perf: Add cgroup support
[deliverable/linux.git] / kernel / perf_event.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/vmalloc.h>
29 #include <linux/hardirq.h>
30 #include <linux/rculist.h>
31 #include <linux/uaccess.h>
32 #include <linux/syscalls.h>
33 #include <linux/anon_inodes.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/perf_event.h>
36 #include <linux/ftrace_event.h>
37 #include <linux/hw_breakpoint.h>
38
39 #include <asm/irq_regs.h>
40
41 struct remote_function_call {
42 struct task_struct *p;
43 int (*func)(void *info);
44 void *info;
45 int ret;
46 };
47
48 static void remote_function(void *data)
49 {
50 struct remote_function_call *tfc = data;
51 struct task_struct *p = tfc->p;
52
53 if (p) {
54 tfc->ret = -EAGAIN;
55 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
56 return;
57 }
58
59 tfc->ret = tfc->func(tfc->info);
60 }
61
62 /**
63 * task_function_call - call a function on the cpu on which a task runs
64 * @p: the task to evaluate
65 * @func: the function to be called
66 * @info: the function call argument
67 *
68 * Calls the function @func when the task is currently running. This might
69 * be on the current CPU, which just calls the function directly
70 *
71 * returns: @func return value, or
72 * -ESRCH - when the process isn't running
73 * -EAGAIN - when the process moved away
74 */
75 static int
76 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
77 {
78 struct remote_function_call data = {
79 .p = p,
80 .func = func,
81 .info = info,
82 .ret = -ESRCH, /* No such (running) process */
83 };
84
85 if (task_curr(p))
86 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
87
88 return data.ret;
89 }
90
91 /**
92 * cpu_function_call - call a function on the cpu
93 * @func: the function to be called
94 * @info: the function call argument
95 *
96 * Calls the function @func on the remote cpu.
97 *
98 * returns: @func return value or -ENXIO when the cpu is offline
99 */
100 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
101 {
102 struct remote_function_call data = {
103 .p = NULL,
104 .func = func,
105 .info = info,
106 .ret = -ENXIO, /* No such CPU */
107 };
108
109 smp_call_function_single(cpu, remote_function, &data, 1);
110
111 return data.ret;
112 }
113
114 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
115 PERF_FLAG_FD_OUTPUT |\
116 PERF_FLAG_PID_CGROUP)
117
118 enum event_type_t {
119 EVENT_FLEXIBLE = 0x1,
120 EVENT_PINNED = 0x2,
121 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
122 };
123
124 /*
125 * perf_sched_events : >0 events exist
126 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
127 */
128 atomic_t perf_sched_events __read_mostly;
129 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
130
131 static atomic_t nr_mmap_events __read_mostly;
132 static atomic_t nr_comm_events __read_mostly;
133 static atomic_t nr_task_events __read_mostly;
134
135 static LIST_HEAD(pmus);
136 static DEFINE_MUTEX(pmus_lock);
137 static struct srcu_struct pmus_srcu;
138
139 /*
140 * perf event paranoia level:
141 * -1 - not paranoid at all
142 * 0 - disallow raw tracepoint access for unpriv
143 * 1 - disallow cpu events for unpriv
144 * 2 - disallow kernel profiling for unpriv
145 */
146 int sysctl_perf_event_paranoid __read_mostly = 1;
147
148 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
149
150 /*
151 * max perf event sample rate
152 */
153 int sysctl_perf_event_sample_rate __read_mostly = 100000;
154
155 static atomic64_t perf_event_id;
156
157 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
158 enum event_type_t event_type);
159
160 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
161 enum event_type_t event_type,
162 struct task_struct *task);
163
164 static void update_context_time(struct perf_event_context *ctx);
165 static u64 perf_event_time(struct perf_event *event);
166
167 void __weak perf_event_print_debug(void) { }
168
169 extern __weak const char *perf_pmu_name(void)
170 {
171 return "pmu";
172 }
173
174 static inline u64 perf_clock(void)
175 {
176 return local_clock();
177 }
178
179 static inline struct perf_cpu_context *
180 __get_cpu_context(struct perf_event_context *ctx)
181 {
182 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
183 }
184
185 #ifdef CONFIG_CGROUP_PERF
186
187 static inline struct perf_cgroup *
188 perf_cgroup_from_task(struct task_struct *task)
189 {
190 return container_of(task_subsys_state(task, perf_subsys_id),
191 struct perf_cgroup, css);
192 }
193
194 static inline bool
195 perf_cgroup_match(struct perf_event *event)
196 {
197 struct perf_event_context *ctx = event->ctx;
198 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
199
200 return !event->cgrp || event->cgrp == cpuctx->cgrp;
201 }
202
203 static inline void perf_get_cgroup(struct perf_event *event)
204 {
205 css_get(&event->cgrp->css);
206 }
207
208 static inline void perf_put_cgroup(struct perf_event *event)
209 {
210 css_put(&event->cgrp->css);
211 }
212
213 static inline void perf_detach_cgroup(struct perf_event *event)
214 {
215 perf_put_cgroup(event);
216 event->cgrp = NULL;
217 }
218
219 static inline int is_cgroup_event(struct perf_event *event)
220 {
221 return event->cgrp != NULL;
222 }
223
224 static inline u64 perf_cgroup_event_time(struct perf_event *event)
225 {
226 struct perf_cgroup_info *t;
227
228 t = per_cpu_ptr(event->cgrp->info, event->cpu);
229 return t->time;
230 }
231
232 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
233 {
234 struct perf_cgroup_info *info;
235 u64 now;
236
237 now = perf_clock();
238
239 info = this_cpu_ptr(cgrp->info);
240
241 info->time += now - info->timestamp;
242 info->timestamp = now;
243 }
244
245 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
246 {
247 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
248 if (cgrp_out)
249 __update_cgrp_time(cgrp_out);
250 }
251
252 static inline void update_cgrp_time_from_event(struct perf_event *event)
253 {
254 struct perf_cgroup *cgrp = perf_cgroup_from_task(current);
255 /*
256 * do not update time when cgroup is not active
257 */
258 if (!event->cgrp || cgrp != event->cgrp)
259 return;
260
261 __update_cgrp_time(event->cgrp);
262 }
263
264 static inline void
265 perf_cgroup_set_timestamp(struct task_struct *task, u64 now)
266 {
267 struct perf_cgroup *cgrp;
268 struct perf_cgroup_info *info;
269
270 if (!task)
271 return;
272
273 cgrp = perf_cgroup_from_task(task);
274 info = this_cpu_ptr(cgrp->info);
275 info->timestamp = now;
276 }
277
278 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
279 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
280
281 /*
282 * reschedule events based on the cgroup constraint of task.
283 *
284 * mode SWOUT : schedule out everything
285 * mode SWIN : schedule in based on cgroup for next
286 */
287 void perf_cgroup_switch(struct task_struct *task, int mode)
288 {
289 struct perf_cpu_context *cpuctx;
290 struct pmu *pmu;
291 unsigned long flags;
292
293 /*
294 * disable interrupts to avoid geting nr_cgroup
295 * changes via __perf_event_disable(). Also
296 * avoids preemption.
297 */
298 local_irq_save(flags);
299
300 /*
301 * we reschedule only in the presence of cgroup
302 * constrained events.
303 */
304 rcu_read_lock();
305
306 list_for_each_entry_rcu(pmu, &pmus, entry) {
307
308 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
309
310 perf_pmu_disable(cpuctx->ctx.pmu);
311
312 /*
313 * perf_cgroup_events says at least one
314 * context on this CPU has cgroup events.
315 *
316 * ctx->nr_cgroups reports the number of cgroup
317 * events for a context.
318 */
319 if (cpuctx->ctx.nr_cgroups > 0) {
320
321 if (mode & PERF_CGROUP_SWOUT) {
322 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
323 /*
324 * must not be done before ctxswout due
325 * to event_filter_match() in event_sched_out()
326 */
327 cpuctx->cgrp = NULL;
328 }
329
330 if (mode & PERF_CGROUP_SWIN) {
331 /* set cgrp before ctxsw in to
332 * allow event_filter_match() to not
333 * have to pass task around
334 */
335 cpuctx->cgrp = perf_cgroup_from_task(task);
336 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
337 }
338 }
339
340 perf_pmu_enable(cpuctx->ctx.pmu);
341 }
342
343 rcu_read_unlock();
344
345 local_irq_restore(flags);
346 }
347
348 static inline void perf_cgroup_sched_out(struct task_struct *task)
349 {
350 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
351 }
352
353 static inline void perf_cgroup_sched_in(struct task_struct *task)
354 {
355 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
356 }
357
358 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
359 struct perf_event_attr *attr,
360 struct perf_event *group_leader)
361 {
362 struct perf_cgroup *cgrp;
363 struct cgroup_subsys_state *css;
364 struct file *file;
365 int ret = 0, fput_needed;
366
367 file = fget_light(fd, &fput_needed);
368 if (!file)
369 return -EBADF;
370
371 css = cgroup_css_from_dir(file, perf_subsys_id);
372 if (IS_ERR(css))
373 return PTR_ERR(css);
374
375 cgrp = container_of(css, struct perf_cgroup, css);
376 event->cgrp = cgrp;
377
378 /*
379 * all events in a group must monitor
380 * the same cgroup because a task belongs
381 * to only one perf cgroup at a time
382 */
383 if (group_leader && group_leader->cgrp != cgrp) {
384 perf_detach_cgroup(event);
385 ret = -EINVAL;
386 } else {
387 /* must be done before we fput() the file */
388 perf_get_cgroup(event);
389 }
390 fput_light(file, fput_needed);
391 return ret;
392 }
393
394 static inline void
395 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
396 {
397 struct perf_cgroup_info *t;
398 t = per_cpu_ptr(event->cgrp->info, event->cpu);
399 event->shadow_ctx_time = now - t->timestamp;
400 }
401
402 static inline void
403 perf_cgroup_defer_enabled(struct perf_event *event)
404 {
405 /*
406 * when the current task's perf cgroup does not match
407 * the event's, we need to remember to call the
408 * perf_mark_enable() function the first time a task with
409 * a matching perf cgroup is scheduled in.
410 */
411 if (is_cgroup_event(event) && !perf_cgroup_match(event))
412 event->cgrp_defer_enabled = 1;
413 }
414
415 static inline void
416 perf_cgroup_mark_enabled(struct perf_event *event,
417 struct perf_event_context *ctx)
418 {
419 struct perf_event *sub;
420 u64 tstamp = perf_event_time(event);
421
422 if (!event->cgrp_defer_enabled)
423 return;
424
425 event->cgrp_defer_enabled = 0;
426
427 event->tstamp_enabled = tstamp - event->total_time_enabled;
428 list_for_each_entry(sub, &event->sibling_list, group_entry) {
429 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
430 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
431 sub->cgrp_defer_enabled = 0;
432 }
433 }
434 }
435 #else /* !CONFIG_CGROUP_PERF */
436
437 static inline bool
438 perf_cgroup_match(struct perf_event *event)
439 {
440 return true;
441 }
442
443 static inline void perf_detach_cgroup(struct perf_event *event)
444 {}
445
446 static inline int is_cgroup_event(struct perf_event *event)
447 {
448 return 0;
449 }
450
451 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
452 {
453 return 0;
454 }
455
456 static inline void update_cgrp_time_from_event(struct perf_event *event)
457 {
458 }
459
460 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
461 {
462 }
463
464 static inline void perf_cgroup_sched_out(struct task_struct *task)
465 {
466 }
467
468 static inline void perf_cgroup_sched_in(struct task_struct *task)
469 {
470 }
471
472 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
473 struct perf_event_attr *attr,
474 struct perf_event *group_leader)
475 {
476 return -EINVAL;
477 }
478
479 static inline void
480 perf_cgroup_set_timestamp(struct task_struct *task, u64 now)
481 {
482 }
483
484 void
485 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
486 {
487 }
488
489 static inline void
490 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
491 {
492 }
493
494 static inline u64 perf_cgroup_event_time(struct perf_event *event)
495 {
496 return 0;
497 }
498
499 static inline void
500 perf_cgroup_defer_enabled(struct perf_event *event)
501 {
502 }
503
504 static inline void
505 perf_cgroup_mark_enabled(struct perf_event *event,
506 struct perf_event_context *ctx)
507 {
508 }
509 #endif
510
511 void perf_pmu_disable(struct pmu *pmu)
512 {
513 int *count = this_cpu_ptr(pmu->pmu_disable_count);
514 if (!(*count)++)
515 pmu->pmu_disable(pmu);
516 }
517
518 void perf_pmu_enable(struct pmu *pmu)
519 {
520 int *count = this_cpu_ptr(pmu->pmu_disable_count);
521 if (!--(*count))
522 pmu->pmu_enable(pmu);
523 }
524
525 static DEFINE_PER_CPU(struct list_head, rotation_list);
526
527 /*
528 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
529 * because they're strictly cpu affine and rotate_start is called with IRQs
530 * disabled, while rotate_context is called from IRQ context.
531 */
532 static void perf_pmu_rotate_start(struct pmu *pmu)
533 {
534 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
535 struct list_head *head = &__get_cpu_var(rotation_list);
536
537 WARN_ON(!irqs_disabled());
538
539 if (list_empty(&cpuctx->rotation_list))
540 list_add(&cpuctx->rotation_list, head);
541 }
542
543 static void get_ctx(struct perf_event_context *ctx)
544 {
545 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
546 }
547
548 static void free_ctx(struct rcu_head *head)
549 {
550 struct perf_event_context *ctx;
551
552 ctx = container_of(head, struct perf_event_context, rcu_head);
553 kfree(ctx);
554 }
555
556 static void put_ctx(struct perf_event_context *ctx)
557 {
558 if (atomic_dec_and_test(&ctx->refcount)) {
559 if (ctx->parent_ctx)
560 put_ctx(ctx->parent_ctx);
561 if (ctx->task)
562 put_task_struct(ctx->task);
563 call_rcu(&ctx->rcu_head, free_ctx);
564 }
565 }
566
567 static void unclone_ctx(struct perf_event_context *ctx)
568 {
569 if (ctx->parent_ctx) {
570 put_ctx(ctx->parent_ctx);
571 ctx->parent_ctx = NULL;
572 }
573 }
574
575 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
576 {
577 /*
578 * only top level events have the pid namespace they were created in
579 */
580 if (event->parent)
581 event = event->parent;
582
583 return task_tgid_nr_ns(p, event->ns);
584 }
585
586 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
587 {
588 /*
589 * only top level events have the pid namespace they were created in
590 */
591 if (event->parent)
592 event = event->parent;
593
594 return task_pid_nr_ns(p, event->ns);
595 }
596
597 /*
598 * If we inherit events we want to return the parent event id
599 * to userspace.
600 */
601 static u64 primary_event_id(struct perf_event *event)
602 {
603 u64 id = event->id;
604
605 if (event->parent)
606 id = event->parent->id;
607
608 return id;
609 }
610
611 /*
612 * Get the perf_event_context for a task and lock it.
613 * This has to cope with with the fact that until it is locked,
614 * the context could get moved to another task.
615 */
616 static struct perf_event_context *
617 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
618 {
619 struct perf_event_context *ctx;
620
621 rcu_read_lock();
622 retry:
623 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
624 if (ctx) {
625 /*
626 * If this context is a clone of another, it might
627 * get swapped for another underneath us by
628 * perf_event_task_sched_out, though the
629 * rcu_read_lock() protects us from any context
630 * getting freed. Lock the context and check if it
631 * got swapped before we could get the lock, and retry
632 * if so. If we locked the right context, then it
633 * can't get swapped on us any more.
634 */
635 raw_spin_lock_irqsave(&ctx->lock, *flags);
636 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
637 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
638 goto retry;
639 }
640
641 if (!atomic_inc_not_zero(&ctx->refcount)) {
642 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
643 ctx = NULL;
644 }
645 }
646 rcu_read_unlock();
647 return ctx;
648 }
649
650 /*
651 * Get the context for a task and increment its pin_count so it
652 * can't get swapped to another task. This also increments its
653 * reference count so that the context can't get freed.
654 */
655 static struct perf_event_context *
656 perf_pin_task_context(struct task_struct *task, int ctxn)
657 {
658 struct perf_event_context *ctx;
659 unsigned long flags;
660
661 ctx = perf_lock_task_context(task, ctxn, &flags);
662 if (ctx) {
663 ++ctx->pin_count;
664 raw_spin_unlock_irqrestore(&ctx->lock, flags);
665 }
666 return ctx;
667 }
668
669 static void perf_unpin_context(struct perf_event_context *ctx)
670 {
671 unsigned long flags;
672
673 raw_spin_lock_irqsave(&ctx->lock, flags);
674 --ctx->pin_count;
675 raw_spin_unlock_irqrestore(&ctx->lock, flags);
676 }
677
678 /*
679 * Update the record of the current time in a context.
680 */
681 static void update_context_time(struct perf_event_context *ctx)
682 {
683 u64 now = perf_clock();
684
685 ctx->time += now - ctx->timestamp;
686 ctx->timestamp = now;
687 }
688
689 static u64 perf_event_time(struct perf_event *event)
690 {
691 struct perf_event_context *ctx = event->ctx;
692
693 if (is_cgroup_event(event))
694 return perf_cgroup_event_time(event);
695
696 return ctx ? ctx->time : 0;
697 }
698
699 /*
700 * Update the total_time_enabled and total_time_running fields for a event.
701 */
702 static void update_event_times(struct perf_event *event)
703 {
704 struct perf_event_context *ctx = event->ctx;
705 u64 run_end;
706
707 if (event->state < PERF_EVENT_STATE_INACTIVE ||
708 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
709 return;
710 /*
711 * in cgroup mode, time_enabled represents
712 * the time the event was enabled AND active
713 * tasks were in the monitored cgroup. This is
714 * independent of the activity of the context as
715 * there may be a mix of cgroup and non-cgroup events.
716 *
717 * That is why we treat cgroup events differently
718 * here.
719 */
720 if (is_cgroup_event(event))
721 run_end = perf_event_time(event);
722 else if (ctx->is_active)
723 run_end = ctx->time;
724 else
725 run_end = event->tstamp_stopped;
726
727 event->total_time_enabled = run_end - event->tstamp_enabled;
728
729 if (event->state == PERF_EVENT_STATE_INACTIVE)
730 run_end = event->tstamp_stopped;
731 else
732 run_end = perf_event_time(event);
733
734 event->total_time_running = run_end - event->tstamp_running;
735
736 }
737
738 /*
739 * Update total_time_enabled and total_time_running for all events in a group.
740 */
741 static void update_group_times(struct perf_event *leader)
742 {
743 struct perf_event *event;
744
745 update_event_times(leader);
746 list_for_each_entry(event, &leader->sibling_list, group_entry)
747 update_event_times(event);
748 }
749
750 static struct list_head *
751 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
752 {
753 if (event->attr.pinned)
754 return &ctx->pinned_groups;
755 else
756 return &ctx->flexible_groups;
757 }
758
759 /*
760 * Add a event from the lists for its context.
761 * Must be called with ctx->mutex and ctx->lock held.
762 */
763 static void
764 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
765 {
766 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
767 event->attach_state |= PERF_ATTACH_CONTEXT;
768
769 /*
770 * If we're a stand alone event or group leader, we go to the context
771 * list, group events are kept attached to the group so that
772 * perf_group_detach can, at all times, locate all siblings.
773 */
774 if (event->group_leader == event) {
775 struct list_head *list;
776
777 if (is_software_event(event))
778 event->group_flags |= PERF_GROUP_SOFTWARE;
779
780 list = ctx_group_list(event, ctx);
781 list_add_tail(&event->group_entry, list);
782 }
783
784 if (is_cgroup_event(event)) {
785 ctx->nr_cgroups++;
786 /*
787 * one more event:
788 * - that has cgroup constraint on event->cpu
789 * - that may need work on context switch
790 */
791 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
792 jump_label_inc(&perf_sched_events);
793 }
794
795 list_add_rcu(&event->event_entry, &ctx->event_list);
796 if (!ctx->nr_events)
797 perf_pmu_rotate_start(ctx->pmu);
798 ctx->nr_events++;
799 if (event->attr.inherit_stat)
800 ctx->nr_stat++;
801 }
802
803 /*
804 * Called at perf_event creation and when events are attached/detached from a
805 * group.
806 */
807 static void perf_event__read_size(struct perf_event *event)
808 {
809 int entry = sizeof(u64); /* value */
810 int size = 0;
811 int nr = 1;
812
813 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
814 size += sizeof(u64);
815
816 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
817 size += sizeof(u64);
818
819 if (event->attr.read_format & PERF_FORMAT_ID)
820 entry += sizeof(u64);
821
822 if (event->attr.read_format & PERF_FORMAT_GROUP) {
823 nr += event->group_leader->nr_siblings;
824 size += sizeof(u64);
825 }
826
827 size += entry * nr;
828 event->read_size = size;
829 }
830
831 static void perf_event__header_size(struct perf_event *event)
832 {
833 struct perf_sample_data *data;
834 u64 sample_type = event->attr.sample_type;
835 u16 size = 0;
836
837 perf_event__read_size(event);
838
839 if (sample_type & PERF_SAMPLE_IP)
840 size += sizeof(data->ip);
841
842 if (sample_type & PERF_SAMPLE_ADDR)
843 size += sizeof(data->addr);
844
845 if (sample_type & PERF_SAMPLE_PERIOD)
846 size += sizeof(data->period);
847
848 if (sample_type & PERF_SAMPLE_READ)
849 size += event->read_size;
850
851 event->header_size = size;
852 }
853
854 static void perf_event__id_header_size(struct perf_event *event)
855 {
856 struct perf_sample_data *data;
857 u64 sample_type = event->attr.sample_type;
858 u16 size = 0;
859
860 if (sample_type & PERF_SAMPLE_TID)
861 size += sizeof(data->tid_entry);
862
863 if (sample_type & PERF_SAMPLE_TIME)
864 size += sizeof(data->time);
865
866 if (sample_type & PERF_SAMPLE_ID)
867 size += sizeof(data->id);
868
869 if (sample_type & PERF_SAMPLE_STREAM_ID)
870 size += sizeof(data->stream_id);
871
872 if (sample_type & PERF_SAMPLE_CPU)
873 size += sizeof(data->cpu_entry);
874
875 event->id_header_size = size;
876 }
877
878 static void perf_group_attach(struct perf_event *event)
879 {
880 struct perf_event *group_leader = event->group_leader, *pos;
881
882 /*
883 * We can have double attach due to group movement in perf_event_open.
884 */
885 if (event->attach_state & PERF_ATTACH_GROUP)
886 return;
887
888 event->attach_state |= PERF_ATTACH_GROUP;
889
890 if (group_leader == event)
891 return;
892
893 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
894 !is_software_event(event))
895 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
896
897 list_add_tail(&event->group_entry, &group_leader->sibling_list);
898 group_leader->nr_siblings++;
899
900 perf_event__header_size(group_leader);
901
902 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
903 perf_event__header_size(pos);
904 }
905
906 /*
907 * Remove a event from the lists for its context.
908 * Must be called with ctx->mutex and ctx->lock held.
909 */
910 static void
911 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
912 {
913 /*
914 * We can have double detach due to exit/hot-unplug + close.
915 */
916 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
917 return;
918
919 event->attach_state &= ~PERF_ATTACH_CONTEXT;
920
921 if (is_cgroup_event(event)) {
922 ctx->nr_cgroups--;
923 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
924 jump_label_dec(&perf_sched_events);
925 }
926
927 ctx->nr_events--;
928 if (event->attr.inherit_stat)
929 ctx->nr_stat--;
930
931 list_del_rcu(&event->event_entry);
932
933 if (event->group_leader == event)
934 list_del_init(&event->group_entry);
935
936 update_group_times(event);
937
938 /*
939 * If event was in error state, then keep it
940 * that way, otherwise bogus counts will be
941 * returned on read(). The only way to get out
942 * of error state is by explicit re-enabling
943 * of the event
944 */
945 if (event->state > PERF_EVENT_STATE_OFF)
946 event->state = PERF_EVENT_STATE_OFF;
947 }
948
949 static void perf_group_detach(struct perf_event *event)
950 {
951 struct perf_event *sibling, *tmp;
952 struct list_head *list = NULL;
953
954 /*
955 * We can have double detach due to exit/hot-unplug + close.
956 */
957 if (!(event->attach_state & PERF_ATTACH_GROUP))
958 return;
959
960 event->attach_state &= ~PERF_ATTACH_GROUP;
961
962 /*
963 * If this is a sibling, remove it from its group.
964 */
965 if (event->group_leader != event) {
966 list_del_init(&event->group_entry);
967 event->group_leader->nr_siblings--;
968 goto out;
969 }
970
971 if (!list_empty(&event->group_entry))
972 list = &event->group_entry;
973
974 /*
975 * If this was a group event with sibling events then
976 * upgrade the siblings to singleton events by adding them
977 * to whatever list we are on.
978 */
979 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
980 if (list)
981 list_move_tail(&sibling->group_entry, list);
982 sibling->group_leader = sibling;
983
984 /* Inherit group flags from the previous leader */
985 sibling->group_flags = event->group_flags;
986 }
987
988 out:
989 perf_event__header_size(event->group_leader);
990
991 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
992 perf_event__header_size(tmp);
993 }
994
995 static inline int
996 event_filter_match(struct perf_event *event)
997 {
998 return (event->cpu == -1 || event->cpu == smp_processor_id())
999 && perf_cgroup_match(event);
1000 }
1001
1002 static void
1003 event_sched_out(struct perf_event *event,
1004 struct perf_cpu_context *cpuctx,
1005 struct perf_event_context *ctx)
1006 {
1007 u64 tstamp = perf_event_time(event);
1008 u64 delta;
1009 /*
1010 * An event which could not be activated because of
1011 * filter mismatch still needs to have its timings
1012 * maintained, otherwise bogus information is return
1013 * via read() for time_enabled, time_running:
1014 */
1015 if (event->state == PERF_EVENT_STATE_INACTIVE
1016 && !event_filter_match(event)) {
1017 delta = tstamp - event->tstamp_stopped;
1018 event->tstamp_running += delta;
1019 event->tstamp_stopped = tstamp;
1020 }
1021
1022 if (event->state != PERF_EVENT_STATE_ACTIVE)
1023 return;
1024
1025 event->state = PERF_EVENT_STATE_INACTIVE;
1026 if (event->pending_disable) {
1027 event->pending_disable = 0;
1028 event->state = PERF_EVENT_STATE_OFF;
1029 }
1030 event->tstamp_stopped = tstamp;
1031 event->pmu->del(event, 0);
1032 event->oncpu = -1;
1033
1034 if (!is_software_event(event))
1035 cpuctx->active_oncpu--;
1036 ctx->nr_active--;
1037 if (event->attr.exclusive || !cpuctx->active_oncpu)
1038 cpuctx->exclusive = 0;
1039 }
1040
1041 static void
1042 group_sched_out(struct perf_event *group_event,
1043 struct perf_cpu_context *cpuctx,
1044 struct perf_event_context *ctx)
1045 {
1046 struct perf_event *event;
1047 int state = group_event->state;
1048
1049 event_sched_out(group_event, cpuctx, ctx);
1050
1051 /*
1052 * Schedule out siblings (if any):
1053 */
1054 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1055 event_sched_out(event, cpuctx, ctx);
1056
1057 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1058 cpuctx->exclusive = 0;
1059 }
1060
1061 /*
1062 * Cross CPU call to remove a performance event
1063 *
1064 * We disable the event on the hardware level first. After that we
1065 * remove it from the context list.
1066 */
1067 static int __perf_remove_from_context(void *info)
1068 {
1069 struct perf_event *event = info;
1070 struct perf_event_context *ctx = event->ctx;
1071 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1072
1073 raw_spin_lock(&ctx->lock);
1074 event_sched_out(event, cpuctx, ctx);
1075 list_del_event(event, ctx);
1076 raw_spin_unlock(&ctx->lock);
1077
1078 return 0;
1079 }
1080
1081
1082 /*
1083 * Remove the event from a task's (or a CPU's) list of events.
1084 *
1085 * CPU events are removed with a smp call. For task events we only
1086 * call when the task is on a CPU.
1087 *
1088 * If event->ctx is a cloned context, callers must make sure that
1089 * every task struct that event->ctx->task could possibly point to
1090 * remains valid. This is OK when called from perf_release since
1091 * that only calls us on the top-level context, which can't be a clone.
1092 * When called from perf_event_exit_task, it's OK because the
1093 * context has been detached from its task.
1094 */
1095 static void perf_remove_from_context(struct perf_event *event)
1096 {
1097 struct perf_event_context *ctx = event->ctx;
1098 struct task_struct *task = ctx->task;
1099
1100 lockdep_assert_held(&ctx->mutex);
1101
1102 if (!task) {
1103 /*
1104 * Per cpu events are removed via an smp call and
1105 * the removal is always successful.
1106 */
1107 cpu_function_call(event->cpu, __perf_remove_from_context, event);
1108 return;
1109 }
1110
1111 retry:
1112 if (!task_function_call(task, __perf_remove_from_context, event))
1113 return;
1114
1115 raw_spin_lock_irq(&ctx->lock);
1116 /*
1117 * If we failed to find a running task, but find the context active now
1118 * that we've acquired the ctx->lock, retry.
1119 */
1120 if (ctx->is_active) {
1121 raw_spin_unlock_irq(&ctx->lock);
1122 goto retry;
1123 }
1124
1125 /*
1126 * Since the task isn't running, its safe to remove the event, us
1127 * holding the ctx->lock ensures the task won't get scheduled in.
1128 */
1129 list_del_event(event, ctx);
1130 raw_spin_unlock_irq(&ctx->lock);
1131 }
1132
1133 /*
1134 * Cross CPU call to disable a performance event
1135 */
1136 static int __perf_event_disable(void *info)
1137 {
1138 struct perf_event *event = info;
1139 struct perf_event_context *ctx = event->ctx;
1140 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1141
1142 /*
1143 * If this is a per-task event, need to check whether this
1144 * event's task is the current task on this cpu.
1145 *
1146 * Can trigger due to concurrent perf_event_context_sched_out()
1147 * flipping contexts around.
1148 */
1149 if (ctx->task && cpuctx->task_ctx != ctx)
1150 return -EINVAL;
1151
1152 raw_spin_lock(&ctx->lock);
1153
1154 /*
1155 * If the event is on, turn it off.
1156 * If it is in error state, leave it in error state.
1157 */
1158 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1159 update_context_time(ctx);
1160 update_cgrp_time_from_event(event);
1161 update_group_times(event);
1162 if (event == event->group_leader)
1163 group_sched_out(event, cpuctx, ctx);
1164 else
1165 event_sched_out(event, cpuctx, ctx);
1166 event->state = PERF_EVENT_STATE_OFF;
1167 }
1168
1169 raw_spin_unlock(&ctx->lock);
1170
1171 return 0;
1172 }
1173
1174 /*
1175 * Disable a event.
1176 *
1177 * If event->ctx is a cloned context, callers must make sure that
1178 * every task struct that event->ctx->task could possibly point to
1179 * remains valid. This condition is satisifed when called through
1180 * perf_event_for_each_child or perf_event_for_each because they
1181 * hold the top-level event's child_mutex, so any descendant that
1182 * goes to exit will block in sync_child_event.
1183 * When called from perf_pending_event it's OK because event->ctx
1184 * is the current context on this CPU and preemption is disabled,
1185 * hence we can't get into perf_event_task_sched_out for this context.
1186 */
1187 void perf_event_disable(struct perf_event *event)
1188 {
1189 struct perf_event_context *ctx = event->ctx;
1190 struct task_struct *task = ctx->task;
1191
1192 if (!task) {
1193 /*
1194 * Disable the event on the cpu that it's on
1195 */
1196 cpu_function_call(event->cpu, __perf_event_disable, event);
1197 return;
1198 }
1199
1200 retry:
1201 if (!task_function_call(task, __perf_event_disable, event))
1202 return;
1203
1204 raw_spin_lock_irq(&ctx->lock);
1205 /*
1206 * If the event is still active, we need to retry the cross-call.
1207 */
1208 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1209 raw_spin_unlock_irq(&ctx->lock);
1210 /*
1211 * Reload the task pointer, it might have been changed by
1212 * a concurrent perf_event_context_sched_out().
1213 */
1214 task = ctx->task;
1215 goto retry;
1216 }
1217
1218 /*
1219 * Since we have the lock this context can't be scheduled
1220 * in, so we can change the state safely.
1221 */
1222 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1223 update_group_times(event);
1224 event->state = PERF_EVENT_STATE_OFF;
1225 }
1226 raw_spin_unlock_irq(&ctx->lock);
1227 }
1228
1229 static void perf_set_shadow_time(struct perf_event *event,
1230 struct perf_event_context *ctx,
1231 u64 tstamp)
1232 {
1233 /*
1234 * use the correct time source for the time snapshot
1235 *
1236 * We could get by without this by leveraging the
1237 * fact that to get to this function, the caller
1238 * has most likely already called update_context_time()
1239 * and update_cgrp_time_xx() and thus both timestamp
1240 * are identical (or very close). Given that tstamp is,
1241 * already adjusted for cgroup, we could say that:
1242 * tstamp - ctx->timestamp
1243 * is equivalent to
1244 * tstamp - cgrp->timestamp.
1245 *
1246 * Then, in perf_output_read(), the calculation would
1247 * work with no changes because:
1248 * - event is guaranteed scheduled in
1249 * - no scheduled out in between
1250 * - thus the timestamp would be the same
1251 *
1252 * But this is a bit hairy.
1253 *
1254 * So instead, we have an explicit cgroup call to remain
1255 * within the time time source all along. We believe it
1256 * is cleaner and simpler to understand.
1257 */
1258 if (is_cgroup_event(event))
1259 perf_cgroup_set_shadow_time(event, tstamp);
1260 else
1261 event->shadow_ctx_time = tstamp - ctx->timestamp;
1262 }
1263
1264 #define MAX_INTERRUPTS (~0ULL)
1265
1266 static void perf_log_throttle(struct perf_event *event, int enable);
1267
1268 static int
1269 event_sched_in(struct perf_event *event,
1270 struct perf_cpu_context *cpuctx,
1271 struct perf_event_context *ctx)
1272 {
1273 u64 tstamp = perf_event_time(event);
1274
1275 if (event->state <= PERF_EVENT_STATE_OFF)
1276 return 0;
1277
1278 event->state = PERF_EVENT_STATE_ACTIVE;
1279 event->oncpu = smp_processor_id();
1280
1281 /*
1282 * Unthrottle events, since we scheduled we might have missed several
1283 * ticks already, also for a heavily scheduling task there is little
1284 * guarantee it'll get a tick in a timely manner.
1285 */
1286 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1287 perf_log_throttle(event, 1);
1288 event->hw.interrupts = 0;
1289 }
1290
1291 /*
1292 * The new state must be visible before we turn it on in the hardware:
1293 */
1294 smp_wmb();
1295
1296 if (event->pmu->add(event, PERF_EF_START)) {
1297 event->state = PERF_EVENT_STATE_INACTIVE;
1298 event->oncpu = -1;
1299 return -EAGAIN;
1300 }
1301
1302 event->tstamp_running += tstamp - event->tstamp_stopped;
1303
1304 perf_set_shadow_time(event, ctx, tstamp);
1305
1306 if (!is_software_event(event))
1307 cpuctx->active_oncpu++;
1308 ctx->nr_active++;
1309
1310 if (event->attr.exclusive)
1311 cpuctx->exclusive = 1;
1312
1313 return 0;
1314 }
1315
1316 static int
1317 group_sched_in(struct perf_event *group_event,
1318 struct perf_cpu_context *cpuctx,
1319 struct perf_event_context *ctx)
1320 {
1321 struct perf_event *event, *partial_group = NULL;
1322 struct pmu *pmu = group_event->pmu;
1323 u64 now = ctx->time;
1324 bool simulate = false;
1325
1326 if (group_event->state == PERF_EVENT_STATE_OFF)
1327 return 0;
1328
1329 pmu->start_txn(pmu);
1330
1331 if (event_sched_in(group_event, cpuctx, ctx)) {
1332 pmu->cancel_txn(pmu);
1333 return -EAGAIN;
1334 }
1335
1336 /*
1337 * Schedule in siblings as one group (if any):
1338 */
1339 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1340 if (event_sched_in(event, cpuctx, ctx)) {
1341 partial_group = event;
1342 goto group_error;
1343 }
1344 }
1345
1346 if (!pmu->commit_txn(pmu))
1347 return 0;
1348
1349 group_error:
1350 /*
1351 * Groups can be scheduled in as one unit only, so undo any
1352 * partial group before returning:
1353 * The events up to the failed event are scheduled out normally,
1354 * tstamp_stopped will be updated.
1355 *
1356 * The failed events and the remaining siblings need to have
1357 * their timings updated as if they had gone thru event_sched_in()
1358 * and event_sched_out(). This is required to get consistent timings
1359 * across the group. This also takes care of the case where the group
1360 * could never be scheduled by ensuring tstamp_stopped is set to mark
1361 * the time the event was actually stopped, such that time delta
1362 * calculation in update_event_times() is correct.
1363 */
1364 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1365 if (event == partial_group)
1366 simulate = true;
1367
1368 if (simulate) {
1369 event->tstamp_running += now - event->tstamp_stopped;
1370 event->tstamp_stopped = now;
1371 } else {
1372 event_sched_out(event, cpuctx, ctx);
1373 }
1374 }
1375 event_sched_out(group_event, cpuctx, ctx);
1376
1377 pmu->cancel_txn(pmu);
1378
1379 return -EAGAIN;
1380 }
1381
1382 /*
1383 * Work out whether we can put this event group on the CPU now.
1384 */
1385 static int group_can_go_on(struct perf_event *event,
1386 struct perf_cpu_context *cpuctx,
1387 int can_add_hw)
1388 {
1389 /*
1390 * Groups consisting entirely of software events can always go on.
1391 */
1392 if (event->group_flags & PERF_GROUP_SOFTWARE)
1393 return 1;
1394 /*
1395 * If an exclusive group is already on, no other hardware
1396 * events can go on.
1397 */
1398 if (cpuctx->exclusive)
1399 return 0;
1400 /*
1401 * If this group is exclusive and there are already
1402 * events on the CPU, it can't go on.
1403 */
1404 if (event->attr.exclusive && cpuctx->active_oncpu)
1405 return 0;
1406 /*
1407 * Otherwise, try to add it if all previous groups were able
1408 * to go on.
1409 */
1410 return can_add_hw;
1411 }
1412
1413 static void add_event_to_ctx(struct perf_event *event,
1414 struct perf_event_context *ctx)
1415 {
1416 u64 tstamp = perf_event_time(event);
1417
1418 list_add_event(event, ctx);
1419 perf_group_attach(event);
1420 event->tstamp_enabled = tstamp;
1421 event->tstamp_running = tstamp;
1422 event->tstamp_stopped = tstamp;
1423 }
1424
1425 static void perf_event_context_sched_in(struct perf_event_context *ctx,
1426 struct task_struct *tsk);
1427
1428 /*
1429 * Cross CPU call to install and enable a performance event
1430 *
1431 * Must be called with ctx->mutex held
1432 */
1433 static int __perf_install_in_context(void *info)
1434 {
1435 struct perf_event *event = info;
1436 struct perf_event_context *ctx = event->ctx;
1437 struct perf_event *leader = event->group_leader;
1438 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1439 int err;
1440
1441 /*
1442 * In case we're installing a new context to an already running task,
1443 * could also happen before perf_event_task_sched_in() on architectures
1444 * which do context switches with IRQs enabled.
1445 */
1446 if (ctx->task && !cpuctx->task_ctx)
1447 perf_event_context_sched_in(ctx, ctx->task);
1448
1449 raw_spin_lock(&ctx->lock);
1450 ctx->is_active = 1;
1451 update_context_time(ctx);
1452 /*
1453 * update cgrp time only if current cgrp
1454 * matches event->cgrp. Must be done before
1455 * calling add_event_to_ctx()
1456 */
1457 update_cgrp_time_from_event(event);
1458
1459 add_event_to_ctx(event, ctx);
1460
1461 if (!event_filter_match(event))
1462 goto unlock;
1463
1464 /*
1465 * Don't put the event on if it is disabled or if
1466 * it is in a group and the group isn't on.
1467 */
1468 if (event->state != PERF_EVENT_STATE_INACTIVE ||
1469 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
1470 goto unlock;
1471
1472 /*
1473 * An exclusive event can't go on if there are already active
1474 * hardware events, and no hardware event can go on if there
1475 * is already an exclusive event on.
1476 */
1477 if (!group_can_go_on(event, cpuctx, 1))
1478 err = -EEXIST;
1479 else
1480 err = event_sched_in(event, cpuctx, ctx);
1481
1482 if (err) {
1483 /*
1484 * This event couldn't go on. If it is in a group
1485 * then we have to pull the whole group off.
1486 * If the event group is pinned then put it in error state.
1487 */
1488 if (leader != event)
1489 group_sched_out(leader, cpuctx, ctx);
1490 if (leader->attr.pinned) {
1491 update_group_times(leader);
1492 leader->state = PERF_EVENT_STATE_ERROR;
1493 }
1494 }
1495
1496 unlock:
1497 raw_spin_unlock(&ctx->lock);
1498
1499 return 0;
1500 }
1501
1502 /*
1503 * Attach a performance event to a context
1504 *
1505 * First we add the event to the list with the hardware enable bit
1506 * in event->hw_config cleared.
1507 *
1508 * If the event is attached to a task which is on a CPU we use a smp
1509 * call to enable it in the task context. The task might have been
1510 * scheduled away, but we check this in the smp call again.
1511 */
1512 static void
1513 perf_install_in_context(struct perf_event_context *ctx,
1514 struct perf_event *event,
1515 int cpu)
1516 {
1517 struct task_struct *task = ctx->task;
1518
1519 lockdep_assert_held(&ctx->mutex);
1520
1521 event->ctx = ctx;
1522
1523 if (!task) {
1524 /*
1525 * Per cpu events are installed via an smp call and
1526 * the install is always successful.
1527 */
1528 cpu_function_call(cpu, __perf_install_in_context, event);
1529 return;
1530 }
1531
1532 retry:
1533 if (!task_function_call(task, __perf_install_in_context, event))
1534 return;
1535
1536 raw_spin_lock_irq(&ctx->lock);
1537 /*
1538 * If we failed to find a running task, but find the context active now
1539 * that we've acquired the ctx->lock, retry.
1540 */
1541 if (ctx->is_active) {
1542 raw_spin_unlock_irq(&ctx->lock);
1543 goto retry;
1544 }
1545
1546 /*
1547 * Since the task isn't running, its safe to add the event, us holding
1548 * the ctx->lock ensures the task won't get scheduled in.
1549 */
1550 add_event_to_ctx(event, ctx);
1551 raw_spin_unlock_irq(&ctx->lock);
1552 }
1553
1554 /*
1555 * Put a event into inactive state and update time fields.
1556 * Enabling the leader of a group effectively enables all
1557 * the group members that aren't explicitly disabled, so we
1558 * have to update their ->tstamp_enabled also.
1559 * Note: this works for group members as well as group leaders
1560 * since the non-leader members' sibling_lists will be empty.
1561 */
1562 static void __perf_event_mark_enabled(struct perf_event *event,
1563 struct perf_event_context *ctx)
1564 {
1565 struct perf_event *sub;
1566 u64 tstamp = perf_event_time(event);
1567
1568 event->state = PERF_EVENT_STATE_INACTIVE;
1569 event->tstamp_enabled = tstamp - event->total_time_enabled;
1570 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1571 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1572 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1573 }
1574 }
1575
1576 /*
1577 * Cross CPU call to enable a performance event
1578 */
1579 static int __perf_event_enable(void *info)
1580 {
1581 struct perf_event *event = info;
1582 struct perf_event_context *ctx = event->ctx;
1583 struct perf_event *leader = event->group_leader;
1584 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1585 int err;
1586
1587 if (WARN_ON_ONCE(!ctx->is_active))
1588 return -EINVAL;
1589
1590 raw_spin_lock(&ctx->lock);
1591 update_context_time(ctx);
1592
1593 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1594 goto unlock;
1595
1596 /*
1597 * set current task's cgroup time reference point
1598 */
1599 perf_cgroup_set_timestamp(current, perf_clock());
1600
1601 __perf_event_mark_enabled(event, ctx);
1602
1603 if (!event_filter_match(event)) {
1604 if (is_cgroup_event(event))
1605 perf_cgroup_defer_enabled(event);
1606 goto unlock;
1607 }
1608
1609 /*
1610 * If the event is in a group and isn't the group leader,
1611 * then don't put it on unless the group is on.
1612 */
1613 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1614 goto unlock;
1615
1616 if (!group_can_go_on(event, cpuctx, 1)) {
1617 err = -EEXIST;
1618 } else {
1619 if (event == leader)
1620 err = group_sched_in(event, cpuctx, ctx);
1621 else
1622 err = event_sched_in(event, cpuctx, ctx);
1623 }
1624
1625 if (err) {
1626 /*
1627 * If this event can't go on and it's part of a
1628 * group, then the whole group has to come off.
1629 */
1630 if (leader != event)
1631 group_sched_out(leader, cpuctx, ctx);
1632 if (leader->attr.pinned) {
1633 update_group_times(leader);
1634 leader->state = PERF_EVENT_STATE_ERROR;
1635 }
1636 }
1637
1638 unlock:
1639 raw_spin_unlock(&ctx->lock);
1640
1641 return 0;
1642 }
1643
1644 /*
1645 * Enable a event.
1646 *
1647 * If event->ctx is a cloned context, callers must make sure that
1648 * every task struct that event->ctx->task could possibly point to
1649 * remains valid. This condition is satisfied when called through
1650 * perf_event_for_each_child or perf_event_for_each as described
1651 * for perf_event_disable.
1652 */
1653 void perf_event_enable(struct perf_event *event)
1654 {
1655 struct perf_event_context *ctx = event->ctx;
1656 struct task_struct *task = ctx->task;
1657
1658 if (!task) {
1659 /*
1660 * Enable the event on the cpu that it's on
1661 */
1662 cpu_function_call(event->cpu, __perf_event_enable, event);
1663 return;
1664 }
1665
1666 raw_spin_lock_irq(&ctx->lock);
1667 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1668 goto out;
1669
1670 /*
1671 * If the event is in error state, clear that first.
1672 * That way, if we see the event in error state below, we
1673 * know that it has gone back into error state, as distinct
1674 * from the task having been scheduled away before the
1675 * cross-call arrived.
1676 */
1677 if (event->state == PERF_EVENT_STATE_ERROR)
1678 event->state = PERF_EVENT_STATE_OFF;
1679
1680 retry:
1681 if (!ctx->is_active) {
1682 __perf_event_mark_enabled(event, ctx);
1683 goto out;
1684 }
1685
1686 raw_spin_unlock_irq(&ctx->lock);
1687
1688 if (!task_function_call(task, __perf_event_enable, event))
1689 return;
1690
1691 raw_spin_lock_irq(&ctx->lock);
1692
1693 /*
1694 * If the context is active and the event is still off,
1695 * we need to retry the cross-call.
1696 */
1697 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1698 /*
1699 * task could have been flipped by a concurrent
1700 * perf_event_context_sched_out()
1701 */
1702 task = ctx->task;
1703 goto retry;
1704 }
1705
1706 out:
1707 raw_spin_unlock_irq(&ctx->lock);
1708 }
1709
1710 static int perf_event_refresh(struct perf_event *event, int refresh)
1711 {
1712 /*
1713 * not supported on inherited events
1714 */
1715 if (event->attr.inherit || !is_sampling_event(event))
1716 return -EINVAL;
1717
1718 atomic_add(refresh, &event->event_limit);
1719 perf_event_enable(event);
1720
1721 return 0;
1722 }
1723
1724 static void ctx_sched_out(struct perf_event_context *ctx,
1725 struct perf_cpu_context *cpuctx,
1726 enum event_type_t event_type)
1727 {
1728 struct perf_event *event;
1729
1730 raw_spin_lock(&ctx->lock);
1731 perf_pmu_disable(ctx->pmu);
1732 ctx->is_active = 0;
1733 if (likely(!ctx->nr_events))
1734 goto out;
1735 update_context_time(ctx);
1736 update_cgrp_time_from_cpuctx(cpuctx);
1737
1738 if (!ctx->nr_active)
1739 goto out;
1740
1741 if (event_type & EVENT_PINNED) {
1742 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1743 group_sched_out(event, cpuctx, ctx);
1744 }
1745
1746 if (event_type & EVENT_FLEXIBLE) {
1747 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1748 group_sched_out(event, cpuctx, ctx);
1749 }
1750 out:
1751 perf_pmu_enable(ctx->pmu);
1752 raw_spin_unlock(&ctx->lock);
1753 }
1754
1755 /*
1756 * Test whether two contexts are equivalent, i.e. whether they
1757 * have both been cloned from the same version of the same context
1758 * and they both have the same number of enabled events.
1759 * If the number of enabled events is the same, then the set
1760 * of enabled events should be the same, because these are both
1761 * inherited contexts, therefore we can't access individual events
1762 * in them directly with an fd; we can only enable/disable all
1763 * events via prctl, or enable/disable all events in a family
1764 * via ioctl, which will have the same effect on both contexts.
1765 */
1766 static int context_equiv(struct perf_event_context *ctx1,
1767 struct perf_event_context *ctx2)
1768 {
1769 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1770 && ctx1->parent_gen == ctx2->parent_gen
1771 && !ctx1->pin_count && !ctx2->pin_count;
1772 }
1773
1774 static void __perf_event_sync_stat(struct perf_event *event,
1775 struct perf_event *next_event)
1776 {
1777 u64 value;
1778
1779 if (!event->attr.inherit_stat)
1780 return;
1781
1782 /*
1783 * Update the event value, we cannot use perf_event_read()
1784 * because we're in the middle of a context switch and have IRQs
1785 * disabled, which upsets smp_call_function_single(), however
1786 * we know the event must be on the current CPU, therefore we
1787 * don't need to use it.
1788 */
1789 switch (event->state) {
1790 case PERF_EVENT_STATE_ACTIVE:
1791 event->pmu->read(event);
1792 /* fall-through */
1793
1794 case PERF_EVENT_STATE_INACTIVE:
1795 update_event_times(event);
1796 break;
1797
1798 default:
1799 break;
1800 }
1801
1802 /*
1803 * In order to keep per-task stats reliable we need to flip the event
1804 * values when we flip the contexts.
1805 */
1806 value = local64_read(&next_event->count);
1807 value = local64_xchg(&event->count, value);
1808 local64_set(&next_event->count, value);
1809
1810 swap(event->total_time_enabled, next_event->total_time_enabled);
1811 swap(event->total_time_running, next_event->total_time_running);
1812
1813 /*
1814 * Since we swizzled the values, update the user visible data too.
1815 */
1816 perf_event_update_userpage(event);
1817 perf_event_update_userpage(next_event);
1818 }
1819
1820 #define list_next_entry(pos, member) \
1821 list_entry(pos->member.next, typeof(*pos), member)
1822
1823 static void perf_event_sync_stat(struct perf_event_context *ctx,
1824 struct perf_event_context *next_ctx)
1825 {
1826 struct perf_event *event, *next_event;
1827
1828 if (!ctx->nr_stat)
1829 return;
1830
1831 update_context_time(ctx);
1832
1833 event = list_first_entry(&ctx->event_list,
1834 struct perf_event, event_entry);
1835
1836 next_event = list_first_entry(&next_ctx->event_list,
1837 struct perf_event, event_entry);
1838
1839 while (&event->event_entry != &ctx->event_list &&
1840 &next_event->event_entry != &next_ctx->event_list) {
1841
1842 __perf_event_sync_stat(event, next_event);
1843
1844 event = list_next_entry(event, event_entry);
1845 next_event = list_next_entry(next_event, event_entry);
1846 }
1847 }
1848
1849 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1850 struct task_struct *next)
1851 {
1852 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1853 struct perf_event_context *next_ctx;
1854 struct perf_event_context *parent;
1855 struct perf_cpu_context *cpuctx;
1856 int do_switch = 1;
1857
1858 if (likely(!ctx))
1859 return;
1860
1861 cpuctx = __get_cpu_context(ctx);
1862 if (!cpuctx->task_ctx)
1863 return;
1864
1865 rcu_read_lock();
1866 parent = rcu_dereference(ctx->parent_ctx);
1867 next_ctx = next->perf_event_ctxp[ctxn];
1868 if (parent && next_ctx &&
1869 rcu_dereference(next_ctx->parent_ctx) == parent) {
1870 /*
1871 * Looks like the two contexts are clones, so we might be
1872 * able to optimize the context switch. We lock both
1873 * contexts and check that they are clones under the
1874 * lock (including re-checking that neither has been
1875 * uncloned in the meantime). It doesn't matter which
1876 * order we take the locks because no other cpu could
1877 * be trying to lock both of these tasks.
1878 */
1879 raw_spin_lock(&ctx->lock);
1880 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1881 if (context_equiv(ctx, next_ctx)) {
1882 /*
1883 * XXX do we need a memory barrier of sorts
1884 * wrt to rcu_dereference() of perf_event_ctxp
1885 */
1886 task->perf_event_ctxp[ctxn] = next_ctx;
1887 next->perf_event_ctxp[ctxn] = ctx;
1888 ctx->task = next;
1889 next_ctx->task = task;
1890 do_switch = 0;
1891
1892 perf_event_sync_stat(ctx, next_ctx);
1893 }
1894 raw_spin_unlock(&next_ctx->lock);
1895 raw_spin_unlock(&ctx->lock);
1896 }
1897 rcu_read_unlock();
1898
1899 if (do_switch) {
1900 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1901 cpuctx->task_ctx = NULL;
1902 }
1903 }
1904
1905 #define for_each_task_context_nr(ctxn) \
1906 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1907
1908 /*
1909 * Called from scheduler to remove the events of the current task,
1910 * with interrupts disabled.
1911 *
1912 * We stop each event and update the event value in event->count.
1913 *
1914 * This does not protect us against NMI, but disable()
1915 * sets the disabled bit in the control field of event _before_
1916 * accessing the event control register. If a NMI hits, then it will
1917 * not restart the event.
1918 */
1919 void __perf_event_task_sched_out(struct task_struct *task,
1920 struct task_struct *next)
1921 {
1922 int ctxn;
1923
1924 for_each_task_context_nr(ctxn)
1925 perf_event_context_sched_out(task, ctxn, next);
1926
1927 /*
1928 * if cgroup events exist on this CPU, then we need
1929 * to check if we have to switch out PMU state.
1930 * cgroup event are system-wide mode only
1931 */
1932 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
1933 perf_cgroup_sched_out(task);
1934 }
1935
1936 static void task_ctx_sched_out(struct perf_event_context *ctx,
1937 enum event_type_t event_type)
1938 {
1939 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1940
1941 if (!cpuctx->task_ctx)
1942 return;
1943
1944 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1945 return;
1946
1947 ctx_sched_out(ctx, cpuctx, event_type);
1948 cpuctx->task_ctx = NULL;
1949 }
1950
1951 /*
1952 * Called with IRQs disabled
1953 */
1954 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1955 enum event_type_t event_type)
1956 {
1957 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1958 }
1959
1960 static void
1961 ctx_pinned_sched_in(struct perf_event_context *ctx,
1962 struct perf_cpu_context *cpuctx)
1963 {
1964 struct perf_event *event;
1965
1966 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1967 if (event->state <= PERF_EVENT_STATE_OFF)
1968 continue;
1969 if (!event_filter_match(event))
1970 continue;
1971
1972 /* may need to reset tstamp_enabled */
1973 if (is_cgroup_event(event))
1974 perf_cgroup_mark_enabled(event, ctx);
1975
1976 if (group_can_go_on(event, cpuctx, 1))
1977 group_sched_in(event, cpuctx, ctx);
1978
1979 /*
1980 * If this pinned group hasn't been scheduled,
1981 * put it in error state.
1982 */
1983 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1984 update_group_times(event);
1985 event->state = PERF_EVENT_STATE_ERROR;
1986 }
1987 }
1988 }
1989
1990 static void
1991 ctx_flexible_sched_in(struct perf_event_context *ctx,
1992 struct perf_cpu_context *cpuctx)
1993 {
1994 struct perf_event *event;
1995 int can_add_hw = 1;
1996
1997 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1998 /* Ignore events in OFF or ERROR state */
1999 if (event->state <= PERF_EVENT_STATE_OFF)
2000 continue;
2001 /*
2002 * Listen to the 'cpu' scheduling filter constraint
2003 * of events:
2004 */
2005 if (!event_filter_match(event))
2006 continue;
2007
2008 /* may need to reset tstamp_enabled */
2009 if (is_cgroup_event(event))
2010 perf_cgroup_mark_enabled(event, ctx);
2011
2012 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2013 if (group_sched_in(event, cpuctx, ctx))
2014 can_add_hw = 0;
2015 }
2016 }
2017 }
2018
2019 static void
2020 ctx_sched_in(struct perf_event_context *ctx,
2021 struct perf_cpu_context *cpuctx,
2022 enum event_type_t event_type,
2023 struct task_struct *task)
2024 {
2025 u64 now;
2026
2027 raw_spin_lock(&ctx->lock);
2028 ctx->is_active = 1;
2029 if (likely(!ctx->nr_events))
2030 goto out;
2031
2032 now = perf_clock();
2033 ctx->timestamp = now;
2034 perf_cgroup_set_timestamp(task, now);
2035 /*
2036 * First go through the list and put on any pinned groups
2037 * in order to give them the best chance of going on.
2038 */
2039 if (event_type & EVENT_PINNED)
2040 ctx_pinned_sched_in(ctx, cpuctx);
2041
2042 /* Then walk through the lower prio flexible groups */
2043 if (event_type & EVENT_FLEXIBLE)
2044 ctx_flexible_sched_in(ctx, cpuctx);
2045
2046 out:
2047 raw_spin_unlock(&ctx->lock);
2048 }
2049
2050 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2051 enum event_type_t event_type,
2052 struct task_struct *task)
2053 {
2054 struct perf_event_context *ctx = &cpuctx->ctx;
2055
2056 ctx_sched_in(ctx, cpuctx, event_type, task);
2057 }
2058
2059 static void task_ctx_sched_in(struct perf_event_context *ctx,
2060 enum event_type_t event_type)
2061 {
2062 struct perf_cpu_context *cpuctx;
2063
2064 cpuctx = __get_cpu_context(ctx);
2065 if (cpuctx->task_ctx == ctx)
2066 return;
2067
2068 ctx_sched_in(ctx, cpuctx, event_type, NULL);
2069 cpuctx->task_ctx = ctx;
2070 }
2071
2072 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2073 struct task_struct *task)
2074 {
2075 struct perf_cpu_context *cpuctx;
2076
2077 cpuctx = __get_cpu_context(ctx);
2078 if (cpuctx->task_ctx == ctx)
2079 return;
2080
2081 perf_pmu_disable(ctx->pmu);
2082 /*
2083 * We want to keep the following priority order:
2084 * cpu pinned (that don't need to move), task pinned,
2085 * cpu flexible, task flexible.
2086 */
2087 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2088
2089 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2090 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2091 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2092
2093 cpuctx->task_ctx = ctx;
2094
2095 /*
2096 * Since these rotations are per-cpu, we need to ensure the
2097 * cpu-context we got scheduled on is actually rotating.
2098 */
2099 perf_pmu_rotate_start(ctx->pmu);
2100 perf_pmu_enable(ctx->pmu);
2101 }
2102
2103 /*
2104 * Called from scheduler to add the events of the current task
2105 * with interrupts disabled.
2106 *
2107 * We restore the event value and then enable it.
2108 *
2109 * This does not protect us against NMI, but enable()
2110 * sets the enabled bit in the control field of event _before_
2111 * accessing the event control register. If a NMI hits, then it will
2112 * keep the event running.
2113 */
2114 void __perf_event_task_sched_in(struct task_struct *task)
2115 {
2116 struct perf_event_context *ctx;
2117 int ctxn;
2118
2119 for_each_task_context_nr(ctxn) {
2120 ctx = task->perf_event_ctxp[ctxn];
2121 if (likely(!ctx))
2122 continue;
2123
2124 perf_event_context_sched_in(ctx, task);
2125 }
2126 /*
2127 * if cgroup events exist on this CPU, then we need
2128 * to check if we have to switch in PMU state.
2129 * cgroup event are system-wide mode only
2130 */
2131 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2132 perf_cgroup_sched_in(task);
2133 }
2134
2135 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2136 {
2137 u64 frequency = event->attr.sample_freq;
2138 u64 sec = NSEC_PER_SEC;
2139 u64 divisor, dividend;
2140
2141 int count_fls, nsec_fls, frequency_fls, sec_fls;
2142
2143 count_fls = fls64(count);
2144 nsec_fls = fls64(nsec);
2145 frequency_fls = fls64(frequency);
2146 sec_fls = 30;
2147
2148 /*
2149 * We got @count in @nsec, with a target of sample_freq HZ
2150 * the target period becomes:
2151 *
2152 * @count * 10^9
2153 * period = -------------------
2154 * @nsec * sample_freq
2155 *
2156 */
2157
2158 /*
2159 * Reduce accuracy by one bit such that @a and @b converge
2160 * to a similar magnitude.
2161 */
2162 #define REDUCE_FLS(a, b) \
2163 do { \
2164 if (a##_fls > b##_fls) { \
2165 a >>= 1; \
2166 a##_fls--; \
2167 } else { \
2168 b >>= 1; \
2169 b##_fls--; \
2170 } \
2171 } while (0)
2172
2173 /*
2174 * Reduce accuracy until either term fits in a u64, then proceed with
2175 * the other, so that finally we can do a u64/u64 division.
2176 */
2177 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2178 REDUCE_FLS(nsec, frequency);
2179 REDUCE_FLS(sec, count);
2180 }
2181
2182 if (count_fls + sec_fls > 64) {
2183 divisor = nsec * frequency;
2184
2185 while (count_fls + sec_fls > 64) {
2186 REDUCE_FLS(count, sec);
2187 divisor >>= 1;
2188 }
2189
2190 dividend = count * sec;
2191 } else {
2192 dividend = count * sec;
2193
2194 while (nsec_fls + frequency_fls > 64) {
2195 REDUCE_FLS(nsec, frequency);
2196 dividend >>= 1;
2197 }
2198
2199 divisor = nsec * frequency;
2200 }
2201
2202 if (!divisor)
2203 return dividend;
2204
2205 return div64_u64(dividend, divisor);
2206 }
2207
2208 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2209 {
2210 struct hw_perf_event *hwc = &event->hw;
2211 s64 period, sample_period;
2212 s64 delta;
2213
2214 period = perf_calculate_period(event, nsec, count);
2215
2216 delta = (s64)(period - hwc->sample_period);
2217 delta = (delta + 7) / 8; /* low pass filter */
2218
2219 sample_period = hwc->sample_period + delta;
2220
2221 if (!sample_period)
2222 sample_period = 1;
2223
2224 hwc->sample_period = sample_period;
2225
2226 if (local64_read(&hwc->period_left) > 8*sample_period) {
2227 event->pmu->stop(event, PERF_EF_UPDATE);
2228 local64_set(&hwc->period_left, 0);
2229 event->pmu->start(event, PERF_EF_RELOAD);
2230 }
2231 }
2232
2233 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
2234 {
2235 struct perf_event *event;
2236 struct hw_perf_event *hwc;
2237 u64 interrupts, now;
2238 s64 delta;
2239
2240 raw_spin_lock(&ctx->lock);
2241 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2242 if (event->state != PERF_EVENT_STATE_ACTIVE)
2243 continue;
2244
2245 if (!event_filter_match(event))
2246 continue;
2247
2248 hwc = &event->hw;
2249
2250 interrupts = hwc->interrupts;
2251 hwc->interrupts = 0;
2252
2253 /*
2254 * unthrottle events on the tick
2255 */
2256 if (interrupts == MAX_INTERRUPTS) {
2257 perf_log_throttle(event, 1);
2258 event->pmu->start(event, 0);
2259 }
2260
2261 if (!event->attr.freq || !event->attr.sample_freq)
2262 continue;
2263
2264 event->pmu->read(event);
2265 now = local64_read(&event->count);
2266 delta = now - hwc->freq_count_stamp;
2267 hwc->freq_count_stamp = now;
2268
2269 if (delta > 0)
2270 perf_adjust_period(event, period, delta);
2271 }
2272 raw_spin_unlock(&ctx->lock);
2273 }
2274
2275 /*
2276 * Round-robin a context's events:
2277 */
2278 static void rotate_ctx(struct perf_event_context *ctx)
2279 {
2280 raw_spin_lock(&ctx->lock);
2281
2282 /*
2283 * Rotate the first entry last of non-pinned groups. Rotation might be
2284 * disabled by the inheritance code.
2285 */
2286 if (!ctx->rotate_disable)
2287 list_rotate_left(&ctx->flexible_groups);
2288
2289 raw_spin_unlock(&ctx->lock);
2290 }
2291
2292 /*
2293 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2294 * because they're strictly cpu affine and rotate_start is called with IRQs
2295 * disabled, while rotate_context is called from IRQ context.
2296 */
2297 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2298 {
2299 u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
2300 struct perf_event_context *ctx = NULL;
2301 int rotate = 0, remove = 1;
2302
2303 if (cpuctx->ctx.nr_events) {
2304 remove = 0;
2305 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2306 rotate = 1;
2307 }
2308
2309 ctx = cpuctx->task_ctx;
2310 if (ctx && ctx->nr_events) {
2311 remove = 0;
2312 if (ctx->nr_events != ctx->nr_active)
2313 rotate = 1;
2314 }
2315
2316 perf_pmu_disable(cpuctx->ctx.pmu);
2317 perf_ctx_adjust_freq(&cpuctx->ctx, interval);
2318 if (ctx)
2319 perf_ctx_adjust_freq(ctx, interval);
2320
2321 if (!rotate)
2322 goto done;
2323
2324 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2325 if (ctx)
2326 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
2327
2328 rotate_ctx(&cpuctx->ctx);
2329 if (ctx)
2330 rotate_ctx(ctx);
2331
2332 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, current);
2333 if (ctx)
2334 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
2335
2336 done:
2337 if (remove)
2338 list_del_init(&cpuctx->rotation_list);
2339
2340 perf_pmu_enable(cpuctx->ctx.pmu);
2341 }
2342
2343 void perf_event_task_tick(void)
2344 {
2345 struct list_head *head = &__get_cpu_var(rotation_list);
2346 struct perf_cpu_context *cpuctx, *tmp;
2347
2348 WARN_ON(!irqs_disabled());
2349
2350 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2351 if (cpuctx->jiffies_interval == 1 ||
2352 !(jiffies % cpuctx->jiffies_interval))
2353 perf_rotate_context(cpuctx);
2354 }
2355 }
2356
2357 static int event_enable_on_exec(struct perf_event *event,
2358 struct perf_event_context *ctx)
2359 {
2360 if (!event->attr.enable_on_exec)
2361 return 0;
2362
2363 event->attr.enable_on_exec = 0;
2364 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2365 return 0;
2366
2367 __perf_event_mark_enabled(event, ctx);
2368
2369 return 1;
2370 }
2371
2372 /*
2373 * Enable all of a task's events that have been marked enable-on-exec.
2374 * This expects task == current.
2375 */
2376 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2377 {
2378 struct perf_event *event;
2379 unsigned long flags;
2380 int enabled = 0;
2381 int ret;
2382
2383 local_irq_save(flags);
2384 if (!ctx || !ctx->nr_events)
2385 goto out;
2386
2387 task_ctx_sched_out(ctx, EVENT_ALL);
2388
2389 raw_spin_lock(&ctx->lock);
2390
2391 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2392 ret = event_enable_on_exec(event, ctx);
2393 if (ret)
2394 enabled = 1;
2395 }
2396
2397 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2398 ret = event_enable_on_exec(event, ctx);
2399 if (ret)
2400 enabled = 1;
2401 }
2402
2403 /*
2404 * Unclone this context if we enabled any event.
2405 */
2406 if (enabled)
2407 unclone_ctx(ctx);
2408
2409 raw_spin_unlock(&ctx->lock);
2410
2411 perf_event_context_sched_in(ctx, ctx->task);
2412 out:
2413 local_irq_restore(flags);
2414 }
2415
2416 /*
2417 * Cross CPU call to read the hardware event
2418 */
2419 static void __perf_event_read(void *info)
2420 {
2421 struct perf_event *event = info;
2422 struct perf_event_context *ctx = event->ctx;
2423 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2424
2425 /*
2426 * If this is a task context, we need to check whether it is
2427 * the current task context of this cpu. If not it has been
2428 * scheduled out before the smp call arrived. In that case
2429 * event->count would have been updated to a recent sample
2430 * when the event was scheduled out.
2431 */
2432 if (ctx->task && cpuctx->task_ctx != ctx)
2433 return;
2434
2435 raw_spin_lock(&ctx->lock);
2436 if (ctx->is_active) {
2437 update_context_time(ctx);
2438 update_cgrp_time_from_event(event);
2439 }
2440 update_event_times(event);
2441 if (event->state == PERF_EVENT_STATE_ACTIVE)
2442 event->pmu->read(event);
2443 raw_spin_unlock(&ctx->lock);
2444 }
2445
2446 static inline u64 perf_event_count(struct perf_event *event)
2447 {
2448 return local64_read(&event->count) + atomic64_read(&event->child_count);
2449 }
2450
2451 static u64 perf_event_read(struct perf_event *event)
2452 {
2453 /*
2454 * If event is enabled and currently active on a CPU, update the
2455 * value in the event structure:
2456 */
2457 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2458 smp_call_function_single(event->oncpu,
2459 __perf_event_read, event, 1);
2460 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2461 struct perf_event_context *ctx = event->ctx;
2462 unsigned long flags;
2463
2464 raw_spin_lock_irqsave(&ctx->lock, flags);
2465 /*
2466 * may read while context is not active
2467 * (e.g., thread is blocked), in that case
2468 * we cannot update context time
2469 */
2470 if (ctx->is_active) {
2471 update_context_time(ctx);
2472 update_cgrp_time_from_event(event);
2473 }
2474 update_event_times(event);
2475 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2476 }
2477
2478 return perf_event_count(event);
2479 }
2480
2481 /*
2482 * Callchain support
2483 */
2484
2485 struct callchain_cpus_entries {
2486 struct rcu_head rcu_head;
2487 struct perf_callchain_entry *cpu_entries[0];
2488 };
2489
2490 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
2491 static atomic_t nr_callchain_events;
2492 static DEFINE_MUTEX(callchain_mutex);
2493 struct callchain_cpus_entries *callchain_cpus_entries;
2494
2495
2496 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
2497 struct pt_regs *regs)
2498 {
2499 }
2500
2501 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
2502 struct pt_regs *regs)
2503 {
2504 }
2505
2506 static void release_callchain_buffers_rcu(struct rcu_head *head)
2507 {
2508 struct callchain_cpus_entries *entries;
2509 int cpu;
2510
2511 entries = container_of(head, struct callchain_cpus_entries, rcu_head);
2512
2513 for_each_possible_cpu(cpu)
2514 kfree(entries->cpu_entries[cpu]);
2515
2516 kfree(entries);
2517 }
2518
2519 static void release_callchain_buffers(void)
2520 {
2521 struct callchain_cpus_entries *entries;
2522
2523 entries = callchain_cpus_entries;
2524 rcu_assign_pointer(callchain_cpus_entries, NULL);
2525 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
2526 }
2527
2528 static int alloc_callchain_buffers(void)
2529 {
2530 int cpu;
2531 int size;
2532 struct callchain_cpus_entries *entries;
2533
2534 /*
2535 * We can't use the percpu allocation API for data that can be
2536 * accessed from NMI. Use a temporary manual per cpu allocation
2537 * until that gets sorted out.
2538 */
2539 size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
2540
2541 entries = kzalloc(size, GFP_KERNEL);
2542 if (!entries)
2543 return -ENOMEM;
2544
2545 size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
2546
2547 for_each_possible_cpu(cpu) {
2548 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
2549 cpu_to_node(cpu));
2550 if (!entries->cpu_entries[cpu])
2551 goto fail;
2552 }
2553
2554 rcu_assign_pointer(callchain_cpus_entries, entries);
2555
2556 return 0;
2557
2558 fail:
2559 for_each_possible_cpu(cpu)
2560 kfree(entries->cpu_entries[cpu]);
2561 kfree(entries);
2562
2563 return -ENOMEM;
2564 }
2565
2566 static int get_callchain_buffers(void)
2567 {
2568 int err = 0;
2569 int count;
2570
2571 mutex_lock(&callchain_mutex);
2572
2573 count = atomic_inc_return(&nr_callchain_events);
2574 if (WARN_ON_ONCE(count < 1)) {
2575 err = -EINVAL;
2576 goto exit;
2577 }
2578
2579 if (count > 1) {
2580 /* If the allocation failed, give up */
2581 if (!callchain_cpus_entries)
2582 err = -ENOMEM;
2583 goto exit;
2584 }
2585
2586 err = alloc_callchain_buffers();
2587 if (err)
2588 release_callchain_buffers();
2589 exit:
2590 mutex_unlock(&callchain_mutex);
2591
2592 return err;
2593 }
2594
2595 static void put_callchain_buffers(void)
2596 {
2597 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
2598 release_callchain_buffers();
2599 mutex_unlock(&callchain_mutex);
2600 }
2601 }
2602
2603 static int get_recursion_context(int *recursion)
2604 {
2605 int rctx;
2606
2607 if (in_nmi())
2608 rctx = 3;
2609 else if (in_irq())
2610 rctx = 2;
2611 else if (in_softirq())
2612 rctx = 1;
2613 else
2614 rctx = 0;
2615
2616 if (recursion[rctx])
2617 return -1;
2618
2619 recursion[rctx]++;
2620 barrier();
2621
2622 return rctx;
2623 }
2624
2625 static inline void put_recursion_context(int *recursion, int rctx)
2626 {
2627 barrier();
2628 recursion[rctx]--;
2629 }
2630
2631 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
2632 {
2633 int cpu;
2634 struct callchain_cpus_entries *entries;
2635
2636 *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
2637 if (*rctx == -1)
2638 return NULL;
2639
2640 entries = rcu_dereference(callchain_cpus_entries);
2641 if (!entries)
2642 return NULL;
2643
2644 cpu = smp_processor_id();
2645
2646 return &entries->cpu_entries[cpu][*rctx];
2647 }
2648
2649 static void
2650 put_callchain_entry(int rctx)
2651 {
2652 put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
2653 }
2654
2655 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2656 {
2657 int rctx;
2658 struct perf_callchain_entry *entry;
2659
2660
2661 entry = get_callchain_entry(&rctx);
2662 if (rctx == -1)
2663 return NULL;
2664
2665 if (!entry)
2666 goto exit_put;
2667
2668 entry->nr = 0;
2669
2670 if (!user_mode(regs)) {
2671 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2672 perf_callchain_kernel(entry, regs);
2673 if (current->mm)
2674 regs = task_pt_regs(current);
2675 else
2676 regs = NULL;
2677 }
2678
2679 if (regs) {
2680 perf_callchain_store(entry, PERF_CONTEXT_USER);
2681 perf_callchain_user(entry, regs);
2682 }
2683
2684 exit_put:
2685 put_callchain_entry(rctx);
2686
2687 return entry;
2688 }
2689
2690 /*
2691 * Initialize the perf_event context in a task_struct:
2692 */
2693 static void __perf_event_init_context(struct perf_event_context *ctx)
2694 {
2695 raw_spin_lock_init(&ctx->lock);
2696 mutex_init(&ctx->mutex);
2697 INIT_LIST_HEAD(&ctx->pinned_groups);
2698 INIT_LIST_HEAD(&ctx->flexible_groups);
2699 INIT_LIST_HEAD(&ctx->event_list);
2700 atomic_set(&ctx->refcount, 1);
2701 }
2702
2703 static struct perf_event_context *
2704 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2705 {
2706 struct perf_event_context *ctx;
2707
2708 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2709 if (!ctx)
2710 return NULL;
2711
2712 __perf_event_init_context(ctx);
2713 if (task) {
2714 ctx->task = task;
2715 get_task_struct(task);
2716 }
2717 ctx->pmu = pmu;
2718
2719 return ctx;
2720 }
2721
2722 static struct task_struct *
2723 find_lively_task_by_vpid(pid_t vpid)
2724 {
2725 struct task_struct *task;
2726 int err;
2727
2728 rcu_read_lock();
2729 if (!vpid)
2730 task = current;
2731 else
2732 task = find_task_by_vpid(vpid);
2733 if (task)
2734 get_task_struct(task);
2735 rcu_read_unlock();
2736
2737 if (!task)
2738 return ERR_PTR(-ESRCH);
2739
2740 /* Reuse ptrace permission checks for now. */
2741 err = -EACCES;
2742 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2743 goto errout;
2744
2745 return task;
2746 errout:
2747 put_task_struct(task);
2748 return ERR_PTR(err);
2749
2750 }
2751
2752 /*
2753 * Returns a matching context with refcount and pincount.
2754 */
2755 static struct perf_event_context *
2756 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2757 {
2758 struct perf_event_context *ctx;
2759 struct perf_cpu_context *cpuctx;
2760 unsigned long flags;
2761 int ctxn, err;
2762
2763 if (!task) {
2764 /* Must be root to operate on a CPU event: */
2765 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2766 return ERR_PTR(-EACCES);
2767
2768 /*
2769 * We could be clever and allow to attach a event to an
2770 * offline CPU and activate it when the CPU comes up, but
2771 * that's for later.
2772 */
2773 if (!cpu_online(cpu))
2774 return ERR_PTR(-ENODEV);
2775
2776 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2777 ctx = &cpuctx->ctx;
2778 get_ctx(ctx);
2779 ++ctx->pin_count;
2780
2781 return ctx;
2782 }
2783
2784 err = -EINVAL;
2785 ctxn = pmu->task_ctx_nr;
2786 if (ctxn < 0)
2787 goto errout;
2788
2789 retry:
2790 ctx = perf_lock_task_context(task, ctxn, &flags);
2791 if (ctx) {
2792 unclone_ctx(ctx);
2793 ++ctx->pin_count;
2794 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2795 }
2796
2797 if (!ctx) {
2798 ctx = alloc_perf_context(pmu, task);
2799 err = -ENOMEM;
2800 if (!ctx)
2801 goto errout;
2802
2803 get_ctx(ctx);
2804
2805 err = 0;
2806 mutex_lock(&task->perf_event_mutex);
2807 /*
2808 * If it has already passed perf_event_exit_task().
2809 * we must see PF_EXITING, it takes this mutex too.
2810 */
2811 if (task->flags & PF_EXITING)
2812 err = -ESRCH;
2813 else if (task->perf_event_ctxp[ctxn])
2814 err = -EAGAIN;
2815 else {
2816 ++ctx->pin_count;
2817 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2818 }
2819 mutex_unlock(&task->perf_event_mutex);
2820
2821 if (unlikely(err)) {
2822 put_task_struct(task);
2823 kfree(ctx);
2824
2825 if (err == -EAGAIN)
2826 goto retry;
2827 goto errout;
2828 }
2829 }
2830
2831 return ctx;
2832
2833 errout:
2834 return ERR_PTR(err);
2835 }
2836
2837 static void perf_event_free_filter(struct perf_event *event);
2838
2839 static void free_event_rcu(struct rcu_head *head)
2840 {
2841 struct perf_event *event;
2842
2843 event = container_of(head, struct perf_event, rcu_head);
2844 if (event->ns)
2845 put_pid_ns(event->ns);
2846 perf_event_free_filter(event);
2847 kfree(event);
2848 }
2849
2850 static void perf_buffer_put(struct perf_buffer *buffer);
2851
2852 static void free_event(struct perf_event *event)
2853 {
2854 irq_work_sync(&event->pending);
2855
2856 if (!event->parent) {
2857 if (event->attach_state & PERF_ATTACH_TASK)
2858 jump_label_dec(&perf_sched_events);
2859 if (event->attr.mmap || event->attr.mmap_data)
2860 atomic_dec(&nr_mmap_events);
2861 if (event->attr.comm)
2862 atomic_dec(&nr_comm_events);
2863 if (event->attr.task)
2864 atomic_dec(&nr_task_events);
2865 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2866 put_callchain_buffers();
2867 }
2868
2869 if (event->buffer) {
2870 perf_buffer_put(event->buffer);
2871 event->buffer = NULL;
2872 }
2873
2874 if (is_cgroup_event(event))
2875 perf_detach_cgroup(event);
2876
2877 if (event->destroy)
2878 event->destroy(event);
2879
2880 if (event->ctx)
2881 put_ctx(event->ctx);
2882
2883 call_rcu(&event->rcu_head, free_event_rcu);
2884 }
2885
2886 int perf_event_release_kernel(struct perf_event *event)
2887 {
2888 struct perf_event_context *ctx = event->ctx;
2889
2890 /*
2891 * Remove from the PMU, can't get re-enabled since we got
2892 * here because the last ref went.
2893 */
2894 perf_event_disable(event);
2895
2896 WARN_ON_ONCE(ctx->parent_ctx);
2897 /*
2898 * There are two ways this annotation is useful:
2899 *
2900 * 1) there is a lock recursion from perf_event_exit_task
2901 * see the comment there.
2902 *
2903 * 2) there is a lock-inversion with mmap_sem through
2904 * perf_event_read_group(), which takes faults while
2905 * holding ctx->mutex, however this is called after
2906 * the last filedesc died, so there is no possibility
2907 * to trigger the AB-BA case.
2908 */
2909 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2910 raw_spin_lock_irq(&ctx->lock);
2911 perf_group_detach(event);
2912 list_del_event(event, ctx);
2913 raw_spin_unlock_irq(&ctx->lock);
2914 mutex_unlock(&ctx->mutex);
2915
2916 free_event(event);
2917
2918 return 0;
2919 }
2920 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2921
2922 /*
2923 * Called when the last reference to the file is gone.
2924 */
2925 static int perf_release(struct inode *inode, struct file *file)
2926 {
2927 struct perf_event *event = file->private_data;
2928 struct task_struct *owner;
2929
2930 file->private_data = NULL;
2931
2932 rcu_read_lock();
2933 owner = ACCESS_ONCE(event->owner);
2934 /*
2935 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2936 * !owner it means the list deletion is complete and we can indeed
2937 * free this event, otherwise we need to serialize on
2938 * owner->perf_event_mutex.
2939 */
2940 smp_read_barrier_depends();
2941 if (owner) {
2942 /*
2943 * Since delayed_put_task_struct() also drops the last
2944 * task reference we can safely take a new reference
2945 * while holding the rcu_read_lock().
2946 */
2947 get_task_struct(owner);
2948 }
2949 rcu_read_unlock();
2950
2951 if (owner) {
2952 mutex_lock(&owner->perf_event_mutex);
2953 /*
2954 * We have to re-check the event->owner field, if it is cleared
2955 * we raced with perf_event_exit_task(), acquiring the mutex
2956 * ensured they're done, and we can proceed with freeing the
2957 * event.
2958 */
2959 if (event->owner)
2960 list_del_init(&event->owner_entry);
2961 mutex_unlock(&owner->perf_event_mutex);
2962 put_task_struct(owner);
2963 }
2964
2965 return perf_event_release_kernel(event);
2966 }
2967
2968 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2969 {
2970 struct perf_event *child;
2971 u64 total = 0;
2972
2973 *enabled = 0;
2974 *running = 0;
2975
2976 mutex_lock(&event->child_mutex);
2977 total += perf_event_read(event);
2978 *enabled += event->total_time_enabled +
2979 atomic64_read(&event->child_total_time_enabled);
2980 *running += event->total_time_running +
2981 atomic64_read(&event->child_total_time_running);
2982
2983 list_for_each_entry(child, &event->child_list, child_list) {
2984 total += perf_event_read(child);
2985 *enabled += child->total_time_enabled;
2986 *running += child->total_time_running;
2987 }
2988 mutex_unlock(&event->child_mutex);
2989
2990 return total;
2991 }
2992 EXPORT_SYMBOL_GPL(perf_event_read_value);
2993
2994 static int perf_event_read_group(struct perf_event *event,
2995 u64 read_format, char __user *buf)
2996 {
2997 struct perf_event *leader = event->group_leader, *sub;
2998 int n = 0, size = 0, ret = -EFAULT;
2999 struct perf_event_context *ctx = leader->ctx;
3000 u64 values[5];
3001 u64 count, enabled, running;
3002
3003 mutex_lock(&ctx->mutex);
3004 count = perf_event_read_value(leader, &enabled, &running);
3005
3006 values[n++] = 1 + leader->nr_siblings;
3007 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3008 values[n++] = enabled;
3009 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3010 values[n++] = running;
3011 values[n++] = count;
3012 if (read_format & PERF_FORMAT_ID)
3013 values[n++] = primary_event_id(leader);
3014
3015 size = n * sizeof(u64);
3016
3017 if (copy_to_user(buf, values, size))
3018 goto unlock;
3019
3020 ret = size;
3021
3022 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3023 n = 0;
3024
3025 values[n++] = perf_event_read_value(sub, &enabled, &running);
3026 if (read_format & PERF_FORMAT_ID)
3027 values[n++] = primary_event_id(sub);
3028
3029 size = n * sizeof(u64);
3030
3031 if (copy_to_user(buf + ret, values, size)) {
3032 ret = -EFAULT;
3033 goto unlock;
3034 }
3035
3036 ret += size;
3037 }
3038 unlock:
3039 mutex_unlock(&ctx->mutex);
3040
3041 return ret;
3042 }
3043
3044 static int perf_event_read_one(struct perf_event *event,
3045 u64 read_format, char __user *buf)
3046 {
3047 u64 enabled, running;
3048 u64 values[4];
3049 int n = 0;
3050
3051 values[n++] = perf_event_read_value(event, &enabled, &running);
3052 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3053 values[n++] = enabled;
3054 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3055 values[n++] = running;
3056 if (read_format & PERF_FORMAT_ID)
3057 values[n++] = primary_event_id(event);
3058
3059 if (copy_to_user(buf, values, n * sizeof(u64)))
3060 return -EFAULT;
3061
3062 return n * sizeof(u64);
3063 }
3064
3065 /*
3066 * Read the performance event - simple non blocking version for now
3067 */
3068 static ssize_t
3069 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3070 {
3071 u64 read_format = event->attr.read_format;
3072 int ret;
3073
3074 /*
3075 * Return end-of-file for a read on a event that is in
3076 * error state (i.e. because it was pinned but it couldn't be
3077 * scheduled on to the CPU at some point).
3078 */
3079 if (event->state == PERF_EVENT_STATE_ERROR)
3080 return 0;
3081
3082 if (count < event->read_size)
3083 return -ENOSPC;
3084
3085 WARN_ON_ONCE(event->ctx->parent_ctx);
3086 if (read_format & PERF_FORMAT_GROUP)
3087 ret = perf_event_read_group(event, read_format, buf);
3088 else
3089 ret = perf_event_read_one(event, read_format, buf);
3090
3091 return ret;
3092 }
3093
3094 static ssize_t
3095 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3096 {
3097 struct perf_event *event = file->private_data;
3098
3099 return perf_read_hw(event, buf, count);
3100 }
3101
3102 static unsigned int perf_poll(struct file *file, poll_table *wait)
3103 {
3104 struct perf_event *event = file->private_data;
3105 struct perf_buffer *buffer;
3106 unsigned int events = POLL_HUP;
3107
3108 rcu_read_lock();
3109 buffer = rcu_dereference(event->buffer);
3110 if (buffer)
3111 events = atomic_xchg(&buffer->poll, 0);
3112 rcu_read_unlock();
3113
3114 poll_wait(file, &event->waitq, wait);
3115
3116 return events;
3117 }
3118
3119 static void perf_event_reset(struct perf_event *event)
3120 {
3121 (void)perf_event_read(event);
3122 local64_set(&event->count, 0);
3123 perf_event_update_userpage(event);
3124 }
3125
3126 /*
3127 * Holding the top-level event's child_mutex means that any
3128 * descendant process that has inherited this event will block
3129 * in sync_child_event if it goes to exit, thus satisfying the
3130 * task existence requirements of perf_event_enable/disable.
3131 */
3132 static void perf_event_for_each_child(struct perf_event *event,
3133 void (*func)(struct perf_event *))
3134 {
3135 struct perf_event *child;
3136
3137 WARN_ON_ONCE(event->ctx->parent_ctx);
3138 mutex_lock(&event->child_mutex);
3139 func(event);
3140 list_for_each_entry(child, &event->child_list, child_list)
3141 func(child);
3142 mutex_unlock(&event->child_mutex);
3143 }
3144
3145 static void perf_event_for_each(struct perf_event *event,
3146 void (*func)(struct perf_event *))
3147 {
3148 struct perf_event_context *ctx = event->ctx;
3149 struct perf_event *sibling;
3150
3151 WARN_ON_ONCE(ctx->parent_ctx);
3152 mutex_lock(&ctx->mutex);
3153 event = event->group_leader;
3154
3155 perf_event_for_each_child(event, func);
3156 func(event);
3157 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3158 perf_event_for_each_child(event, func);
3159 mutex_unlock(&ctx->mutex);
3160 }
3161
3162 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3163 {
3164 struct perf_event_context *ctx = event->ctx;
3165 int ret = 0;
3166 u64 value;
3167
3168 if (!is_sampling_event(event))
3169 return -EINVAL;
3170
3171 if (copy_from_user(&value, arg, sizeof(value)))
3172 return -EFAULT;
3173
3174 if (!value)
3175 return -EINVAL;
3176
3177 raw_spin_lock_irq(&ctx->lock);
3178 if (event->attr.freq) {
3179 if (value > sysctl_perf_event_sample_rate) {
3180 ret = -EINVAL;
3181 goto unlock;
3182 }
3183
3184 event->attr.sample_freq = value;
3185 } else {
3186 event->attr.sample_period = value;
3187 event->hw.sample_period = value;
3188 }
3189 unlock:
3190 raw_spin_unlock_irq(&ctx->lock);
3191
3192 return ret;
3193 }
3194
3195 static const struct file_operations perf_fops;
3196
3197 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
3198 {
3199 struct file *file;
3200
3201 file = fget_light(fd, fput_needed);
3202 if (!file)
3203 return ERR_PTR(-EBADF);
3204
3205 if (file->f_op != &perf_fops) {
3206 fput_light(file, *fput_needed);
3207 *fput_needed = 0;
3208 return ERR_PTR(-EBADF);
3209 }
3210
3211 return file->private_data;
3212 }
3213
3214 static int perf_event_set_output(struct perf_event *event,
3215 struct perf_event *output_event);
3216 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3217
3218 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3219 {
3220 struct perf_event *event = file->private_data;
3221 void (*func)(struct perf_event *);
3222 u32 flags = arg;
3223
3224 switch (cmd) {
3225 case PERF_EVENT_IOC_ENABLE:
3226 func = perf_event_enable;
3227 break;
3228 case PERF_EVENT_IOC_DISABLE:
3229 func = perf_event_disable;
3230 break;
3231 case PERF_EVENT_IOC_RESET:
3232 func = perf_event_reset;
3233 break;
3234
3235 case PERF_EVENT_IOC_REFRESH:
3236 return perf_event_refresh(event, arg);
3237
3238 case PERF_EVENT_IOC_PERIOD:
3239 return perf_event_period(event, (u64 __user *)arg);
3240
3241 case PERF_EVENT_IOC_SET_OUTPUT:
3242 {
3243 struct perf_event *output_event = NULL;
3244 int fput_needed = 0;
3245 int ret;
3246
3247 if (arg != -1) {
3248 output_event = perf_fget_light(arg, &fput_needed);
3249 if (IS_ERR(output_event))
3250 return PTR_ERR(output_event);
3251 }
3252
3253 ret = perf_event_set_output(event, output_event);
3254 if (output_event)
3255 fput_light(output_event->filp, fput_needed);
3256
3257 return ret;
3258 }
3259
3260 case PERF_EVENT_IOC_SET_FILTER:
3261 return perf_event_set_filter(event, (void __user *)arg);
3262
3263 default:
3264 return -ENOTTY;
3265 }
3266
3267 if (flags & PERF_IOC_FLAG_GROUP)
3268 perf_event_for_each(event, func);
3269 else
3270 perf_event_for_each_child(event, func);
3271
3272 return 0;
3273 }
3274
3275 int perf_event_task_enable(void)
3276 {
3277 struct perf_event *event;
3278
3279 mutex_lock(&current->perf_event_mutex);
3280 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3281 perf_event_for_each_child(event, perf_event_enable);
3282 mutex_unlock(&current->perf_event_mutex);
3283
3284 return 0;
3285 }
3286
3287 int perf_event_task_disable(void)
3288 {
3289 struct perf_event *event;
3290
3291 mutex_lock(&current->perf_event_mutex);
3292 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3293 perf_event_for_each_child(event, perf_event_disable);
3294 mutex_unlock(&current->perf_event_mutex);
3295
3296 return 0;
3297 }
3298
3299 #ifndef PERF_EVENT_INDEX_OFFSET
3300 # define PERF_EVENT_INDEX_OFFSET 0
3301 #endif
3302
3303 static int perf_event_index(struct perf_event *event)
3304 {
3305 if (event->hw.state & PERF_HES_STOPPED)
3306 return 0;
3307
3308 if (event->state != PERF_EVENT_STATE_ACTIVE)
3309 return 0;
3310
3311 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3312 }
3313
3314 /*
3315 * Callers need to ensure there can be no nesting of this function, otherwise
3316 * the seqlock logic goes bad. We can not serialize this because the arch
3317 * code calls this from NMI context.
3318 */
3319 void perf_event_update_userpage(struct perf_event *event)
3320 {
3321 struct perf_event_mmap_page *userpg;
3322 struct perf_buffer *buffer;
3323
3324 rcu_read_lock();
3325 buffer = rcu_dereference(event->buffer);
3326 if (!buffer)
3327 goto unlock;
3328
3329 userpg = buffer->user_page;
3330
3331 /*
3332 * Disable preemption so as to not let the corresponding user-space
3333 * spin too long if we get preempted.
3334 */
3335 preempt_disable();
3336 ++userpg->lock;
3337 barrier();
3338 userpg->index = perf_event_index(event);
3339 userpg->offset = perf_event_count(event);
3340 if (event->state == PERF_EVENT_STATE_ACTIVE)
3341 userpg->offset -= local64_read(&event->hw.prev_count);
3342
3343 userpg->time_enabled = event->total_time_enabled +
3344 atomic64_read(&event->child_total_time_enabled);
3345
3346 userpg->time_running = event->total_time_running +
3347 atomic64_read(&event->child_total_time_running);
3348
3349 barrier();
3350 ++userpg->lock;
3351 preempt_enable();
3352 unlock:
3353 rcu_read_unlock();
3354 }
3355
3356 static unsigned long perf_data_size(struct perf_buffer *buffer);
3357
3358 static void
3359 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
3360 {
3361 long max_size = perf_data_size(buffer);
3362
3363 if (watermark)
3364 buffer->watermark = min(max_size, watermark);
3365
3366 if (!buffer->watermark)
3367 buffer->watermark = max_size / 2;
3368
3369 if (flags & PERF_BUFFER_WRITABLE)
3370 buffer->writable = 1;
3371
3372 atomic_set(&buffer->refcount, 1);
3373 }
3374
3375 #ifndef CONFIG_PERF_USE_VMALLOC
3376
3377 /*
3378 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
3379 */
3380
3381 static struct page *
3382 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
3383 {
3384 if (pgoff > buffer->nr_pages)
3385 return NULL;
3386
3387 if (pgoff == 0)
3388 return virt_to_page(buffer->user_page);
3389
3390 return virt_to_page(buffer->data_pages[pgoff - 1]);
3391 }
3392
3393 static void *perf_mmap_alloc_page(int cpu)
3394 {
3395 struct page *page;
3396 int node;
3397
3398 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
3399 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
3400 if (!page)
3401 return NULL;
3402
3403 return page_address(page);
3404 }
3405
3406 static struct perf_buffer *
3407 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
3408 {
3409 struct perf_buffer *buffer;
3410 unsigned long size;
3411 int i;
3412
3413 size = sizeof(struct perf_buffer);
3414 size += nr_pages * sizeof(void *);
3415
3416 buffer = kzalloc(size, GFP_KERNEL);
3417 if (!buffer)
3418 goto fail;
3419
3420 buffer->user_page = perf_mmap_alloc_page(cpu);
3421 if (!buffer->user_page)
3422 goto fail_user_page;
3423
3424 for (i = 0; i < nr_pages; i++) {
3425 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
3426 if (!buffer->data_pages[i])
3427 goto fail_data_pages;
3428 }
3429
3430 buffer->nr_pages = nr_pages;
3431
3432 perf_buffer_init(buffer, watermark, flags);
3433
3434 return buffer;
3435
3436 fail_data_pages:
3437 for (i--; i >= 0; i--)
3438 free_page((unsigned long)buffer->data_pages[i]);
3439
3440 free_page((unsigned long)buffer->user_page);
3441
3442 fail_user_page:
3443 kfree(buffer);
3444
3445 fail:
3446 return NULL;
3447 }
3448
3449 static void perf_mmap_free_page(unsigned long addr)
3450 {
3451 struct page *page = virt_to_page((void *)addr);
3452
3453 page->mapping = NULL;
3454 __free_page(page);
3455 }
3456
3457 static void perf_buffer_free(struct perf_buffer *buffer)
3458 {
3459 int i;
3460
3461 perf_mmap_free_page((unsigned long)buffer->user_page);
3462 for (i = 0; i < buffer->nr_pages; i++)
3463 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
3464 kfree(buffer);
3465 }
3466
3467 static inline int page_order(struct perf_buffer *buffer)
3468 {
3469 return 0;
3470 }
3471
3472 #else
3473
3474 /*
3475 * Back perf_mmap() with vmalloc memory.
3476 *
3477 * Required for architectures that have d-cache aliasing issues.
3478 */
3479
3480 static inline int page_order(struct perf_buffer *buffer)
3481 {
3482 return buffer->page_order;
3483 }
3484
3485 static struct page *
3486 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
3487 {
3488 if (pgoff > (1UL << page_order(buffer)))
3489 return NULL;
3490
3491 return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
3492 }
3493
3494 static void perf_mmap_unmark_page(void *addr)
3495 {
3496 struct page *page = vmalloc_to_page(addr);
3497
3498 page->mapping = NULL;
3499 }
3500
3501 static void perf_buffer_free_work(struct work_struct *work)
3502 {
3503 struct perf_buffer *buffer;
3504 void *base;
3505 int i, nr;
3506
3507 buffer = container_of(work, struct perf_buffer, work);
3508 nr = 1 << page_order(buffer);
3509
3510 base = buffer->user_page;
3511 for (i = 0; i < nr + 1; i++)
3512 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
3513
3514 vfree(base);
3515 kfree(buffer);
3516 }
3517
3518 static void perf_buffer_free(struct perf_buffer *buffer)
3519 {
3520 schedule_work(&buffer->work);
3521 }
3522
3523 static struct perf_buffer *
3524 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
3525 {
3526 struct perf_buffer *buffer;
3527 unsigned long size;
3528 void *all_buf;
3529
3530 size = sizeof(struct perf_buffer);
3531 size += sizeof(void *);
3532
3533 buffer = kzalloc(size, GFP_KERNEL);
3534 if (!buffer)
3535 goto fail;
3536
3537 INIT_WORK(&buffer->work, perf_buffer_free_work);
3538
3539 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
3540 if (!all_buf)
3541 goto fail_all_buf;
3542
3543 buffer->user_page = all_buf;
3544 buffer->data_pages[0] = all_buf + PAGE_SIZE;
3545 buffer->page_order = ilog2(nr_pages);
3546 buffer->nr_pages = 1;
3547
3548 perf_buffer_init(buffer, watermark, flags);
3549
3550 return buffer;
3551
3552 fail_all_buf:
3553 kfree(buffer);
3554
3555 fail:
3556 return NULL;
3557 }
3558
3559 #endif
3560
3561 static unsigned long perf_data_size(struct perf_buffer *buffer)
3562 {
3563 return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
3564 }
3565
3566 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3567 {
3568 struct perf_event *event = vma->vm_file->private_data;
3569 struct perf_buffer *buffer;
3570 int ret = VM_FAULT_SIGBUS;
3571
3572 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3573 if (vmf->pgoff == 0)
3574 ret = 0;
3575 return ret;
3576 }
3577
3578 rcu_read_lock();
3579 buffer = rcu_dereference(event->buffer);
3580 if (!buffer)
3581 goto unlock;
3582
3583 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3584 goto unlock;
3585
3586 vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
3587 if (!vmf->page)
3588 goto unlock;
3589
3590 get_page(vmf->page);
3591 vmf->page->mapping = vma->vm_file->f_mapping;
3592 vmf->page->index = vmf->pgoff;
3593
3594 ret = 0;
3595 unlock:
3596 rcu_read_unlock();
3597
3598 return ret;
3599 }
3600
3601 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
3602 {
3603 struct perf_buffer *buffer;
3604
3605 buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
3606 perf_buffer_free(buffer);
3607 }
3608
3609 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
3610 {
3611 struct perf_buffer *buffer;
3612
3613 rcu_read_lock();
3614 buffer = rcu_dereference(event->buffer);
3615 if (buffer) {
3616 if (!atomic_inc_not_zero(&buffer->refcount))
3617 buffer = NULL;
3618 }
3619 rcu_read_unlock();
3620
3621 return buffer;
3622 }
3623
3624 static void perf_buffer_put(struct perf_buffer *buffer)
3625 {
3626 if (!atomic_dec_and_test(&buffer->refcount))
3627 return;
3628
3629 call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
3630 }
3631
3632 static void perf_mmap_open(struct vm_area_struct *vma)
3633 {
3634 struct perf_event *event = vma->vm_file->private_data;
3635
3636 atomic_inc(&event->mmap_count);
3637 }
3638
3639 static void perf_mmap_close(struct vm_area_struct *vma)
3640 {
3641 struct perf_event *event = vma->vm_file->private_data;
3642
3643 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3644 unsigned long size = perf_data_size(event->buffer);
3645 struct user_struct *user = event->mmap_user;
3646 struct perf_buffer *buffer = event->buffer;
3647
3648 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3649 vma->vm_mm->locked_vm -= event->mmap_locked;
3650 rcu_assign_pointer(event->buffer, NULL);
3651 mutex_unlock(&event->mmap_mutex);
3652
3653 perf_buffer_put(buffer);
3654 free_uid(user);
3655 }
3656 }
3657
3658 static const struct vm_operations_struct perf_mmap_vmops = {
3659 .open = perf_mmap_open,
3660 .close = perf_mmap_close,
3661 .fault = perf_mmap_fault,
3662 .page_mkwrite = perf_mmap_fault,
3663 };
3664
3665 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3666 {
3667 struct perf_event *event = file->private_data;
3668 unsigned long user_locked, user_lock_limit;
3669 struct user_struct *user = current_user();
3670 unsigned long locked, lock_limit;
3671 struct perf_buffer *buffer;
3672 unsigned long vma_size;
3673 unsigned long nr_pages;
3674 long user_extra, extra;
3675 int ret = 0, flags = 0;
3676
3677 /*
3678 * Don't allow mmap() of inherited per-task counters. This would
3679 * create a performance issue due to all children writing to the
3680 * same buffer.
3681 */
3682 if (event->cpu == -1 && event->attr.inherit)
3683 return -EINVAL;
3684
3685 if (!(vma->vm_flags & VM_SHARED))
3686 return -EINVAL;
3687
3688 vma_size = vma->vm_end - vma->vm_start;
3689 nr_pages = (vma_size / PAGE_SIZE) - 1;
3690
3691 /*
3692 * If we have buffer pages ensure they're a power-of-two number, so we
3693 * can do bitmasks instead of modulo.
3694 */
3695 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3696 return -EINVAL;
3697
3698 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3699 return -EINVAL;
3700
3701 if (vma->vm_pgoff != 0)
3702 return -EINVAL;
3703
3704 WARN_ON_ONCE(event->ctx->parent_ctx);
3705 mutex_lock(&event->mmap_mutex);
3706 if (event->buffer) {
3707 if (event->buffer->nr_pages == nr_pages)
3708 atomic_inc(&event->buffer->refcount);
3709 else
3710 ret = -EINVAL;
3711 goto unlock;
3712 }
3713
3714 user_extra = nr_pages + 1;
3715 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3716
3717 /*
3718 * Increase the limit linearly with more CPUs:
3719 */
3720 user_lock_limit *= num_online_cpus();
3721
3722 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3723
3724 extra = 0;
3725 if (user_locked > user_lock_limit)
3726 extra = user_locked - user_lock_limit;
3727
3728 lock_limit = rlimit(RLIMIT_MEMLOCK);
3729 lock_limit >>= PAGE_SHIFT;
3730 locked = vma->vm_mm->locked_vm + extra;
3731
3732 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3733 !capable(CAP_IPC_LOCK)) {
3734 ret = -EPERM;
3735 goto unlock;
3736 }
3737
3738 WARN_ON(event->buffer);
3739
3740 if (vma->vm_flags & VM_WRITE)
3741 flags |= PERF_BUFFER_WRITABLE;
3742
3743 buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3744 event->cpu, flags);
3745 if (!buffer) {
3746 ret = -ENOMEM;
3747 goto unlock;
3748 }
3749 rcu_assign_pointer(event->buffer, buffer);
3750
3751 atomic_long_add(user_extra, &user->locked_vm);
3752 event->mmap_locked = extra;
3753 event->mmap_user = get_current_user();
3754 vma->vm_mm->locked_vm += event->mmap_locked;
3755
3756 unlock:
3757 if (!ret)
3758 atomic_inc(&event->mmap_count);
3759 mutex_unlock(&event->mmap_mutex);
3760
3761 vma->vm_flags |= VM_RESERVED;
3762 vma->vm_ops = &perf_mmap_vmops;
3763
3764 return ret;
3765 }
3766
3767 static int perf_fasync(int fd, struct file *filp, int on)
3768 {
3769 struct inode *inode = filp->f_path.dentry->d_inode;
3770 struct perf_event *event = filp->private_data;
3771 int retval;
3772
3773 mutex_lock(&inode->i_mutex);
3774 retval = fasync_helper(fd, filp, on, &event->fasync);
3775 mutex_unlock(&inode->i_mutex);
3776
3777 if (retval < 0)
3778 return retval;
3779
3780 return 0;
3781 }
3782
3783 static const struct file_operations perf_fops = {
3784 .llseek = no_llseek,
3785 .release = perf_release,
3786 .read = perf_read,
3787 .poll = perf_poll,
3788 .unlocked_ioctl = perf_ioctl,
3789 .compat_ioctl = perf_ioctl,
3790 .mmap = perf_mmap,
3791 .fasync = perf_fasync,
3792 };
3793
3794 /*
3795 * Perf event wakeup
3796 *
3797 * If there's data, ensure we set the poll() state and publish everything
3798 * to user-space before waking everybody up.
3799 */
3800
3801 void perf_event_wakeup(struct perf_event *event)
3802 {
3803 wake_up_all(&event->waitq);
3804
3805 if (event->pending_kill) {
3806 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3807 event->pending_kill = 0;
3808 }
3809 }
3810
3811 static void perf_pending_event(struct irq_work *entry)
3812 {
3813 struct perf_event *event = container_of(entry,
3814 struct perf_event, pending);
3815
3816 if (event->pending_disable) {
3817 event->pending_disable = 0;
3818 __perf_event_disable(event);
3819 }
3820
3821 if (event->pending_wakeup) {
3822 event->pending_wakeup = 0;
3823 perf_event_wakeup(event);
3824 }
3825 }
3826
3827 /*
3828 * We assume there is only KVM supporting the callbacks.
3829 * Later on, we might change it to a list if there is
3830 * another virtualization implementation supporting the callbacks.
3831 */
3832 struct perf_guest_info_callbacks *perf_guest_cbs;
3833
3834 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3835 {
3836 perf_guest_cbs = cbs;
3837 return 0;
3838 }
3839 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3840
3841 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3842 {
3843 perf_guest_cbs = NULL;
3844 return 0;
3845 }
3846 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3847
3848 /*
3849 * Output
3850 */
3851 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3852 unsigned long offset, unsigned long head)
3853 {
3854 unsigned long mask;
3855
3856 if (!buffer->writable)
3857 return true;
3858
3859 mask = perf_data_size(buffer) - 1;
3860
3861 offset = (offset - tail) & mask;
3862 head = (head - tail) & mask;
3863
3864 if ((int)(head - offset) < 0)
3865 return false;
3866
3867 return true;
3868 }
3869
3870 static void perf_output_wakeup(struct perf_output_handle *handle)
3871 {
3872 atomic_set(&handle->buffer->poll, POLL_IN);
3873
3874 if (handle->nmi) {
3875 handle->event->pending_wakeup = 1;
3876 irq_work_queue(&handle->event->pending);
3877 } else
3878 perf_event_wakeup(handle->event);
3879 }
3880
3881 /*
3882 * We need to ensure a later event_id doesn't publish a head when a former
3883 * event isn't done writing. However since we need to deal with NMIs we
3884 * cannot fully serialize things.
3885 *
3886 * We only publish the head (and generate a wakeup) when the outer-most
3887 * event completes.
3888 */
3889 static void perf_output_get_handle(struct perf_output_handle *handle)
3890 {
3891 struct perf_buffer *buffer = handle->buffer;
3892
3893 preempt_disable();
3894 local_inc(&buffer->nest);
3895 handle->wakeup = local_read(&buffer->wakeup);
3896 }
3897
3898 static void perf_output_put_handle(struct perf_output_handle *handle)
3899 {
3900 struct perf_buffer *buffer = handle->buffer;
3901 unsigned long head;
3902
3903 again:
3904 head = local_read(&buffer->head);
3905
3906 /*
3907 * IRQ/NMI can happen here, which means we can miss a head update.
3908 */
3909
3910 if (!local_dec_and_test(&buffer->nest))
3911 goto out;
3912
3913 /*
3914 * Publish the known good head. Rely on the full barrier implied
3915 * by atomic_dec_and_test() order the buffer->head read and this
3916 * write.
3917 */
3918 buffer->user_page->data_head = head;
3919
3920 /*
3921 * Now check if we missed an update, rely on the (compiler)
3922 * barrier in atomic_dec_and_test() to re-read buffer->head.
3923 */
3924 if (unlikely(head != local_read(&buffer->head))) {
3925 local_inc(&buffer->nest);
3926 goto again;
3927 }
3928
3929 if (handle->wakeup != local_read(&buffer->wakeup))
3930 perf_output_wakeup(handle);
3931
3932 out:
3933 preempt_enable();
3934 }
3935
3936 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3937 const void *buf, unsigned int len)
3938 {
3939 do {
3940 unsigned long size = min_t(unsigned long, handle->size, len);
3941
3942 memcpy(handle->addr, buf, size);
3943
3944 len -= size;
3945 handle->addr += size;
3946 buf += size;
3947 handle->size -= size;
3948 if (!handle->size) {
3949 struct perf_buffer *buffer = handle->buffer;
3950
3951 handle->page++;
3952 handle->page &= buffer->nr_pages - 1;
3953 handle->addr = buffer->data_pages[handle->page];
3954 handle->size = PAGE_SIZE << page_order(buffer);
3955 }
3956 } while (len);
3957 }
3958
3959 static void __perf_event_header__init_id(struct perf_event_header *header,
3960 struct perf_sample_data *data,
3961 struct perf_event *event)
3962 {
3963 u64 sample_type = event->attr.sample_type;
3964
3965 data->type = sample_type;
3966 header->size += event->id_header_size;
3967
3968 if (sample_type & PERF_SAMPLE_TID) {
3969 /* namespace issues */
3970 data->tid_entry.pid = perf_event_pid(event, current);
3971 data->tid_entry.tid = perf_event_tid(event, current);
3972 }
3973
3974 if (sample_type & PERF_SAMPLE_TIME)
3975 data->time = perf_clock();
3976
3977 if (sample_type & PERF_SAMPLE_ID)
3978 data->id = primary_event_id(event);
3979
3980 if (sample_type & PERF_SAMPLE_STREAM_ID)
3981 data->stream_id = event->id;
3982
3983 if (sample_type & PERF_SAMPLE_CPU) {
3984 data->cpu_entry.cpu = raw_smp_processor_id();
3985 data->cpu_entry.reserved = 0;
3986 }
3987 }
3988
3989 static void perf_event_header__init_id(struct perf_event_header *header,
3990 struct perf_sample_data *data,
3991 struct perf_event *event)
3992 {
3993 if (event->attr.sample_id_all)
3994 __perf_event_header__init_id(header, data, event);
3995 }
3996
3997 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3998 struct perf_sample_data *data)
3999 {
4000 u64 sample_type = data->type;
4001
4002 if (sample_type & PERF_SAMPLE_TID)
4003 perf_output_put(handle, data->tid_entry);
4004
4005 if (sample_type & PERF_SAMPLE_TIME)
4006 perf_output_put(handle, data->time);
4007
4008 if (sample_type & PERF_SAMPLE_ID)
4009 perf_output_put(handle, data->id);
4010
4011 if (sample_type & PERF_SAMPLE_STREAM_ID)
4012 perf_output_put(handle, data->stream_id);
4013
4014 if (sample_type & PERF_SAMPLE_CPU)
4015 perf_output_put(handle, data->cpu_entry);
4016 }
4017
4018 static void perf_event__output_id_sample(struct perf_event *event,
4019 struct perf_output_handle *handle,
4020 struct perf_sample_data *sample)
4021 {
4022 if (event->attr.sample_id_all)
4023 __perf_event__output_id_sample(handle, sample);
4024 }
4025
4026 int perf_output_begin(struct perf_output_handle *handle,
4027 struct perf_event *event, unsigned int size,
4028 int nmi, int sample)
4029 {
4030 struct perf_buffer *buffer;
4031 unsigned long tail, offset, head;
4032 int have_lost;
4033 struct perf_sample_data sample_data;
4034 struct {
4035 struct perf_event_header header;
4036 u64 id;
4037 u64 lost;
4038 } lost_event;
4039
4040 rcu_read_lock();
4041 /*
4042 * For inherited events we send all the output towards the parent.
4043 */
4044 if (event->parent)
4045 event = event->parent;
4046
4047 buffer = rcu_dereference(event->buffer);
4048 if (!buffer)
4049 goto out;
4050
4051 handle->buffer = buffer;
4052 handle->event = event;
4053 handle->nmi = nmi;
4054 handle->sample = sample;
4055
4056 if (!buffer->nr_pages)
4057 goto out;
4058
4059 have_lost = local_read(&buffer->lost);
4060 if (have_lost) {
4061 lost_event.header.size = sizeof(lost_event);
4062 perf_event_header__init_id(&lost_event.header, &sample_data,
4063 event);
4064 size += lost_event.header.size;
4065 }
4066
4067 perf_output_get_handle(handle);
4068
4069 do {
4070 /*
4071 * Userspace could choose to issue a mb() before updating the
4072 * tail pointer. So that all reads will be completed before the
4073 * write is issued.
4074 */
4075 tail = ACCESS_ONCE(buffer->user_page->data_tail);
4076 smp_rmb();
4077 offset = head = local_read(&buffer->head);
4078 head += size;
4079 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
4080 goto fail;
4081 } while (local_cmpxchg(&buffer->head, offset, head) != offset);
4082
4083 if (head - local_read(&buffer->wakeup) > buffer->watermark)
4084 local_add(buffer->watermark, &buffer->wakeup);
4085
4086 handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
4087 handle->page &= buffer->nr_pages - 1;
4088 handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
4089 handle->addr = buffer->data_pages[handle->page];
4090 handle->addr += handle->size;
4091 handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
4092
4093 if (have_lost) {
4094 lost_event.header.type = PERF_RECORD_LOST;
4095 lost_event.header.misc = 0;
4096 lost_event.id = event->id;
4097 lost_event.lost = local_xchg(&buffer->lost, 0);
4098
4099 perf_output_put(handle, lost_event);
4100 perf_event__output_id_sample(event, handle, &sample_data);
4101 }
4102
4103 return 0;
4104
4105 fail:
4106 local_inc(&buffer->lost);
4107 perf_output_put_handle(handle);
4108 out:
4109 rcu_read_unlock();
4110
4111 return -ENOSPC;
4112 }
4113
4114 void perf_output_end(struct perf_output_handle *handle)
4115 {
4116 struct perf_event *event = handle->event;
4117 struct perf_buffer *buffer = handle->buffer;
4118
4119 int wakeup_events = event->attr.wakeup_events;
4120
4121 if (handle->sample && wakeup_events) {
4122 int events = local_inc_return(&buffer->events);
4123 if (events >= wakeup_events) {
4124 local_sub(wakeup_events, &buffer->events);
4125 local_inc(&buffer->wakeup);
4126 }
4127 }
4128
4129 perf_output_put_handle(handle);
4130 rcu_read_unlock();
4131 }
4132
4133 static void perf_output_read_one(struct perf_output_handle *handle,
4134 struct perf_event *event,
4135 u64 enabled, u64 running)
4136 {
4137 u64 read_format = event->attr.read_format;
4138 u64 values[4];
4139 int n = 0;
4140
4141 values[n++] = perf_event_count(event);
4142 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4143 values[n++] = enabled +
4144 atomic64_read(&event->child_total_time_enabled);
4145 }
4146 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4147 values[n++] = running +
4148 atomic64_read(&event->child_total_time_running);
4149 }
4150 if (read_format & PERF_FORMAT_ID)
4151 values[n++] = primary_event_id(event);
4152
4153 perf_output_copy(handle, values, n * sizeof(u64));
4154 }
4155
4156 /*
4157 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4158 */
4159 static void perf_output_read_group(struct perf_output_handle *handle,
4160 struct perf_event *event,
4161 u64 enabled, u64 running)
4162 {
4163 struct perf_event *leader = event->group_leader, *sub;
4164 u64 read_format = event->attr.read_format;
4165 u64 values[5];
4166 int n = 0;
4167
4168 values[n++] = 1 + leader->nr_siblings;
4169
4170 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4171 values[n++] = enabled;
4172
4173 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4174 values[n++] = running;
4175
4176 if (leader != event)
4177 leader->pmu->read(leader);
4178
4179 values[n++] = perf_event_count(leader);
4180 if (read_format & PERF_FORMAT_ID)
4181 values[n++] = primary_event_id(leader);
4182
4183 perf_output_copy(handle, values, n * sizeof(u64));
4184
4185 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4186 n = 0;
4187
4188 if (sub != event)
4189 sub->pmu->read(sub);
4190
4191 values[n++] = perf_event_count(sub);
4192 if (read_format & PERF_FORMAT_ID)
4193 values[n++] = primary_event_id(sub);
4194
4195 perf_output_copy(handle, values, n * sizeof(u64));
4196 }
4197 }
4198
4199 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4200 PERF_FORMAT_TOTAL_TIME_RUNNING)
4201
4202 static void perf_output_read(struct perf_output_handle *handle,
4203 struct perf_event *event)
4204 {
4205 u64 enabled = 0, running = 0, now, ctx_time;
4206 u64 read_format = event->attr.read_format;
4207
4208 /*
4209 * compute total_time_enabled, total_time_running
4210 * based on snapshot values taken when the event
4211 * was last scheduled in.
4212 *
4213 * we cannot simply called update_context_time()
4214 * because of locking issue as we are called in
4215 * NMI context
4216 */
4217 if (read_format & PERF_FORMAT_TOTAL_TIMES) {
4218 now = perf_clock();
4219 ctx_time = event->shadow_ctx_time + now;
4220 enabled = ctx_time - event->tstamp_enabled;
4221 running = ctx_time - event->tstamp_running;
4222 }
4223
4224 if (event->attr.read_format & PERF_FORMAT_GROUP)
4225 perf_output_read_group(handle, event, enabled, running);
4226 else
4227 perf_output_read_one(handle, event, enabled, running);
4228 }
4229
4230 void perf_output_sample(struct perf_output_handle *handle,
4231 struct perf_event_header *header,
4232 struct perf_sample_data *data,
4233 struct perf_event *event)
4234 {
4235 u64 sample_type = data->type;
4236
4237 perf_output_put(handle, *header);
4238
4239 if (sample_type & PERF_SAMPLE_IP)
4240 perf_output_put(handle, data->ip);
4241
4242 if (sample_type & PERF_SAMPLE_TID)
4243 perf_output_put(handle, data->tid_entry);
4244
4245 if (sample_type & PERF_SAMPLE_TIME)
4246 perf_output_put(handle, data->time);
4247
4248 if (sample_type & PERF_SAMPLE_ADDR)
4249 perf_output_put(handle, data->addr);
4250
4251 if (sample_type & PERF_SAMPLE_ID)
4252 perf_output_put(handle, data->id);
4253
4254 if (sample_type & PERF_SAMPLE_STREAM_ID)
4255 perf_output_put(handle, data->stream_id);
4256
4257 if (sample_type & PERF_SAMPLE_CPU)
4258 perf_output_put(handle, data->cpu_entry);
4259
4260 if (sample_type & PERF_SAMPLE_PERIOD)
4261 perf_output_put(handle, data->period);
4262
4263 if (sample_type & PERF_SAMPLE_READ)
4264 perf_output_read(handle, event);
4265
4266 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4267 if (data->callchain) {
4268 int size = 1;
4269
4270 if (data->callchain)
4271 size += data->callchain->nr;
4272
4273 size *= sizeof(u64);
4274
4275 perf_output_copy(handle, data->callchain, size);
4276 } else {
4277 u64 nr = 0;
4278 perf_output_put(handle, nr);
4279 }
4280 }
4281
4282 if (sample_type & PERF_SAMPLE_RAW) {
4283 if (data->raw) {
4284 perf_output_put(handle, data->raw->size);
4285 perf_output_copy(handle, data->raw->data,
4286 data->raw->size);
4287 } else {
4288 struct {
4289 u32 size;
4290 u32 data;
4291 } raw = {
4292 .size = sizeof(u32),
4293 .data = 0,
4294 };
4295 perf_output_put(handle, raw);
4296 }
4297 }
4298 }
4299
4300 void perf_prepare_sample(struct perf_event_header *header,
4301 struct perf_sample_data *data,
4302 struct perf_event *event,
4303 struct pt_regs *regs)
4304 {
4305 u64 sample_type = event->attr.sample_type;
4306
4307 header->type = PERF_RECORD_SAMPLE;
4308 header->size = sizeof(*header) + event->header_size;
4309
4310 header->misc = 0;
4311 header->misc |= perf_misc_flags(regs);
4312
4313 __perf_event_header__init_id(header, data, event);
4314
4315 if (sample_type & PERF_SAMPLE_IP)
4316 data->ip = perf_instruction_pointer(regs);
4317
4318 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4319 int size = 1;
4320
4321 data->callchain = perf_callchain(regs);
4322
4323 if (data->callchain)
4324 size += data->callchain->nr;
4325
4326 header->size += size * sizeof(u64);
4327 }
4328
4329 if (sample_type & PERF_SAMPLE_RAW) {
4330 int size = sizeof(u32);
4331
4332 if (data->raw)
4333 size += data->raw->size;
4334 else
4335 size += sizeof(u32);
4336
4337 WARN_ON_ONCE(size & (sizeof(u64)-1));
4338 header->size += size;
4339 }
4340 }
4341
4342 static void perf_event_output(struct perf_event *event, int nmi,
4343 struct perf_sample_data *data,
4344 struct pt_regs *regs)
4345 {
4346 struct perf_output_handle handle;
4347 struct perf_event_header header;
4348
4349 /* protect the callchain buffers */
4350 rcu_read_lock();
4351
4352 perf_prepare_sample(&header, data, event, regs);
4353
4354 if (perf_output_begin(&handle, event, header.size, nmi, 1))
4355 goto exit;
4356
4357 perf_output_sample(&handle, &header, data, event);
4358
4359 perf_output_end(&handle);
4360
4361 exit:
4362 rcu_read_unlock();
4363 }
4364
4365 /*
4366 * read event_id
4367 */
4368
4369 struct perf_read_event {
4370 struct perf_event_header header;
4371
4372 u32 pid;
4373 u32 tid;
4374 };
4375
4376 static void
4377 perf_event_read_event(struct perf_event *event,
4378 struct task_struct *task)
4379 {
4380 struct perf_output_handle handle;
4381 struct perf_sample_data sample;
4382 struct perf_read_event read_event = {
4383 .header = {
4384 .type = PERF_RECORD_READ,
4385 .misc = 0,
4386 .size = sizeof(read_event) + event->read_size,
4387 },
4388 .pid = perf_event_pid(event, task),
4389 .tid = perf_event_tid(event, task),
4390 };
4391 int ret;
4392
4393 perf_event_header__init_id(&read_event.header, &sample, event);
4394 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
4395 if (ret)
4396 return;
4397
4398 perf_output_put(&handle, read_event);
4399 perf_output_read(&handle, event);
4400 perf_event__output_id_sample(event, &handle, &sample);
4401
4402 perf_output_end(&handle);
4403 }
4404
4405 /*
4406 * task tracking -- fork/exit
4407 *
4408 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4409 */
4410
4411 struct perf_task_event {
4412 struct task_struct *task;
4413 struct perf_event_context *task_ctx;
4414
4415 struct {
4416 struct perf_event_header header;
4417
4418 u32 pid;
4419 u32 ppid;
4420 u32 tid;
4421 u32 ptid;
4422 u64 time;
4423 } event_id;
4424 };
4425
4426 static void perf_event_task_output(struct perf_event *event,
4427 struct perf_task_event *task_event)
4428 {
4429 struct perf_output_handle handle;
4430 struct perf_sample_data sample;
4431 struct task_struct *task = task_event->task;
4432 int ret, size = task_event->event_id.header.size;
4433
4434 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4435
4436 ret = perf_output_begin(&handle, event,
4437 task_event->event_id.header.size, 0, 0);
4438 if (ret)
4439 goto out;
4440
4441 task_event->event_id.pid = perf_event_pid(event, task);
4442 task_event->event_id.ppid = perf_event_pid(event, current);
4443
4444 task_event->event_id.tid = perf_event_tid(event, task);
4445 task_event->event_id.ptid = perf_event_tid(event, current);
4446
4447 perf_output_put(&handle, task_event->event_id);
4448
4449 perf_event__output_id_sample(event, &handle, &sample);
4450
4451 perf_output_end(&handle);
4452 out:
4453 task_event->event_id.header.size = size;
4454 }
4455
4456 static int perf_event_task_match(struct perf_event *event)
4457 {
4458 if (event->state < PERF_EVENT_STATE_INACTIVE)
4459 return 0;
4460
4461 if (!event_filter_match(event))
4462 return 0;
4463
4464 if (event->attr.comm || event->attr.mmap ||
4465 event->attr.mmap_data || event->attr.task)
4466 return 1;
4467
4468 return 0;
4469 }
4470
4471 static void perf_event_task_ctx(struct perf_event_context *ctx,
4472 struct perf_task_event *task_event)
4473 {
4474 struct perf_event *event;
4475
4476 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4477 if (perf_event_task_match(event))
4478 perf_event_task_output(event, task_event);
4479 }
4480 }
4481
4482 static void perf_event_task_event(struct perf_task_event *task_event)
4483 {
4484 struct perf_cpu_context *cpuctx;
4485 struct perf_event_context *ctx;
4486 struct pmu *pmu;
4487 int ctxn;
4488
4489 rcu_read_lock();
4490 list_for_each_entry_rcu(pmu, &pmus, entry) {
4491 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4492 if (cpuctx->active_pmu != pmu)
4493 goto next;
4494 perf_event_task_ctx(&cpuctx->ctx, task_event);
4495
4496 ctx = task_event->task_ctx;
4497 if (!ctx) {
4498 ctxn = pmu->task_ctx_nr;
4499 if (ctxn < 0)
4500 goto next;
4501 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4502 }
4503 if (ctx)
4504 perf_event_task_ctx(ctx, task_event);
4505 next:
4506 put_cpu_ptr(pmu->pmu_cpu_context);
4507 }
4508 rcu_read_unlock();
4509 }
4510
4511 static void perf_event_task(struct task_struct *task,
4512 struct perf_event_context *task_ctx,
4513 int new)
4514 {
4515 struct perf_task_event task_event;
4516
4517 if (!atomic_read(&nr_comm_events) &&
4518 !atomic_read(&nr_mmap_events) &&
4519 !atomic_read(&nr_task_events))
4520 return;
4521
4522 task_event = (struct perf_task_event){
4523 .task = task,
4524 .task_ctx = task_ctx,
4525 .event_id = {
4526 .header = {
4527 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4528 .misc = 0,
4529 .size = sizeof(task_event.event_id),
4530 },
4531 /* .pid */
4532 /* .ppid */
4533 /* .tid */
4534 /* .ptid */
4535 .time = perf_clock(),
4536 },
4537 };
4538
4539 perf_event_task_event(&task_event);
4540 }
4541
4542 void perf_event_fork(struct task_struct *task)
4543 {
4544 perf_event_task(task, NULL, 1);
4545 }
4546
4547 /*
4548 * comm tracking
4549 */
4550
4551 struct perf_comm_event {
4552 struct task_struct *task;
4553 char *comm;
4554 int comm_size;
4555
4556 struct {
4557 struct perf_event_header header;
4558
4559 u32 pid;
4560 u32 tid;
4561 } event_id;
4562 };
4563
4564 static void perf_event_comm_output(struct perf_event *event,
4565 struct perf_comm_event *comm_event)
4566 {
4567 struct perf_output_handle handle;
4568 struct perf_sample_data sample;
4569 int size = comm_event->event_id.header.size;
4570 int ret;
4571
4572 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4573 ret = perf_output_begin(&handle, event,
4574 comm_event->event_id.header.size, 0, 0);
4575
4576 if (ret)
4577 goto out;
4578
4579 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4580 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4581
4582 perf_output_put(&handle, comm_event->event_id);
4583 perf_output_copy(&handle, comm_event->comm,
4584 comm_event->comm_size);
4585
4586 perf_event__output_id_sample(event, &handle, &sample);
4587
4588 perf_output_end(&handle);
4589 out:
4590 comm_event->event_id.header.size = size;
4591 }
4592
4593 static int perf_event_comm_match(struct perf_event *event)
4594 {
4595 if (event->state < PERF_EVENT_STATE_INACTIVE)
4596 return 0;
4597
4598 if (!event_filter_match(event))
4599 return 0;
4600
4601 if (event->attr.comm)
4602 return 1;
4603
4604 return 0;
4605 }
4606
4607 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4608 struct perf_comm_event *comm_event)
4609 {
4610 struct perf_event *event;
4611
4612 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4613 if (perf_event_comm_match(event))
4614 perf_event_comm_output(event, comm_event);
4615 }
4616 }
4617
4618 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4619 {
4620 struct perf_cpu_context *cpuctx;
4621 struct perf_event_context *ctx;
4622 char comm[TASK_COMM_LEN];
4623 unsigned int size;
4624 struct pmu *pmu;
4625 int ctxn;
4626
4627 memset(comm, 0, sizeof(comm));
4628 strlcpy(comm, comm_event->task->comm, sizeof(comm));
4629 size = ALIGN(strlen(comm)+1, sizeof(u64));
4630
4631 comm_event->comm = comm;
4632 comm_event->comm_size = size;
4633
4634 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4635 rcu_read_lock();
4636 list_for_each_entry_rcu(pmu, &pmus, entry) {
4637 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4638 if (cpuctx->active_pmu != pmu)
4639 goto next;
4640 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4641
4642 ctxn = pmu->task_ctx_nr;
4643 if (ctxn < 0)
4644 goto next;
4645
4646 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4647 if (ctx)
4648 perf_event_comm_ctx(ctx, comm_event);
4649 next:
4650 put_cpu_ptr(pmu->pmu_cpu_context);
4651 }
4652 rcu_read_unlock();
4653 }
4654
4655 void perf_event_comm(struct task_struct *task)
4656 {
4657 struct perf_comm_event comm_event;
4658 struct perf_event_context *ctx;
4659 int ctxn;
4660
4661 for_each_task_context_nr(ctxn) {
4662 ctx = task->perf_event_ctxp[ctxn];
4663 if (!ctx)
4664 continue;
4665
4666 perf_event_enable_on_exec(ctx);
4667 }
4668
4669 if (!atomic_read(&nr_comm_events))
4670 return;
4671
4672 comm_event = (struct perf_comm_event){
4673 .task = task,
4674 /* .comm */
4675 /* .comm_size */
4676 .event_id = {
4677 .header = {
4678 .type = PERF_RECORD_COMM,
4679 .misc = 0,
4680 /* .size */
4681 },
4682 /* .pid */
4683 /* .tid */
4684 },
4685 };
4686
4687 perf_event_comm_event(&comm_event);
4688 }
4689
4690 /*
4691 * mmap tracking
4692 */
4693
4694 struct perf_mmap_event {
4695 struct vm_area_struct *vma;
4696
4697 const char *file_name;
4698 int file_size;
4699
4700 struct {
4701 struct perf_event_header header;
4702
4703 u32 pid;
4704 u32 tid;
4705 u64 start;
4706 u64 len;
4707 u64 pgoff;
4708 } event_id;
4709 };
4710
4711 static void perf_event_mmap_output(struct perf_event *event,
4712 struct perf_mmap_event *mmap_event)
4713 {
4714 struct perf_output_handle handle;
4715 struct perf_sample_data sample;
4716 int size = mmap_event->event_id.header.size;
4717 int ret;
4718
4719 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4720 ret = perf_output_begin(&handle, event,
4721 mmap_event->event_id.header.size, 0, 0);
4722 if (ret)
4723 goto out;
4724
4725 mmap_event->event_id.pid = perf_event_pid(event, current);
4726 mmap_event->event_id.tid = perf_event_tid(event, current);
4727
4728 perf_output_put(&handle, mmap_event->event_id);
4729 perf_output_copy(&handle, mmap_event->file_name,
4730 mmap_event->file_size);
4731
4732 perf_event__output_id_sample(event, &handle, &sample);
4733
4734 perf_output_end(&handle);
4735 out:
4736 mmap_event->event_id.header.size = size;
4737 }
4738
4739 static int perf_event_mmap_match(struct perf_event *event,
4740 struct perf_mmap_event *mmap_event,
4741 int executable)
4742 {
4743 if (event->state < PERF_EVENT_STATE_INACTIVE)
4744 return 0;
4745
4746 if (!event_filter_match(event))
4747 return 0;
4748
4749 if ((!executable && event->attr.mmap_data) ||
4750 (executable && event->attr.mmap))
4751 return 1;
4752
4753 return 0;
4754 }
4755
4756 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4757 struct perf_mmap_event *mmap_event,
4758 int executable)
4759 {
4760 struct perf_event *event;
4761
4762 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4763 if (perf_event_mmap_match(event, mmap_event, executable))
4764 perf_event_mmap_output(event, mmap_event);
4765 }
4766 }
4767
4768 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4769 {
4770 struct perf_cpu_context *cpuctx;
4771 struct perf_event_context *ctx;
4772 struct vm_area_struct *vma = mmap_event->vma;
4773 struct file *file = vma->vm_file;
4774 unsigned int size;
4775 char tmp[16];
4776 char *buf = NULL;
4777 const char *name;
4778 struct pmu *pmu;
4779 int ctxn;
4780
4781 memset(tmp, 0, sizeof(tmp));
4782
4783 if (file) {
4784 /*
4785 * d_path works from the end of the buffer backwards, so we
4786 * need to add enough zero bytes after the string to handle
4787 * the 64bit alignment we do later.
4788 */
4789 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4790 if (!buf) {
4791 name = strncpy(tmp, "//enomem", sizeof(tmp));
4792 goto got_name;
4793 }
4794 name = d_path(&file->f_path, buf, PATH_MAX);
4795 if (IS_ERR(name)) {
4796 name = strncpy(tmp, "//toolong", sizeof(tmp));
4797 goto got_name;
4798 }
4799 } else {
4800 if (arch_vma_name(mmap_event->vma)) {
4801 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4802 sizeof(tmp));
4803 goto got_name;
4804 }
4805
4806 if (!vma->vm_mm) {
4807 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4808 goto got_name;
4809 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4810 vma->vm_end >= vma->vm_mm->brk) {
4811 name = strncpy(tmp, "[heap]", sizeof(tmp));
4812 goto got_name;
4813 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4814 vma->vm_end >= vma->vm_mm->start_stack) {
4815 name = strncpy(tmp, "[stack]", sizeof(tmp));
4816 goto got_name;
4817 }
4818
4819 name = strncpy(tmp, "//anon", sizeof(tmp));
4820 goto got_name;
4821 }
4822
4823 got_name:
4824 size = ALIGN(strlen(name)+1, sizeof(u64));
4825
4826 mmap_event->file_name = name;
4827 mmap_event->file_size = size;
4828
4829 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4830
4831 rcu_read_lock();
4832 list_for_each_entry_rcu(pmu, &pmus, entry) {
4833 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4834 if (cpuctx->active_pmu != pmu)
4835 goto next;
4836 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4837 vma->vm_flags & VM_EXEC);
4838
4839 ctxn = pmu->task_ctx_nr;
4840 if (ctxn < 0)
4841 goto next;
4842
4843 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4844 if (ctx) {
4845 perf_event_mmap_ctx(ctx, mmap_event,
4846 vma->vm_flags & VM_EXEC);
4847 }
4848 next:
4849 put_cpu_ptr(pmu->pmu_cpu_context);
4850 }
4851 rcu_read_unlock();
4852
4853 kfree(buf);
4854 }
4855
4856 void perf_event_mmap(struct vm_area_struct *vma)
4857 {
4858 struct perf_mmap_event mmap_event;
4859
4860 if (!atomic_read(&nr_mmap_events))
4861 return;
4862
4863 mmap_event = (struct perf_mmap_event){
4864 .vma = vma,
4865 /* .file_name */
4866 /* .file_size */
4867 .event_id = {
4868 .header = {
4869 .type = PERF_RECORD_MMAP,
4870 .misc = PERF_RECORD_MISC_USER,
4871 /* .size */
4872 },
4873 /* .pid */
4874 /* .tid */
4875 .start = vma->vm_start,
4876 .len = vma->vm_end - vma->vm_start,
4877 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4878 },
4879 };
4880
4881 perf_event_mmap_event(&mmap_event);
4882 }
4883
4884 /*
4885 * IRQ throttle logging
4886 */
4887
4888 static void perf_log_throttle(struct perf_event *event, int enable)
4889 {
4890 struct perf_output_handle handle;
4891 struct perf_sample_data sample;
4892 int ret;
4893
4894 struct {
4895 struct perf_event_header header;
4896 u64 time;
4897 u64 id;
4898 u64 stream_id;
4899 } throttle_event = {
4900 .header = {
4901 .type = PERF_RECORD_THROTTLE,
4902 .misc = 0,
4903 .size = sizeof(throttle_event),
4904 },
4905 .time = perf_clock(),
4906 .id = primary_event_id(event),
4907 .stream_id = event->id,
4908 };
4909
4910 if (enable)
4911 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4912
4913 perf_event_header__init_id(&throttle_event.header, &sample, event);
4914
4915 ret = perf_output_begin(&handle, event,
4916 throttle_event.header.size, 1, 0);
4917 if (ret)
4918 return;
4919
4920 perf_output_put(&handle, throttle_event);
4921 perf_event__output_id_sample(event, &handle, &sample);
4922 perf_output_end(&handle);
4923 }
4924
4925 /*
4926 * Generic event overflow handling, sampling.
4927 */
4928
4929 static int __perf_event_overflow(struct perf_event *event, int nmi,
4930 int throttle, struct perf_sample_data *data,
4931 struct pt_regs *regs)
4932 {
4933 int events = atomic_read(&event->event_limit);
4934 struct hw_perf_event *hwc = &event->hw;
4935 int ret = 0;
4936
4937 /*
4938 * Non-sampling counters might still use the PMI to fold short
4939 * hardware counters, ignore those.
4940 */
4941 if (unlikely(!is_sampling_event(event)))
4942 return 0;
4943
4944 if (!throttle) {
4945 hwc->interrupts++;
4946 } else {
4947 if (hwc->interrupts != MAX_INTERRUPTS) {
4948 hwc->interrupts++;
4949 if (HZ * hwc->interrupts >
4950 (u64)sysctl_perf_event_sample_rate) {
4951 hwc->interrupts = MAX_INTERRUPTS;
4952 perf_log_throttle(event, 0);
4953 ret = 1;
4954 }
4955 } else {
4956 /*
4957 * Keep re-disabling events even though on the previous
4958 * pass we disabled it - just in case we raced with a
4959 * sched-in and the event got enabled again:
4960 */
4961 ret = 1;
4962 }
4963 }
4964
4965 if (event->attr.freq) {
4966 u64 now = perf_clock();
4967 s64 delta = now - hwc->freq_time_stamp;
4968
4969 hwc->freq_time_stamp = now;
4970
4971 if (delta > 0 && delta < 2*TICK_NSEC)
4972 perf_adjust_period(event, delta, hwc->last_period);
4973 }
4974
4975 /*
4976 * XXX event_limit might not quite work as expected on inherited
4977 * events
4978 */
4979
4980 event->pending_kill = POLL_IN;
4981 if (events && atomic_dec_and_test(&event->event_limit)) {
4982 ret = 1;
4983 event->pending_kill = POLL_HUP;
4984 if (nmi) {
4985 event->pending_disable = 1;
4986 irq_work_queue(&event->pending);
4987 } else
4988 perf_event_disable(event);
4989 }
4990
4991 if (event->overflow_handler)
4992 event->overflow_handler(event, nmi, data, regs);
4993 else
4994 perf_event_output(event, nmi, data, regs);
4995
4996 return ret;
4997 }
4998
4999 int perf_event_overflow(struct perf_event *event, int nmi,
5000 struct perf_sample_data *data,
5001 struct pt_regs *regs)
5002 {
5003 return __perf_event_overflow(event, nmi, 1, data, regs);
5004 }
5005
5006 /*
5007 * Generic software event infrastructure
5008 */
5009
5010 struct swevent_htable {
5011 struct swevent_hlist *swevent_hlist;
5012 struct mutex hlist_mutex;
5013 int hlist_refcount;
5014
5015 /* Recursion avoidance in each contexts */
5016 int recursion[PERF_NR_CONTEXTS];
5017 };
5018
5019 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5020
5021 /*
5022 * We directly increment event->count and keep a second value in
5023 * event->hw.period_left to count intervals. This period event
5024 * is kept in the range [-sample_period, 0] so that we can use the
5025 * sign as trigger.
5026 */
5027
5028 static u64 perf_swevent_set_period(struct perf_event *event)
5029 {
5030 struct hw_perf_event *hwc = &event->hw;
5031 u64 period = hwc->last_period;
5032 u64 nr, offset;
5033 s64 old, val;
5034
5035 hwc->last_period = hwc->sample_period;
5036
5037 again:
5038 old = val = local64_read(&hwc->period_left);
5039 if (val < 0)
5040 return 0;
5041
5042 nr = div64_u64(period + val, period);
5043 offset = nr * period;
5044 val -= offset;
5045 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5046 goto again;
5047
5048 return nr;
5049 }
5050
5051 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5052 int nmi, struct perf_sample_data *data,
5053 struct pt_regs *regs)
5054 {
5055 struct hw_perf_event *hwc = &event->hw;
5056 int throttle = 0;
5057
5058 data->period = event->hw.last_period;
5059 if (!overflow)
5060 overflow = perf_swevent_set_period(event);
5061
5062 if (hwc->interrupts == MAX_INTERRUPTS)
5063 return;
5064
5065 for (; overflow; overflow--) {
5066 if (__perf_event_overflow(event, nmi, throttle,
5067 data, regs)) {
5068 /*
5069 * We inhibit the overflow from happening when
5070 * hwc->interrupts == MAX_INTERRUPTS.
5071 */
5072 break;
5073 }
5074 throttle = 1;
5075 }
5076 }
5077
5078 static void perf_swevent_event(struct perf_event *event, u64 nr,
5079 int nmi, struct perf_sample_data *data,
5080 struct pt_regs *regs)
5081 {
5082 struct hw_perf_event *hwc = &event->hw;
5083
5084 local64_add(nr, &event->count);
5085
5086 if (!regs)
5087 return;
5088
5089 if (!is_sampling_event(event))
5090 return;
5091
5092 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5093 return perf_swevent_overflow(event, 1, nmi, data, regs);
5094
5095 if (local64_add_negative(nr, &hwc->period_left))
5096 return;
5097
5098 perf_swevent_overflow(event, 0, nmi, data, regs);
5099 }
5100
5101 static int perf_exclude_event(struct perf_event *event,
5102 struct pt_regs *regs)
5103 {
5104 if (event->hw.state & PERF_HES_STOPPED)
5105 return 0;
5106
5107 if (regs) {
5108 if (event->attr.exclude_user && user_mode(regs))
5109 return 1;
5110
5111 if (event->attr.exclude_kernel && !user_mode(regs))
5112 return 1;
5113 }
5114
5115 return 0;
5116 }
5117
5118 static int perf_swevent_match(struct perf_event *event,
5119 enum perf_type_id type,
5120 u32 event_id,
5121 struct perf_sample_data *data,
5122 struct pt_regs *regs)
5123 {
5124 if (event->attr.type != type)
5125 return 0;
5126
5127 if (event->attr.config != event_id)
5128 return 0;
5129
5130 if (perf_exclude_event(event, regs))
5131 return 0;
5132
5133 return 1;
5134 }
5135
5136 static inline u64 swevent_hash(u64 type, u32 event_id)
5137 {
5138 u64 val = event_id | (type << 32);
5139
5140 return hash_64(val, SWEVENT_HLIST_BITS);
5141 }
5142
5143 static inline struct hlist_head *
5144 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5145 {
5146 u64 hash = swevent_hash(type, event_id);
5147
5148 return &hlist->heads[hash];
5149 }
5150
5151 /* For the read side: events when they trigger */
5152 static inline struct hlist_head *
5153 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5154 {
5155 struct swevent_hlist *hlist;
5156
5157 hlist = rcu_dereference(swhash->swevent_hlist);
5158 if (!hlist)
5159 return NULL;
5160
5161 return __find_swevent_head(hlist, type, event_id);
5162 }
5163
5164 /* For the event head insertion and removal in the hlist */
5165 static inline struct hlist_head *
5166 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5167 {
5168 struct swevent_hlist *hlist;
5169 u32 event_id = event->attr.config;
5170 u64 type = event->attr.type;
5171
5172 /*
5173 * Event scheduling is always serialized against hlist allocation
5174 * and release. Which makes the protected version suitable here.
5175 * The context lock guarantees that.
5176 */
5177 hlist = rcu_dereference_protected(swhash->swevent_hlist,
5178 lockdep_is_held(&event->ctx->lock));
5179 if (!hlist)
5180 return NULL;
5181
5182 return __find_swevent_head(hlist, type, event_id);
5183 }
5184
5185 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5186 u64 nr, int nmi,
5187 struct perf_sample_data *data,
5188 struct pt_regs *regs)
5189 {
5190 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5191 struct perf_event *event;
5192 struct hlist_node *node;
5193 struct hlist_head *head;
5194
5195 rcu_read_lock();
5196 head = find_swevent_head_rcu(swhash, type, event_id);
5197 if (!head)
5198 goto end;
5199
5200 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5201 if (perf_swevent_match(event, type, event_id, data, regs))
5202 perf_swevent_event(event, nr, nmi, data, regs);
5203 }
5204 end:
5205 rcu_read_unlock();
5206 }
5207
5208 int perf_swevent_get_recursion_context(void)
5209 {
5210 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5211
5212 return get_recursion_context(swhash->recursion);
5213 }
5214 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5215
5216 inline void perf_swevent_put_recursion_context(int rctx)
5217 {
5218 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5219
5220 put_recursion_context(swhash->recursion, rctx);
5221 }
5222
5223 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
5224 struct pt_regs *regs, u64 addr)
5225 {
5226 struct perf_sample_data data;
5227 int rctx;
5228
5229 preempt_disable_notrace();
5230 rctx = perf_swevent_get_recursion_context();
5231 if (rctx < 0)
5232 return;
5233
5234 perf_sample_data_init(&data, addr);
5235
5236 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
5237
5238 perf_swevent_put_recursion_context(rctx);
5239 preempt_enable_notrace();
5240 }
5241
5242 static void perf_swevent_read(struct perf_event *event)
5243 {
5244 }
5245
5246 static int perf_swevent_add(struct perf_event *event, int flags)
5247 {
5248 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5249 struct hw_perf_event *hwc = &event->hw;
5250 struct hlist_head *head;
5251
5252 if (is_sampling_event(event)) {
5253 hwc->last_period = hwc->sample_period;
5254 perf_swevent_set_period(event);
5255 }
5256
5257 hwc->state = !(flags & PERF_EF_START);
5258
5259 head = find_swevent_head(swhash, event);
5260 if (WARN_ON_ONCE(!head))
5261 return -EINVAL;
5262
5263 hlist_add_head_rcu(&event->hlist_entry, head);
5264
5265 return 0;
5266 }
5267
5268 static void perf_swevent_del(struct perf_event *event, int flags)
5269 {
5270 hlist_del_rcu(&event->hlist_entry);
5271 }
5272
5273 static void perf_swevent_start(struct perf_event *event, int flags)
5274 {
5275 event->hw.state = 0;
5276 }
5277
5278 static void perf_swevent_stop(struct perf_event *event, int flags)
5279 {
5280 event->hw.state = PERF_HES_STOPPED;
5281 }
5282
5283 /* Deref the hlist from the update side */
5284 static inline struct swevent_hlist *
5285 swevent_hlist_deref(struct swevent_htable *swhash)
5286 {
5287 return rcu_dereference_protected(swhash->swevent_hlist,
5288 lockdep_is_held(&swhash->hlist_mutex));
5289 }
5290
5291 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
5292 {
5293 struct swevent_hlist *hlist;
5294
5295 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
5296 kfree(hlist);
5297 }
5298
5299 static void swevent_hlist_release(struct swevent_htable *swhash)
5300 {
5301 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5302
5303 if (!hlist)
5304 return;
5305
5306 rcu_assign_pointer(swhash->swevent_hlist, NULL);
5307 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
5308 }
5309
5310 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5311 {
5312 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5313
5314 mutex_lock(&swhash->hlist_mutex);
5315
5316 if (!--swhash->hlist_refcount)
5317 swevent_hlist_release(swhash);
5318
5319 mutex_unlock(&swhash->hlist_mutex);
5320 }
5321
5322 static void swevent_hlist_put(struct perf_event *event)
5323 {
5324 int cpu;
5325
5326 if (event->cpu != -1) {
5327 swevent_hlist_put_cpu(event, event->cpu);
5328 return;
5329 }
5330
5331 for_each_possible_cpu(cpu)
5332 swevent_hlist_put_cpu(event, cpu);
5333 }
5334
5335 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5336 {
5337 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5338 int err = 0;
5339
5340 mutex_lock(&swhash->hlist_mutex);
5341
5342 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5343 struct swevent_hlist *hlist;
5344
5345 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5346 if (!hlist) {
5347 err = -ENOMEM;
5348 goto exit;
5349 }
5350 rcu_assign_pointer(swhash->swevent_hlist, hlist);
5351 }
5352 swhash->hlist_refcount++;
5353 exit:
5354 mutex_unlock(&swhash->hlist_mutex);
5355
5356 return err;
5357 }
5358
5359 static int swevent_hlist_get(struct perf_event *event)
5360 {
5361 int err;
5362 int cpu, failed_cpu;
5363
5364 if (event->cpu != -1)
5365 return swevent_hlist_get_cpu(event, event->cpu);
5366
5367 get_online_cpus();
5368 for_each_possible_cpu(cpu) {
5369 err = swevent_hlist_get_cpu(event, cpu);
5370 if (err) {
5371 failed_cpu = cpu;
5372 goto fail;
5373 }
5374 }
5375 put_online_cpus();
5376
5377 return 0;
5378 fail:
5379 for_each_possible_cpu(cpu) {
5380 if (cpu == failed_cpu)
5381 break;
5382 swevent_hlist_put_cpu(event, cpu);
5383 }
5384
5385 put_online_cpus();
5386 return err;
5387 }
5388
5389 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
5390
5391 static void sw_perf_event_destroy(struct perf_event *event)
5392 {
5393 u64 event_id = event->attr.config;
5394
5395 WARN_ON(event->parent);
5396
5397 jump_label_dec(&perf_swevent_enabled[event_id]);
5398 swevent_hlist_put(event);
5399 }
5400
5401 static int perf_swevent_init(struct perf_event *event)
5402 {
5403 int event_id = event->attr.config;
5404
5405 if (event->attr.type != PERF_TYPE_SOFTWARE)
5406 return -ENOENT;
5407
5408 switch (event_id) {
5409 case PERF_COUNT_SW_CPU_CLOCK:
5410 case PERF_COUNT_SW_TASK_CLOCK:
5411 return -ENOENT;
5412
5413 default:
5414 break;
5415 }
5416
5417 if (event_id >= PERF_COUNT_SW_MAX)
5418 return -ENOENT;
5419
5420 if (!event->parent) {
5421 int err;
5422
5423 err = swevent_hlist_get(event);
5424 if (err)
5425 return err;
5426
5427 jump_label_inc(&perf_swevent_enabled[event_id]);
5428 event->destroy = sw_perf_event_destroy;
5429 }
5430
5431 return 0;
5432 }
5433
5434 static struct pmu perf_swevent = {
5435 .task_ctx_nr = perf_sw_context,
5436
5437 .event_init = perf_swevent_init,
5438 .add = perf_swevent_add,
5439 .del = perf_swevent_del,
5440 .start = perf_swevent_start,
5441 .stop = perf_swevent_stop,
5442 .read = perf_swevent_read,
5443 };
5444
5445 #ifdef CONFIG_EVENT_TRACING
5446
5447 static int perf_tp_filter_match(struct perf_event *event,
5448 struct perf_sample_data *data)
5449 {
5450 void *record = data->raw->data;
5451
5452 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5453 return 1;
5454 return 0;
5455 }
5456
5457 static int perf_tp_event_match(struct perf_event *event,
5458 struct perf_sample_data *data,
5459 struct pt_regs *regs)
5460 {
5461 /*
5462 * All tracepoints are from kernel-space.
5463 */
5464 if (event->attr.exclude_kernel)
5465 return 0;
5466
5467 if (!perf_tp_filter_match(event, data))
5468 return 0;
5469
5470 return 1;
5471 }
5472
5473 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5474 struct pt_regs *regs, struct hlist_head *head, int rctx)
5475 {
5476 struct perf_sample_data data;
5477 struct perf_event *event;
5478 struct hlist_node *node;
5479
5480 struct perf_raw_record raw = {
5481 .size = entry_size,
5482 .data = record,
5483 };
5484
5485 perf_sample_data_init(&data, addr);
5486 data.raw = &raw;
5487
5488 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5489 if (perf_tp_event_match(event, &data, regs))
5490 perf_swevent_event(event, count, 1, &data, regs);
5491 }
5492
5493 perf_swevent_put_recursion_context(rctx);
5494 }
5495 EXPORT_SYMBOL_GPL(perf_tp_event);
5496
5497 static void tp_perf_event_destroy(struct perf_event *event)
5498 {
5499 perf_trace_destroy(event);
5500 }
5501
5502 static int perf_tp_event_init(struct perf_event *event)
5503 {
5504 int err;
5505
5506 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5507 return -ENOENT;
5508
5509 err = perf_trace_init(event);
5510 if (err)
5511 return err;
5512
5513 event->destroy = tp_perf_event_destroy;
5514
5515 return 0;
5516 }
5517
5518 static struct pmu perf_tracepoint = {
5519 .task_ctx_nr = perf_sw_context,
5520
5521 .event_init = perf_tp_event_init,
5522 .add = perf_trace_add,
5523 .del = perf_trace_del,
5524 .start = perf_swevent_start,
5525 .stop = perf_swevent_stop,
5526 .read = perf_swevent_read,
5527 };
5528
5529 static inline void perf_tp_register(void)
5530 {
5531 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5532 }
5533
5534 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5535 {
5536 char *filter_str;
5537 int ret;
5538
5539 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5540 return -EINVAL;
5541
5542 filter_str = strndup_user(arg, PAGE_SIZE);
5543 if (IS_ERR(filter_str))
5544 return PTR_ERR(filter_str);
5545
5546 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5547
5548 kfree(filter_str);
5549 return ret;
5550 }
5551
5552 static void perf_event_free_filter(struct perf_event *event)
5553 {
5554 ftrace_profile_free_filter(event);
5555 }
5556
5557 #else
5558
5559 static inline void perf_tp_register(void)
5560 {
5561 }
5562
5563 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5564 {
5565 return -ENOENT;
5566 }
5567
5568 static void perf_event_free_filter(struct perf_event *event)
5569 {
5570 }
5571
5572 #endif /* CONFIG_EVENT_TRACING */
5573
5574 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5575 void perf_bp_event(struct perf_event *bp, void *data)
5576 {
5577 struct perf_sample_data sample;
5578 struct pt_regs *regs = data;
5579
5580 perf_sample_data_init(&sample, bp->attr.bp_addr);
5581
5582 if (!bp->hw.state && !perf_exclude_event(bp, regs))
5583 perf_swevent_event(bp, 1, 1, &sample, regs);
5584 }
5585 #endif
5586
5587 /*
5588 * hrtimer based swevent callback
5589 */
5590
5591 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5592 {
5593 enum hrtimer_restart ret = HRTIMER_RESTART;
5594 struct perf_sample_data data;
5595 struct pt_regs *regs;
5596 struct perf_event *event;
5597 u64 period;
5598
5599 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5600 event->pmu->read(event);
5601
5602 perf_sample_data_init(&data, 0);
5603 data.period = event->hw.last_period;
5604 regs = get_irq_regs();
5605
5606 if (regs && !perf_exclude_event(event, regs)) {
5607 if (!(event->attr.exclude_idle && current->pid == 0))
5608 if (perf_event_overflow(event, 0, &data, regs))
5609 ret = HRTIMER_NORESTART;
5610 }
5611
5612 period = max_t(u64, 10000, event->hw.sample_period);
5613 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5614
5615 return ret;
5616 }
5617
5618 static void perf_swevent_start_hrtimer(struct perf_event *event)
5619 {
5620 struct hw_perf_event *hwc = &event->hw;
5621 s64 period;
5622
5623 if (!is_sampling_event(event))
5624 return;
5625
5626 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5627 hwc->hrtimer.function = perf_swevent_hrtimer;
5628
5629 period = local64_read(&hwc->period_left);
5630 if (period) {
5631 if (period < 0)
5632 period = 10000;
5633
5634 local64_set(&hwc->period_left, 0);
5635 } else {
5636 period = max_t(u64, 10000, hwc->sample_period);
5637 }
5638 __hrtimer_start_range_ns(&hwc->hrtimer,
5639 ns_to_ktime(period), 0,
5640 HRTIMER_MODE_REL_PINNED, 0);
5641 }
5642
5643 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5644 {
5645 struct hw_perf_event *hwc = &event->hw;
5646
5647 if (is_sampling_event(event)) {
5648 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5649 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5650
5651 hrtimer_cancel(&hwc->hrtimer);
5652 }
5653 }
5654
5655 /*
5656 * Software event: cpu wall time clock
5657 */
5658
5659 static void cpu_clock_event_update(struct perf_event *event)
5660 {
5661 s64 prev;
5662 u64 now;
5663
5664 now = local_clock();
5665 prev = local64_xchg(&event->hw.prev_count, now);
5666 local64_add(now - prev, &event->count);
5667 }
5668
5669 static void cpu_clock_event_start(struct perf_event *event, int flags)
5670 {
5671 local64_set(&event->hw.prev_count, local_clock());
5672 perf_swevent_start_hrtimer(event);
5673 }
5674
5675 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5676 {
5677 perf_swevent_cancel_hrtimer(event);
5678 cpu_clock_event_update(event);
5679 }
5680
5681 static int cpu_clock_event_add(struct perf_event *event, int flags)
5682 {
5683 if (flags & PERF_EF_START)
5684 cpu_clock_event_start(event, flags);
5685
5686 return 0;
5687 }
5688
5689 static void cpu_clock_event_del(struct perf_event *event, int flags)
5690 {
5691 cpu_clock_event_stop(event, flags);
5692 }
5693
5694 static void cpu_clock_event_read(struct perf_event *event)
5695 {
5696 cpu_clock_event_update(event);
5697 }
5698
5699 static int cpu_clock_event_init(struct perf_event *event)
5700 {
5701 if (event->attr.type != PERF_TYPE_SOFTWARE)
5702 return -ENOENT;
5703
5704 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5705 return -ENOENT;
5706
5707 return 0;
5708 }
5709
5710 static struct pmu perf_cpu_clock = {
5711 .task_ctx_nr = perf_sw_context,
5712
5713 .event_init = cpu_clock_event_init,
5714 .add = cpu_clock_event_add,
5715 .del = cpu_clock_event_del,
5716 .start = cpu_clock_event_start,
5717 .stop = cpu_clock_event_stop,
5718 .read = cpu_clock_event_read,
5719 };
5720
5721 /*
5722 * Software event: task time clock
5723 */
5724
5725 static void task_clock_event_update(struct perf_event *event, u64 now)
5726 {
5727 u64 prev;
5728 s64 delta;
5729
5730 prev = local64_xchg(&event->hw.prev_count, now);
5731 delta = now - prev;
5732 local64_add(delta, &event->count);
5733 }
5734
5735 static void task_clock_event_start(struct perf_event *event, int flags)
5736 {
5737 local64_set(&event->hw.prev_count, event->ctx->time);
5738 perf_swevent_start_hrtimer(event);
5739 }
5740
5741 static void task_clock_event_stop(struct perf_event *event, int flags)
5742 {
5743 perf_swevent_cancel_hrtimer(event);
5744 task_clock_event_update(event, event->ctx->time);
5745 }
5746
5747 static int task_clock_event_add(struct perf_event *event, int flags)
5748 {
5749 if (flags & PERF_EF_START)
5750 task_clock_event_start(event, flags);
5751
5752 return 0;
5753 }
5754
5755 static void task_clock_event_del(struct perf_event *event, int flags)
5756 {
5757 task_clock_event_stop(event, PERF_EF_UPDATE);
5758 }
5759
5760 static void task_clock_event_read(struct perf_event *event)
5761 {
5762 u64 time;
5763
5764 if (!in_nmi()) {
5765 update_context_time(event->ctx);
5766 update_cgrp_time_from_event(event);
5767 time = event->ctx->time;
5768 } else {
5769 u64 now = perf_clock();
5770 u64 delta = now - event->ctx->timestamp;
5771 time = event->ctx->time + delta;
5772 }
5773
5774 task_clock_event_update(event, time);
5775 }
5776
5777 static int task_clock_event_init(struct perf_event *event)
5778 {
5779 if (event->attr.type != PERF_TYPE_SOFTWARE)
5780 return -ENOENT;
5781
5782 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5783 return -ENOENT;
5784
5785 return 0;
5786 }
5787
5788 static struct pmu perf_task_clock = {
5789 .task_ctx_nr = perf_sw_context,
5790
5791 .event_init = task_clock_event_init,
5792 .add = task_clock_event_add,
5793 .del = task_clock_event_del,
5794 .start = task_clock_event_start,
5795 .stop = task_clock_event_stop,
5796 .read = task_clock_event_read,
5797 };
5798
5799 static void perf_pmu_nop_void(struct pmu *pmu)
5800 {
5801 }
5802
5803 static int perf_pmu_nop_int(struct pmu *pmu)
5804 {
5805 return 0;
5806 }
5807
5808 static void perf_pmu_start_txn(struct pmu *pmu)
5809 {
5810 perf_pmu_disable(pmu);
5811 }
5812
5813 static int perf_pmu_commit_txn(struct pmu *pmu)
5814 {
5815 perf_pmu_enable(pmu);
5816 return 0;
5817 }
5818
5819 static void perf_pmu_cancel_txn(struct pmu *pmu)
5820 {
5821 perf_pmu_enable(pmu);
5822 }
5823
5824 /*
5825 * Ensures all contexts with the same task_ctx_nr have the same
5826 * pmu_cpu_context too.
5827 */
5828 static void *find_pmu_context(int ctxn)
5829 {
5830 struct pmu *pmu;
5831
5832 if (ctxn < 0)
5833 return NULL;
5834
5835 list_for_each_entry(pmu, &pmus, entry) {
5836 if (pmu->task_ctx_nr == ctxn)
5837 return pmu->pmu_cpu_context;
5838 }
5839
5840 return NULL;
5841 }
5842
5843 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5844 {
5845 int cpu;
5846
5847 for_each_possible_cpu(cpu) {
5848 struct perf_cpu_context *cpuctx;
5849
5850 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5851
5852 if (cpuctx->active_pmu == old_pmu)
5853 cpuctx->active_pmu = pmu;
5854 }
5855 }
5856
5857 static void free_pmu_context(struct pmu *pmu)
5858 {
5859 struct pmu *i;
5860
5861 mutex_lock(&pmus_lock);
5862 /*
5863 * Like a real lame refcount.
5864 */
5865 list_for_each_entry(i, &pmus, entry) {
5866 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5867 update_pmu_context(i, pmu);
5868 goto out;
5869 }
5870 }
5871
5872 free_percpu(pmu->pmu_cpu_context);
5873 out:
5874 mutex_unlock(&pmus_lock);
5875 }
5876 static struct idr pmu_idr;
5877
5878 static ssize_t
5879 type_show(struct device *dev, struct device_attribute *attr, char *page)
5880 {
5881 struct pmu *pmu = dev_get_drvdata(dev);
5882
5883 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5884 }
5885
5886 static struct device_attribute pmu_dev_attrs[] = {
5887 __ATTR_RO(type),
5888 __ATTR_NULL,
5889 };
5890
5891 static int pmu_bus_running;
5892 static struct bus_type pmu_bus = {
5893 .name = "event_source",
5894 .dev_attrs = pmu_dev_attrs,
5895 };
5896
5897 static void pmu_dev_release(struct device *dev)
5898 {
5899 kfree(dev);
5900 }
5901
5902 static int pmu_dev_alloc(struct pmu *pmu)
5903 {
5904 int ret = -ENOMEM;
5905
5906 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5907 if (!pmu->dev)
5908 goto out;
5909
5910 device_initialize(pmu->dev);
5911 ret = dev_set_name(pmu->dev, "%s", pmu->name);
5912 if (ret)
5913 goto free_dev;
5914
5915 dev_set_drvdata(pmu->dev, pmu);
5916 pmu->dev->bus = &pmu_bus;
5917 pmu->dev->release = pmu_dev_release;
5918 ret = device_add(pmu->dev);
5919 if (ret)
5920 goto free_dev;
5921
5922 out:
5923 return ret;
5924
5925 free_dev:
5926 put_device(pmu->dev);
5927 goto out;
5928 }
5929
5930 static struct lock_class_key cpuctx_mutex;
5931
5932 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5933 {
5934 int cpu, ret;
5935
5936 mutex_lock(&pmus_lock);
5937 ret = -ENOMEM;
5938 pmu->pmu_disable_count = alloc_percpu(int);
5939 if (!pmu->pmu_disable_count)
5940 goto unlock;
5941
5942 pmu->type = -1;
5943 if (!name)
5944 goto skip_type;
5945 pmu->name = name;
5946
5947 if (type < 0) {
5948 int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5949 if (!err)
5950 goto free_pdc;
5951
5952 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5953 if (err) {
5954 ret = err;
5955 goto free_pdc;
5956 }
5957 }
5958 pmu->type = type;
5959
5960 if (pmu_bus_running) {
5961 ret = pmu_dev_alloc(pmu);
5962 if (ret)
5963 goto free_idr;
5964 }
5965
5966 skip_type:
5967 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5968 if (pmu->pmu_cpu_context)
5969 goto got_cpu_context;
5970
5971 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5972 if (!pmu->pmu_cpu_context)
5973 goto free_dev;
5974
5975 for_each_possible_cpu(cpu) {
5976 struct perf_cpu_context *cpuctx;
5977
5978 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5979 __perf_event_init_context(&cpuctx->ctx);
5980 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5981 cpuctx->ctx.type = cpu_context;
5982 cpuctx->ctx.pmu = pmu;
5983 cpuctx->jiffies_interval = 1;
5984 INIT_LIST_HEAD(&cpuctx->rotation_list);
5985 cpuctx->active_pmu = pmu;
5986 }
5987
5988 got_cpu_context:
5989 if (!pmu->start_txn) {
5990 if (pmu->pmu_enable) {
5991 /*
5992 * If we have pmu_enable/pmu_disable calls, install
5993 * transaction stubs that use that to try and batch
5994 * hardware accesses.
5995 */
5996 pmu->start_txn = perf_pmu_start_txn;
5997 pmu->commit_txn = perf_pmu_commit_txn;
5998 pmu->cancel_txn = perf_pmu_cancel_txn;
5999 } else {
6000 pmu->start_txn = perf_pmu_nop_void;
6001 pmu->commit_txn = perf_pmu_nop_int;
6002 pmu->cancel_txn = perf_pmu_nop_void;
6003 }
6004 }
6005
6006 if (!pmu->pmu_enable) {
6007 pmu->pmu_enable = perf_pmu_nop_void;
6008 pmu->pmu_disable = perf_pmu_nop_void;
6009 }
6010
6011 list_add_rcu(&pmu->entry, &pmus);
6012 ret = 0;
6013 unlock:
6014 mutex_unlock(&pmus_lock);
6015
6016 return ret;
6017
6018 free_dev:
6019 device_del(pmu->dev);
6020 put_device(pmu->dev);
6021
6022 free_idr:
6023 if (pmu->type >= PERF_TYPE_MAX)
6024 idr_remove(&pmu_idr, pmu->type);
6025
6026 free_pdc:
6027 free_percpu(pmu->pmu_disable_count);
6028 goto unlock;
6029 }
6030
6031 void perf_pmu_unregister(struct pmu *pmu)
6032 {
6033 mutex_lock(&pmus_lock);
6034 list_del_rcu(&pmu->entry);
6035 mutex_unlock(&pmus_lock);
6036
6037 /*
6038 * We dereference the pmu list under both SRCU and regular RCU, so
6039 * synchronize against both of those.
6040 */
6041 synchronize_srcu(&pmus_srcu);
6042 synchronize_rcu();
6043
6044 free_percpu(pmu->pmu_disable_count);
6045 if (pmu->type >= PERF_TYPE_MAX)
6046 idr_remove(&pmu_idr, pmu->type);
6047 device_del(pmu->dev);
6048 put_device(pmu->dev);
6049 free_pmu_context(pmu);
6050 }
6051
6052 struct pmu *perf_init_event(struct perf_event *event)
6053 {
6054 struct pmu *pmu = NULL;
6055 int idx;
6056
6057 idx = srcu_read_lock(&pmus_srcu);
6058
6059 rcu_read_lock();
6060 pmu = idr_find(&pmu_idr, event->attr.type);
6061 rcu_read_unlock();
6062 if (pmu)
6063 goto unlock;
6064
6065 list_for_each_entry_rcu(pmu, &pmus, entry) {
6066 int ret = pmu->event_init(event);
6067 if (!ret)
6068 goto unlock;
6069
6070 if (ret != -ENOENT) {
6071 pmu = ERR_PTR(ret);
6072 goto unlock;
6073 }
6074 }
6075 pmu = ERR_PTR(-ENOENT);
6076 unlock:
6077 srcu_read_unlock(&pmus_srcu, idx);
6078
6079 return pmu;
6080 }
6081
6082 /*
6083 * Allocate and initialize a event structure
6084 */
6085 static struct perf_event *
6086 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6087 struct task_struct *task,
6088 struct perf_event *group_leader,
6089 struct perf_event *parent_event,
6090 perf_overflow_handler_t overflow_handler)
6091 {
6092 struct pmu *pmu;
6093 struct perf_event *event;
6094 struct hw_perf_event *hwc;
6095 long err;
6096
6097 if ((unsigned)cpu >= nr_cpu_ids) {
6098 if (!task || cpu != -1)
6099 return ERR_PTR(-EINVAL);
6100 }
6101
6102 event = kzalloc(sizeof(*event), GFP_KERNEL);
6103 if (!event)
6104 return ERR_PTR(-ENOMEM);
6105
6106 /*
6107 * Single events are their own group leaders, with an
6108 * empty sibling list:
6109 */
6110 if (!group_leader)
6111 group_leader = event;
6112
6113 mutex_init(&event->child_mutex);
6114 INIT_LIST_HEAD(&event->child_list);
6115
6116 INIT_LIST_HEAD(&event->group_entry);
6117 INIT_LIST_HEAD(&event->event_entry);
6118 INIT_LIST_HEAD(&event->sibling_list);
6119 init_waitqueue_head(&event->waitq);
6120 init_irq_work(&event->pending, perf_pending_event);
6121
6122 mutex_init(&event->mmap_mutex);
6123
6124 event->cpu = cpu;
6125 event->attr = *attr;
6126 event->group_leader = group_leader;
6127 event->pmu = NULL;
6128 event->oncpu = -1;
6129
6130 event->parent = parent_event;
6131
6132 event->ns = get_pid_ns(current->nsproxy->pid_ns);
6133 event->id = atomic64_inc_return(&perf_event_id);
6134
6135 event->state = PERF_EVENT_STATE_INACTIVE;
6136
6137 if (task) {
6138 event->attach_state = PERF_ATTACH_TASK;
6139 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6140 /*
6141 * hw_breakpoint is a bit difficult here..
6142 */
6143 if (attr->type == PERF_TYPE_BREAKPOINT)
6144 event->hw.bp_target = task;
6145 #endif
6146 }
6147
6148 if (!overflow_handler && parent_event)
6149 overflow_handler = parent_event->overflow_handler;
6150
6151 event->overflow_handler = overflow_handler;
6152
6153 if (attr->disabled)
6154 event->state = PERF_EVENT_STATE_OFF;
6155
6156 pmu = NULL;
6157
6158 hwc = &event->hw;
6159 hwc->sample_period = attr->sample_period;
6160 if (attr->freq && attr->sample_freq)
6161 hwc->sample_period = 1;
6162 hwc->last_period = hwc->sample_period;
6163
6164 local64_set(&hwc->period_left, hwc->sample_period);
6165
6166 /*
6167 * we currently do not support PERF_FORMAT_GROUP on inherited events
6168 */
6169 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6170 goto done;
6171
6172 pmu = perf_init_event(event);
6173
6174 done:
6175 err = 0;
6176 if (!pmu)
6177 err = -EINVAL;
6178 else if (IS_ERR(pmu))
6179 err = PTR_ERR(pmu);
6180
6181 if (err) {
6182 if (event->ns)
6183 put_pid_ns(event->ns);
6184 kfree(event);
6185 return ERR_PTR(err);
6186 }
6187
6188 event->pmu = pmu;
6189
6190 if (!event->parent) {
6191 if (event->attach_state & PERF_ATTACH_TASK)
6192 jump_label_inc(&perf_sched_events);
6193 if (event->attr.mmap || event->attr.mmap_data)
6194 atomic_inc(&nr_mmap_events);
6195 if (event->attr.comm)
6196 atomic_inc(&nr_comm_events);
6197 if (event->attr.task)
6198 atomic_inc(&nr_task_events);
6199 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6200 err = get_callchain_buffers();
6201 if (err) {
6202 free_event(event);
6203 return ERR_PTR(err);
6204 }
6205 }
6206 }
6207
6208 return event;
6209 }
6210
6211 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6212 struct perf_event_attr *attr)
6213 {
6214 u32 size;
6215 int ret;
6216
6217 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6218 return -EFAULT;
6219
6220 /*
6221 * zero the full structure, so that a short copy will be nice.
6222 */
6223 memset(attr, 0, sizeof(*attr));
6224
6225 ret = get_user(size, &uattr->size);
6226 if (ret)
6227 return ret;
6228
6229 if (size > PAGE_SIZE) /* silly large */
6230 goto err_size;
6231
6232 if (!size) /* abi compat */
6233 size = PERF_ATTR_SIZE_VER0;
6234
6235 if (size < PERF_ATTR_SIZE_VER0)
6236 goto err_size;
6237
6238 /*
6239 * If we're handed a bigger struct than we know of,
6240 * ensure all the unknown bits are 0 - i.e. new
6241 * user-space does not rely on any kernel feature
6242 * extensions we dont know about yet.
6243 */
6244 if (size > sizeof(*attr)) {
6245 unsigned char __user *addr;
6246 unsigned char __user *end;
6247 unsigned char val;
6248
6249 addr = (void __user *)uattr + sizeof(*attr);
6250 end = (void __user *)uattr + size;
6251
6252 for (; addr < end; addr++) {
6253 ret = get_user(val, addr);
6254 if (ret)
6255 return ret;
6256 if (val)
6257 goto err_size;
6258 }
6259 size = sizeof(*attr);
6260 }
6261
6262 ret = copy_from_user(attr, uattr, size);
6263 if (ret)
6264 return -EFAULT;
6265
6266 /*
6267 * If the type exists, the corresponding creation will verify
6268 * the attr->config.
6269 */
6270 if (attr->type >= PERF_TYPE_MAX)
6271 return -EINVAL;
6272
6273 if (attr->__reserved_1)
6274 return -EINVAL;
6275
6276 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6277 return -EINVAL;
6278
6279 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6280 return -EINVAL;
6281
6282 out:
6283 return ret;
6284
6285 err_size:
6286 put_user(sizeof(*attr), &uattr->size);
6287 ret = -E2BIG;
6288 goto out;
6289 }
6290
6291 static int
6292 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6293 {
6294 struct perf_buffer *buffer = NULL, *old_buffer = NULL;
6295 int ret = -EINVAL;
6296
6297 if (!output_event)
6298 goto set;
6299
6300 /* don't allow circular references */
6301 if (event == output_event)
6302 goto out;
6303
6304 /*
6305 * Don't allow cross-cpu buffers
6306 */
6307 if (output_event->cpu != event->cpu)
6308 goto out;
6309
6310 /*
6311 * If its not a per-cpu buffer, it must be the same task.
6312 */
6313 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6314 goto out;
6315
6316 set:
6317 mutex_lock(&event->mmap_mutex);
6318 /* Can't redirect output if we've got an active mmap() */
6319 if (atomic_read(&event->mmap_count))
6320 goto unlock;
6321
6322 if (output_event) {
6323 /* get the buffer we want to redirect to */
6324 buffer = perf_buffer_get(output_event);
6325 if (!buffer)
6326 goto unlock;
6327 }
6328
6329 old_buffer = event->buffer;
6330 rcu_assign_pointer(event->buffer, buffer);
6331 ret = 0;
6332 unlock:
6333 mutex_unlock(&event->mmap_mutex);
6334
6335 if (old_buffer)
6336 perf_buffer_put(old_buffer);
6337 out:
6338 return ret;
6339 }
6340
6341 /**
6342 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6343 *
6344 * @attr_uptr: event_id type attributes for monitoring/sampling
6345 * @pid: target pid
6346 * @cpu: target cpu
6347 * @group_fd: group leader event fd
6348 */
6349 SYSCALL_DEFINE5(perf_event_open,
6350 struct perf_event_attr __user *, attr_uptr,
6351 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6352 {
6353 struct perf_event *group_leader = NULL, *output_event = NULL;
6354 struct perf_event *event, *sibling;
6355 struct perf_event_attr attr;
6356 struct perf_event_context *ctx;
6357 struct file *event_file = NULL;
6358 struct file *group_file = NULL;
6359 struct task_struct *task = NULL;
6360 struct pmu *pmu;
6361 int event_fd;
6362 int move_group = 0;
6363 int fput_needed = 0;
6364 int err;
6365
6366 /* for future expandability... */
6367 if (flags & ~PERF_FLAG_ALL)
6368 return -EINVAL;
6369
6370 err = perf_copy_attr(attr_uptr, &attr);
6371 if (err)
6372 return err;
6373
6374 if (!attr.exclude_kernel) {
6375 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6376 return -EACCES;
6377 }
6378
6379 if (attr.freq) {
6380 if (attr.sample_freq > sysctl_perf_event_sample_rate)
6381 return -EINVAL;
6382 }
6383
6384 /*
6385 * In cgroup mode, the pid argument is used to pass the fd
6386 * opened to the cgroup directory in cgroupfs. The cpu argument
6387 * designates the cpu on which to monitor threads from that
6388 * cgroup.
6389 */
6390 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6391 return -EINVAL;
6392
6393 event_fd = get_unused_fd_flags(O_RDWR);
6394 if (event_fd < 0)
6395 return event_fd;
6396
6397 if (group_fd != -1) {
6398 group_leader = perf_fget_light(group_fd, &fput_needed);
6399 if (IS_ERR(group_leader)) {
6400 err = PTR_ERR(group_leader);
6401 goto err_fd;
6402 }
6403 group_file = group_leader->filp;
6404 if (flags & PERF_FLAG_FD_OUTPUT)
6405 output_event = group_leader;
6406 if (flags & PERF_FLAG_FD_NO_GROUP)
6407 group_leader = NULL;
6408 }
6409
6410 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6411 task = find_lively_task_by_vpid(pid);
6412 if (IS_ERR(task)) {
6413 err = PTR_ERR(task);
6414 goto err_group_fd;
6415 }
6416 }
6417
6418 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
6419 if (IS_ERR(event)) {
6420 err = PTR_ERR(event);
6421 goto err_task;
6422 }
6423
6424 if (flags & PERF_FLAG_PID_CGROUP) {
6425 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6426 if (err)
6427 goto err_alloc;
6428 }
6429
6430 /*
6431 * Special case software events and allow them to be part of
6432 * any hardware group.
6433 */
6434 pmu = event->pmu;
6435
6436 if (group_leader &&
6437 (is_software_event(event) != is_software_event(group_leader))) {
6438 if (is_software_event(event)) {
6439 /*
6440 * If event and group_leader are not both a software
6441 * event, and event is, then group leader is not.
6442 *
6443 * Allow the addition of software events to !software
6444 * groups, this is safe because software events never
6445 * fail to schedule.
6446 */
6447 pmu = group_leader->pmu;
6448 } else if (is_software_event(group_leader) &&
6449 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6450 /*
6451 * In case the group is a pure software group, and we
6452 * try to add a hardware event, move the whole group to
6453 * the hardware context.
6454 */
6455 move_group = 1;
6456 }
6457 }
6458
6459 /*
6460 * Get the target context (task or percpu):
6461 */
6462 ctx = find_get_context(pmu, task, cpu);
6463 if (IS_ERR(ctx)) {
6464 err = PTR_ERR(ctx);
6465 goto err_alloc;
6466 }
6467
6468 /*
6469 * Look up the group leader (we will attach this event to it):
6470 */
6471 if (group_leader) {
6472 err = -EINVAL;
6473
6474 /*
6475 * Do not allow a recursive hierarchy (this new sibling
6476 * becoming part of another group-sibling):
6477 */
6478 if (group_leader->group_leader != group_leader)
6479 goto err_context;
6480 /*
6481 * Do not allow to attach to a group in a different
6482 * task or CPU context:
6483 */
6484 if (move_group) {
6485 if (group_leader->ctx->type != ctx->type)
6486 goto err_context;
6487 } else {
6488 if (group_leader->ctx != ctx)
6489 goto err_context;
6490 }
6491
6492 /*
6493 * Only a group leader can be exclusive or pinned
6494 */
6495 if (attr.exclusive || attr.pinned)
6496 goto err_context;
6497 }
6498
6499 if (output_event) {
6500 err = perf_event_set_output(event, output_event);
6501 if (err)
6502 goto err_context;
6503 }
6504
6505 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6506 if (IS_ERR(event_file)) {
6507 err = PTR_ERR(event_file);
6508 goto err_context;
6509 }
6510
6511 if (move_group) {
6512 struct perf_event_context *gctx = group_leader->ctx;
6513
6514 mutex_lock(&gctx->mutex);
6515 perf_remove_from_context(group_leader);
6516 list_for_each_entry(sibling, &group_leader->sibling_list,
6517 group_entry) {
6518 perf_remove_from_context(sibling);
6519 put_ctx(gctx);
6520 }
6521 mutex_unlock(&gctx->mutex);
6522 put_ctx(gctx);
6523 }
6524
6525 event->filp = event_file;
6526 WARN_ON_ONCE(ctx->parent_ctx);
6527 mutex_lock(&ctx->mutex);
6528
6529 if (move_group) {
6530 perf_install_in_context(ctx, group_leader, cpu);
6531 get_ctx(ctx);
6532 list_for_each_entry(sibling, &group_leader->sibling_list,
6533 group_entry) {
6534 perf_install_in_context(ctx, sibling, cpu);
6535 get_ctx(ctx);
6536 }
6537 }
6538
6539 perf_install_in_context(ctx, event, cpu);
6540 ++ctx->generation;
6541 perf_unpin_context(ctx);
6542 mutex_unlock(&ctx->mutex);
6543
6544 event->owner = current;
6545
6546 mutex_lock(&current->perf_event_mutex);
6547 list_add_tail(&event->owner_entry, &current->perf_event_list);
6548 mutex_unlock(&current->perf_event_mutex);
6549
6550 /*
6551 * Precalculate sample_data sizes
6552 */
6553 perf_event__header_size(event);
6554 perf_event__id_header_size(event);
6555
6556 /*
6557 * Drop the reference on the group_event after placing the
6558 * new event on the sibling_list. This ensures destruction
6559 * of the group leader will find the pointer to itself in
6560 * perf_group_detach().
6561 */
6562 fput_light(group_file, fput_needed);
6563 fd_install(event_fd, event_file);
6564 return event_fd;
6565
6566 err_context:
6567 perf_unpin_context(ctx);
6568 put_ctx(ctx);
6569 err_alloc:
6570 free_event(event);
6571 err_task:
6572 if (task)
6573 put_task_struct(task);
6574 err_group_fd:
6575 fput_light(group_file, fput_needed);
6576 err_fd:
6577 put_unused_fd(event_fd);
6578 return err;
6579 }
6580
6581 /**
6582 * perf_event_create_kernel_counter
6583 *
6584 * @attr: attributes of the counter to create
6585 * @cpu: cpu in which the counter is bound
6586 * @task: task to profile (NULL for percpu)
6587 */
6588 struct perf_event *
6589 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6590 struct task_struct *task,
6591 perf_overflow_handler_t overflow_handler)
6592 {
6593 struct perf_event_context *ctx;
6594 struct perf_event *event;
6595 int err;
6596
6597 /*
6598 * Get the target context (task or percpu):
6599 */
6600
6601 event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
6602 if (IS_ERR(event)) {
6603 err = PTR_ERR(event);
6604 goto err;
6605 }
6606
6607 ctx = find_get_context(event->pmu, task, cpu);
6608 if (IS_ERR(ctx)) {
6609 err = PTR_ERR(ctx);
6610 goto err_free;
6611 }
6612
6613 event->filp = NULL;
6614 WARN_ON_ONCE(ctx->parent_ctx);
6615 mutex_lock(&ctx->mutex);
6616 perf_install_in_context(ctx, event, cpu);
6617 ++ctx->generation;
6618 perf_unpin_context(ctx);
6619 mutex_unlock(&ctx->mutex);
6620
6621 return event;
6622
6623 err_free:
6624 free_event(event);
6625 err:
6626 return ERR_PTR(err);
6627 }
6628 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6629
6630 static void sync_child_event(struct perf_event *child_event,
6631 struct task_struct *child)
6632 {
6633 struct perf_event *parent_event = child_event->parent;
6634 u64 child_val;
6635
6636 if (child_event->attr.inherit_stat)
6637 perf_event_read_event(child_event, child);
6638
6639 child_val = perf_event_count(child_event);
6640
6641 /*
6642 * Add back the child's count to the parent's count:
6643 */
6644 atomic64_add(child_val, &parent_event->child_count);
6645 atomic64_add(child_event->total_time_enabled,
6646 &parent_event->child_total_time_enabled);
6647 atomic64_add(child_event->total_time_running,
6648 &parent_event->child_total_time_running);
6649
6650 /*
6651 * Remove this event from the parent's list
6652 */
6653 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6654 mutex_lock(&parent_event->child_mutex);
6655 list_del_init(&child_event->child_list);
6656 mutex_unlock(&parent_event->child_mutex);
6657
6658 /*
6659 * Release the parent event, if this was the last
6660 * reference to it.
6661 */
6662 fput(parent_event->filp);
6663 }
6664
6665 static void
6666 __perf_event_exit_task(struct perf_event *child_event,
6667 struct perf_event_context *child_ctx,
6668 struct task_struct *child)
6669 {
6670 struct perf_event *parent_event;
6671
6672 perf_remove_from_context(child_event);
6673
6674 parent_event = child_event->parent;
6675 /*
6676 * It can happen that parent exits first, and has events
6677 * that are still around due to the child reference. These
6678 * events need to be zapped - but otherwise linger.
6679 */
6680 if (parent_event) {
6681 sync_child_event(child_event, child);
6682 free_event(child_event);
6683 }
6684 }
6685
6686 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6687 {
6688 struct perf_event *child_event, *tmp;
6689 struct perf_event_context *child_ctx;
6690 unsigned long flags;
6691
6692 if (likely(!child->perf_event_ctxp[ctxn])) {
6693 perf_event_task(child, NULL, 0);
6694 return;
6695 }
6696
6697 local_irq_save(flags);
6698 /*
6699 * We can't reschedule here because interrupts are disabled,
6700 * and either child is current or it is a task that can't be
6701 * scheduled, so we are now safe from rescheduling changing
6702 * our context.
6703 */
6704 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6705 task_ctx_sched_out(child_ctx, EVENT_ALL);
6706
6707 /*
6708 * Take the context lock here so that if find_get_context is
6709 * reading child->perf_event_ctxp, we wait until it has
6710 * incremented the context's refcount before we do put_ctx below.
6711 */
6712 raw_spin_lock(&child_ctx->lock);
6713 child->perf_event_ctxp[ctxn] = NULL;
6714 /*
6715 * If this context is a clone; unclone it so it can't get
6716 * swapped to another process while we're removing all
6717 * the events from it.
6718 */
6719 unclone_ctx(child_ctx);
6720 update_context_time(child_ctx);
6721 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6722
6723 /*
6724 * Report the task dead after unscheduling the events so that we
6725 * won't get any samples after PERF_RECORD_EXIT. We can however still
6726 * get a few PERF_RECORD_READ events.
6727 */
6728 perf_event_task(child, child_ctx, 0);
6729
6730 /*
6731 * We can recurse on the same lock type through:
6732 *
6733 * __perf_event_exit_task()
6734 * sync_child_event()
6735 * fput(parent_event->filp)
6736 * perf_release()
6737 * mutex_lock(&ctx->mutex)
6738 *
6739 * But since its the parent context it won't be the same instance.
6740 */
6741 mutex_lock(&child_ctx->mutex);
6742
6743 again:
6744 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6745 group_entry)
6746 __perf_event_exit_task(child_event, child_ctx, child);
6747
6748 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6749 group_entry)
6750 __perf_event_exit_task(child_event, child_ctx, child);
6751
6752 /*
6753 * If the last event was a group event, it will have appended all
6754 * its siblings to the list, but we obtained 'tmp' before that which
6755 * will still point to the list head terminating the iteration.
6756 */
6757 if (!list_empty(&child_ctx->pinned_groups) ||
6758 !list_empty(&child_ctx->flexible_groups))
6759 goto again;
6760
6761 mutex_unlock(&child_ctx->mutex);
6762
6763 put_ctx(child_ctx);
6764 }
6765
6766 /*
6767 * When a child task exits, feed back event values to parent events.
6768 */
6769 void perf_event_exit_task(struct task_struct *child)
6770 {
6771 struct perf_event *event, *tmp;
6772 int ctxn;
6773
6774 mutex_lock(&child->perf_event_mutex);
6775 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6776 owner_entry) {
6777 list_del_init(&event->owner_entry);
6778
6779 /*
6780 * Ensure the list deletion is visible before we clear
6781 * the owner, closes a race against perf_release() where
6782 * we need to serialize on the owner->perf_event_mutex.
6783 */
6784 smp_wmb();
6785 event->owner = NULL;
6786 }
6787 mutex_unlock(&child->perf_event_mutex);
6788
6789 for_each_task_context_nr(ctxn)
6790 perf_event_exit_task_context(child, ctxn);
6791 }
6792
6793 static void perf_free_event(struct perf_event *event,
6794 struct perf_event_context *ctx)
6795 {
6796 struct perf_event *parent = event->parent;
6797
6798 if (WARN_ON_ONCE(!parent))
6799 return;
6800
6801 mutex_lock(&parent->child_mutex);
6802 list_del_init(&event->child_list);
6803 mutex_unlock(&parent->child_mutex);
6804
6805 fput(parent->filp);
6806
6807 perf_group_detach(event);
6808 list_del_event(event, ctx);
6809 free_event(event);
6810 }
6811
6812 /*
6813 * free an unexposed, unused context as created by inheritance by
6814 * perf_event_init_task below, used by fork() in case of fail.
6815 */
6816 void perf_event_free_task(struct task_struct *task)
6817 {
6818 struct perf_event_context *ctx;
6819 struct perf_event *event, *tmp;
6820 int ctxn;
6821
6822 for_each_task_context_nr(ctxn) {
6823 ctx = task->perf_event_ctxp[ctxn];
6824 if (!ctx)
6825 continue;
6826
6827 mutex_lock(&ctx->mutex);
6828 again:
6829 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6830 group_entry)
6831 perf_free_event(event, ctx);
6832
6833 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6834 group_entry)
6835 perf_free_event(event, ctx);
6836
6837 if (!list_empty(&ctx->pinned_groups) ||
6838 !list_empty(&ctx->flexible_groups))
6839 goto again;
6840
6841 mutex_unlock(&ctx->mutex);
6842
6843 put_ctx(ctx);
6844 }
6845 }
6846
6847 void perf_event_delayed_put(struct task_struct *task)
6848 {
6849 int ctxn;
6850
6851 for_each_task_context_nr(ctxn)
6852 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6853 }
6854
6855 /*
6856 * inherit a event from parent task to child task:
6857 */
6858 static struct perf_event *
6859 inherit_event(struct perf_event *parent_event,
6860 struct task_struct *parent,
6861 struct perf_event_context *parent_ctx,
6862 struct task_struct *child,
6863 struct perf_event *group_leader,
6864 struct perf_event_context *child_ctx)
6865 {
6866 struct perf_event *child_event;
6867 unsigned long flags;
6868
6869 /*
6870 * Instead of creating recursive hierarchies of events,
6871 * we link inherited events back to the original parent,
6872 * which has a filp for sure, which we use as the reference
6873 * count:
6874 */
6875 if (parent_event->parent)
6876 parent_event = parent_event->parent;
6877
6878 child_event = perf_event_alloc(&parent_event->attr,
6879 parent_event->cpu,
6880 child,
6881 group_leader, parent_event,
6882 NULL);
6883 if (IS_ERR(child_event))
6884 return child_event;
6885 get_ctx(child_ctx);
6886
6887 /*
6888 * Make the child state follow the state of the parent event,
6889 * not its attr.disabled bit. We hold the parent's mutex,
6890 * so we won't race with perf_event_{en, dis}able_family.
6891 */
6892 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6893 child_event->state = PERF_EVENT_STATE_INACTIVE;
6894 else
6895 child_event->state = PERF_EVENT_STATE_OFF;
6896
6897 if (parent_event->attr.freq) {
6898 u64 sample_period = parent_event->hw.sample_period;
6899 struct hw_perf_event *hwc = &child_event->hw;
6900
6901 hwc->sample_period = sample_period;
6902 hwc->last_period = sample_period;
6903
6904 local64_set(&hwc->period_left, sample_period);
6905 }
6906
6907 child_event->ctx = child_ctx;
6908 child_event->overflow_handler = parent_event->overflow_handler;
6909
6910 /*
6911 * Precalculate sample_data sizes
6912 */
6913 perf_event__header_size(child_event);
6914 perf_event__id_header_size(child_event);
6915
6916 /*
6917 * Link it up in the child's context:
6918 */
6919 raw_spin_lock_irqsave(&child_ctx->lock, flags);
6920 add_event_to_ctx(child_event, child_ctx);
6921 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6922
6923 /*
6924 * Get a reference to the parent filp - we will fput it
6925 * when the child event exits. This is safe to do because
6926 * we are in the parent and we know that the filp still
6927 * exists and has a nonzero count:
6928 */
6929 atomic_long_inc(&parent_event->filp->f_count);
6930
6931 /*
6932 * Link this into the parent event's child list
6933 */
6934 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6935 mutex_lock(&parent_event->child_mutex);
6936 list_add_tail(&child_event->child_list, &parent_event->child_list);
6937 mutex_unlock(&parent_event->child_mutex);
6938
6939 return child_event;
6940 }
6941
6942 static int inherit_group(struct perf_event *parent_event,
6943 struct task_struct *parent,
6944 struct perf_event_context *parent_ctx,
6945 struct task_struct *child,
6946 struct perf_event_context *child_ctx)
6947 {
6948 struct perf_event *leader;
6949 struct perf_event *sub;
6950 struct perf_event *child_ctr;
6951
6952 leader = inherit_event(parent_event, parent, parent_ctx,
6953 child, NULL, child_ctx);
6954 if (IS_ERR(leader))
6955 return PTR_ERR(leader);
6956 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6957 child_ctr = inherit_event(sub, parent, parent_ctx,
6958 child, leader, child_ctx);
6959 if (IS_ERR(child_ctr))
6960 return PTR_ERR(child_ctr);
6961 }
6962 return 0;
6963 }
6964
6965 static int
6966 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6967 struct perf_event_context *parent_ctx,
6968 struct task_struct *child, int ctxn,
6969 int *inherited_all)
6970 {
6971 int ret;
6972 struct perf_event_context *child_ctx;
6973
6974 if (!event->attr.inherit) {
6975 *inherited_all = 0;
6976 return 0;
6977 }
6978
6979 child_ctx = child->perf_event_ctxp[ctxn];
6980 if (!child_ctx) {
6981 /*
6982 * This is executed from the parent task context, so
6983 * inherit events that have been marked for cloning.
6984 * First allocate and initialize a context for the
6985 * child.
6986 */
6987
6988 child_ctx = alloc_perf_context(event->pmu, child);
6989 if (!child_ctx)
6990 return -ENOMEM;
6991
6992 child->perf_event_ctxp[ctxn] = child_ctx;
6993 }
6994
6995 ret = inherit_group(event, parent, parent_ctx,
6996 child, child_ctx);
6997
6998 if (ret)
6999 *inherited_all = 0;
7000
7001 return ret;
7002 }
7003
7004 /*
7005 * Initialize the perf_event context in task_struct
7006 */
7007 int perf_event_init_context(struct task_struct *child, int ctxn)
7008 {
7009 struct perf_event_context *child_ctx, *parent_ctx;
7010 struct perf_event_context *cloned_ctx;
7011 struct perf_event *event;
7012 struct task_struct *parent = current;
7013 int inherited_all = 1;
7014 unsigned long flags;
7015 int ret = 0;
7016
7017 if (likely(!parent->perf_event_ctxp[ctxn]))
7018 return 0;
7019
7020 /*
7021 * If the parent's context is a clone, pin it so it won't get
7022 * swapped under us.
7023 */
7024 parent_ctx = perf_pin_task_context(parent, ctxn);
7025
7026 /*
7027 * No need to check if parent_ctx != NULL here; since we saw
7028 * it non-NULL earlier, the only reason for it to become NULL
7029 * is if we exit, and since we're currently in the middle of
7030 * a fork we can't be exiting at the same time.
7031 */
7032
7033 /*
7034 * Lock the parent list. No need to lock the child - not PID
7035 * hashed yet and not running, so nobody can access it.
7036 */
7037 mutex_lock(&parent_ctx->mutex);
7038
7039 /*
7040 * We dont have to disable NMIs - we are only looking at
7041 * the list, not manipulating it:
7042 */
7043 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7044 ret = inherit_task_group(event, parent, parent_ctx,
7045 child, ctxn, &inherited_all);
7046 if (ret)
7047 break;
7048 }
7049
7050 /*
7051 * We can't hold ctx->lock when iterating the ->flexible_group list due
7052 * to allocations, but we need to prevent rotation because
7053 * rotate_ctx() will change the list from interrupt context.
7054 */
7055 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7056 parent_ctx->rotate_disable = 1;
7057 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7058
7059 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7060 ret = inherit_task_group(event, parent, parent_ctx,
7061 child, ctxn, &inherited_all);
7062 if (ret)
7063 break;
7064 }
7065
7066 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7067 parent_ctx->rotate_disable = 0;
7068
7069 child_ctx = child->perf_event_ctxp[ctxn];
7070
7071 if (child_ctx && inherited_all) {
7072 /*
7073 * Mark the child context as a clone of the parent
7074 * context, or of whatever the parent is a clone of.
7075 *
7076 * Note that if the parent is a clone, the holding of
7077 * parent_ctx->lock avoids it from being uncloned.
7078 */
7079 cloned_ctx = parent_ctx->parent_ctx;
7080 if (cloned_ctx) {
7081 child_ctx->parent_ctx = cloned_ctx;
7082 child_ctx->parent_gen = parent_ctx->parent_gen;
7083 } else {
7084 child_ctx->parent_ctx = parent_ctx;
7085 child_ctx->parent_gen = parent_ctx->generation;
7086 }
7087 get_ctx(child_ctx->parent_ctx);
7088 }
7089
7090 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7091 mutex_unlock(&parent_ctx->mutex);
7092
7093 perf_unpin_context(parent_ctx);
7094 put_ctx(parent_ctx);
7095
7096 return ret;
7097 }
7098
7099 /*
7100 * Initialize the perf_event context in task_struct
7101 */
7102 int perf_event_init_task(struct task_struct *child)
7103 {
7104 int ctxn, ret;
7105
7106 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7107 mutex_init(&child->perf_event_mutex);
7108 INIT_LIST_HEAD(&child->perf_event_list);
7109
7110 for_each_task_context_nr(ctxn) {
7111 ret = perf_event_init_context(child, ctxn);
7112 if (ret)
7113 return ret;
7114 }
7115
7116 return 0;
7117 }
7118
7119 static void __init perf_event_init_all_cpus(void)
7120 {
7121 struct swevent_htable *swhash;
7122 int cpu;
7123
7124 for_each_possible_cpu(cpu) {
7125 swhash = &per_cpu(swevent_htable, cpu);
7126 mutex_init(&swhash->hlist_mutex);
7127 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7128 }
7129 }
7130
7131 static void __cpuinit perf_event_init_cpu(int cpu)
7132 {
7133 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7134
7135 mutex_lock(&swhash->hlist_mutex);
7136 if (swhash->hlist_refcount > 0) {
7137 struct swevent_hlist *hlist;
7138
7139 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7140 WARN_ON(!hlist);
7141 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7142 }
7143 mutex_unlock(&swhash->hlist_mutex);
7144 }
7145
7146 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7147 static void perf_pmu_rotate_stop(struct pmu *pmu)
7148 {
7149 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7150
7151 WARN_ON(!irqs_disabled());
7152
7153 list_del_init(&cpuctx->rotation_list);
7154 }
7155
7156 static void __perf_event_exit_context(void *__info)
7157 {
7158 struct perf_event_context *ctx = __info;
7159 struct perf_event *event, *tmp;
7160
7161 perf_pmu_rotate_stop(ctx->pmu);
7162
7163 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7164 __perf_remove_from_context(event);
7165 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7166 __perf_remove_from_context(event);
7167 }
7168
7169 static void perf_event_exit_cpu_context(int cpu)
7170 {
7171 struct perf_event_context *ctx;
7172 struct pmu *pmu;
7173 int idx;
7174
7175 idx = srcu_read_lock(&pmus_srcu);
7176 list_for_each_entry_rcu(pmu, &pmus, entry) {
7177 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7178
7179 mutex_lock(&ctx->mutex);
7180 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7181 mutex_unlock(&ctx->mutex);
7182 }
7183 srcu_read_unlock(&pmus_srcu, idx);
7184 }
7185
7186 static void perf_event_exit_cpu(int cpu)
7187 {
7188 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7189
7190 mutex_lock(&swhash->hlist_mutex);
7191 swevent_hlist_release(swhash);
7192 mutex_unlock(&swhash->hlist_mutex);
7193
7194 perf_event_exit_cpu_context(cpu);
7195 }
7196 #else
7197 static inline void perf_event_exit_cpu(int cpu) { }
7198 #endif
7199
7200 static int
7201 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7202 {
7203 int cpu;
7204
7205 for_each_online_cpu(cpu)
7206 perf_event_exit_cpu(cpu);
7207
7208 return NOTIFY_OK;
7209 }
7210
7211 /*
7212 * Run the perf reboot notifier at the very last possible moment so that
7213 * the generic watchdog code runs as long as possible.
7214 */
7215 static struct notifier_block perf_reboot_notifier = {
7216 .notifier_call = perf_reboot,
7217 .priority = INT_MIN,
7218 };
7219
7220 static int __cpuinit
7221 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7222 {
7223 unsigned int cpu = (long)hcpu;
7224
7225 switch (action & ~CPU_TASKS_FROZEN) {
7226
7227 case CPU_UP_PREPARE:
7228 case CPU_DOWN_FAILED:
7229 perf_event_init_cpu(cpu);
7230 break;
7231
7232 case CPU_UP_CANCELED:
7233 case CPU_DOWN_PREPARE:
7234 perf_event_exit_cpu(cpu);
7235 break;
7236
7237 default:
7238 break;
7239 }
7240
7241 return NOTIFY_OK;
7242 }
7243
7244 void __init perf_event_init(void)
7245 {
7246 int ret;
7247
7248 idr_init(&pmu_idr);
7249
7250 perf_event_init_all_cpus();
7251 init_srcu_struct(&pmus_srcu);
7252 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7253 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7254 perf_pmu_register(&perf_task_clock, NULL, -1);
7255 perf_tp_register();
7256 perf_cpu_notifier(perf_cpu_notify);
7257 register_reboot_notifier(&perf_reboot_notifier);
7258
7259 ret = init_hw_breakpoint();
7260 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7261 }
7262
7263 static int __init perf_event_sysfs_init(void)
7264 {
7265 struct pmu *pmu;
7266 int ret;
7267
7268 mutex_lock(&pmus_lock);
7269
7270 ret = bus_register(&pmu_bus);
7271 if (ret)
7272 goto unlock;
7273
7274 list_for_each_entry(pmu, &pmus, entry) {
7275 if (!pmu->name || pmu->type < 0)
7276 continue;
7277
7278 ret = pmu_dev_alloc(pmu);
7279 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7280 }
7281 pmu_bus_running = 1;
7282 ret = 0;
7283
7284 unlock:
7285 mutex_unlock(&pmus_lock);
7286
7287 return ret;
7288 }
7289 device_initcall(perf_event_sysfs_init);
7290
7291 #ifdef CONFIG_CGROUP_PERF
7292 static struct cgroup_subsys_state *perf_cgroup_create(
7293 struct cgroup_subsys *ss, struct cgroup *cont)
7294 {
7295 struct perf_cgroup *jc;
7296 struct perf_cgroup_info *t;
7297 int c;
7298
7299 jc = kmalloc(sizeof(*jc), GFP_KERNEL);
7300 if (!jc)
7301 return ERR_PTR(-ENOMEM);
7302
7303 memset(jc, 0, sizeof(*jc));
7304
7305 jc->info = alloc_percpu(struct perf_cgroup_info);
7306 if (!jc->info) {
7307 kfree(jc);
7308 return ERR_PTR(-ENOMEM);
7309 }
7310
7311 for_each_possible_cpu(c) {
7312 t = per_cpu_ptr(jc->info, c);
7313 t->time = 0;
7314 t->timestamp = 0;
7315 }
7316 return &jc->css;
7317 }
7318
7319 static void perf_cgroup_destroy(struct cgroup_subsys *ss,
7320 struct cgroup *cont)
7321 {
7322 struct perf_cgroup *jc;
7323 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7324 struct perf_cgroup, css);
7325 free_percpu(jc->info);
7326 kfree(jc);
7327 }
7328
7329 static int __perf_cgroup_move(void *info)
7330 {
7331 struct task_struct *task = info;
7332 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7333 return 0;
7334 }
7335
7336 static void perf_cgroup_move(struct task_struct *task)
7337 {
7338 task_function_call(task, __perf_cgroup_move, task);
7339 }
7340
7341 static void perf_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7342 struct cgroup *old_cgrp, struct task_struct *task,
7343 bool threadgroup)
7344 {
7345 perf_cgroup_move(task);
7346 if (threadgroup) {
7347 struct task_struct *c;
7348 rcu_read_lock();
7349 list_for_each_entry_rcu(c, &task->thread_group, thread_group) {
7350 perf_cgroup_move(c);
7351 }
7352 rcu_read_unlock();
7353 }
7354 }
7355
7356 static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
7357 struct cgroup *old_cgrp, struct task_struct *task)
7358 {
7359 /*
7360 * cgroup_exit() is called in the copy_process() failure path.
7361 * Ignore this case since the task hasn't ran yet, this avoids
7362 * trying to poke a half freed task state from generic code.
7363 */
7364 if (!(task->flags & PF_EXITING))
7365 return;
7366
7367 perf_cgroup_move(task);
7368 }
7369
7370 struct cgroup_subsys perf_subsys = {
7371 .name = "perf_event",
7372 .subsys_id = perf_subsys_id,
7373 .create = perf_cgroup_create,
7374 .destroy = perf_cgroup_destroy,
7375 .exit = perf_cgroup_exit,
7376 .attach = perf_cgroup_attach,
7377 };
7378 #endif /* CONFIG_CGROUP_PERF */
This page took 0.49047 seconds and 5 git commands to generate.