perf events: Separate the routines handling the PERF_SAMPLE_ identity fields
[deliverable/linux.git] / kernel / perf_event.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34 #include <linux/hw_breakpoint.h>
35
36 #include <asm/irq_regs.h>
37
38 atomic_t perf_task_events __read_mostly;
39 static atomic_t nr_mmap_events __read_mostly;
40 static atomic_t nr_comm_events __read_mostly;
41 static atomic_t nr_task_events __read_mostly;
42
43 static LIST_HEAD(pmus);
44 static DEFINE_MUTEX(pmus_lock);
45 static struct srcu_struct pmus_srcu;
46
47 /*
48 * perf event paranoia level:
49 * -1 - not paranoid at all
50 * 0 - disallow raw tracepoint access for unpriv
51 * 1 - disallow cpu events for unpriv
52 * 2 - disallow kernel profiling for unpriv
53 */
54 int sysctl_perf_event_paranoid __read_mostly = 1;
55
56 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
57
58 /*
59 * max perf event sample rate
60 */
61 int sysctl_perf_event_sample_rate __read_mostly = 100000;
62
63 static atomic64_t perf_event_id;
64
65 void __weak perf_event_print_debug(void) { }
66
67 extern __weak const char *perf_pmu_name(void)
68 {
69 return "pmu";
70 }
71
72 void perf_pmu_disable(struct pmu *pmu)
73 {
74 int *count = this_cpu_ptr(pmu->pmu_disable_count);
75 if (!(*count)++)
76 pmu->pmu_disable(pmu);
77 }
78
79 void perf_pmu_enable(struct pmu *pmu)
80 {
81 int *count = this_cpu_ptr(pmu->pmu_disable_count);
82 if (!--(*count))
83 pmu->pmu_enable(pmu);
84 }
85
86 static DEFINE_PER_CPU(struct list_head, rotation_list);
87
88 /*
89 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
90 * because they're strictly cpu affine and rotate_start is called with IRQs
91 * disabled, while rotate_context is called from IRQ context.
92 */
93 static void perf_pmu_rotate_start(struct pmu *pmu)
94 {
95 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
96 struct list_head *head = &__get_cpu_var(rotation_list);
97
98 WARN_ON(!irqs_disabled());
99
100 if (list_empty(&cpuctx->rotation_list))
101 list_add(&cpuctx->rotation_list, head);
102 }
103
104 static void get_ctx(struct perf_event_context *ctx)
105 {
106 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
107 }
108
109 static void free_ctx(struct rcu_head *head)
110 {
111 struct perf_event_context *ctx;
112
113 ctx = container_of(head, struct perf_event_context, rcu_head);
114 kfree(ctx);
115 }
116
117 static void put_ctx(struct perf_event_context *ctx)
118 {
119 if (atomic_dec_and_test(&ctx->refcount)) {
120 if (ctx->parent_ctx)
121 put_ctx(ctx->parent_ctx);
122 if (ctx->task)
123 put_task_struct(ctx->task);
124 call_rcu(&ctx->rcu_head, free_ctx);
125 }
126 }
127
128 static void unclone_ctx(struct perf_event_context *ctx)
129 {
130 if (ctx->parent_ctx) {
131 put_ctx(ctx->parent_ctx);
132 ctx->parent_ctx = NULL;
133 }
134 }
135
136 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
137 {
138 /*
139 * only top level events have the pid namespace they were created in
140 */
141 if (event->parent)
142 event = event->parent;
143
144 return task_tgid_nr_ns(p, event->ns);
145 }
146
147 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
148 {
149 /*
150 * only top level events have the pid namespace they were created in
151 */
152 if (event->parent)
153 event = event->parent;
154
155 return task_pid_nr_ns(p, event->ns);
156 }
157
158 /*
159 * If we inherit events we want to return the parent event id
160 * to userspace.
161 */
162 static u64 primary_event_id(struct perf_event *event)
163 {
164 u64 id = event->id;
165
166 if (event->parent)
167 id = event->parent->id;
168
169 return id;
170 }
171
172 /*
173 * Get the perf_event_context for a task and lock it.
174 * This has to cope with with the fact that until it is locked,
175 * the context could get moved to another task.
176 */
177 static struct perf_event_context *
178 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
179 {
180 struct perf_event_context *ctx;
181
182 rcu_read_lock();
183 retry:
184 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
185 if (ctx) {
186 /*
187 * If this context is a clone of another, it might
188 * get swapped for another underneath us by
189 * perf_event_task_sched_out, though the
190 * rcu_read_lock() protects us from any context
191 * getting freed. Lock the context and check if it
192 * got swapped before we could get the lock, and retry
193 * if so. If we locked the right context, then it
194 * can't get swapped on us any more.
195 */
196 raw_spin_lock_irqsave(&ctx->lock, *flags);
197 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
198 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
199 goto retry;
200 }
201
202 if (!atomic_inc_not_zero(&ctx->refcount)) {
203 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
204 ctx = NULL;
205 }
206 }
207 rcu_read_unlock();
208 return ctx;
209 }
210
211 /*
212 * Get the context for a task and increment its pin_count so it
213 * can't get swapped to another task. This also increments its
214 * reference count so that the context can't get freed.
215 */
216 static struct perf_event_context *
217 perf_pin_task_context(struct task_struct *task, int ctxn)
218 {
219 struct perf_event_context *ctx;
220 unsigned long flags;
221
222 ctx = perf_lock_task_context(task, ctxn, &flags);
223 if (ctx) {
224 ++ctx->pin_count;
225 raw_spin_unlock_irqrestore(&ctx->lock, flags);
226 }
227 return ctx;
228 }
229
230 static void perf_unpin_context(struct perf_event_context *ctx)
231 {
232 unsigned long flags;
233
234 raw_spin_lock_irqsave(&ctx->lock, flags);
235 --ctx->pin_count;
236 raw_spin_unlock_irqrestore(&ctx->lock, flags);
237 put_ctx(ctx);
238 }
239
240 static inline u64 perf_clock(void)
241 {
242 return local_clock();
243 }
244
245 /*
246 * Update the record of the current time in a context.
247 */
248 static void update_context_time(struct perf_event_context *ctx)
249 {
250 u64 now = perf_clock();
251
252 ctx->time += now - ctx->timestamp;
253 ctx->timestamp = now;
254 }
255
256 /*
257 * Update the total_time_enabled and total_time_running fields for a event.
258 */
259 static void update_event_times(struct perf_event *event)
260 {
261 struct perf_event_context *ctx = event->ctx;
262 u64 run_end;
263
264 if (event->state < PERF_EVENT_STATE_INACTIVE ||
265 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
266 return;
267
268 if (ctx->is_active)
269 run_end = ctx->time;
270 else
271 run_end = event->tstamp_stopped;
272
273 event->total_time_enabled = run_end - event->tstamp_enabled;
274
275 if (event->state == PERF_EVENT_STATE_INACTIVE)
276 run_end = event->tstamp_stopped;
277 else
278 run_end = ctx->time;
279
280 event->total_time_running = run_end - event->tstamp_running;
281 }
282
283 /*
284 * Update total_time_enabled and total_time_running for all events in a group.
285 */
286 static void update_group_times(struct perf_event *leader)
287 {
288 struct perf_event *event;
289
290 update_event_times(leader);
291 list_for_each_entry(event, &leader->sibling_list, group_entry)
292 update_event_times(event);
293 }
294
295 static struct list_head *
296 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
297 {
298 if (event->attr.pinned)
299 return &ctx->pinned_groups;
300 else
301 return &ctx->flexible_groups;
302 }
303
304 /*
305 * Add a event from the lists for its context.
306 * Must be called with ctx->mutex and ctx->lock held.
307 */
308 static void
309 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
310 {
311 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
312 event->attach_state |= PERF_ATTACH_CONTEXT;
313
314 /*
315 * If we're a stand alone event or group leader, we go to the context
316 * list, group events are kept attached to the group so that
317 * perf_group_detach can, at all times, locate all siblings.
318 */
319 if (event->group_leader == event) {
320 struct list_head *list;
321
322 if (is_software_event(event))
323 event->group_flags |= PERF_GROUP_SOFTWARE;
324
325 list = ctx_group_list(event, ctx);
326 list_add_tail(&event->group_entry, list);
327 }
328
329 list_add_rcu(&event->event_entry, &ctx->event_list);
330 if (!ctx->nr_events)
331 perf_pmu_rotate_start(ctx->pmu);
332 ctx->nr_events++;
333 if (event->attr.inherit_stat)
334 ctx->nr_stat++;
335 }
336
337 /*
338 * Called at perf_event creation and when events are attached/detached from a
339 * group.
340 */
341 static void perf_event__read_size(struct perf_event *event)
342 {
343 int entry = sizeof(u64); /* value */
344 int size = 0;
345 int nr = 1;
346
347 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
348 size += sizeof(u64);
349
350 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
351 size += sizeof(u64);
352
353 if (event->attr.read_format & PERF_FORMAT_ID)
354 entry += sizeof(u64);
355
356 if (event->attr.read_format & PERF_FORMAT_GROUP) {
357 nr += event->group_leader->nr_siblings;
358 size += sizeof(u64);
359 }
360
361 size += entry * nr;
362 event->read_size = size;
363 }
364
365 static void perf_event__header_size(struct perf_event *event)
366 {
367 struct perf_sample_data *data;
368 u64 sample_type = event->attr.sample_type;
369 u16 size = 0;
370
371 perf_event__read_size(event);
372
373 if (sample_type & PERF_SAMPLE_IP)
374 size += sizeof(data->ip);
375
376 if (sample_type & PERF_SAMPLE_ADDR)
377 size += sizeof(data->addr);
378
379 if (sample_type & PERF_SAMPLE_PERIOD)
380 size += sizeof(data->period);
381
382 if (sample_type & PERF_SAMPLE_READ)
383 size += event->read_size;
384
385 event->header_size = size;
386 }
387
388 static void perf_event__id_header_size(struct perf_event *event)
389 {
390 struct perf_sample_data *data;
391 u64 sample_type = event->attr.sample_type;
392 u16 size = 0;
393
394 if (sample_type & PERF_SAMPLE_TID)
395 size += sizeof(data->tid_entry);
396
397 if (sample_type & PERF_SAMPLE_TIME)
398 size += sizeof(data->time);
399
400 if (sample_type & PERF_SAMPLE_ID)
401 size += sizeof(data->id);
402
403 if (sample_type & PERF_SAMPLE_STREAM_ID)
404 size += sizeof(data->stream_id);
405
406 if (sample_type & PERF_SAMPLE_CPU)
407 size += sizeof(data->cpu_entry);
408
409 event->id_header_size = size;
410 }
411
412 static void perf_group_attach(struct perf_event *event)
413 {
414 struct perf_event *group_leader = event->group_leader, *pos;
415
416 /*
417 * We can have double attach due to group movement in perf_event_open.
418 */
419 if (event->attach_state & PERF_ATTACH_GROUP)
420 return;
421
422 event->attach_state |= PERF_ATTACH_GROUP;
423
424 if (group_leader == event)
425 return;
426
427 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
428 !is_software_event(event))
429 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
430
431 list_add_tail(&event->group_entry, &group_leader->sibling_list);
432 group_leader->nr_siblings++;
433
434 perf_event__header_size(group_leader);
435
436 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
437 perf_event__header_size(pos);
438 }
439
440 /*
441 * Remove a event from the lists for its context.
442 * Must be called with ctx->mutex and ctx->lock held.
443 */
444 static void
445 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
446 {
447 /*
448 * We can have double detach due to exit/hot-unplug + close.
449 */
450 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
451 return;
452
453 event->attach_state &= ~PERF_ATTACH_CONTEXT;
454
455 ctx->nr_events--;
456 if (event->attr.inherit_stat)
457 ctx->nr_stat--;
458
459 list_del_rcu(&event->event_entry);
460
461 if (event->group_leader == event)
462 list_del_init(&event->group_entry);
463
464 update_group_times(event);
465
466 /*
467 * If event was in error state, then keep it
468 * that way, otherwise bogus counts will be
469 * returned on read(). The only way to get out
470 * of error state is by explicit re-enabling
471 * of the event
472 */
473 if (event->state > PERF_EVENT_STATE_OFF)
474 event->state = PERF_EVENT_STATE_OFF;
475 }
476
477 static void perf_group_detach(struct perf_event *event)
478 {
479 struct perf_event *sibling, *tmp;
480 struct list_head *list = NULL;
481
482 /*
483 * We can have double detach due to exit/hot-unplug + close.
484 */
485 if (!(event->attach_state & PERF_ATTACH_GROUP))
486 return;
487
488 event->attach_state &= ~PERF_ATTACH_GROUP;
489
490 /*
491 * If this is a sibling, remove it from its group.
492 */
493 if (event->group_leader != event) {
494 list_del_init(&event->group_entry);
495 event->group_leader->nr_siblings--;
496 goto out;
497 }
498
499 if (!list_empty(&event->group_entry))
500 list = &event->group_entry;
501
502 /*
503 * If this was a group event with sibling events then
504 * upgrade the siblings to singleton events by adding them
505 * to whatever list we are on.
506 */
507 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
508 if (list)
509 list_move_tail(&sibling->group_entry, list);
510 sibling->group_leader = sibling;
511
512 /* Inherit group flags from the previous leader */
513 sibling->group_flags = event->group_flags;
514 }
515
516 out:
517 perf_event__header_size(event->group_leader);
518
519 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
520 perf_event__header_size(tmp);
521 }
522
523 static inline int
524 event_filter_match(struct perf_event *event)
525 {
526 return event->cpu == -1 || event->cpu == smp_processor_id();
527 }
528
529 static void
530 event_sched_out(struct perf_event *event,
531 struct perf_cpu_context *cpuctx,
532 struct perf_event_context *ctx)
533 {
534 u64 delta;
535 /*
536 * An event which could not be activated because of
537 * filter mismatch still needs to have its timings
538 * maintained, otherwise bogus information is return
539 * via read() for time_enabled, time_running:
540 */
541 if (event->state == PERF_EVENT_STATE_INACTIVE
542 && !event_filter_match(event)) {
543 delta = ctx->time - event->tstamp_stopped;
544 event->tstamp_running += delta;
545 event->tstamp_stopped = ctx->time;
546 }
547
548 if (event->state != PERF_EVENT_STATE_ACTIVE)
549 return;
550
551 event->state = PERF_EVENT_STATE_INACTIVE;
552 if (event->pending_disable) {
553 event->pending_disable = 0;
554 event->state = PERF_EVENT_STATE_OFF;
555 }
556 event->tstamp_stopped = ctx->time;
557 event->pmu->del(event, 0);
558 event->oncpu = -1;
559
560 if (!is_software_event(event))
561 cpuctx->active_oncpu--;
562 ctx->nr_active--;
563 if (event->attr.exclusive || !cpuctx->active_oncpu)
564 cpuctx->exclusive = 0;
565 }
566
567 static void
568 group_sched_out(struct perf_event *group_event,
569 struct perf_cpu_context *cpuctx,
570 struct perf_event_context *ctx)
571 {
572 struct perf_event *event;
573 int state = group_event->state;
574
575 event_sched_out(group_event, cpuctx, ctx);
576
577 /*
578 * Schedule out siblings (if any):
579 */
580 list_for_each_entry(event, &group_event->sibling_list, group_entry)
581 event_sched_out(event, cpuctx, ctx);
582
583 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
584 cpuctx->exclusive = 0;
585 }
586
587 static inline struct perf_cpu_context *
588 __get_cpu_context(struct perf_event_context *ctx)
589 {
590 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
591 }
592
593 /*
594 * Cross CPU call to remove a performance event
595 *
596 * We disable the event on the hardware level first. After that we
597 * remove it from the context list.
598 */
599 static void __perf_event_remove_from_context(void *info)
600 {
601 struct perf_event *event = info;
602 struct perf_event_context *ctx = event->ctx;
603 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
604
605 /*
606 * If this is a task context, we need to check whether it is
607 * the current task context of this cpu. If not it has been
608 * scheduled out before the smp call arrived.
609 */
610 if (ctx->task && cpuctx->task_ctx != ctx)
611 return;
612
613 raw_spin_lock(&ctx->lock);
614
615 event_sched_out(event, cpuctx, ctx);
616
617 list_del_event(event, ctx);
618
619 raw_spin_unlock(&ctx->lock);
620 }
621
622
623 /*
624 * Remove the event from a task's (or a CPU's) list of events.
625 *
626 * Must be called with ctx->mutex held.
627 *
628 * CPU events are removed with a smp call. For task events we only
629 * call when the task is on a CPU.
630 *
631 * If event->ctx is a cloned context, callers must make sure that
632 * every task struct that event->ctx->task could possibly point to
633 * remains valid. This is OK when called from perf_release since
634 * that only calls us on the top-level context, which can't be a clone.
635 * When called from perf_event_exit_task, it's OK because the
636 * context has been detached from its task.
637 */
638 static void perf_event_remove_from_context(struct perf_event *event)
639 {
640 struct perf_event_context *ctx = event->ctx;
641 struct task_struct *task = ctx->task;
642
643 if (!task) {
644 /*
645 * Per cpu events are removed via an smp call and
646 * the removal is always successful.
647 */
648 smp_call_function_single(event->cpu,
649 __perf_event_remove_from_context,
650 event, 1);
651 return;
652 }
653
654 retry:
655 task_oncpu_function_call(task, __perf_event_remove_from_context,
656 event);
657
658 raw_spin_lock_irq(&ctx->lock);
659 /*
660 * If the context is active we need to retry the smp call.
661 */
662 if (ctx->nr_active && !list_empty(&event->group_entry)) {
663 raw_spin_unlock_irq(&ctx->lock);
664 goto retry;
665 }
666
667 /*
668 * The lock prevents that this context is scheduled in so we
669 * can remove the event safely, if the call above did not
670 * succeed.
671 */
672 if (!list_empty(&event->group_entry))
673 list_del_event(event, ctx);
674 raw_spin_unlock_irq(&ctx->lock);
675 }
676
677 /*
678 * Cross CPU call to disable a performance event
679 */
680 static void __perf_event_disable(void *info)
681 {
682 struct perf_event *event = info;
683 struct perf_event_context *ctx = event->ctx;
684 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
685
686 /*
687 * If this is a per-task event, need to check whether this
688 * event's task is the current task on this cpu.
689 */
690 if (ctx->task && cpuctx->task_ctx != ctx)
691 return;
692
693 raw_spin_lock(&ctx->lock);
694
695 /*
696 * If the event is on, turn it off.
697 * If it is in error state, leave it in error state.
698 */
699 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
700 update_context_time(ctx);
701 update_group_times(event);
702 if (event == event->group_leader)
703 group_sched_out(event, cpuctx, ctx);
704 else
705 event_sched_out(event, cpuctx, ctx);
706 event->state = PERF_EVENT_STATE_OFF;
707 }
708
709 raw_spin_unlock(&ctx->lock);
710 }
711
712 /*
713 * Disable a event.
714 *
715 * If event->ctx is a cloned context, callers must make sure that
716 * every task struct that event->ctx->task could possibly point to
717 * remains valid. This condition is satisifed when called through
718 * perf_event_for_each_child or perf_event_for_each because they
719 * hold the top-level event's child_mutex, so any descendant that
720 * goes to exit will block in sync_child_event.
721 * When called from perf_pending_event it's OK because event->ctx
722 * is the current context on this CPU and preemption is disabled,
723 * hence we can't get into perf_event_task_sched_out for this context.
724 */
725 void perf_event_disable(struct perf_event *event)
726 {
727 struct perf_event_context *ctx = event->ctx;
728 struct task_struct *task = ctx->task;
729
730 if (!task) {
731 /*
732 * Disable the event on the cpu that it's on
733 */
734 smp_call_function_single(event->cpu, __perf_event_disable,
735 event, 1);
736 return;
737 }
738
739 retry:
740 task_oncpu_function_call(task, __perf_event_disable, event);
741
742 raw_spin_lock_irq(&ctx->lock);
743 /*
744 * If the event is still active, we need to retry the cross-call.
745 */
746 if (event->state == PERF_EVENT_STATE_ACTIVE) {
747 raw_spin_unlock_irq(&ctx->lock);
748 goto retry;
749 }
750
751 /*
752 * Since we have the lock this context can't be scheduled
753 * in, so we can change the state safely.
754 */
755 if (event->state == PERF_EVENT_STATE_INACTIVE) {
756 update_group_times(event);
757 event->state = PERF_EVENT_STATE_OFF;
758 }
759
760 raw_spin_unlock_irq(&ctx->lock);
761 }
762
763 static int
764 event_sched_in(struct perf_event *event,
765 struct perf_cpu_context *cpuctx,
766 struct perf_event_context *ctx)
767 {
768 if (event->state <= PERF_EVENT_STATE_OFF)
769 return 0;
770
771 event->state = PERF_EVENT_STATE_ACTIVE;
772 event->oncpu = smp_processor_id();
773 /*
774 * The new state must be visible before we turn it on in the hardware:
775 */
776 smp_wmb();
777
778 if (event->pmu->add(event, PERF_EF_START)) {
779 event->state = PERF_EVENT_STATE_INACTIVE;
780 event->oncpu = -1;
781 return -EAGAIN;
782 }
783
784 event->tstamp_running += ctx->time - event->tstamp_stopped;
785
786 event->shadow_ctx_time = ctx->time - ctx->timestamp;
787
788 if (!is_software_event(event))
789 cpuctx->active_oncpu++;
790 ctx->nr_active++;
791
792 if (event->attr.exclusive)
793 cpuctx->exclusive = 1;
794
795 return 0;
796 }
797
798 static int
799 group_sched_in(struct perf_event *group_event,
800 struct perf_cpu_context *cpuctx,
801 struct perf_event_context *ctx)
802 {
803 struct perf_event *event, *partial_group = NULL;
804 struct pmu *pmu = group_event->pmu;
805 u64 now = ctx->time;
806 bool simulate = false;
807
808 if (group_event->state == PERF_EVENT_STATE_OFF)
809 return 0;
810
811 pmu->start_txn(pmu);
812
813 if (event_sched_in(group_event, cpuctx, ctx)) {
814 pmu->cancel_txn(pmu);
815 return -EAGAIN;
816 }
817
818 /*
819 * Schedule in siblings as one group (if any):
820 */
821 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
822 if (event_sched_in(event, cpuctx, ctx)) {
823 partial_group = event;
824 goto group_error;
825 }
826 }
827
828 if (!pmu->commit_txn(pmu))
829 return 0;
830
831 group_error:
832 /*
833 * Groups can be scheduled in as one unit only, so undo any
834 * partial group before returning:
835 * The events up to the failed event are scheduled out normally,
836 * tstamp_stopped will be updated.
837 *
838 * The failed events and the remaining siblings need to have
839 * their timings updated as if they had gone thru event_sched_in()
840 * and event_sched_out(). This is required to get consistent timings
841 * across the group. This also takes care of the case where the group
842 * could never be scheduled by ensuring tstamp_stopped is set to mark
843 * the time the event was actually stopped, such that time delta
844 * calculation in update_event_times() is correct.
845 */
846 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
847 if (event == partial_group)
848 simulate = true;
849
850 if (simulate) {
851 event->tstamp_running += now - event->tstamp_stopped;
852 event->tstamp_stopped = now;
853 } else {
854 event_sched_out(event, cpuctx, ctx);
855 }
856 }
857 event_sched_out(group_event, cpuctx, ctx);
858
859 pmu->cancel_txn(pmu);
860
861 return -EAGAIN;
862 }
863
864 /*
865 * Work out whether we can put this event group on the CPU now.
866 */
867 static int group_can_go_on(struct perf_event *event,
868 struct perf_cpu_context *cpuctx,
869 int can_add_hw)
870 {
871 /*
872 * Groups consisting entirely of software events can always go on.
873 */
874 if (event->group_flags & PERF_GROUP_SOFTWARE)
875 return 1;
876 /*
877 * If an exclusive group is already on, no other hardware
878 * events can go on.
879 */
880 if (cpuctx->exclusive)
881 return 0;
882 /*
883 * If this group is exclusive and there are already
884 * events on the CPU, it can't go on.
885 */
886 if (event->attr.exclusive && cpuctx->active_oncpu)
887 return 0;
888 /*
889 * Otherwise, try to add it if all previous groups were able
890 * to go on.
891 */
892 return can_add_hw;
893 }
894
895 static void add_event_to_ctx(struct perf_event *event,
896 struct perf_event_context *ctx)
897 {
898 list_add_event(event, ctx);
899 perf_group_attach(event);
900 event->tstamp_enabled = ctx->time;
901 event->tstamp_running = ctx->time;
902 event->tstamp_stopped = ctx->time;
903 }
904
905 /*
906 * Cross CPU call to install and enable a performance event
907 *
908 * Must be called with ctx->mutex held
909 */
910 static void __perf_install_in_context(void *info)
911 {
912 struct perf_event *event = info;
913 struct perf_event_context *ctx = event->ctx;
914 struct perf_event *leader = event->group_leader;
915 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
916 int err;
917
918 /*
919 * If this is a task context, we need to check whether it is
920 * the current task context of this cpu. If not it has been
921 * scheduled out before the smp call arrived.
922 * Or possibly this is the right context but it isn't
923 * on this cpu because it had no events.
924 */
925 if (ctx->task && cpuctx->task_ctx != ctx) {
926 if (cpuctx->task_ctx || ctx->task != current)
927 return;
928 cpuctx->task_ctx = ctx;
929 }
930
931 raw_spin_lock(&ctx->lock);
932 ctx->is_active = 1;
933 update_context_time(ctx);
934
935 add_event_to_ctx(event, ctx);
936
937 if (event->cpu != -1 && event->cpu != smp_processor_id())
938 goto unlock;
939
940 /*
941 * Don't put the event on if it is disabled or if
942 * it is in a group and the group isn't on.
943 */
944 if (event->state != PERF_EVENT_STATE_INACTIVE ||
945 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
946 goto unlock;
947
948 /*
949 * An exclusive event can't go on if there are already active
950 * hardware events, and no hardware event can go on if there
951 * is already an exclusive event on.
952 */
953 if (!group_can_go_on(event, cpuctx, 1))
954 err = -EEXIST;
955 else
956 err = event_sched_in(event, cpuctx, ctx);
957
958 if (err) {
959 /*
960 * This event couldn't go on. If it is in a group
961 * then we have to pull the whole group off.
962 * If the event group is pinned then put it in error state.
963 */
964 if (leader != event)
965 group_sched_out(leader, cpuctx, ctx);
966 if (leader->attr.pinned) {
967 update_group_times(leader);
968 leader->state = PERF_EVENT_STATE_ERROR;
969 }
970 }
971
972 unlock:
973 raw_spin_unlock(&ctx->lock);
974 }
975
976 /*
977 * Attach a performance event to a context
978 *
979 * First we add the event to the list with the hardware enable bit
980 * in event->hw_config cleared.
981 *
982 * If the event is attached to a task which is on a CPU we use a smp
983 * call to enable it in the task context. The task might have been
984 * scheduled away, but we check this in the smp call again.
985 *
986 * Must be called with ctx->mutex held.
987 */
988 static void
989 perf_install_in_context(struct perf_event_context *ctx,
990 struct perf_event *event,
991 int cpu)
992 {
993 struct task_struct *task = ctx->task;
994
995 event->ctx = ctx;
996
997 if (!task) {
998 /*
999 * Per cpu events are installed via an smp call and
1000 * the install is always successful.
1001 */
1002 smp_call_function_single(cpu, __perf_install_in_context,
1003 event, 1);
1004 return;
1005 }
1006
1007 retry:
1008 task_oncpu_function_call(task, __perf_install_in_context,
1009 event);
1010
1011 raw_spin_lock_irq(&ctx->lock);
1012 /*
1013 * we need to retry the smp call.
1014 */
1015 if (ctx->is_active && list_empty(&event->group_entry)) {
1016 raw_spin_unlock_irq(&ctx->lock);
1017 goto retry;
1018 }
1019
1020 /*
1021 * The lock prevents that this context is scheduled in so we
1022 * can add the event safely, if it the call above did not
1023 * succeed.
1024 */
1025 if (list_empty(&event->group_entry))
1026 add_event_to_ctx(event, ctx);
1027 raw_spin_unlock_irq(&ctx->lock);
1028 }
1029
1030 /*
1031 * Put a event into inactive state and update time fields.
1032 * Enabling the leader of a group effectively enables all
1033 * the group members that aren't explicitly disabled, so we
1034 * have to update their ->tstamp_enabled also.
1035 * Note: this works for group members as well as group leaders
1036 * since the non-leader members' sibling_lists will be empty.
1037 */
1038 static void __perf_event_mark_enabled(struct perf_event *event,
1039 struct perf_event_context *ctx)
1040 {
1041 struct perf_event *sub;
1042
1043 event->state = PERF_EVENT_STATE_INACTIVE;
1044 event->tstamp_enabled = ctx->time - event->total_time_enabled;
1045 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1046 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
1047 sub->tstamp_enabled =
1048 ctx->time - sub->total_time_enabled;
1049 }
1050 }
1051 }
1052
1053 /*
1054 * Cross CPU call to enable a performance event
1055 */
1056 static void __perf_event_enable(void *info)
1057 {
1058 struct perf_event *event = info;
1059 struct perf_event_context *ctx = event->ctx;
1060 struct perf_event *leader = event->group_leader;
1061 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1062 int err;
1063
1064 /*
1065 * If this is a per-task event, need to check whether this
1066 * event's task is the current task on this cpu.
1067 */
1068 if (ctx->task && cpuctx->task_ctx != ctx) {
1069 if (cpuctx->task_ctx || ctx->task != current)
1070 return;
1071 cpuctx->task_ctx = ctx;
1072 }
1073
1074 raw_spin_lock(&ctx->lock);
1075 ctx->is_active = 1;
1076 update_context_time(ctx);
1077
1078 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1079 goto unlock;
1080 __perf_event_mark_enabled(event, ctx);
1081
1082 if (event->cpu != -1 && event->cpu != smp_processor_id())
1083 goto unlock;
1084
1085 /*
1086 * If the event is in a group and isn't the group leader,
1087 * then don't put it on unless the group is on.
1088 */
1089 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1090 goto unlock;
1091
1092 if (!group_can_go_on(event, cpuctx, 1)) {
1093 err = -EEXIST;
1094 } else {
1095 if (event == leader)
1096 err = group_sched_in(event, cpuctx, ctx);
1097 else
1098 err = event_sched_in(event, cpuctx, ctx);
1099 }
1100
1101 if (err) {
1102 /*
1103 * If this event can't go on and it's part of a
1104 * group, then the whole group has to come off.
1105 */
1106 if (leader != event)
1107 group_sched_out(leader, cpuctx, ctx);
1108 if (leader->attr.pinned) {
1109 update_group_times(leader);
1110 leader->state = PERF_EVENT_STATE_ERROR;
1111 }
1112 }
1113
1114 unlock:
1115 raw_spin_unlock(&ctx->lock);
1116 }
1117
1118 /*
1119 * Enable a event.
1120 *
1121 * If event->ctx is a cloned context, callers must make sure that
1122 * every task struct that event->ctx->task could possibly point to
1123 * remains valid. This condition is satisfied when called through
1124 * perf_event_for_each_child or perf_event_for_each as described
1125 * for perf_event_disable.
1126 */
1127 void perf_event_enable(struct perf_event *event)
1128 {
1129 struct perf_event_context *ctx = event->ctx;
1130 struct task_struct *task = ctx->task;
1131
1132 if (!task) {
1133 /*
1134 * Enable the event on the cpu that it's on
1135 */
1136 smp_call_function_single(event->cpu, __perf_event_enable,
1137 event, 1);
1138 return;
1139 }
1140
1141 raw_spin_lock_irq(&ctx->lock);
1142 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1143 goto out;
1144
1145 /*
1146 * If the event is in error state, clear that first.
1147 * That way, if we see the event in error state below, we
1148 * know that it has gone back into error state, as distinct
1149 * from the task having been scheduled away before the
1150 * cross-call arrived.
1151 */
1152 if (event->state == PERF_EVENT_STATE_ERROR)
1153 event->state = PERF_EVENT_STATE_OFF;
1154
1155 retry:
1156 raw_spin_unlock_irq(&ctx->lock);
1157 task_oncpu_function_call(task, __perf_event_enable, event);
1158
1159 raw_spin_lock_irq(&ctx->lock);
1160
1161 /*
1162 * If the context is active and the event is still off,
1163 * we need to retry the cross-call.
1164 */
1165 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1166 goto retry;
1167
1168 /*
1169 * Since we have the lock this context can't be scheduled
1170 * in, so we can change the state safely.
1171 */
1172 if (event->state == PERF_EVENT_STATE_OFF)
1173 __perf_event_mark_enabled(event, ctx);
1174
1175 out:
1176 raw_spin_unlock_irq(&ctx->lock);
1177 }
1178
1179 static int perf_event_refresh(struct perf_event *event, int refresh)
1180 {
1181 /*
1182 * not supported on inherited events
1183 */
1184 if (event->attr.inherit || !is_sampling_event(event))
1185 return -EINVAL;
1186
1187 atomic_add(refresh, &event->event_limit);
1188 perf_event_enable(event);
1189
1190 return 0;
1191 }
1192
1193 enum event_type_t {
1194 EVENT_FLEXIBLE = 0x1,
1195 EVENT_PINNED = 0x2,
1196 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1197 };
1198
1199 static void ctx_sched_out(struct perf_event_context *ctx,
1200 struct perf_cpu_context *cpuctx,
1201 enum event_type_t event_type)
1202 {
1203 struct perf_event *event;
1204
1205 raw_spin_lock(&ctx->lock);
1206 perf_pmu_disable(ctx->pmu);
1207 ctx->is_active = 0;
1208 if (likely(!ctx->nr_events))
1209 goto out;
1210 update_context_time(ctx);
1211
1212 if (!ctx->nr_active)
1213 goto out;
1214
1215 if (event_type & EVENT_PINNED) {
1216 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1217 group_sched_out(event, cpuctx, ctx);
1218 }
1219
1220 if (event_type & EVENT_FLEXIBLE) {
1221 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1222 group_sched_out(event, cpuctx, ctx);
1223 }
1224 out:
1225 perf_pmu_enable(ctx->pmu);
1226 raw_spin_unlock(&ctx->lock);
1227 }
1228
1229 /*
1230 * Test whether two contexts are equivalent, i.e. whether they
1231 * have both been cloned from the same version of the same context
1232 * and they both have the same number of enabled events.
1233 * If the number of enabled events is the same, then the set
1234 * of enabled events should be the same, because these are both
1235 * inherited contexts, therefore we can't access individual events
1236 * in them directly with an fd; we can only enable/disable all
1237 * events via prctl, or enable/disable all events in a family
1238 * via ioctl, which will have the same effect on both contexts.
1239 */
1240 static int context_equiv(struct perf_event_context *ctx1,
1241 struct perf_event_context *ctx2)
1242 {
1243 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1244 && ctx1->parent_gen == ctx2->parent_gen
1245 && !ctx1->pin_count && !ctx2->pin_count;
1246 }
1247
1248 static void __perf_event_sync_stat(struct perf_event *event,
1249 struct perf_event *next_event)
1250 {
1251 u64 value;
1252
1253 if (!event->attr.inherit_stat)
1254 return;
1255
1256 /*
1257 * Update the event value, we cannot use perf_event_read()
1258 * because we're in the middle of a context switch and have IRQs
1259 * disabled, which upsets smp_call_function_single(), however
1260 * we know the event must be on the current CPU, therefore we
1261 * don't need to use it.
1262 */
1263 switch (event->state) {
1264 case PERF_EVENT_STATE_ACTIVE:
1265 event->pmu->read(event);
1266 /* fall-through */
1267
1268 case PERF_EVENT_STATE_INACTIVE:
1269 update_event_times(event);
1270 break;
1271
1272 default:
1273 break;
1274 }
1275
1276 /*
1277 * In order to keep per-task stats reliable we need to flip the event
1278 * values when we flip the contexts.
1279 */
1280 value = local64_read(&next_event->count);
1281 value = local64_xchg(&event->count, value);
1282 local64_set(&next_event->count, value);
1283
1284 swap(event->total_time_enabled, next_event->total_time_enabled);
1285 swap(event->total_time_running, next_event->total_time_running);
1286
1287 /*
1288 * Since we swizzled the values, update the user visible data too.
1289 */
1290 perf_event_update_userpage(event);
1291 perf_event_update_userpage(next_event);
1292 }
1293
1294 #define list_next_entry(pos, member) \
1295 list_entry(pos->member.next, typeof(*pos), member)
1296
1297 static void perf_event_sync_stat(struct perf_event_context *ctx,
1298 struct perf_event_context *next_ctx)
1299 {
1300 struct perf_event *event, *next_event;
1301
1302 if (!ctx->nr_stat)
1303 return;
1304
1305 update_context_time(ctx);
1306
1307 event = list_first_entry(&ctx->event_list,
1308 struct perf_event, event_entry);
1309
1310 next_event = list_first_entry(&next_ctx->event_list,
1311 struct perf_event, event_entry);
1312
1313 while (&event->event_entry != &ctx->event_list &&
1314 &next_event->event_entry != &next_ctx->event_list) {
1315
1316 __perf_event_sync_stat(event, next_event);
1317
1318 event = list_next_entry(event, event_entry);
1319 next_event = list_next_entry(next_event, event_entry);
1320 }
1321 }
1322
1323 void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1324 struct task_struct *next)
1325 {
1326 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1327 struct perf_event_context *next_ctx;
1328 struct perf_event_context *parent;
1329 struct perf_cpu_context *cpuctx;
1330 int do_switch = 1;
1331
1332 if (likely(!ctx))
1333 return;
1334
1335 cpuctx = __get_cpu_context(ctx);
1336 if (!cpuctx->task_ctx)
1337 return;
1338
1339 rcu_read_lock();
1340 parent = rcu_dereference(ctx->parent_ctx);
1341 next_ctx = next->perf_event_ctxp[ctxn];
1342 if (parent && next_ctx &&
1343 rcu_dereference(next_ctx->parent_ctx) == parent) {
1344 /*
1345 * Looks like the two contexts are clones, so we might be
1346 * able to optimize the context switch. We lock both
1347 * contexts and check that they are clones under the
1348 * lock (including re-checking that neither has been
1349 * uncloned in the meantime). It doesn't matter which
1350 * order we take the locks because no other cpu could
1351 * be trying to lock both of these tasks.
1352 */
1353 raw_spin_lock(&ctx->lock);
1354 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1355 if (context_equiv(ctx, next_ctx)) {
1356 /*
1357 * XXX do we need a memory barrier of sorts
1358 * wrt to rcu_dereference() of perf_event_ctxp
1359 */
1360 task->perf_event_ctxp[ctxn] = next_ctx;
1361 next->perf_event_ctxp[ctxn] = ctx;
1362 ctx->task = next;
1363 next_ctx->task = task;
1364 do_switch = 0;
1365
1366 perf_event_sync_stat(ctx, next_ctx);
1367 }
1368 raw_spin_unlock(&next_ctx->lock);
1369 raw_spin_unlock(&ctx->lock);
1370 }
1371 rcu_read_unlock();
1372
1373 if (do_switch) {
1374 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1375 cpuctx->task_ctx = NULL;
1376 }
1377 }
1378
1379 #define for_each_task_context_nr(ctxn) \
1380 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1381
1382 /*
1383 * Called from scheduler to remove the events of the current task,
1384 * with interrupts disabled.
1385 *
1386 * We stop each event and update the event value in event->count.
1387 *
1388 * This does not protect us against NMI, but disable()
1389 * sets the disabled bit in the control field of event _before_
1390 * accessing the event control register. If a NMI hits, then it will
1391 * not restart the event.
1392 */
1393 void __perf_event_task_sched_out(struct task_struct *task,
1394 struct task_struct *next)
1395 {
1396 int ctxn;
1397
1398 for_each_task_context_nr(ctxn)
1399 perf_event_context_sched_out(task, ctxn, next);
1400 }
1401
1402 static void task_ctx_sched_out(struct perf_event_context *ctx,
1403 enum event_type_t event_type)
1404 {
1405 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1406
1407 if (!cpuctx->task_ctx)
1408 return;
1409
1410 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1411 return;
1412
1413 ctx_sched_out(ctx, cpuctx, event_type);
1414 cpuctx->task_ctx = NULL;
1415 }
1416
1417 /*
1418 * Called with IRQs disabled
1419 */
1420 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1421 enum event_type_t event_type)
1422 {
1423 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1424 }
1425
1426 static void
1427 ctx_pinned_sched_in(struct perf_event_context *ctx,
1428 struct perf_cpu_context *cpuctx)
1429 {
1430 struct perf_event *event;
1431
1432 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1433 if (event->state <= PERF_EVENT_STATE_OFF)
1434 continue;
1435 if (event->cpu != -1 && event->cpu != smp_processor_id())
1436 continue;
1437
1438 if (group_can_go_on(event, cpuctx, 1))
1439 group_sched_in(event, cpuctx, ctx);
1440
1441 /*
1442 * If this pinned group hasn't been scheduled,
1443 * put it in error state.
1444 */
1445 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1446 update_group_times(event);
1447 event->state = PERF_EVENT_STATE_ERROR;
1448 }
1449 }
1450 }
1451
1452 static void
1453 ctx_flexible_sched_in(struct perf_event_context *ctx,
1454 struct perf_cpu_context *cpuctx)
1455 {
1456 struct perf_event *event;
1457 int can_add_hw = 1;
1458
1459 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1460 /* Ignore events in OFF or ERROR state */
1461 if (event->state <= PERF_EVENT_STATE_OFF)
1462 continue;
1463 /*
1464 * Listen to the 'cpu' scheduling filter constraint
1465 * of events:
1466 */
1467 if (event->cpu != -1 && event->cpu != smp_processor_id())
1468 continue;
1469
1470 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1471 if (group_sched_in(event, cpuctx, ctx))
1472 can_add_hw = 0;
1473 }
1474 }
1475 }
1476
1477 static void
1478 ctx_sched_in(struct perf_event_context *ctx,
1479 struct perf_cpu_context *cpuctx,
1480 enum event_type_t event_type)
1481 {
1482 raw_spin_lock(&ctx->lock);
1483 ctx->is_active = 1;
1484 if (likely(!ctx->nr_events))
1485 goto out;
1486
1487 ctx->timestamp = perf_clock();
1488
1489 /*
1490 * First go through the list and put on any pinned groups
1491 * in order to give them the best chance of going on.
1492 */
1493 if (event_type & EVENT_PINNED)
1494 ctx_pinned_sched_in(ctx, cpuctx);
1495
1496 /* Then walk through the lower prio flexible groups */
1497 if (event_type & EVENT_FLEXIBLE)
1498 ctx_flexible_sched_in(ctx, cpuctx);
1499
1500 out:
1501 raw_spin_unlock(&ctx->lock);
1502 }
1503
1504 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1505 enum event_type_t event_type)
1506 {
1507 struct perf_event_context *ctx = &cpuctx->ctx;
1508
1509 ctx_sched_in(ctx, cpuctx, event_type);
1510 }
1511
1512 static void task_ctx_sched_in(struct perf_event_context *ctx,
1513 enum event_type_t event_type)
1514 {
1515 struct perf_cpu_context *cpuctx;
1516
1517 cpuctx = __get_cpu_context(ctx);
1518 if (cpuctx->task_ctx == ctx)
1519 return;
1520
1521 ctx_sched_in(ctx, cpuctx, event_type);
1522 cpuctx->task_ctx = ctx;
1523 }
1524
1525 void perf_event_context_sched_in(struct perf_event_context *ctx)
1526 {
1527 struct perf_cpu_context *cpuctx;
1528
1529 cpuctx = __get_cpu_context(ctx);
1530 if (cpuctx->task_ctx == ctx)
1531 return;
1532
1533 perf_pmu_disable(ctx->pmu);
1534 /*
1535 * We want to keep the following priority order:
1536 * cpu pinned (that don't need to move), task pinned,
1537 * cpu flexible, task flexible.
1538 */
1539 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1540
1541 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1542 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1543 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1544
1545 cpuctx->task_ctx = ctx;
1546
1547 /*
1548 * Since these rotations are per-cpu, we need to ensure the
1549 * cpu-context we got scheduled on is actually rotating.
1550 */
1551 perf_pmu_rotate_start(ctx->pmu);
1552 perf_pmu_enable(ctx->pmu);
1553 }
1554
1555 /*
1556 * Called from scheduler to add the events of the current task
1557 * with interrupts disabled.
1558 *
1559 * We restore the event value and then enable it.
1560 *
1561 * This does not protect us against NMI, but enable()
1562 * sets the enabled bit in the control field of event _before_
1563 * accessing the event control register. If a NMI hits, then it will
1564 * keep the event running.
1565 */
1566 void __perf_event_task_sched_in(struct task_struct *task)
1567 {
1568 struct perf_event_context *ctx;
1569 int ctxn;
1570
1571 for_each_task_context_nr(ctxn) {
1572 ctx = task->perf_event_ctxp[ctxn];
1573 if (likely(!ctx))
1574 continue;
1575
1576 perf_event_context_sched_in(ctx);
1577 }
1578 }
1579
1580 #define MAX_INTERRUPTS (~0ULL)
1581
1582 static void perf_log_throttle(struct perf_event *event, int enable);
1583
1584 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1585 {
1586 u64 frequency = event->attr.sample_freq;
1587 u64 sec = NSEC_PER_SEC;
1588 u64 divisor, dividend;
1589
1590 int count_fls, nsec_fls, frequency_fls, sec_fls;
1591
1592 count_fls = fls64(count);
1593 nsec_fls = fls64(nsec);
1594 frequency_fls = fls64(frequency);
1595 sec_fls = 30;
1596
1597 /*
1598 * We got @count in @nsec, with a target of sample_freq HZ
1599 * the target period becomes:
1600 *
1601 * @count * 10^9
1602 * period = -------------------
1603 * @nsec * sample_freq
1604 *
1605 */
1606
1607 /*
1608 * Reduce accuracy by one bit such that @a and @b converge
1609 * to a similar magnitude.
1610 */
1611 #define REDUCE_FLS(a, b) \
1612 do { \
1613 if (a##_fls > b##_fls) { \
1614 a >>= 1; \
1615 a##_fls--; \
1616 } else { \
1617 b >>= 1; \
1618 b##_fls--; \
1619 } \
1620 } while (0)
1621
1622 /*
1623 * Reduce accuracy until either term fits in a u64, then proceed with
1624 * the other, so that finally we can do a u64/u64 division.
1625 */
1626 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1627 REDUCE_FLS(nsec, frequency);
1628 REDUCE_FLS(sec, count);
1629 }
1630
1631 if (count_fls + sec_fls > 64) {
1632 divisor = nsec * frequency;
1633
1634 while (count_fls + sec_fls > 64) {
1635 REDUCE_FLS(count, sec);
1636 divisor >>= 1;
1637 }
1638
1639 dividend = count * sec;
1640 } else {
1641 dividend = count * sec;
1642
1643 while (nsec_fls + frequency_fls > 64) {
1644 REDUCE_FLS(nsec, frequency);
1645 dividend >>= 1;
1646 }
1647
1648 divisor = nsec * frequency;
1649 }
1650
1651 if (!divisor)
1652 return dividend;
1653
1654 return div64_u64(dividend, divisor);
1655 }
1656
1657 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1658 {
1659 struct hw_perf_event *hwc = &event->hw;
1660 s64 period, sample_period;
1661 s64 delta;
1662
1663 period = perf_calculate_period(event, nsec, count);
1664
1665 delta = (s64)(period - hwc->sample_period);
1666 delta = (delta + 7) / 8; /* low pass filter */
1667
1668 sample_period = hwc->sample_period + delta;
1669
1670 if (!sample_period)
1671 sample_period = 1;
1672
1673 hwc->sample_period = sample_period;
1674
1675 if (local64_read(&hwc->period_left) > 8*sample_period) {
1676 event->pmu->stop(event, PERF_EF_UPDATE);
1677 local64_set(&hwc->period_left, 0);
1678 event->pmu->start(event, PERF_EF_RELOAD);
1679 }
1680 }
1681
1682 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1683 {
1684 struct perf_event *event;
1685 struct hw_perf_event *hwc;
1686 u64 interrupts, now;
1687 s64 delta;
1688
1689 raw_spin_lock(&ctx->lock);
1690 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1691 if (event->state != PERF_EVENT_STATE_ACTIVE)
1692 continue;
1693
1694 if (event->cpu != -1 && event->cpu != smp_processor_id())
1695 continue;
1696
1697 hwc = &event->hw;
1698
1699 interrupts = hwc->interrupts;
1700 hwc->interrupts = 0;
1701
1702 /*
1703 * unthrottle events on the tick
1704 */
1705 if (interrupts == MAX_INTERRUPTS) {
1706 perf_log_throttle(event, 1);
1707 event->pmu->start(event, 0);
1708 }
1709
1710 if (!event->attr.freq || !event->attr.sample_freq)
1711 continue;
1712
1713 event->pmu->read(event);
1714 now = local64_read(&event->count);
1715 delta = now - hwc->freq_count_stamp;
1716 hwc->freq_count_stamp = now;
1717
1718 if (delta > 0)
1719 perf_adjust_period(event, period, delta);
1720 }
1721 raw_spin_unlock(&ctx->lock);
1722 }
1723
1724 /*
1725 * Round-robin a context's events:
1726 */
1727 static void rotate_ctx(struct perf_event_context *ctx)
1728 {
1729 raw_spin_lock(&ctx->lock);
1730
1731 /*
1732 * Rotate the first entry last of non-pinned groups. Rotation might be
1733 * disabled by the inheritance code.
1734 */
1735 if (!ctx->rotate_disable)
1736 list_rotate_left(&ctx->flexible_groups);
1737
1738 raw_spin_unlock(&ctx->lock);
1739 }
1740
1741 /*
1742 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
1743 * because they're strictly cpu affine and rotate_start is called with IRQs
1744 * disabled, while rotate_context is called from IRQ context.
1745 */
1746 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
1747 {
1748 u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
1749 struct perf_event_context *ctx = NULL;
1750 int rotate = 0, remove = 1;
1751
1752 if (cpuctx->ctx.nr_events) {
1753 remove = 0;
1754 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1755 rotate = 1;
1756 }
1757
1758 ctx = cpuctx->task_ctx;
1759 if (ctx && ctx->nr_events) {
1760 remove = 0;
1761 if (ctx->nr_events != ctx->nr_active)
1762 rotate = 1;
1763 }
1764
1765 perf_pmu_disable(cpuctx->ctx.pmu);
1766 perf_ctx_adjust_freq(&cpuctx->ctx, interval);
1767 if (ctx)
1768 perf_ctx_adjust_freq(ctx, interval);
1769
1770 if (!rotate)
1771 goto done;
1772
1773 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1774 if (ctx)
1775 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1776
1777 rotate_ctx(&cpuctx->ctx);
1778 if (ctx)
1779 rotate_ctx(ctx);
1780
1781 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1782 if (ctx)
1783 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1784
1785 done:
1786 if (remove)
1787 list_del_init(&cpuctx->rotation_list);
1788
1789 perf_pmu_enable(cpuctx->ctx.pmu);
1790 }
1791
1792 void perf_event_task_tick(void)
1793 {
1794 struct list_head *head = &__get_cpu_var(rotation_list);
1795 struct perf_cpu_context *cpuctx, *tmp;
1796
1797 WARN_ON(!irqs_disabled());
1798
1799 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
1800 if (cpuctx->jiffies_interval == 1 ||
1801 !(jiffies % cpuctx->jiffies_interval))
1802 perf_rotate_context(cpuctx);
1803 }
1804 }
1805
1806 static int event_enable_on_exec(struct perf_event *event,
1807 struct perf_event_context *ctx)
1808 {
1809 if (!event->attr.enable_on_exec)
1810 return 0;
1811
1812 event->attr.enable_on_exec = 0;
1813 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1814 return 0;
1815
1816 __perf_event_mark_enabled(event, ctx);
1817
1818 return 1;
1819 }
1820
1821 /*
1822 * Enable all of a task's events that have been marked enable-on-exec.
1823 * This expects task == current.
1824 */
1825 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1826 {
1827 struct perf_event *event;
1828 unsigned long flags;
1829 int enabled = 0;
1830 int ret;
1831
1832 local_irq_save(flags);
1833 if (!ctx || !ctx->nr_events)
1834 goto out;
1835
1836 task_ctx_sched_out(ctx, EVENT_ALL);
1837
1838 raw_spin_lock(&ctx->lock);
1839
1840 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1841 ret = event_enable_on_exec(event, ctx);
1842 if (ret)
1843 enabled = 1;
1844 }
1845
1846 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1847 ret = event_enable_on_exec(event, ctx);
1848 if (ret)
1849 enabled = 1;
1850 }
1851
1852 /*
1853 * Unclone this context if we enabled any event.
1854 */
1855 if (enabled)
1856 unclone_ctx(ctx);
1857
1858 raw_spin_unlock(&ctx->lock);
1859
1860 perf_event_context_sched_in(ctx);
1861 out:
1862 local_irq_restore(flags);
1863 }
1864
1865 /*
1866 * Cross CPU call to read the hardware event
1867 */
1868 static void __perf_event_read(void *info)
1869 {
1870 struct perf_event *event = info;
1871 struct perf_event_context *ctx = event->ctx;
1872 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1873
1874 /*
1875 * If this is a task context, we need to check whether it is
1876 * the current task context of this cpu. If not it has been
1877 * scheduled out before the smp call arrived. In that case
1878 * event->count would have been updated to a recent sample
1879 * when the event was scheduled out.
1880 */
1881 if (ctx->task && cpuctx->task_ctx != ctx)
1882 return;
1883
1884 raw_spin_lock(&ctx->lock);
1885 update_context_time(ctx);
1886 update_event_times(event);
1887 raw_spin_unlock(&ctx->lock);
1888
1889 event->pmu->read(event);
1890 }
1891
1892 static inline u64 perf_event_count(struct perf_event *event)
1893 {
1894 return local64_read(&event->count) + atomic64_read(&event->child_count);
1895 }
1896
1897 static u64 perf_event_read(struct perf_event *event)
1898 {
1899 /*
1900 * If event is enabled and currently active on a CPU, update the
1901 * value in the event structure:
1902 */
1903 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1904 smp_call_function_single(event->oncpu,
1905 __perf_event_read, event, 1);
1906 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1907 struct perf_event_context *ctx = event->ctx;
1908 unsigned long flags;
1909
1910 raw_spin_lock_irqsave(&ctx->lock, flags);
1911 /*
1912 * may read while context is not active
1913 * (e.g., thread is blocked), in that case
1914 * we cannot update context time
1915 */
1916 if (ctx->is_active)
1917 update_context_time(ctx);
1918 update_event_times(event);
1919 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1920 }
1921
1922 return perf_event_count(event);
1923 }
1924
1925 /*
1926 * Callchain support
1927 */
1928
1929 struct callchain_cpus_entries {
1930 struct rcu_head rcu_head;
1931 struct perf_callchain_entry *cpu_entries[0];
1932 };
1933
1934 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1935 static atomic_t nr_callchain_events;
1936 static DEFINE_MUTEX(callchain_mutex);
1937 struct callchain_cpus_entries *callchain_cpus_entries;
1938
1939
1940 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1941 struct pt_regs *regs)
1942 {
1943 }
1944
1945 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1946 struct pt_regs *regs)
1947 {
1948 }
1949
1950 static void release_callchain_buffers_rcu(struct rcu_head *head)
1951 {
1952 struct callchain_cpus_entries *entries;
1953 int cpu;
1954
1955 entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1956
1957 for_each_possible_cpu(cpu)
1958 kfree(entries->cpu_entries[cpu]);
1959
1960 kfree(entries);
1961 }
1962
1963 static void release_callchain_buffers(void)
1964 {
1965 struct callchain_cpus_entries *entries;
1966
1967 entries = callchain_cpus_entries;
1968 rcu_assign_pointer(callchain_cpus_entries, NULL);
1969 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1970 }
1971
1972 static int alloc_callchain_buffers(void)
1973 {
1974 int cpu;
1975 int size;
1976 struct callchain_cpus_entries *entries;
1977
1978 /*
1979 * We can't use the percpu allocation API for data that can be
1980 * accessed from NMI. Use a temporary manual per cpu allocation
1981 * until that gets sorted out.
1982 */
1983 size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
1984 num_possible_cpus();
1985
1986 entries = kzalloc(size, GFP_KERNEL);
1987 if (!entries)
1988 return -ENOMEM;
1989
1990 size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1991
1992 for_each_possible_cpu(cpu) {
1993 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
1994 cpu_to_node(cpu));
1995 if (!entries->cpu_entries[cpu])
1996 goto fail;
1997 }
1998
1999 rcu_assign_pointer(callchain_cpus_entries, entries);
2000
2001 return 0;
2002
2003 fail:
2004 for_each_possible_cpu(cpu)
2005 kfree(entries->cpu_entries[cpu]);
2006 kfree(entries);
2007
2008 return -ENOMEM;
2009 }
2010
2011 static int get_callchain_buffers(void)
2012 {
2013 int err = 0;
2014 int count;
2015
2016 mutex_lock(&callchain_mutex);
2017
2018 count = atomic_inc_return(&nr_callchain_events);
2019 if (WARN_ON_ONCE(count < 1)) {
2020 err = -EINVAL;
2021 goto exit;
2022 }
2023
2024 if (count > 1) {
2025 /* If the allocation failed, give up */
2026 if (!callchain_cpus_entries)
2027 err = -ENOMEM;
2028 goto exit;
2029 }
2030
2031 err = alloc_callchain_buffers();
2032 if (err)
2033 release_callchain_buffers();
2034 exit:
2035 mutex_unlock(&callchain_mutex);
2036
2037 return err;
2038 }
2039
2040 static void put_callchain_buffers(void)
2041 {
2042 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
2043 release_callchain_buffers();
2044 mutex_unlock(&callchain_mutex);
2045 }
2046 }
2047
2048 static int get_recursion_context(int *recursion)
2049 {
2050 int rctx;
2051
2052 if (in_nmi())
2053 rctx = 3;
2054 else if (in_irq())
2055 rctx = 2;
2056 else if (in_softirq())
2057 rctx = 1;
2058 else
2059 rctx = 0;
2060
2061 if (recursion[rctx])
2062 return -1;
2063
2064 recursion[rctx]++;
2065 barrier();
2066
2067 return rctx;
2068 }
2069
2070 static inline void put_recursion_context(int *recursion, int rctx)
2071 {
2072 barrier();
2073 recursion[rctx]--;
2074 }
2075
2076 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
2077 {
2078 int cpu;
2079 struct callchain_cpus_entries *entries;
2080
2081 *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
2082 if (*rctx == -1)
2083 return NULL;
2084
2085 entries = rcu_dereference(callchain_cpus_entries);
2086 if (!entries)
2087 return NULL;
2088
2089 cpu = smp_processor_id();
2090
2091 return &entries->cpu_entries[cpu][*rctx];
2092 }
2093
2094 static void
2095 put_callchain_entry(int rctx)
2096 {
2097 put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
2098 }
2099
2100 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2101 {
2102 int rctx;
2103 struct perf_callchain_entry *entry;
2104
2105
2106 entry = get_callchain_entry(&rctx);
2107 if (rctx == -1)
2108 return NULL;
2109
2110 if (!entry)
2111 goto exit_put;
2112
2113 entry->nr = 0;
2114
2115 if (!user_mode(regs)) {
2116 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2117 perf_callchain_kernel(entry, regs);
2118 if (current->mm)
2119 regs = task_pt_regs(current);
2120 else
2121 regs = NULL;
2122 }
2123
2124 if (regs) {
2125 perf_callchain_store(entry, PERF_CONTEXT_USER);
2126 perf_callchain_user(entry, regs);
2127 }
2128
2129 exit_put:
2130 put_callchain_entry(rctx);
2131
2132 return entry;
2133 }
2134
2135 /*
2136 * Initialize the perf_event context in a task_struct:
2137 */
2138 static void __perf_event_init_context(struct perf_event_context *ctx)
2139 {
2140 raw_spin_lock_init(&ctx->lock);
2141 mutex_init(&ctx->mutex);
2142 INIT_LIST_HEAD(&ctx->pinned_groups);
2143 INIT_LIST_HEAD(&ctx->flexible_groups);
2144 INIT_LIST_HEAD(&ctx->event_list);
2145 atomic_set(&ctx->refcount, 1);
2146 }
2147
2148 static struct perf_event_context *
2149 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2150 {
2151 struct perf_event_context *ctx;
2152
2153 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2154 if (!ctx)
2155 return NULL;
2156
2157 __perf_event_init_context(ctx);
2158 if (task) {
2159 ctx->task = task;
2160 get_task_struct(task);
2161 }
2162 ctx->pmu = pmu;
2163
2164 return ctx;
2165 }
2166
2167 static struct task_struct *
2168 find_lively_task_by_vpid(pid_t vpid)
2169 {
2170 struct task_struct *task;
2171 int err;
2172
2173 rcu_read_lock();
2174 if (!vpid)
2175 task = current;
2176 else
2177 task = find_task_by_vpid(vpid);
2178 if (task)
2179 get_task_struct(task);
2180 rcu_read_unlock();
2181
2182 if (!task)
2183 return ERR_PTR(-ESRCH);
2184
2185 /*
2186 * Can't attach events to a dying task.
2187 */
2188 err = -ESRCH;
2189 if (task->flags & PF_EXITING)
2190 goto errout;
2191
2192 /* Reuse ptrace permission checks for now. */
2193 err = -EACCES;
2194 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2195 goto errout;
2196
2197 return task;
2198 errout:
2199 put_task_struct(task);
2200 return ERR_PTR(err);
2201
2202 }
2203
2204 static struct perf_event_context *
2205 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2206 {
2207 struct perf_event_context *ctx;
2208 struct perf_cpu_context *cpuctx;
2209 unsigned long flags;
2210 int ctxn, err;
2211
2212 if (!task && cpu != -1) {
2213 /* Must be root to operate on a CPU event: */
2214 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2215 return ERR_PTR(-EACCES);
2216
2217 if (cpu < 0 || cpu >= nr_cpumask_bits)
2218 return ERR_PTR(-EINVAL);
2219
2220 /*
2221 * We could be clever and allow to attach a event to an
2222 * offline CPU and activate it when the CPU comes up, but
2223 * that's for later.
2224 */
2225 if (!cpu_online(cpu))
2226 return ERR_PTR(-ENODEV);
2227
2228 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2229 ctx = &cpuctx->ctx;
2230 get_ctx(ctx);
2231
2232 return ctx;
2233 }
2234
2235 err = -EINVAL;
2236 ctxn = pmu->task_ctx_nr;
2237 if (ctxn < 0)
2238 goto errout;
2239
2240 retry:
2241 ctx = perf_lock_task_context(task, ctxn, &flags);
2242 if (ctx) {
2243 unclone_ctx(ctx);
2244 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2245 }
2246
2247 if (!ctx) {
2248 ctx = alloc_perf_context(pmu, task);
2249 err = -ENOMEM;
2250 if (!ctx)
2251 goto errout;
2252
2253 get_ctx(ctx);
2254
2255 if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2256 /*
2257 * We raced with some other task; use
2258 * the context they set.
2259 */
2260 put_task_struct(task);
2261 kfree(ctx);
2262 goto retry;
2263 }
2264 }
2265
2266 return ctx;
2267
2268 errout:
2269 return ERR_PTR(err);
2270 }
2271
2272 static void perf_event_free_filter(struct perf_event *event);
2273
2274 static void free_event_rcu(struct rcu_head *head)
2275 {
2276 struct perf_event *event;
2277
2278 event = container_of(head, struct perf_event, rcu_head);
2279 if (event->ns)
2280 put_pid_ns(event->ns);
2281 perf_event_free_filter(event);
2282 kfree(event);
2283 }
2284
2285 static void perf_buffer_put(struct perf_buffer *buffer);
2286
2287 static void free_event(struct perf_event *event)
2288 {
2289 irq_work_sync(&event->pending);
2290
2291 if (!event->parent) {
2292 if (event->attach_state & PERF_ATTACH_TASK)
2293 jump_label_dec(&perf_task_events);
2294 if (event->attr.mmap || event->attr.mmap_data)
2295 atomic_dec(&nr_mmap_events);
2296 if (event->attr.comm)
2297 atomic_dec(&nr_comm_events);
2298 if (event->attr.task)
2299 atomic_dec(&nr_task_events);
2300 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2301 put_callchain_buffers();
2302 }
2303
2304 if (event->buffer) {
2305 perf_buffer_put(event->buffer);
2306 event->buffer = NULL;
2307 }
2308
2309 if (event->destroy)
2310 event->destroy(event);
2311
2312 if (event->ctx)
2313 put_ctx(event->ctx);
2314
2315 call_rcu(&event->rcu_head, free_event_rcu);
2316 }
2317
2318 int perf_event_release_kernel(struct perf_event *event)
2319 {
2320 struct perf_event_context *ctx = event->ctx;
2321
2322 /*
2323 * Remove from the PMU, can't get re-enabled since we got
2324 * here because the last ref went.
2325 */
2326 perf_event_disable(event);
2327
2328 WARN_ON_ONCE(ctx->parent_ctx);
2329 /*
2330 * There are two ways this annotation is useful:
2331 *
2332 * 1) there is a lock recursion from perf_event_exit_task
2333 * see the comment there.
2334 *
2335 * 2) there is a lock-inversion with mmap_sem through
2336 * perf_event_read_group(), which takes faults while
2337 * holding ctx->mutex, however this is called after
2338 * the last filedesc died, so there is no possibility
2339 * to trigger the AB-BA case.
2340 */
2341 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2342 raw_spin_lock_irq(&ctx->lock);
2343 perf_group_detach(event);
2344 list_del_event(event, ctx);
2345 raw_spin_unlock_irq(&ctx->lock);
2346 mutex_unlock(&ctx->mutex);
2347
2348 free_event(event);
2349
2350 return 0;
2351 }
2352 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2353
2354 /*
2355 * Called when the last reference to the file is gone.
2356 */
2357 static int perf_release(struct inode *inode, struct file *file)
2358 {
2359 struct perf_event *event = file->private_data;
2360 struct task_struct *owner;
2361
2362 file->private_data = NULL;
2363
2364 rcu_read_lock();
2365 owner = ACCESS_ONCE(event->owner);
2366 /*
2367 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2368 * !owner it means the list deletion is complete and we can indeed
2369 * free this event, otherwise we need to serialize on
2370 * owner->perf_event_mutex.
2371 */
2372 smp_read_barrier_depends();
2373 if (owner) {
2374 /*
2375 * Since delayed_put_task_struct() also drops the last
2376 * task reference we can safely take a new reference
2377 * while holding the rcu_read_lock().
2378 */
2379 get_task_struct(owner);
2380 }
2381 rcu_read_unlock();
2382
2383 if (owner) {
2384 mutex_lock(&owner->perf_event_mutex);
2385 /*
2386 * We have to re-check the event->owner field, if it is cleared
2387 * we raced with perf_event_exit_task(), acquiring the mutex
2388 * ensured they're done, and we can proceed with freeing the
2389 * event.
2390 */
2391 if (event->owner)
2392 list_del_init(&event->owner_entry);
2393 mutex_unlock(&owner->perf_event_mutex);
2394 put_task_struct(owner);
2395 }
2396
2397 return perf_event_release_kernel(event);
2398 }
2399
2400 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2401 {
2402 struct perf_event *child;
2403 u64 total = 0;
2404
2405 *enabled = 0;
2406 *running = 0;
2407
2408 mutex_lock(&event->child_mutex);
2409 total += perf_event_read(event);
2410 *enabled += event->total_time_enabled +
2411 atomic64_read(&event->child_total_time_enabled);
2412 *running += event->total_time_running +
2413 atomic64_read(&event->child_total_time_running);
2414
2415 list_for_each_entry(child, &event->child_list, child_list) {
2416 total += perf_event_read(child);
2417 *enabled += child->total_time_enabled;
2418 *running += child->total_time_running;
2419 }
2420 mutex_unlock(&event->child_mutex);
2421
2422 return total;
2423 }
2424 EXPORT_SYMBOL_GPL(perf_event_read_value);
2425
2426 static int perf_event_read_group(struct perf_event *event,
2427 u64 read_format, char __user *buf)
2428 {
2429 struct perf_event *leader = event->group_leader, *sub;
2430 int n = 0, size = 0, ret = -EFAULT;
2431 struct perf_event_context *ctx = leader->ctx;
2432 u64 values[5];
2433 u64 count, enabled, running;
2434
2435 mutex_lock(&ctx->mutex);
2436 count = perf_event_read_value(leader, &enabled, &running);
2437
2438 values[n++] = 1 + leader->nr_siblings;
2439 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2440 values[n++] = enabled;
2441 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2442 values[n++] = running;
2443 values[n++] = count;
2444 if (read_format & PERF_FORMAT_ID)
2445 values[n++] = primary_event_id(leader);
2446
2447 size = n * sizeof(u64);
2448
2449 if (copy_to_user(buf, values, size))
2450 goto unlock;
2451
2452 ret = size;
2453
2454 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2455 n = 0;
2456
2457 values[n++] = perf_event_read_value(sub, &enabled, &running);
2458 if (read_format & PERF_FORMAT_ID)
2459 values[n++] = primary_event_id(sub);
2460
2461 size = n * sizeof(u64);
2462
2463 if (copy_to_user(buf + ret, values, size)) {
2464 ret = -EFAULT;
2465 goto unlock;
2466 }
2467
2468 ret += size;
2469 }
2470 unlock:
2471 mutex_unlock(&ctx->mutex);
2472
2473 return ret;
2474 }
2475
2476 static int perf_event_read_one(struct perf_event *event,
2477 u64 read_format, char __user *buf)
2478 {
2479 u64 enabled, running;
2480 u64 values[4];
2481 int n = 0;
2482
2483 values[n++] = perf_event_read_value(event, &enabled, &running);
2484 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2485 values[n++] = enabled;
2486 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2487 values[n++] = running;
2488 if (read_format & PERF_FORMAT_ID)
2489 values[n++] = primary_event_id(event);
2490
2491 if (copy_to_user(buf, values, n * sizeof(u64)))
2492 return -EFAULT;
2493
2494 return n * sizeof(u64);
2495 }
2496
2497 /*
2498 * Read the performance event - simple non blocking version for now
2499 */
2500 static ssize_t
2501 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2502 {
2503 u64 read_format = event->attr.read_format;
2504 int ret;
2505
2506 /*
2507 * Return end-of-file for a read on a event that is in
2508 * error state (i.e. because it was pinned but it couldn't be
2509 * scheduled on to the CPU at some point).
2510 */
2511 if (event->state == PERF_EVENT_STATE_ERROR)
2512 return 0;
2513
2514 if (count < event->read_size)
2515 return -ENOSPC;
2516
2517 WARN_ON_ONCE(event->ctx->parent_ctx);
2518 if (read_format & PERF_FORMAT_GROUP)
2519 ret = perf_event_read_group(event, read_format, buf);
2520 else
2521 ret = perf_event_read_one(event, read_format, buf);
2522
2523 return ret;
2524 }
2525
2526 static ssize_t
2527 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2528 {
2529 struct perf_event *event = file->private_data;
2530
2531 return perf_read_hw(event, buf, count);
2532 }
2533
2534 static unsigned int perf_poll(struct file *file, poll_table *wait)
2535 {
2536 struct perf_event *event = file->private_data;
2537 struct perf_buffer *buffer;
2538 unsigned int events = POLL_HUP;
2539
2540 rcu_read_lock();
2541 buffer = rcu_dereference(event->buffer);
2542 if (buffer)
2543 events = atomic_xchg(&buffer->poll, 0);
2544 rcu_read_unlock();
2545
2546 poll_wait(file, &event->waitq, wait);
2547
2548 return events;
2549 }
2550
2551 static void perf_event_reset(struct perf_event *event)
2552 {
2553 (void)perf_event_read(event);
2554 local64_set(&event->count, 0);
2555 perf_event_update_userpage(event);
2556 }
2557
2558 /*
2559 * Holding the top-level event's child_mutex means that any
2560 * descendant process that has inherited this event will block
2561 * in sync_child_event if it goes to exit, thus satisfying the
2562 * task existence requirements of perf_event_enable/disable.
2563 */
2564 static void perf_event_for_each_child(struct perf_event *event,
2565 void (*func)(struct perf_event *))
2566 {
2567 struct perf_event *child;
2568
2569 WARN_ON_ONCE(event->ctx->parent_ctx);
2570 mutex_lock(&event->child_mutex);
2571 func(event);
2572 list_for_each_entry(child, &event->child_list, child_list)
2573 func(child);
2574 mutex_unlock(&event->child_mutex);
2575 }
2576
2577 static void perf_event_for_each(struct perf_event *event,
2578 void (*func)(struct perf_event *))
2579 {
2580 struct perf_event_context *ctx = event->ctx;
2581 struct perf_event *sibling;
2582
2583 WARN_ON_ONCE(ctx->parent_ctx);
2584 mutex_lock(&ctx->mutex);
2585 event = event->group_leader;
2586
2587 perf_event_for_each_child(event, func);
2588 func(event);
2589 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2590 perf_event_for_each_child(event, func);
2591 mutex_unlock(&ctx->mutex);
2592 }
2593
2594 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2595 {
2596 struct perf_event_context *ctx = event->ctx;
2597 int ret = 0;
2598 u64 value;
2599
2600 if (!is_sampling_event(event))
2601 return -EINVAL;
2602
2603 if (copy_from_user(&value, arg, sizeof(value)))
2604 return -EFAULT;
2605
2606 if (!value)
2607 return -EINVAL;
2608
2609 raw_spin_lock_irq(&ctx->lock);
2610 if (event->attr.freq) {
2611 if (value > sysctl_perf_event_sample_rate) {
2612 ret = -EINVAL;
2613 goto unlock;
2614 }
2615
2616 event->attr.sample_freq = value;
2617 } else {
2618 event->attr.sample_period = value;
2619 event->hw.sample_period = value;
2620 }
2621 unlock:
2622 raw_spin_unlock_irq(&ctx->lock);
2623
2624 return ret;
2625 }
2626
2627 static const struct file_operations perf_fops;
2628
2629 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2630 {
2631 struct file *file;
2632
2633 file = fget_light(fd, fput_needed);
2634 if (!file)
2635 return ERR_PTR(-EBADF);
2636
2637 if (file->f_op != &perf_fops) {
2638 fput_light(file, *fput_needed);
2639 *fput_needed = 0;
2640 return ERR_PTR(-EBADF);
2641 }
2642
2643 return file->private_data;
2644 }
2645
2646 static int perf_event_set_output(struct perf_event *event,
2647 struct perf_event *output_event);
2648 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2649
2650 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2651 {
2652 struct perf_event *event = file->private_data;
2653 void (*func)(struct perf_event *);
2654 u32 flags = arg;
2655
2656 switch (cmd) {
2657 case PERF_EVENT_IOC_ENABLE:
2658 func = perf_event_enable;
2659 break;
2660 case PERF_EVENT_IOC_DISABLE:
2661 func = perf_event_disable;
2662 break;
2663 case PERF_EVENT_IOC_RESET:
2664 func = perf_event_reset;
2665 break;
2666
2667 case PERF_EVENT_IOC_REFRESH:
2668 return perf_event_refresh(event, arg);
2669
2670 case PERF_EVENT_IOC_PERIOD:
2671 return perf_event_period(event, (u64 __user *)arg);
2672
2673 case PERF_EVENT_IOC_SET_OUTPUT:
2674 {
2675 struct perf_event *output_event = NULL;
2676 int fput_needed = 0;
2677 int ret;
2678
2679 if (arg != -1) {
2680 output_event = perf_fget_light(arg, &fput_needed);
2681 if (IS_ERR(output_event))
2682 return PTR_ERR(output_event);
2683 }
2684
2685 ret = perf_event_set_output(event, output_event);
2686 if (output_event)
2687 fput_light(output_event->filp, fput_needed);
2688
2689 return ret;
2690 }
2691
2692 case PERF_EVENT_IOC_SET_FILTER:
2693 return perf_event_set_filter(event, (void __user *)arg);
2694
2695 default:
2696 return -ENOTTY;
2697 }
2698
2699 if (flags & PERF_IOC_FLAG_GROUP)
2700 perf_event_for_each(event, func);
2701 else
2702 perf_event_for_each_child(event, func);
2703
2704 return 0;
2705 }
2706
2707 int perf_event_task_enable(void)
2708 {
2709 struct perf_event *event;
2710
2711 mutex_lock(&current->perf_event_mutex);
2712 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2713 perf_event_for_each_child(event, perf_event_enable);
2714 mutex_unlock(&current->perf_event_mutex);
2715
2716 return 0;
2717 }
2718
2719 int perf_event_task_disable(void)
2720 {
2721 struct perf_event *event;
2722
2723 mutex_lock(&current->perf_event_mutex);
2724 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2725 perf_event_for_each_child(event, perf_event_disable);
2726 mutex_unlock(&current->perf_event_mutex);
2727
2728 return 0;
2729 }
2730
2731 #ifndef PERF_EVENT_INDEX_OFFSET
2732 # define PERF_EVENT_INDEX_OFFSET 0
2733 #endif
2734
2735 static int perf_event_index(struct perf_event *event)
2736 {
2737 if (event->hw.state & PERF_HES_STOPPED)
2738 return 0;
2739
2740 if (event->state != PERF_EVENT_STATE_ACTIVE)
2741 return 0;
2742
2743 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2744 }
2745
2746 /*
2747 * Callers need to ensure there can be no nesting of this function, otherwise
2748 * the seqlock logic goes bad. We can not serialize this because the arch
2749 * code calls this from NMI context.
2750 */
2751 void perf_event_update_userpage(struct perf_event *event)
2752 {
2753 struct perf_event_mmap_page *userpg;
2754 struct perf_buffer *buffer;
2755
2756 rcu_read_lock();
2757 buffer = rcu_dereference(event->buffer);
2758 if (!buffer)
2759 goto unlock;
2760
2761 userpg = buffer->user_page;
2762
2763 /*
2764 * Disable preemption so as to not let the corresponding user-space
2765 * spin too long if we get preempted.
2766 */
2767 preempt_disable();
2768 ++userpg->lock;
2769 barrier();
2770 userpg->index = perf_event_index(event);
2771 userpg->offset = perf_event_count(event);
2772 if (event->state == PERF_EVENT_STATE_ACTIVE)
2773 userpg->offset -= local64_read(&event->hw.prev_count);
2774
2775 userpg->time_enabled = event->total_time_enabled +
2776 atomic64_read(&event->child_total_time_enabled);
2777
2778 userpg->time_running = event->total_time_running +
2779 atomic64_read(&event->child_total_time_running);
2780
2781 barrier();
2782 ++userpg->lock;
2783 preempt_enable();
2784 unlock:
2785 rcu_read_unlock();
2786 }
2787
2788 static unsigned long perf_data_size(struct perf_buffer *buffer);
2789
2790 static void
2791 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2792 {
2793 long max_size = perf_data_size(buffer);
2794
2795 if (watermark)
2796 buffer->watermark = min(max_size, watermark);
2797
2798 if (!buffer->watermark)
2799 buffer->watermark = max_size / 2;
2800
2801 if (flags & PERF_BUFFER_WRITABLE)
2802 buffer->writable = 1;
2803
2804 atomic_set(&buffer->refcount, 1);
2805 }
2806
2807 #ifndef CONFIG_PERF_USE_VMALLOC
2808
2809 /*
2810 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2811 */
2812
2813 static struct page *
2814 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2815 {
2816 if (pgoff > buffer->nr_pages)
2817 return NULL;
2818
2819 if (pgoff == 0)
2820 return virt_to_page(buffer->user_page);
2821
2822 return virt_to_page(buffer->data_pages[pgoff - 1]);
2823 }
2824
2825 static void *perf_mmap_alloc_page(int cpu)
2826 {
2827 struct page *page;
2828 int node;
2829
2830 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2831 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2832 if (!page)
2833 return NULL;
2834
2835 return page_address(page);
2836 }
2837
2838 static struct perf_buffer *
2839 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2840 {
2841 struct perf_buffer *buffer;
2842 unsigned long size;
2843 int i;
2844
2845 size = sizeof(struct perf_buffer);
2846 size += nr_pages * sizeof(void *);
2847
2848 buffer = kzalloc(size, GFP_KERNEL);
2849 if (!buffer)
2850 goto fail;
2851
2852 buffer->user_page = perf_mmap_alloc_page(cpu);
2853 if (!buffer->user_page)
2854 goto fail_user_page;
2855
2856 for (i = 0; i < nr_pages; i++) {
2857 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2858 if (!buffer->data_pages[i])
2859 goto fail_data_pages;
2860 }
2861
2862 buffer->nr_pages = nr_pages;
2863
2864 perf_buffer_init(buffer, watermark, flags);
2865
2866 return buffer;
2867
2868 fail_data_pages:
2869 for (i--; i >= 0; i--)
2870 free_page((unsigned long)buffer->data_pages[i]);
2871
2872 free_page((unsigned long)buffer->user_page);
2873
2874 fail_user_page:
2875 kfree(buffer);
2876
2877 fail:
2878 return NULL;
2879 }
2880
2881 static void perf_mmap_free_page(unsigned long addr)
2882 {
2883 struct page *page = virt_to_page((void *)addr);
2884
2885 page->mapping = NULL;
2886 __free_page(page);
2887 }
2888
2889 static void perf_buffer_free(struct perf_buffer *buffer)
2890 {
2891 int i;
2892
2893 perf_mmap_free_page((unsigned long)buffer->user_page);
2894 for (i = 0; i < buffer->nr_pages; i++)
2895 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2896 kfree(buffer);
2897 }
2898
2899 static inline int page_order(struct perf_buffer *buffer)
2900 {
2901 return 0;
2902 }
2903
2904 #else
2905
2906 /*
2907 * Back perf_mmap() with vmalloc memory.
2908 *
2909 * Required for architectures that have d-cache aliasing issues.
2910 */
2911
2912 static inline int page_order(struct perf_buffer *buffer)
2913 {
2914 return buffer->page_order;
2915 }
2916
2917 static struct page *
2918 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2919 {
2920 if (pgoff > (1UL << page_order(buffer)))
2921 return NULL;
2922
2923 return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2924 }
2925
2926 static void perf_mmap_unmark_page(void *addr)
2927 {
2928 struct page *page = vmalloc_to_page(addr);
2929
2930 page->mapping = NULL;
2931 }
2932
2933 static void perf_buffer_free_work(struct work_struct *work)
2934 {
2935 struct perf_buffer *buffer;
2936 void *base;
2937 int i, nr;
2938
2939 buffer = container_of(work, struct perf_buffer, work);
2940 nr = 1 << page_order(buffer);
2941
2942 base = buffer->user_page;
2943 for (i = 0; i < nr + 1; i++)
2944 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2945
2946 vfree(base);
2947 kfree(buffer);
2948 }
2949
2950 static void perf_buffer_free(struct perf_buffer *buffer)
2951 {
2952 schedule_work(&buffer->work);
2953 }
2954
2955 static struct perf_buffer *
2956 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2957 {
2958 struct perf_buffer *buffer;
2959 unsigned long size;
2960 void *all_buf;
2961
2962 size = sizeof(struct perf_buffer);
2963 size += sizeof(void *);
2964
2965 buffer = kzalloc(size, GFP_KERNEL);
2966 if (!buffer)
2967 goto fail;
2968
2969 INIT_WORK(&buffer->work, perf_buffer_free_work);
2970
2971 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2972 if (!all_buf)
2973 goto fail_all_buf;
2974
2975 buffer->user_page = all_buf;
2976 buffer->data_pages[0] = all_buf + PAGE_SIZE;
2977 buffer->page_order = ilog2(nr_pages);
2978 buffer->nr_pages = 1;
2979
2980 perf_buffer_init(buffer, watermark, flags);
2981
2982 return buffer;
2983
2984 fail_all_buf:
2985 kfree(buffer);
2986
2987 fail:
2988 return NULL;
2989 }
2990
2991 #endif
2992
2993 static unsigned long perf_data_size(struct perf_buffer *buffer)
2994 {
2995 return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2996 }
2997
2998 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2999 {
3000 struct perf_event *event = vma->vm_file->private_data;
3001 struct perf_buffer *buffer;
3002 int ret = VM_FAULT_SIGBUS;
3003
3004 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3005 if (vmf->pgoff == 0)
3006 ret = 0;
3007 return ret;
3008 }
3009
3010 rcu_read_lock();
3011 buffer = rcu_dereference(event->buffer);
3012 if (!buffer)
3013 goto unlock;
3014
3015 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3016 goto unlock;
3017
3018 vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
3019 if (!vmf->page)
3020 goto unlock;
3021
3022 get_page(vmf->page);
3023 vmf->page->mapping = vma->vm_file->f_mapping;
3024 vmf->page->index = vmf->pgoff;
3025
3026 ret = 0;
3027 unlock:
3028 rcu_read_unlock();
3029
3030 return ret;
3031 }
3032
3033 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
3034 {
3035 struct perf_buffer *buffer;
3036
3037 buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
3038 perf_buffer_free(buffer);
3039 }
3040
3041 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
3042 {
3043 struct perf_buffer *buffer;
3044
3045 rcu_read_lock();
3046 buffer = rcu_dereference(event->buffer);
3047 if (buffer) {
3048 if (!atomic_inc_not_zero(&buffer->refcount))
3049 buffer = NULL;
3050 }
3051 rcu_read_unlock();
3052
3053 return buffer;
3054 }
3055
3056 static void perf_buffer_put(struct perf_buffer *buffer)
3057 {
3058 if (!atomic_dec_and_test(&buffer->refcount))
3059 return;
3060
3061 call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
3062 }
3063
3064 static void perf_mmap_open(struct vm_area_struct *vma)
3065 {
3066 struct perf_event *event = vma->vm_file->private_data;
3067
3068 atomic_inc(&event->mmap_count);
3069 }
3070
3071 static void perf_mmap_close(struct vm_area_struct *vma)
3072 {
3073 struct perf_event *event = vma->vm_file->private_data;
3074
3075 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3076 unsigned long size = perf_data_size(event->buffer);
3077 struct user_struct *user = event->mmap_user;
3078 struct perf_buffer *buffer = event->buffer;
3079
3080 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3081 vma->vm_mm->locked_vm -= event->mmap_locked;
3082 rcu_assign_pointer(event->buffer, NULL);
3083 mutex_unlock(&event->mmap_mutex);
3084
3085 perf_buffer_put(buffer);
3086 free_uid(user);
3087 }
3088 }
3089
3090 static const struct vm_operations_struct perf_mmap_vmops = {
3091 .open = perf_mmap_open,
3092 .close = perf_mmap_close,
3093 .fault = perf_mmap_fault,
3094 .page_mkwrite = perf_mmap_fault,
3095 };
3096
3097 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3098 {
3099 struct perf_event *event = file->private_data;
3100 unsigned long user_locked, user_lock_limit;
3101 struct user_struct *user = current_user();
3102 unsigned long locked, lock_limit;
3103 struct perf_buffer *buffer;
3104 unsigned long vma_size;
3105 unsigned long nr_pages;
3106 long user_extra, extra;
3107 int ret = 0, flags = 0;
3108
3109 /*
3110 * Don't allow mmap() of inherited per-task counters. This would
3111 * create a performance issue due to all children writing to the
3112 * same buffer.
3113 */
3114 if (event->cpu == -1 && event->attr.inherit)
3115 return -EINVAL;
3116
3117 if (!(vma->vm_flags & VM_SHARED))
3118 return -EINVAL;
3119
3120 vma_size = vma->vm_end - vma->vm_start;
3121 nr_pages = (vma_size / PAGE_SIZE) - 1;
3122
3123 /*
3124 * If we have buffer pages ensure they're a power-of-two number, so we
3125 * can do bitmasks instead of modulo.
3126 */
3127 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3128 return -EINVAL;
3129
3130 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3131 return -EINVAL;
3132
3133 if (vma->vm_pgoff != 0)
3134 return -EINVAL;
3135
3136 WARN_ON_ONCE(event->ctx->parent_ctx);
3137 mutex_lock(&event->mmap_mutex);
3138 if (event->buffer) {
3139 if (event->buffer->nr_pages == nr_pages)
3140 atomic_inc(&event->buffer->refcount);
3141 else
3142 ret = -EINVAL;
3143 goto unlock;
3144 }
3145
3146 user_extra = nr_pages + 1;
3147 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3148
3149 /*
3150 * Increase the limit linearly with more CPUs:
3151 */
3152 user_lock_limit *= num_online_cpus();
3153
3154 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3155
3156 extra = 0;
3157 if (user_locked > user_lock_limit)
3158 extra = user_locked - user_lock_limit;
3159
3160 lock_limit = rlimit(RLIMIT_MEMLOCK);
3161 lock_limit >>= PAGE_SHIFT;
3162 locked = vma->vm_mm->locked_vm + extra;
3163
3164 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3165 !capable(CAP_IPC_LOCK)) {
3166 ret = -EPERM;
3167 goto unlock;
3168 }
3169
3170 WARN_ON(event->buffer);
3171
3172 if (vma->vm_flags & VM_WRITE)
3173 flags |= PERF_BUFFER_WRITABLE;
3174
3175 buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3176 event->cpu, flags);
3177 if (!buffer) {
3178 ret = -ENOMEM;
3179 goto unlock;
3180 }
3181 rcu_assign_pointer(event->buffer, buffer);
3182
3183 atomic_long_add(user_extra, &user->locked_vm);
3184 event->mmap_locked = extra;
3185 event->mmap_user = get_current_user();
3186 vma->vm_mm->locked_vm += event->mmap_locked;
3187
3188 unlock:
3189 if (!ret)
3190 atomic_inc(&event->mmap_count);
3191 mutex_unlock(&event->mmap_mutex);
3192
3193 vma->vm_flags |= VM_RESERVED;
3194 vma->vm_ops = &perf_mmap_vmops;
3195
3196 return ret;
3197 }
3198
3199 static int perf_fasync(int fd, struct file *filp, int on)
3200 {
3201 struct inode *inode = filp->f_path.dentry->d_inode;
3202 struct perf_event *event = filp->private_data;
3203 int retval;
3204
3205 mutex_lock(&inode->i_mutex);
3206 retval = fasync_helper(fd, filp, on, &event->fasync);
3207 mutex_unlock(&inode->i_mutex);
3208
3209 if (retval < 0)
3210 return retval;
3211
3212 return 0;
3213 }
3214
3215 static const struct file_operations perf_fops = {
3216 .llseek = no_llseek,
3217 .release = perf_release,
3218 .read = perf_read,
3219 .poll = perf_poll,
3220 .unlocked_ioctl = perf_ioctl,
3221 .compat_ioctl = perf_ioctl,
3222 .mmap = perf_mmap,
3223 .fasync = perf_fasync,
3224 };
3225
3226 /*
3227 * Perf event wakeup
3228 *
3229 * If there's data, ensure we set the poll() state and publish everything
3230 * to user-space before waking everybody up.
3231 */
3232
3233 void perf_event_wakeup(struct perf_event *event)
3234 {
3235 wake_up_all(&event->waitq);
3236
3237 if (event->pending_kill) {
3238 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3239 event->pending_kill = 0;
3240 }
3241 }
3242
3243 static void perf_pending_event(struct irq_work *entry)
3244 {
3245 struct perf_event *event = container_of(entry,
3246 struct perf_event, pending);
3247
3248 if (event->pending_disable) {
3249 event->pending_disable = 0;
3250 __perf_event_disable(event);
3251 }
3252
3253 if (event->pending_wakeup) {
3254 event->pending_wakeup = 0;
3255 perf_event_wakeup(event);
3256 }
3257 }
3258
3259 /*
3260 * We assume there is only KVM supporting the callbacks.
3261 * Later on, we might change it to a list if there is
3262 * another virtualization implementation supporting the callbacks.
3263 */
3264 struct perf_guest_info_callbacks *perf_guest_cbs;
3265
3266 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3267 {
3268 perf_guest_cbs = cbs;
3269 return 0;
3270 }
3271 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3272
3273 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3274 {
3275 perf_guest_cbs = NULL;
3276 return 0;
3277 }
3278 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3279
3280 /*
3281 * Output
3282 */
3283 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3284 unsigned long offset, unsigned long head)
3285 {
3286 unsigned long mask;
3287
3288 if (!buffer->writable)
3289 return true;
3290
3291 mask = perf_data_size(buffer) - 1;
3292
3293 offset = (offset - tail) & mask;
3294 head = (head - tail) & mask;
3295
3296 if ((int)(head - offset) < 0)
3297 return false;
3298
3299 return true;
3300 }
3301
3302 static void perf_output_wakeup(struct perf_output_handle *handle)
3303 {
3304 atomic_set(&handle->buffer->poll, POLL_IN);
3305
3306 if (handle->nmi) {
3307 handle->event->pending_wakeup = 1;
3308 irq_work_queue(&handle->event->pending);
3309 } else
3310 perf_event_wakeup(handle->event);
3311 }
3312
3313 /*
3314 * We need to ensure a later event_id doesn't publish a head when a former
3315 * event isn't done writing. However since we need to deal with NMIs we
3316 * cannot fully serialize things.
3317 *
3318 * We only publish the head (and generate a wakeup) when the outer-most
3319 * event completes.
3320 */
3321 static void perf_output_get_handle(struct perf_output_handle *handle)
3322 {
3323 struct perf_buffer *buffer = handle->buffer;
3324
3325 preempt_disable();
3326 local_inc(&buffer->nest);
3327 handle->wakeup = local_read(&buffer->wakeup);
3328 }
3329
3330 static void perf_output_put_handle(struct perf_output_handle *handle)
3331 {
3332 struct perf_buffer *buffer = handle->buffer;
3333 unsigned long head;
3334
3335 again:
3336 head = local_read(&buffer->head);
3337
3338 /*
3339 * IRQ/NMI can happen here, which means we can miss a head update.
3340 */
3341
3342 if (!local_dec_and_test(&buffer->nest))
3343 goto out;
3344
3345 /*
3346 * Publish the known good head. Rely on the full barrier implied
3347 * by atomic_dec_and_test() order the buffer->head read and this
3348 * write.
3349 */
3350 buffer->user_page->data_head = head;
3351
3352 /*
3353 * Now check if we missed an update, rely on the (compiler)
3354 * barrier in atomic_dec_and_test() to re-read buffer->head.
3355 */
3356 if (unlikely(head != local_read(&buffer->head))) {
3357 local_inc(&buffer->nest);
3358 goto again;
3359 }
3360
3361 if (handle->wakeup != local_read(&buffer->wakeup))
3362 perf_output_wakeup(handle);
3363
3364 out:
3365 preempt_enable();
3366 }
3367
3368 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3369 const void *buf, unsigned int len)
3370 {
3371 do {
3372 unsigned long size = min_t(unsigned long, handle->size, len);
3373
3374 memcpy(handle->addr, buf, size);
3375
3376 len -= size;
3377 handle->addr += size;
3378 buf += size;
3379 handle->size -= size;
3380 if (!handle->size) {
3381 struct perf_buffer *buffer = handle->buffer;
3382
3383 handle->page++;
3384 handle->page &= buffer->nr_pages - 1;
3385 handle->addr = buffer->data_pages[handle->page];
3386 handle->size = PAGE_SIZE << page_order(buffer);
3387 }
3388 } while (len);
3389 }
3390
3391 static void perf_event_header__init_id(struct perf_event_header *header,
3392 struct perf_sample_data *data,
3393 struct perf_event *event)
3394 {
3395 u64 sample_type = event->attr.sample_type;
3396
3397 data->type = sample_type;
3398 header->size += event->id_header_size;
3399
3400 if (sample_type & PERF_SAMPLE_TID) {
3401 /* namespace issues */
3402 data->tid_entry.pid = perf_event_pid(event, current);
3403 data->tid_entry.tid = perf_event_tid(event, current);
3404 }
3405
3406 if (sample_type & PERF_SAMPLE_TIME)
3407 data->time = perf_clock();
3408
3409 if (sample_type & PERF_SAMPLE_ID)
3410 data->id = primary_event_id(event);
3411
3412 if (sample_type & PERF_SAMPLE_STREAM_ID)
3413 data->stream_id = event->id;
3414
3415 if (sample_type & PERF_SAMPLE_CPU) {
3416 data->cpu_entry.cpu = raw_smp_processor_id();
3417 data->cpu_entry.reserved = 0;
3418 }
3419 }
3420
3421 int perf_output_begin(struct perf_output_handle *handle,
3422 struct perf_event *event, unsigned int size,
3423 int nmi, int sample)
3424 {
3425 struct perf_buffer *buffer;
3426 unsigned long tail, offset, head;
3427 int have_lost;
3428 struct {
3429 struct perf_event_header header;
3430 u64 id;
3431 u64 lost;
3432 } lost_event;
3433
3434 rcu_read_lock();
3435 /*
3436 * For inherited events we send all the output towards the parent.
3437 */
3438 if (event->parent)
3439 event = event->parent;
3440
3441 buffer = rcu_dereference(event->buffer);
3442 if (!buffer)
3443 goto out;
3444
3445 handle->buffer = buffer;
3446 handle->event = event;
3447 handle->nmi = nmi;
3448 handle->sample = sample;
3449
3450 if (!buffer->nr_pages)
3451 goto out;
3452
3453 have_lost = local_read(&buffer->lost);
3454 if (have_lost)
3455 size += sizeof(lost_event);
3456
3457 perf_output_get_handle(handle);
3458
3459 do {
3460 /*
3461 * Userspace could choose to issue a mb() before updating the
3462 * tail pointer. So that all reads will be completed before the
3463 * write is issued.
3464 */
3465 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3466 smp_rmb();
3467 offset = head = local_read(&buffer->head);
3468 head += size;
3469 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3470 goto fail;
3471 } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3472
3473 if (head - local_read(&buffer->wakeup) > buffer->watermark)
3474 local_add(buffer->watermark, &buffer->wakeup);
3475
3476 handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3477 handle->page &= buffer->nr_pages - 1;
3478 handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3479 handle->addr = buffer->data_pages[handle->page];
3480 handle->addr += handle->size;
3481 handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3482
3483 if (have_lost) {
3484 lost_event.header.type = PERF_RECORD_LOST;
3485 lost_event.header.misc = 0;
3486 lost_event.header.size = sizeof(lost_event);
3487 lost_event.id = event->id;
3488 lost_event.lost = local_xchg(&buffer->lost, 0);
3489
3490 perf_output_put(handle, lost_event);
3491 }
3492
3493 return 0;
3494
3495 fail:
3496 local_inc(&buffer->lost);
3497 perf_output_put_handle(handle);
3498 out:
3499 rcu_read_unlock();
3500
3501 return -ENOSPC;
3502 }
3503
3504 void perf_output_end(struct perf_output_handle *handle)
3505 {
3506 struct perf_event *event = handle->event;
3507 struct perf_buffer *buffer = handle->buffer;
3508
3509 int wakeup_events = event->attr.wakeup_events;
3510
3511 if (handle->sample && wakeup_events) {
3512 int events = local_inc_return(&buffer->events);
3513 if (events >= wakeup_events) {
3514 local_sub(wakeup_events, &buffer->events);
3515 local_inc(&buffer->wakeup);
3516 }
3517 }
3518
3519 perf_output_put_handle(handle);
3520 rcu_read_unlock();
3521 }
3522
3523 static void perf_output_read_one(struct perf_output_handle *handle,
3524 struct perf_event *event,
3525 u64 enabled, u64 running)
3526 {
3527 u64 read_format = event->attr.read_format;
3528 u64 values[4];
3529 int n = 0;
3530
3531 values[n++] = perf_event_count(event);
3532 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3533 values[n++] = enabled +
3534 atomic64_read(&event->child_total_time_enabled);
3535 }
3536 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3537 values[n++] = running +
3538 atomic64_read(&event->child_total_time_running);
3539 }
3540 if (read_format & PERF_FORMAT_ID)
3541 values[n++] = primary_event_id(event);
3542
3543 perf_output_copy(handle, values, n * sizeof(u64));
3544 }
3545
3546 /*
3547 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3548 */
3549 static void perf_output_read_group(struct perf_output_handle *handle,
3550 struct perf_event *event,
3551 u64 enabled, u64 running)
3552 {
3553 struct perf_event *leader = event->group_leader, *sub;
3554 u64 read_format = event->attr.read_format;
3555 u64 values[5];
3556 int n = 0;
3557
3558 values[n++] = 1 + leader->nr_siblings;
3559
3560 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3561 values[n++] = enabled;
3562
3563 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3564 values[n++] = running;
3565
3566 if (leader != event)
3567 leader->pmu->read(leader);
3568
3569 values[n++] = perf_event_count(leader);
3570 if (read_format & PERF_FORMAT_ID)
3571 values[n++] = primary_event_id(leader);
3572
3573 perf_output_copy(handle, values, n * sizeof(u64));
3574
3575 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3576 n = 0;
3577
3578 if (sub != event)
3579 sub->pmu->read(sub);
3580
3581 values[n++] = perf_event_count(sub);
3582 if (read_format & PERF_FORMAT_ID)
3583 values[n++] = primary_event_id(sub);
3584
3585 perf_output_copy(handle, values, n * sizeof(u64));
3586 }
3587 }
3588
3589 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3590 PERF_FORMAT_TOTAL_TIME_RUNNING)
3591
3592 static void perf_output_read(struct perf_output_handle *handle,
3593 struct perf_event *event)
3594 {
3595 u64 enabled = 0, running = 0, now, ctx_time;
3596 u64 read_format = event->attr.read_format;
3597
3598 /*
3599 * compute total_time_enabled, total_time_running
3600 * based on snapshot values taken when the event
3601 * was last scheduled in.
3602 *
3603 * we cannot simply called update_context_time()
3604 * because of locking issue as we are called in
3605 * NMI context
3606 */
3607 if (read_format & PERF_FORMAT_TOTAL_TIMES) {
3608 now = perf_clock();
3609 ctx_time = event->shadow_ctx_time + now;
3610 enabled = ctx_time - event->tstamp_enabled;
3611 running = ctx_time - event->tstamp_running;
3612 }
3613
3614 if (event->attr.read_format & PERF_FORMAT_GROUP)
3615 perf_output_read_group(handle, event, enabled, running);
3616 else
3617 perf_output_read_one(handle, event, enabled, running);
3618 }
3619
3620 void perf_output_sample(struct perf_output_handle *handle,
3621 struct perf_event_header *header,
3622 struct perf_sample_data *data,
3623 struct perf_event *event)
3624 {
3625 u64 sample_type = data->type;
3626
3627 perf_output_put(handle, *header);
3628
3629 if (sample_type & PERF_SAMPLE_IP)
3630 perf_output_put(handle, data->ip);
3631
3632 if (sample_type & PERF_SAMPLE_TID)
3633 perf_output_put(handle, data->tid_entry);
3634
3635 if (sample_type & PERF_SAMPLE_TIME)
3636 perf_output_put(handle, data->time);
3637
3638 if (sample_type & PERF_SAMPLE_ADDR)
3639 perf_output_put(handle, data->addr);
3640
3641 if (sample_type & PERF_SAMPLE_ID)
3642 perf_output_put(handle, data->id);
3643
3644 if (sample_type & PERF_SAMPLE_STREAM_ID)
3645 perf_output_put(handle, data->stream_id);
3646
3647 if (sample_type & PERF_SAMPLE_CPU)
3648 perf_output_put(handle, data->cpu_entry);
3649
3650 if (sample_type & PERF_SAMPLE_PERIOD)
3651 perf_output_put(handle, data->period);
3652
3653 if (sample_type & PERF_SAMPLE_READ)
3654 perf_output_read(handle, event);
3655
3656 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3657 if (data->callchain) {
3658 int size = 1;
3659
3660 if (data->callchain)
3661 size += data->callchain->nr;
3662
3663 size *= sizeof(u64);
3664
3665 perf_output_copy(handle, data->callchain, size);
3666 } else {
3667 u64 nr = 0;
3668 perf_output_put(handle, nr);
3669 }
3670 }
3671
3672 if (sample_type & PERF_SAMPLE_RAW) {
3673 if (data->raw) {
3674 perf_output_put(handle, data->raw->size);
3675 perf_output_copy(handle, data->raw->data,
3676 data->raw->size);
3677 } else {
3678 struct {
3679 u32 size;
3680 u32 data;
3681 } raw = {
3682 .size = sizeof(u32),
3683 .data = 0,
3684 };
3685 perf_output_put(handle, raw);
3686 }
3687 }
3688 }
3689
3690 void perf_prepare_sample(struct perf_event_header *header,
3691 struct perf_sample_data *data,
3692 struct perf_event *event,
3693 struct pt_regs *regs)
3694 {
3695 u64 sample_type = event->attr.sample_type;
3696
3697 header->type = PERF_RECORD_SAMPLE;
3698 header->size = sizeof(*header) + event->header_size;
3699
3700 header->misc = 0;
3701 header->misc |= perf_misc_flags(regs);
3702
3703 perf_event_header__init_id(header, data, event);
3704
3705 if (sample_type & PERF_SAMPLE_IP)
3706 data->ip = perf_instruction_pointer(regs);
3707
3708 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3709 int size = 1;
3710
3711 data->callchain = perf_callchain(regs);
3712
3713 if (data->callchain)
3714 size += data->callchain->nr;
3715
3716 header->size += size * sizeof(u64);
3717 }
3718
3719 if (sample_type & PERF_SAMPLE_RAW) {
3720 int size = sizeof(u32);
3721
3722 if (data->raw)
3723 size += data->raw->size;
3724 else
3725 size += sizeof(u32);
3726
3727 WARN_ON_ONCE(size & (sizeof(u64)-1));
3728 header->size += size;
3729 }
3730 }
3731
3732 static void perf_event_output(struct perf_event *event, int nmi,
3733 struct perf_sample_data *data,
3734 struct pt_regs *regs)
3735 {
3736 struct perf_output_handle handle;
3737 struct perf_event_header header;
3738
3739 /* protect the callchain buffers */
3740 rcu_read_lock();
3741
3742 perf_prepare_sample(&header, data, event, regs);
3743
3744 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3745 goto exit;
3746
3747 perf_output_sample(&handle, &header, data, event);
3748
3749 perf_output_end(&handle);
3750
3751 exit:
3752 rcu_read_unlock();
3753 }
3754
3755 /*
3756 * read event_id
3757 */
3758
3759 struct perf_read_event {
3760 struct perf_event_header header;
3761
3762 u32 pid;
3763 u32 tid;
3764 };
3765
3766 static void
3767 perf_event_read_event(struct perf_event *event,
3768 struct task_struct *task)
3769 {
3770 struct perf_output_handle handle;
3771 struct perf_read_event read_event = {
3772 .header = {
3773 .type = PERF_RECORD_READ,
3774 .misc = 0,
3775 .size = sizeof(read_event) + event->read_size,
3776 },
3777 .pid = perf_event_pid(event, task),
3778 .tid = perf_event_tid(event, task),
3779 };
3780 int ret;
3781
3782 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3783 if (ret)
3784 return;
3785
3786 perf_output_put(&handle, read_event);
3787 perf_output_read(&handle, event);
3788
3789 perf_output_end(&handle);
3790 }
3791
3792 /*
3793 * task tracking -- fork/exit
3794 *
3795 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3796 */
3797
3798 struct perf_task_event {
3799 struct task_struct *task;
3800 struct perf_event_context *task_ctx;
3801
3802 struct {
3803 struct perf_event_header header;
3804
3805 u32 pid;
3806 u32 ppid;
3807 u32 tid;
3808 u32 ptid;
3809 u64 time;
3810 } event_id;
3811 };
3812
3813 static void perf_event_task_output(struct perf_event *event,
3814 struct perf_task_event *task_event)
3815 {
3816 struct perf_output_handle handle;
3817 struct task_struct *task = task_event->task;
3818 int size, ret;
3819
3820 size = task_event->event_id.header.size;
3821 ret = perf_output_begin(&handle, event, size, 0, 0);
3822
3823 if (ret)
3824 return;
3825
3826 task_event->event_id.pid = perf_event_pid(event, task);
3827 task_event->event_id.ppid = perf_event_pid(event, current);
3828
3829 task_event->event_id.tid = perf_event_tid(event, task);
3830 task_event->event_id.ptid = perf_event_tid(event, current);
3831
3832 perf_output_put(&handle, task_event->event_id);
3833
3834 perf_output_end(&handle);
3835 }
3836
3837 static int perf_event_task_match(struct perf_event *event)
3838 {
3839 if (event->state < PERF_EVENT_STATE_INACTIVE)
3840 return 0;
3841
3842 if (event->cpu != -1 && event->cpu != smp_processor_id())
3843 return 0;
3844
3845 if (event->attr.comm || event->attr.mmap ||
3846 event->attr.mmap_data || event->attr.task)
3847 return 1;
3848
3849 return 0;
3850 }
3851
3852 static void perf_event_task_ctx(struct perf_event_context *ctx,
3853 struct perf_task_event *task_event)
3854 {
3855 struct perf_event *event;
3856
3857 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3858 if (perf_event_task_match(event))
3859 perf_event_task_output(event, task_event);
3860 }
3861 }
3862
3863 static void perf_event_task_event(struct perf_task_event *task_event)
3864 {
3865 struct perf_cpu_context *cpuctx;
3866 struct perf_event_context *ctx;
3867 struct pmu *pmu;
3868 int ctxn;
3869
3870 rcu_read_lock();
3871 list_for_each_entry_rcu(pmu, &pmus, entry) {
3872 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3873 perf_event_task_ctx(&cpuctx->ctx, task_event);
3874
3875 ctx = task_event->task_ctx;
3876 if (!ctx) {
3877 ctxn = pmu->task_ctx_nr;
3878 if (ctxn < 0)
3879 goto next;
3880 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3881 }
3882 if (ctx)
3883 perf_event_task_ctx(ctx, task_event);
3884 next:
3885 put_cpu_ptr(pmu->pmu_cpu_context);
3886 }
3887 rcu_read_unlock();
3888 }
3889
3890 static void perf_event_task(struct task_struct *task,
3891 struct perf_event_context *task_ctx,
3892 int new)
3893 {
3894 struct perf_task_event task_event;
3895
3896 if (!atomic_read(&nr_comm_events) &&
3897 !atomic_read(&nr_mmap_events) &&
3898 !atomic_read(&nr_task_events))
3899 return;
3900
3901 task_event = (struct perf_task_event){
3902 .task = task,
3903 .task_ctx = task_ctx,
3904 .event_id = {
3905 .header = {
3906 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3907 .misc = 0,
3908 .size = sizeof(task_event.event_id),
3909 },
3910 /* .pid */
3911 /* .ppid */
3912 /* .tid */
3913 /* .ptid */
3914 .time = perf_clock(),
3915 },
3916 };
3917
3918 perf_event_task_event(&task_event);
3919 }
3920
3921 void perf_event_fork(struct task_struct *task)
3922 {
3923 perf_event_task(task, NULL, 1);
3924 }
3925
3926 /*
3927 * comm tracking
3928 */
3929
3930 struct perf_comm_event {
3931 struct task_struct *task;
3932 char *comm;
3933 int comm_size;
3934
3935 struct {
3936 struct perf_event_header header;
3937
3938 u32 pid;
3939 u32 tid;
3940 } event_id;
3941 };
3942
3943 static void perf_event_comm_output(struct perf_event *event,
3944 struct perf_comm_event *comm_event)
3945 {
3946 struct perf_output_handle handle;
3947 int size = comm_event->event_id.header.size;
3948 int ret = perf_output_begin(&handle, event, size, 0, 0);
3949
3950 if (ret)
3951 return;
3952
3953 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3954 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3955
3956 perf_output_put(&handle, comm_event->event_id);
3957 perf_output_copy(&handle, comm_event->comm,
3958 comm_event->comm_size);
3959 perf_output_end(&handle);
3960 }
3961
3962 static int perf_event_comm_match(struct perf_event *event)
3963 {
3964 if (event->state < PERF_EVENT_STATE_INACTIVE)
3965 return 0;
3966
3967 if (event->cpu != -1 && event->cpu != smp_processor_id())
3968 return 0;
3969
3970 if (event->attr.comm)
3971 return 1;
3972
3973 return 0;
3974 }
3975
3976 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3977 struct perf_comm_event *comm_event)
3978 {
3979 struct perf_event *event;
3980
3981 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3982 if (perf_event_comm_match(event))
3983 perf_event_comm_output(event, comm_event);
3984 }
3985 }
3986
3987 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3988 {
3989 struct perf_cpu_context *cpuctx;
3990 struct perf_event_context *ctx;
3991 char comm[TASK_COMM_LEN];
3992 unsigned int size;
3993 struct pmu *pmu;
3994 int ctxn;
3995
3996 memset(comm, 0, sizeof(comm));
3997 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3998 size = ALIGN(strlen(comm)+1, sizeof(u64));
3999
4000 comm_event->comm = comm;
4001 comm_event->comm_size = size;
4002
4003 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4004
4005 rcu_read_lock();
4006 list_for_each_entry_rcu(pmu, &pmus, entry) {
4007 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4008 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4009
4010 ctxn = pmu->task_ctx_nr;
4011 if (ctxn < 0)
4012 goto next;
4013
4014 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4015 if (ctx)
4016 perf_event_comm_ctx(ctx, comm_event);
4017 next:
4018 put_cpu_ptr(pmu->pmu_cpu_context);
4019 }
4020 rcu_read_unlock();
4021 }
4022
4023 void perf_event_comm(struct task_struct *task)
4024 {
4025 struct perf_comm_event comm_event;
4026 struct perf_event_context *ctx;
4027 int ctxn;
4028
4029 for_each_task_context_nr(ctxn) {
4030 ctx = task->perf_event_ctxp[ctxn];
4031 if (!ctx)
4032 continue;
4033
4034 perf_event_enable_on_exec(ctx);
4035 }
4036
4037 if (!atomic_read(&nr_comm_events))
4038 return;
4039
4040 comm_event = (struct perf_comm_event){
4041 .task = task,
4042 /* .comm */
4043 /* .comm_size */
4044 .event_id = {
4045 .header = {
4046 .type = PERF_RECORD_COMM,
4047 .misc = 0,
4048 /* .size */
4049 },
4050 /* .pid */
4051 /* .tid */
4052 },
4053 };
4054
4055 perf_event_comm_event(&comm_event);
4056 }
4057
4058 /*
4059 * mmap tracking
4060 */
4061
4062 struct perf_mmap_event {
4063 struct vm_area_struct *vma;
4064
4065 const char *file_name;
4066 int file_size;
4067
4068 struct {
4069 struct perf_event_header header;
4070
4071 u32 pid;
4072 u32 tid;
4073 u64 start;
4074 u64 len;
4075 u64 pgoff;
4076 } event_id;
4077 };
4078
4079 static void perf_event_mmap_output(struct perf_event *event,
4080 struct perf_mmap_event *mmap_event)
4081 {
4082 struct perf_output_handle handle;
4083 int size = mmap_event->event_id.header.size;
4084 int ret = perf_output_begin(&handle, event, size, 0, 0);
4085
4086 if (ret)
4087 return;
4088
4089 mmap_event->event_id.pid = perf_event_pid(event, current);
4090 mmap_event->event_id.tid = perf_event_tid(event, current);
4091
4092 perf_output_put(&handle, mmap_event->event_id);
4093 perf_output_copy(&handle, mmap_event->file_name,
4094 mmap_event->file_size);
4095 perf_output_end(&handle);
4096 }
4097
4098 static int perf_event_mmap_match(struct perf_event *event,
4099 struct perf_mmap_event *mmap_event,
4100 int executable)
4101 {
4102 if (event->state < PERF_EVENT_STATE_INACTIVE)
4103 return 0;
4104
4105 if (event->cpu != -1 && event->cpu != smp_processor_id())
4106 return 0;
4107
4108 if ((!executable && event->attr.mmap_data) ||
4109 (executable && event->attr.mmap))
4110 return 1;
4111
4112 return 0;
4113 }
4114
4115 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4116 struct perf_mmap_event *mmap_event,
4117 int executable)
4118 {
4119 struct perf_event *event;
4120
4121 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4122 if (perf_event_mmap_match(event, mmap_event, executable))
4123 perf_event_mmap_output(event, mmap_event);
4124 }
4125 }
4126
4127 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4128 {
4129 struct perf_cpu_context *cpuctx;
4130 struct perf_event_context *ctx;
4131 struct vm_area_struct *vma = mmap_event->vma;
4132 struct file *file = vma->vm_file;
4133 unsigned int size;
4134 char tmp[16];
4135 char *buf = NULL;
4136 const char *name;
4137 struct pmu *pmu;
4138 int ctxn;
4139
4140 memset(tmp, 0, sizeof(tmp));
4141
4142 if (file) {
4143 /*
4144 * d_path works from the end of the buffer backwards, so we
4145 * need to add enough zero bytes after the string to handle
4146 * the 64bit alignment we do later.
4147 */
4148 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4149 if (!buf) {
4150 name = strncpy(tmp, "//enomem", sizeof(tmp));
4151 goto got_name;
4152 }
4153 name = d_path(&file->f_path, buf, PATH_MAX);
4154 if (IS_ERR(name)) {
4155 name = strncpy(tmp, "//toolong", sizeof(tmp));
4156 goto got_name;
4157 }
4158 } else {
4159 if (arch_vma_name(mmap_event->vma)) {
4160 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4161 sizeof(tmp));
4162 goto got_name;
4163 }
4164
4165 if (!vma->vm_mm) {
4166 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4167 goto got_name;
4168 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4169 vma->vm_end >= vma->vm_mm->brk) {
4170 name = strncpy(tmp, "[heap]", sizeof(tmp));
4171 goto got_name;
4172 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4173 vma->vm_end >= vma->vm_mm->start_stack) {
4174 name = strncpy(tmp, "[stack]", sizeof(tmp));
4175 goto got_name;
4176 }
4177
4178 name = strncpy(tmp, "//anon", sizeof(tmp));
4179 goto got_name;
4180 }
4181
4182 got_name:
4183 size = ALIGN(strlen(name)+1, sizeof(u64));
4184
4185 mmap_event->file_name = name;
4186 mmap_event->file_size = size;
4187
4188 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4189
4190 rcu_read_lock();
4191 list_for_each_entry_rcu(pmu, &pmus, entry) {
4192 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4193 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4194 vma->vm_flags & VM_EXEC);
4195
4196 ctxn = pmu->task_ctx_nr;
4197 if (ctxn < 0)
4198 goto next;
4199
4200 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4201 if (ctx) {
4202 perf_event_mmap_ctx(ctx, mmap_event,
4203 vma->vm_flags & VM_EXEC);
4204 }
4205 next:
4206 put_cpu_ptr(pmu->pmu_cpu_context);
4207 }
4208 rcu_read_unlock();
4209
4210 kfree(buf);
4211 }
4212
4213 void perf_event_mmap(struct vm_area_struct *vma)
4214 {
4215 struct perf_mmap_event mmap_event;
4216
4217 if (!atomic_read(&nr_mmap_events))
4218 return;
4219
4220 mmap_event = (struct perf_mmap_event){
4221 .vma = vma,
4222 /* .file_name */
4223 /* .file_size */
4224 .event_id = {
4225 .header = {
4226 .type = PERF_RECORD_MMAP,
4227 .misc = PERF_RECORD_MISC_USER,
4228 /* .size */
4229 },
4230 /* .pid */
4231 /* .tid */
4232 .start = vma->vm_start,
4233 .len = vma->vm_end - vma->vm_start,
4234 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4235 },
4236 };
4237
4238 perf_event_mmap_event(&mmap_event);
4239 }
4240
4241 /*
4242 * IRQ throttle logging
4243 */
4244
4245 static void perf_log_throttle(struct perf_event *event, int enable)
4246 {
4247 struct perf_output_handle handle;
4248 int ret;
4249
4250 struct {
4251 struct perf_event_header header;
4252 u64 time;
4253 u64 id;
4254 u64 stream_id;
4255 } throttle_event = {
4256 .header = {
4257 .type = PERF_RECORD_THROTTLE,
4258 .misc = 0,
4259 .size = sizeof(throttle_event),
4260 },
4261 .time = perf_clock(),
4262 .id = primary_event_id(event),
4263 .stream_id = event->id,
4264 };
4265
4266 if (enable)
4267 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4268
4269 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4270 if (ret)
4271 return;
4272
4273 perf_output_put(&handle, throttle_event);
4274 perf_output_end(&handle);
4275 }
4276
4277 /*
4278 * Generic event overflow handling, sampling.
4279 */
4280
4281 static int __perf_event_overflow(struct perf_event *event, int nmi,
4282 int throttle, struct perf_sample_data *data,
4283 struct pt_regs *regs)
4284 {
4285 int events = atomic_read(&event->event_limit);
4286 struct hw_perf_event *hwc = &event->hw;
4287 int ret = 0;
4288
4289 /*
4290 * Non-sampling counters might still use the PMI to fold short
4291 * hardware counters, ignore those.
4292 */
4293 if (unlikely(!is_sampling_event(event)))
4294 return 0;
4295
4296 if (!throttle) {
4297 hwc->interrupts++;
4298 } else {
4299 if (hwc->interrupts != MAX_INTERRUPTS) {
4300 hwc->interrupts++;
4301 if (HZ * hwc->interrupts >
4302 (u64)sysctl_perf_event_sample_rate) {
4303 hwc->interrupts = MAX_INTERRUPTS;
4304 perf_log_throttle(event, 0);
4305 ret = 1;
4306 }
4307 } else {
4308 /*
4309 * Keep re-disabling events even though on the previous
4310 * pass we disabled it - just in case we raced with a
4311 * sched-in and the event got enabled again:
4312 */
4313 ret = 1;
4314 }
4315 }
4316
4317 if (event->attr.freq) {
4318 u64 now = perf_clock();
4319 s64 delta = now - hwc->freq_time_stamp;
4320
4321 hwc->freq_time_stamp = now;
4322
4323 if (delta > 0 && delta < 2*TICK_NSEC)
4324 perf_adjust_period(event, delta, hwc->last_period);
4325 }
4326
4327 /*
4328 * XXX event_limit might not quite work as expected on inherited
4329 * events
4330 */
4331
4332 event->pending_kill = POLL_IN;
4333 if (events && atomic_dec_and_test(&event->event_limit)) {
4334 ret = 1;
4335 event->pending_kill = POLL_HUP;
4336 if (nmi) {
4337 event->pending_disable = 1;
4338 irq_work_queue(&event->pending);
4339 } else
4340 perf_event_disable(event);
4341 }
4342
4343 if (event->overflow_handler)
4344 event->overflow_handler(event, nmi, data, regs);
4345 else
4346 perf_event_output(event, nmi, data, regs);
4347
4348 return ret;
4349 }
4350
4351 int perf_event_overflow(struct perf_event *event, int nmi,
4352 struct perf_sample_data *data,
4353 struct pt_regs *regs)
4354 {
4355 return __perf_event_overflow(event, nmi, 1, data, regs);
4356 }
4357
4358 /*
4359 * Generic software event infrastructure
4360 */
4361
4362 struct swevent_htable {
4363 struct swevent_hlist *swevent_hlist;
4364 struct mutex hlist_mutex;
4365 int hlist_refcount;
4366
4367 /* Recursion avoidance in each contexts */
4368 int recursion[PERF_NR_CONTEXTS];
4369 };
4370
4371 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4372
4373 /*
4374 * We directly increment event->count and keep a second value in
4375 * event->hw.period_left to count intervals. This period event
4376 * is kept in the range [-sample_period, 0] so that we can use the
4377 * sign as trigger.
4378 */
4379
4380 static u64 perf_swevent_set_period(struct perf_event *event)
4381 {
4382 struct hw_perf_event *hwc = &event->hw;
4383 u64 period = hwc->last_period;
4384 u64 nr, offset;
4385 s64 old, val;
4386
4387 hwc->last_period = hwc->sample_period;
4388
4389 again:
4390 old = val = local64_read(&hwc->period_left);
4391 if (val < 0)
4392 return 0;
4393
4394 nr = div64_u64(period + val, period);
4395 offset = nr * period;
4396 val -= offset;
4397 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4398 goto again;
4399
4400 return nr;
4401 }
4402
4403 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4404 int nmi, struct perf_sample_data *data,
4405 struct pt_regs *regs)
4406 {
4407 struct hw_perf_event *hwc = &event->hw;
4408 int throttle = 0;
4409
4410 data->period = event->hw.last_period;
4411 if (!overflow)
4412 overflow = perf_swevent_set_period(event);
4413
4414 if (hwc->interrupts == MAX_INTERRUPTS)
4415 return;
4416
4417 for (; overflow; overflow--) {
4418 if (__perf_event_overflow(event, nmi, throttle,
4419 data, regs)) {
4420 /*
4421 * We inhibit the overflow from happening when
4422 * hwc->interrupts == MAX_INTERRUPTS.
4423 */
4424 break;
4425 }
4426 throttle = 1;
4427 }
4428 }
4429
4430 static void perf_swevent_event(struct perf_event *event, u64 nr,
4431 int nmi, struct perf_sample_data *data,
4432 struct pt_regs *regs)
4433 {
4434 struct hw_perf_event *hwc = &event->hw;
4435
4436 local64_add(nr, &event->count);
4437
4438 if (!regs)
4439 return;
4440
4441 if (!is_sampling_event(event))
4442 return;
4443
4444 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4445 return perf_swevent_overflow(event, 1, nmi, data, regs);
4446
4447 if (local64_add_negative(nr, &hwc->period_left))
4448 return;
4449
4450 perf_swevent_overflow(event, 0, nmi, data, regs);
4451 }
4452
4453 static int perf_exclude_event(struct perf_event *event,
4454 struct pt_regs *regs)
4455 {
4456 if (event->hw.state & PERF_HES_STOPPED)
4457 return 0;
4458
4459 if (regs) {
4460 if (event->attr.exclude_user && user_mode(regs))
4461 return 1;
4462
4463 if (event->attr.exclude_kernel && !user_mode(regs))
4464 return 1;
4465 }
4466
4467 return 0;
4468 }
4469
4470 static int perf_swevent_match(struct perf_event *event,
4471 enum perf_type_id type,
4472 u32 event_id,
4473 struct perf_sample_data *data,
4474 struct pt_regs *regs)
4475 {
4476 if (event->attr.type != type)
4477 return 0;
4478
4479 if (event->attr.config != event_id)
4480 return 0;
4481
4482 if (perf_exclude_event(event, regs))
4483 return 0;
4484
4485 return 1;
4486 }
4487
4488 static inline u64 swevent_hash(u64 type, u32 event_id)
4489 {
4490 u64 val = event_id | (type << 32);
4491
4492 return hash_64(val, SWEVENT_HLIST_BITS);
4493 }
4494
4495 static inline struct hlist_head *
4496 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4497 {
4498 u64 hash = swevent_hash(type, event_id);
4499
4500 return &hlist->heads[hash];
4501 }
4502
4503 /* For the read side: events when they trigger */
4504 static inline struct hlist_head *
4505 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4506 {
4507 struct swevent_hlist *hlist;
4508
4509 hlist = rcu_dereference(swhash->swevent_hlist);
4510 if (!hlist)
4511 return NULL;
4512
4513 return __find_swevent_head(hlist, type, event_id);
4514 }
4515
4516 /* For the event head insertion and removal in the hlist */
4517 static inline struct hlist_head *
4518 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4519 {
4520 struct swevent_hlist *hlist;
4521 u32 event_id = event->attr.config;
4522 u64 type = event->attr.type;
4523
4524 /*
4525 * Event scheduling is always serialized against hlist allocation
4526 * and release. Which makes the protected version suitable here.
4527 * The context lock guarantees that.
4528 */
4529 hlist = rcu_dereference_protected(swhash->swevent_hlist,
4530 lockdep_is_held(&event->ctx->lock));
4531 if (!hlist)
4532 return NULL;
4533
4534 return __find_swevent_head(hlist, type, event_id);
4535 }
4536
4537 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4538 u64 nr, int nmi,
4539 struct perf_sample_data *data,
4540 struct pt_regs *regs)
4541 {
4542 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4543 struct perf_event *event;
4544 struct hlist_node *node;
4545 struct hlist_head *head;
4546
4547 rcu_read_lock();
4548 head = find_swevent_head_rcu(swhash, type, event_id);
4549 if (!head)
4550 goto end;
4551
4552 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4553 if (perf_swevent_match(event, type, event_id, data, regs))
4554 perf_swevent_event(event, nr, nmi, data, regs);
4555 }
4556 end:
4557 rcu_read_unlock();
4558 }
4559
4560 int perf_swevent_get_recursion_context(void)
4561 {
4562 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4563
4564 return get_recursion_context(swhash->recursion);
4565 }
4566 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4567
4568 void inline perf_swevent_put_recursion_context(int rctx)
4569 {
4570 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4571
4572 put_recursion_context(swhash->recursion, rctx);
4573 }
4574
4575 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4576 struct pt_regs *regs, u64 addr)
4577 {
4578 struct perf_sample_data data;
4579 int rctx;
4580
4581 preempt_disable_notrace();
4582 rctx = perf_swevent_get_recursion_context();
4583 if (rctx < 0)
4584 return;
4585
4586 perf_sample_data_init(&data, addr);
4587
4588 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4589
4590 perf_swevent_put_recursion_context(rctx);
4591 preempt_enable_notrace();
4592 }
4593
4594 static void perf_swevent_read(struct perf_event *event)
4595 {
4596 }
4597
4598 static int perf_swevent_add(struct perf_event *event, int flags)
4599 {
4600 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4601 struct hw_perf_event *hwc = &event->hw;
4602 struct hlist_head *head;
4603
4604 if (is_sampling_event(event)) {
4605 hwc->last_period = hwc->sample_period;
4606 perf_swevent_set_period(event);
4607 }
4608
4609 hwc->state = !(flags & PERF_EF_START);
4610
4611 head = find_swevent_head(swhash, event);
4612 if (WARN_ON_ONCE(!head))
4613 return -EINVAL;
4614
4615 hlist_add_head_rcu(&event->hlist_entry, head);
4616
4617 return 0;
4618 }
4619
4620 static void perf_swevent_del(struct perf_event *event, int flags)
4621 {
4622 hlist_del_rcu(&event->hlist_entry);
4623 }
4624
4625 static void perf_swevent_start(struct perf_event *event, int flags)
4626 {
4627 event->hw.state = 0;
4628 }
4629
4630 static void perf_swevent_stop(struct perf_event *event, int flags)
4631 {
4632 event->hw.state = PERF_HES_STOPPED;
4633 }
4634
4635 /* Deref the hlist from the update side */
4636 static inline struct swevent_hlist *
4637 swevent_hlist_deref(struct swevent_htable *swhash)
4638 {
4639 return rcu_dereference_protected(swhash->swevent_hlist,
4640 lockdep_is_held(&swhash->hlist_mutex));
4641 }
4642
4643 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4644 {
4645 struct swevent_hlist *hlist;
4646
4647 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4648 kfree(hlist);
4649 }
4650
4651 static void swevent_hlist_release(struct swevent_htable *swhash)
4652 {
4653 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4654
4655 if (!hlist)
4656 return;
4657
4658 rcu_assign_pointer(swhash->swevent_hlist, NULL);
4659 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4660 }
4661
4662 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4663 {
4664 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4665
4666 mutex_lock(&swhash->hlist_mutex);
4667
4668 if (!--swhash->hlist_refcount)
4669 swevent_hlist_release(swhash);
4670
4671 mutex_unlock(&swhash->hlist_mutex);
4672 }
4673
4674 static void swevent_hlist_put(struct perf_event *event)
4675 {
4676 int cpu;
4677
4678 if (event->cpu != -1) {
4679 swevent_hlist_put_cpu(event, event->cpu);
4680 return;
4681 }
4682
4683 for_each_possible_cpu(cpu)
4684 swevent_hlist_put_cpu(event, cpu);
4685 }
4686
4687 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4688 {
4689 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4690 int err = 0;
4691
4692 mutex_lock(&swhash->hlist_mutex);
4693
4694 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4695 struct swevent_hlist *hlist;
4696
4697 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4698 if (!hlist) {
4699 err = -ENOMEM;
4700 goto exit;
4701 }
4702 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4703 }
4704 swhash->hlist_refcount++;
4705 exit:
4706 mutex_unlock(&swhash->hlist_mutex);
4707
4708 return err;
4709 }
4710
4711 static int swevent_hlist_get(struct perf_event *event)
4712 {
4713 int err;
4714 int cpu, failed_cpu;
4715
4716 if (event->cpu != -1)
4717 return swevent_hlist_get_cpu(event, event->cpu);
4718
4719 get_online_cpus();
4720 for_each_possible_cpu(cpu) {
4721 err = swevent_hlist_get_cpu(event, cpu);
4722 if (err) {
4723 failed_cpu = cpu;
4724 goto fail;
4725 }
4726 }
4727 put_online_cpus();
4728
4729 return 0;
4730 fail:
4731 for_each_possible_cpu(cpu) {
4732 if (cpu == failed_cpu)
4733 break;
4734 swevent_hlist_put_cpu(event, cpu);
4735 }
4736
4737 put_online_cpus();
4738 return err;
4739 }
4740
4741 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4742
4743 static void sw_perf_event_destroy(struct perf_event *event)
4744 {
4745 u64 event_id = event->attr.config;
4746
4747 WARN_ON(event->parent);
4748
4749 jump_label_dec(&perf_swevent_enabled[event_id]);
4750 swevent_hlist_put(event);
4751 }
4752
4753 static int perf_swevent_init(struct perf_event *event)
4754 {
4755 int event_id = event->attr.config;
4756
4757 if (event->attr.type != PERF_TYPE_SOFTWARE)
4758 return -ENOENT;
4759
4760 switch (event_id) {
4761 case PERF_COUNT_SW_CPU_CLOCK:
4762 case PERF_COUNT_SW_TASK_CLOCK:
4763 return -ENOENT;
4764
4765 default:
4766 break;
4767 }
4768
4769 if (event_id > PERF_COUNT_SW_MAX)
4770 return -ENOENT;
4771
4772 if (!event->parent) {
4773 int err;
4774
4775 err = swevent_hlist_get(event);
4776 if (err)
4777 return err;
4778
4779 jump_label_inc(&perf_swevent_enabled[event_id]);
4780 event->destroy = sw_perf_event_destroy;
4781 }
4782
4783 return 0;
4784 }
4785
4786 static struct pmu perf_swevent = {
4787 .task_ctx_nr = perf_sw_context,
4788
4789 .event_init = perf_swevent_init,
4790 .add = perf_swevent_add,
4791 .del = perf_swevent_del,
4792 .start = perf_swevent_start,
4793 .stop = perf_swevent_stop,
4794 .read = perf_swevent_read,
4795 };
4796
4797 #ifdef CONFIG_EVENT_TRACING
4798
4799 static int perf_tp_filter_match(struct perf_event *event,
4800 struct perf_sample_data *data)
4801 {
4802 void *record = data->raw->data;
4803
4804 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4805 return 1;
4806 return 0;
4807 }
4808
4809 static int perf_tp_event_match(struct perf_event *event,
4810 struct perf_sample_data *data,
4811 struct pt_regs *regs)
4812 {
4813 /*
4814 * All tracepoints are from kernel-space.
4815 */
4816 if (event->attr.exclude_kernel)
4817 return 0;
4818
4819 if (!perf_tp_filter_match(event, data))
4820 return 0;
4821
4822 return 1;
4823 }
4824
4825 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4826 struct pt_regs *regs, struct hlist_head *head, int rctx)
4827 {
4828 struct perf_sample_data data;
4829 struct perf_event *event;
4830 struct hlist_node *node;
4831
4832 struct perf_raw_record raw = {
4833 .size = entry_size,
4834 .data = record,
4835 };
4836
4837 perf_sample_data_init(&data, addr);
4838 data.raw = &raw;
4839
4840 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4841 if (perf_tp_event_match(event, &data, regs))
4842 perf_swevent_event(event, count, 1, &data, regs);
4843 }
4844
4845 perf_swevent_put_recursion_context(rctx);
4846 }
4847 EXPORT_SYMBOL_GPL(perf_tp_event);
4848
4849 static void tp_perf_event_destroy(struct perf_event *event)
4850 {
4851 perf_trace_destroy(event);
4852 }
4853
4854 static int perf_tp_event_init(struct perf_event *event)
4855 {
4856 int err;
4857
4858 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4859 return -ENOENT;
4860
4861 err = perf_trace_init(event);
4862 if (err)
4863 return err;
4864
4865 event->destroy = tp_perf_event_destroy;
4866
4867 return 0;
4868 }
4869
4870 static struct pmu perf_tracepoint = {
4871 .task_ctx_nr = perf_sw_context,
4872
4873 .event_init = perf_tp_event_init,
4874 .add = perf_trace_add,
4875 .del = perf_trace_del,
4876 .start = perf_swevent_start,
4877 .stop = perf_swevent_stop,
4878 .read = perf_swevent_read,
4879 };
4880
4881 static inline void perf_tp_register(void)
4882 {
4883 perf_pmu_register(&perf_tracepoint);
4884 }
4885
4886 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4887 {
4888 char *filter_str;
4889 int ret;
4890
4891 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4892 return -EINVAL;
4893
4894 filter_str = strndup_user(arg, PAGE_SIZE);
4895 if (IS_ERR(filter_str))
4896 return PTR_ERR(filter_str);
4897
4898 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4899
4900 kfree(filter_str);
4901 return ret;
4902 }
4903
4904 static void perf_event_free_filter(struct perf_event *event)
4905 {
4906 ftrace_profile_free_filter(event);
4907 }
4908
4909 #else
4910
4911 static inline void perf_tp_register(void)
4912 {
4913 }
4914
4915 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4916 {
4917 return -ENOENT;
4918 }
4919
4920 static void perf_event_free_filter(struct perf_event *event)
4921 {
4922 }
4923
4924 #endif /* CONFIG_EVENT_TRACING */
4925
4926 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4927 void perf_bp_event(struct perf_event *bp, void *data)
4928 {
4929 struct perf_sample_data sample;
4930 struct pt_regs *regs = data;
4931
4932 perf_sample_data_init(&sample, bp->attr.bp_addr);
4933
4934 if (!bp->hw.state && !perf_exclude_event(bp, regs))
4935 perf_swevent_event(bp, 1, 1, &sample, regs);
4936 }
4937 #endif
4938
4939 /*
4940 * hrtimer based swevent callback
4941 */
4942
4943 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4944 {
4945 enum hrtimer_restart ret = HRTIMER_RESTART;
4946 struct perf_sample_data data;
4947 struct pt_regs *regs;
4948 struct perf_event *event;
4949 u64 period;
4950
4951 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4952 event->pmu->read(event);
4953
4954 perf_sample_data_init(&data, 0);
4955 data.period = event->hw.last_period;
4956 regs = get_irq_regs();
4957
4958 if (regs && !perf_exclude_event(event, regs)) {
4959 if (!(event->attr.exclude_idle && current->pid == 0))
4960 if (perf_event_overflow(event, 0, &data, regs))
4961 ret = HRTIMER_NORESTART;
4962 }
4963
4964 period = max_t(u64, 10000, event->hw.sample_period);
4965 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4966
4967 return ret;
4968 }
4969
4970 static void perf_swevent_start_hrtimer(struct perf_event *event)
4971 {
4972 struct hw_perf_event *hwc = &event->hw;
4973 s64 period;
4974
4975 if (!is_sampling_event(event))
4976 return;
4977
4978 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4979 hwc->hrtimer.function = perf_swevent_hrtimer;
4980
4981 period = local64_read(&hwc->period_left);
4982 if (period) {
4983 if (period < 0)
4984 period = 10000;
4985
4986 local64_set(&hwc->period_left, 0);
4987 } else {
4988 period = max_t(u64, 10000, hwc->sample_period);
4989 }
4990 __hrtimer_start_range_ns(&hwc->hrtimer,
4991 ns_to_ktime(period), 0,
4992 HRTIMER_MODE_REL_PINNED, 0);
4993 }
4994
4995 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4996 {
4997 struct hw_perf_event *hwc = &event->hw;
4998
4999 if (is_sampling_event(event)) {
5000 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5001 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5002
5003 hrtimer_cancel(&hwc->hrtimer);
5004 }
5005 }
5006
5007 /*
5008 * Software event: cpu wall time clock
5009 */
5010
5011 static void cpu_clock_event_update(struct perf_event *event)
5012 {
5013 s64 prev;
5014 u64 now;
5015
5016 now = local_clock();
5017 prev = local64_xchg(&event->hw.prev_count, now);
5018 local64_add(now - prev, &event->count);
5019 }
5020
5021 static void cpu_clock_event_start(struct perf_event *event, int flags)
5022 {
5023 local64_set(&event->hw.prev_count, local_clock());
5024 perf_swevent_start_hrtimer(event);
5025 }
5026
5027 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5028 {
5029 perf_swevent_cancel_hrtimer(event);
5030 cpu_clock_event_update(event);
5031 }
5032
5033 static int cpu_clock_event_add(struct perf_event *event, int flags)
5034 {
5035 if (flags & PERF_EF_START)
5036 cpu_clock_event_start(event, flags);
5037
5038 return 0;
5039 }
5040
5041 static void cpu_clock_event_del(struct perf_event *event, int flags)
5042 {
5043 cpu_clock_event_stop(event, flags);
5044 }
5045
5046 static void cpu_clock_event_read(struct perf_event *event)
5047 {
5048 cpu_clock_event_update(event);
5049 }
5050
5051 static int cpu_clock_event_init(struct perf_event *event)
5052 {
5053 if (event->attr.type != PERF_TYPE_SOFTWARE)
5054 return -ENOENT;
5055
5056 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5057 return -ENOENT;
5058
5059 return 0;
5060 }
5061
5062 static struct pmu perf_cpu_clock = {
5063 .task_ctx_nr = perf_sw_context,
5064
5065 .event_init = cpu_clock_event_init,
5066 .add = cpu_clock_event_add,
5067 .del = cpu_clock_event_del,
5068 .start = cpu_clock_event_start,
5069 .stop = cpu_clock_event_stop,
5070 .read = cpu_clock_event_read,
5071 };
5072
5073 /*
5074 * Software event: task time clock
5075 */
5076
5077 static void task_clock_event_update(struct perf_event *event, u64 now)
5078 {
5079 u64 prev;
5080 s64 delta;
5081
5082 prev = local64_xchg(&event->hw.prev_count, now);
5083 delta = now - prev;
5084 local64_add(delta, &event->count);
5085 }
5086
5087 static void task_clock_event_start(struct perf_event *event, int flags)
5088 {
5089 local64_set(&event->hw.prev_count, event->ctx->time);
5090 perf_swevent_start_hrtimer(event);
5091 }
5092
5093 static void task_clock_event_stop(struct perf_event *event, int flags)
5094 {
5095 perf_swevent_cancel_hrtimer(event);
5096 task_clock_event_update(event, event->ctx->time);
5097 }
5098
5099 static int task_clock_event_add(struct perf_event *event, int flags)
5100 {
5101 if (flags & PERF_EF_START)
5102 task_clock_event_start(event, flags);
5103
5104 return 0;
5105 }
5106
5107 static void task_clock_event_del(struct perf_event *event, int flags)
5108 {
5109 task_clock_event_stop(event, PERF_EF_UPDATE);
5110 }
5111
5112 static void task_clock_event_read(struct perf_event *event)
5113 {
5114 u64 time;
5115
5116 if (!in_nmi()) {
5117 update_context_time(event->ctx);
5118 time = event->ctx->time;
5119 } else {
5120 u64 now = perf_clock();
5121 u64 delta = now - event->ctx->timestamp;
5122 time = event->ctx->time + delta;
5123 }
5124
5125 task_clock_event_update(event, time);
5126 }
5127
5128 static int task_clock_event_init(struct perf_event *event)
5129 {
5130 if (event->attr.type != PERF_TYPE_SOFTWARE)
5131 return -ENOENT;
5132
5133 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5134 return -ENOENT;
5135
5136 return 0;
5137 }
5138
5139 static struct pmu perf_task_clock = {
5140 .task_ctx_nr = perf_sw_context,
5141
5142 .event_init = task_clock_event_init,
5143 .add = task_clock_event_add,
5144 .del = task_clock_event_del,
5145 .start = task_clock_event_start,
5146 .stop = task_clock_event_stop,
5147 .read = task_clock_event_read,
5148 };
5149
5150 static void perf_pmu_nop_void(struct pmu *pmu)
5151 {
5152 }
5153
5154 static int perf_pmu_nop_int(struct pmu *pmu)
5155 {
5156 return 0;
5157 }
5158
5159 static void perf_pmu_start_txn(struct pmu *pmu)
5160 {
5161 perf_pmu_disable(pmu);
5162 }
5163
5164 static int perf_pmu_commit_txn(struct pmu *pmu)
5165 {
5166 perf_pmu_enable(pmu);
5167 return 0;
5168 }
5169
5170 static void perf_pmu_cancel_txn(struct pmu *pmu)
5171 {
5172 perf_pmu_enable(pmu);
5173 }
5174
5175 /*
5176 * Ensures all contexts with the same task_ctx_nr have the same
5177 * pmu_cpu_context too.
5178 */
5179 static void *find_pmu_context(int ctxn)
5180 {
5181 struct pmu *pmu;
5182
5183 if (ctxn < 0)
5184 return NULL;
5185
5186 list_for_each_entry(pmu, &pmus, entry) {
5187 if (pmu->task_ctx_nr == ctxn)
5188 return pmu->pmu_cpu_context;
5189 }
5190
5191 return NULL;
5192 }
5193
5194 static void free_pmu_context(void * __percpu cpu_context)
5195 {
5196 struct pmu *pmu;
5197
5198 mutex_lock(&pmus_lock);
5199 /*
5200 * Like a real lame refcount.
5201 */
5202 list_for_each_entry(pmu, &pmus, entry) {
5203 if (pmu->pmu_cpu_context == cpu_context)
5204 goto out;
5205 }
5206
5207 free_percpu(cpu_context);
5208 out:
5209 mutex_unlock(&pmus_lock);
5210 }
5211
5212 int perf_pmu_register(struct pmu *pmu)
5213 {
5214 int cpu, ret;
5215
5216 mutex_lock(&pmus_lock);
5217 ret = -ENOMEM;
5218 pmu->pmu_disable_count = alloc_percpu(int);
5219 if (!pmu->pmu_disable_count)
5220 goto unlock;
5221
5222 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5223 if (pmu->pmu_cpu_context)
5224 goto got_cpu_context;
5225
5226 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5227 if (!pmu->pmu_cpu_context)
5228 goto free_pdc;
5229
5230 for_each_possible_cpu(cpu) {
5231 struct perf_cpu_context *cpuctx;
5232
5233 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5234 __perf_event_init_context(&cpuctx->ctx);
5235 cpuctx->ctx.type = cpu_context;
5236 cpuctx->ctx.pmu = pmu;
5237 cpuctx->jiffies_interval = 1;
5238 INIT_LIST_HEAD(&cpuctx->rotation_list);
5239 }
5240
5241 got_cpu_context:
5242 if (!pmu->start_txn) {
5243 if (pmu->pmu_enable) {
5244 /*
5245 * If we have pmu_enable/pmu_disable calls, install
5246 * transaction stubs that use that to try and batch
5247 * hardware accesses.
5248 */
5249 pmu->start_txn = perf_pmu_start_txn;
5250 pmu->commit_txn = perf_pmu_commit_txn;
5251 pmu->cancel_txn = perf_pmu_cancel_txn;
5252 } else {
5253 pmu->start_txn = perf_pmu_nop_void;
5254 pmu->commit_txn = perf_pmu_nop_int;
5255 pmu->cancel_txn = perf_pmu_nop_void;
5256 }
5257 }
5258
5259 if (!pmu->pmu_enable) {
5260 pmu->pmu_enable = perf_pmu_nop_void;
5261 pmu->pmu_disable = perf_pmu_nop_void;
5262 }
5263
5264 list_add_rcu(&pmu->entry, &pmus);
5265 ret = 0;
5266 unlock:
5267 mutex_unlock(&pmus_lock);
5268
5269 return ret;
5270
5271 free_pdc:
5272 free_percpu(pmu->pmu_disable_count);
5273 goto unlock;
5274 }
5275
5276 void perf_pmu_unregister(struct pmu *pmu)
5277 {
5278 mutex_lock(&pmus_lock);
5279 list_del_rcu(&pmu->entry);
5280 mutex_unlock(&pmus_lock);
5281
5282 /*
5283 * We dereference the pmu list under both SRCU and regular RCU, so
5284 * synchronize against both of those.
5285 */
5286 synchronize_srcu(&pmus_srcu);
5287 synchronize_rcu();
5288
5289 free_percpu(pmu->pmu_disable_count);
5290 free_pmu_context(pmu->pmu_cpu_context);
5291 }
5292
5293 struct pmu *perf_init_event(struct perf_event *event)
5294 {
5295 struct pmu *pmu = NULL;
5296 int idx;
5297
5298 idx = srcu_read_lock(&pmus_srcu);
5299 list_for_each_entry_rcu(pmu, &pmus, entry) {
5300 int ret = pmu->event_init(event);
5301 if (!ret)
5302 goto unlock;
5303
5304 if (ret != -ENOENT) {
5305 pmu = ERR_PTR(ret);
5306 goto unlock;
5307 }
5308 }
5309 pmu = ERR_PTR(-ENOENT);
5310 unlock:
5311 srcu_read_unlock(&pmus_srcu, idx);
5312
5313 return pmu;
5314 }
5315
5316 /*
5317 * Allocate and initialize a event structure
5318 */
5319 static struct perf_event *
5320 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5321 struct task_struct *task,
5322 struct perf_event *group_leader,
5323 struct perf_event *parent_event,
5324 perf_overflow_handler_t overflow_handler)
5325 {
5326 struct pmu *pmu;
5327 struct perf_event *event;
5328 struct hw_perf_event *hwc;
5329 long err;
5330
5331 event = kzalloc(sizeof(*event), GFP_KERNEL);
5332 if (!event)
5333 return ERR_PTR(-ENOMEM);
5334
5335 /*
5336 * Single events are their own group leaders, with an
5337 * empty sibling list:
5338 */
5339 if (!group_leader)
5340 group_leader = event;
5341
5342 mutex_init(&event->child_mutex);
5343 INIT_LIST_HEAD(&event->child_list);
5344
5345 INIT_LIST_HEAD(&event->group_entry);
5346 INIT_LIST_HEAD(&event->event_entry);
5347 INIT_LIST_HEAD(&event->sibling_list);
5348 init_waitqueue_head(&event->waitq);
5349 init_irq_work(&event->pending, perf_pending_event);
5350
5351 mutex_init(&event->mmap_mutex);
5352
5353 event->cpu = cpu;
5354 event->attr = *attr;
5355 event->group_leader = group_leader;
5356 event->pmu = NULL;
5357 event->oncpu = -1;
5358
5359 event->parent = parent_event;
5360
5361 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5362 event->id = atomic64_inc_return(&perf_event_id);
5363
5364 event->state = PERF_EVENT_STATE_INACTIVE;
5365
5366 if (task) {
5367 event->attach_state = PERF_ATTACH_TASK;
5368 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5369 /*
5370 * hw_breakpoint is a bit difficult here..
5371 */
5372 if (attr->type == PERF_TYPE_BREAKPOINT)
5373 event->hw.bp_target = task;
5374 #endif
5375 }
5376
5377 if (!overflow_handler && parent_event)
5378 overflow_handler = parent_event->overflow_handler;
5379
5380 event->overflow_handler = overflow_handler;
5381
5382 if (attr->disabled)
5383 event->state = PERF_EVENT_STATE_OFF;
5384
5385 pmu = NULL;
5386
5387 hwc = &event->hw;
5388 hwc->sample_period = attr->sample_period;
5389 if (attr->freq && attr->sample_freq)
5390 hwc->sample_period = 1;
5391 hwc->last_period = hwc->sample_period;
5392
5393 local64_set(&hwc->period_left, hwc->sample_period);
5394
5395 /*
5396 * we currently do not support PERF_FORMAT_GROUP on inherited events
5397 */
5398 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5399 goto done;
5400
5401 pmu = perf_init_event(event);
5402
5403 done:
5404 err = 0;
5405 if (!pmu)
5406 err = -EINVAL;
5407 else if (IS_ERR(pmu))
5408 err = PTR_ERR(pmu);
5409
5410 if (err) {
5411 if (event->ns)
5412 put_pid_ns(event->ns);
5413 kfree(event);
5414 return ERR_PTR(err);
5415 }
5416
5417 event->pmu = pmu;
5418
5419 if (!event->parent) {
5420 if (event->attach_state & PERF_ATTACH_TASK)
5421 jump_label_inc(&perf_task_events);
5422 if (event->attr.mmap || event->attr.mmap_data)
5423 atomic_inc(&nr_mmap_events);
5424 if (event->attr.comm)
5425 atomic_inc(&nr_comm_events);
5426 if (event->attr.task)
5427 atomic_inc(&nr_task_events);
5428 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5429 err = get_callchain_buffers();
5430 if (err) {
5431 free_event(event);
5432 return ERR_PTR(err);
5433 }
5434 }
5435 }
5436
5437 return event;
5438 }
5439
5440 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5441 struct perf_event_attr *attr)
5442 {
5443 u32 size;
5444 int ret;
5445
5446 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5447 return -EFAULT;
5448
5449 /*
5450 * zero the full structure, so that a short copy will be nice.
5451 */
5452 memset(attr, 0, sizeof(*attr));
5453
5454 ret = get_user(size, &uattr->size);
5455 if (ret)
5456 return ret;
5457
5458 if (size > PAGE_SIZE) /* silly large */
5459 goto err_size;
5460
5461 if (!size) /* abi compat */
5462 size = PERF_ATTR_SIZE_VER0;
5463
5464 if (size < PERF_ATTR_SIZE_VER0)
5465 goto err_size;
5466
5467 /*
5468 * If we're handed a bigger struct than we know of,
5469 * ensure all the unknown bits are 0 - i.e. new
5470 * user-space does not rely on any kernel feature
5471 * extensions we dont know about yet.
5472 */
5473 if (size > sizeof(*attr)) {
5474 unsigned char __user *addr;
5475 unsigned char __user *end;
5476 unsigned char val;
5477
5478 addr = (void __user *)uattr + sizeof(*attr);
5479 end = (void __user *)uattr + size;
5480
5481 for (; addr < end; addr++) {
5482 ret = get_user(val, addr);
5483 if (ret)
5484 return ret;
5485 if (val)
5486 goto err_size;
5487 }
5488 size = sizeof(*attr);
5489 }
5490
5491 ret = copy_from_user(attr, uattr, size);
5492 if (ret)
5493 return -EFAULT;
5494
5495 /*
5496 * If the type exists, the corresponding creation will verify
5497 * the attr->config.
5498 */
5499 if (attr->type >= PERF_TYPE_MAX)
5500 return -EINVAL;
5501
5502 if (attr->__reserved_1)
5503 return -EINVAL;
5504
5505 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5506 return -EINVAL;
5507
5508 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5509 return -EINVAL;
5510
5511 out:
5512 return ret;
5513
5514 err_size:
5515 put_user(sizeof(*attr), &uattr->size);
5516 ret = -E2BIG;
5517 goto out;
5518 }
5519
5520 static int
5521 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5522 {
5523 struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5524 int ret = -EINVAL;
5525
5526 if (!output_event)
5527 goto set;
5528
5529 /* don't allow circular references */
5530 if (event == output_event)
5531 goto out;
5532
5533 /*
5534 * Don't allow cross-cpu buffers
5535 */
5536 if (output_event->cpu != event->cpu)
5537 goto out;
5538
5539 /*
5540 * If its not a per-cpu buffer, it must be the same task.
5541 */
5542 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5543 goto out;
5544
5545 set:
5546 mutex_lock(&event->mmap_mutex);
5547 /* Can't redirect output if we've got an active mmap() */
5548 if (atomic_read(&event->mmap_count))
5549 goto unlock;
5550
5551 if (output_event) {
5552 /* get the buffer we want to redirect to */
5553 buffer = perf_buffer_get(output_event);
5554 if (!buffer)
5555 goto unlock;
5556 }
5557
5558 old_buffer = event->buffer;
5559 rcu_assign_pointer(event->buffer, buffer);
5560 ret = 0;
5561 unlock:
5562 mutex_unlock(&event->mmap_mutex);
5563
5564 if (old_buffer)
5565 perf_buffer_put(old_buffer);
5566 out:
5567 return ret;
5568 }
5569
5570 /**
5571 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5572 *
5573 * @attr_uptr: event_id type attributes for monitoring/sampling
5574 * @pid: target pid
5575 * @cpu: target cpu
5576 * @group_fd: group leader event fd
5577 */
5578 SYSCALL_DEFINE5(perf_event_open,
5579 struct perf_event_attr __user *, attr_uptr,
5580 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5581 {
5582 struct perf_event *group_leader = NULL, *output_event = NULL;
5583 struct perf_event *event, *sibling;
5584 struct perf_event_attr attr;
5585 struct perf_event_context *ctx;
5586 struct file *event_file = NULL;
5587 struct file *group_file = NULL;
5588 struct task_struct *task = NULL;
5589 struct pmu *pmu;
5590 int event_fd;
5591 int move_group = 0;
5592 int fput_needed = 0;
5593 int err;
5594
5595 /* for future expandability... */
5596 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5597 return -EINVAL;
5598
5599 err = perf_copy_attr(attr_uptr, &attr);
5600 if (err)
5601 return err;
5602
5603 if (!attr.exclude_kernel) {
5604 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5605 return -EACCES;
5606 }
5607
5608 if (attr.freq) {
5609 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5610 return -EINVAL;
5611 }
5612
5613 event_fd = get_unused_fd_flags(O_RDWR);
5614 if (event_fd < 0)
5615 return event_fd;
5616
5617 if (group_fd != -1) {
5618 group_leader = perf_fget_light(group_fd, &fput_needed);
5619 if (IS_ERR(group_leader)) {
5620 err = PTR_ERR(group_leader);
5621 goto err_fd;
5622 }
5623 group_file = group_leader->filp;
5624 if (flags & PERF_FLAG_FD_OUTPUT)
5625 output_event = group_leader;
5626 if (flags & PERF_FLAG_FD_NO_GROUP)
5627 group_leader = NULL;
5628 }
5629
5630 if (pid != -1) {
5631 task = find_lively_task_by_vpid(pid);
5632 if (IS_ERR(task)) {
5633 err = PTR_ERR(task);
5634 goto err_group_fd;
5635 }
5636 }
5637
5638 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
5639 if (IS_ERR(event)) {
5640 err = PTR_ERR(event);
5641 goto err_task;
5642 }
5643
5644 /*
5645 * Special case software events and allow them to be part of
5646 * any hardware group.
5647 */
5648 pmu = event->pmu;
5649
5650 if (group_leader &&
5651 (is_software_event(event) != is_software_event(group_leader))) {
5652 if (is_software_event(event)) {
5653 /*
5654 * If event and group_leader are not both a software
5655 * event, and event is, then group leader is not.
5656 *
5657 * Allow the addition of software events to !software
5658 * groups, this is safe because software events never
5659 * fail to schedule.
5660 */
5661 pmu = group_leader->pmu;
5662 } else if (is_software_event(group_leader) &&
5663 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
5664 /*
5665 * In case the group is a pure software group, and we
5666 * try to add a hardware event, move the whole group to
5667 * the hardware context.
5668 */
5669 move_group = 1;
5670 }
5671 }
5672
5673 /*
5674 * Get the target context (task or percpu):
5675 */
5676 ctx = find_get_context(pmu, task, cpu);
5677 if (IS_ERR(ctx)) {
5678 err = PTR_ERR(ctx);
5679 goto err_alloc;
5680 }
5681
5682 /*
5683 * Look up the group leader (we will attach this event to it):
5684 */
5685 if (group_leader) {
5686 err = -EINVAL;
5687
5688 /*
5689 * Do not allow a recursive hierarchy (this new sibling
5690 * becoming part of another group-sibling):
5691 */
5692 if (group_leader->group_leader != group_leader)
5693 goto err_context;
5694 /*
5695 * Do not allow to attach to a group in a different
5696 * task or CPU context:
5697 */
5698 if (move_group) {
5699 if (group_leader->ctx->type != ctx->type)
5700 goto err_context;
5701 } else {
5702 if (group_leader->ctx != ctx)
5703 goto err_context;
5704 }
5705
5706 /*
5707 * Only a group leader can be exclusive or pinned
5708 */
5709 if (attr.exclusive || attr.pinned)
5710 goto err_context;
5711 }
5712
5713 if (output_event) {
5714 err = perf_event_set_output(event, output_event);
5715 if (err)
5716 goto err_context;
5717 }
5718
5719 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5720 if (IS_ERR(event_file)) {
5721 err = PTR_ERR(event_file);
5722 goto err_context;
5723 }
5724
5725 if (move_group) {
5726 struct perf_event_context *gctx = group_leader->ctx;
5727
5728 mutex_lock(&gctx->mutex);
5729 perf_event_remove_from_context(group_leader);
5730 list_for_each_entry(sibling, &group_leader->sibling_list,
5731 group_entry) {
5732 perf_event_remove_from_context(sibling);
5733 put_ctx(gctx);
5734 }
5735 mutex_unlock(&gctx->mutex);
5736 put_ctx(gctx);
5737 }
5738
5739 event->filp = event_file;
5740 WARN_ON_ONCE(ctx->parent_ctx);
5741 mutex_lock(&ctx->mutex);
5742
5743 if (move_group) {
5744 perf_install_in_context(ctx, group_leader, cpu);
5745 get_ctx(ctx);
5746 list_for_each_entry(sibling, &group_leader->sibling_list,
5747 group_entry) {
5748 perf_install_in_context(ctx, sibling, cpu);
5749 get_ctx(ctx);
5750 }
5751 }
5752
5753 perf_install_in_context(ctx, event, cpu);
5754 ++ctx->generation;
5755 mutex_unlock(&ctx->mutex);
5756
5757 event->owner = current;
5758
5759 mutex_lock(&current->perf_event_mutex);
5760 list_add_tail(&event->owner_entry, &current->perf_event_list);
5761 mutex_unlock(&current->perf_event_mutex);
5762
5763 /*
5764 * Precalculate sample_data sizes
5765 */
5766 perf_event__header_size(event);
5767 perf_event__id_header_size(event);
5768
5769 /*
5770 * Drop the reference on the group_event after placing the
5771 * new event on the sibling_list. This ensures destruction
5772 * of the group leader will find the pointer to itself in
5773 * perf_group_detach().
5774 */
5775 fput_light(group_file, fput_needed);
5776 fd_install(event_fd, event_file);
5777 return event_fd;
5778
5779 err_context:
5780 put_ctx(ctx);
5781 err_alloc:
5782 free_event(event);
5783 err_task:
5784 if (task)
5785 put_task_struct(task);
5786 err_group_fd:
5787 fput_light(group_file, fput_needed);
5788 err_fd:
5789 put_unused_fd(event_fd);
5790 return err;
5791 }
5792
5793 /**
5794 * perf_event_create_kernel_counter
5795 *
5796 * @attr: attributes of the counter to create
5797 * @cpu: cpu in which the counter is bound
5798 * @task: task to profile (NULL for percpu)
5799 */
5800 struct perf_event *
5801 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5802 struct task_struct *task,
5803 perf_overflow_handler_t overflow_handler)
5804 {
5805 struct perf_event_context *ctx;
5806 struct perf_event *event;
5807 int err;
5808
5809 /*
5810 * Get the target context (task or percpu):
5811 */
5812
5813 event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
5814 if (IS_ERR(event)) {
5815 err = PTR_ERR(event);
5816 goto err;
5817 }
5818
5819 ctx = find_get_context(event->pmu, task, cpu);
5820 if (IS_ERR(ctx)) {
5821 err = PTR_ERR(ctx);
5822 goto err_free;
5823 }
5824
5825 event->filp = NULL;
5826 WARN_ON_ONCE(ctx->parent_ctx);
5827 mutex_lock(&ctx->mutex);
5828 perf_install_in_context(ctx, event, cpu);
5829 ++ctx->generation;
5830 mutex_unlock(&ctx->mutex);
5831
5832 return event;
5833
5834 err_free:
5835 free_event(event);
5836 err:
5837 return ERR_PTR(err);
5838 }
5839 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5840
5841 static void sync_child_event(struct perf_event *child_event,
5842 struct task_struct *child)
5843 {
5844 struct perf_event *parent_event = child_event->parent;
5845 u64 child_val;
5846
5847 if (child_event->attr.inherit_stat)
5848 perf_event_read_event(child_event, child);
5849
5850 child_val = perf_event_count(child_event);
5851
5852 /*
5853 * Add back the child's count to the parent's count:
5854 */
5855 atomic64_add(child_val, &parent_event->child_count);
5856 atomic64_add(child_event->total_time_enabled,
5857 &parent_event->child_total_time_enabled);
5858 atomic64_add(child_event->total_time_running,
5859 &parent_event->child_total_time_running);
5860
5861 /*
5862 * Remove this event from the parent's list
5863 */
5864 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5865 mutex_lock(&parent_event->child_mutex);
5866 list_del_init(&child_event->child_list);
5867 mutex_unlock(&parent_event->child_mutex);
5868
5869 /*
5870 * Release the parent event, if this was the last
5871 * reference to it.
5872 */
5873 fput(parent_event->filp);
5874 }
5875
5876 static void
5877 __perf_event_exit_task(struct perf_event *child_event,
5878 struct perf_event_context *child_ctx,
5879 struct task_struct *child)
5880 {
5881 struct perf_event *parent_event;
5882
5883 perf_event_remove_from_context(child_event);
5884
5885 parent_event = child_event->parent;
5886 /*
5887 * It can happen that parent exits first, and has events
5888 * that are still around due to the child reference. These
5889 * events need to be zapped - but otherwise linger.
5890 */
5891 if (parent_event) {
5892 sync_child_event(child_event, child);
5893 free_event(child_event);
5894 }
5895 }
5896
5897 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
5898 {
5899 struct perf_event *child_event, *tmp;
5900 struct perf_event_context *child_ctx;
5901 unsigned long flags;
5902
5903 if (likely(!child->perf_event_ctxp[ctxn])) {
5904 perf_event_task(child, NULL, 0);
5905 return;
5906 }
5907
5908 local_irq_save(flags);
5909 /*
5910 * We can't reschedule here because interrupts are disabled,
5911 * and either child is current or it is a task that can't be
5912 * scheduled, so we are now safe from rescheduling changing
5913 * our context.
5914 */
5915 child_ctx = child->perf_event_ctxp[ctxn];
5916 task_ctx_sched_out(child_ctx, EVENT_ALL);
5917
5918 /*
5919 * Take the context lock here so that if find_get_context is
5920 * reading child->perf_event_ctxp, we wait until it has
5921 * incremented the context's refcount before we do put_ctx below.
5922 */
5923 raw_spin_lock(&child_ctx->lock);
5924 child->perf_event_ctxp[ctxn] = NULL;
5925 /*
5926 * If this context is a clone; unclone it so it can't get
5927 * swapped to another process while we're removing all
5928 * the events from it.
5929 */
5930 unclone_ctx(child_ctx);
5931 update_context_time(child_ctx);
5932 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5933
5934 /*
5935 * Report the task dead after unscheduling the events so that we
5936 * won't get any samples after PERF_RECORD_EXIT. We can however still
5937 * get a few PERF_RECORD_READ events.
5938 */
5939 perf_event_task(child, child_ctx, 0);
5940
5941 /*
5942 * We can recurse on the same lock type through:
5943 *
5944 * __perf_event_exit_task()
5945 * sync_child_event()
5946 * fput(parent_event->filp)
5947 * perf_release()
5948 * mutex_lock(&ctx->mutex)
5949 *
5950 * But since its the parent context it won't be the same instance.
5951 */
5952 mutex_lock(&child_ctx->mutex);
5953
5954 again:
5955 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5956 group_entry)
5957 __perf_event_exit_task(child_event, child_ctx, child);
5958
5959 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5960 group_entry)
5961 __perf_event_exit_task(child_event, child_ctx, child);
5962
5963 /*
5964 * If the last event was a group event, it will have appended all
5965 * its siblings to the list, but we obtained 'tmp' before that which
5966 * will still point to the list head terminating the iteration.
5967 */
5968 if (!list_empty(&child_ctx->pinned_groups) ||
5969 !list_empty(&child_ctx->flexible_groups))
5970 goto again;
5971
5972 mutex_unlock(&child_ctx->mutex);
5973
5974 put_ctx(child_ctx);
5975 }
5976
5977 /*
5978 * When a child task exits, feed back event values to parent events.
5979 */
5980 void perf_event_exit_task(struct task_struct *child)
5981 {
5982 struct perf_event *event, *tmp;
5983 int ctxn;
5984
5985 mutex_lock(&child->perf_event_mutex);
5986 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
5987 owner_entry) {
5988 list_del_init(&event->owner_entry);
5989
5990 /*
5991 * Ensure the list deletion is visible before we clear
5992 * the owner, closes a race against perf_release() where
5993 * we need to serialize on the owner->perf_event_mutex.
5994 */
5995 smp_wmb();
5996 event->owner = NULL;
5997 }
5998 mutex_unlock(&child->perf_event_mutex);
5999
6000 for_each_task_context_nr(ctxn)
6001 perf_event_exit_task_context(child, ctxn);
6002 }
6003
6004 static void perf_free_event(struct perf_event *event,
6005 struct perf_event_context *ctx)
6006 {
6007 struct perf_event *parent = event->parent;
6008
6009 if (WARN_ON_ONCE(!parent))
6010 return;
6011
6012 mutex_lock(&parent->child_mutex);
6013 list_del_init(&event->child_list);
6014 mutex_unlock(&parent->child_mutex);
6015
6016 fput(parent->filp);
6017
6018 perf_group_detach(event);
6019 list_del_event(event, ctx);
6020 free_event(event);
6021 }
6022
6023 /*
6024 * free an unexposed, unused context as created by inheritance by
6025 * perf_event_init_task below, used by fork() in case of fail.
6026 */
6027 void perf_event_free_task(struct task_struct *task)
6028 {
6029 struct perf_event_context *ctx;
6030 struct perf_event *event, *tmp;
6031 int ctxn;
6032
6033 for_each_task_context_nr(ctxn) {
6034 ctx = task->perf_event_ctxp[ctxn];
6035 if (!ctx)
6036 continue;
6037
6038 mutex_lock(&ctx->mutex);
6039 again:
6040 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6041 group_entry)
6042 perf_free_event(event, ctx);
6043
6044 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6045 group_entry)
6046 perf_free_event(event, ctx);
6047
6048 if (!list_empty(&ctx->pinned_groups) ||
6049 !list_empty(&ctx->flexible_groups))
6050 goto again;
6051
6052 mutex_unlock(&ctx->mutex);
6053
6054 put_ctx(ctx);
6055 }
6056 }
6057
6058 void perf_event_delayed_put(struct task_struct *task)
6059 {
6060 int ctxn;
6061
6062 for_each_task_context_nr(ctxn)
6063 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6064 }
6065
6066 /*
6067 * inherit a event from parent task to child task:
6068 */
6069 static struct perf_event *
6070 inherit_event(struct perf_event *parent_event,
6071 struct task_struct *parent,
6072 struct perf_event_context *parent_ctx,
6073 struct task_struct *child,
6074 struct perf_event *group_leader,
6075 struct perf_event_context *child_ctx)
6076 {
6077 struct perf_event *child_event;
6078 unsigned long flags;
6079
6080 /*
6081 * Instead of creating recursive hierarchies of events,
6082 * we link inherited events back to the original parent,
6083 * which has a filp for sure, which we use as the reference
6084 * count:
6085 */
6086 if (parent_event->parent)
6087 parent_event = parent_event->parent;
6088
6089 child_event = perf_event_alloc(&parent_event->attr,
6090 parent_event->cpu,
6091 child,
6092 group_leader, parent_event,
6093 NULL);
6094 if (IS_ERR(child_event))
6095 return child_event;
6096 get_ctx(child_ctx);
6097
6098 /*
6099 * Make the child state follow the state of the parent event,
6100 * not its attr.disabled bit. We hold the parent's mutex,
6101 * so we won't race with perf_event_{en, dis}able_family.
6102 */
6103 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6104 child_event->state = PERF_EVENT_STATE_INACTIVE;
6105 else
6106 child_event->state = PERF_EVENT_STATE_OFF;
6107
6108 if (parent_event->attr.freq) {
6109 u64 sample_period = parent_event->hw.sample_period;
6110 struct hw_perf_event *hwc = &child_event->hw;
6111
6112 hwc->sample_period = sample_period;
6113 hwc->last_period = sample_period;
6114
6115 local64_set(&hwc->period_left, sample_period);
6116 }
6117
6118 child_event->ctx = child_ctx;
6119 child_event->overflow_handler = parent_event->overflow_handler;
6120
6121 /*
6122 * Precalculate sample_data sizes
6123 */
6124 perf_event__header_size(child_event);
6125 perf_event__id_header_size(child_event);
6126
6127 /*
6128 * Link it up in the child's context:
6129 */
6130 raw_spin_lock_irqsave(&child_ctx->lock, flags);
6131 add_event_to_ctx(child_event, child_ctx);
6132 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6133
6134 /*
6135 * Get a reference to the parent filp - we will fput it
6136 * when the child event exits. This is safe to do because
6137 * we are in the parent and we know that the filp still
6138 * exists and has a nonzero count:
6139 */
6140 atomic_long_inc(&parent_event->filp->f_count);
6141
6142 /*
6143 * Link this into the parent event's child list
6144 */
6145 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6146 mutex_lock(&parent_event->child_mutex);
6147 list_add_tail(&child_event->child_list, &parent_event->child_list);
6148 mutex_unlock(&parent_event->child_mutex);
6149
6150 return child_event;
6151 }
6152
6153 static int inherit_group(struct perf_event *parent_event,
6154 struct task_struct *parent,
6155 struct perf_event_context *parent_ctx,
6156 struct task_struct *child,
6157 struct perf_event_context *child_ctx)
6158 {
6159 struct perf_event *leader;
6160 struct perf_event *sub;
6161 struct perf_event *child_ctr;
6162
6163 leader = inherit_event(parent_event, parent, parent_ctx,
6164 child, NULL, child_ctx);
6165 if (IS_ERR(leader))
6166 return PTR_ERR(leader);
6167 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6168 child_ctr = inherit_event(sub, parent, parent_ctx,
6169 child, leader, child_ctx);
6170 if (IS_ERR(child_ctr))
6171 return PTR_ERR(child_ctr);
6172 }
6173 return 0;
6174 }
6175
6176 static int
6177 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6178 struct perf_event_context *parent_ctx,
6179 struct task_struct *child, int ctxn,
6180 int *inherited_all)
6181 {
6182 int ret;
6183 struct perf_event_context *child_ctx;
6184
6185 if (!event->attr.inherit) {
6186 *inherited_all = 0;
6187 return 0;
6188 }
6189
6190 child_ctx = child->perf_event_ctxp[ctxn];
6191 if (!child_ctx) {
6192 /*
6193 * This is executed from the parent task context, so
6194 * inherit events that have been marked for cloning.
6195 * First allocate and initialize a context for the
6196 * child.
6197 */
6198
6199 child_ctx = alloc_perf_context(event->pmu, child);
6200 if (!child_ctx)
6201 return -ENOMEM;
6202
6203 child->perf_event_ctxp[ctxn] = child_ctx;
6204 }
6205
6206 ret = inherit_group(event, parent, parent_ctx,
6207 child, child_ctx);
6208
6209 if (ret)
6210 *inherited_all = 0;
6211
6212 return ret;
6213 }
6214
6215 /*
6216 * Initialize the perf_event context in task_struct
6217 */
6218 int perf_event_init_context(struct task_struct *child, int ctxn)
6219 {
6220 struct perf_event_context *child_ctx, *parent_ctx;
6221 struct perf_event_context *cloned_ctx;
6222 struct perf_event *event;
6223 struct task_struct *parent = current;
6224 int inherited_all = 1;
6225 unsigned long flags;
6226 int ret = 0;
6227
6228 child->perf_event_ctxp[ctxn] = NULL;
6229
6230 mutex_init(&child->perf_event_mutex);
6231 INIT_LIST_HEAD(&child->perf_event_list);
6232
6233 if (likely(!parent->perf_event_ctxp[ctxn]))
6234 return 0;
6235
6236 /*
6237 * If the parent's context is a clone, pin it so it won't get
6238 * swapped under us.
6239 */
6240 parent_ctx = perf_pin_task_context(parent, ctxn);
6241
6242 /*
6243 * No need to check if parent_ctx != NULL here; since we saw
6244 * it non-NULL earlier, the only reason for it to become NULL
6245 * is if we exit, and since we're currently in the middle of
6246 * a fork we can't be exiting at the same time.
6247 */
6248
6249 /*
6250 * Lock the parent list. No need to lock the child - not PID
6251 * hashed yet and not running, so nobody can access it.
6252 */
6253 mutex_lock(&parent_ctx->mutex);
6254
6255 /*
6256 * We dont have to disable NMIs - we are only looking at
6257 * the list, not manipulating it:
6258 */
6259 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6260 ret = inherit_task_group(event, parent, parent_ctx,
6261 child, ctxn, &inherited_all);
6262 if (ret)
6263 break;
6264 }
6265
6266 /*
6267 * We can't hold ctx->lock when iterating the ->flexible_group list due
6268 * to allocations, but we need to prevent rotation because
6269 * rotate_ctx() will change the list from interrupt context.
6270 */
6271 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6272 parent_ctx->rotate_disable = 1;
6273 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6274
6275 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6276 ret = inherit_task_group(event, parent, parent_ctx,
6277 child, ctxn, &inherited_all);
6278 if (ret)
6279 break;
6280 }
6281
6282 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6283 parent_ctx->rotate_disable = 0;
6284 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6285
6286 child_ctx = child->perf_event_ctxp[ctxn];
6287
6288 if (child_ctx && inherited_all) {
6289 /*
6290 * Mark the child context as a clone of the parent
6291 * context, or of whatever the parent is a clone of.
6292 * Note that if the parent is a clone, it could get
6293 * uncloned at any point, but that doesn't matter
6294 * because the list of events and the generation
6295 * count can't have changed since we took the mutex.
6296 */
6297 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
6298 if (cloned_ctx) {
6299 child_ctx->parent_ctx = cloned_ctx;
6300 child_ctx->parent_gen = parent_ctx->parent_gen;
6301 } else {
6302 child_ctx->parent_ctx = parent_ctx;
6303 child_ctx->parent_gen = parent_ctx->generation;
6304 }
6305 get_ctx(child_ctx->parent_ctx);
6306 }
6307
6308 mutex_unlock(&parent_ctx->mutex);
6309
6310 perf_unpin_context(parent_ctx);
6311
6312 return ret;
6313 }
6314
6315 /*
6316 * Initialize the perf_event context in task_struct
6317 */
6318 int perf_event_init_task(struct task_struct *child)
6319 {
6320 int ctxn, ret;
6321
6322 for_each_task_context_nr(ctxn) {
6323 ret = perf_event_init_context(child, ctxn);
6324 if (ret)
6325 return ret;
6326 }
6327
6328 return 0;
6329 }
6330
6331 static void __init perf_event_init_all_cpus(void)
6332 {
6333 struct swevent_htable *swhash;
6334 int cpu;
6335
6336 for_each_possible_cpu(cpu) {
6337 swhash = &per_cpu(swevent_htable, cpu);
6338 mutex_init(&swhash->hlist_mutex);
6339 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6340 }
6341 }
6342
6343 static void __cpuinit perf_event_init_cpu(int cpu)
6344 {
6345 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6346
6347 mutex_lock(&swhash->hlist_mutex);
6348 if (swhash->hlist_refcount > 0) {
6349 struct swevent_hlist *hlist;
6350
6351 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6352 WARN_ON(!hlist);
6353 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6354 }
6355 mutex_unlock(&swhash->hlist_mutex);
6356 }
6357
6358 #ifdef CONFIG_HOTPLUG_CPU
6359 static void perf_pmu_rotate_stop(struct pmu *pmu)
6360 {
6361 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6362
6363 WARN_ON(!irqs_disabled());
6364
6365 list_del_init(&cpuctx->rotation_list);
6366 }
6367
6368 static void __perf_event_exit_context(void *__info)
6369 {
6370 struct perf_event_context *ctx = __info;
6371 struct perf_event *event, *tmp;
6372
6373 perf_pmu_rotate_stop(ctx->pmu);
6374
6375 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6376 __perf_event_remove_from_context(event);
6377 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6378 __perf_event_remove_from_context(event);
6379 }
6380
6381 static void perf_event_exit_cpu_context(int cpu)
6382 {
6383 struct perf_event_context *ctx;
6384 struct pmu *pmu;
6385 int idx;
6386
6387 idx = srcu_read_lock(&pmus_srcu);
6388 list_for_each_entry_rcu(pmu, &pmus, entry) {
6389 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6390
6391 mutex_lock(&ctx->mutex);
6392 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6393 mutex_unlock(&ctx->mutex);
6394 }
6395 srcu_read_unlock(&pmus_srcu, idx);
6396 }
6397
6398 static void perf_event_exit_cpu(int cpu)
6399 {
6400 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6401
6402 mutex_lock(&swhash->hlist_mutex);
6403 swevent_hlist_release(swhash);
6404 mutex_unlock(&swhash->hlist_mutex);
6405
6406 perf_event_exit_cpu_context(cpu);
6407 }
6408 #else
6409 static inline void perf_event_exit_cpu(int cpu) { }
6410 #endif
6411
6412 static int __cpuinit
6413 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6414 {
6415 unsigned int cpu = (long)hcpu;
6416
6417 switch (action & ~CPU_TASKS_FROZEN) {
6418
6419 case CPU_UP_PREPARE:
6420 case CPU_DOWN_FAILED:
6421 perf_event_init_cpu(cpu);
6422 break;
6423
6424 case CPU_UP_CANCELED:
6425 case CPU_DOWN_PREPARE:
6426 perf_event_exit_cpu(cpu);
6427 break;
6428
6429 default:
6430 break;
6431 }
6432
6433 return NOTIFY_OK;
6434 }
6435
6436 void __init perf_event_init(void)
6437 {
6438 int ret;
6439
6440 perf_event_init_all_cpus();
6441 init_srcu_struct(&pmus_srcu);
6442 perf_pmu_register(&perf_swevent);
6443 perf_pmu_register(&perf_cpu_clock);
6444 perf_pmu_register(&perf_task_clock);
6445 perf_tp_register();
6446 perf_cpu_notifier(perf_cpu_notify);
6447
6448 ret = init_hw_breakpoint();
6449 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
6450 }
This page took 0.350685 seconds and 5 git commands to generate.