct perf_event_context *ctx = event->ctx;
2501 struct perf_event *sibling;
2502
2503 WARN_ON_ONCE(ctx->parent_ctx);
2504 mutex_lock(&ctx->mutex);
2505 event = event->group_leader;
2506
2507 perf_event_for_each_child(event, func);
2508 func(event);
2509 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2510 perf_event_for_each_child(event, func);
2511 mutex_unlock(&ctx->mutex);
2512 }
2513
2514 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2515 {
2516 struct perf_event_context *ctx = event->ctx;
2517 unsigned long size;
2518 int ret = 0;
2519 u64 value;
2520
2521 if (!event->attr.sample_period)
2522 return -EINVAL;
2523
2524 size = copy_from_user(&value, arg, sizeof(value));
2525 if (size != sizeof(value))
2526 return -EFAULT;
2527
2528 if (!value)
2529 return -EINVAL;
2530
2531 raw_spin_lock_irq(&ctx->lock);
2532 if (event->attr.freq) {
2533 if (value > sysctl_perf_event_sample_rate) {
2534 ret = -EINVAL;
2535 goto unlock;
2536 }
2537
2538 event->attr.sample_freq = value;
2539 } else {
2540 event->attr.sample_period = value;
2541 event->hw.sample_period = value;
2542 }
2543 unlock:
2544 raw_spin_unlock_irq(&ctx->lock);
2545
2546 return ret;
2547 }
2548
2549 static const struct file_operations perf_fops;
2550
2551 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2552 {
2553 struct file *file;
2554
2555 file = fget_light(fd, fput_needed);
2556 if (!file)
2557 return ERR_PTR(-EBADF);
2558
2559 if (file->f_op != &perf_fops) {
2560 fput_light(file, *fput_needed);
2561 *fput_needed = 0;
2562 return ERR_PTR(-EBADF);
2563 }
2564
2565 return file->private_data;
2566 }
2567
2568 static int perf_event_set_output(struct perf_event *event,
2569 struct perf_event *output_event);
2570 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2571
2572 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2573 {
2574 struct perf_event *event = file->private_data;
2575 void (*func)(struct perf_event *);
2576 u32 flags = arg;
2577
2578 switch (cmd) {
2579 case PERF_EVENT_IOC_ENABLE:
2580 func = perf_event_enable;
2581 break;
2582 case PERF_EVENT_IOC_DISABLE:
2583 func = perf_event_disable;
2584 break;
2585 case PERF_EVENT_IOC_RESET:
2586 func = perf_event_reset;
2587 break;
2588
2589 case PERF_EVENT_IOC_REFRESH:
2590 return perf_event_refresh(event, arg);
2591
2592 case PERF_EVENT_IOC_PERIOD:
2593 return perf_event_period(event, (u64 __user *)arg);
2594
2595 case PERF_EVENT_IOC_SET_OUTPUT:
2596 {
2597 struct perf_event *output_event = NULL;
2598 int fput_needed = 0;
2599 int ret;
2600
2601 if (arg != -1) {
2602 output_event = perf_fget_light(arg, &fput_needed);
2603 if (IS_ERR(output_event))
2604 return PTR_ERR(output_event);
2605 }
2606
2607 ret = perf_event_set_output(event, output_event);
2608 if (output_event)
2609 fput_light(output_event->filp, fput_needed);
2610
2611 return ret;
2612 }
2613
2614 case PERF_EVENT_IOC_SET_FILTER:
2615 return perf_event_set_filter(event, (void __user *)arg);
2616
2617 default:
2618 return -ENOTTY;
2619 }
2620
2621 if (flags & PERF_IOC_FLAG_GROUP)
2622 perf_event_for_each(event, func);
2623 else
2624 perf_event_for_each_child(event, func);
2625
2626 return 0;
2627 }
2628
2629 int perf_event_task_enable(void)
2630 {
2631 struct perf_event *event;
2632
2633 mutex_lock(&current->perf_event_mutex);
2634 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2635 perf_event_for_each_child(event, perf_event_enable);
2636 mutex_unlock(&current->perf_event_mutex);
2637
2638 return 0;
2639 }
2640
2641 int perf_event_task_disable(void)
2642 {
2643 struct perf_event *event;
2644
2645 mutex_lock(&current->perf_event_mutex);
2646 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2647 perf_event_for_each_child(event, perf_event_disable);
2648 mutex_unlock(&current->perf_event_mutex);
2649
2650 return 0;
2651 }
2652
2653 #ifndef PERF_EVENT_INDEX_OFFSET
2654 # define PERF_EVENT_INDEX_OFFSET 0
2655 #endif
2656
2657 static int perf_event_index(struct perf_event *event)
2658 {
2659 if (event->hw.state & PERF_HES_STOPPED)
2660 return 0;
2661
2662 if (event->state != PERF_EVENT_STATE_ACTIVE)
2663 return 0;
2664
2665 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2666 }
2667
2668 /*
2669 * Callers need to ensure there can be no nesting of this function, otherwise
2670 * the seqlock logic goes bad. We can not serialize this because the arch
2671 * code calls this from NMI context.
2672 */
2673 void perf_event_update_userpage(struct perf_event *event)
2674 {
2675 struct perf_event_mmap_page *userpg;
2676 struct perf_buffer *buffer;
2677
2678 rcu_read_lock();
2679 buffer = rcu_dereference(event->buffer);
2680 if (!buffer)
2681 goto unlock;
2682
2683 userpg = buffer->user_page;
2684
2685 /*
2686 * Disable preemption so as to not let the corresponding user-space
2687 * spin too long if we get preempted.
2688 */
2689 preempt_disable();
2690 ++userpg->lock;
2691 barrier();
2692 userpg->index = perf_event_index(event);
2693 userpg->offset = perf_event_count(event);
2694 if (event->state == PERF_EVENT_STATE_ACTIVE)
2695 userpg->offset -= local64_read(&event->hw.prev_count);
2696
2697 userpg->time_enabled = event->total_time_enabled +
2698 atomic64_read(&event->child_total_time_enabled);
2699
2700 userpg->time_running = event->total_time_running +
2701 atomic64_read(&event->child_total_time_running);
2702
2703 barrier();
2704 ++userpg->lock;
2705 preempt_enable();
2706 unlock:
2707 rcu_read_unlock();
2708 }
2709
2710 static unsigned long perf_data_size(struct perf_buffer *buffer);
2711
2712 static void
2713 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2714 {
2715 long max_size = perf_data_size(buffer);
2716
2717 if (watermark)
2718 buffer->watermark = min(max_size, watermark);
2719
2720 if (!buffer->watermark)
2721 buffer->watermark = max_size / 2;
2722
2723 if (flags & PERF_BUFFER_WRITABLE)
2724 buffer->writable = 1;
2725
2726 atomic_set(&buffer->refcount, 1);
2727 }
2728
2729 #ifndef CONFIG_PERF_USE_VMALLOC
2730
2731 /*
2732 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2733 */
2734
2735 static struct page *
2736 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2737 {
2738 if (pgoff > buffer->nr_pages)
2739 return NULL;
2740
2741 if (pgoff == 0)
2742 return virt_to_page(buffer->user_page);
2743
2744 return virt_to_page(buffer->data_pages[pgoff - 1]);
2745 }
2746
2747 static void *perf_mmap_alloc_page(int cpu)
2748 {
2749 struct page *page;
2750 int node;
2751
2752 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2753 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2754 if (!page)
2755 return NULL;
2756
2757 return page_address(page);
2758 }
2759
2760 static struct perf_buffer *
2761 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2762 {
2763 struct perf_buffer *buffer;
2764 unsigned long size;
2765 int i;
2766
2767 size = sizeof(struct perf_buffer);
2768 size += nr_pages * sizeof(void *);
2769
2770 buffer = kzalloc(size, GFP_KERNEL);
2771 if (!buffer)
2772 goto fail;
2773
2774 buffer->user_page = perf_mmap_alloc_page(cpu);
2775 if (!buffer->user_page)
2776 goto fail_user_page;
2777
2778 for (i = 0; i < nr_pages; i++) {
2779 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2780 if (!buffer->data_pages[i])
2781 goto fail_data_pages;
2782 }
2783
2784 buffer->nr_pages = nr_pages;
2785
2786 perf_buffer_init(buffer, watermark, flags);
2787
2788 return buffer;
2789
2790 fail_data_pages:
2791 for (i--; i >= 0; i--)
2792 free_page((unsigned long)buffer->data_pages[i]);
2793
2794 free_page((unsigned long)buffer->user_page);
2795
2796 fail_user_page:
2797 kfree(buffer);
2798
2799 fail:
2800 return NULL;
2801 }
2802
2803 static void perf_mmap_free_page(unsigned long addr)
2804 {
2805 struct page *page = virt_to_page((void *)addr);
2806
2807 page->mapping = NULL;
2808 __free_page(page);
2809 }
2810
2811 static void perf_buffer_free(struct perf_buffer *buffer)
2812 {
2813 int i;
2814
2815 perf_mmap_free_page((unsigned long)buffer->user_page);
2816 for (i = 0; i < buffer->nr_pages; i++)
2817 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2818 kfree(buffer);
2819 }
2820
2821 static inline int page_order(struct perf_buffer *buffer)
2822 {
2823 return 0;
2824 }
2825
2826 #else
2827
2828 /*
2829 * Back perf_mmap() with vmalloc memory.
2830 *
2831 * Required for architectures that have d-cache aliasing issues.
2832 */
2833
2834 static inline int page_order(struct perf_buffer *buffer)
2835 {
2836 return buffer->page_order;
2837 }
2838
2839 static struct page *
2840 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2841 {
2842 if (pgoff > (1UL << page_order(buffer)))
2843 return NULL;
2844
2845 return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2846 }
2847
2848 static void perf_mmap_unmark_page(void *addr)
2849 {
2850 struct page *page = vmalloc_to_page(addr);
2851
2852 page->mapping = NULL;
2853 }
2854
2855 static void perf_buffer_free_work(struct work_struct *work)
2856 {
2857 struct perf_buffer *buffer;
2858 void *base;
2859 int i, nr;
2860
2861 buffer = container_of(work, struct perf_buffer, work);
2862 nr = 1 << page_order(buffer);
2863
2864 base = buffer->user_page;
2865 for (i = 0; i < nr + 1; i++)
2866 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2867
2868 vfree(base);
2869 kfree(buffer);
2870 }
2871
2872 static void perf_buffer_free(struct perf_buffer *buffer)
2873 {
2874 schedule_work(&buffer->work);
2875 }
2876
2877 static struct perf_buffer *
2878 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2879 {
2880 struct perf_buffer *buffer;
2881 unsigned long size;
2882 void *all_buf;
2883
2884 size = sizeof(struct perf_buffer);
2885 size += sizeof(void *);
2886
2887 buffer = kzalloc(size, GFP_KERNEL);
2888 if (!buffer)
2889 goto fail;
2890
2891 INIT_WORK(&buffer->work, perf_buffer_free_work);
2892
2893 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2894 if (!all_buf)
2895 goto fail_all_buf;
2896
2897 buffer->user_page = all_buf;
2898 buffer->data_pages[0] = all_buf + PAGE_SIZE;
2899 buffer->page_order = ilog2(nr_pages);
2900 buffer->nr_pages = 1;
2901
2902 perf_buffer_init(buffer, watermark, flags);
2903
2904 return buffer;
2905
2906 fail_all_buf:
2907 kfree(buffer);
2908
2909 fail:
2910 return NULL;
2911 }
2912
2913 #endif
2914
2915 static unsigned long perf_data_size(struct perf_buffer *buffer)
2916 {
2917 return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2918 }
2919
2920 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2921 {
2922 struct perf_event *event = vma->vm_file->private_data;
2923 struct perf_buffer *buffer;
2924 int ret = VM_FAULT_SIGBUS;
2925
2926 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2927 if (vmf->pgoff == 0)
2928 ret = 0;
2929 return ret;
2930 }
2931
2932 rcu_read_lock();
2933 buffer = rcu_dereference(event->buffer);
2934 if (!buffer)
2935 goto unlock;
2936
2937 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2938 goto unlock;
2939
2940 vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2941 if (!vmf->page)
2942 goto unlock;
2943
2944 get_page(vmf->page);
2945 vmf->page->mapping = vma->vm_file->f_mapping;
2946 vmf->page->index = vmf->pgoff;
2947
2948 ret = 0;
2949 unlock:
2950 rcu_read_unlock();
2951
2952 return ret;
2953 }
2954
2955 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2956 {
2957 struct perf_buffer *buffer;
2958
2959 buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
2960 perf_buffer_free(buffer);
2961 }
2962
2963 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2964 {
2965 struct perf_buffer *buffer;
2966
2967 rcu_read_lock();
2968 buffer = rcu_dereference(event->buffer);
2969 if (buffer) {
2970 if (!atomic_inc_not_zero(&buffer->refcount))
2971 buffer = NULL;
2972 }
2973 rcu_read_unlock();
2974
2975 return buffer;
2976 }
2977
2978 static void perf_buffer_put(struct perf_buffer *buffer)
2979 {
2980 if (!atomic_dec_and_test(&buffer->refcount))
2981 return;
2982
2983 call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2984 }
2985
2986 static void perf_mmap_open(struct vm_area_struct *vma)
2987 {
2988 struct perf_event *event = vma->vm_file->private_data;
2989
2990 atomic_inc(&event->mmap_count);
2991 }
2992
2993 static void perf_mmap_close(struct vm_area_struct *vma)
2994 {
2995 struct perf_event *event = vma->vm_file->private_data;
2996
2997 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2998 unsigned long size = perf_data_size(event->buffer);
2999 struct user_struct *user = event->mmap_user;
3000 struct perf_buffer *buffer = event->buffer;
3001
3002 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3003 vma->vm_mm->locked_vm -= event->mmap_locked;
3004 rcu_assign_pointer(event->buffer, NULL);
3005 mutex_unlock(&event->mmap_mutex);
3006
3007 perf_buffer_put(buffer);
3008 free_uid(user);
3009 }
3010 }
3011
3012 static const struct vm_operations_struct perf_mmap_vmops = {
3013 .open = perf_mmap_open,
3014 .close = perf_mmap_close,
3015 .fault = perf_mmap_fault,
3016 .page_mkwrite = perf_mmap_fault,
3017 };
3018
3019 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3020 {
3021 struct perf_event *event = file->private_data;
3022 unsigned long user_locked, user_lock_limit;
3023 struct user_struct *user = current_user();
3024 unsigned long locked, lock_limit;
3025 struct perf_buffer *buffer;
3026 unsigned long vma_size;
3027 unsigned long nr_pages;
3028 long user_extra, extra;
3029 int ret = 0, flags = 0;
3030
3031 /*
3032 * Don't allow mmap() of inherited per-task counters. This would
3033 * create a performance issue due to all children writing to the
3034 * same buffer.
3035 */
3036 if (event->cpu == -1 && event->attr.inherit)
3037 return -EINVAL;
3038
3039 if (!(vma->vm_flags & VM_SHARED))
3040 return -EINVAL;
3041
3042 vma_size = vma->vm_end - vma->vm_start;
3043 nr_pages = (vma_size / PAGE_SIZE) - 1;
3044
3045 /*
3046 * If we have buffer pages ensure they're a power-of-two number, so we
3047 * can do bitmasks instead of modulo.
3048 */
3049 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3050 return -EINVAL;
3051
3052 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3053 return -EINVAL;
3054
3055 if (vma->vm_pgoff != 0)
3056 return -EINVAL;
3057
3058 WARN_ON_ONCE(event->ctx->parent_ctx);
3059 mutex_lock(&event->mmap_mutex);
3060 if (event->buffer) {
3061 if (event->buffer->nr_pages == nr_pages)
3062 atomic_inc(&event->buffer->refcount);
3063 else
3064 ret = -EINVAL;
3065 goto unlock;
3066 }
3067
3068 user_extra = nr_pages + 1;
3069 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3070
3071 /*
3072 * Increase the limit linearly with more CPUs:
3073 */
3074 user_lock_limit *= num_online_cpus();
3075
3076 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3077
3078 extra = 0;
3079 if (user_locked > user_lock_limit)
3080 extra = user_locked - user_lock_limit;
3081
3082 lock_limit = rlimit(RLIMIT_MEMLOCK);
3083 lock_limit >>= PAGE_SHIFT;
3084 locked = vma->vm_mm->locked_vm + extra;
3085
3086 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3087 !capable(CAP_IPC_LOCK)) {
3088 ret = -EPERM;
3089 goto unlock;
3090 }
3091
3092 WARN_ON(event->buffer);
3093
3094 if (vma->vm_flags & VM_WRITE)
3095 flags |= PERF_BUFFER_WRITABLE;
3096
3097 buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3098 event->cpu, flags);
3099 if (!buffer) {
3100 ret = -ENOMEM;
3101 goto unlock;
3102 }
3103 rcu_assign_pointer(event->buffer, buffer);
3104
3105 atomic_long_add(user_extra, &user->locked_vm);
3106 event->mmap_locked = extra;
3107 event->mmap_user = get_current_user();
3108 vma->vm_mm->locked_vm += event->mmap_locked;
3109
3110 unlock:
3111 if (!ret)
3112 atomic_inc(&event->mmap_count);
3113 mutex_unlock(&event->mmap_mutex);
3114
3115 vma->vm_flags |= VM_RESERVED;
3116 vma->vm_ops = &perf_mmap_vmops;
3117
3118 return ret;
3119 }
3120
3121 static int perf_fasync(int fd, struct file *filp, int on)
3122 {
3123 struct inode *inode = filp->f_path.dentry->d_inode;
3124 struct perf_event *event = filp->private_data;
3125 int retval;
3126
3127 mutex_lock(&inode->i_mutex);
3128 retval = fasync_helper(fd, filp, on, &event->fasync);
3129 mutex_unlock(&inode->i_mutex);
3130
3131 if (retval < 0)
3132 return retval;
3133
3134 return 0;
3135 }
3136
3137 static const struct file_operations perf_fops = {
3138 .llseek = no_llseek,
3139 .release = perf_release,
3140 .read = perf_read,
3141 .poll = perf_poll,
3142 .unlocked_ioctl = perf_ioctl,
3143 .compat_ioctl = perf_ioctl,
3144 .mmap = perf_mmap,
3145 .fasync = perf_fasync,
3146 };
3147
3148 /*
3149 * Perf event wakeup
3150 *
3151 * If there's data, ensure we set the poll() state and publish everything
3152 * to user-space before waking everybody up.
3153 */
3154
3155 void perf_event_wakeup(struct perf_event *event)
3156 {
3157 wake_up_all(&event->waitq);
3158
3159 if (event->pending_kill) {
3160 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3161 event->pending_kill = 0;
3162 }
3163 }
3164
3165 /*
3166 * Pending wakeups
3167 *
3168 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
3169 *
3170 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
3171 * single linked list and use cmpxchg() to add entries lockless.
3172 */
3173
3174 static void perf_pending_event(struct perf_pending_entry *entry)
3175 {
3176 struct perf_event *event = container_of(entry,
3177 struct perf_event, pending);
3178
3179 if (event->pending_disable) {
3180 event->pending_disable = 0;
3181 __perf_event_disable(event);
3182 }
3183
3184 if (event->pending_wakeup) {
3185 event->pending_wakeup = 0;
3186 perf_event_wakeup(event);
3187 }
3188 }
3189
3190 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
3191
3192 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
3193 PENDING_TAIL,
3194 };
3195
3196 static void perf_pending_queue(struct perf_pending_entry *entry,
3197 void (*func)(struct perf_pending_entry *))
3198 {
3199 struct perf_pending_entry **head;
3200
3201 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
3202 return;
3203
3204 entry->func = func;
3205
3206 head = &get_cpu_var(perf_pending_head);
3207
3208 do {
3209 entry->next = *head;
3210 } while (cmpxchg(head, entry->next, entry) != entry->next);
3211
3212 set_perf_event_pending();
3213
3214 put_cpu_var(perf_pending_head);
3215 }
3216
3217 static int __perf_pending_run(void)
3218 {
3219 struct perf_pending_entry *list;
3220 int nr = 0;
3221
3222 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
3223 while (list != PENDING_TAIL) {
3224 void (*func)(struct perf_pending_entry *);
3225 struct perf_pending_entry *entry = list;
3226
3227 list = list->next;
3228
3229 func = entry->func;
3230 entry->next = NULL;
3231 /*
3232 * Ensure we observe the unqueue before we issue the wakeup,
3233 * so that we won't be waiting forever.
3234 * -- see perf_not_pending().
3235 */
3236 smp_wmb();
3237
3238 func(entry);
3239 nr++;
3240 }
3241
3242 return nr;
3243 }
3244
3245 static inline int perf_not_pending(struct perf_event *event)
3246 {
3247 /*
3248 * If we flush on whatever cpu we run, there is a chance we don't
3249 * need to wait.
3250 */
3251 get_cpu();
3252 __perf_pending_run();
3253 put_cpu();
3254
3255 /*
3256 * Ensure we see the proper queue state before going to sleep
3257 * so that we do not miss the wakeup. -- see perf_pending_handle()
3258 */
3259 smp_rmb();
3260 return event->pending.next == NULL;
3261 }
3262
3263 static void perf_pending_sync(struct perf_event *event)
3264 {
3265 wait_event(event->waitq, perf_not_pending(event));
3266 }
3267
3268 void perf_event_do_pending(void)
3269 {
3270 __perf_pending_run();
3271 }
3272
3273 /*
3274 * We assume there is only KVM supporting the callbacks.
3275 * Later on, we might change it to a list if there is
3276 * another virtualization implementation supporting the callbacks.
3277 */
3278 struct perf_guest_info_callbacks *perf_guest_cbs;
3279
3280 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3281 {
3282 perf_guest_cbs = cbs;
3283 return 0;
3284 }
3285 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3286
3287 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3288 {
3289 perf_guest_cbs = NULL;
3290 return 0;
3291 }
3292 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3293
3294 /*
3295 * Output
3296 */
3297 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3298 unsigned long offset, unsigned long head)
3299 {
3300 unsigned long mask;
3301
3302 if (!buffer->writable)
3303 return true;
3304
3305 mask = perf_data_size(buffer) - 1;
3306
3307 offset = (offset - tail) & mask;
3308 head = (head - tail) & mask;
3309
3310 if ((int)(head - offset) < 0)
3311 return false;
3312
3313 return true;
3314 }
3315
3316 static void perf_output_wakeup(struct perf_output_handle *handle)
3317 {
3318 atomic_set(&handle->buffer->poll, POLL_IN);
3319
3320 if (handle->nmi) {
3321 handle->event->pending_wakeup = 1;
3322 perf_pending_queue(&handle->event->pending,
3323 perf_pending_event);
3324 } else
3325 perf_event_wakeup(handle->event);
3326 }
3327
3328 /*
3329 * We need to ensure a later event_id doesn't publish a head when a former
3330 * event isn't done writing. However since we need to deal with NMIs we
3331 * cannot fully serialize things.
3332 *
3333 * We only publish the head (and generate a wakeup) when the outer-most
3334 * event completes.
3335 */
3336 static void perf_output_get_handle(struct perf_output_handle *handle)
3337 {
3338 struct perf_buffer *buffer = handle->buffer;
3339
3340 preempt_disable();
3341 local_inc(&buffer->nest);
3342 handle->wakeup = local_read(&buffer->wakeup);
3343 }
3344
3345 static void perf_output_put_handle(struct perf_output_handle *handle)
3346 {
3347 struct perf_buffer *buffer = handle->buffer;
3348 unsigned long head;
3349
3350 again:
3351 head = local_read(&buffer->head);
3352
3353 /*
3354 * IRQ/NMI can happen here, which means we can miss a head update.
3355 */
3356
3357 if (!local_dec_and_test(&buffer->nest))
3358 goto out;
3359
3360 /*
3361 * Publish the known good head. Rely on the full barrier implied
3362 * by atomic_dec_and_test() order the buffer->head read and this
3363 * write.
3364 */
3365 buffer->user_page->data_head = head;
3366
3367 /*
3368 * Now check if we missed an update, rely on the (compiler)
3369 * barrier in atomic_dec_and_test() to re-read buffer->head.
3370 */
3371 if (unlikely(head != local_read(&buffer->head))) {
3372 local_inc(&buffer->nest);
3373 goto again;
3374 }
3375
3376 if (handle->wakeup != local_read(&buffer->wakeup))
3377 perf_output_wakeup(handle);
3378
3379 out:
3380 preempt_enable();
3381 }
3382
3383 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3384 const void *buf, unsigned int len)
3385 {
3386 do {
3387 unsigned long size = min_t(unsigned long, handle->size, len);
3388
3389 memcpy(handle->addr, buf, size);
3390
3391 len -= size;
3392 handle->addr += size;
3393 buf += size;
3394 handle->size -= size;
3395 if (!handle->size) {
3396 struct perf_buffer *buffer = handle->buffer;
3397
3398 handle->page++;
3399 handle->page &= buffer->nr_pages - 1;
3400 handle->addr = buffer->data_pages[handle->page];
3401 handle->size = PAGE_SIZE << page_order(buffer);
3402 }
3403 } while (len);
3404 }
3405
3406 int perf_output_begin(struct perf_output_handle *handle,
3407 struct perf_event *event, unsigned int size,
3408 int nmi, int sample)
3409 {
3410 struct perf_buffer *buffer;
3411 unsigned long tail, offset, head;
3412 int have_lost;
3413 struct {
3414 struct perf_event_header header;
3415 u64 id;
3416 u64 lost;
3417 } lost_event;
3418
3419 rcu_read_lock();
3420 /*
3421 * For inherited events we send all the output towards the parent.
3422 */
3423 if (event->parent)
3424 event = event->parent;
3425
3426 buffer = rcu_dereference(event->buffer);
3427 if (!buffer)
3428 goto out;
3429
3430 handle->buffer = buffer;
3431 handle->event = event;
3432 handle->nmi = nmi;
3433 handle->sample = sample;
3434
3435 if (!buffer->nr_pages)
3436 goto out;
3437
3438 have_lost = local_read(&buffer->lost);
3439 if (have_lost)
3440 size += sizeof(lost_event);
3441
3442 perf_output_get_handle(handle);
3443
3444 do {
3445 /*
3446 * Userspace could choose to issue a mb() before updating the
3447 * tail pointer. So that all reads will be completed before the
3448 * write is issued.
3449 */
3450 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3451 smp_rmb();
3452 offset = head = local_read(&buffer->head);
3453 head += size;
3454 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3455 goto fail;
3456 } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3457
3458 if (head - local_read(&buffer->wakeup) > buffer->watermark)
3459 local_add(buffer->watermark, &buffer->wakeup);
3460
3461 handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3462 handle->page &= buffer->nr_pages - 1;
3463 handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3464 handle->addr = buffer->data_pages[handle->page];
3465 handle->addr += handle->size;
3466 handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3467
3468 if (have_lost) {
3469 lost_event.header.type = PERF_RECORD_LOST;
3470 lost_event.header.misc = 0;
3471 lost_event.header.size = sizeof(lost_event);
3472 lost_event.id = event->id;
3473 lost_event.lost = local_xchg(&buffer->lost, 0);
3474
3475 perf_output_put(handle, lost_event);
3476 }
3477
3478 return 0;
3479
3480 fail:
3481 local_inc(&buffer->lost);
3482 perf_output_put_handle(handle);
3483 out:
3484 rcu_read_unlock();
3485
3486 return -ENOSPC;
3487 }
3488
3489 void perf_output_end(struct perf_output_handle *handle)
3490 {
3491 struct perf_event *event = handle->event;
3492 struct perf_buffer *buffer = handle->buffer;
3493
3494 int wakeup_events = event->attr.wakeup_events;
3495
3496 if (handle->sample && wakeup_events) {
3497 int events = local_inc_return(&buffer->events);
3498 if (events >= wakeup_events) {
3499 local_sub(wakeup_events, &buffer->events);
3500 local_inc(&buffer->wakeup);
3501 }
3502 }
3503
3504 perf_output_put_handle(handle);
3505 rcu_read_unlock();
3506 }
3507
3508 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3509 {
3510 /*
3511 * only top level events have the pid namespace they were created in
3512 */
3513 if (event->parent)
3514 event = event->parent;
3515
3516 return task_tgid_nr_ns(p, event->ns);
3517 }
3518
3519 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3520 {
3521 /*
3522 * only top level events have the pid namespace they were created in
3523 */
3524 if (event->parent)
3525 event = event->parent;
3526
3527 return task_pid_nr_ns(p, event->ns);
3528 }
3529
3530 static void perf_output_read_one(struct perf_output_handle *handle,
3531 struct perf_event *event)
3532 {
3533 u64 read_format = event->attr.read_format;
3534 u64 values[4];
3535 int n = 0;
3536
3537 values[n++] = perf_event_count(event);
3538 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3539 values[n++] = event->total_time_enabled +
3540 atomic64_read(&event->child_total_time_enabled);
3541 }
3542 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3543 values[n++] = event->total_time_running +
3544 atomic64_read(&event->child_total_time_running);
3545 }
3546 if (read_format & PERF_FORMAT_ID)
3547 values[n++] = primary_event_id(event);
3548
3549 perf_output_copy(handle, values, n * sizeof(u64));
3550 }
3551
3552 /*
3553 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3554 */
3555 static void perf_output_read_group(struct perf_output_handle *handle,
3556 struct perf_event *event)
3557 {
3558 struct perf_event *leader = event->group_leader, *sub;
3559 u64 read_format = event->attr.read_format;
3560 u64 values[5];
3561 int n = 0;
3562
3563 values[n++] = 1 + leader->nr_siblings;
3564
3565 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3566 values[n++] = leader->total_time_enabled;
3567
3568 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3569 values[n++] = leader->total_time_running;
3570
3571 if (leader != event)
3572 leader->pmu->read(leader);
3573
3574 values[n++] = perf_event_count(leader);
3575 if (read_format & PERF_FORMAT_ID)
3576 values[n++] = primary_event_id(leader);
3577
3578 perf_output_copy(handle, values, n * sizeof(u64));
3579
3580 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3581 n = 0;
3582
3583 if (sub != event)
3584 sub->pmu->read(sub);
3585
3586 values[n++] = perf_event_count(sub);
3587 if (read_format & PERF_FORMAT_ID)
3588 values[n++] = primary_event_id(sub);
3589
3590 perf_output_copy(handle, values, n * sizeof(u64));
3591 }
3592 }
3593
3594 static void perf_output_read(struct perf_output_handle *handle,
3595 struct perf_event *event)
3596 {
3597 if (event->attr.read_format & PERF_FORMAT_GROUP)
3598 perf_output_read_group(handle, event);
3599 else
3600 perf_output_read_one(handle, event);
3601 }
3602
3603 void perf_output_sample(struct perf_output_handle *handle,
3604 struct perf_event_header *header,
3605 struct perf_sample_data *data,
3606 struct perf_event *event)
3607 {
3608 u64 sample_type = data->type;
3609
3610 perf_output_put(handle, *header);
3611
3612 if (sample_type & PERF_SAMPLE_IP)
3613 perf_output_put(handle, data->ip);
3614
3615 if (sample_type & PERF_SAMPLE_TID)
3616 perf_output_put(handle, data->tid_entry);
3617
3618 if (sample_type & PERF_SAMPLE_TIME)
3619 perf_output_put(handle, data->time);
3620
3621 if (sample_type & PERF_SAMPLE_ADDR)
3622 perf_output_put(handle, data->addr);
3623
3624 if (sample_type & PERF_SAMPLE_ID)
3625 perf_output_put(handle, data->id);
3626
3627 if (sample_type & PERF_SAMPLE_STREAM_ID)
3628 perf_output_put(handle, data->stream_id);
3629
3630 if (sample_type & PERF_SAMPLE_CPU)
3631 perf_output_put(handle, data->cpu_entry);
3632
3633 if (sample_type & PERF_SAMPLE_PERIOD)
3634 perf_output_put(handle, data->period);
3635
3636 if (sample_type & PERF_SAMPLE_READ)
3637 perf_output_read(handle, event);
3638
3639 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3640 if (data->callchain) {
3641 int size = 1;
3642
3643 if (data->callchain)
3644 size += data->callchain->nr;
3645
3646 size *= sizeof(u64);
3647
3648 perf_output_copy(handle, data->callchain, size);
3649 } else {
3650 u64 nr = 0;
3651 perf_output_put(handle, nr);
3652 }
3653 }
3654
3655 if (sample_type & PERF_SAMPLE_RAW) {
3656 if (data->raw) {
3657 perf_output_put(handle, data->raw->size);
3658 perf_output_copy(handle, data->raw->data,
3659 data->raw->size);
3660 } else {
3661 struct {
3662 u32 size;
3663 u32 data;
3664 } raw = {
3665 .size = sizeof(u32),
3666 .data = 0,
3667 };
3668 perf_output_put(handle, raw);
3669 }
3670 }
3671 }
3672
3673 void perf_prepare_sample(struct perf_event_header *header,
3674 struct perf_sample_data *data,
3675 struct perf_event *event,
3676 struct pt_regs *regs)
3677 {
3678 u64 sample_type = event->attr.sample_type;
3679
3680 data->type = sample_type;
3681
3682 header->type = PERF_RECORD_SAMPLE;
3683 header->size = sizeof(*header);
3684
3685 header->misc = 0;
3686 header->misc |= perf_misc_flags(regs);
3687
3688 if (sample_type & PERF_SAMPLE_IP) {
3689 data->ip = perf_instruction_pointer(regs);
3690
3691 header->size += sizeof(data->ip);
3692 }
3693
3694 if (sample_type & PERF_SAMPLE_TID) {
3695 /* namespace issues */
3696 data->tid_entry.pid = perf_event_pid(event, current);
3697 data->tid_entry.tid = perf_event_tid(event, current);
3698
3699 header->size += sizeof(data->tid_entry);
3700 }
3701
3702 if (sample_type & PERF_SAMPLE_TIME) {
3703 data->time = perf_clock();
3704
3705 header->size += sizeof(data->time);
3706 }
3707
3708 if (sample_type & PERF_SAMPLE_ADDR)
3709 header->size += sizeof(data->addr);
3710
3711 if (sample_type & PERF_SAMPLE_ID) {
3712 data->id = primary_event_id(event);
3713
3714 header->size += sizeof(data->id);
3715 }
3716
3717 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3718 data->stream_id = event->id;
3719
3720 header->size += sizeof(data->stream_id);
3721 }
3722
3723 if (sample_type & PERF_SAMPLE_CPU) {
3724 data->cpu_entry.cpu = raw_smp_processor_id();
3725 data->cpu_entry.reserved = 0;
3726
3727 header->size += sizeof(data->cpu_entry);
3728 }
3729
3730 if (sample_type & PERF_SAMPLE_PERIOD)
3731 header->size += sizeof(data->period);
3732
3733 if (sample_type & PERF_SAMPLE_READ)
3734 header->size += perf_event_read_size(event);
3735
3736 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3737 int size = 1;
3738
3739 data->callchain = perf_callchain(regs);
3740
3741 if (data->callchain)
3742 size += data->callchain->nr;
3743
3744 header->size += size * sizeof(u64);
3745 }
3746
3747 if (sample_type & PERF_SAMPLE_RAW) {
3748 int size = sizeof(u32);
3749
3750 if (data->raw)
3751 size += data->raw->size;
3752 else
3753 size += sizeof(u32);
3754
3755 WARN_ON_ONCE(size & (sizeof(u64)-1));
3756 header->size += size;
3757 }
3758 }
3759
3760 static void perf_event_output(struct perf_event *event, int nmi,
3761 struct perf_sample_data *data,
3762 struct pt_regs *regs)
3763 {
3764 struct perf_output_handle handle;
3765 struct perf_event_header header;
3766
3767 /* protect the callchain buffers */
3768 rcu_read_lock();
3769
3770 perf_prepare_sample(&header, data, event, regs);
3771
3772 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3773 goto exit;
3774
3775 perf_output_sample(&handle, &header, data, event);
3776
3777 perf_output_end(&handle);
3778
3779 exit:
3780 rcu_read_unlock();
3781 }
3782
3783 /*
3784 * read event_id
3785 */
3786
3787 struct perf_read_event {
3788 struct perf_event_header header;
3789
3790 u32 pid;
3791 u32 tid;
3792 };
3793
3794 static void
3795 perf_event_read_event(struct perf_event *event,
3796 struct task_struct *task)
3797 {
3798 struct perf_output_handle handle;
3799 struct perf_read_event read_event = {
3800 .header = {
3801 .type = PERF_RECORD_READ,
3802 .misc = 0,
3803 .size = sizeof(read_event) + perf_event_read_size(event),
3804 },
3805 .pid = perf_event_pid(event, task),
3806 .tid = perf_event_tid(event, task),
3807 };
3808 int ret;
3809
3810 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3811 if (ret)
3812 return;
3813
3814 perf_output_put(&handle, read_event);
3815 perf_output_read(&handle, event);
3816
3817 perf_output_end(&handle);
3818 }
3819
3820 /*
3821 * task tracking -- fork/exit
3822 *
3823 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3824 */
3825
3826 struct perf_task_event {
3827 struct task_struct *task;
3828 struct perf_event_context *task_ctx;
3829
3830 struct {
3831 struct perf_event_header header;
3832
3833 u32 pid;
3834 u32 ppid;
3835 u32 tid;
3836 u32 ptid;
3837 u64 time;
3838 } event_id;
3839 };
3840
3841 static void perf_event_task_output(struct perf_event *event,
3842 struct perf_task_event *task_event)
3843 {
3844 struct perf_output_handle handle;
3845 struct task_struct *task = task_event->task;
3846 int size, ret;
3847
3848 size = task_event->event_id.header.size;
3849 ret = perf_output_begin(&handle, event, size, 0, 0);
3850
3851 if (ret)
3852 return;
3853
3854 task_event->event_id.pid = perf_event_pid(event, task);
3855 task_event->event_id.ppid = perf_event_pid(event, current);
3856
3857 task_event->event_id.tid = perf_event_tid(event, task);
3858 task_event->event_id.ptid = perf_event_tid(event, current);
3859
3860 perf_output_put(&handle, task_event->event_id);
3861
3862 perf_output_end(&handle);
3863 }
3864
3865 static int perf_event_task_match(struct perf_event *event)
3866 {
3867 if (event->state < PERF_EVENT_STATE_INACTIVE)
3868 return 0;
3869
3870 if (event->cpu != -1 && event->cpu != smp_processor_id())
3871 return 0;
3872
3873 if (event->attr.comm || event->attr.mmap ||
3874 event->attr.mmap_data || event->attr.task)
3875 return 1;
3876
3877 return 0;
3878 }
3879
3880 static void perf_event_task_ctx(struct perf_event_context *ctx,
3881 struct perf_task_event *task_event)
3882 {
3883 struct perf_event *event;
3884
3885 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3886 if (perf_event_task_match(event))
3887 perf_event_task_output(event, task_event);
3888 }
3889 }
3890
3891 static void perf_event_task_event(struct perf_task_event *task_event)
3892 {
3893 struct perf_cpu_context *cpuctx;
3894 struct perf_event_context *ctx;
3895 struct pmu *pmu;
3896 int ctxn;
3897
3898 rcu_read_lock();
3899 list_for_each_entry_rcu(pmu, &pmus, entry) {
3900 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3901 perf_event_task_ctx(&cpuctx->ctx, task_event);
3902
3903 ctx = task_event->task_ctx;
3904 if (!ctx) {
3905 ctxn = pmu->task_ctx_nr;
3906 if (ctxn < 0)
3907 goto next;
3908 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3909 }
3910 if (ctx)
3911 perf_event_task_ctx(ctx, task_event);
3912 next:
3913 put_cpu_ptr(pmu->pmu_cpu_context);
3914 }
3915 rcu_read_unlock();
3916 }
3917
3918 static void perf_event_task(struct task_struct *task,
3919 struct perf_event_context *task_ctx,
3920 int new)
3921 {
3922 struct perf_task_event task_event;
3923
3924 if (!atomic_read(&nr_comm_events) &&
3925 !atomic_read(&nr_mmap_events) &&
3926 !atomic_read(&nr_task_events))
3927 return;
3928
3929 task_event = (struct perf_task_event){
3930 .task = task,
3931 .task_ctx = task_ctx,
3932 .event_id = {
3933 .header = {
3934 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3935 .misc = 0,
3936 .size = sizeof(task_event.event_id),
3937 },
3938 /* .pid */
3939 /* .ppid */
3940 /* .tid */
3941 /* .ptid */
3942 .time = perf_clock(),
3943 },
3944 };
3945
3946 perf_event_task_event(&task_event);
3947 }
3948
3949 void perf_event_fork(struct task_struct *task)
3950 {
3951 perf_event_task(task, NULL, 1);
3952 }
3953
3954 /*
3955 * comm tracking
3956 */
3957
3958 struct perf_comm_event {
3959 struct task_struct *task;
3960 char *comm;
3961 int comm_size;
3962
3963 struct {
3964 struct perf_event_header header;
3965
3966 u32 pid;
3967 u32 tid;
3968 } event_id;
3969 };
3970
3971 static void perf_event_comm_output(struct perf_event *event,
3972 struct perf_comm_event *comm_event)
3973 {
3974 struct perf_output_handle handle;
3975 int size = comm_event->event_id.header.size;
3976 int ret = perf_output_begin(&handle, event, size, 0, 0);
3977
3978 if (ret)
3979 return;
3980
3981 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3982 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3983
3984 perf_output_put(&handle, comm_event->event_id);
3985 perf_output_copy(&handle, comm_event->comm,
3986 comm_event->comm_size);
3987 perf_output_end(&handle);
3988 }
3989
3990 static int perf_event_comm_match(struct perf_event *event)
3991 {
3992 if (event->state < PERF_EVENT_STATE_INACTIVE)
3993 return 0;
3994
3995 if (event->cpu != -1 && event->cpu != smp_processor_id())
3996 return 0;
3997
3998 if (event->attr.comm)
3999 return 1;
4000
4001 return 0;
4002 }
4003
4004 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4005 struct perf_comm_event *comm_event)
4006 {
4007 struct perf_event *event;
4008
4009 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4010 if (perf_event_comm_match(event))
4011 perf_event_comm_output(event, comm_event);
4012 }
4013 }
4014
4015 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4016 {
4017 struct perf_cpu_context *cpuctx;
4018 struct perf_event_context *ctx;
4019 char comm[TASK_COMM_LEN];
4020 unsigned int size;
4021 struct pmu *pmu;
4022 int ctxn;
4023
4024 memset(comm, 0, sizeof(comm));
4025 strlcpy(comm, comm_event->task->comm, sizeof(comm));
4026 size = ALIGN(strlen(comm)+1, sizeof(u64));
4027
4028 comm_event->comm = comm;
4029 comm_event->comm_size = size;
4030
4031 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4032
4033 rcu_read_lock();
4034 list_for_each_entry_rcu(pmu, &pmus, entry) {
4035 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4036 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4037
4038 ctxn = pmu->task_ctx_nr;
4039 if (ctxn < 0)
4040 goto next;
4041
4042 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4043 if (ctx)
4044 perf_event_comm_ctx(ctx, comm_event);
4045 next:
4046 put_cpu_ptr(pmu->pmu_cpu_context);
4047 }
4048 rcu_read_unlock();
4049 }
4050
4051 void perf_event_comm(struct task_struct *task)
4052 {
4053 struct perf_comm_event comm_event;
4054 struct perf_event_context *ctx;
4055 int ctxn;
4056
4057 for_each_task_context_nr(ctxn) {
4058 ctx = task->perf_event_ctxp[ctxn];
4059 if (!ctx)
4060 continue;
4061
4062 perf_event_enable_on_exec(ctx);
4063 }
4064
4065 if (!atomic_read(&nr_comm_events))
4066 return;
4067
4068 comm_event = (struct perf_comm_event){
4069 .task = task,
4070 /* .comm */
4071 /* .comm_size */
4072 .event_id = {
4073 .header = {
4074 .type = PERF_RECORD_COMM,
4075 .misc = 0,
4076 /* .size */
4077 },
4078 /* .pid */
4079 /* .tid */
4080 },
4081 };
4082
4083 perf_event_comm_event(&comm_event);
4084 }
4085
4086 /*
4087 * mmap tracking
4088 */
4089
4090 struct perf_mmap_event {
4091 struct vm_area_struct *vma;
4092
4093 const char *file_name;
4094 int file_size;
4095
4096 struct {
4097 struct perf_event_header header;
4098
4099 u32 pid;
4100 u32 tid;
4101 u64 start;
4102 u64 len;
4103 u64 pgoff;
4104 } event_id;
4105 };
4106
4107 static void perf_event_mmap_output(struct perf_event *event,
4108 struct perf_mmap_event *mmap_event)
4109 {
4110 struct perf_output_handle handle;
4111 int size = mmap_event->event_id.header.size;
4112 int ret = perf_output_begin(&handle, event, size, 0, 0);
4113
4114 if (ret)
4115 return;
4116
4117 mmap_event->event_id.pid = perf_event_pid(event, current);
4118 mmap_event->event_id.tid = perf_event_tid(event, current);
4119
4120 perf_output_put(&handle, mmap_event->event_id);
4121 perf_output_copy(&handle, mmap_event->file_name,
4122 mmap_event->file_size);
4123 perf_output_end(&handle);
4124 }
4125
4126 static int perf_event_mmap_match(struct perf_event *event,
4127 struct perf_mmap_event *mmap_event,
4128 int executable)
4129 {
4130 if (event->state < PERF_EVENT_STATE_INACTIVE)
4131 return 0;
4132
4133 if (event->cpu != -1 && event->cpu != smp_processor_id())
4134 return 0;
4135
4136 if ((!executable && event->attr.mmap_data) ||
4137 (executable && event->attr.mmap))
4138 return 1;
4139
4140 return 0;
4141 }
4142
4143 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4144 struct perf_mmap_event *mmap_event,
4145 int executable)
4146 {
4147 struct perf_event *event;
4148
4149 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4150 if (perf_event_mmap_match(event, mmap_event, executable))
4151 perf_event_mmap_output(event, mmap_event);
4152 }
4153 }
4154
4155 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4156 {
4157 struct perf_cpu_context *cpuctx;
4158 struct perf_event_context *ctx;
4159 struct vm_area_struct *vma = mmap_event->vma;
4160 struct file *file = vma->vm_file;
4161 unsigned int size;
4162 char tmp[16];
4163 char *buf = NULL;
4164 const char *name;
4165 struct pmu *pmu;
4166 int ctxn;
4167
4168 memset(tmp, 0, sizeof(tmp));
4169
4170 if (file) {
4171 /*
4172 * d_path works from the end of the buffer backwards, so we
4173 * need to add enough zero bytes after the string to handle
4174 * the 64bit alignment we do later.
4175 */
4176 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4177 if (!buf) {
4178 name = strncpy(tmp, "//enomem", sizeof(tmp));
4179 goto got_name;
4180 }
4181 name = d_path(&file->f_path, buf, PATH_MAX);
4182 if (IS_ERR(name)) {
4183 name = strncpy(tmp, "//toolong", sizeof(tmp));
4184 goto got_name;
4185 }
4186 } else {
4187 if (arch_vma_name(mmap_event->vma)) {
4188 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4189 sizeof(tmp));
4190 goto got_name;
4191 }
4192
4193 if (!vma->vm_mm) {
4194 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4195 goto got_name;
4196 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4197 vma->vm_end >= vma->vm_mm->brk) {
4198 name = strncpy(tmp, "[heap]", sizeof(tmp));
4199 goto got_name;
4200 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4201 vma->vm_end >= vma->vm_mm->start_stack) {
4202 name = strncpy(tmp, "[stack]", sizeof(tmp));
4203 goto got_name;
4204 }
4205
4206 name = strncpy(tmp, "//anon", sizeof(tmp));
4207 goto got_name;
4208 }
4209
4210 got_name:
4211 size = ALIGN(strlen(name)+1, sizeof(u64));
4212
4213 mmap_event->file_name = name;
4214 mmap_event->file_size = size;
4215
4216 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4217
4218 rcu_read_lock();
4219 list_for_each_entry_rcu(pmu, &pmus, entry) {
4220 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4221 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4222 vma->vm_flags & VM_EXEC);
4223
4224 ctxn = pmu->task_ctx_nr;
4225 if (ctxn < 0)
4226 goto next;
4227
4228 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4229 if (ctx) {
4230 perf_event_mmap_ctx(ctx, mmap_event,
4231 vma->vm_flags & VM_EXEC);
4232 }
4233 next:
4234 put_cpu_ptr(pmu->pmu_cpu_context);
4235 }
4236 rcu_read_unlock();
4237
4238 kfree(buf);
4239 }
4240
4241 void perf_event_mmap(struct vm_area_struct *vma)
4242 {
4243 struct perf_mmap_event mmap_event;
4244
4245 if (!atomic_read(&nr_mmap_events))
4246 return;
4247
4248 mmap_event = (struct perf_mmap_event){
4249 .vma = vma,
4250 /* .file_name */
4251 /* .file_size */
4252 .event_id = {
4253 .header = {
4254 .type = PERF_RECORD_MMAP,
4255 .misc = PERF_RECORD_MISC_USER,
4256 /* .size */
4257 },
4258 /* .pid */
4259 /* .tid */
4260 .start = vma->vm_start,
4261 .len = vma->vm_end - vma->vm_start,
4262 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4263 },
4264 };
4265
4266 perf_event_mmap_event(&mmap_event);
4267 }
4268
4269 /*
4270 * IRQ throttle logging
4271 */
4272
4273 static void perf_log_throttle(struct perf_event *event, int enable)
4274 {
4275 struct perf_output_handle handle;
4276 int ret;
4277
4278 struct {
4279 struct perf_event_header header;
4280 u64 time;
4281 u64 id;
4282 u64 stream_id;
4283 } throttle_event = {
4284 .header = {
4285 .type = PERF_RECORD_THROTTLE,
4286 .misc = 0,
4287 .size = sizeof(throttle_event),
4288 },
4289 .time = perf_clock(),
4290 .id = primary_event_id(event),
4291 .stream_id = event->id,
4292 };
4293
4294 if (enable)
4295 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4296
4297 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4298 if (ret)
4299 return;
4300
4301 perf_output_put(&handle, throttle_event);
4302 perf_output_end(&handle);
4303 }
4304
4305 /*
4306 * Generic event overflow handling, sampling.
4307 */
4308
4309 static int __perf_event_overflow(struct perf_event *event, int nmi,
4310 int throttle, struct perf_sample_data *data,
4311 struct pt_regs *regs)
4312 {
4313 int events = atomic_read(&event->event_limit);
4314 struct hw_perf_event *hwc = &event->hw;
4315 int ret = 0;
4316
4317 if (!throttle) {
4318 hwc->interrupts++;
4319 } else {
4320 if (hwc->interrupts != MAX_INTERRUPTS) {
4321 hwc->interrupts++;
4322 if (HZ * hwc->interrupts >
4323 (u64)sysctl_perf_event_sample_rate) {
4324 hwc->interrupts = MAX_INTERRUPTS;
4325 perf_log_throttle(event, 0);
4326 ret = 1;
4327 }
4328 } else {
4329 /*
4330 * Keep re-disabling events even though on the previous
4331 * pass we disabled it - just in case we raced with a
4332 * sched-in and the event got enabled again:
4333 */
4334 ret = 1;
4335 }
4336 }
4337
4338 if (event->attr.freq) {
4339 u64 now = perf_clock();
4340 s64 delta = now - hwc->freq_time_stamp;
4341
4342 hwc->freq_time_stamp = now;
4343
4344 if (delta > 0 && delta < 2*TICK_NSEC)
4345 perf_adjust_period(event, delta, hwc->last_period);
4346 }
4347
4348 /*
4349 * XXX event_limit might not quite work as expected on inherited
4350 * events
4351 */
4352
4353 event->pending_kill = POLL_IN;
4354 if (events && atomic_dec_and_test(&event->event_limit)) {
4355 ret = 1;
4356 event->pending_kill = POLL_HUP;
4357 if (nmi) {
4358 event->pending_disable = 1;
4359 perf_pending_queue(&event->pending,
4360 perf_pending_event);
4361 } else
4362 perf_event_disable(event);
4363 }
4364
4365 if (event->overflow_handler)
4366 event->overflow_handler(event, nmi, data, regs);
4367 else
4368 perf_event_output(event, nmi, data, regs);
4369
4370 return ret;
4371 }
4372
4373 int perf_event_overflow(struct perf_event *event, int nmi,
4374 struct perf_sample_data *data,
4375 struct pt_regs *regs)
4376 {
4377 return __perf_event_overflow(event, nmi, 1, data, regs);
4378 }
4379
4380 /*
4381 * Generic software event infrastructure
4382 */
4383
4384 struct swevent_htable {
4385 struct swevent_hlist *swevent_hlist;
4386 struct mutex hlist_mutex;
4387 int hlist_refcount;
4388
4389 /* Recursion avoidance in each contexts */
4390 int recursion[PERF_NR_CONTEXTS];
4391 };
4392
4393 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4394
4395 /*
4396 * We directly increment event->count and keep a second value in
4397 * event->hw.period_left to count intervals. This period event
4398 * is kept in the range [-sample_period, 0] so that we can use the
4399 * sign as trigger.
4400 */
4401
4402 static u64 perf_swevent_set_period(struct perf_event *event)
4403 {
4404 struct hw_perf_event *hwc = &event->hw;
4405 u64 period = hwc->last_period;
4406 u64 nr, offset;
4407 s64 old, val;
4408
4409 hwc->last_period = hwc->sample_period;
4410
4411 again:
4412 old = val = local64_read(&hwc->period_left);
4413 if (val < 0)
4414 return 0;
4415
4416 nr = div64_u64(period + val, period);
4417 offset = nr * period;
4418 val -= offset;
4419 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4420 goto again;
4421
4422 return nr;
4423 }
4424
4425 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4426 int nmi, struct perf_sample_data *data,
4427 struct pt_regs *regs)
4428 {
4429 struct hw_perf_event *hwc = &event->hw;
4430 int throttle = 0;
4431
4432 data->period = event->hw.last_period;
4433 if (!overflow)
4434 overflow = perf_swevent_set_period(event);
4435
4436 if (hwc->interrupts == MAX_INTERRUPTS)
4437 return;
4438
4439 for (; overflow; overflow--) {
4440 if (__perf_event_overflow(event, nmi, throttle,
4441 data, regs)) {
4442 /*
4443 * We inhibit the overflow from happening when
4444 * hwc->interrupts == MAX_INTERRUPTS.
4445 */
4446 break;
4447 }
4448 throttle = 1;
4449 }
4450 }
4451
4452 static void perf_swevent_event(struct perf_event *event, u64 nr,
4453 int nmi, struct perf_sample_data *data,
4454 struct pt_regs *regs)
4455 {
4456 struct hw_perf_event *hwc = &event->hw;
4457
4458 local64_add(nr, &event->count);
4459
4460 if (!regs)
4461 return;
4462
4463 if (!hwc->sample_period)
4464 return;
4465
4466 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4467 return perf_swevent_overflow(event, 1, nmi, data, regs);
4468
4469 if (local64_add_negative(nr, &hwc->period_left))
4470 return;
4471
4472 perf_swevent_overflow(event, 0, nmi, data, regs);
4473 }
4474
4475 static int perf_exclude_event(struct perf_event *event,
4476 struct pt_regs *regs)
4477 {
4478 if (event->hw.state & PERF_HES_STOPPED)
4479 return 0;
4480
4481 if (regs) {
4482 if (event->attr.exclude_user && user_mode(regs))
4483 return 1;
4484
4485 if (event->attr.exclude_kernel && !user_mode(regs))
4486 return 1;
4487 }
4488
4489 return 0;
4490 }
4491
4492 static int perf_swevent_match(struct perf_event *event,
4493 enum perf_type_id type,
4494 u32 event_id,
4495 struct perf_sample_data *data,
4496 struct pt_regs *regs)
4497 {
4498 if (event->attr.type != type)
4499 return 0;
4500
4501 if (event->attr.config != event_id)
4502 return 0;
4503
4504 if (perf_exclude_event(event, regs))
4505 return 0;
4506
4507 return 1;
4508 }
4509
4510 static inline u64 swevent_hash(u64 type, u32 event_id)
4511 {
4512 u64 val = event_id | (type << 32);
4513
4514 return hash_64(val, SWEVENT_HLIST_BITS);
4515 }
4516
4517 static inline struct hlist_head *
4518 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4519 {
4520 u64 hash = swevent_hash(type, event_id);
4521
4522 return &hlist->heads[hash];
4523 }
4524
4525 /* For the read side: events when they trigger */
4526 static inline struct hlist_head *
4527 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4528 {
4529 struct swevent_hlist *hlist;
4530
4531 hlist = rcu_dereference(swhash->swevent_hlist);
4532 if (!hlist)
4533 return NULL;
4534
4535 return __find_swevent_head(hlist, type, event_id);
4536 }
4537
4538 /* For the event head insertion and removal in the hlist */
4539 static inline struct hlist_head *
4540 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4541 {
4542 struct swevent_hlist *hlist;
4543 u32 event_id = event->attr.config;
4544 u64 type = event->attr.type;
4545
4546 /*
4547 * Event scheduling is always serialized against hlist allocation
4548 * and release. Which makes the protected version suitable here.
4549 * The context lock guarantees that.
4550 */
4551 hlist = rcu_dereference_protected(swhash->swevent_hlist,
4552 lockdep_is_held(&event->ctx->lock));
4553 if (!hlist)
4554 return NULL;
4555
4556 return __find_swevent_head(hlist, type, event_id);
4557 }
4558
4559 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4560 u64 nr, int nmi,
4561 struct perf_sample_data *data,
4562 struct pt_regs *regs)
4563 {
4564 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4565 struct perf_event *event;
4566 struct hlist_node *node;
4567 struct hlist_head *head;
4568
4569 rcu_read_lock();
4570 head = find_swevent_head_rcu(swhash, type, event_id);
4571 if (!head)
4572 goto end;
4573
4574 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4575 if (perf_swevent_match(event, type, event_id, data, regs))
4576 perf_swevent_event(event, nr, nmi, data, regs);
4577 }
4578 end:
4579 rcu_read_unlock();
4580 }
4581
4582 int perf_swevent_get_recursion_context(void)
4583 {
4584 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4585
4586 return get_recursion_context(swhash->recursion);
4587 }
4588 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4589
4590 void inline perf_swevent_put_recursion_context(int rctx)
4591 {
4592 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4593
4594 put_recursion_context(swhash->recursion, rctx);
4595 }
4596
4597 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4598 struct pt_regs *regs, u64 addr)
4599 {
4600 struct perf_sample_data data;
4601 int rctx;
4602
4603 preempt_disable_notrace();
4604 rctx = perf_swevent_get_recursion_context();
4605 if (rctx < 0)
4606 return;
4607
4608 perf_sample_data_init(&data, addr);
4609
4610 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4611
4612 perf_swevent_put_recursion_context(rctx);
4613 preempt_enable_notrace();
4614 }
4615
4616 static void perf_swevent_read(struct perf_event *event)
4617 {
4618 }
4619
4620 static int perf_swevent_add(struct perf_event *event, int flags)
4621 {
4622 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4623 struct hw_perf_event *hwc = &event->hw;
4624 struct hlist_head *head;
4625
4626 if (hwc->sample_period) {
4627 hwc->last_period = hwc->sample_period;
4628 perf_swevent_set_period(event);
4629 }
4630
4631 hwc->state = !(flags & PERF_EF_START);
4632
4633 head = find_swevent_head(swhash, event);
4634 if (WARN_ON_ONCE(!head))
4635 return -EINVAL;
4636
4637 hlist_add_head_rcu(&event->hlist_entry, head);
4638
4639 return 0;
4640 }
4641
4642 static void perf_swevent_del(struct perf_event *event, int flags)
4643 {
4644 hlist_del_rcu(&event->hlist_entry);
4645 }
4646
4647 static void perf_swevent_start(struct perf_event *event, int flags)
4648 {
4649 event->hw.state = 0;
4650 }
4651
4652 static void perf_swevent_stop(struct perf_event *event, int flags)
4653 {
4654 event->hw.state = PERF_HES_STOPPED;
4655 }
4656
4657 /* Deref the hlist from the update side */
4658 static inline struct swevent_hlist *
4659 swevent_hlist_deref(struct swevent_htable *swhash)
4660 {
4661 return rcu_dereference_protected(swhash->swevent_hlist,
4662 lockdep_is_held(&swhash->hlist_mutex));
4663 }
4664
4665 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4666 {
4667 struct swevent_hlist *hlist;
4668
4669 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4670 kfree(hlist);
4671 }
4672
4673 static void swevent_hlist_release(struct swevent_htable *swhash)
4674 {
4675 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4676
4677 if (!hlist)
4678 return;
4679
4680 rcu_assign_pointer(swhash->swevent_hlist, NULL);
4681 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4682 }
4683
4684 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4685 {
4686 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4687
4688 mutex_lock(&swhash->hlist_mutex);
4689
4690 if (!--swhash->hlist_refcount)
4691 swevent_hlist_release(swhash);
4692
4693 mutex_unlock(&swhash->hlist_mutex);
4694 }
4695
4696 static void swevent_hlist_put(struct perf_event *event)
4697 {
4698 int cpu;
4699
4700 if (event->cpu != -1) {
4701 swevent_hlist_put_cpu(event, event->cpu);
4702 return;
4703 }
4704
4705 for_each_possible_cpu(cpu)
4706 swevent_hlist_put_cpu(event, cpu);
4707 }
4708
4709 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4710 {
4711 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4712 int err = 0;
4713
4714 mutex_lock(&swhash->hlist_mutex);
4715
4716 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4717 struct swevent_hlist *hlist;
4718
4719 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4720 if (!hlist) {
4721 err = -ENOMEM;
4722 goto exit;
4723 }
4724 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4725 }
4726 swhash->hlist_refcount++;
4727 exit:
4728 mutex_unlock(&swhash->hlist_mutex);
4729
4730 return err;
4731 }
4732
4733 static int swevent_hlist_get(struct perf_event *event)
4734 {
4735 int err;
4736 int cpu, failed_cpu;
4737
4738 if (event->cpu != -1)
4739 return swevent_hlist_get_cpu(event, event->cpu);
4740
4741 get_online_cpus();
4742 for_each_possible_cpu(cpu) {
4743 err = swevent_hlist_get_cpu(event, cpu);
4744 if (err) {
4745 failed_cpu = cpu;
4746 goto fail;
4747 }
4748 }
4749 put_online_cpus();
4750
4751 return 0;
4752 fail:
4753 for_each_possible_cpu(cpu) {
4754 if (cpu == failed_cpu)
4755 break;
4756 swevent_hlist_put_cpu(event, cpu);
4757 }
4758
4759 put_online_cpus();
4760 return err;
4761 }
4762
4763 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4764
4765 static void sw_perf_event_destroy(struct perf_event *event)
4766 {
4767 u64 event_id = event->attr.config;
4768
4769 WARN_ON(event->parent);
4770
4771 atomic_dec(&perf_swevent_enabled[event_id]);
4772 swevent_hlist_put(event);
4773 }
4774
4775 static int perf_swevent_init(struct perf_event *event)
4776 {
4777 int event_id = event->attr.config;
4778
4779 if (event->attr.type != PERF_TYPE_SOFTWARE)
4780 return -ENOENT;
4781
4782 switch (event_id) {
4783 case PERF_COUNT_SW_CPU_CLOCK:
4784 case PERF_COUNT_SW_TASK_CLOCK:
4785 return -ENOENT;
4786
4787 default:
4788 break;
4789 }
4790
4791 if (event_id > PERF_COUNT_SW_MAX)
4792 return -ENOENT;
4793
4794 if (!event->parent) {
4795 int err;
4796
4797 err = swevent_hlist_get(event);
4798 if (err)
4799 return err;
4800
4801 atomic_inc(&perf_swevent_enabled[event_id]);
4802 event->destroy = sw_perf_event_destroy;
4803 }
4804
4805 return 0;
4806 }
4807
4808 static struct pmu perf_swevent = {
4809 .task_ctx_nr = perf_sw_context,
4810
4811 .event_init = perf_swevent_init,
4812 .add = perf_swevent_add,
4813 .del = perf_swevent_del,
4814 .start = perf_swevent_start,
4815 .stop = perf_swevent_stop,
4816 .read = perf_swevent_read,
4817 };
4818
4819 #ifdef CONFIG_EVENT_TRACING
4820
4821 static int perf_tp_filter_match(struct perf_event *event,
4822 struct perf_sample_data *data)
4823 {
4824 void *record = data->raw->data;
4825
4826 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4827 return 1;
4828 return 0;
4829 }
4830
4831 static int perf_tp_event_match(struct perf_event *event,
4832 struct perf_sample_data *data,
4833 struct pt_regs *regs)
4834 {
4835 /*
4836 * All tracepoints are from kernel-space.
4837 */
4838 if (event->attr.exclude_kernel)
4839 return 0;
4840
4841 if (!perf_tp_filter_match(event, data))
4842 return 0;
4843
4844 return 1;
4845 }
4846
4847 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4848 struct pt_regs *regs, struct hlist_head *head, int rctx)
4849 {
4850 struct perf_sample_data data;
4851 struct perf_event *event;
4852 struct hlist_node *node;
4853
4854 struct perf_raw_record raw = {
4855 .size = entry_size,
4856 .data = record,
4857 };
4858
4859 perf_sample_data_init(&data, addr);
4860 data.raw = &raw;
4861
4862 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4863 if (perf_tp_event_match(event, &data, regs))
4864 perf_swevent_event(event, count, 1, &data, regs);
4865 }
4866
4867 perf_swevent_put_recursion_context(rctx);
4868 }
4869 EXPORT_SYMBOL_GPL(perf_tp_event);
4870
4871 static void tp_perf_event_destroy(struct perf_event *event)
4872 {
4873 perf_trace_destroy(event);
4874 }
4875
4876 static int perf_tp_event_init(struct perf_event *event)
4877 {
4878 int err;
4879
4880 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4881 return -ENOENT;
4882
4883 /*
4884 * Raw tracepoint data is a severe data leak, only allow root to
4885 * have these.
4886 */
4887 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4888 perf_paranoid_tracepoint_raw() &&
4889 !capable(CAP_SYS_ADMIN))
4890 return -EPERM;
4891
4892 err = perf_trace_init(event);
4893 if (err)
4894 return err;
4895
4896 event->destroy = tp_perf_event_destroy;
4897
4898 return 0;
4899 }
4900
4901 static struct pmu perf_tracepoint = {
4902 .task_ctx_nr = perf_sw_context,
4903
4904 .event_init = perf_tp_event_init,
4905 .add = perf_trace_add,
4906 .del = perf_trace_del,
4907 .start = perf_swevent_start,
4908 .stop = perf_swevent_stop,
4909 .read = perf_swevent_read,
4910 };
4911
4912 static inline void perf_tp_register(void)
4913 {
4914 perf_pmu_register(&perf_tracepoint);
4915 }
4916
4917 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4918 {
4919 char *filter_str;
4920 int ret;
4921
4922 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4923 return -EINVAL;
4924
4925 filter_str = strndup_user(arg, PAGE_SIZE);
4926 if (IS_ERR(filter_str))
4927 return PTR_ERR(filter_str);
4928
4929 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4930
4931 kfree(filter_str);
4932 return ret;
4933 }
4934
4935 static void perf_event_free_filter(struct perf_event *event)
4936 {
4937 ftrace_profile_free_filter(event);
4938 }
4939
4940 #else
4941
4942 static inline void perf_tp_register(void)
4943 {
4944 }
4945
4946 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4947 {
4948 return -ENOENT;
4949 }
4950
4951 static void perf_event_free_filter(struct perf_event *event)
4952 {
4953 }
4954
4955 #endif /* CONFIG_EVENT_TRACING */
4956
4957 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4958 void perf_bp_event(struct perf_event *bp, void *data)
4959 {
4960 struct perf_sample_data sample;
4961 struct pt_regs *regs = data;
4962
4963 perf_sample_data_init(&sample, bp->attr.bp_addr);
4964
4965 if (!bp->hw.state && !perf_exclude_event(bp, regs))
4966 perf_swevent_event(bp, 1, 1, &sample, regs);
4967 }
4968 #endif
4969
4970 /*
4971 * hrtimer based swevent callback
4972 */
4973
4974 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4975 {
4976 enum hrtimer_restart ret = HRTIMER_RESTART;
4977 struct perf_sample_data data;
4978 struct pt_regs *regs;
4979 struct perf_event *event;
4980 u64 period;
4981
4982 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4983 event->pmu->read(event);
4984
4985 perf_sample_data_init(&data, 0);
4986 data.period = event->hw.last_period;
4987 regs = get_irq_regs();
4988
4989 if (regs && !perf_exclude_event(event, regs)) {
4990 if (!(event->attr.exclude_idle && current->pid == 0))
4991 if (perf_event_overflow(event, 0, &data, regs))
4992 ret = HRTIMER_NORESTART;
4993 }
4994
4995 period = max_t(u64, 10000, event->hw.sample_period);
4996 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4997
4998 return ret;
4999 }
5000
5001 static void perf_swevent_start_hrtimer(struct perf_event *event)
5002 {
5003 struct hw_perf_event *hwc = &event->hw;
5004
5005 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5006 hwc->hrtimer.function = perf_swevent_hrtimer;
5007 if (hwc->sample_period) {
5008 s64 period = local64_read(&hwc->period_left);
5009
5010 if (period) {
5011 if (period < 0)
5012 period = 10000;
5013
5014 local64_set(&hwc->period_left, 0);
5015 } else {
5016 period = max_t(u64, 10000, hwc->sample_period);
5017 }
5018 __hrtimer_start_range_ns(&hwc->hrtimer,
5019 ns_to_ktime(period), 0,
5020 HRTIMER_MODE_REL_PINNED, 0);
5021 }
5022 }
5023
5024 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5025 {
5026 struct hw_perf_event *hwc = &event->hw;
5027
5028 if (hwc->sample_period) {
5029 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5030 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5031
5032 hrtimer_cancel(&hwc->hrtimer);
5033 }
5034 }
5035
5036 /*
5037 * Software event: cpu wall time clock
5038 */
5039
5040 static void cpu_clock_event_update(struct perf_event *event)
5041 {
5042 s64 prev;
5043 u64 now;
5044
5045 now = local_clock();
5046 prev = local64_xchg(&event->hw.prev_count, now);
5047 local64_add(now - prev, &event->count);
5048 }
5049
5050 static void cpu_clock_event_start(struct perf_event *event, int flags)
5051 {
5052 local64_set(&event->hw.prev_count, local_clock());
5053 perf_swevent_start_hrtimer(event);
5054 }
5055
5056 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5057 {
5058 perf_swevent_cancel_hrtimer(event);
5059 cpu_clock_event_update(event);
5060 }
5061
5062 static int cpu_clock_event_add(struct perf_event *event, int flags)
5063 {
5064 if (flags & PERF_EF_START)
5065 cpu_clock_event_start(event, flags);
5066
5067 return 0;
5068 }
5069
5070 static void cpu_clock_event_del(struct perf_event *event, int flags)
5071 {
5072 cpu_clock_event_stop(event, flags);
5073 }
5074
5075 static void cpu_clock_event_read(struct perf_event *event)
5076 {
5077 cpu_clock_event_update(event);
5078 }
5079
5080 static int cpu_clock_event_init(struct perf_event *event)
5081 {
5082 if (event->attr.type != PERF_TYPE_SOFTWARE)
5083 return -ENOENT;
5084
5085 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5086 return -ENOENT;
5087
5088 return 0;
5089 }
5090
5091 static struct pmu perf_cpu_clock = {
5092 .task_ctx_nr = perf_sw_context,
5093
5094 .event_init = cpu_clock_event_init,
5095 .add = cpu_clock_event_add,
5096 .del = cpu_clock_event_del,
5097 .start = cpu_clock_event_start,
5098 .stop = cpu_clock_event_stop,
5099 .read = cpu_clock_event_read,
5100 };
5101
5102 /*
5103 * Software event: task time clock
5104 */
5105
5106 static void task_clock_event_update(struct perf_event *event, u64 now)
5107 {
5108 u64 prev;
5109 s64 delta;
5110
5111 prev = local64_xchg(&event->hw.prev_count, now);
5112 delta = now - prev;
5113 local64_add(delta, &event->count);
5114 }
5115
5116 static void task_clock_event_start(struct perf_event *event, int flags)
5117 {
5118 local64_set(&event->hw.prev_count, event->ctx->time);
5119 perf_swevent_start_hrtimer(event);
5120 }
5121
5122 static void task_clock_event_stop(struct perf_event *event, int flags)
5123 {
5124 perf_swevent_cancel_hrtimer(event);
5125 task_clock_event_update(event, event->ctx->time);
5126 }
5127
5128 static int task_clock_event_add(struct perf_event *event, int flags)
5129 {
5130 if (flags & PERF_EF_START)
5131 task_clock_event_start(event, flags);
5132
5133 return 0;
5134 }
5135
5136 static void task_clock_event_del(struct perf_event *event, int flags)
5137 {
5138 task_clock_event_stop(event, PERF_EF_UPDATE);
5139 }
5140
5141 static void task_clock_event_read(struct perf_event *event)
5142 {
5143 u64 time;
5144
5145 if (!in_nmi()) {
5146 update_context_time(event->ctx);
5147 time = event->ctx->time;
5148 } else {
5149 u64 now = perf_clock();
5150 u64 delta = now - event->ctx->timestamp;
5151 time = event->ctx->time + delta;
5152 }
5153
5154 task_clock_event_update(event, time);
5155 }
5156
5157 static int task_clock_event_init(struct perf_event *event)
5158 {
5159 if (event->attr.type != PERF_TYPE_SOFTWARE)
5160 return -ENOENT;
5161
5162 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5163 return -ENOENT;
5164
5165 return 0;
5166 }
5167
5168 static struct pmu perf_task_clock = {
5169 .task_ctx_nr = perf_sw_context,
5170
5171 .event_init = task_clock_event_init,
5172 .add = task_clock_event_add,
5173 .del = task_clock_event_del,
5174 .start = task_clock_event_start,
5175 .stop = task_clock_event_stop,
5176 .read = task_clock_event_read,
5177 };
5178
5179 static void perf_pmu_nop_void(struct pmu *pmu)
5180 {
5181 }
5182
5183 static int perf_pmu_nop_int(struct pmu *pmu)
5184 {
5185 return 0;
5186 }
5187
5188 static void perf_pmu_start_txn(struct pmu *pmu)
5189 {
5190 perf_pmu_disable(pmu);
5191 }
5192
5193 static int perf_pmu_commit_txn(struct pmu *pmu)
5194 {
5195 perf_pmu_enable(pmu);
5196 return 0;
5197 }
5198
5199 static void perf_pmu_cancel_txn(struct pmu *pmu)
5200 {
5201 perf_pmu_enable(pmu);
5202 }
5203
5204 /*
5205 * Ensures all contexts with the same task_ctx_nr have the same
5206 * pmu_cpu_context too.
5207 */
5208 static void *find_pmu_context(int ctxn)
5209 {
5210 struct pmu *pmu;
5211
5212 if (ctxn < 0)
5213 return NULL;
5214
5215 list_for_each_entry(pmu, &pmus, entry) {
5216 if (pmu->task_ctx_nr == ctxn)
5217 return pmu->pmu_cpu_context;
5218 }
5219
5220 return NULL;
5221 }
5222
5223 static void free_pmu_context(void * __percpu cpu_context)
5224 {
5225 struct pmu *pmu;
5226
5227 mutex_lock(&pmus_lock);
5228 /*
5229 * Like a real lame refcount.
5230 */
5231 list_for_each_entry(pmu, &pmus, entry) {
5232 if (pmu->pmu_cpu_context == cpu_context)
5233 goto out;
5234 }
5235
5236 free_percpu(cpu_context);
5237 out:
5238 mutex_unlock(&pmus_lock);
5239 }
5240
5241 int perf_pmu_register(struct pmu *pmu)
5242 {
5243 int cpu, ret;
5244
5245 mutex_lock(&pmus_lock);
5246 ret = -ENOMEM;
5247 pmu->pmu_disable_count = alloc_percpu(int);
5248 if (!pmu->pmu_disable_count)
5249 goto unlock;
5250
5251 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5252 if (pmu->pmu_cpu_context)
5253 goto got_cpu_context;
5254
5255 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5256 if (!pmu->pmu_cpu_context)
5257 goto free_pdc;
5258
5259 for_each_possible_cpu(cpu) {
5260 struct perf_cpu_context *cpuctx;
5261
5262 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5263 __perf_event_init_context(&cpuctx->ctx);
5264 cpuctx->ctx.type = cpu_context;
5265 cpuctx->ctx.pmu = pmu;
5266 cpuctx->jiffies_interval = 1;
5267 INIT_LIST_HEAD(&cpuctx->rotation_list);
5268 }
5269
5270 got_cpu_context:
5271 if (!pmu->start_txn) {
5272 if (pmu->pmu_enable) {
5273 /*
5274 * If we have pmu_enable/pmu_disable calls, install
5275 * transaction stubs that use that to try and batch
5276 * hardware accesses.
5277 */
5278 pmu->start_txn = perf_pmu_start_txn;
5279 pmu->commit_txn = perf_pmu_commit_txn;
5280 pmu->cancel_txn = perf_pmu_cancel_txn;
5281 } else {
5282 pmu->start_txn = perf_pmu_nop_void;
5283 pmu->commit_txn = perf_pmu_nop_int;
5284 pmu->cancel_txn = perf_pmu_nop_void;
5285 }
5286 }
5287
5288 if (!pmu->pmu_enable) {
5289 pmu->pmu_enable = perf_pmu_nop_void;
5290 pmu->pmu_disable = perf_pmu_nop_void;
5291 }
5292
5293 list_add_rcu(&pmu->entry, &pmus);
5294 ret = 0;
5295 unlock:
5296 mutex_unlock(&pmus_lock);
5297
5298 return ret;
5299
5300 free_pdc:
5301 free_percpu(pmu->pmu_disable_count);
5302 goto unlock;
5303 }
5304
5305 void perf_pmu_unregister(struct pmu *pmu)
5306 {
5307 mutex_lock(&pmus_lock);
5308 list_del_rcu(&pmu->entry);
5309 mutex_unlock(&pmus_lock);
5310
5311 /*
5312 * We dereference the pmu list under both SRCU and regular RCU, so
5313 * synchronize against both of those.
5314 */
5315 synchronize_srcu(&pmus_srcu);
5316 synchronize_rcu();
5317
5318 free_percpu(pmu->pmu_disable_count);
5319 free_pmu_context(pmu->pmu_cpu_context);
5320 }
5321
5322 struct pmu *perf_init_event(struct perf_event *event)
5323 {
5324 struct pmu *pmu = NULL;
5325 int idx;
5326
5327 idx = srcu_read_lock(&pmus_srcu);
5328 list_for_each_entry_rcu(pmu, &pmus, entry) {
5329 int ret = pmu->event_init(event);
5330 if (!ret)
5331 goto unlock;
5332
5333 if (ret != -ENOENT) {
5334 pmu = ERR_PTR(ret);
5335 goto unlock;
5336 }
5337 }
5338 pmu = ERR_PTR(-ENOENT);
5339 unlock:
5340 srcu_read_unlock(&pmus_srcu, idx);
5341
5342 return pmu;
5343 }
5344
5345 /*
5346 * Allocate and initialize a event structure
5347 */
5348 static struct perf_event *
5349 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5350 struct perf_event *group_leader,
5351 struct perf_event *parent_event,
5352 perf_overflow_handler_t overflow_handler)
5353 {
5354 struct pmu *pmu;
5355 struct perf_event *event;
5356 struct hw_perf_event *hwc;
5357 long err;
5358
5359 event = kzalloc(sizeof(*event), GFP_KERNEL);
5360 if (!event)
5361 return ERR_PTR(-ENOMEM);
5362
5363 /*
5364 * Single events are their own group leaders, with an
5365 * empty sibling list:
5366 */
5367 if (!group_leader)
5368 group_leader = event;
5369
5370 mutex_init(&event->child_mutex);
5371 INIT_LIST_HEAD(&event->child_list);
5372
5373 INIT_LIST_HEAD(&event->group_entry);
5374 INIT_LIST_HEAD(&event->event_entry);
5375 INIT_LIST_HEAD(&event->sibling_list);
5376 init_waitqueue_head(&event->waitq);
5377
5378 mutex_init(&event->mmap_mutex);
5379
5380 event->cpu = cpu;
5381 event->attr = *attr;
5382 event->group_leader = group_leader;
5383 event->pmu = NULL;
5384 event->oncpu = -1;
5385
5386 event->parent = parent_event;
5387
5388 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5389 event->id = atomic64_inc_return(&perf_event_id);
5390
5391 event->state = PERF_EVENT_STATE_INACTIVE;
5392
5393 if (!overflow_handler && parent_event)
5394 overflow_handler = parent_event->overflow_handler;
5395
5396 event->overflow_handler = overflow_handler;
5397
5398 if (attr->disabled)
5399 event->state = PERF_EVENT_STATE_OFF;
5400
5401 pmu = NULL;
5402
5403 hwc = &event->hw;
5404 hwc->sample_period = attr->sample_period;
5405 if (attr->freq && attr->sample_freq)
5406 hwc->sample_period = 1;
5407 hwc->last_period = hwc->sample_period;
5408
5409 local64_set(&hwc->period_left, hwc->sample_period);
5410
5411 /*
5412 * we currently do not support PERF_FORMAT_GROUP on inherited events
5413 */
5414 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5415 goto done;
5416
5417 pmu = perf_init_event(event);
5418
5419 done:
5420 err = 0;
5421 if (!pmu)
5422 err = -EINVAL;
5423 else if (IS_ERR(pmu))
5424 err = PTR_ERR(pmu);
5425
5426 if (err) {
5427 if (event->ns)
5428 put_pid_ns(event->ns);
5429 kfree(event);
5430 return ERR_PTR(err);
5431 }
5432
5433 event->pmu = pmu;
5434
5435 if (!event->parent) {
5436 atomic_inc(&nr_events);
5437 if (event->attr.mmap || event->attr.mmap_data)
5438 atomic_inc(&nr_mmap_events);
5439 if (event->attr.comm)
5440 atomic_inc(&nr_comm_events);
5441 if (event->attr.task)
5442 atomic_inc(&nr_task_events);
5443 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5444 err = get_callchain_buffers();
5445 if (err) {
5446 free_event(event);
5447 return ERR_PTR(err);
5448 }
5449 }
5450 }
5451
5452 return event;
5453 }
5454
5455 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5456 struct perf_event_attr *attr)
5457 {
5458 u32 size;
5459 int ret;
5460
5461 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5462 return -EFAULT;
5463
5464 /*
5465 * zero the full structure, so that a short copy will be nice.
5466 */
5467 memset(attr, 0, sizeof(*attr));
5468
5469 ret = get_user(size, &uattr->size);
5470 if (ret)
5471 return ret;
5472
5473 if (size > PAGE_SIZE) /* silly large */
5474 goto err_size;
5475
5476 if (!size) /* abi compat */
5477 size = PERF_ATTR_SIZE_VER0;
5478
5479 if (size < PERF_ATTR_SIZE_VER0)
5480 goto err_size;
5481
5482 /*
5483 * If we're handed a bigger struct than we know of,
5484 * ensure all the unknown bits are 0 - i.e. new
5485 * user-space does not rely on any kernel feature
5486 * extensions we dont know about yet.
5487 */
5488 if (size > sizeof(*attr)) {
5489 unsigned char __user *addr;
5490 unsigned char __user *end;
5491 unsigned char val;
5492
5493 addr = (void __user *)uattr + sizeof(*attr);
5494 end = (void __user *)uattr + size;
5495
5496 for (; addr < end; addr++) {
5497 ret = get_user(val, addr);
5498 if (ret)
5499 return ret;
5500 if (val)
5501 goto err_size;
5502 }
5503 size = sizeof(*attr);
5504 }
5505
5506 ret = copy_from_user(attr, uattr, size);
5507 if (ret)
5508 return -EFAULT;
5509
5510 /*
5511 * If the type exists, the corresponding creation will verify
5512 * the attr->config.
5513 */
5514 if (attr->type >= PERF_TYPE_MAX)
5515 return -EINVAL;
5516
5517 if (attr->__reserved_1)
5518 return -EINVAL;
5519
5520 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5521 return -EINVAL;
5522
5523 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5524 return -EINVAL;
5525
5526 out:
5527 return ret;
5528
5529 err_size:
5530 put_user(sizeof(*attr), &uattr->size);
5531 ret = -E2BIG;
5532 goto out;
5533 }
5534
5535 static int
5536 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5537 {
5538 struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5539 int ret = -EINVAL;
5540
5541 if (!output_event)
5542 goto set;
5543
5544 /* don't allow circular references */
5545 if (event == output_event)
5546 goto out;
5547
5548 /*
5549 * Don't allow cross-cpu buffers
5550 */
5551 if (output_event->cpu != event->cpu)
5552 goto out;
5553
5554 /*
5555 * If its not a per-cpu buffer, it must be the same task.
5556 */
5557 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5558 goto out;
5559
5560 set:
5561 mutex_lock(&event->mmap_mutex);
5562 /* Can't redirect output if we've got an active mmap() */
5563 if (atomic_read(&event->mmap_count))
5564 goto unlock;
5565
5566 if (output_event) {
5567 /* get the buffer we want to redirect to */
5568 buffer = perf_buffer_get(output_event);
5569 if (!buffer)
5570 goto unlock;
5571 }
5572
5573 old_buffer = event->buffer;
5574 rcu_assign_pointer(event->buffer, buffer);
5575 ret = 0;
5576 unlock:
5577 mutex_unlock(&event->mmap_mutex);
5578
5579 if (old_buffer)
5580 perf_buffer_put(old_buffer);
5581 out:
5582 return ret;
5583 }
5584
5585 /**
5586 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5587 *
5588 * @attr_uptr: event_id type attributes for monitoring/sampling
5589 * @pid: target pid
5590 * @cpu: target cpu
5591 * @group_fd: group leader event fd
5592 */
5593 SYSCALL_DEFINE5(perf_event_open,
5594 struct perf_event_attr __user *, attr_uptr,
5595 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5596 {
5597 struct perf_event *group_leader = NULL, *output_event = NULL;
5598 struct perf_event *event, *sibling;
5599 struct perf_event_attr attr;
5600 struct perf_event_context *ctx;
5601 struct file *event_file = NULL;
5602 struct file *group_file = NULL;
5603 struct task_struct *task = NULL;
5604 struct pmu *pmu;
5605 int event_fd;
5606 int move_group = 0;
5607 int fput_needed = 0;
5608 int err;
5609
5610 /* for future expandability... */
5611 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5612 return -EINVAL;
5613
5614 err = perf_copy_attr(attr_uptr, &attr);
5615 if (err)
5616 return err;
5617
5618 if (!attr.exclude_kernel) {
5619 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5620 return -EACCES;
5621 }
5622
5623 if (attr.freq) {
5624 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5625 return -EINVAL;
5626 }
5627
5628 event_fd = get_unused_fd_flags(O_RDWR);
5629 if (event_fd < 0)
5630 return event_fd;
5631
5632 if (group_fd != -1) {
5633 group_leader = perf_fget_light(group_fd, &fput_needed);
5634 if (IS_ERR(group_leader)) {
5635 err = PTR_ERR(group_leader);
5636 goto err_fd;
5637 }
5638 group_file = group_leader->filp;
5639 if (flags & PERF_FLAG_FD_OUTPUT)
5640 output_event = group_leader;
5641 if (flags & PERF_FLAG_FD_NO_GROUP)
5642 group_leader = NULL;
5643 }
5644
5645 event = perf_event_alloc(&attr, cpu, group_leader, NULL, NULL);
5646 if (IS_ERR(event)) {
5647 err = PTR_ERR(event);
5648 goto err_fd;
5649 }
5650
5651 /*
5652 * Special case software events and allow them to be part of
5653 * any hardware group.
5654 */
5655 pmu = event->pmu;
5656
5657 if (group_leader &&
5658 (is_software_event(event) != is_software_event(group_leader))) {
5659 if (is_software_event(event)) {
5660 /*
5661 * If event and group_leader are not both a software
5662 * event, and event is, then group leader is not.
5663 *
5664 * Allow the addition of software events to !software
5665 * groups, this is safe because software events never
5666 * fail to schedule.
5667 */
5668 pmu = group_leader->pmu;
5669 } else if (is_software_event(group_leader) &&
5670 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
5671 /*
5672 * In case the group is a pure software group, and we
5673 * try to add a hardware event, move the whole group to
5674 * the hardware context.
5675 */
5676 move_group = 1;
5677 }
5678 }
5679
5680 if (pid != -1) {
5681 task = find_lively_task_by_vpid(pid);
5682 if (IS_ERR(task)) {
5683 err = PTR_ERR(task);
5684 goto err_group_fd;
5685 }
5686 }
5687
5688 /*
5689 * Get the target context (task or percpu):
5690 */
5691 ctx = find_get_context(pmu, task, cpu);
5692 if (IS_ERR(ctx)) {
5693 err = PTR_ERR(ctx);
5694 goto err_group_fd;
5695 }
5696
5697 /*
5698 * Look up the group leader (we will attach this event to it):
5699 */
5700 if (group_leader) {
5701 err = -EINVAL;
5702
5703 /*
5704 * Do not allow a recursive hierarchy (this new sibling
5705 * becoming part of another group-sibling):
5706 */
5707 if (group_leader->group_leader != group_leader)
5708 goto err_context;
5709 /*
5710 * Do not allow to attach to a group in a different
5711 * task or CPU context:
5712 */
5713 if (move_group) {
5714 if (group_leader->ctx->type != ctx->type)
5715 goto err_context;
5716 } else {
5717 if (group_leader->ctx != ctx)
5718 goto err_context;
5719 }
5720
5721 /*
5722 * Only a group leader can be exclusive or pinned
5723 */
5724 if (attr.exclusive || attr.pinned)
5725 goto err_context;
5726 }
5727
5728 if (output_event) {
5729 err = perf_event_set_output(event, output_event);
5730 if (err)
5731 goto err_context;
5732 }
5733
5734 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5735 if (IS_ERR(event_file)) {
5736 err = PTR_ERR(event_file);
5737 goto err_context;
5738 }
5739
5740 if (move_group) {
5741 struct perf_event_context *gctx = group_leader->ctx;
5742
5743 mutex_lock(&gctx->mutex);
5744 perf_event_remove_from_context(group_leader);
5745 list_for_each_entry(sibling, &group_leader->sibling_list,
5746 group_entry) {
5747 perf_event_remove_from_context(sibling);
5748 put_ctx(gctx);
5749 }
5750 mutex_unlock(&gctx->mutex);
5751 put_ctx(gctx);
5752 }
5753
5754 event->filp = event_file;
5755 WARN_ON_ONCE(ctx->parent_ctx);
5756 mutex_lock(&ctx->mutex);
5757
5758 if (move_group) {
5759 perf_install_in_context(ctx, group_leader, cpu);
5760 get_ctx(ctx);
5761 list_for_each_entry(sibling, &group_leader->sibling_list,
5762 group_entry) {
5763 perf_install_in_context(ctx, sibling, cpu);
5764 get_ctx(ctx);
5765 }
5766 }
5767
5768 perf_install_in_context(ctx, event, cpu);
5769 ++ctx->generation;
5770 mutex_unlock(&ctx->mutex);
5771
5772 event->owner = current;
5773 get_task_struct(current);
5774 mutex_lock(&current->perf_event_mutex);
5775 list_add_tail(&event->owner_entry, &current->perf_event_list);
5776 mutex_unlock(&current->perf_event_mutex);
5777
5778 /*
5779 * Drop the reference on the group_event after placing the
5780 * new event on the sibling_list. This ensures destruction
5781 * of the group leader will find the pointer to itself in
5782 * perf_group_detach().
5783 */
5784 fput_light(group_file, fput_needed);
5785 fd_install(event_fd, event_file);
5786 return event_fd;
5787
5788 err_context:
5789 put_ctx(ctx);
5790 err_group_fd:
5791 fput_light(group_file, fput_needed);
5792 free_event(event);
5793 err_fd:
5794 put_unused_fd(event_fd);
5795 return err;
5796 }
5797
5798 /**
5799 * perf_event_create_kernel_counter
5800 *
5801 * @attr: attributes of the counter to create
5802 * @cpu: cpu in which the counter is bound
5803 * @task: task to profile (NULL for percpu)
5804 */
5805 struct perf_event *
5806 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5807 struct task_struct *task,
5808 perf_overflow_handler_t overflow_handler)
5809 {
5810 struct perf_event_context *ctx;
5811 struct perf_event *event;
5812 int err;
5813
5814 /*
5815 * Get the target context (task or percpu):
5816 */
5817
5818 event = perf_event_alloc(attr, cpu, NULL, NULL, overflow_handler);
5819 if (IS_ERR(event)) {
5820 err = PTR_ERR(event);
5821 goto err;
5822 }
5823
5824 ctx = find_get_context(event->pmu, task, cpu);
5825 if (IS_ERR(ctx)) {
5826 err = PTR_ERR(ctx);
5827 goto err_free;
5828 }
5829
5830 event->filp = NULL;
5831 WARN_ON_ONCE(ctx->parent_ctx);
5832 mutex_lock(&ctx->mutex);
5833 perf_install_in_context(ctx, event, cpu);
5834 ++ctx->generation;
5835 mutex_unlock(&ctx->mutex);
5836
5837 event->owner = current;
5838 get_task_struct(current);
5839 mutex_lock(&current->perf_event_mutex);
5840 list_add_tail(&event->owner_entry, &current->perf_event_list);
5841 mutex_unlock(&current->perf_event_mutex);
5842
5843 return event;
5844
5845 err_free:
5846 free_event(event);
5847 err:
5848 return ERR_PTR(err);
5849 }
5850 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5851
5852 static void sync_child_event(struct perf_event *child_event,
5853 struct task_struct *child)
5854 {
5855 struct perf_event *parent_event = child_event->parent;
5856 u64 child_val;
5857
5858 if (child_event->attr.inherit_stat)
5859 perf_event_read_event(child_event, child);
5860
5861 child_val = perf_event_count(child_event);
5862
5863 /*
5864 * Add back the child's count to the parent's count:
5865 */
5866 atomic64_add(child_val, &parent_event->child_count);
5867 atomic64_add(child_event->total_time_enabled,
5868 &parent_event->child_total_time_enabled);
5869 atomic64_add(child_event->total_time_running,
5870 &parent_event->child_total_time_running);
5871
5872 /*
5873 * Remove this event from the parent's list
5874 */
5875 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5876 mutex_lock(&parent_event->child_mutex);
5877 list_del_init(&child_event->child_list);
5878 mutex_unlock(&parent_event->child_mutex);
5879
5880 /*
5881 * Release the parent event, if this was the last
5882 * reference to it.
5883 */
5884 fput(parent_event->filp);
5885 }
5886
5887 static void
5888 __perf_event_exit_task(struct perf_event *child_event,
5889 struct perf_event_context *child_ctx,
5890 struct task_struct *child)
5891 {
5892 struct perf_event *parent_event;
5893
5894 perf_event_remove_from_context(child_event);
5895
5896 parent_event = child_event->parent;
5897 /*
5898 * It can happen that parent exits first, and has events
5899 * that are still around due to the child reference. These
5900 * events need to be zapped - but otherwise linger.
5901 */
5902 if (parent_event) {
5903 sync_child_event(child_event, child);
5904 free_event(child_event);
5905 }
5906 }
5907
5908 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
5909 {
5910 struct perf_event *child_event, *tmp;
5911 struct perf_event_context *child_ctx;
5912 unsigned long flags;
5913
5914 if (likely(!child->perf_event_ctxp[ctxn])) {
5915 perf_event_task(child, NULL, 0);
5916 return;
5917 }
5918
5919 local_irq_save(flags);
5920 /*
5921 * We can't reschedule here because interrupts are disabled,
5922 * and either child is current or it is a task that can't be
5923 * scheduled, so we are now safe from rescheduling changing
5924 * our context.
5925 */
5926 child_ctx = child->perf_event_ctxp[ctxn];
5927 __perf_event_task_sched_out(child_ctx);
5928
5929 /*
5930 * Take the context lock here so that if find_get_context is
5931 * reading child->perf_event_ctxp, we wait until it has
5932 * incremented the context's refcount before we do put_ctx below.
5933 */
5934 raw_spin_lock(&child_ctx->lock);
5935 child->perf_event_ctxp[ctxn] = NULL;
5936 /*
5937 * If this context is a clone; unclone it so it can't get
5938 * swapped to another process while we're removing all
5939 * the events from it.
5940 */
5941 unclone_ctx(child_ctx);
5942 update_context_time(child_ctx);
5943 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5944
5945 /*
5946 * Report the task dead after unscheduling the events so that we
5947 * won't get any samples after PERF_RECORD_EXIT. We can however still
5948 * get a few PERF_RECORD_READ events.
5949 */
5950 perf_event_task(child, child_ctx, 0);
5951
5952 /*
5953 * We can recurse on the same lock type through:
5954 *
5955 * __perf_event_exit_task()
5956 * sync_child_event()
5957 * fput(parent_event->filp)
5958 * perf_release()
5959 * mutex_lock(&ctx->mutex)
5960 *
5961 * But since its the parent context it won't be the same instance.
5962 */
5963 mutex_lock(&child_ctx->mutex);
5964
5965 again:
5966 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5967 group_entry)
5968 __perf_event_exit_task(child_event, child_ctx, child);
5969
5970 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5971 group_entry)
5972 __perf_event_exit_task(child_event, child_ctx, child);
5973
5974 /*
5975 * If the last event was a group event, it will have appended all
5976 * its siblings to the list, but we obtained 'tmp' before that which
5977 * will still point to the list head terminating the iteration.
5978 */
5979 if (!list_empty(&child_ctx->pinned_groups) ||
5980 !list_empty(&child_ctx->flexible_groups))
5981 goto again;
5982
5983 mutex_unlock(&child_ctx->mutex);
5984
5985 put_ctx(child_ctx);
5986 }
5987
5988 /*
5989 * When a child task exits, feed back event values to parent events.
5990 */
5991 void perf_event_exit_task(struct task_struct *child)
5992 {
5993 int ctxn;
5994
5995 for_each_task_context_nr(ctxn)
5996 perf_event_exit_task_context(child, ctxn);
5997 }
5998
5999 static void perf_free_event(struct perf_event *event,
6000 struct perf_event_context *ctx)
6001 {
6002 struct perf_event *parent = event->parent;
6003
6004 if (WARN_ON_ONCE(!parent))
6005 return;
6006
6007 mutex_lock(&parent->child_mutex);
6008 list_del_init(&event->child_list);
6009 mutex_unlock(&parent->child_mutex);
6010
6011 fput(parent->filp);
6012
6013 perf_group_detach(event);
6014 list_del_event(event, ctx);
6015 free_event(event);
6016 }
6017
6018 /*
6019 * free an unexposed, unused context as created by inheritance by
6020 * perf_event_init_task below, used by fork() in case of fail.
6021 */
6022 void perf_event_free_task(struct task_struct *task)
6023 {
6024 struct perf_event_context *ctx;
6025 struct perf_event *event, *tmp;
6026 int ctxn;
6027
6028 for_each_task_context_nr(ctxn) {
6029 ctx = task->perf_event_ctxp[ctxn];
6030 if (!ctx)
6031 continue;
6032
6033 mutex_lock(&ctx->mutex);
6034 again:
6035 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6036 group_entry)
6037 perf_free_event(event, ctx);
6038
6039 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6040 group_entry)
6041 perf_free_event(event, ctx);
6042
6043 if (!list_empty(&ctx->pinned_groups) ||
6044 !list_empty(&ctx->flexible_groups))
6045 goto again;
6046
6047 mutex_unlock(&ctx->mutex);
6048
6049 put_ctx(ctx);
6050 }
6051 }
6052
6053 void perf_event_delayed_put(struct task_struct *task)
6054 {
6055 int ctxn;
6056
6057 for_each_task_context_nr(ctxn)
6058 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6059 }
6060
6061 /*
6062 * inherit a event from parent task to child task:
6063 */
6064 static struct perf_event *
6065 inherit_event(struct perf_event *parent_event,
6066 struct task_struct *parent,
6067 struct perf_event_context *parent_ctx,
6068 struct task_struct *child,
6069 struct perf_event *group_leader,
6070 struct perf_event_context *child_ctx)
6071 {
6072 struct perf_event *child_event;
6073 unsigned long flags;
6074
6075 /*
6076 * Instead of creating recursive hierarchies of events,
6077 * we link inherited events back to the original parent,
6078 * which has a filp for sure, which we use as the reference
6079 * count:
6080 */
6081 if (parent_event->parent)
6082 parent_event = parent_event->parent;
6083
6084 child_event = perf_event_alloc(&parent_event->attr,
6085 parent_event->cpu,
6086 group_leader, parent_event,
6087 NULL);
6088 if (IS_ERR(child_event))
6089 return child_event;
6090 get_ctx(child_ctx);
6091
6092 /*
6093 * Make the child state follow the state of the parent event,
6094 * not its attr.disabled bit. We hold the parent's mutex,
6095 * so we won't race with perf_event_{en, dis}able_family.
6096 */
6097 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6098 child_event->state = PERF_EVENT_STATE_INACTIVE;
6099 else
6100 child_event->state = PERF_EVENT_STATE_OFF;
6101
6102 if (parent_event->attr.freq) {
6103 u64 sample_period = parent_event->hw.sample_period;
6104 struct hw_perf_event *hwc = &child_event->hw;
6105
6106 hwc->sample_period = sample_period;
6107 hwc->last_period = sample_period;
6108
6109 local64_set(&hwc->period_left, sample_period);
6110 }
6111
6112 child_event->ctx = child_ctx;
6113 child_event->overflow_handler = parent_event->overflow_handler;
6114
6115 /*
6116 * Link it up in the child's context:
6117 */
6118 raw_spin_lock_irqsave(&child_ctx->lock, flags);
6119 add_event_to_ctx(child_event, child_ctx);
6120 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6121
6122 /*
6123 * Get a reference to the parent filp - we will fput it
6124 * when the child event exits. This is safe to do because
6125 * we are in the parent and we know that the filp still
6126 * exists and has a nonzero count:
6127 */
6128 atomic_long_inc(&parent_event->filp->f_count);
6129
6130 /*
6131 * Link this into the parent event's child list
6132 */
6133 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6134 mutex_lock(&parent_event->child_mutex);
6135 list_add_tail(&child_event->child_list, &parent_event->child_list);
6136 mutex_unlock(&parent_event->child_mutex);
6137
6138 return child_event;
6139 }
6140
6141 static int inherit_group(struct perf_event *parent_event,
6142 struct task_struct *parent,
6143 struct perf_event_context *parent_ctx,
6144 struct task_struct *child,
6145 struct perf_event_context *child_ctx)
6146 {
6147 struct perf_event *leader;
6148 struct perf_event *sub;
6149 struct perf_event *child_ctr;
6150
6151 leader = inherit_event(parent_event, parent, parent_ctx,
6152 child, NULL, child_ctx);
6153 if (IS_ERR(leader))
6154 return PTR_ERR(leader);
6155 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6156 child_ctr = inherit_event(sub, parent, parent_ctx,
6157 child, leader, child_ctx);
6158 if (IS_ERR(child_ctr))
6159 return PTR_ERR(child_ctr);
6160 }
6161 return 0;
6162 }
6163
6164 static int
6165 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6166 struct perf_event_context *parent_ctx,
6167 struct task_struct *child, int ctxn,
6168 int *inherited_all)
6169 {
6170 int ret;
6171 struct perf_event_context *child_ctx;
6172
6173 if (!event->attr.inherit) {
6174 *inherited_all = 0;
6175 return 0;
6176 }
6177
6178 child_ctx = child->perf_event_ctxp[ctxn];
6179 if (!child_ctx) {
6180 /*
6181 * This is executed from the parent task context, so
6182 * inherit events that have been marked for cloning.
6183 * First allocate and initialize a context for the
6184 * child.
6185 */
6186
6187 child_ctx = alloc_perf_context(event->pmu, child);
6188 if (!child_ctx)
6189 return -ENOMEM;
6190
6191 child->perf_event_ctxp[ctxn] = child_ctx;
6192 }
6193
6194 ret = inherit_group(event, parent, parent_ctx,
6195 child, child_ctx);
6196
6197 if (ret)
6198 *inherited_all = 0;
6199
6200 return ret;
6201 }
6202
6203 /*
6204 * Initialize the perf_event context in task_struct
6205 */
6206 int perf_event_init_context(struct task_struct *child, int ctxn)
6207 {
6208 struct perf_event_context *child_ctx, *parent_ctx;
6209 struct perf_event_context *cloned_ctx;
6210 struct perf_event *event;
6211 struct task_struct *parent = current;
6212 int inherited_all = 1;
6213 int ret = 0;
6214
6215 child->perf_event_ctxp[ctxn] = NULL;
6216
6217 mutex_init(&child->perf_event_mutex);
6218 INIT_LIST_HEAD(&child->perf_event_list);
6219
6220 if (likely(!parent->perf_event_ctxp[ctxn]))
6221 return 0;
6222
6223 /*
6224 * If the parent's context is a clone, pin it so it won't get
6225 * swapped under us.
6226 */
6227 parent_ctx = perf_pin_task_context(parent, ctxn);
6228
6229 /*
6230 * No need to check if parent_ctx != NULL here; since we saw
6231 * it non-NULL earlier, the only reason for it to become NULL
6232 * is if we exit, and since we're currently in the middle of
6233 * a fork we can't be exiting at the same time.
6234 */
6235
6236 /*
6237 * Lock the parent list. No need to lock the child - not PID
6238 * hashed yet and not running, so nobody can access it.
6239 */
6240 mutex_lock(&parent_ctx->mutex);
6241
6242 /*
6243 * We dont have to disable NMIs - we are only looking at
6244 * the list, not manipulating it:
6245 */
6246 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6247 ret = inherit_task_group(event, parent, parent_ctx,
6248 child, ctxn, &inherited_all);
6249 if (ret)
6250 break;
6251 }
6252
6253 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6254 ret = inherit_task_group(event, parent, parent_ctx,
6255 child, ctxn, &inherited_all);
6256 if (ret)
6257 break;
6258 }
6259
6260 child_ctx = child->perf_event_ctxp[ctxn];
6261
6262 if (child_ctx && inherited_all) {
6263 /*
6264 * Mark the child context as a clone of the parent
6265 * context, or of whatever the parent is a clone of.
6266 * Note that if the parent is a clone, it could get
6267 * uncloned at any point, but that doesn't matter
6268 * because the list of events and the generation
6269 * count can't have changed since we took the mutex.
6270 */
6271 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
6272 if (cloned_ctx) {
6273 child_ctx->parent_ctx = cloned_ctx;
6274 child_ctx->parent_gen = parent_ctx->parent_gen;
6275 } else {
6276 child_ctx->parent_ctx = parent_ctx;
6277 child_ctx->parent_gen = parent_ctx->generation;
6278 }
6279 get_ctx(child_ctx->parent_ctx);
6280 }
6281
6282 mutex_unlock(&parent_ctx->mutex);
6283
6284 perf_unpin_context(parent_ctx);
6285
6286 return ret;
6287 }
6288
6289 /*
6290 * Initialize the perf_event context in task_struct
6291 */
6292 int perf_event_init_task(struct task_struct *child)
6293 {
6294 int ctxn, ret;
6295
6296 for_each_task_context_nr(ctxn) {
6297 ret = perf_event_init_context(child, ctxn);
6298 if (ret)
6299 return ret;
6300 }
6301
6302 return 0;
6303 }
6304
6305 static void __init perf_event_init_all_cpus(void)
6306 {
6307 struct swevent_htable *swhash;
6308 int cpu;
6309
6310 for_each_possible_cpu(cpu) {
6311 swhash = &per_cpu(swevent_htable, cpu);
6312 mutex_init(&swhash->hlist_mutex);
6313 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6314 }
6315 }
6316
6317 static void __cpuinit perf_event_init_cpu(int cpu)
6318 {
6319 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6320
6321 mutex_lock(&swhash->hlist_mutex);
6322 if (swhash->hlist_refcount > 0) {
6323 struct swevent_hlist *hlist;
6324
6325 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6326 WARN_ON(!hlist);
6327 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6328 }
6329 mutex_unlock(&swhash->hlist_mutex);
6330 }
6331
6332 #ifdef CONFIG_HOTPLUG_CPU
6333 static void perf_pmu_rotate_stop(struct pmu *pmu)
6334 {
6335 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6336
6337 WARN_ON(!irqs_disabled());
6338
6339 list_del_init(&cpuctx->rotation_list);
6340 }
6341
6342 static void __perf_event_exit_context(void *__info)
6343 {
6344 struct perf_event_context *ctx = __info;
6345 struct perf_event *event, *tmp;
6346
6347 perf_pmu_rotate_stop(ctx->pmu);
6348
6349 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6350 __perf_event_remove_from_context(event);
6351 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6352 __perf_event_remove_from_context(event);
6353 }
6354
6355 static void perf_event_exit_cpu_context(int cpu)
6356 {
6357 struct perf_event_context *ctx;
6358 struct pmu *pmu;
6359 int idx;
6360
6361 idx = srcu_read_lock(&pmus_srcu);
6362 list_for_each_entry_rcu(pmu, &pmus, entry) {
6363 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6364
6365 mutex_lock(&ctx->mutex);
6366 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6367 mutex_unlock(&ctx->mutex);
6368 }
6369 srcu_read_unlock(&pmus_srcu, idx);
6370 }
6371
6372 static void perf_event_exit_cpu(int cpu)
6373 {
6374 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6375
6376 mutex_lock(&swhash->hlist_mutex);
6377 swevent_hlist_release(swhash);
6378 mutex_unlock(&swhash->hlist_mutex);
6379
6380 perf_event_exit_cpu_context(cpu);
6381 }
6382 #else
6383 static inline void perf_event_exit_cpu(int cpu) { }
6384 #endif
6385
6386 static int __cpuinit
6387 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6388 {
6389 unsigned int cpu = (long)hcpu;
6390
6391 switch (action & ~CPU_TASKS_FROZEN) {
6392
6393 case CPU_UP_PREPARE:
6394 case CPU_DOWN_FAILED:
6395 perf_event_init_cpu(cpu);
6396 break;
6397
6398 case CPU_UP_CANCELED:
6399 case CPU_DOWN_PREPARE:
6400 perf_event_exit_cpu(cpu);
6401 break;
6402
6403 default:
6404 break;
6405 }
6406
6407 return NOTIFY_OK;
6408 }
6409
6410 void __init perf_event_init(void)
6411 {
6412 perf_event_init_all_cpus();
6413 init_srcu_struct(&pmus_srcu);
6414 perf_pmu_register(&perf_swevent);
6415 perf_pmu_register(&perf_cpu_clock);
6416 perf_pmu_register(&perf_task_clock);
6417 perf_tp_register();
6418 perf_cpu_notifier(perf_cpu_notify);
6419 }
This page took 0.255006 seconds and 5 git commands to generate.