irq_work: Add generic hardirq context callbacks
[deliverable/linux.git] / kernel / perf_event.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34
35 #include <asm/irq_regs.h>
36
37 static atomic_t nr_events __read_mostly;
38 static atomic_t nr_mmap_events __read_mostly;
39 static atomic_t nr_comm_events __read_mostly;
40 static atomic_t nr_task_events __read_mostly;
41
42 static LIST_HEAD(pmus);
43 static DEFINE_MUTEX(pmus_lock);
44 static struct srcu_struct pmus_srcu;
45
46 /*
47 * perf event paranoia level:
48 * -1 - not paranoid at all
49 * 0 - disallow raw tracepoint access for unpriv
50 * 1 - disallow cpu events for unpriv
51 * 2 - disallow kernel profiling for unpriv
52 */
53 int sysctl_perf_event_paranoid __read_mostly = 1;
54
55 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
56
57 /*
58 * max perf event sample rate
59 */
60 int sysctl_perf_event_sample_rate __read_mostly = 100000;
61
62 static atomic64_t perf_event_id;
63
64 void __weak perf_event_print_debug(void) { }
65
66 extern __weak const char *perf_pmu_name(void)
67 {
68 return "pmu";
69 }
70
71 void perf_pmu_disable(struct pmu *pmu)
72 {
73 int *count = this_cpu_ptr(pmu->pmu_disable_count);
74 if (!(*count)++)
75 pmu->pmu_disable(pmu);
76 }
77
78 void perf_pmu_enable(struct pmu *pmu)
79 {
80 int *count = this_cpu_ptr(pmu->pmu_disable_count);
81 if (!--(*count))
82 pmu->pmu_enable(pmu);
83 }
84
85 static DEFINE_PER_CPU(struct list_head, rotation_list);
86
87 /*
88 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
89 * because they're strictly cpu affine and rotate_start is called with IRQs
90 * disabled, while rotate_context is called from IRQ context.
91 */
92 static void perf_pmu_rotate_start(struct pmu *pmu)
93 {
94 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95 struct list_head *head = &__get_cpu_var(rotation_list);
96
97 WARN_ON(!irqs_disabled());
98
99 if (list_empty(&cpuctx->rotation_list))
100 list_add(&cpuctx->rotation_list, head);
101 }
102
103 static void get_ctx(struct perf_event_context *ctx)
104 {
105 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
106 }
107
108 static void free_ctx(struct rcu_head *head)
109 {
110 struct perf_event_context *ctx;
111
112 ctx = container_of(head, struct perf_event_context, rcu_head);
113 kfree(ctx);
114 }
115
116 static void put_ctx(struct perf_event_context *ctx)
117 {
118 if (atomic_dec_and_test(&ctx->refcount)) {
119 if (ctx->parent_ctx)
120 put_ctx(ctx->parent_ctx);
121 if (ctx->task)
122 put_task_struct(ctx->task);
123 call_rcu(&ctx->rcu_head, free_ctx);
124 }
125 }
126
127 static void unclone_ctx(struct perf_event_context *ctx)
128 {
129 if (ctx->parent_ctx) {
130 put_ctx(ctx->parent_ctx);
131 ctx->parent_ctx = NULL;
132 }
133 }
134
135 /*
136 * If we inherit events we want to return the parent event id
137 * to userspace.
138 */
139 static u64 primary_event_id(struct perf_event *event)
140 {
141 u64 id = event->id;
142
143 if (event->parent)
144 id = event->parent->id;
145
146 return id;
147 }
148
149 /*
150 * Get the perf_event_context for a task and lock it.
151 * This has to cope with with the fact that until it is locked,
152 * the context could get moved to another task.
153 */
154 static struct perf_event_context *
155 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
156 {
157 struct perf_event_context *ctx;
158
159 rcu_read_lock();
160 retry:
161 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
162 if (ctx) {
163 /*
164 * If this context is a clone of another, it might
165 * get swapped for another underneath us by
166 * perf_event_task_sched_out, though the
167 * rcu_read_lock() protects us from any context
168 * getting freed. Lock the context and check if it
169 * got swapped before we could get the lock, and retry
170 * if so. If we locked the right context, then it
171 * can't get swapped on us any more.
172 */
173 raw_spin_lock_irqsave(&ctx->lock, *flags);
174 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
175 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
176 goto retry;
177 }
178
179 if (!atomic_inc_not_zero(&ctx->refcount)) {
180 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
181 ctx = NULL;
182 }
183 }
184 rcu_read_unlock();
185 return ctx;
186 }
187
188 /*
189 * Get the context for a task and increment its pin_count so it
190 * can't get swapped to another task. This also increments its
191 * reference count so that the context can't get freed.
192 */
193 static struct perf_event_context *
194 perf_pin_task_context(struct task_struct *task, int ctxn)
195 {
196 struct perf_event_context *ctx;
197 unsigned long flags;
198
199 ctx = perf_lock_task_context(task, ctxn, &flags);
200 if (ctx) {
201 ++ctx->pin_count;
202 raw_spin_unlock_irqrestore(&ctx->lock, flags);
203 }
204 return ctx;
205 }
206
207 static void perf_unpin_context(struct perf_event_context *ctx)
208 {
209 unsigned long flags;
210
211 raw_spin_lock_irqsave(&ctx->lock, flags);
212 --ctx->pin_count;
213 raw_spin_unlock_irqrestore(&ctx->lock, flags);
214 put_ctx(ctx);
215 }
216
217 static inline u64 perf_clock(void)
218 {
219 return local_clock();
220 }
221
222 /*
223 * Update the record of the current time in a context.
224 */
225 static void update_context_time(struct perf_event_context *ctx)
226 {
227 u64 now = perf_clock();
228
229 ctx->time += now - ctx->timestamp;
230 ctx->timestamp = now;
231 }
232
233 /*
234 * Update the total_time_enabled and total_time_running fields for a event.
235 */
236 static void update_event_times(struct perf_event *event)
237 {
238 struct perf_event_context *ctx = event->ctx;
239 u64 run_end;
240
241 if (event->state < PERF_EVENT_STATE_INACTIVE ||
242 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
243 return;
244
245 if (ctx->is_active)
246 run_end = ctx->time;
247 else
248 run_end = event->tstamp_stopped;
249
250 event->total_time_enabled = run_end - event->tstamp_enabled;
251
252 if (event->state == PERF_EVENT_STATE_INACTIVE)
253 run_end = event->tstamp_stopped;
254 else
255 run_end = ctx->time;
256
257 event->total_time_running = run_end - event->tstamp_running;
258 }
259
260 /*
261 * Update total_time_enabled and total_time_running for all events in a group.
262 */
263 static void update_group_times(struct perf_event *leader)
264 {
265 struct perf_event *event;
266
267 update_event_times(leader);
268 list_for_each_entry(event, &leader->sibling_list, group_entry)
269 update_event_times(event);
270 }
271
272 static struct list_head *
273 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
274 {
275 if (event->attr.pinned)
276 return &ctx->pinned_groups;
277 else
278 return &ctx->flexible_groups;
279 }
280
281 /*
282 * Add a event from the lists for its context.
283 * Must be called with ctx->mutex and ctx->lock held.
284 */
285 static void
286 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
287 {
288 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
289 event->attach_state |= PERF_ATTACH_CONTEXT;
290
291 /*
292 * If we're a stand alone event or group leader, we go to the context
293 * list, group events are kept attached to the group so that
294 * perf_group_detach can, at all times, locate all siblings.
295 */
296 if (event->group_leader == event) {
297 struct list_head *list;
298
299 if (is_software_event(event))
300 event->group_flags |= PERF_GROUP_SOFTWARE;
301
302 list = ctx_group_list(event, ctx);
303 list_add_tail(&event->group_entry, list);
304 }
305
306 list_add_rcu(&event->event_entry, &ctx->event_list);
307 if (!ctx->nr_events)
308 perf_pmu_rotate_start(ctx->pmu);
309 ctx->nr_events++;
310 if (event->attr.inherit_stat)
311 ctx->nr_stat++;
312 }
313
314 static void perf_group_attach(struct perf_event *event)
315 {
316 struct perf_event *group_leader = event->group_leader;
317
318 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
319 event->attach_state |= PERF_ATTACH_GROUP;
320
321 if (group_leader == event)
322 return;
323
324 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
325 !is_software_event(event))
326 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
327
328 list_add_tail(&event->group_entry, &group_leader->sibling_list);
329 group_leader->nr_siblings++;
330 }
331
332 /*
333 * Remove a event from the lists for its context.
334 * Must be called with ctx->mutex and ctx->lock held.
335 */
336 static void
337 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
338 {
339 /*
340 * We can have double detach due to exit/hot-unplug + close.
341 */
342 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
343 return;
344
345 event->attach_state &= ~PERF_ATTACH_CONTEXT;
346
347 ctx->nr_events--;
348 if (event->attr.inherit_stat)
349 ctx->nr_stat--;
350
351 list_del_rcu(&event->event_entry);
352
353 if (event->group_leader == event)
354 list_del_init(&event->group_entry);
355
356 update_group_times(event);
357
358 /*
359 * If event was in error state, then keep it
360 * that way, otherwise bogus counts will be
361 * returned on read(). The only way to get out
362 * of error state is by explicit re-enabling
363 * of the event
364 */
365 if (event->state > PERF_EVENT_STATE_OFF)
366 event->state = PERF_EVENT_STATE_OFF;
367 }
368
369 static void perf_group_detach(struct perf_event *event)
370 {
371 struct perf_event *sibling, *tmp;
372 struct list_head *list = NULL;
373
374 /*
375 * We can have double detach due to exit/hot-unplug + close.
376 */
377 if (!(event->attach_state & PERF_ATTACH_GROUP))
378 return;
379
380 event->attach_state &= ~PERF_ATTACH_GROUP;
381
382 /*
383 * If this is a sibling, remove it from its group.
384 */
385 if (event->group_leader != event) {
386 list_del_init(&event->group_entry);
387 event->group_leader->nr_siblings--;
388 return;
389 }
390
391 if (!list_empty(&event->group_entry))
392 list = &event->group_entry;
393
394 /*
395 * If this was a group event with sibling events then
396 * upgrade the siblings to singleton events by adding them
397 * to whatever list we are on.
398 */
399 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
400 if (list)
401 list_move_tail(&sibling->group_entry, list);
402 sibling->group_leader = sibling;
403
404 /* Inherit group flags from the previous leader */
405 sibling->group_flags = event->group_flags;
406 }
407 }
408
409 static inline int
410 event_filter_match(struct perf_event *event)
411 {
412 return event->cpu == -1 || event->cpu == smp_processor_id();
413 }
414
415 static int
416 __event_sched_out(struct perf_event *event,
417 struct perf_cpu_context *cpuctx,
418 struct perf_event_context *ctx)
419 {
420 u64 delta;
421 /*
422 * An event which could not be activated because of
423 * filter mismatch still needs to have its timings
424 * maintained, otherwise bogus information is return
425 * via read() for time_enabled, time_running:
426 */
427 if (event->state == PERF_EVENT_STATE_INACTIVE
428 && !event_filter_match(event)) {
429 delta = ctx->time - event->tstamp_stopped;
430 event->tstamp_running += delta;
431 event->tstamp_stopped = ctx->time;
432 }
433
434 if (event->state != PERF_EVENT_STATE_ACTIVE)
435 return 0;
436
437 event->state = PERF_EVENT_STATE_INACTIVE;
438 if (event->pending_disable) {
439 event->pending_disable = 0;
440 event->state = PERF_EVENT_STATE_OFF;
441 }
442 event->pmu->del(event, 0);
443 event->oncpu = -1;
444
445 if (!is_software_event(event))
446 cpuctx->active_oncpu--;
447 ctx->nr_active--;
448 if (event->attr.exclusive || !cpuctx->active_oncpu)
449 cpuctx->exclusive = 0;
450 return 1;
451 }
452
453 static void
454 event_sched_out(struct perf_event *event,
455 struct perf_cpu_context *cpuctx,
456 struct perf_event_context *ctx)
457 {
458 int ret;
459
460 ret = __event_sched_out(event, cpuctx, ctx);
461 if (ret)
462 event->tstamp_stopped = ctx->time;
463 }
464
465 static void
466 group_sched_out(struct perf_event *group_event,
467 struct perf_cpu_context *cpuctx,
468 struct perf_event_context *ctx)
469 {
470 struct perf_event *event;
471 int state = group_event->state;
472
473 event_sched_out(group_event, cpuctx, ctx);
474
475 /*
476 * Schedule out siblings (if any):
477 */
478 list_for_each_entry(event, &group_event->sibling_list, group_entry)
479 event_sched_out(event, cpuctx, ctx);
480
481 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
482 cpuctx->exclusive = 0;
483 }
484
485 static inline struct perf_cpu_context *
486 __get_cpu_context(struct perf_event_context *ctx)
487 {
488 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
489 }
490
491 /*
492 * Cross CPU call to remove a performance event
493 *
494 * We disable the event on the hardware level first. After that we
495 * remove it from the context list.
496 */
497 static void __perf_event_remove_from_context(void *info)
498 {
499 struct perf_event *event = info;
500 struct perf_event_context *ctx = event->ctx;
501 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
502
503 /*
504 * If this is a task context, we need to check whether it is
505 * the current task context of this cpu. If not it has been
506 * scheduled out before the smp call arrived.
507 */
508 if (ctx->task && cpuctx->task_ctx != ctx)
509 return;
510
511 raw_spin_lock(&ctx->lock);
512
513 event_sched_out(event, cpuctx, ctx);
514
515 list_del_event(event, ctx);
516
517 raw_spin_unlock(&ctx->lock);
518 }
519
520
521 /*
522 * Remove the event from a task's (or a CPU's) list of events.
523 *
524 * Must be called with ctx->mutex held.
525 *
526 * CPU events are removed with a smp call. For task events we only
527 * call when the task is on a CPU.
528 *
529 * If event->ctx is a cloned context, callers must make sure that
530 * every task struct that event->ctx->task could possibly point to
531 * remains valid. This is OK when called from perf_release since
532 * that only calls us on the top-level context, which can't be a clone.
533 * When called from perf_event_exit_task, it's OK because the
534 * context has been detached from its task.
535 */
536 static void perf_event_remove_from_context(struct perf_event *event)
537 {
538 struct perf_event_context *ctx = event->ctx;
539 struct task_struct *task = ctx->task;
540
541 if (!task) {
542 /*
543 * Per cpu events are removed via an smp call and
544 * the removal is always successful.
545 */
546 smp_call_function_single(event->cpu,
547 __perf_event_remove_from_context,
548 event, 1);
549 return;
550 }
551
552 retry:
553 task_oncpu_function_call(task, __perf_event_remove_from_context,
554 event);
555
556 raw_spin_lock_irq(&ctx->lock);
557 /*
558 * If the context is active we need to retry the smp call.
559 */
560 if (ctx->nr_active && !list_empty(&event->group_entry)) {
561 raw_spin_unlock_irq(&ctx->lock);
562 goto retry;
563 }
564
565 /*
566 * The lock prevents that this context is scheduled in so we
567 * can remove the event safely, if the call above did not
568 * succeed.
569 */
570 if (!list_empty(&event->group_entry))
571 list_del_event(event, ctx);
572 raw_spin_unlock_irq(&ctx->lock);
573 }
574
575 /*
576 * Cross CPU call to disable a performance event
577 */
578 static void __perf_event_disable(void *info)
579 {
580 struct perf_event *event = info;
581 struct perf_event_context *ctx = event->ctx;
582 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
583
584 /*
585 * If this is a per-task event, need to check whether this
586 * event's task is the current task on this cpu.
587 */
588 if (ctx->task && cpuctx->task_ctx != ctx)
589 return;
590
591 raw_spin_lock(&ctx->lock);
592
593 /*
594 * If the event is on, turn it off.
595 * If it is in error state, leave it in error state.
596 */
597 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
598 update_context_time(ctx);
599 update_group_times(event);
600 if (event == event->group_leader)
601 group_sched_out(event, cpuctx, ctx);
602 else
603 event_sched_out(event, cpuctx, ctx);
604 event->state = PERF_EVENT_STATE_OFF;
605 }
606
607 raw_spin_unlock(&ctx->lock);
608 }
609
610 /*
611 * Disable a event.
612 *
613 * If event->ctx is a cloned context, callers must make sure that
614 * every task struct that event->ctx->task could possibly point to
615 * remains valid. This condition is satisifed when called through
616 * perf_event_for_each_child or perf_event_for_each because they
617 * hold the top-level event's child_mutex, so any descendant that
618 * goes to exit will block in sync_child_event.
619 * When called from perf_pending_event it's OK because event->ctx
620 * is the current context on this CPU and preemption is disabled,
621 * hence we can't get into perf_event_task_sched_out for this context.
622 */
623 void perf_event_disable(struct perf_event *event)
624 {
625 struct perf_event_context *ctx = event->ctx;
626 struct task_struct *task = ctx->task;
627
628 if (!task) {
629 /*
630 * Disable the event on the cpu that it's on
631 */
632 smp_call_function_single(event->cpu, __perf_event_disable,
633 event, 1);
634 return;
635 }
636
637 retry:
638 task_oncpu_function_call(task, __perf_event_disable, event);
639
640 raw_spin_lock_irq(&ctx->lock);
641 /*
642 * If the event is still active, we need to retry the cross-call.
643 */
644 if (event->state == PERF_EVENT_STATE_ACTIVE) {
645 raw_spin_unlock_irq(&ctx->lock);
646 goto retry;
647 }
648
649 /*
650 * Since we have the lock this context can't be scheduled
651 * in, so we can change the state safely.
652 */
653 if (event->state == PERF_EVENT_STATE_INACTIVE) {
654 update_group_times(event);
655 event->state = PERF_EVENT_STATE_OFF;
656 }
657
658 raw_spin_unlock_irq(&ctx->lock);
659 }
660
661 static int
662 __event_sched_in(struct perf_event *event,
663 struct perf_cpu_context *cpuctx,
664 struct perf_event_context *ctx)
665 {
666 if (event->state <= PERF_EVENT_STATE_OFF)
667 return 0;
668
669 event->state = PERF_EVENT_STATE_ACTIVE;
670 event->oncpu = smp_processor_id();
671 /*
672 * The new state must be visible before we turn it on in the hardware:
673 */
674 smp_wmb();
675
676 if (event->pmu->add(event, PERF_EF_START)) {
677 event->state = PERF_EVENT_STATE_INACTIVE;
678 event->oncpu = -1;
679 return -EAGAIN;
680 }
681
682 if (!is_software_event(event))
683 cpuctx->active_oncpu++;
684 ctx->nr_active++;
685
686 if (event->attr.exclusive)
687 cpuctx->exclusive = 1;
688
689 return 0;
690 }
691
692 static inline int
693 event_sched_in(struct perf_event *event,
694 struct perf_cpu_context *cpuctx,
695 struct perf_event_context *ctx)
696 {
697 int ret = __event_sched_in(event, cpuctx, ctx);
698 if (ret)
699 return ret;
700 event->tstamp_running += ctx->time - event->tstamp_stopped;
701 return 0;
702 }
703
704 static void
705 group_commit_event_sched_in(struct perf_event *group_event,
706 struct perf_cpu_context *cpuctx,
707 struct perf_event_context *ctx)
708 {
709 struct perf_event *event;
710 u64 now = ctx->time;
711
712 group_event->tstamp_running += now - group_event->tstamp_stopped;
713 /*
714 * Schedule in siblings as one group (if any):
715 */
716 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
717 event->tstamp_running += now - event->tstamp_stopped;
718 }
719 }
720
721 static int
722 group_sched_in(struct perf_event *group_event,
723 struct perf_cpu_context *cpuctx,
724 struct perf_event_context *ctx)
725 {
726 struct perf_event *event, *partial_group = NULL;
727 struct pmu *pmu = group_event->pmu;
728
729 if (group_event->state == PERF_EVENT_STATE_OFF)
730 return 0;
731
732 pmu->start_txn(pmu);
733
734 /*
735 * use __event_sched_in() to delay updating tstamp_running
736 * until the transaction is committed. In case of failure
737 * we will keep an unmodified tstamp_running which is a
738 * requirement to get correct timing information
739 */
740 if (__event_sched_in(group_event, cpuctx, ctx)) {
741 pmu->cancel_txn(pmu);
742 return -EAGAIN;
743 }
744
745 /*
746 * Schedule in siblings as one group (if any):
747 */
748 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
749 if (__event_sched_in(event, cpuctx, ctx)) {
750 partial_group = event;
751 goto group_error;
752 }
753 }
754
755 if (!pmu->commit_txn(pmu)) {
756 /* commit tstamp_running */
757 group_commit_event_sched_in(group_event, cpuctx, ctx);
758 return 0;
759 }
760 group_error:
761 /*
762 * Groups can be scheduled in as one unit only, so undo any
763 * partial group before returning:
764 *
765 * use __event_sched_out() to avoid updating tstamp_stopped
766 * because the event never actually ran
767 */
768 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
769 if (event == partial_group)
770 break;
771 __event_sched_out(event, cpuctx, ctx);
772 }
773 __event_sched_out(group_event, cpuctx, ctx);
774
775 pmu->cancel_txn(pmu);
776
777 return -EAGAIN;
778 }
779
780 /*
781 * Work out whether we can put this event group on the CPU now.
782 */
783 static int group_can_go_on(struct perf_event *event,
784 struct perf_cpu_context *cpuctx,
785 int can_add_hw)
786 {
787 /*
788 * Groups consisting entirely of software events can always go on.
789 */
790 if (event->group_flags & PERF_GROUP_SOFTWARE)
791 return 1;
792 /*
793 * If an exclusive group is already on, no other hardware
794 * events can go on.
795 */
796 if (cpuctx->exclusive)
797 return 0;
798 /*
799 * If this group is exclusive and there are already
800 * events on the CPU, it can't go on.
801 */
802 if (event->attr.exclusive && cpuctx->active_oncpu)
803 return 0;
804 /*
805 * Otherwise, try to add it if all previous groups were able
806 * to go on.
807 */
808 return can_add_hw;
809 }
810
811 static void add_event_to_ctx(struct perf_event *event,
812 struct perf_event_context *ctx)
813 {
814 list_add_event(event, ctx);
815 perf_group_attach(event);
816 event->tstamp_enabled = ctx->time;
817 event->tstamp_running = ctx->time;
818 event->tstamp_stopped = ctx->time;
819 }
820
821 /*
822 * Cross CPU call to install and enable a performance event
823 *
824 * Must be called with ctx->mutex held
825 */
826 static void __perf_install_in_context(void *info)
827 {
828 struct perf_event *event = info;
829 struct perf_event_context *ctx = event->ctx;
830 struct perf_event *leader = event->group_leader;
831 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
832 int err;
833
834 /*
835 * If this is a task context, we need to check whether it is
836 * the current task context of this cpu. If not it has been
837 * scheduled out before the smp call arrived.
838 * Or possibly this is the right context but it isn't
839 * on this cpu because it had no events.
840 */
841 if (ctx->task && cpuctx->task_ctx != ctx) {
842 if (cpuctx->task_ctx || ctx->task != current)
843 return;
844 cpuctx->task_ctx = ctx;
845 }
846
847 raw_spin_lock(&ctx->lock);
848 ctx->is_active = 1;
849 update_context_time(ctx);
850
851 add_event_to_ctx(event, ctx);
852
853 if (event->cpu != -1 && event->cpu != smp_processor_id())
854 goto unlock;
855
856 /*
857 * Don't put the event on if it is disabled or if
858 * it is in a group and the group isn't on.
859 */
860 if (event->state != PERF_EVENT_STATE_INACTIVE ||
861 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
862 goto unlock;
863
864 /*
865 * An exclusive event can't go on if there are already active
866 * hardware events, and no hardware event can go on if there
867 * is already an exclusive event on.
868 */
869 if (!group_can_go_on(event, cpuctx, 1))
870 err = -EEXIST;
871 else
872 err = event_sched_in(event, cpuctx, ctx);
873
874 if (err) {
875 /*
876 * This event couldn't go on. If it is in a group
877 * then we have to pull the whole group off.
878 * If the event group is pinned then put it in error state.
879 */
880 if (leader != event)
881 group_sched_out(leader, cpuctx, ctx);
882 if (leader->attr.pinned) {
883 update_group_times(leader);
884 leader->state = PERF_EVENT_STATE_ERROR;
885 }
886 }
887
888 unlock:
889 raw_spin_unlock(&ctx->lock);
890 }
891
892 /*
893 * Attach a performance event to a context
894 *
895 * First we add the event to the list with the hardware enable bit
896 * in event->hw_config cleared.
897 *
898 * If the event is attached to a task which is on a CPU we use a smp
899 * call to enable it in the task context. The task might have been
900 * scheduled away, but we check this in the smp call again.
901 *
902 * Must be called with ctx->mutex held.
903 */
904 static void
905 perf_install_in_context(struct perf_event_context *ctx,
906 struct perf_event *event,
907 int cpu)
908 {
909 struct task_struct *task = ctx->task;
910
911 event->ctx = ctx;
912
913 if (!task) {
914 /*
915 * Per cpu events are installed via an smp call and
916 * the install is always successful.
917 */
918 smp_call_function_single(cpu, __perf_install_in_context,
919 event, 1);
920 return;
921 }
922
923 retry:
924 task_oncpu_function_call(task, __perf_install_in_context,
925 event);
926
927 raw_spin_lock_irq(&ctx->lock);
928 /*
929 * we need to retry the smp call.
930 */
931 if (ctx->is_active && list_empty(&event->group_entry)) {
932 raw_spin_unlock_irq(&ctx->lock);
933 goto retry;
934 }
935
936 /*
937 * The lock prevents that this context is scheduled in so we
938 * can add the event safely, if it the call above did not
939 * succeed.
940 */
941 if (list_empty(&event->group_entry))
942 add_event_to_ctx(event, ctx);
943 raw_spin_unlock_irq(&ctx->lock);
944 }
945
946 /*
947 * Put a event into inactive state and update time fields.
948 * Enabling the leader of a group effectively enables all
949 * the group members that aren't explicitly disabled, so we
950 * have to update their ->tstamp_enabled also.
951 * Note: this works for group members as well as group leaders
952 * since the non-leader members' sibling_lists will be empty.
953 */
954 static void __perf_event_mark_enabled(struct perf_event *event,
955 struct perf_event_context *ctx)
956 {
957 struct perf_event *sub;
958
959 event->state = PERF_EVENT_STATE_INACTIVE;
960 event->tstamp_enabled = ctx->time - event->total_time_enabled;
961 list_for_each_entry(sub, &event->sibling_list, group_entry) {
962 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
963 sub->tstamp_enabled =
964 ctx->time - sub->total_time_enabled;
965 }
966 }
967 }
968
969 /*
970 * Cross CPU call to enable a performance event
971 */
972 static void __perf_event_enable(void *info)
973 {
974 struct perf_event *event = info;
975 struct perf_event_context *ctx = event->ctx;
976 struct perf_event *leader = event->group_leader;
977 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
978 int err;
979
980 /*
981 * If this is a per-task event, need to check whether this
982 * event's task is the current task on this cpu.
983 */
984 if (ctx->task && cpuctx->task_ctx != ctx) {
985 if (cpuctx->task_ctx || ctx->task != current)
986 return;
987 cpuctx->task_ctx = ctx;
988 }
989
990 raw_spin_lock(&ctx->lock);
991 ctx->is_active = 1;
992 update_context_time(ctx);
993
994 if (event->state >= PERF_EVENT_STATE_INACTIVE)
995 goto unlock;
996 __perf_event_mark_enabled(event, ctx);
997
998 if (event->cpu != -1 && event->cpu != smp_processor_id())
999 goto unlock;
1000
1001 /*
1002 * If the event is in a group and isn't the group leader,
1003 * then don't put it on unless the group is on.
1004 */
1005 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1006 goto unlock;
1007
1008 if (!group_can_go_on(event, cpuctx, 1)) {
1009 err = -EEXIST;
1010 } else {
1011 if (event == leader)
1012 err = group_sched_in(event, cpuctx, ctx);
1013 else
1014 err = event_sched_in(event, cpuctx, ctx);
1015 }
1016
1017 if (err) {
1018 /*
1019 * If this event can't go on and it's part of a
1020 * group, then the whole group has to come off.
1021 */
1022 if (leader != event)
1023 group_sched_out(leader, cpuctx, ctx);
1024 if (leader->attr.pinned) {
1025 update_group_times(leader);
1026 leader->state = PERF_EVENT_STATE_ERROR;
1027 }
1028 }
1029
1030 unlock:
1031 raw_spin_unlock(&ctx->lock);
1032 }
1033
1034 /*
1035 * Enable a event.
1036 *
1037 * If event->ctx is a cloned context, callers must make sure that
1038 * every task struct that event->ctx->task could possibly point to
1039 * remains valid. This condition is satisfied when called through
1040 * perf_event_for_each_child or perf_event_for_each as described
1041 * for perf_event_disable.
1042 */
1043 void perf_event_enable(struct perf_event *event)
1044 {
1045 struct perf_event_context *ctx = event->ctx;
1046 struct task_struct *task = ctx->task;
1047
1048 if (!task) {
1049 /*
1050 * Enable the event on the cpu that it's on
1051 */
1052 smp_call_function_single(event->cpu, __perf_event_enable,
1053 event, 1);
1054 return;
1055 }
1056
1057 raw_spin_lock_irq(&ctx->lock);
1058 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1059 goto out;
1060
1061 /*
1062 * If the event is in error state, clear that first.
1063 * That way, if we see the event in error state below, we
1064 * know that it has gone back into error state, as distinct
1065 * from the task having been scheduled away before the
1066 * cross-call arrived.
1067 */
1068 if (event->state == PERF_EVENT_STATE_ERROR)
1069 event->state = PERF_EVENT_STATE_OFF;
1070
1071 retry:
1072 raw_spin_unlock_irq(&ctx->lock);
1073 task_oncpu_function_call(task, __perf_event_enable, event);
1074
1075 raw_spin_lock_irq(&ctx->lock);
1076
1077 /*
1078 * If the context is active and the event is still off,
1079 * we need to retry the cross-call.
1080 */
1081 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1082 goto retry;
1083
1084 /*
1085 * Since we have the lock this context can't be scheduled
1086 * in, so we can change the state safely.
1087 */
1088 if (event->state == PERF_EVENT_STATE_OFF)
1089 __perf_event_mark_enabled(event, ctx);
1090
1091 out:
1092 raw_spin_unlock_irq(&ctx->lock);
1093 }
1094
1095 static int perf_event_refresh(struct perf_event *event, int refresh)
1096 {
1097 /*
1098 * not supported on inherited events
1099 */
1100 if (event->attr.inherit)
1101 return -EINVAL;
1102
1103 atomic_add(refresh, &event->event_limit);
1104 perf_event_enable(event);
1105
1106 return 0;
1107 }
1108
1109 enum event_type_t {
1110 EVENT_FLEXIBLE = 0x1,
1111 EVENT_PINNED = 0x2,
1112 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1113 };
1114
1115 static void ctx_sched_out(struct perf_event_context *ctx,
1116 struct perf_cpu_context *cpuctx,
1117 enum event_type_t event_type)
1118 {
1119 struct perf_event *event;
1120
1121 raw_spin_lock(&ctx->lock);
1122 perf_pmu_disable(ctx->pmu);
1123 ctx->is_active = 0;
1124 if (likely(!ctx->nr_events))
1125 goto out;
1126 update_context_time(ctx);
1127
1128 if (!ctx->nr_active)
1129 goto out;
1130
1131 if (event_type & EVENT_PINNED) {
1132 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1133 group_sched_out(event, cpuctx, ctx);
1134 }
1135
1136 if (event_type & EVENT_FLEXIBLE) {
1137 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1138 group_sched_out(event, cpuctx, ctx);
1139 }
1140 out:
1141 perf_pmu_enable(ctx->pmu);
1142 raw_spin_unlock(&ctx->lock);
1143 }
1144
1145 /*
1146 * Test whether two contexts are equivalent, i.e. whether they
1147 * have both been cloned from the same version of the same context
1148 * and they both have the same number of enabled events.
1149 * If the number of enabled events is the same, then the set
1150 * of enabled events should be the same, because these are both
1151 * inherited contexts, therefore we can't access individual events
1152 * in them directly with an fd; we can only enable/disable all
1153 * events via prctl, or enable/disable all events in a family
1154 * via ioctl, which will have the same effect on both contexts.
1155 */
1156 static int context_equiv(struct perf_event_context *ctx1,
1157 struct perf_event_context *ctx2)
1158 {
1159 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1160 && ctx1->parent_gen == ctx2->parent_gen
1161 && !ctx1->pin_count && !ctx2->pin_count;
1162 }
1163
1164 static void __perf_event_sync_stat(struct perf_event *event,
1165 struct perf_event *next_event)
1166 {
1167 u64 value;
1168
1169 if (!event->attr.inherit_stat)
1170 return;
1171
1172 /*
1173 * Update the event value, we cannot use perf_event_read()
1174 * because we're in the middle of a context switch and have IRQs
1175 * disabled, which upsets smp_call_function_single(), however
1176 * we know the event must be on the current CPU, therefore we
1177 * don't need to use it.
1178 */
1179 switch (event->state) {
1180 case PERF_EVENT_STATE_ACTIVE:
1181 event->pmu->read(event);
1182 /* fall-through */
1183
1184 case PERF_EVENT_STATE_INACTIVE:
1185 update_event_times(event);
1186 break;
1187
1188 default:
1189 break;
1190 }
1191
1192 /*
1193 * In order to keep per-task stats reliable we need to flip the event
1194 * values when we flip the contexts.
1195 */
1196 value = local64_read(&next_event->count);
1197 value = local64_xchg(&event->count, value);
1198 local64_set(&next_event->count, value);
1199
1200 swap(event->total_time_enabled, next_event->total_time_enabled);
1201 swap(event->total_time_running, next_event->total_time_running);
1202
1203 /*
1204 * Since we swizzled the values, update the user visible data too.
1205 */
1206 perf_event_update_userpage(event);
1207 perf_event_update_userpage(next_event);
1208 }
1209
1210 #define list_next_entry(pos, member) \
1211 list_entry(pos->member.next, typeof(*pos), member)
1212
1213 static void perf_event_sync_stat(struct perf_event_context *ctx,
1214 struct perf_event_context *next_ctx)
1215 {
1216 struct perf_event *event, *next_event;
1217
1218 if (!ctx->nr_stat)
1219 return;
1220
1221 update_context_time(ctx);
1222
1223 event = list_first_entry(&ctx->event_list,
1224 struct perf_event, event_entry);
1225
1226 next_event = list_first_entry(&next_ctx->event_list,
1227 struct perf_event, event_entry);
1228
1229 while (&event->event_entry != &ctx->event_list &&
1230 &next_event->event_entry != &next_ctx->event_list) {
1231
1232 __perf_event_sync_stat(event, next_event);
1233
1234 event = list_next_entry(event, event_entry);
1235 next_event = list_next_entry(next_event, event_entry);
1236 }
1237 }
1238
1239 void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1240 struct task_struct *next)
1241 {
1242 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1243 struct perf_event_context *next_ctx;
1244 struct perf_event_context *parent;
1245 struct perf_cpu_context *cpuctx;
1246 int do_switch = 1;
1247
1248 if (likely(!ctx))
1249 return;
1250
1251 cpuctx = __get_cpu_context(ctx);
1252 if (!cpuctx->task_ctx)
1253 return;
1254
1255 rcu_read_lock();
1256 parent = rcu_dereference(ctx->parent_ctx);
1257 next_ctx = next->perf_event_ctxp[ctxn];
1258 if (parent && next_ctx &&
1259 rcu_dereference(next_ctx->parent_ctx) == parent) {
1260 /*
1261 * Looks like the two contexts are clones, so we might be
1262 * able to optimize the context switch. We lock both
1263 * contexts and check that they are clones under the
1264 * lock (including re-checking that neither has been
1265 * uncloned in the meantime). It doesn't matter which
1266 * order we take the locks because no other cpu could
1267 * be trying to lock both of these tasks.
1268 */
1269 raw_spin_lock(&ctx->lock);
1270 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1271 if (context_equiv(ctx, next_ctx)) {
1272 /*
1273 * XXX do we need a memory barrier of sorts
1274 * wrt to rcu_dereference() of perf_event_ctxp
1275 */
1276 task->perf_event_ctxp[ctxn] = next_ctx;
1277 next->perf_event_ctxp[ctxn] = ctx;
1278 ctx->task = next;
1279 next_ctx->task = task;
1280 do_switch = 0;
1281
1282 perf_event_sync_stat(ctx, next_ctx);
1283 }
1284 raw_spin_unlock(&next_ctx->lock);
1285 raw_spin_unlock(&ctx->lock);
1286 }
1287 rcu_read_unlock();
1288
1289 if (do_switch) {
1290 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1291 cpuctx->task_ctx = NULL;
1292 }
1293 }
1294
1295 #define for_each_task_context_nr(ctxn) \
1296 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1297
1298 /*
1299 * Called from scheduler to remove the events of the current task,
1300 * with interrupts disabled.
1301 *
1302 * We stop each event and update the event value in event->count.
1303 *
1304 * This does not protect us against NMI, but disable()
1305 * sets the disabled bit in the control field of event _before_
1306 * accessing the event control register. If a NMI hits, then it will
1307 * not restart the event.
1308 */
1309 void perf_event_task_sched_out(struct task_struct *task,
1310 struct task_struct *next)
1311 {
1312 int ctxn;
1313
1314 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1315
1316 for_each_task_context_nr(ctxn)
1317 perf_event_context_sched_out(task, ctxn, next);
1318 }
1319
1320 static void task_ctx_sched_out(struct perf_event_context *ctx,
1321 enum event_type_t event_type)
1322 {
1323 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1324
1325 if (!cpuctx->task_ctx)
1326 return;
1327
1328 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1329 return;
1330
1331 ctx_sched_out(ctx, cpuctx, event_type);
1332 cpuctx->task_ctx = NULL;
1333 }
1334
1335 /*
1336 * Called with IRQs disabled
1337 */
1338 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1339 {
1340 task_ctx_sched_out(ctx, EVENT_ALL);
1341 }
1342
1343 /*
1344 * Called with IRQs disabled
1345 */
1346 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1347 enum event_type_t event_type)
1348 {
1349 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1350 }
1351
1352 static void
1353 ctx_pinned_sched_in(struct perf_event_context *ctx,
1354 struct perf_cpu_context *cpuctx)
1355 {
1356 struct perf_event *event;
1357
1358 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1359 if (event->state <= PERF_EVENT_STATE_OFF)
1360 continue;
1361 if (event->cpu != -1 && event->cpu != smp_processor_id())
1362 continue;
1363
1364 if (group_can_go_on(event, cpuctx, 1))
1365 group_sched_in(event, cpuctx, ctx);
1366
1367 /*
1368 * If this pinned group hasn't been scheduled,
1369 * put it in error state.
1370 */
1371 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1372 update_group_times(event);
1373 event->state = PERF_EVENT_STATE_ERROR;
1374 }
1375 }
1376 }
1377
1378 static void
1379 ctx_flexible_sched_in(struct perf_event_context *ctx,
1380 struct perf_cpu_context *cpuctx)
1381 {
1382 struct perf_event *event;
1383 int can_add_hw = 1;
1384
1385 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1386 /* Ignore events in OFF or ERROR state */
1387 if (event->state <= PERF_EVENT_STATE_OFF)
1388 continue;
1389 /*
1390 * Listen to the 'cpu' scheduling filter constraint
1391 * of events:
1392 */
1393 if (event->cpu != -1 && event->cpu != smp_processor_id())
1394 continue;
1395
1396 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1397 if (group_sched_in(event, cpuctx, ctx))
1398 can_add_hw = 0;
1399 }
1400 }
1401 }
1402
1403 static void
1404 ctx_sched_in(struct perf_event_context *ctx,
1405 struct perf_cpu_context *cpuctx,
1406 enum event_type_t event_type)
1407 {
1408 raw_spin_lock(&ctx->lock);
1409 ctx->is_active = 1;
1410 if (likely(!ctx->nr_events))
1411 goto out;
1412
1413 ctx->timestamp = perf_clock();
1414
1415 /*
1416 * First go through the list and put on any pinned groups
1417 * in order to give them the best chance of going on.
1418 */
1419 if (event_type & EVENT_PINNED)
1420 ctx_pinned_sched_in(ctx, cpuctx);
1421
1422 /* Then walk through the lower prio flexible groups */
1423 if (event_type & EVENT_FLEXIBLE)
1424 ctx_flexible_sched_in(ctx, cpuctx);
1425
1426 out:
1427 raw_spin_unlock(&ctx->lock);
1428 }
1429
1430 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1431 enum event_type_t event_type)
1432 {
1433 struct perf_event_context *ctx = &cpuctx->ctx;
1434
1435 ctx_sched_in(ctx, cpuctx, event_type);
1436 }
1437
1438 static void task_ctx_sched_in(struct perf_event_context *ctx,
1439 enum event_type_t event_type)
1440 {
1441 struct perf_cpu_context *cpuctx;
1442
1443 cpuctx = __get_cpu_context(ctx);
1444 if (cpuctx->task_ctx == ctx)
1445 return;
1446
1447 ctx_sched_in(ctx, cpuctx, event_type);
1448 cpuctx->task_ctx = ctx;
1449 }
1450
1451 void perf_event_context_sched_in(struct perf_event_context *ctx)
1452 {
1453 struct perf_cpu_context *cpuctx;
1454
1455 cpuctx = __get_cpu_context(ctx);
1456 if (cpuctx->task_ctx == ctx)
1457 return;
1458
1459 perf_pmu_disable(ctx->pmu);
1460 /*
1461 * We want to keep the following priority order:
1462 * cpu pinned (that don't need to move), task pinned,
1463 * cpu flexible, task flexible.
1464 */
1465 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1466
1467 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1468 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1469 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1470
1471 cpuctx->task_ctx = ctx;
1472
1473 /*
1474 * Since these rotations are per-cpu, we need to ensure the
1475 * cpu-context we got scheduled on is actually rotating.
1476 */
1477 perf_pmu_rotate_start(ctx->pmu);
1478 perf_pmu_enable(ctx->pmu);
1479 }
1480
1481 /*
1482 * Called from scheduler to add the events of the current task
1483 * with interrupts disabled.
1484 *
1485 * We restore the event value and then enable it.
1486 *
1487 * This does not protect us against NMI, but enable()
1488 * sets the enabled bit in the control field of event _before_
1489 * accessing the event control register. If a NMI hits, then it will
1490 * keep the event running.
1491 */
1492 void perf_event_task_sched_in(struct task_struct *task)
1493 {
1494 struct perf_event_context *ctx;
1495 int ctxn;
1496
1497 for_each_task_context_nr(ctxn) {
1498 ctx = task->perf_event_ctxp[ctxn];
1499 if (likely(!ctx))
1500 continue;
1501
1502 perf_event_context_sched_in(ctx);
1503 }
1504 }
1505
1506 #define MAX_INTERRUPTS (~0ULL)
1507
1508 static void perf_log_throttle(struct perf_event *event, int enable);
1509
1510 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1511 {
1512 u64 frequency = event->attr.sample_freq;
1513 u64 sec = NSEC_PER_SEC;
1514 u64 divisor, dividend;
1515
1516 int count_fls, nsec_fls, frequency_fls, sec_fls;
1517
1518 count_fls = fls64(count);
1519 nsec_fls = fls64(nsec);
1520 frequency_fls = fls64(frequency);
1521 sec_fls = 30;
1522
1523 /*
1524 * We got @count in @nsec, with a target of sample_freq HZ
1525 * the target period becomes:
1526 *
1527 * @count * 10^9
1528 * period = -------------------
1529 * @nsec * sample_freq
1530 *
1531 */
1532
1533 /*
1534 * Reduce accuracy by one bit such that @a and @b converge
1535 * to a similar magnitude.
1536 */
1537 #define REDUCE_FLS(a, b) \
1538 do { \
1539 if (a##_fls > b##_fls) { \
1540 a >>= 1; \
1541 a##_fls--; \
1542 } else { \
1543 b >>= 1; \
1544 b##_fls--; \
1545 } \
1546 } while (0)
1547
1548 /*
1549 * Reduce accuracy until either term fits in a u64, then proceed with
1550 * the other, so that finally we can do a u64/u64 division.
1551 */
1552 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1553 REDUCE_FLS(nsec, frequency);
1554 REDUCE_FLS(sec, count);
1555 }
1556
1557 if (count_fls + sec_fls > 64) {
1558 divisor = nsec * frequency;
1559
1560 while (count_fls + sec_fls > 64) {
1561 REDUCE_FLS(count, sec);
1562 divisor >>= 1;
1563 }
1564
1565 dividend = count * sec;
1566 } else {
1567 dividend = count * sec;
1568
1569 while (nsec_fls + frequency_fls > 64) {
1570 REDUCE_FLS(nsec, frequency);
1571 dividend >>= 1;
1572 }
1573
1574 divisor = nsec * frequency;
1575 }
1576
1577 if (!divisor)
1578 return dividend;
1579
1580 return div64_u64(dividend, divisor);
1581 }
1582
1583 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1584 {
1585 struct hw_perf_event *hwc = &event->hw;
1586 s64 period, sample_period;
1587 s64 delta;
1588
1589 period = perf_calculate_period(event, nsec, count);
1590
1591 delta = (s64)(period - hwc->sample_period);
1592 delta = (delta + 7) / 8; /* low pass filter */
1593
1594 sample_period = hwc->sample_period + delta;
1595
1596 if (!sample_period)
1597 sample_period = 1;
1598
1599 hwc->sample_period = sample_period;
1600
1601 if (local64_read(&hwc->period_left) > 8*sample_period) {
1602 event->pmu->stop(event, PERF_EF_UPDATE);
1603 local64_set(&hwc->period_left, 0);
1604 event->pmu->start(event, PERF_EF_RELOAD);
1605 }
1606 }
1607
1608 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1609 {
1610 struct perf_event *event;
1611 struct hw_perf_event *hwc;
1612 u64 interrupts, now;
1613 s64 delta;
1614
1615 raw_spin_lock(&ctx->lock);
1616 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1617 if (event->state != PERF_EVENT_STATE_ACTIVE)
1618 continue;
1619
1620 if (event->cpu != -1 && event->cpu != smp_processor_id())
1621 continue;
1622
1623 hwc = &event->hw;
1624
1625 interrupts = hwc->interrupts;
1626 hwc->interrupts = 0;
1627
1628 /*
1629 * unthrottle events on the tick
1630 */
1631 if (interrupts == MAX_INTERRUPTS) {
1632 perf_log_throttle(event, 1);
1633 event->pmu->start(event, 0);
1634 }
1635
1636 if (!event->attr.freq || !event->attr.sample_freq)
1637 continue;
1638
1639 event->pmu->read(event);
1640 now = local64_read(&event->count);
1641 delta = now - hwc->freq_count_stamp;
1642 hwc->freq_count_stamp = now;
1643
1644 if (delta > 0)
1645 perf_adjust_period(event, period, delta);
1646 }
1647 raw_spin_unlock(&ctx->lock);
1648 }
1649
1650 /*
1651 * Round-robin a context's events:
1652 */
1653 static void rotate_ctx(struct perf_event_context *ctx)
1654 {
1655 raw_spin_lock(&ctx->lock);
1656
1657 /* Rotate the first entry last of non-pinned groups */
1658 list_rotate_left(&ctx->flexible_groups);
1659
1660 raw_spin_unlock(&ctx->lock);
1661 }
1662
1663 /*
1664 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
1665 * because they're strictly cpu affine and rotate_start is called with IRQs
1666 * disabled, while rotate_context is called from IRQ context.
1667 */
1668 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
1669 {
1670 u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
1671 struct perf_event_context *ctx = NULL;
1672 int rotate = 0, remove = 1;
1673
1674 if (cpuctx->ctx.nr_events) {
1675 remove = 0;
1676 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1677 rotate = 1;
1678 }
1679
1680 ctx = cpuctx->task_ctx;
1681 if (ctx && ctx->nr_events) {
1682 remove = 0;
1683 if (ctx->nr_events != ctx->nr_active)
1684 rotate = 1;
1685 }
1686
1687 perf_pmu_disable(cpuctx->ctx.pmu);
1688 perf_ctx_adjust_freq(&cpuctx->ctx, interval);
1689 if (ctx)
1690 perf_ctx_adjust_freq(ctx, interval);
1691
1692 if (!rotate)
1693 goto done;
1694
1695 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1696 if (ctx)
1697 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1698
1699 rotate_ctx(&cpuctx->ctx);
1700 if (ctx)
1701 rotate_ctx(ctx);
1702
1703 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1704 if (ctx)
1705 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1706
1707 done:
1708 if (remove)
1709 list_del_init(&cpuctx->rotation_list);
1710
1711 perf_pmu_enable(cpuctx->ctx.pmu);
1712 }
1713
1714 void perf_event_task_tick(void)
1715 {
1716 struct list_head *head = &__get_cpu_var(rotation_list);
1717 struct perf_cpu_context *cpuctx, *tmp;
1718
1719 WARN_ON(!irqs_disabled());
1720
1721 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
1722 if (cpuctx->jiffies_interval == 1 ||
1723 !(jiffies % cpuctx->jiffies_interval))
1724 perf_rotate_context(cpuctx);
1725 }
1726 }
1727
1728 static int event_enable_on_exec(struct perf_event *event,
1729 struct perf_event_context *ctx)
1730 {
1731 if (!event->attr.enable_on_exec)
1732 return 0;
1733
1734 event->attr.enable_on_exec = 0;
1735 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1736 return 0;
1737
1738 __perf_event_mark_enabled(event, ctx);
1739
1740 return 1;
1741 }
1742
1743 /*
1744 * Enable all of a task's events that have been marked enable-on-exec.
1745 * This expects task == current.
1746 */
1747 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1748 {
1749 struct perf_event *event;
1750 unsigned long flags;
1751 int enabled = 0;
1752 int ret;
1753
1754 local_irq_save(flags);
1755 if (!ctx || !ctx->nr_events)
1756 goto out;
1757
1758 task_ctx_sched_out(ctx, EVENT_ALL);
1759
1760 raw_spin_lock(&ctx->lock);
1761
1762 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1763 ret = event_enable_on_exec(event, ctx);
1764 if (ret)
1765 enabled = 1;
1766 }
1767
1768 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1769 ret = event_enable_on_exec(event, ctx);
1770 if (ret)
1771 enabled = 1;
1772 }
1773
1774 /*
1775 * Unclone this context if we enabled any event.
1776 */
1777 if (enabled)
1778 unclone_ctx(ctx);
1779
1780 raw_spin_unlock(&ctx->lock);
1781
1782 perf_event_context_sched_in(ctx);
1783 out:
1784 local_irq_restore(flags);
1785 }
1786
1787 /*
1788 * Cross CPU call to read the hardware event
1789 */
1790 static void __perf_event_read(void *info)
1791 {
1792 struct perf_event *event = info;
1793 struct perf_event_context *ctx = event->ctx;
1794 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1795
1796 /*
1797 * If this is a task context, we need to check whether it is
1798 * the current task context of this cpu. If not it has been
1799 * scheduled out before the smp call arrived. In that case
1800 * event->count would have been updated to a recent sample
1801 * when the event was scheduled out.
1802 */
1803 if (ctx->task && cpuctx->task_ctx != ctx)
1804 return;
1805
1806 raw_spin_lock(&ctx->lock);
1807 update_context_time(ctx);
1808 update_event_times(event);
1809 raw_spin_unlock(&ctx->lock);
1810
1811 event->pmu->read(event);
1812 }
1813
1814 static inline u64 perf_event_count(struct perf_event *event)
1815 {
1816 return local64_read(&event->count) + atomic64_read(&event->child_count);
1817 }
1818
1819 static u64 perf_event_read(struct perf_event *event)
1820 {
1821 /*
1822 * If event is enabled and currently active on a CPU, update the
1823 * value in the event structure:
1824 */
1825 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1826 smp_call_function_single(event->oncpu,
1827 __perf_event_read, event, 1);
1828 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1829 struct perf_event_context *ctx = event->ctx;
1830 unsigned long flags;
1831
1832 raw_spin_lock_irqsave(&ctx->lock, flags);
1833 /*
1834 * may read while context is not active
1835 * (e.g., thread is blocked), in that case
1836 * we cannot update context time
1837 */
1838 if (ctx->is_active)
1839 update_context_time(ctx);
1840 update_event_times(event);
1841 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1842 }
1843
1844 return perf_event_count(event);
1845 }
1846
1847 /*
1848 * Callchain support
1849 */
1850
1851 struct callchain_cpus_entries {
1852 struct rcu_head rcu_head;
1853 struct perf_callchain_entry *cpu_entries[0];
1854 };
1855
1856 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1857 static atomic_t nr_callchain_events;
1858 static DEFINE_MUTEX(callchain_mutex);
1859 struct callchain_cpus_entries *callchain_cpus_entries;
1860
1861
1862 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1863 struct pt_regs *regs)
1864 {
1865 }
1866
1867 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1868 struct pt_regs *regs)
1869 {
1870 }
1871
1872 static void release_callchain_buffers_rcu(struct rcu_head *head)
1873 {
1874 struct callchain_cpus_entries *entries;
1875 int cpu;
1876
1877 entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1878
1879 for_each_possible_cpu(cpu)
1880 kfree(entries->cpu_entries[cpu]);
1881
1882 kfree(entries);
1883 }
1884
1885 static void release_callchain_buffers(void)
1886 {
1887 struct callchain_cpus_entries *entries;
1888
1889 entries = callchain_cpus_entries;
1890 rcu_assign_pointer(callchain_cpus_entries, NULL);
1891 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1892 }
1893
1894 static int alloc_callchain_buffers(void)
1895 {
1896 int cpu;
1897 int size;
1898 struct callchain_cpus_entries *entries;
1899
1900 /*
1901 * We can't use the percpu allocation API for data that can be
1902 * accessed from NMI. Use a temporary manual per cpu allocation
1903 * until that gets sorted out.
1904 */
1905 size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
1906 num_possible_cpus();
1907
1908 entries = kzalloc(size, GFP_KERNEL);
1909 if (!entries)
1910 return -ENOMEM;
1911
1912 size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1913
1914 for_each_possible_cpu(cpu) {
1915 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
1916 cpu_to_node(cpu));
1917 if (!entries->cpu_entries[cpu])
1918 goto fail;
1919 }
1920
1921 rcu_assign_pointer(callchain_cpus_entries, entries);
1922
1923 return 0;
1924
1925 fail:
1926 for_each_possible_cpu(cpu)
1927 kfree(entries->cpu_entries[cpu]);
1928 kfree(entries);
1929
1930 return -ENOMEM;
1931 }
1932
1933 static int get_callchain_buffers(void)
1934 {
1935 int err = 0;
1936 int count;
1937
1938 mutex_lock(&callchain_mutex);
1939
1940 count = atomic_inc_return(&nr_callchain_events);
1941 if (WARN_ON_ONCE(count < 1)) {
1942 err = -EINVAL;
1943 goto exit;
1944 }
1945
1946 if (count > 1) {
1947 /* If the allocation failed, give up */
1948 if (!callchain_cpus_entries)
1949 err = -ENOMEM;
1950 goto exit;
1951 }
1952
1953 err = alloc_callchain_buffers();
1954 if (err)
1955 release_callchain_buffers();
1956 exit:
1957 mutex_unlock(&callchain_mutex);
1958
1959 return err;
1960 }
1961
1962 static void put_callchain_buffers(void)
1963 {
1964 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
1965 release_callchain_buffers();
1966 mutex_unlock(&callchain_mutex);
1967 }
1968 }
1969
1970 static int get_recursion_context(int *recursion)
1971 {
1972 int rctx;
1973
1974 if (in_nmi())
1975 rctx = 3;
1976 else if (in_irq())
1977 rctx = 2;
1978 else if (in_softirq())
1979 rctx = 1;
1980 else
1981 rctx = 0;
1982
1983 if (recursion[rctx])
1984 return -1;
1985
1986 recursion[rctx]++;
1987 barrier();
1988
1989 return rctx;
1990 }
1991
1992 static inline void put_recursion_context(int *recursion, int rctx)
1993 {
1994 barrier();
1995 recursion[rctx]--;
1996 }
1997
1998 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
1999 {
2000 int cpu;
2001 struct callchain_cpus_entries *entries;
2002
2003 *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
2004 if (*rctx == -1)
2005 return NULL;
2006
2007 entries = rcu_dereference(callchain_cpus_entries);
2008 if (!entries)
2009 return NULL;
2010
2011 cpu = smp_processor_id();
2012
2013 return &entries->cpu_entries[cpu][*rctx];
2014 }
2015
2016 static void
2017 put_callchain_entry(int rctx)
2018 {
2019 put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
2020 }
2021
2022 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2023 {
2024 int rctx;
2025 struct perf_callchain_entry *entry;
2026
2027
2028 entry = get_callchain_entry(&rctx);
2029 if (rctx == -1)
2030 return NULL;
2031
2032 if (!entry)
2033 goto exit_put;
2034
2035 entry->nr = 0;
2036
2037 if (!user_mode(regs)) {
2038 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2039 perf_callchain_kernel(entry, regs);
2040 if (current->mm)
2041 regs = task_pt_regs(current);
2042 else
2043 regs = NULL;
2044 }
2045
2046 if (regs) {
2047 perf_callchain_store(entry, PERF_CONTEXT_USER);
2048 perf_callchain_user(entry, regs);
2049 }
2050
2051 exit_put:
2052 put_callchain_entry(rctx);
2053
2054 return entry;
2055 }
2056
2057 /*
2058 * Initialize the perf_event context in a task_struct:
2059 */
2060 static void __perf_event_init_context(struct perf_event_context *ctx)
2061 {
2062 raw_spin_lock_init(&ctx->lock);
2063 mutex_init(&ctx->mutex);
2064 INIT_LIST_HEAD(&ctx->pinned_groups);
2065 INIT_LIST_HEAD(&ctx->flexible_groups);
2066 INIT_LIST_HEAD(&ctx->event_list);
2067 atomic_set(&ctx->refcount, 1);
2068 }
2069
2070 static struct perf_event_context *
2071 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2072 {
2073 struct perf_event_context *ctx;
2074
2075 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2076 if (!ctx)
2077 return NULL;
2078
2079 __perf_event_init_context(ctx);
2080 if (task) {
2081 ctx->task = task;
2082 get_task_struct(task);
2083 }
2084 ctx->pmu = pmu;
2085
2086 return ctx;
2087 }
2088
2089 static struct task_struct *
2090 find_lively_task_by_vpid(pid_t vpid)
2091 {
2092 struct task_struct *task;
2093 int err;
2094
2095 rcu_read_lock();
2096 if (!vpid)
2097 task = current;
2098 else
2099 task = find_task_by_vpid(vpid);
2100 if (task)
2101 get_task_struct(task);
2102 rcu_read_unlock();
2103
2104 if (!task)
2105 return ERR_PTR(-ESRCH);
2106
2107 /*
2108 * Can't attach events to a dying task.
2109 */
2110 err = -ESRCH;
2111 if (task->flags & PF_EXITING)
2112 goto errout;
2113
2114 /* Reuse ptrace permission checks for now. */
2115 err = -EACCES;
2116 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2117 goto errout;
2118
2119 return task;
2120 errout:
2121 put_task_struct(task);
2122 return ERR_PTR(err);
2123
2124 }
2125
2126 static struct perf_event_context *
2127 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2128 {
2129 struct perf_event_context *ctx;
2130 struct perf_cpu_context *cpuctx;
2131 unsigned long flags;
2132 int ctxn, err;
2133
2134 if (!task && cpu != -1) {
2135 /* Must be root to operate on a CPU event: */
2136 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2137 return ERR_PTR(-EACCES);
2138
2139 if (cpu < 0 || cpu >= nr_cpumask_bits)
2140 return ERR_PTR(-EINVAL);
2141
2142 /*
2143 * We could be clever and allow to attach a event to an
2144 * offline CPU and activate it when the CPU comes up, but
2145 * that's for later.
2146 */
2147 if (!cpu_online(cpu))
2148 return ERR_PTR(-ENODEV);
2149
2150 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2151 ctx = &cpuctx->ctx;
2152 get_ctx(ctx);
2153
2154 return ctx;
2155 }
2156
2157 err = -EINVAL;
2158 ctxn = pmu->task_ctx_nr;
2159 if (ctxn < 0)
2160 goto errout;
2161
2162 retry:
2163 ctx = perf_lock_task_context(task, ctxn, &flags);
2164 if (ctx) {
2165 unclone_ctx(ctx);
2166 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2167 }
2168
2169 if (!ctx) {
2170 ctx = alloc_perf_context(pmu, task);
2171 err = -ENOMEM;
2172 if (!ctx)
2173 goto errout;
2174
2175 get_ctx(ctx);
2176
2177 if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2178 /*
2179 * We raced with some other task; use
2180 * the context they set.
2181 */
2182 put_task_struct(task);
2183 kfree(ctx);
2184 goto retry;
2185 }
2186 }
2187
2188 put_task_struct(task);
2189 return ctx;
2190
2191 errout:
2192 put_task_struct(task);
2193 return ERR_PTR(err);
2194 }
2195
2196 static void perf_event_free_filter(struct perf_event *event);
2197
2198 static void free_event_rcu(struct rcu_head *head)
2199 {
2200 struct perf_event *event;
2201
2202 event = container_of(head, struct perf_event, rcu_head);
2203 if (event->ns)
2204 put_pid_ns(event->ns);
2205 perf_event_free_filter(event);
2206 kfree(event);
2207 }
2208
2209 static void perf_buffer_put(struct perf_buffer *buffer);
2210
2211 static void free_event(struct perf_event *event)
2212 {
2213 irq_work_sync(&event->pending);
2214
2215 if (!event->parent) {
2216 atomic_dec(&nr_events);
2217 if (event->attr.mmap || event->attr.mmap_data)
2218 atomic_dec(&nr_mmap_events);
2219 if (event->attr.comm)
2220 atomic_dec(&nr_comm_events);
2221 if (event->attr.task)
2222 atomic_dec(&nr_task_events);
2223 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2224 put_callchain_buffers();
2225 }
2226
2227 if (event->buffer) {
2228 perf_buffer_put(event->buffer);
2229 event->buffer = NULL;
2230 }
2231
2232 if (event->destroy)
2233 event->destroy(event);
2234
2235 if (event->ctx)
2236 put_ctx(event->ctx);
2237
2238 call_rcu(&event->rcu_head, free_event_rcu);
2239 }
2240
2241 int perf_event_release_kernel(struct perf_event *event)
2242 {
2243 struct perf_event_context *ctx = event->ctx;
2244
2245 /*
2246 * Remove from the PMU, can't get re-enabled since we got
2247 * here because the last ref went.
2248 */
2249 perf_event_disable(event);
2250
2251 WARN_ON_ONCE(ctx->parent_ctx);
2252 /*
2253 * There are two ways this annotation is useful:
2254 *
2255 * 1) there is a lock recursion from perf_event_exit_task
2256 * see the comment there.
2257 *
2258 * 2) there is a lock-inversion with mmap_sem through
2259 * perf_event_read_group(), which takes faults while
2260 * holding ctx->mutex, however this is called after
2261 * the last filedesc died, so there is no possibility
2262 * to trigger the AB-BA case.
2263 */
2264 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2265 raw_spin_lock_irq(&ctx->lock);
2266 perf_group_detach(event);
2267 list_del_event(event, ctx);
2268 raw_spin_unlock_irq(&ctx->lock);
2269 mutex_unlock(&ctx->mutex);
2270
2271 mutex_lock(&event->owner->perf_event_mutex);
2272 list_del_init(&event->owner_entry);
2273 mutex_unlock(&event->owner->perf_event_mutex);
2274 put_task_struct(event->owner);
2275
2276 free_event(event);
2277
2278 return 0;
2279 }
2280 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2281
2282 /*
2283 * Called when the last reference to the file is gone.
2284 */
2285 static int perf_release(struct inode *inode, struct file *file)
2286 {
2287 struct perf_event *event = file->private_data;
2288
2289 file->private_data = NULL;
2290
2291 return perf_event_release_kernel(event);
2292 }
2293
2294 static int perf_event_read_size(struct perf_event *event)
2295 {
2296 int entry = sizeof(u64); /* value */
2297 int size = 0;
2298 int nr = 1;
2299
2300 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2301 size += sizeof(u64);
2302
2303 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2304 size += sizeof(u64);
2305
2306 if (event->attr.read_format & PERF_FORMAT_ID)
2307 entry += sizeof(u64);
2308
2309 if (event->attr.read_format & PERF_FORMAT_GROUP) {
2310 nr += event->group_leader->nr_siblings;
2311 size += sizeof(u64);
2312 }
2313
2314 size += entry * nr;
2315
2316 return size;
2317 }
2318
2319 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2320 {
2321 struct perf_event *child;
2322 u64 total = 0;
2323
2324 *enabled = 0;
2325 *running = 0;
2326
2327 mutex_lock(&event->child_mutex);
2328 total += perf_event_read(event);
2329 *enabled += event->total_time_enabled +
2330 atomic64_read(&event->child_total_time_enabled);
2331 *running += event->total_time_running +
2332 atomic64_read(&event->child_total_time_running);
2333
2334 list_for_each_entry(child, &event->child_list, child_list) {
2335 total += perf_event_read(child);
2336 *enabled += child->total_time_enabled;
2337 *running += child->total_time_running;
2338 }
2339 mutex_unlock(&event->child_mutex);
2340
2341 return total;
2342 }
2343 EXPORT_SYMBOL_GPL(perf_event_read_value);
2344
2345 static int perf_event_read_group(struct perf_event *event,
2346 u64 read_format, char __user *buf)
2347 {
2348 struct perf_event *leader = event->group_leader, *sub;
2349 int n = 0, size = 0, ret = -EFAULT;
2350 struct perf_event_context *ctx = leader->ctx;
2351 u64 values[5];
2352 u64 count, enabled, running;
2353
2354 mutex_lock(&ctx->mutex);
2355 count = perf_event_read_value(leader, &enabled, &running);
2356
2357 values[n++] = 1 + leader->nr_siblings;
2358 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2359 values[n++] = enabled;
2360 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2361 values[n++] = running;
2362 values[n++] = count;
2363 if (read_format & PERF_FORMAT_ID)
2364 values[n++] = primary_event_id(leader);
2365
2366 size = n * sizeof(u64);
2367
2368 if (copy_to_user(buf, values, size))
2369 goto unlock;
2370
2371 ret = size;
2372
2373 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2374 n = 0;
2375
2376 values[n++] = perf_event_read_value(sub, &enabled, &running);
2377 if (read_format & PERF_FORMAT_ID)
2378 values[n++] = primary_event_id(sub);
2379
2380 size = n * sizeof(u64);
2381
2382 if (copy_to_user(buf + ret, values, size)) {
2383 ret = -EFAULT;
2384 goto unlock;
2385 }
2386
2387 ret += size;
2388 }
2389 unlock:
2390 mutex_unlock(&ctx->mutex);
2391
2392 return ret;
2393 }
2394
2395 static int perf_event_read_one(struct perf_event *event,
2396 u64 read_format, char __user *buf)
2397 {
2398 u64 enabled, running;
2399 u64 values[4];
2400 int n = 0;
2401
2402 values[n++] = perf_event_read_value(event, &enabled, &running);
2403 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2404 values[n++] = enabled;
2405 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2406 values[n++] = running;
2407 if (read_format & PERF_FORMAT_ID)
2408 values[n++] = primary_event_id(event);
2409
2410 if (copy_to_user(buf, values, n * sizeof(u64)))
2411 return -EFAULT;
2412
2413 return n * sizeof(u64);
2414 }
2415
2416 /*
2417 * Read the performance event - simple non blocking version for now
2418 */
2419 static ssize_t
2420 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2421 {
2422 u64 read_format = event->attr.read_format;
2423 int ret;
2424
2425 /*
2426 * Return end-of-file for a read on a event that is in
2427 * error state (i.e. because it was pinned but it couldn't be
2428 * scheduled on to the CPU at some point).
2429 */
2430 if (event->state == PERF_EVENT_STATE_ERROR)
2431 return 0;
2432
2433 if (count < perf_event_read_size(event))
2434 return -ENOSPC;
2435
2436 WARN_ON_ONCE(event->ctx->parent_ctx);
2437 if (read_format & PERF_FORMAT_GROUP)
2438 ret = perf_event_read_group(event, read_format, buf);
2439 else
2440 ret = perf_event_read_one(event, read_format, buf);
2441
2442 return ret;
2443 }
2444
2445 static ssize_t
2446 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2447 {
2448 struct perf_event *event = file->private_data;
2449
2450 return perf_read_hw(event, buf, count);
2451 }
2452
2453 static unsigned int perf_poll(struct file *file, poll_table *wait)
2454 {
2455 struct perf_event *event = file->private_data;
2456 struct perf_buffer *buffer;
2457 unsigned int events = POLL_HUP;
2458
2459 rcu_read_lock();
2460 buffer = rcu_dereference(event->buffer);
2461 if (buffer)
2462 events = atomic_xchg(&buffer->poll, 0);
2463 rcu_read_unlock();
2464
2465 poll_wait(file, &event->waitq, wait);
2466
2467 return events;
2468 }
2469
2470 static void perf_event_reset(struct perf_event *event)
2471 {
2472 (void)perf_event_read(event);
2473 local64_set(&event->count, 0);
2474 perf_event_update_userpage(event);
2475 }
2476
2477 /*
2478 * Holding the top-level event's child_mutex means that any
2479 * descendant process that has inherited this event will block
2480 * in sync_child_event if it goes to exit, thus satisfying the
2481 * task existence requirements of perf_event_enable/disable.
2482 */
2483 static void perf_event_for_each_child(struct perf_event *event,
2484 void (*func)(struct perf_event *))
2485 {
2486 struct perf_event *child;
2487
2488 WARN_ON_ONCE(event->ctx->parent_ctx);
2489 mutex_lock(&event->child_mutex);
2490 func(event);
2491 list_for_each_entry(child, &event->child_list, child_list)
2492 func(child);
2493 mutex_unlock(&event->child_mutex);
2494 }
2495
2496 static void perf_event_for_each(struct perf_event *event,
2497 void (*func)(struct perf_event *))
2498 {
2499 struct perf_event_context *ctx = event->ctx;
2500 struct perf_event *sibling;
2501
2502 WARN_ON_ONCE(ctx->parent_ctx);
2503 mutex_lock(&ctx->mutex);
2504 event = event->group_leader;
2505
2506 perf_event_for_each_child(event, func);
2507 func(event);
2508 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2509 perf_event_for_each_child(event, func);
2510 mutex_unlock(&ctx->mutex);
2511 }
2512
2513 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2514 {
2515 struct perf_event_context *ctx = event->ctx;
2516 unsigned long size;
2517 int ret = 0;
2518 u64 value;
2519
2520 if (!event->attr.sample_period)
2521 return -EINVAL;
2522
2523 size = copy_from_user(&value, arg, sizeof(value));
2524 if (size != sizeof(value))
2525 return -EFAULT;
2526
2527 if (!value)
2528 return -EINVAL;
2529
2530 raw_spin_lock_irq(&ctx->lock);
2531 if (event->attr.freq) {
2532 if (value > sysctl_perf_event_sample_rate) {
2533 ret = -EINVAL;
2534 goto unlock;
2535 }
2536
2537 event->attr.sample_freq = value;
2538 } else {
2539 event->attr.sample_period = value;
2540 event->hw.sample_period = value;
2541 }
2542 unlock:
2543 raw_spin_unlock_irq(&ctx->lock);
2544
2545 return ret;
2546 }
2547
2548 static const struct file_operations perf_fops;
2549
2550 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2551 {
2552 struct file *file;
2553
2554 file = fget_light(fd, fput_needed);
2555 if (!file)
2556 return ERR_PTR(-EBADF);
2557
2558 if (file->f_op != &perf_fops) {
2559 fput_light(file, *fput_needed);
2560 *fput_needed = 0;
2561 return ERR_PTR(-EBADF);
2562 }
2563
2564 return file->private_data;
2565 }
2566
2567 static int perf_event_set_output(struct perf_event *event,
2568 struct perf_event *output_event);
2569 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2570
2571 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2572 {
2573 struct perf_event *event = file->private_data;
2574 void (*func)(struct perf_event *);
2575 u32 flags = arg;
2576
2577 switch (cmd) {
2578 case PERF_EVENT_IOC_ENABLE:
2579 func = perf_event_enable;
2580 break;
2581 case PERF_EVENT_IOC_DISABLE:
2582 func = perf_event_disable;
2583 break;
2584 case PERF_EVENT_IOC_RESET:
2585 func = perf_event_reset;
2586 break;
2587
2588 case PERF_EVENT_IOC_REFRESH:
2589 return perf_event_refresh(event, arg);
2590
2591 case PERF_EVENT_IOC_PERIOD:
2592 return perf_event_period(event, (u64 __user *)arg);
2593
2594 case PERF_EVENT_IOC_SET_OUTPUT:
2595 {
2596 struct perf_event *output_event = NULL;
2597 int fput_needed = 0;
2598 int ret;
2599
2600 if (arg != -1) {
2601 output_event = perf_fget_light(arg, &fput_needed);
2602 if (IS_ERR(output_event))
2603 return PTR_ERR(output_event);
2604 }
2605
2606 ret = perf_event_set_output(event, output_event);
2607 if (output_event)
2608 fput_light(output_event->filp, fput_needed);
2609
2610 return ret;
2611 }
2612
2613 case PERF_EVENT_IOC_SET_FILTER:
2614 return perf_event_set_filter(event, (void __user *)arg);
2615
2616 default:
2617 return -ENOTTY;
2618 }
2619
2620 if (flags & PERF_IOC_FLAG_GROUP)
2621 perf_event_for_each(event, func);
2622 else
2623 perf_event_for_each_child(event, func);
2624
2625 return 0;
2626 }
2627
2628 int perf_event_task_enable(void)
2629 {
2630 struct perf_event *event;
2631
2632 mutex_lock(&current->perf_event_mutex);
2633 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2634 perf_event_for_each_child(event, perf_event_enable);
2635 mutex_unlock(&current->perf_event_mutex);
2636
2637 return 0;
2638 }
2639
2640 int perf_event_task_disable(void)
2641 {
2642 struct perf_event *event;
2643
2644 mutex_lock(&current->perf_event_mutex);
2645 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2646 perf_event_for_each_child(event, perf_event_disable);
2647 mutex_unlock(&current->perf_event_mutex);
2648
2649 return 0;
2650 }
2651
2652 #ifndef PERF_EVENT_INDEX_OFFSET
2653 # define PERF_EVENT_INDEX_OFFSET 0
2654 #endif
2655
2656 static int perf_event_index(struct perf_event *event)
2657 {
2658 if (event->hw.state & PERF_HES_STOPPED)
2659 return 0;
2660
2661 if (event->state != PERF_EVENT_STATE_ACTIVE)
2662 return 0;
2663
2664 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2665 }
2666
2667 /*
2668 * Callers need to ensure there can be no nesting of this function, otherwise
2669 * the seqlock logic goes bad. We can not serialize this because the arch
2670 * code calls this from NMI context.
2671 */
2672 void perf_event_update_userpage(struct perf_event *event)
2673 {
2674 struct perf_event_mmap_page *userpg;
2675 struct perf_buffer *buffer;
2676
2677 rcu_read_lock();
2678 buffer = rcu_dereference(event->buffer);
2679 if (!buffer)
2680 goto unlock;
2681
2682 userpg = buffer->user_page;
2683
2684 /*
2685 * Disable preemption so as to not let the corresponding user-space
2686 * spin too long if we get preempted.
2687 */
2688 preempt_disable();
2689 ++userpg->lock;
2690 barrier();
2691 userpg->index = perf_event_index(event);
2692 userpg->offset = perf_event_count(event);
2693 if (event->state == PERF_EVENT_STATE_ACTIVE)
2694 userpg->offset -= local64_read(&event->hw.prev_count);
2695
2696 userpg->time_enabled = event->total_time_enabled +
2697 atomic64_read(&event->child_total_time_enabled);
2698
2699 userpg->time_running = event->total_time_running +
2700 atomic64_read(&event->child_total_time_running);
2701
2702 barrier();
2703 ++userpg->lock;
2704 preempt_enable();
2705 unlock:
2706 rcu_read_unlock();
2707 }
2708
2709 static unsigned long perf_data_size(struct perf_buffer *buffer);
2710
2711 static void
2712 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2713 {
2714 long max_size = perf_data_size(buffer);
2715
2716 if (watermark)
2717 buffer->watermark = min(max_size, watermark);
2718
2719 if (!buffer->watermark)
2720 buffer->watermark = max_size / 2;
2721
2722 if (flags & PERF_BUFFER_WRITABLE)
2723 buffer->writable = 1;
2724
2725 atomic_set(&buffer->refcount, 1);
2726 }
2727
2728 #ifndef CONFIG_PERF_USE_VMALLOC
2729
2730 /*
2731 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2732 */
2733
2734 static struct page *
2735 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2736 {
2737 if (pgoff > buffer->nr_pages)
2738 return NULL;
2739
2740 if (pgoff == 0)
2741 return virt_to_page(buffer->user_page);
2742
2743 return virt_to_page(buffer->data_pages[pgoff - 1]);
2744 }
2745
2746 static void *perf_mmap_alloc_page(int cpu)
2747 {
2748 struct page *page;
2749 int node;
2750
2751 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2752 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2753 if (!page)
2754 return NULL;
2755
2756 return page_address(page);
2757 }
2758
2759 static struct perf_buffer *
2760 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2761 {
2762 struct perf_buffer *buffer;
2763 unsigned long size;
2764 int i;
2765
2766 size = sizeof(struct perf_buffer);
2767 size += nr_pages * sizeof(void *);
2768
2769 buffer = kzalloc(size, GFP_KERNEL);
2770 if (!buffer)
2771 goto fail;
2772
2773 buffer->user_page = perf_mmap_alloc_page(cpu);
2774 if (!buffer->user_page)
2775 goto fail_user_page;
2776
2777 for (i = 0; i < nr_pages; i++) {
2778 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2779 if (!buffer->data_pages[i])
2780 goto fail_data_pages;
2781 }
2782
2783 buffer->nr_pages = nr_pages;
2784
2785 perf_buffer_init(buffer, watermark, flags);
2786
2787 return buffer;
2788
2789 fail_data_pages:
2790 for (i--; i >= 0; i--)
2791 free_page((unsigned long)buffer->data_pages[i]);
2792
2793 free_page((unsigned long)buffer->user_page);
2794
2795 fail_user_page:
2796 kfree(buffer);
2797
2798 fail:
2799 return NULL;
2800 }
2801
2802 static void perf_mmap_free_page(unsigned long addr)
2803 {
2804 struct page *page = virt_to_page((void *)addr);
2805
2806 page->mapping = NULL;
2807 __free_page(page);
2808 }
2809
2810 static void perf_buffer_free(struct perf_buffer *buffer)
2811 {
2812 int i;
2813
2814 perf_mmap_free_page((unsigned long)buffer->user_page);
2815 for (i = 0; i < buffer->nr_pages; i++)
2816 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2817 kfree(buffer);
2818 }
2819
2820 static inline int page_order(struct perf_buffer *buffer)
2821 {
2822 return 0;
2823 }
2824
2825 #else
2826
2827 /*
2828 * Back perf_mmap() with vmalloc memory.
2829 *
2830 * Required for architectures that have d-cache aliasing issues.
2831 */
2832
2833 static inline int page_order(struct perf_buffer *buffer)
2834 {
2835 return buffer->page_order;
2836 }
2837
2838 static struct page *
2839 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2840 {
2841 if (pgoff > (1UL << page_order(buffer)))
2842 return NULL;
2843
2844 return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2845 }
2846
2847 static void perf_mmap_unmark_page(void *addr)
2848 {
2849 struct page *page = vmalloc_to_page(addr);
2850
2851 page->mapping = NULL;
2852 }
2853
2854 static void perf_buffer_free_work(struct work_struct *work)
2855 {
2856 struct perf_buffer *buffer;
2857 void *base;
2858 int i, nr;
2859
2860 buffer = container_of(work, struct perf_buffer, work);
2861 nr = 1 << page_order(buffer);
2862
2863 base = buffer->user_page;
2864 for (i = 0; i < nr + 1; i++)
2865 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2866
2867 vfree(base);
2868 kfree(buffer);
2869 }
2870
2871 static void perf_buffer_free(struct perf_buffer *buffer)
2872 {
2873 schedule_work(&buffer->work);
2874 }
2875
2876 static struct perf_buffer *
2877 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2878 {
2879 struct perf_buffer *buffer;
2880 unsigned long size;
2881 void *all_buf;
2882
2883 size = sizeof(struct perf_buffer);
2884 size += sizeof(void *);
2885
2886 buffer = kzalloc(size, GFP_KERNEL);
2887 if (!buffer)
2888 goto fail;
2889
2890 INIT_WORK(&buffer->work, perf_buffer_free_work);
2891
2892 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2893 if (!all_buf)
2894 goto fail_all_buf;
2895
2896 buffer->user_page = all_buf;
2897 buffer->data_pages[0] = all_buf + PAGE_SIZE;
2898 buffer->page_order = ilog2(nr_pages);
2899 buffer->nr_pages = 1;
2900
2901 perf_buffer_init(buffer, watermark, flags);
2902
2903 return buffer;
2904
2905 fail_all_buf:
2906 kfree(buffer);
2907
2908 fail:
2909 return NULL;
2910 }
2911
2912 #endif
2913
2914 static unsigned long perf_data_size(struct perf_buffer *buffer)
2915 {
2916 return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2917 }
2918
2919 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2920 {
2921 struct perf_event *event = vma->vm_file->private_data;
2922 struct perf_buffer *buffer;
2923 int ret = VM_FAULT_SIGBUS;
2924
2925 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2926 if (vmf->pgoff == 0)
2927 ret = 0;
2928 return ret;
2929 }
2930
2931 rcu_read_lock();
2932 buffer = rcu_dereference(event->buffer);
2933 if (!buffer)
2934 goto unlock;
2935
2936 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2937 goto unlock;
2938
2939 vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2940 if (!vmf->page)
2941 goto unlock;
2942
2943 get_page(vmf->page);
2944 vmf->page->mapping = vma->vm_file->f_mapping;
2945 vmf->page->index = vmf->pgoff;
2946
2947 ret = 0;
2948 unlock:
2949 rcu_read_unlock();
2950
2951 return ret;
2952 }
2953
2954 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2955 {
2956 struct perf_buffer *buffer;
2957
2958 buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
2959 perf_buffer_free(buffer);
2960 }
2961
2962 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2963 {
2964 struct perf_buffer *buffer;
2965
2966 rcu_read_lock();
2967 buffer = rcu_dereference(event->buffer);
2968 if (buffer) {
2969 if (!atomic_inc_not_zero(&buffer->refcount))
2970 buffer = NULL;
2971 }
2972 rcu_read_unlock();
2973
2974 return buffer;
2975 }
2976
2977 static void perf_buffer_put(struct perf_buffer *buffer)
2978 {
2979 if (!atomic_dec_and_test(&buffer->refcount))
2980 return;
2981
2982 call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2983 }
2984
2985 static void perf_mmap_open(struct vm_area_struct *vma)
2986 {
2987 struct perf_event *event = vma->vm_file->private_data;
2988
2989 atomic_inc(&event->mmap_count);
2990 }
2991
2992 static void perf_mmap_close(struct vm_area_struct *vma)
2993 {
2994 struct perf_event *event = vma->vm_file->private_data;
2995
2996 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2997 unsigned long size = perf_data_size(event->buffer);
2998 struct user_struct *user = event->mmap_user;
2999 struct perf_buffer *buffer = event->buffer;
3000
3001 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3002 vma->vm_mm->locked_vm -= event->mmap_locked;
3003 rcu_assign_pointer(event->buffer, NULL);
3004 mutex_unlock(&event->mmap_mutex);
3005
3006 perf_buffer_put(buffer);
3007 free_uid(user);
3008 }
3009 }
3010
3011 static const struct vm_operations_struct perf_mmap_vmops = {
3012 .open = perf_mmap_open,
3013 .close = perf_mmap_close,
3014 .fault = perf_mmap_fault,
3015 .page_mkwrite = perf_mmap_fault,
3016 };
3017
3018 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3019 {
3020 struct perf_event *event = file->private_data;
3021 unsigned long user_locked, user_lock_limit;
3022 struct user_struct *user = current_user();
3023 unsigned long locked, lock_limit;
3024 struct perf_buffer *buffer;
3025 unsigned long vma_size;
3026 unsigned long nr_pages;
3027 long user_extra, extra;
3028 int ret = 0, flags = 0;
3029
3030 /*
3031 * Don't allow mmap() of inherited per-task counters. This would
3032 * create a performance issue due to all children writing to the
3033 * same buffer.
3034 */
3035 if (event->cpu == -1 && event->attr.inherit)
3036 return -EINVAL;
3037
3038 if (!(vma->vm_flags & VM_SHARED))
3039 return -EINVAL;
3040
3041 vma_size = vma->vm_end - vma->vm_start;
3042 nr_pages = (vma_size / PAGE_SIZE) - 1;
3043
3044 /*
3045 * If we have buffer pages ensure they're a power-of-two number, so we
3046 * can do bitmasks instead of modulo.
3047 */
3048 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3049 return -EINVAL;
3050
3051 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3052 return -EINVAL;
3053
3054 if (vma->vm_pgoff != 0)
3055 return -EINVAL;
3056
3057 WARN_ON_ONCE(event->ctx->parent_ctx);
3058 mutex_lock(&event->mmap_mutex);
3059 if (event->buffer) {
3060 if (event->buffer->nr_pages == nr_pages)
3061 atomic_inc(&event->buffer->refcount);
3062 else
3063 ret = -EINVAL;
3064 goto unlock;
3065 }
3066
3067 user_extra = nr_pages + 1;
3068 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3069
3070 /*
3071 * Increase the limit linearly with more CPUs:
3072 */
3073 user_lock_limit *= num_online_cpus();
3074
3075 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3076
3077 extra = 0;
3078 if (user_locked > user_lock_limit)
3079 extra = user_locked - user_lock_limit;
3080
3081 lock_limit = rlimit(RLIMIT_MEMLOCK);
3082 lock_limit >>= PAGE_SHIFT;
3083 locked = vma->vm_mm->locked_vm + extra;
3084
3085 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3086 !capable(CAP_IPC_LOCK)) {
3087 ret = -EPERM;
3088 goto unlock;
3089 }
3090
3091 WARN_ON(event->buffer);
3092
3093 if (vma->vm_flags & VM_WRITE)
3094 flags |= PERF_BUFFER_WRITABLE;
3095
3096 buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3097 event->cpu, flags);
3098 if (!buffer) {
3099 ret = -ENOMEM;
3100 goto unlock;
3101 }
3102 rcu_assign_pointer(event->buffer, buffer);
3103
3104 atomic_long_add(user_extra, &user->locked_vm);
3105 event->mmap_locked = extra;
3106 event->mmap_user = get_current_user();
3107 vma->vm_mm->locked_vm += event->mmap_locked;
3108
3109 unlock:
3110 if (!ret)
3111 atomic_inc(&event->mmap_count);
3112 mutex_unlock(&event->mmap_mutex);
3113
3114 vma->vm_flags |= VM_RESERVED;
3115 vma->vm_ops = &perf_mmap_vmops;
3116
3117 return ret;
3118 }
3119
3120 static int perf_fasync(int fd, struct file *filp, int on)
3121 {
3122 struct inode *inode = filp->f_path.dentry->d_inode;
3123 struct perf_event *event = filp->private_data;
3124 int retval;
3125
3126 mutex_lock(&inode->i_mutex);
3127 retval = fasync_helper(fd, filp, on, &event->fasync);
3128 mutex_unlock(&inode->i_mutex);
3129
3130 if (retval < 0)
3131 return retval;
3132
3133 return 0;
3134 }
3135
3136 static const struct file_operations perf_fops = {
3137 .llseek = no_llseek,
3138 .release = perf_release,
3139 .read = perf_read,
3140 .poll = perf_poll,
3141 .unlocked_ioctl = perf_ioctl,
3142 .compat_ioctl = perf_ioctl,
3143 .mmap = perf_mmap,
3144 .fasync = perf_fasync,
3145 };
3146
3147 /*
3148 * Perf event wakeup
3149 *
3150 * If there's data, ensure we set the poll() state and publish everything
3151 * to user-space before waking everybody up.
3152 */
3153
3154 void perf_event_wakeup(struct perf_event *event)
3155 {
3156 wake_up_all(&event->waitq);
3157
3158 if (event->pending_kill) {
3159 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3160 event->pending_kill = 0;
3161 }
3162 }
3163
3164 static void perf_pending_event(struct irq_work *entry)
3165 {
3166 struct perf_event *event = container_of(entry,
3167 struct perf_event, pending);
3168
3169 if (event->pending_disable) {
3170 event->pending_disable = 0;
3171 __perf_event_disable(event);
3172 }
3173
3174 if (event->pending_wakeup) {
3175 event->pending_wakeup = 0;
3176 perf_event_wakeup(event);
3177 }
3178 }
3179
3180 /*
3181 * We assume there is only KVM supporting the callbacks.
3182 * Later on, we might change it to a list if there is
3183 * another virtualization implementation supporting the callbacks.
3184 */
3185 struct perf_guest_info_callbacks *perf_guest_cbs;
3186
3187 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3188 {
3189 perf_guest_cbs = cbs;
3190 return 0;
3191 }
3192 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3193
3194 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3195 {
3196 perf_guest_cbs = NULL;
3197 return 0;
3198 }
3199 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3200
3201 /*
3202 * Output
3203 */
3204 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3205 unsigned long offset, unsigned long head)
3206 {
3207 unsigned long mask;
3208
3209 if (!buffer->writable)
3210 return true;
3211
3212 mask = perf_data_size(buffer) - 1;
3213
3214 offset = (offset - tail) & mask;
3215 head = (head - tail) & mask;
3216
3217 if ((int)(head - offset) < 0)
3218 return false;
3219
3220 return true;
3221 }
3222
3223 static void perf_output_wakeup(struct perf_output_handle *handle)
3224 {
3225 atomic_set(&handle->buffer->poll, POLL_IN);
3226
3227 if (handle->nmi) {
3228 handle->event->pending_wakeup = 1;
3229 irq_work_queue(&handle->event->pending);
3230 } else
3231 perf_event_wakeup(handle->event);
3232 }
3233
3234 /*
3235 * We need to ensure a later event_id doesn't publish a head when a former
3236 * event isn't done writing. However since we need to deal with NMIs we
3237 * cannot fully serialize things.
3238 *
3239 * We only publish the head (and generate a wakeup) when the outer-most
3240 * event completes.
3241 */
3242 static void perf_output_get_handle(struct perf_output_handle *handle)
3243 {
3244 struct perf_buffer *buffer = handle->buffer;
3245
3246 preempt_disable();
3247 local_inc(&buffer->nest);
3248 handle->wakeup = local_read(&buffer->wakeup);
3249 }
3250
3251 static void perf_output_put_handle(struct perf_output_handle *handle)
3252 {
3253 struct perf_buffer *buffer = handle->buffer;
3254 unsigned long head;
3255
3256 again:
3257 head = local_read(&buffer->head);
3258
3259 /*
3260 * IRQ/NMI can happen here, which means we can miss a head update.
3261 */
3262
3263 if (!local_dec_and_test(&buffer->nest))
3264 goto out;
3265
3266 /*
3267 * Publish the known good head. Rely on the full barrier implied
3268 * by atomic_dec_and_test() order the buffer->head read and this
3269 * write.
3270 */
3271 buffer->user_page->data_head = head;
3272
3273 /*
3274 * Now check if we missed an update, rely on the (compiler)
3275 * barrier in atomic_dec_and_test() to re-read buffer->head.
3276 */
3277 if (unlikely(head != local_read(&buffer->head))) {
3278 local_inc(&buffer->nest);
3279 goto again;
3280 }
3281
3282 if (handle->wakeup != local_read(&buffer->wakeup))
3283 perf_output_wakeup(handle);
3284
3285 out:
3286 preempt_enable();
3287 }
3288
3289 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3290 const void *buf, unsigned int len)
3291 {
3292 do {
3293 unsigned long size = min_t(unsigned long, handle->size, len);
3294
3295 memcpy(handle->addr, buf, size);
3296
3297 len -= size;
3298 handle->addr += size;
3299 buf += size;
3300 handle->size -= size;
3301 if (!handle->size) {
3302 struct perf_buffer *buffer = handle->buffer;
3303
3304 handle->page++;
3305 handle->page &= buffer->nr_pages - 1;
3306 handle->addr = buffer->data_pages[handle->page];
3307 handle->size = PAGE_SIZE << page_order(buffer);
3308 }
3309 } while (len);
3310 }
3311
3312 int perf_output_begin(struct perf_output_handle *handle,
3313 struct perf_event *event, unsigned int size,
3314 int nmi, int sample)
3315 {
3316 struct perf_buffer *buffer;
3317 unsigned long tail, offset, head;
3318 int have_lost;
3319 struct {
3320 struct perf_event_header header;
3321 u64 id;
3322 u64 lost;
3323 } lost_event;
3324
3325 rcu_read_lock();
3326 /*
3327 * For inherited events we send all the output towards the parent.
3328 */
3329 if (event->parent)
3330 event = event->parent;
3331
3332 buffer = rcu_dereference(event->buffer);
3333 if (!buffer)
3334 goto out;
3335
3336 handle->buffer = buffer;
3337 handle->event = event;
3338 handle->nmi = nmi;
3339 handle->sample = sample;
3340
3341 if (!buffer->nr_pages)
3342 goto out;
3343
3344 have_lost = local_read(&buffer->lost);
3345 if (have_lost)
3346 size += sizeof(lost_event);
3347
3348 perf_output_get_handle(handle);
3349
3350 do {
3351 /*
3352 * Userspace could choose to issue a mb() before updating the
3353 * tail pointer. So that all reads will be completed before the
3354 * write is issued.
3355 */
3356 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3357 smp_rmb();
3358 offset = head = local_read(&buffer->head);
3359 head += size;
3360 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3361 goto fail;
3362 } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3363
3364 if (head - local_read(&buffer->wakeup) > buffer->watermark)
3365 local_add(buffer->watermark, &buffer->wakeup);
3366
3367 handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3368 handle->page &= buffer->nr_pages - 1;
3369 handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3370 handle->addr = buffer->data_pages[handle->page];
3371 handle->addr += handle->size;
3372 handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3373
3374 if (have_lost) {
3375 lost_event.header.type = PERF_RECORD_LOST;
3376 lost_event.header.misc = 0;
3377 lost_event.header.size = sizeof(lost_event);
3378 lost_event.id = event->id;
3379 lost_event.lost = local_xchg(&buffer->lost, 0);
3380
3381 perf_output_put(handle, lost_event);
3382 }
3383
3384 return 0;
3385
3386 fail:
3387 local_inc(&buffer->lost);
3388 perf_output_put_handle(handle);
3389 out:
3390 rcu_read_unlock();
3391
3392 return -ENOSPC;
3393 }
3394
3395 void perf_output_end(struct perf_output_handle *handle)
3396 {
3397 struct perf_event *event = handle->event;
3398 struct perf_buffer *buffer = handle->buffer;
3399
3400 int wakeup_events = event->attr.wakeup_events;
3401
3402 if (handle->sample && wakeup_events) {
3403 int events = local_inc_return(&buffer->events);
3404 if (events >= wakeup_events) {
3405 local_sub(wakeup_events, &buffer->events);
3406 local_inc(&buffer->wakeup);
3407 }
3408 }
3409
3410 perf_output_put_handle(handle);
3411 rcu_read_unlock();
3412 }
3413
3414 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3415 {
3416 /*
3417 * only top level events have the pid namespace they were created in
3418 */
3419 if (event->parent)
3420 event = event->parent;
3421
3422 return task_tgid_nr_ns(p, event->ns);
3423 }
3424
3425 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3426 {
3427 /*
3428 * only top level events have the pid namespace they were created in
3429 */
3430 if (event->parent)
3431 event = event->parent;
3432
3433 return task_pid_nr_ns(p, event->ns);
3434 }
3435
3436 static void perf_output_read_one(struct perf_output_handle *handle,
3437 struct perf_event *event)
3438 {
3439 u64 read_format = event->attr.read_format;
3440 u64 values[4];
3441 int n = 0;
3442
3443 values[n++] = perf_event_count(event);
3444 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3445 values[n++] = event->total_time_enabled +
3446 atomic64_read(&event->child_total_time_enabled);
3447 }
3448 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3449 values[n++] = event->total_time_running +
3450 atomic64_read(&event->child_total_time_running);
3451 }
3452 if (read_format & PERF_FORMAT_ID)
3453 values[n++] = primary_event_id(event);
3454
3455 perf_output_copy(handle, values, n * sizeof(u64));
3456 }
3457
3458 /*
3459 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3460 */
3461 static void perf_output_read_group(struct perf_output_handle *handle,
3462 struct perf_event *event)
3463 {
3464 struct perf_event *leader = event->group_leader, *sub;
3465 u64 read_format = event->attr.read_format;
3466 u64 values[5];
3467 int n = 0;
3468
3469 values[n++] = 1 + leader->nr_siblings;
3470
3471 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3472 values[n++] = leader->total_time_enabled;
3473
3474 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3475 values[n++] = leader->total_time_running;
3476
3477 if (leader != event)
3478 leader->pmu->read(leader);
3479
3480 values[n++] = perf_event_count(leader);
3481 if (read_format & PERF_FORMAT_ID)
3482 values[n++] = primary_event_id(leader);
3483
3484 perf_output_copy(handle, values, n * sizeof(u64));
3485
3486 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3487 n = 0;
3488
3489 if (sub != event)
3490 sub->pmu->read(sub);
3491
3492 values[n++] = perf_event_count(sub);
3493 if (read_format & PERF_FORMAT_ID)
3494 values[n++] = primary_event_id(sub);
3495
3496 perf_output_copy(handle, values, n * sizeof(u64));
3497 }
3498 }
3499
3500 static void perf_output_read(struct perf_output_handle *handle,
3501 struct perf_event *event)
3502 {
3503 if (event->attr.read_format & PERF_FORMAT_GROUP)
3504 perf_output_read_group(handle, event);
3505 else
3506 perf_output_read_one(handle, event);
3507 }
3508
3509 void perf_output_sample(struct perf_output_handle *handle,
3510 struct perf_event_header *header,
3511 struct perf_sample_data *data,
3512 struct perf_event *event)
3513 {
3514 u64 sample_type = data->type;
3515
3516 perf_output_put(handle, *header);
3517
3518 if (sample_type & PERF_SAMPLE_IP)
3519 perf_output_put(handle, data->ip);
3520
3521 if (sample_type & PERF_SAMPLE_TID)
3522 perf_output_put(handle, data->tid_entry);
3523
3524 if (sample_type & PERF_SAMPLE_TIME)
3525 perf_output_put(handle, data->time);
3526
3527 if (sample_type & PERF_SAMPLE_ADDR)
3528 perf_output_put(handle, data->addr);
3529
3530 if (sample_type & PERF_SAMPLE_ID)
3531 perf_output_put(handle, data->id);
3532
3533 if (sample_type & PERF_SAMPLE_STREAM_ID)
3534 perf_output_put(handle, data->stream_id);
3535
3536 if (sample_type & PERF_SAMPLE_CPU)
3537 perf_output_put(handle, data->cpu_entry);
3538
3539 if (sample_type & PERF_SAMPLE_PERIOD)
3540 perf_output_put(handle, data->period);
3541
3542 if (sample_type & PERF_SAMPLE_READ)
3543 perf_output_read(handle, event);
3544
3545 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3546 if (data->callchain) {
3547 int size = 1;
3548
3549 if (data->callchain)
3550 size += data->callchain->nr;
3551
3552 size *= sizeof(u64);
3553
3554 perf_output_copy(handle, data->callchain, size);
3555 } else {
3556 u64 nr = 0;
3557 perf_output_put(handle, nr);
3558 }
3559 }
3560
3561 if (sample_type & PERF_SAMPLE_RAW) {
3562 if (data->raw) {
3563 perf_output_put(handle, data->raw->size);
3564 perf_output_copy(handle, data->raw->data,
3565 data->raw->size);
3566 } else {
3567 struct {
3568 u32 size;
3569 u32 data;
3570 } raw = {
3571 .size = sizeof(u32),
3572 .data = 0,
3573 };
3574 perf_output_put(handle, raw);
3575 }
3576 }
3577 }
3578
3579 void perf_prepare_sample(struct perf_event_header *header,
3580 struct perf_sample_data *data,
3581 struct perf_event *event,
3582 struct pt_regs *regs)
3583 {
3584 u64 sample_type = event->attr.sample_type;
3585
3586 data->type = sample_type;
3587
3588 header->type = PERF_RECORD_SAMPLE;
3589 header->size = sizeof(*header);
3590
3591 header->misc = 0;
3592 header->misc |= perf_misc_flags(regs);
3593
3594 if (sample_type & PERF_SAMPLE_IP) {
3595 data->ip = perf_instruction_pointer(regs);
3596
3597 header->size += sizeof(data->ip);
3598 }
3599
3600 if (sample_type & PERF_SAMPLE_TID) {
3601 /* namespace issues */
3602 data->tid_entry.pid = perf_event_pid(event, current);
3603 data->tid_entry.tid = perf_event_tid(event, current);
3604
3605 header->size += sizeof(data->tid_entry);
3606 }
3607
3608 if (sample_type & PERF_SAMPLE_TIME) {
3609 data->time = perf_clock();
3610
3611 header->size += sizeof(data->time);
3612 }
3613
3614 if (sample_type & PERF_SAMPLE_ADDR)
3615 header->size += sizeof(data->addr);
3616
3617 if (sample_type & PERF_SAMPLE_ID) {
3618 data->id = primary_event_id(event);
3619
3620 header->size += sizeof(data->id);
3621 }
3622
3623 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3624 data->stream_id = event->id;
3625
3626 header->size += sizeof(data->stream_id);
3627 }
3628
3629 if (sample_type & PERF_SAMPLE_CPU) {
3630 data->cpu_entry.cpu = raw_smp_processor_id();
3631 data->cpu_entry.reserved = 0;
3632
3633 header->size += sizeof(data->cpu_entry);
3634 }
3635
3636 if (sample_type & PERF_SAMPLE_PERIOD)
3637 header->size += sizeof(data->period);
3638
3639 if (sample_type & PERF_SAMPLE_READ)
3640 header->size += perf_event_read_size(event);
3641
3642 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3643 int size = 1;
3644
3645 data->callchain = perf_callchain(regs);
3646
3647 if (data->callchain)
3648 size += data->callchain->nr;
3649
3650 header->size += size * sizeof(u64);
3651 }
3652
3653 if (sample_type & PERF_SAMPLE_RAW) {
3654 int size = sizeof(u32);
3655
3656 if (data->raw)
3657 size += data->raw->size;
3658 else
3659 size += sizeof(u32);
3660
3661 WARN_ON_ONCE(size & (sizeof(u64)-1));
3662 header->size += size;
3663 }
3664 }
3665
3666 static void perf_event_output(struct perf_event *event, int nmi,
3667 struct perf_sample_data *data,
3668 struct pt_regs *regs)
3669 {
3670 struct perf_output_handle handle;
3671 struct perf_event_header header;
3672
3673 /* protect the callchain buffers */
3674 rcu_read_lock();
3675
3676 perf_prepare_sample(&header, data, event, regs);
3677
3678 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3679 goto exit;
3680
3681 perf_output_sample(&handle, &header, data, event);
3682
3683 perf_output_end(&handle);
3684
3685 exit:
3686 rcu_read_unlock();
3687 }
3688
3689 /*
3690 * read event_id
3691 */
3692
3693 struct perf_read_event {
3694 struct perf_event_header header;
3695
3696 u32 pid;
3697 u32 tid;
3698 };
3699
3700 static void
3701 perf_event_read_event(struct perf_event *event,
3702 struct task_struct *task)
3703 {
3704 struct perf_output_handle handle;
3705 struct perf_read_event read_event = {
3706 .header = {
3707 .type = PERF_RECORD_READ,
3708 .misc = 0,
3709 .size = sizeof(read_event) + perf_event_read_size(event),
3710 },
3711 .pid = perf_event_pid(event, task),
3712 .tid = perf_event_tid(event, task),
3713 };
3714 int ret;
3715
3716 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3717 if (ret)
3718 return;
3719
3720 perf_output_put(&handle, read_event);
3721 perf_output_read(&handle, event);
3722
3723 perf_output_end(&handle);
3724 }
3725
3726 /*
3727 * task tracking -- fork/exit
3728 *
3729 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3730 */
3731
3732 struct perf_task_event {
3733 struct task_struct *task;
3734 struct perf_event_context *task_ctx;
3735
3736 struct {
3737 struct perf_event_header header;
3738
3739 u32 pid;
3740 u32 ppid;
3741 u32 tid;
3742 u32 ptid;
3743 u64 time;
3744 } event_id;
3745 };
3746
3747 static void perf_event_task_output(struct perf_event *event,
3748 struct perf_task_event *task_event)
3749 {
3750 struct perf_output_handle handle;
3751 struct task_struct *task = task_event->task;
3752 int size, ret;
3753
3754 size = task_event->event_id.header.size;
3755 ret = perf_output_begin(&handle, event, size, 0, 0);
3756
3757 if (ret)
3758 return;
3759
3760 task_event->event_id.pid = perf_event_pid(event, task);
3761 task_event->event_id.ppid = perf_event_pid(event, current);
3762
3763 task_event->event_id.tid = perf_event_tid(event, task);
3764 task_event->event_id.ptid = perf_event_tid(event, current);
3765
3766 perf_output_put(&handle, task_event->event_id);
3767
3768 perf_output_end(&handle);
3769 }
3770
3771 static int perf_event_task_match(struct perf_event *event)
3772 {
3773 if (event->state < PERF_EVENT_STATE_INACTIVE)
3774 return 0;
3775
3776 if (event->cpu != -1 && event->cpu != smp_processor_id())
3777 return 0;
3778
3779 if (event->attr.comm || event->attr.mmap ||
3780 event->attr.mmap_data || event->attr.task)
3781 return 1;
3782
3783 return 0;
3784 }
3785
3786 static void perf_event_task_ctx(struct perf_event_context *ctx,
3787 struct perf_task_event *task_event)
3788 {
3789 struct perf_event *event;
3790
3791 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3792 if (perf_event_task_match(event))
3793 perf_event_task_output(event, task_event);
3794 }
3795 }
3796
3797 static void perf_event_task_event(struct perf_task_event *task_event)
3798 {
3799 struct perf_cpu_context *cpuctx;
3800 struct perf_event_context *ctx;
3801 struct pmu *pmu;
3802 int ctxn;
3803
3804 rcu_read_lock();
3805 list_for_each_entry_rcu(pmu, &pmus, entry) {
3806 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3807 perf_event_task_ctx(&cpuctx->ctx, task_event);
3808
3809 ctx = task_event->task_ctx;
3810 if (!ctx) {
3811 ctxn = pmu->task_ctx_nr;
3812 if (ctxn < 0)
3813 goto next;
3814 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3815 }
3816 if (ctx)
3817 perf_event_task_ctx(ctx, task_event);
3818 next:
3819 put_cpu_ptr(pmu->pmu_cpu_context);
3820 }
3821 rcu_read_unlock();
3822 }
3823
3824 static void perf_event_task(struct task_struct *task,
3825 struct perf_event_context *task_ctx,
3826 int new)
3827 {
3828 struct perf_task_event task_event;
3829
3830 if (!atomic_read(&nr_comm_events) &&
3831 !atomic_read(&nr_mmap_events) &&
3832 !atomic_read(&nr_task_events))
3833 return;
3834
3835 task_event = (struct perf_task_event){
3836 .task = task,
3837 .task_ctx = task_ctx,
3838 .event_id = {
3839 .header = {
3840 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3841 .misc = 0,
3842 .size = sizeof(task_event.event_id),
3843 },
3844 /* .pid */
3845 /* .ppid */
3846 /* .tid */
3847 /* .ptid */
3848 .time = perf_clock(),
3849 },
3850 };
3851
3852 perf_event_task_event(&task_event);
3853 }
3854
3855 void perf_event_fork(struct task_struct *task)
3856 {
3857 perf_event_task(task, NULL, 1);
3858 }
3859
3860 /*
3861 * comm tracking
3862 */
3863
3864 struct perf_comm_event {
3865 struct task_struct *task;
3866 char *comm;
3867 int comm_size;
3868
3869 struct {
3870 struct perf_event_header header;
3871
3872 u32 pid;
3873 u32 tid;
3874 } event_id;
3875 };
3876
3877 static void perf_event_comm_output(struct perf_event *event,
3878 struct perf_comm_event *comm_event)
3879 {
3880 struct perf_output_handle handle;
3881 int size = comm_event->event_id.header.size;
3882 int ret = perf_output_begin(&handle, event, size, 0, 0);
3883
3884 if (ret)
3885 return;
3886
3887 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3888 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3889
3890 perf_output_put(&handle, comm_event->event_id);
3891 perf_output_copy(&handle, comm_event->comm,
3892 comm_event->comm_size);
3893 perf_output_end(&handle);
3894 }
3895
3896 static int perf_event_comm_match(struct perf_event *event)
3897 {
3898 if (event->state < PERF_EVENT_STATE_INACTIVE)
3899 return 0;
3900
3901 if (event->cpu != -1 && event->cpu != smp_processor_id())
3902 return 0;
3903
3904 if (event->attr.comm)
3905 return 1;
3906
3907 return 0;
3908 }
3909
3910 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3911 struct perf_comm_event *comm_event)
3912 {
3913 struct perf_event *event;
3914
3915 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3916 if (perf_event_comm_match(event))
3917 perf_event_comm_output(event, comm_event);
3918 }
3919 }
3920
3921 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3922 {
3923 struct perf_cpu_context *cpuctx;
3924 struct perf_event_context *ctx;
3925 char comm[TASK_COMM_LEN];
3926 unsigned int size;
3927 struct pmu *pmu;
3928 int ctxn;
3929
3930 memset(comm, 0, sizeof(comm));
3931 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3932 size = ALIGN(strlen(comm)+1, sizeof(u64));
3933
3934 comm_event->comm = comm;
3935 comm_event->comm_size = size;
3936
3937 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3938
3939 rcu_read_lock();
3940 list_for_each_entry_rcu(pmu, &pmus, entry) {
3941 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3942 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3943
3944 ctxn = pmu->task_ctx_nr;
3945 if (ctxn < 0)
3946 goto next;
3947
3948 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3949 if (ctx)
3950 perf_event_comm_ctx(ctx, comm_event);
3951 next:
3952 put_cpu_ptr(pmu->pmu_cpu_context);
3953 }
3954 rcu_read_unlock();
3955 }
3956
3957 void perf_event_comm(struct task_struct *task)
3958 {
3959 struct perf_comm_event comm_event;
3960 struct perf_event_context *ctx;
3961 int ctxn;
3962
3963 for_each_task_context_nr(ctxn) {
3964 ctx = task->perf_event_ctxp[ctxn];
3965 if (!ctx)
3966 continue;
3967
3968 perf_event_enable_on_exec(ctx);
3969 }
3970
3971 if (!atomic_read(&nr_comm_events))
3972 return;
3973
3974 comm_event = (struct perf_comm_event){
3975 .task = task,
3976 /* .comm */
3977 /* .comm_size */
3978 .event_id = {
3979 .header = {
3980 .type = PERF_RECORD_COMM,
3981 .misc = 0,
3982 /* .size */
3983 },
3984 /* .pid */
3985 /* .tid */
3986 },
3987 };
3988
3989 perf_event_comm_event(&comm_event);
3990 }
3991
3992 /*
3993 * mmap tracking
3994 */
3995
3996 struct perf_mmap_event {
3997 struct vm_area_struct *vma;
3998
3999 const char *file_name;
4000 int file_size;
4001
4002 struct {
4003 struct perf_event_header header;
4004
4005 u32 pid;
4006 u32 tid;
4007 u64 start;
4008 u64 len;
4009 u64 pgoff;
4010 } event_id;
4011 };
4012
4013 static void perf_event_mmap_output(struct perf_event *event,
4014 struct perf_mmap_event *mmap_event)
4015 {
4016 struct perf_output_handle handle;
4017 int size = mmap_event->event_id.header.size;
4018 int ret = perf_output_begin(&handle, event, size, 0, 0);
4019
4020 if (ret)
4021 return;
4022
4023 mmap_event->event_id.pid = perf_event_pid(event, current);
4024 mmap_event->event_id.tid = perf_event_tid(event, current);
4025
4026 perf_output_put(&handle, mmap_event->event_id);
4027 perf_output_copy(&handle, mmap_event->file_name,
4028 mmap_event->file_size);
4029 perf_output_end(&handle);
4030 }
4031
4032 static int perf_event_mmap_match(struct perf_event *event,
4033 struct perf_mmap_event *mmap_event,
4034 int executable)
4035 {
4036 if (event->state < PERF_EVENT_STATE_INACTIVE)
4037 return 0;
4038
4039 if (event->cpu != -1 && event->cpu != smp_processor_id())
4040 return 0;
4041
4042 if ((!executable && event->attr.mmap_data) ||
4043 (executable && event->attr.mmap))
4044 return 1;
4045
4046 return 0;
4047 }
4048
4049 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4050 struct perf_mmap_event *mmap_event,
4051 int executable)
4052 {
4053 struct perf_event *event;
4054
4055 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4056 if (perf_event_mmap_match(event, mmap_event, executable))
4057 perf_event_mmap_output(event, mmap_event);
4058 }
4059 }
4060
4061 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4062 {
4063 struct perf_cpu_context *cpuctx;
4064 struct perf_event_context *ctx;
4065 struct vm_area_struct *vma = mmap_event->vma;
4066 struct file *file = vma->vm_file;
4067 unsigned int size;
4068 char tmp[16];
4069 char *buf = NULL;
4070 const char *name;
4071 struct pmu *pmu;
4072 int ctxn;
4073
4074 memset(tmp, 0, sizeof(tmp));
4075
4076 if (file) {
4077 /*
4078 * d_path works from the end of the buffer backwards, so we
4079 * need to add enough zero bytes after the string to handle
4080 * the 64bit alignment we do later.
4081 */
4082 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4083 if (!buf) {
4084 name = strncpy(tmp, "//enomem", sizeof(tmp));
4085 goto got_name;
4086 }
4087 name = d_path(&file->f_path, buf, PATH_MAX);
4088 if (IS_ERR(name)) {
4089 name = strncpy(tmp, "//toolong", sizeof(tmp));
4090 goto got_name;
4091 }
4092 } else {
4093 if (arch_vma_name(mmap_event->vma)) {
4094 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4095 sizeof(tmp));
4096 goto got_name;
4097 }
4098
4099 if (!vma->vm_mm) {
4100 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4101 goto got_name;
4102 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4103 vma->vm_end >= vma->vm_mm->brk) {
4104 name = strncpy(tmp, "[heap]", sizeof(tmp));
4105 goto got_name;
4106 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4107 vma->vm_end >= vma->vm_mm->start_stack) {
4108 name = strncpy(tmp, "[stack]", sizeof(tmp));
4109 goto got_name;
4110 }
4111
4112 name = strncpy(tmp, "//anon", sizeof(tmp));
4113 goto got_name;
4114 }
4115
4116 got_name:
4117 size = ALIGN(strlen(name)+1, sizeof(u64));
4118
4119 mmap_event->file_name = name;
4120 mmap_event->file_size = size;
4121
4122 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4123
4124 rcu_read_lock();
4125 list_for_each_entry_rcu(pmu, &pmus, entry) {
4126 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4127 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4128 vma->vm_flags & VM_EXEC);
4129
4130 ctxn = pmu->task_ctx_nr;
4131 if (ctxn < 0)
4132 goto next;
4133
4134 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4135 if (ctx) {
4136 perf_event_mmap_ctx(ctx, mmap_event,
4137 vma->vm_flags & VM_EXEC);
4138 }
4139 next:
4140 put_cpu_ptr(pmu->pmu_cpu_context);
4141 }
4142 rcu_read_unlock();
4143
4144 kfree(buf);
4145 }
4146
4147 void perf_event_mmap(struct vm_area_struct *vma)
4148 {
4149 struct perf_mmap_event mmap_event;
4150
4151 if (!atomic_read(&nr_mmap_events))
4152 return;
4153
4154 mmap_event = (struct perf_mmap_event){
4155 .vma = vma,
4156 /* .file_name */
4157 /* .file_size */
4158 .event_id = {
4159 .header = {
4160 .type = PERF_RECORD_MMAP,
4161 .misc = PERF_RECORD_MISC_USER,
4162 /* .size */
4163 },
4164 /* .pid */
4165 /* .tid */
4166 .start = vma->vm_start,
4167 .len = vma->vm_end - vma->vm_start,
4168 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4169 },
4170 };
4171
4172 perf_event_mmap_event(&mmap_event);
4173 }
4174
4175 /*
4176 * IRQ throttle logging
4177 */
4178
4179 static void perf_log_throttle(struct perf_event *event, int enable)
4180 {
4181 struct perf_output_handle handle;
4182 int ret;
4183
4184 struct {
4185 struct perf_event_header header;
4186 u64 time;
4187 u64 id;
4188 u64 stream_id;
4189 } throttle_event = {
4190 .header = {
4191 .type = PERF_RECORD_THROTTLE,
4192 .misc = 0,
4193 .size = sizeof(throttle_event),
4194 },
4195 .time = perf_clock(),
4196 .id = primary_event_id(event),
4197 .stream_id = event->id,
4198 };
4199
4200 if (enable)
4201 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4202
4203 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4204 if (ret)
4205 return;
4206
4207 perf_output_put(&handle, throttle_event);
4208 perf_output_end(&handle);
4209 }
4210
4211 /*
4212 * Generic event overflow handling, sampling.
4213 */
4214
4215 static int __perf_event_overflow(struct perf_event *event, int nmi,
4216 int throttle, struct perf_sample_data *data,
4217 struct pt_regs *regs)
4218 {
4219 int events = atomic_read(&event->event_limit);
4220 struct hw_perf_event *hwc = &event->hw;
4221 int ret = 0;
4222
4223 if (!throttle) {
4224 hwc->interrupts++;
4225 } else {
4226 if (hwc->interrupts != MAX_INTERRUPTS) {
4227 hwc->interrupts++;
4228 if (HZ * hwc->interrupts >
4229 (u64)sysctl_perf_event_sample_rate) {
4230 hwc->interrupts = MAX_INTERRUPTS;
4231 perf_log_throttle(event, 0);
4232 ret = 1;
4233 }
4234 } else {
4235 /*
4236 * Keep re-disabling events even though on the previous
4237 * pass we disabled it - just in case we raced with a
4238 * sched-in and the event got enabled again:
4239 */
4240 ret = 1;
4241 }
4242 }
4243
4244 if (event->attr.freq) {
4245 u64 now = perf_clock();
4246 s64 delta = now - hwc->freq_time_stamp;
4247
4248 hwc->freq_time_stamp = now;
4249
4250 if (delta > 0 && delta < 2*TICK_NSEC)
4251 perf_adjust_period(event, delta, hwc->last_period);
4252 }
4253
4254 /*
4255 * XXX event_limit might not quite work as expected on inherited
4256 * events
4257 */
4258
4259 event->pending_kill = POLL_IN;
4260 if (events && atomic_dec_and_test(&event->event_limit)) {
4261 ret = 1;
4262 event->pending_kill = POLL_HUP;
4263 if (nmi) {
4264 event->pending_disable = 1;
4265 irq_work_queue(&event->pending);
4266 } else
4267 perf_event_disable(event);
4268 }
4269
4270 if (event->overflow_handler)
4271 event->overflow_handler(event, nmi, data, regs);
4272 else
4273 perf_event_output(event, nmi, data, regs);
4274
4275 return ret;
4276 }
4277
4278 int perf_event_overflow(struct perf_event *event, int nmi,
4279 struct perf_sample_data *data,
4280 struct pt_regs *regs)
4281 {
4282 return __perf_event_overflow(event, nmi, 1, data, regs);
4283 }
4284
4285 /*
4286 * Generic software event infrastructure
4287 */
4288
4289 struct swevent_htable {
4290 struct swevent_hlist *swevent_hlist;
4291 struct mutex hlist_mutex;
4292 int hlist_refcount;
4293
4294 /* Recursion avoidance in each contexts */
4295 int recursion[PERF_NR_CONTEXTS];
4296 };
4297
4298 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4299
4300 /*
4301 * We directly increment event->count and keep a second value in
4302 * event->hw.period_left to count intervals. This period event
4303 * is kept in the range [-sample_period, 0] so that we can use the
4304 * sign as trigger.
4305 */
4306
4307 static u64 perf_swevent_set_period(struct perf_event *event)
4308 {
4309 struct hw_perf_event *hwc = &event->hw;
4310 u64 period = hwc->last_period;
4311 u64 nr, offset;
4312 s64 old, val;
4313
4314 hwc->last_period = hwc->sample_period;
4315
4316 again:
4317 old = val = local64_read(&hwc->period_left);
4318 if (val < 0)
4319 return 0;
4320
4321 nr = div64_u64(period + val, period);
4322 offset = nr * period;
4323 val -= offset;
4324 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4325 goto again;
4326
4327 return nr;
4328 }
4329
4330 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4331 int nmi, struct perf_sample_data *data,
4332 struct pt_regs *regs)
4333 {
4334 struct hw_perf_event *hwc = &event->hw;
4335 int throttle = 0;
4336
4337 data->period = event->hw.last_period;
4338 if (!overflow)
4339 overflow = perf_swevent_set_period(event);
4340
4341 if (hwc->interrupts == MAX_INTERRUPTS)
4342 return;
4343
4344 for (; overflow; overflow--) {
4345 if (__perf_event_overflow(event, nmi, throttle,
4346 data, regs)) {
4347 /*
4348 * We inhibit the overflow from happening when
4349 * hwc->interrupts == MAX_INTERRUPTS.
4350 */
4351 break;
4352 }
4353 throttle = 1;
4354 }
4355 }
4356
4357 static void perf_swevent_event(struct perf_event *event, u64 nr,
4358 int nmi, struct perf_sample_data *data,
4359 struct pt_regs *regs)
4360 {
4361 struct hw_perf_event *hwc = &event->hw;
4362
4363 local64_add(nr, &event->count);
4364
4365 if (!regs)
4366 return;
4367
4368 if (!hwc->sample_period)
4369 return;
4370
4371 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4372 return perf_swevent_overflow(event, 1, nmi, data, regs);
4373
4374 if (local64_add_negative(nr, &hwc->period_left))
4375 return;
4376
4377 perf_swevent_overflow(event, 0, nmi, data, regs);
4378 }
4379
4380 static int perf_exclude_event(struct perf_event *event,
4381 struct pt_regs *regs)
4382 {
4383 if (event->hw.state & PERF_HES_STOPPED)
4384 return 0;
4385
4386 if (regs) {
4387 if (event->attr.exclude_user && user_mode(regs))
4388 return 1;
4389
4390 if (event->attr.exclude_kernel && !user_mode(regs))
4391 return 1;
4392 }
4393
4394 return 0;
4395 }
4396
4397 static int perf_swevent_match(struct perf_event *event,
4398 enum perf_type_id type,
4399 u32 event_id,
4400 struct perf_sample_data *data,
4401 struct pt_regs *regs)
4402 {
4403 if (event->attr.type != type)
4404 return 0;
4405
4406 if (event->attr.config != event_id)
4407 return 0;
4408
4409 if (perf_exclude_event(event, regs))
4410 return 0;
4411
4412 return 1;
4413 }
4414
4415 static inline u64 swevent_hash(u64 type, u32 event_id)
4416 {
4417 u64 val = event_id | (type << 32);
4418
4419 return hash_64(val, SWEVENT_HLIST_BITS);
4420 }
4421
4422 static inline struct hlist_head *
4423 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4424 {
4425 u64 hash = swevent_hash(type, event_id);
4426
4427 return &hlist->heads[hash];
4428 }
4429
4430 /* For the read side: events when they trigger */
4431 static inline struct hlist_head *
4432 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4433 {
4434 struct swevent_hlist *hlist;
4435
4436 hlist = rcu_dereference(swhash->swevent_hlist);
4437 if (!hlist)
4438 return NULL;
4439
4440 return __find_swevent_head(hlist, type, event_id);
4441 }
4442
4443 /* For the event head insertion and removal in the hlist */
4444 static inline struct hlist_head *
4445 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4446 {
4447 struct swevent_hlist *hlist;
4448 u32 event_id = event->attr.config;
4449 u64 type = event->attr.type;
4450
4451 /*
4452 * Event scheduling is always serialized against hlist allocation
4453 * and release. Which makes the protected version suitable here.
4454 * The context lock guarantees that.
4455 */
4456 hlist = rcu_dereference_protected(swhash->swevent_hlist,
4457 lockdep_is_held(&event->ctx->lock));
4458 if (!hlist)
4459 return NULL;
4460
4461 return __find_swevent_head(hlist, type, event_id);
4462 }
4463
4464 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4465 u64 nr, int nmi,
4466 struct perf_sample_data *data,
4467 struct pt_regs *regs)
4468 {
4469 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4470 struct perf_event *event;
4471 struct hlist_node *node;
4472 struct hlist_head *head;
4473
4474 rcu_read_lock();
4475 head = find_swevent_head_rcu(swhash, type, event_id);
4476 if (!head)
4477 goto end;
4478
4479 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4480 if (perf_swevent_match(event, type, event_id, data, regs))
4481 perf_swevent_event(event, nr, nmi, data, regs);
4482 }
4483 end:
4484 rcu_read_unlock();
4485 }
4486
4487 int perf_swevent_get_recursion_context(void)
4488 {
4489 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4490
4491 return get_recursion_context(swhash->recursion);
4492 }
4493 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4494
4495 void inline perf_swevent_put_recursion_context(int rctx)
4496 {
4497 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4498
4499 put_recursion_context(swhash->recursion, rctx);
4500 }
4501
4502 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4503 struct pt_regs *regs, u64 addr)
4504 {
4505 struct perf_sample_data data;
4506 int rctx;
4507
4508 preempt_disable_notrace();
4509 rctx = perf_swevent_get_recursion_context();
4510 if (rctx < 0)
4511 return;
4512
4513 perf_sample_data_init(&data, addr);
4514
4515 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4516
4517 perf_swevent_put_recursion_context(rctx);
4518 preempt_enable_notrace();
4519 }
4520
4521 static void perf_swevent_read(struct perf_event *event)
4522 {
4523 }
4524
4525 static int perf_swevent_add(struct perf_event *event, int flags)
4526 {
4527 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4528 struct hw_perf_event *hwc = &event->hw;
4529 struct hlist_head *head;
4530
4531 if (hwc->sample_period) {
4532 hwc->last_period = hwc->sample_period;
4533 perf_swevent_set_period(event);
4534 }
4535
4536 hwc->state = !(flags & PERF_EF_START);
4537
4538 head = find_swevent_head(swhash, event);
4539 if (WARN_ON_ONCE(!head))
4540 return -EINVAL;
4541
4542 hlist_add_head_rcu(&event->hlist_entry, head);
4543
4544 return 0;
4545 }
4546
4547 static void perf_swevent_del(struct perf_event *event, int flags)
4548 {
4549 hlist_del_rcu(&event->hlist_entry);
4550 }
4551
4552 static void perf_swevent_start(struct perf_event *event, int flags)
4553 {
4554 event->hw.state = 0;
4555 }
4556
4557 static void perf_swevent_stop(struct perf_event *event, int flags)
4558 {
4559 event->hw.state = PERF_HES_STOPPED;
4560 }
4561
4562 /* Deref the hlist from the update side */
4563 static inline struct swevent_hlist *
4564 swevent_hlist_deref(struct swevent_htable *swhash)
4565 {
4566 return rcu_dereference_protected(swhash->swevent_hlist,
4567 lockdep_is_held(&swhash->hlist_mutex));
4568 }
4569
4570 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4571 {
4572 struct swevent_hlist *hlist;
4573
4574 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4575 kfree(hlist);
4576 }
4577
4578 static void swevent_hlist_release(struct swevent_htable *swhash)
4579 {
4580 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4581
4582 if (!hlist)
4583 return;
4584
4585 rcu_assign_pointer(swhash->swevent_hlist, NULL);
4586 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4587 }
4588
4589 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4590 {
4591 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4592
4593 mutex_lock(&swhash->hlist_mutex);
4594
4595 if (!--swhash->hlist_refcount)
4596 swevent_hlist_release(swhash);
4597
4598 mutex_unlock(&swhash->hlist_mutex);
4599 }
4600
4601 static void swevent_hlist_put(struct perf_event *event)
4602 {
4603 int cpu;
4604
4605 if (event->cpu != -1) {
4606 swevent_hlist_put_cpu(event, event->cpu);
4607 return;
4608 }
4609
4610 for_each_possible_cpu(cpu)
4611 swevent_hlist_put_cpu(event, cpu);
4612 }
4613
4614 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4615 {
4616 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4617 int err = 0;
4618
4619 mutex_lock(&swhash->hlist_mutex);
4620
4621 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4622 struct swevent_hlist *hlist;
4623
4624 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4625 if (!hlist) {
4626 err = -ENOMEM;
4627 goto exit;
4628 }
4629 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4630 }
4631 swhash->hlist_refcount++;
4632 exit:
4633 mutex_unlock(&swhash->hlist_mutex);
4634
4635 return err;
4636 }
4637
4638 static int swevent_hlist_get(struct perf_event *event)
4639 {
4640 int err;
4641 int cpu, failed_cpu;
4642
4643 if (event->cpu != -1)
4644 return swevent_hlist_get_cpu(event, event->cpu);
4645
4646 get_online_cpus();
4647 for_each_possible_cpu(cpu) {
4648 err = swevent_hlist_get_cpu(event, cpu);
4649 if (err) {
4650 failed_cpu = cpu;
4651 goto fail;
4652 }
4653 }
4654 put_online_cpus();
4655
4656 return 0;
4657 fail:
4658 for_each_possible_cpu(cpu) {
4659 if (cpu == failed_cpu)
4660 break;
4661 swevent_hlist_put_cpu(event, cpu);
4662 }
4663
4664 put_online_cpus();
4665 return err;
4666 }
4667
4668 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4669
4670 static void sw_perf_event_destroy(struct perf_event *event)
4671 {
4672 u64 event_id = event->attr.config;
4673
4674 WARN_ON(event->parent);
4675
4676 atomic_dec(&perf_swevent_enabled[event_id]);
4677 swevent_hlist_put(event);
4678 }
4679
4680 static int perf_swevent_init(struct perf_event *event)
4681 {
4682 int event_id = event->attr.config;
4683
4684 if (event->attr.type != PERF_TYPE_SOFTWARE)
4685 return -ENOENT;
4686
4687 switch (event_id) {
4688 case PERF_COUNT_SW_CPU_CLOCK:
4689 case PERF_COUNT_SW_TASK_CLOCK:
4690 return -ENOENT;
4691
4692 default:
4693 break;
4694 }
4695
4696 if (event_id > PERF_COUNT_SW_MAX)
4697 return -ENOENT;
4698
4699 if (!event->parent) {
4700 int err;
4701
4702 err = swevent_hlist_get(event);
4703 if (err)
4704 return err;
4705
4706 atomic_inc(&perf_swevent_enabled[event_id]);
4707 event->destroy = sw_perf_event_destroy;
4708 }
4709
4710 return 0;
4711 }
4712
4713 static struct pmu perf_swevent = {
4714 .task_ctx_nr = perf_sw_context,
4715
4716 .event_init = perf_swevent_init,
4717 .add = perf_swevent_add,
4718 .del = perf_swevent_del,
4719 .start = perf_swevent_start,
4720 .stop = perf_swevent_stop,
4721 .read = perf_swevent_read,
4722 };
4723
4724 #ifdef CONFIG_EVENT_TRACING
4725
4726 static int perf_tp_filter_match(struct perf_event *event,
4727 struct perf_sample_data *data)
4728 {
4729 void *record = data->raw->data;
4730
4731 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4732 return 1;
4733 return 0;
4734 }
4735
4736 static int perf_tp_event_match(struct perf_event *event,
4737 struct perf_sample_data *data,
4738 struct pt_regs *regs)
4739 {
4740 /*
4741 * All tracepoints are from kernel-space.
4742 */
4743 if (event->attr.exclude_kernel)
4744 return 0;
4745
4746 if (!perf_tp_filter_match(event, data))
4747 return 0;
4748
4749 return 1;
4750 }
4751
4752 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4753 struct pt_regs *regs, struct hlist_head *head, int rctx)
4754 {
4755 struct perf_sample_data data;
4756 struct perf_event *event;
4757 struct hlist_node *node;
4758
4759 struct perf_raw_record raw = {
4760 .size = entry_size,
4761 .data = record,
4762 };
4763
4764 perf_sample_data_init(&data, addr);
4765 data.raw = &raw;
4766
4767 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4768 if (perf_tp_event_match(event, &data, regs))
4769 perf_swevent_event(event, count, 1, &data, regs);
4770 }
4771
4772 perf_swevent_put_recursion_context(rctx);
4773 }
4774 EXPORT_SYMBOL_GPL(perf_tp_event);
4775
4776 static void tp_perf_event_destroy(struct perf_event *event)
4777 {
4778 perf_trace_destroy(event);
4779 }
4780
4781 static int perf_tp_event_init(struct perf_event *event)
4782 {
4783 int err;
4784
4785 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4786 return -ENOENT;
4787
4788 /*
4789 * Raw tracepoint data is a severe data leak, only allow root to
4790 * have these.
4791 */
4792 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4793 perf_paranoid_tracepoint_raw() &&
4794 !capable(CAP_SYS_ADMIN))
4795 return -EPERM;
4796
4797 err = perf_trace_init(event);
4798 if (err)
4799 return err;
4800
4801 event->destroy = tp_perf_event_destroy;
4802
4803 return 0;
4804 }
4805
4806 static struct pmu perf_tracepoint = {
4807 .task_ctx_nr = perf_sw_context,
4808
4809 .event_init = perf_tp_event_init,
4810 .add = perf_trace_add,
4811 .del = perf_trace_del,
4812 .start = perf_swevent_start,
4813 .stop = perf_swevent_stop,
4814 .read = perf_swevent_read,
4815 };
4816
4817 static inline void perf_tp_register(void)
4818 {
4819 perf_pmu_register(&perf_tracepoint);
4820 }
4821
4822 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4823 {
4824 char *filter_str;
4825 int ret;
4826
4827 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4828 return -EINVAL;
4829
4830 filter_str = strndup_user(arg, PAGE_SIZE);
4831 if (IS_ERR(filter_str))
4832 return PTR_ERR(filter_str);
4833
4834 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4835
4836 kfree(filter_str);
4837 return ret;
4838 }
4839
4840 static void perf_event_free_filter(struct perf_event *event)
4841 {
4842 ftrace_profile_free_filter(event);
4843 }
4844
4845 #else
4846
4847 static inline void perf_tp_register(void)
4848 {
4849 }
4850
4851 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4852 {
4853 return -ENOENT;
4854 }
4855
4856 static void perf_event_free_filter(struct perf_event *event)
4857 {
4858 }
4859
4860 #endif /* CONFIG_EVENT_TRACING */
4861
4862 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4863 void perf_bp_event(struct perf_event *bp, void *data)
4864 {
4865 struct perf_sample_data sample;
4866 struct pt_regs *regs = data;
4867
4868 perf_sample_data_init(&sample, bp->attr.bp_addr);
4869
4870 if (!bp->hw.state && !perf_exclude_event(bp, regs))
4871 perf_swevent_event(bp, 1, 1, &sample, regs);
4872 }
4873 #endif
4874
4875 /*
4876 * hrtimer based swevent callback
4877 */
4878
4879 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4880 {
4881 enum hrtimer_restart ret = HRTIMER_RESTART;
4882 struct perf_sample_data data;
4883 struct pt_regs *regs;
4884 struct perf_event *event;
4885 u64 period;
4886
4887 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4888 event->pmu->read(event);
4889
4890 perf_sample_data_init(&data, 0);
4891 data.period = event->hw.last_period;
4892 regs = get_irq_regs();
4893
4894 if (regs && !perf_exclude_event(event, regs)) {
4895 if (!(event->attr.exclude_idle && current->pid == 0))
4896 if (perf_event_overflow(event, 0, &data, regs))
4897 ret = HRTIMER_NORESTART;
4898 }
4899
4900 period = max_t(u64, 10000, event->hw.sample_period);
4901 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4902
4903 return ret;
4904 }
4905
4906 static void perf_swevent_start_hrtimer(struct perf_event *event)
4907 {
4908 struct hw_perf_event *hwc = &event->hw;
4909
4910 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4911 hwc->hrtimer.function = perf_swevent_hrtimer;
4912 if (hwc->sample_period) {
4913 s64 period = local64_read(&hwc->period_left);
4914
4915 if (period) {
4916 if (period < 0)
4917 period = 10000;
4918
4919 local64_set(&hwc->period_left, 0);
4920 } else {
4921 period = max_t(u64, 10000, hwc->sample_period);
4922 }
4923 __hrtimer_start_range_ns(&hwc->hrtimer,
4924 ns_to_ktime(period), 0,
4925 HRTIMER_MODE_REL_PINNED, 0);
4926 }
4927 }
4928
4929 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4930 {
4931 struct hw_perf_event *hwc = &event->hw;
4932
4933 if (hwc->sample_period) {
4934 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4935 local64_set(&hwc->period_left, ktime_to_ns(remaining));
4936
4937 hrtimer_cancel(&hwc->hrtimer);
4938 }
4939 }
4940
4941 /*
4942 * Software event: cpu wall time clock
4943 */
4944
4945 static void cpu_clock_event_update(struct perf_event *event)
4946 {
4947 s64 prev;
4948 u64 now;
4949
4950 now = local_clock();
4951 prev = local64_xchg(&event->hw.prev_count, now);
4952 local64_add(now - prev, &event->count);
4953 }
4954
4955 static void cpu_clock_event_start(struct perf_event *event, int flags)
4956 {
4957 local64_set(&event->hw.prev_count, local_clock());
4958 perf_swevent_start_hrtimer(event);
4959 }
4960
4961 static void cpu_clock_event_stop(struct perf_event *event, int flags)
4962 {
4963 perf_swevent_cancel_hrtimer(event);
4964 cpu_clock_event_update(event);
4965 }
4966
4967 static int cpu_clock_event_add(struct perf_event *event, int flags)
4968 {
4969 if (flags & PERF_EF_START)
4970 cpu_clock_event_start(event, flags);
4971
4972 return 0;
4973 }
4974
4975 static void cpu_clock_event_del(struct perf_event *event, int flags)
4976 {
4977 cpu_clock_event_stop(event, flags);
4978 }
4979
4980 static void cpu_clock_event_read(struct perf_event *event)
4981 {
4982 cpu_clock_event_update(event);
4983 }
4984
4985 static int cpu_clock_event_init(struct perf_event *event)
4986 {
4987 if (event->attr.type != PERF_TYPE_SOFTWARE)
4988 return -ENOENT;
4989
4990 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
4991 return -ENOENT;
4992
4993 return 0;
4994 }
4995
4996 static struct pmu perf_cpu_clock = {
4997 .task_ctx_nr = perf_sw_context,
4998
4999 .event_init = cpu_clock_event_init,
5000 .add = cpu_clock_event_add,
5001 .del = cpu_clock_event_del,
5002 .start = cpu_clock_event_start,
5003 .stop = cpu_clock_event_stop,
5004 .read = cpu_clock_event_read,
5005 };
5006
5007 /*
5008 * Software event: task time clock
5009 */
5010
5011 static void task_clock_event_update(struct perf_event *event, u64 now)
5012 {
5013 u64 prev;
5014 s64 delta;
5015
5016 prev = local64_xchg(&event->hw.prev_count, now);
5017 delta = now - prev;
5018 local64_add(delta, &event->count);
5019 }
5020
5021 static void task_clock_event_start(struct perf_event *event, int flags)
5022 {
5023 local64_set(&event->hw.prev_count, event->ctx->time);
5024 perf_swevent_start_hrtimer(event);
5025 }
5026
5027 static void task_clock_event_stop(struct perf_event *event, int flags)
5028 {
5029 perf_swevent_cancel_hrtimer(event);
5030 task_clock_event_update(event, event->ctx->time);
5031 }
5032
5033 static int task_clock_event_add(struct perf_event *event, int flags)
5034 {
5035 if (flags & PERF_EF_START)
5036 task_clock_event_start(event, flags);
5037
5038 return 0;
5039 }
5040
5041 static void task_clock_event_del(struct perf_event *event, int flags)
5042 {
5043 task_clock_event_stop(event, PERF_EF_UPDATE);
5044 }
5045
5046 static void task_clock_event_read(struct perf_event *event)
5047 {
5048 u64 time;
5049
5050 if (!in_nmi()) {
5051 update_context_time(event->ctx);
5052 time = event->ctx->time;
5053 } else {
5054 u64 now = perf_clock();
5055 u64 delta = now - event->ctx->timestamp;
5056 time = event->ctx->time + delta;
5057 }
5058
5059 task_clock_event_update(event, time);
5060 }
5061
5062 static int task_clock_event_init(struct perf_event *event)
5063 {
5064 if (event->attr.type != PERF_TYPE_SOFTWARE)
5065 return -ENOENT;
5066
5067 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5068 return -ENOENT;
5069
5070 return 0;
5071 }
5072
5073 static struct pmu perf_task_clock = {
5074 .task_ctx_nr = perf_sw_context,
5075
5076 .event_init = task_clock_event_init,
5077 .add = task_clock_event_add,
5078 .del = task_clock_event_del,
5079 .start = task_clock_event_start,
5080 .stop = task_clock_event_stop,
5081 .read = task_clock_event_read,
5082 };
5083
5084 static void perf_pmu_nop_void(struct pmu *pmu)
5085 {
5086 }
5087
5088 static int perf_pmu_nop_int(struct pmu *pmu)
5089 {
5090 return 0;
5091 }
5092
5093 static void perf_pmu_start_txn(struct pmu *pmu)
5094 {
5095 perf_pmu_disable(pmu);
5096 }
5097
5098 static int perf_pmu_commit_txn(struct pmu *pmu)
5099 {
5100 perf_pmu_enable(pmu);
5101 return 0;
5102 }
5103
5104 static void perf_pmu_cancel_txn(struct pmu *pmu)
5105 {
5106 perf_pmu_enable(pmu);
5107 }
5108
5109 /*
5110 * Ensures all contexts with the same task_ctx_nr have the same
5111 * pmu_cpu_context too.
5112 */
5113 static void *find_pmu_context(int ctxn)
5114 {
5115 struct pmu *pmu;
5116
5117 if (ctxn < 0)
5118 return NULL;
5119
5120 list_for_each_entry(pmu, &pmus, entry) {
5121 if (pmu->task_ctx_nr == ctxn)
5122 return pmu->pmu_cpu_context;
5123 }
5124
5125 return NULL;
5126 }
5127
5128 static void free_pmu_context(void * __percpu cpu_context)
5129 {
5130 struct pmu *pmu;
5131
5132 mutex_lock(&pmus_lock);
5133 /*
5134 * Like a real lame refcount.
5135 */
5136 list_for_each_entry(pmu, &pmus, entry) {
5137 if (pmu->pmu_cpu_context == cpu_context)
5138 goto out;
5139 }
5140
5141 free_percpu(cpu_context);
5142 out:
5143 mutex_unlock(&pmus_lock);
5144 }
5145
5146 int perf_pmu_register(struct pmu *pmu)
5147 {
5148 int cpu, ret;
5149
5150 mutex_lock(&pmus_lock);
5151 ret = -ENOMEM;
5152 pmu->pmu_disable_count = alloc_percpu(int);
5153 if (!pmu->pmu_disable_count)
5154 goto unlock;
5155
5156 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5157 if (pmu->pmu_cpu_context)
5158 goto got_cpu_context;
5159
5160 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5161 if (!pmu->pmu_cpu_context)
5162 goto free_pdc;
5163
5164 for_each_possible_cpu(cpu) {
5165 struct perf_cpu_context *cpuctx;
5166
5167 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5168 __perf_event_init_context(&cpuctx->ctx);
5169 cpuctx->ctx.type = cpu_context;
5170 cpuctx->ctx.pmu = pmu;
5171 cpuctx->jiffies_interval = 1;
5172 INIT_LIST_HEAD(&cpuctx->rotation_list);
5173 }
5174
5175 got_cpu_context:
5176 if (!pmu->start_txn) {
5177 if (pmu->pmu_enable) {
5178 /*
5179 * If we have pmu_enable/pmu_disable calls, install
5180 * transaction stubs that use that to try and batch
5181 * hardware accesses.
5182 */
5183 pmu->start_txn = perf_pmu_start_txn;
5184 pmu->commit_txn = perf_pmu_commit_txn;
5185 pmu->cancel_txn = perf_pmu_cancel_txn;
5186 } else {
5187 pmu->start_txn = perf_pmu_nop_void;
5188 pmu->commit_txn = perf_pmu_nop_int;
5189 pmu->cancel_txn = perf_pmu_nop_void;
5190 }
5191 }
5192
5193 if (!pmu->pmu_enable) {
5194 pmu->pmu_enable = perf_pmu_nop_void;
5195 pmu->pmu_disable = perf_pmu_nop_void;
5196 }
5197
5198 list_add_rcu(&pmu->entry, &pmus);
5199 ret = 0;
5200 unlock:
5201 mutex_unlock(&pmus_lock);
5202
5203 return ret;
5204
5205 free_pdc:
5206 free_percpu(pmu->pmu_disable_count);
5207 goto unlock;
5208 }
5209
5210 void perf_pmu_unregister(struct pmu *pmu)
5211 {
5212 mutex_lock(&pmus_lock);
5213 list_del_rcu(&pmu->entry);
5214 mutex_unlock(&pmus_lock);
5215
5216 /*
5217 * We dereference the pmu list under both SRCU and regular RCU, so
5218 * synchronize against both of those.
5219 */
5220 synchronize_srcu(&pmus_srcu);
5221 synchronize_rcu();
5222
5223 free_percpu(pmu->pmu_disable_count);
5224 free_pmu_context(pmu->pmu_cpu_context);
5225 }
5226
5227 struct pmu *perf_init_event(struct perf_event *event)
5228 {
5229 struct pmu *pmu = NULL;
5230 int idx;
5231
5232 idx = srcu_read_lock(&pmus_srcu);
5233 list_for_each_entry_rcu(pmu, &pmus, entry) {
5234 int ret = pmu->event_init(event);
5235 if (!ret)
5236 goto unlock;
5237
5238 if (ret != -ENOENT) {
5239 pmu = ERR_PTR(ret);
5240 goto unlock;
5241 }
5242 }
5243 pmu = ERR_PTR(-ENOENT);
5244 unlock:
5245 srcu_read_unlock(&pmus_srcu, idx);
5246
5247 return pmu;
5248 }
5249
5250 /*
5251 * Allocate and initialize a event structure
5252 */
5253 static struct perf_event *
5254 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5255 struct perf_event *group_leader,
5256 struct perf_event *parent_event,
5257 perf_overflow_handler_t overflow_handler)
5258 {
5259 struct pmu *pmu;
5260 struct perf_event *event;
5261 struct hw_perf_event *hwc;
5262 long err;
5263
5264 event = kzalloc(sizeof(*event), GFP_KERNEL);
5265 if (!event)
5266 return ERR_PTR(-ENOMEM);
5267
5268 /*
5269 * Single events are their own group leaders, with an
5270 * empty sibling list:
5271 */
5272 if (!group_leader)
5273 group_leader = event;
5274
5275 mutex_init(&event->child_mutex);
5276 INIT_LIST_HEAD(&event->child_list);
5277
5278 INIT_LIST_HEAD(&event->group_entry);
5279 INIT_LIST_HEAD(&event->event_entry);
5280 INIT_LIST_HEAD(&event->sibling_list);
5281 init_waitqueue_head(&event->waitq);
5282 init_irq_work(&event->pending, perf_pending_event);
5283
5284 mutex_init(&event->mmap_mutex);
5285
5286 event->cpu = cpu;
5287 event->attr = *attr;
5288 event->group_leader = group_leader;
5289 event->pmu = NULL;
5290 event->oncpu = -1;
5291
5292 event->parent = parent_event;
5293
5294 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5295 event->id = atomic64_inc_return(&perf_event_id);
5296
5297 event->state = PERF_EVENT_STATE_INACTIVE;
5298
5299 if (!overflow_handler && parent_event)
5300 overflow_handler = parent_event->overflow_handler;
5301
5302 event->overflow_handler = overflow_handler;
5303
5304 if (attr->disabled)
5305 event->state = PERF_EVENT_STATE_OFF;
5306
5307 pmu = NULL;
5308
5309 hwc = &event->hw;
5310 hwc->sample_period = attr->sample_period;
5311 if (attr->freq && attr->sample_freq)
5312 hwc->sample_period = 1;
5313 hwc->last_period = hwc->sample_period;
5314
5315 local64_set(&hwc->period_left, hwc->sample_period);
5316
5317 /*
5318 * we currently do not support PERF_FORMAT_GROUP on inherited events
5319 */
5320 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5321 goto done;
5322
5323 pmu = perf_init_event(event);
5324
5325 done:
5326 err = 0;
5327 if (!pmu)
5328 err = -EINVAL;
5329 else if (IS_ERR(pmu))
5330 err = PTR_ERR(pmu);
5331
5332 if (err) {
5333 if (event->ns)
5334 put_pid_ns(event->ns);
5335 kfree(event);
5336 return ERR_PTR(err);
5337 }
5338
5339 event->pmu = pmu;
5340
5341 if (!event->parent) {
5342 atomic_inc(&nr_events);
5343 if (event->attr.mmap || event->attr.mmap_data)
5344 atomic_inc(&nr_mmap_events);
5345 if (event->attr.comm)
5346 atomic_inc(&nr_comm_events);
5347 if (event->attr.task)
5348 atomic_inc(&nr_task_events);
5349 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5350 err = get_callchain_buffers();
5351 if (err) {
5352 free_event(event);
5353 return ERR_PTR(err);
5354 }
5355 }
5356 }
5357
5358 return event;
5359 }
5360
5361 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5362 struct perf_event_attr *attr)
5363 {
5364 u32 size;
5365 int ret;
5366
5367 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5368 return -EFAULT;
5369
5370 /*
5371 * zero the full structure, so that a short copy will be nice.
5372 */
5373 memset(attr, 0, sizeof(*attr));
5374
5375 ret = get_user(size, &uattr->size);
5376 if (ret)
5377 return ret;
5378
5379 if (size > PAGE_SIZE) /* silly large */
5380 goto err_size;
5381
5382 if (!size) /* abi compat */
5383 size = PERF_ATTR_SIZE_VER0;
5384
5385 if (size < PERF_ATTR_SIZE_VER0)
5386 goto err_size;
5387
5388 /*
5389 * If we're handed a bigger struct than we know of,
5390 * ensure all the unknown bits are 0 - i.e. new
5391 * user-space does not rely on any kernel feature
5392 * extensions we dont know about yet.
5393 */
5394 if (size > sizeof(*attr)) {
5395 unsigned char __user *addr;
5396 unsigned char __user *end;
5397 unsigned char val;
5398
5399 addr = (void __user *)uattr + sizeof(*attr);
5400 end = (void __user *)uattr + size;
5401
5402 for (; addr < end; addr++) {
5403 ret = get_user(val, addr);
5404 if (ret)
5405 return ret;
5406 if (val)
5407 goto err_size;
5408 }
5409 size = sizeof(*attr);
5410 }
5411
5412 ret = copy_from_user(attr, uattr, size);
5413 if (ret)
5414 return -EFAULT;
5415
5416 /*
5417 * If the type exists, the corresponding creation will verify
5418 * the attr->config.
5419 */
5420 if (attr->type >= PERF_TYPE_MAX)
5421 return -EINVAL;
5422
5423 if (attr->__reserved_1)
5424 return -EINVAL;
5425
5426 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5427 return -EINVAL;
5428
5429 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5430 return -EINVAL;
5431
5432 out:
5433 return ret;
5434
5435 err_size:
5436 put_user(sizeof(*attr), &uattr->size);
5437 ret = -E2BIG;
5438 goto out;
5439 }
5440
5441 static int
5442 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5443 {
5444 struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5445 int ret = -EINVAL;
5446
5447 if (!output_event)
5448 goto set;
5449
5450 /* don't allow circular references */
5451 if (event == output_event)
5452 goto out;
5453
5454 /*
5455 * Don't allow cross-cpu buffers
5456 */
5457 if (output_event->cpu != event->cpu)
5458 goto out;
5459
5460 /*
5461 * If its not a per-cpu buffer, it must be the same task.
5462 */
5463 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5464 goto out;
5465
5466 set:
5467 mutex_lock(&event->mmap_mutex);
5468 /* Can't redirect output if we've got an active mmap() */
5469 if (atomic_read(&event->mmap_count))
5470 goto unlock;
5471
5472 if (output_event) {
5473 /* get the buffer we want to redirect to */
5474 buffer = perf_buffer_get(output_event);
5475 if (!buffer)
5476 goto unlock;
5477 }
5478
5479 old_buffer = event->buffer;
5480 rcu_assign_pointer(event->buffer, buffer);
5481 ret = 0;
5482 unlock:
5483 mutex_unlock(&event->mmap_mutex);
5484
5485 if (old_buffer)
5486 perf_buffer_put(old_buffer);
5487 out:
5488 return ret;
5489 }
5490
5491 /**
5492 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5493 *
5494 * @attr_uptr: event_id type attributes for monitoring/sampling
5495 * @pid: target pid
5496 * @cpu: target cpu
5497 * @group_fd: group leader event fd
5498 */
5499 SYSCALL_DEFINE5(perf_event_open,
5500 struct perf_event_attr __user *, attr_uptr,
5501 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5502 {
5503 struct perf_event *group_leader = NULL, *output_event = NULL;
5504 struct perf_event *event, *sibling;
5505 struct perf_event_attr attr;
5506 struct perf_event_context *ctx;
5507 struct file *event_file = NULL;
5508 struct file *group_file = NULL;
5509 struct task_struct *task = NULL;
5510 struct pmu *pmu;
5511 int event_fd;
5512 int move_group = 0;
5513 int fput_needed = 0;
5514 int err;
5515
5516 /* for future expandability... */
5517 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5518 return -EINVAL;
5519
5520 err = perf_copy_attr(attr_uptr, &attr);
5521 if (err)
5522 return err;
5523
5524 if (!attr.exclude_kernel) {
5525 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5526 return -EACCES;
5527 }
5528
5529 if (attr.freq) {
5530 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5531 return -EINVAL;
5532 }
5533
5534 event_fd = get_unused_fd_flags(O_RDWR);
5535 if (event_fd < 0)
5536 return event_fd;
5537
5538 if (group_fd != -1) {
5539 group_leader = perf_fget_light(group_fd, &fput_needed);
5540 if (IS_ERR(group_leader)) {
5541 err = PTR_ERR(group_leader);
5542 goto err_fd;
5543 }
5544 group_file = group_leader->filp;
5545 if (flags & PERF_FLAG_FD_OUTPUT)
5546 output_event = group_leader;
5547 if (flags & PERF_FLAG_FD_NO_GROUP)
5548 group_leader = NULL;
5549 }
5550
5551 event = perf_event_alloc(&attr, cpu, group_leader, NULL, NULL);
5552 if (IS_ERR(event)) {
5553 err = PTR_ERR(event);
5554 goto err_fd;
5555 }
5556
5557 /*
5558 * Special case software events and allow them to be part of
5559 * any hardware group.
5560 */
5561 pmu = event->pmu;
5562
5563 if (group_leader &&
5564 (is_software_event(event) != is_software_event(group_leader))) {
5565 if (is_software_event(event)) {
5566 /*
5567 * If event and group_leader are not both a software
5568 * event, and event is, then group leader is not.
5569 *
5570 * Allow the addition of software events to !software
5571 * groups, this is safe because software events never
5572 * fail to schedule.
5573 */
5574 pmu = group_leader->pmu;
5575 } else if (is_software_event(group_leader) &&
5576 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
5577 /*
5578 * In case the group is a pure software group, and we
5579 * try to add a hardware event, move the whole group to
5580 * the hardware context.
5581 */
5582 move_group = 1;
5583 }
5584 }
5585
5586 if (pid != -1) {
5587 task = find_lively_task_by_vpid(pid);
5588 if (IS_ERR(task)) {
5589 err = PTR_ERR(task);
5590 goto err_group_fd;
5591 }
5592 }
5593
5594 /*
5595 * Get the target context (task or percpu):
5596 */
5597 ctx = find_get_context(pmu, task, cpu);
5598 if (IS_ERR(ctx)) {
5599 err = PTR_ERR(ctx);
5600 goto err_group_fd;
5601 }
5602
5603 /*
5604 * Look up the group leader (we will attach this event to it):
5605 */
5606 if (group_leader) {
5607 err = -EINVAL;
5608
5609 /*
5610 * Do not allow a recursive hierarchy (this new sibling
5611 * becoming part of another group-sibling):
5612 */
5613 if (group_leader->group_leader != group_leader)
5614 goto err_context;
5615 /*
5616 * Do not allow to attach to a group in a different
5617 * task or CPU context:
5618 */
5619 if (move_group) {
5620 if (group_leader->ctx->type != ctx->type)
5621 goto err_context;
5622 } else {
5623 if (group_leader->ctx != ctx)
5624 goto err_context;
5625 }
5626
5627 /*
5628 * Only a group leader can be exclusive or pinned
5629 */
5630 if (attr.exclusive || attr.pinned)
5631 goto err_context;
5632 }
5633
5634 if (output_event) {
5635 err = perf_event_set_output(event, output_event);
5636 if (err)
5637 goto err_context;
5638 }
5639
5640 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5641 if (IS_ERR(event_file)) {
5642 err = PTR_ERR(event_file);
5643 goto err_context;
5644 }
5645
5646 if (move_group) {
5647 struct perf_event_context *gctx = group_leader->ctx;
5648
5649 mutex_lock(&gctx->mutex);
5650 perf_event_remove_from_context(group_leader);
5651 list_for_each_entry(sibling, &group_leader->sibling_list,
5652 group_entry) {
5653 perf_event_remove_from_context(sibling);
5654 put_ctx(gctx);
5655 }
5656 mutex_unlock(&gctx->mutex);
5657 put_ctx(gctx);
5658 }
5659
5660 event->filp = event_file;
5661 WARN_ON_ONCE(ctx->parent_ctx);
5662 mutex_lock(&ctx->mutex);
5663
5664 if (move_group) {
5665 perf_install_in_context(ctx, group_leader, cpu);
5666 get_ctx(ctx);
5667 list_for_each_entry(sibling, &group_leader->sibling_list,
5668 group_entry) {
5669 perf_install_in_context(ctx, sibling, cpu);
5670 get_ctx(ctx);
5671 }
5672 }
5673
5674 perf_install_in_context(ctx, event, cpu);
5675 ++ctx->generation;
5676 mutex_unlock(&ctx->mutex);
5677
5678 event->owner = current;
5679 get_task_struct(current);
5680 mutex_lock(&current->perf_event_mutex);
5681 list_add_tail(&event->owner_entry, &current->perf_event_list);
5682 mutex_unlock(&current->perf_event_mutex);
5683
5684 /*
5685 * Drop the reference on the group_event after placing the
5686 * new event on the sibling_list. This ensures destruction
5687 * of the group leader will find the pointer to itself in
5688 * perf_group_detach().
5689 */
5690 fput_light(group_file, fput_needed);
5691 fd_install(event_fd, event_file);
5692 return event_fd;
5693
5694 err_context:
5695 put_ctx(ctx);
5696 err_group_fd:
5697 fput_light(group_file, fput_needed);
5698 free_event(event);
5699 err_fd:
5700 put_unused_fd(event_fd);
5701 return err;
5702 }
5703
5704 /**
5705 * perf_event_create_kernel_counter
5706 *
5707 * @attr: attributes of the counter to create
5708 * @cpu: cpu in which the counter is bound
5709 * @task: task to profile (NULL for percpu)
5710 */
5711 struct perf_event *
5712 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5713 struct task_struct *task,
5714 perf_overflow_handler_t overflow_handler)
5715 {
5716 struct perf_event_context *ctx;
5717 struct perf_event *event;
5718 int err;
5719
5720 /*
5721 * Get the target context (task or percpu):
5722 */
5723
5724 event = perf_event_alloc(attr, cpu, NULL, NULL, overflow_handler);
5725 if (IS_ERR(event)) {
5726 err = PTR_ERR(event);
5727 goto err;
5728 }
5729
5730 ctx = find_get_context(event->pmu, task, cpu);
5731 if (IS_ERR(ctx)) {
5732 err = PTR_ERR(ctx);
5733 goto err_free;
5734 }
5735
5736 event->filp = NULL;
5737 WARN_ON_ONCE(ctx->parent_ctx);
5738 mutex_lock(&ctx->mutex);
5739 perf_install_in_context(ctx, event, cpu);
5740 ++ctx->generation;
5741 mutex_unlock(&ctx->mutex);
5742
5743 event->owner = current;
5744 get_task_struct(current);
5745 mutex_lock(&current->perf_event_mutex);
5746 list_add_tail(&event->owner_entry, &current->perf_event_list);
5747 mutex_unlock(&current->perf_event_mutex);
5748
5749 return event;
5750
5751 err_free:
5752 free_event(event);
5753 err:
5754 return ERR_PTR(err);
5755 }
5756 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5757
5758 static void sync_child_event(struct perf_event *child_event,
5759 struct task_struct *child)
5760 {
5761 struct perf_event *parent_event = child_event->parent;
5762 u64 child_val;
5763
5764 if (child_event->attr.inherit_stat)
5765 perf_event_read_event(child_event, child);
5766
5767 child_val = perf_event_count(child_event);
5768
5769 /*
5770 * Add back the child's count to the parent's count:
5771 */
5772 atomic64_add(child_val, &parent_event->child_count);
5773 atomic64_add(child_event->total_time_enabled,
5774 &parent_event->child_total_time_enabled);
5775 atomic64_add(child_event->total_time_running,
5776 &parent_event->child_total_time_running);
5777
5778 /*
5779 * Remove this event from the parent's list
5780 */
5781 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5782 mutex_lock(&parent_event->child_mutex);
5783 list_del_init(&child_event->child_list);
5784 mutex_unlock(&parent_event->child_mutex);
5785
5786 /*
5787 * Release the parent event, if this was the last
5788 * reference to it.
5789 */
5790 fput(parent_event->filp);
5791 }
5792
5793 static void
5794 __perf_event_exit_task(struct perf_event *child_event,
5795 struct perf_event_context *child_ctx,
5796 struct task_struct *child)
5797 {
5798 struct perf_event *parent_event;
5799
5800 perf_event_remove_from_context(child_event);
5801
5802 parent_event = child_event->parent;
5803 /*
5804 * It can happen that parent exits first, and has events
5805 * that are still around due to the child reference. These
5806 * events need to be zapped - but otherwise linger.
5807 */
5808 if (parent_event) {
5809 sync_child_event(child_event, child);
5810 free_event(child_event);
5811 }
5812 }
5813
5814 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
5815 {
5816 struct perf_event *child_event, *tmp;
5817 struct perf_event_context *child_ctx;
5818 unsigned long flags;
5819
5820 if (likely(!child->perf_event_ctxp[ctxn])) {
5821 perf_event_task(child, NULL, 0);
5822 return;
5823 }
5824
5825 local_irq_save(flags);
5826 /*
5827 * We can't reschedule here because interrupts are disabled,
5828 * and either child is current or it is a task that can't be
5829 * scheduled, so we are now safe from rescheduling changing
5830 * our context.
5831 */
5832 child_ctx = child->perf_event_ctxp[ctxn];
5833 __perf_event_task_sched_out(child_ctx);
5834
5835 /*
5836 * Take the context lock here so that if find_get_context is
5837 * reading child->perf_event_ctxp, we wait until it has
5838 * incremented the context's refcount before we do put_ctx below.
5839 */
5840 raw_spin_lock(&child_ctx->lock);
5841 child->perf_event_ctxp[ctxn] = NULL;
5842 /*
5843 * If this context is a clone; unclone it so it can't get
5844 * swapped to another process while we're removing all
5845 * the events from it.
5846 */
5847 unclone_ctx(child_ctx);
5848 update_context_time(child_ctx);
5849 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5850
5851 /*
5852 * Report the task dead after unscheduling the events so that we
5853 * won't get any samples after PERF_RECORD_EXIT. We can however still
5854 * get a few PERF_RECORD_READ events.
5855 */
5856 perf_event_task(child, child_ctx, 0);
5857
5858 /*
5859 * We can recurse on the same lock type through:
5860 *
5861 * __perf_event_exit_task()
5862 * sync_child_event()
5863 * fput(parent_event->filp)
5864 * perf_release()
5865 * mutex_lock(&ctx->mutex)
5866 *
5867 * But since its the parent context it won't be the same instance.
5868 */
5869 mutex_lock(&child_ctx->mutex);
5870
5871 again:
5872 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5873 group_entry)
5874 __perf_event_exit_task(child_event, child_ctx, child);
5875
5876 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5877 group_entry)
5878 __perf_event_exit_task(child_event, child_ctx, child);
5879
5880 /*
5881 * If the last event was a group event, it will have appended all
5882 * its siblings to the list, but we obtained 'tmp' before that which
5883 * will still point to the list head terminating the iteration.
5884 */
5885 if (!list_empty(&child_ctx->pinned_groups) ||
5886 !list_empty(&child_ctx->flexible_groups))
5887 goto again;
5888
5889 mutex_unlock(&child_ctx->mutex);
5890
5891 put_ctx(child_ctx);
5892 }
5893
5894 /*
5895 * When a child task exits, feed back event values to parent events.
5896 */
5897 void perf_event_exit_task(struct task_struct *child)
5898 {
5899 int ctxn;
5900
5901 for_each_task_context_nr(ctxn)
5902 perf_event_exit_task_context(child, ctxn);
5903 }
5904
5905 static void perf_free_event(struct perf_event *event,
5906 struct perf_event_context *ctx)
5907 {
5908 struct perf_event *parent = event->parent;
5909
5910 if (WARN_ON_ONCE(!parent))
5911 return;
5912
5913 mutex_lock(&parent->child_mutex);
5914 list_del_init(&event->child_list);
5915 mutex_unlock(&parent->child_mutex);
5916
5917 fput(parent->filp);
5918
5919 perf_group_detach(event);
5920 list_del_event(event, ctx);
5921 free_event(event);
5922 }
5923
5924 /*
5925 * free an unexposed, unused context as created by inheritance by
5926 * perf_event_init_task below, used by fork() in case of fail.
5927 */
5928 void perf_event_free_task(struct task_struct *task)
5929 {
5930 struct perf_event_context *ctx;
5931 struct perf_event *event, *tmp;
5932 int ctxn;
5933
5934 for_each_task_context_nr(ctxn) {
5935 ctx = task->perf_event_ctxp[ctxn];
5936 if (!ctx)
5937 continue;
5938
5939 mutex_lock(&ctx->mutex);
5940 again:
5941 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
5942 group_entry)
5943 perf_free_event(event, ctx);
5944
5945 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5946 group_entry)
5947 perf_free_event(event, ctx);
5948
5949 if (!list_empty(&ctx->pinned_groups) ||
5950 !list_empty(&ctx->flexible_groups))
5951 goto again;
5952
5953 mutex_unlock(&ctx->mutex);
5954
5955 put_ctx(ctx);
5956 }
5957 }
5958
5959 void perf_event_delayed_put(struct task_struct *task)
5960 {
5961 int ctxn;
5962
5963 for_each_task_context_nr(ctxn)
5964 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
5965 }
5966
5967 /*
5968 * inherit a event from parent task to child task:
5969 */
5970 static struct perf_event *
5971 inherit_event(struct perf_event *parent_event,
5972 struct task_struct *parent,
5973 struct perf_event_context *parent_ctx,
5974 struct task_struct *child,
5975 struct perf_event *group_leader,
5976 struct perf_event_context *child_ctx)
5977 {
5978 struct perf_event *child_event;
5979 unsigned long flags;
5980
5981 /*
5982 * Instead of creating recursive hierarchies of events,
5983 * we link inherited events back to the original parent,
5984 * which has a filp for sure, which we use as the reference
5985 * count:
5986 */
5987 if (parent_event->parent)
5988 parent_event = parent_event->parent;
5989
5990 child_event = perf_event_alloc(&parent_event->attr,
5991 parent_event->cpu,
5992 group_leader, parent_event,
5993 NULL);
5994 if (IS_ERR(child_event))
5995 return child_event;
5996 get_ctx(child_ctx);
5997
5998 /*
5999 * Make the child state follow the state of the parent event,
6000 * not its attr.disabled bit. We hold the parent's mutex,
6001 * so we won't race with perf_event_{en, dis}able_family.
6002 */
6003 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6004 child_event->state = PERF_EVENT_STATE_INACTIVE;
6005 else
6006 child_event->state = PERF_EVENT_STATE_OFF;
6007
6008 if (parent_event->attr.freq) {
6009 u64 sample_period = parent_event->hw.sample_period;
6010 struct hw_perf_event *hwc = &child_event->hw;
6011
6012 hwc->sample_period = sample_period;
6013 hwc->last_period = sample_period;
6014
6015 local64_set(&hwc->period_left, sample_period);
6016 }
6017
6018 child_event->ctx = child_ctx;
6019 child_event->overflow_handler = parent_event->overflow_handler;
6020
6021 /*
6022 * Link it up in the child's context:
6023 */
6024 raw_spin_lock_irqsave(&child_ctx->lock, flags);
6025 add_event_to_ctx(child_event, child_ctx);
6026 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6027
6028 /*
6029 * Get a reference to the parent filp - we will fput it
6030 * when the child event exits. This is safe to do because
6031 * we are in the parent and we know that the filp still
6032 * exists and has a nonzero count:
6033 */
6034 atomic_long_inc(&parent_event->filp->f_count);
6035
6036 /*
6037 * Link this into the parent event's child list
6038 */
6039 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6040 mutex_lock(&parent_event->child_mutex);
6041 list_add_tail(&child_event->child_list, &parent_event->child_list);
6042 mutex_unlock(&parent_event->child_mutex);
6043
6044 return child_event;
6045 }
6046
6047 static int inherit_group(struct perf_event *parent_event,
6048 struct task_struct *parent,
6049 struct perf_event_context *parent_ctx,
6050 struct task_struct *child,
6051 struct perf_event_context *child_ctx)
6052 {
6053 struct perf_event *leader;
6054 struct perf_event *sub;
6055 struct perf_event *child_ctr;
6056
6057 leader = inherit_event(parent_event, parent, parent_ctx,
6058 child, NULL, child_ctx);
6059 if (IS_ERR(leader))
6060 return PTR_ERR(leader);
6061 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6062 child_ctr = inherit_event(sub, parent, parent_ctx,
6063 child, leader, child_ctx);
6064 if (IS_ERR(child_ctr))
6065 return PTR_ERR(child_ctr);
6066 }
6067 return 0;
6068 }
6069
6070 static int
6071 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6072 struct perf_event_context *parent_ctx,
6073 struct task_struct *child, int ctxn,
6074 int *inherited_all)
6075 {
6076 int ret;
6077 struct perf_event_context *child_ctx;
6078
6079 if (!event->attr.inherit) {
6080 *inherited_all = 0;
6081 return 0;
6082 }
6083
6084 child_ctx = child->perf_event_ctxp[ctxn];
6085 if (!child_ctx) {
6086 /*
6087 * This is executed from the parent task context, so
6088 * inherit events that have been marked for cloning.
6089 * First allocate and initialize a context for the
6090 * child.
6091 */
6092
6093 child_ctx = alloc_perf_context(event->pmu, child);
6094 if (!child_ctx)
6095 return -ENOMEM;
6096
6097 child->perf_event_ctxp[ctxn] = child_ctx;
6098 }
6099
6100 ret = inherit_group(event, parent, parent_ctx,
6101 child, child_ctx);
6102
6103 if (ret)
6104 *inherited_all = 0;
6105
6106 return ret;
6107 }
6108
6109 /*
6110 * Initialize the perf_event context in task_struct
6111 */
6112 int perf_event_init_context(struct task_struct *child, int ctxn)
6113 {
6114 struct perf_event_context *child_ctx, *parent_ctx;
6115 struct perf_event_context *cloned_ctx;
6116 struct perf_event *event;
6117 struct task_struct *parent = current;
6118 int inherited_all = 1;
6119 int ret = 0;
6120
6121 child->perf_event_ctxp[ctxn] = NULL;
6122
6123 mutex_init(&child->perf_event_mutex);
6124 INIT_LIST_HEAD(&child->perf_event_list);
6125
6126 if (likely(!parent->perf_event_ctxp[ctxn]))
6127 return 0;
6128
6129 /*
6130 * If the parent's context is a clone, pin it so it won't get
6131 * swapped under us.
6132 */
6133 parent_ctx = perf_pin_task_context(parent, ctxn);
6134
6135 /*
6136 * No need to check if parent_ctx != NULL here; since we saw
6137 * it non-NULL earlier, the only reason for it to become NULL
6138 * is if we exit, and since we're currently in the middle of
6139 * a fork we can't be exiting at the same time.
6140 */
6141
6142 /*
6143 * Lock the parent list. No need to lock the child - not PID
6144 * hashed yet and not running, so nobody can access it.
6145 */
6146 mutex_lock(&parent_ctx->mutex);
6147
6148 /*
6149 * We dont have to disable NMIs - we are only looking at
6150 * the list, not manipulating it:
6151 */
6152 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6153 ret = inherit_task_group(event, parent, parent_ctx,
6154 child, ctxn, &inherited_all);
6155 if (ret)
6156 break;
6157 }
6158
6159 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6160 ret = inherit_task_group(event, parent, parent_ctx,
6161 child, ctxn, &inherited_all);
6162 if (ret)
6163 break;
6164 }
6165
6166 child_ctx = child->perf_event_ctxp[ctxn];
6167
6168 if (child_ctx && inherited_all) {
6169 /*
6170 * Mark the child context as a clone of the parent
6171 * context, or of whatever the parent is a clone of.
6172 * Note that if the parent is a clone, it could get
6173 * uncloned at any point, but that doesn't matter
6174 * because the list of events and the generation
6175 * count can't have changed since we took the mutex.
6176 */
6177 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
6178 if (cloned_ctx) {
6179 child_ctx->parent_ctx = cloned_ctx;
6180 child_ctx->parent_gen = parent_ctx->parent_gen;
6181 } else {
6182 child_ctx->parent_ctx = parent_ctx;
6183 child_ctx->parent_gen = parent_ctx->generation;
6184 }
6185 get_ctx(child_ctx->parent_ctx);
6186 }
6187
6188 mutex_unlock(&parent_ctx->mutex);
6189
6190 perf_unpin_context(parent_ctx);
6191
6192 return ret;
6193 }
6194
6195 /*
6196 * Initialize the perf_event context in task_struct
6197 */
6198 int perf_event_init_task(struct task_struct *child)
6199 {
6200 int ctxn, ret;
6201
6202 for_each_task_context_nr(ctxn) {
6203 ret = perf_event_init_context(child, ctxn);
6204 if (ret)
6205 return ret;
6206 }
6207
6208 return 0;
6209 }
6210
6211 static void __init perf_event_init_all_cpus(void)
6212 {
6213 struct swevent_htable *swhash;
6214 int cpu;
6215
6216 for_each_possible_cpu(cpu) {
6217 swhash = &per_cpu(swevent_htable, cpu);
6218 mutex_init(&swhash->hlist_mutex);
6219 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6220 }
6221 }
6222
6223 static void __cpuinit perf_event_init_cpu(int cpu)
6224 {
6225 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6226
6227 mutex_lock(&swhash->hlist_mutex);
6228 if (swhash->hlist_refcount > 0) {
6229 struct swevent_hlist *hlist;
6230
6231 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6232 WARN_ON(!hlist);
6233 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6234 }
6235 mutex_unlock(&swhash->hlist_mutex);
6236 }
6237
6238 #ifdef CONFIG_HOTPLUG_CPU
6239 static void perf_pmu_rotate_stop(struct pmu *pmu)
6240 {
6241 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6242
6243 WARN_ON(!irqs_disabled());
6244
6245 list_del_init(&cpuctx->rotation_list);
6246 }
6247
6248 static void __perf_event_exit_context(void *__info)
6249 {
6250 struct perf_event_context *ctx = __info;
6251 struct perf_event *event, *tmp;
6252
6253 perf_pmu_rotate_stop(ctx->pmu);
6254
6255 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6256 __perf_event_remove_from_context(event);
6257 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6258 __perf_event_remove_from_context(event);
6259 }
6260
6261 static void perf_event_exit_cpu_context(int cpu)
6262 {
6263 struct perf_event_context *ctx;
6264 struct pmu *pmu;
6265 int idx;
6266
6267 idx = srcu_read_lock(&pmus_srcu);
6268 list_for_each_entry_rcu(pmu, &pmus, entry) {
6269 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6270
6271 mutex_lock(&ctx->mutex);
6272 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6273 mutex_unlock(&ctx->mutex);
6274 }
6275 srcu_read_unlock(&pmus_srcu, idx);
6276 }
6277
6278 static void perf_event_exit_cpu(int cpu)
6279 {
6280 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6281
6282 mutex_lock(&swhash->hlist_mutex);
6283 swevent_hlist_release(swhash);
6284 mutex_unlock(&swhash->hlist_mutex);
6285
6286 perf_event_exit_cpu_context(cpu);
6287 }
6288 #else
6289 static inline void perf_event_exit_cpu(int cpu) { }
6290 #endif
6291
6292 static int __cpuinit
6293 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6294 {
6295 unsigned int cpu = (long)hcpu;
6296
6297 switch (action & ~CPU_TASKS_FROZEN) {
6298
6299 case CPU_UP_PREPARE:
6300 case CPU_DOWN_FAILED:
6301 perf_event_init_cpu(cpu);
6302 break;
6303
6304 case CPU_UP_CANCELED:
6305 case CPU_DOWN_PREPARE:
6306 perf_event_exit_cpu(cpu);
6307 break;
6308
6309 default:
6310 break;
6311 }
6312
6313 return NOTIFY_OK;
6314 }
6315
6316 void __init perf_event_init(void)
6317 {
6318 perf_event_init_all_cpus();
6319 init_srcu_struct(&pmus_srcu);
6320 perf_pmu_register(&perf_swevent);
6321 perf_pmu_register(&perf_cpu_clock);
6322 perf_pmu_register(&perf_task_clock);
6323 perf_tp_register();
6324 perf_cpu_notifier(perf_cpu_notify);
6325 }
This page took 0.206228 seconds and 5 git commands to generate.