perf: Add perf_event::child_count
[deliverable/linux.git] / kernel / perf_event.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34 #include <linux/hw_breakpoint.h>
35
36 #include <asm/irq_regs.h>
37
38 /*
39 * Each CPU has a list of per CPU events:
40 */
41 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
42
43 int perf_max_events __read_mostly = 1;
44 static int perf_reserved_percpu __read_mostly;
45 static int perf_overcommit __read_mostly = 1;
46
47 static atomic_t nr_events __read_mostly;
48 static atomic_t nr_mmap_events __read_mostly;
49 static atomic_t nr_comm_events __read_mostly;
50 static atomic_t nr_task_events __read_mostly;
51
52 /*
53 * perf event paranoia level:
54 * -1 - not paranoid at all
55 * 0 - disallow raw tracepoint access for unpriv
56 * 1 - disallow cpu events for unpriv
57 * 2 - disallow kernel profiling for unpriv
58 */
59 int sysctl_perf_event_paranoid __read_mostly = 1;
60
61 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
62
63 /*
64 * max perf event sample rate
65 */
66 int sysctl_perf_event_sample_rate __read_mostly = 100000;
67
68 static atomic64_t perf_event_id;
69
70 /*
71 * Lock for (sysadmin-configurable) event reservations:
72 */
73 static DEFINE_SPINLOCK(perf_resource_lock);
74
75 /*
76 * Architecture provided APIs - weak aliases:
77 */
78 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
79 {
80 return NULL;
81 }
82
83 void __weak hw_perf_disable(void) { barrier(); }
84 void __weak hw_perf_enable(void) { barrier(); }
85
86 void __weak perf_event_print_debug(void) { }
87
88 static DEFINE_PER_CPU(int, perf_disable_count);
89
90 void perf_disable(void)
91 {
92 if (!__get_cpu_var(perf_disable_count)++)
93 hw_perf_disable();
94 }
95
96 void perf_enable(void)
97 {
98 if (!--__get_cpu_var(perf_disable_count))
99 hw_perf_enable();
100 }
101
102 static void get_ctx(struct perf_event_context *ctx)
103 {
104 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
105 }
106
107 static void free_ctx(struct rcu_head *head)
108 {
109 struct perf_event_context *ctx;
110
111 ctx = container_of(head, struct perf_event_context, rcu_head);
112 kfree(ctx);
113 }
114
115 static void put_ctx(struct perf_event_context *ctx)
116 {
117 if (atomic_dec_and_test(&ctx->refcount)) {
118 if (ctx->parent_ctx)
119 put_ctx(ctx->parent_ctx);
120 if (ctx->task)
121 put_task_struct(ctx->task);
122 call_rcu(&ctx->rcu_head, free_ctx);
123 }
124 }
125
126 static void unclone_ctx(struct perf_event_context *ctx)
127 {
128 if (ctx->parent_ctx) {
129 put_ctx(ctx->parent_ctx);
130 ctx->parent_ctx = NULL;
131 }
132 }
133
134 /*
135 * If we inherit events we want to return the parent event id
136 * to userspace.
137 */
138 static u64 primary_event_id(struct perf_event *event)
139 {
140 u64 id = event->id;
141
142 if (event->parent)
143 id = event->parent->id;
144
145 return id;
146 }
147
148 /*
149 * Get the perf_event_context for a task and lock it.
150 * This has to cope with with the fact that until it is locked,
151 * the context could get moved to another task.
152 */
153 static struct perf_event_context *
154 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
155 {
156 struct perf_event_context *ctx;
157
158 rcu_read_lock();
159 retry:
160 ctx = rcu_dereference(task->perf_event_ctxp);
161 if (ctx) {
162 /*
163 * If this context is a clone of another, it might
164 * get swapped for another underneath us by
165 * perf_event_task_sched_out, though the
166 * rcu_read_lock() protects us from any context
167 * getting freed. Lock the context and check if it
168 * got swapped before we could get the lock, and retry
169 * if so. If we locked the right context, then it
170 * can't get swapped on us any more.
171 */
172 raw_spin_lock_irqsave(&ctx->lock, *flags);
173 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
174 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
175 goto retry;
176 }
177
178 if (!atomic_inc_not_zero(&ctx->refcount)) {
179 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
180 ctx = NULL;
181 }
182 }
183 rcu_read_unlock();
184 return ctx;
185 }
186
187 /*
188 * Get the context for a task and increment its pin_count so it
189 * can't get swapped to another task. This also increments its
190 * reference count so that the context can't get freed.
191 */
192 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
193 {
194 struct perf_event_context *ctx;
195 unsigned long flags;
196
197 ctx = perf_lock_task_context(task, &flags);
198 if (ctx) {
199 ++ctx->pin_count;
200 raw_spin_unlock_irqrestore(&ctx->lock, flags);
201 }
202 return ctx;
203 }
204
205 static void perf_unpin_context(struct perf_event_context *ctx)
206 {
207 unsigned long flags;
208
209 raw_spin_lock_irqsave(&ctx->lock, flags);
210 --ctx->pin_count;
211 raw_spin_unlock_irqrestore(&ctx->lock, flags);
212 put_ctx(ctx);
213 }
214
215 static inline u64 perf_clock(void)
216 {
217 return cpu_clock(raw_smp_processor_id());
218 }
219
220 /*
221 * Update the record of the current time in a context.
222 */
223 static void update_context_time(struct perf_event_context *ctx)
224 {
225 u64 now = perf_clock();
226
227 ctx->time += now - ctx->timestamp;
228 ctx->timestamp = now;
229 }
230
231 /*
232 * Update the total_time_enabled and total_time_running fields for a event.
233 */
234 static void update_event_times(struct perf_event *event)
235 {
236 struct perf_event_context *ctx = event->ctx;
237 u64 run_end;
238
239 if (event->state < PERF_EVENT_STATE_INACTIVE ||
240 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
241 return;
242
243 if (ctx->is_active)
244 run_end = ctx->time;
245 else
246 run_end = event->tstamp_stopped;
247
248 event->total_time_enabled = run_end - event->tstamp_enabled;
249
250 if (event->state == PERF_EVENT_STATE_INACTIVE)
251 run_end = event->tstamp_stopped;
252 else
253 run_end = ctx->time;
254
255 event->total_time_running = run_end - event->tstamp_running;
256 }
257
258 /*
259 * Update total_time_enabled and total_time_running for all events in a group.
260 */
261 static void update_group_times(struct perf_event *leader)
262 {
263 struct perf_event *event;
264
265 update_event_times(leader);
266 list_for_each_entry(event, &leader->sibling_list, group_entry)
267 update_event_times(event);
268 }
269
270 static struct list_head *
271 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
272 {
273 if (event->attr.pinned)
274 return &ctx->pinned_groups;
275 else
276 return &ctx->flexible_groups;
277 }
278
279 /*
280 * Add a event from the lists for its context.
281 * Must be called with ctx->mutex and ctx->lock held.
282 */
283 static void
284 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
285 {
286 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
287 event->attach_state |= PERF_ATTACH_CONTEXT;
288
289 /*
290 * If we're a stand alone event or group leader, we go to the context
291 * list, group events are kept attached to the group so that
292 * perf_group_detach can, at all times, locate all siblings.
293 */
294 if (event->group_leader == event) {
295 struct list_head *list;
296
297 if (is_software_event(event))
298 event->group_flags |= PERF_GROUP_SOFTWARE;
299
300 list = ctx_group_list(event, ctx);
301 list_add_tail(&event->group_entry, list);
302 }
303
304 list_add_rcu(&event->event_entry, &ctx->event_list);
305 ctx->nr_events++;
306 if (event->attr.inherit_stat)
307 ctx->nr_stat++;
308 }
309
310 static void perf_group_attach(struct perf_event *event)
311 {
312 struct perf_event *group_leader = event->group_leader;
313
314 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
315 event->attach_state |= PERF_ATTACH_GROUP;
316
317 if (group_leader == event)
318 return;
319
320 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
321 !is_software_event(event))
322 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
323
324 list_add_tail(&event->group_entry, &group_leader->sibling_list);
325 group_leader->nr_siblings++;
326 }
327
328 /*
329 * Remove a event from the lists for its context.
330 * Must be called with ctx->mutex and ctx->lock held.
331 */
332 static void
333 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
334 {
335 /*
336 * We can have double detach due to exit/hot-unplug + close.
337 */
338 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
339 return;
340
341 event->attach_state &= ~PERF_ATTACH_CONTEXT;
342
343 ctx->nr_events--;
344 if (event->attr.inherit_stat)
345 ctx->nr_stat--;
346
347 list_del_rcu(&event->event_entry);
348
349 if (event->group_leader == event)
350 list_del_init(&event->group_entry);
351
352 update_group_times(event);
353
354 /*
355 * If event was in error state, then keep it
356 * that way, otherwise bogus counts will be
357 * returned on read(). The only way to get out
358 * of error state is by explicit re-enabling
359 * of the event
360 */
361 if (event->state > PERF_EVENT_STATE_OFF)
362 event->state = PERF_EVENT_STATE_OFF;
363 }
364
365 static void perf_group_detach(struct perf_event *event)
366 {
367 struct perf_event *sibling, *tmp;
368 struct list_head *list = NULL;
369
370 /*
371 * We can have double detach due to exit/hot-unplug + close.
372 */
373 if (!(event->attach_state & PERF_ATTACH_GROUP))
374 return;
375
376 event->attach_state &= ~PERF_ATTACH_GROUP;
377
378 /*
379 * If this is a sibling, remove it from its group.
380 */
381 if (event->group_leader != event) {
382 list_del_init(&event->group_entry);
383 event->group_leader->nr_siblings--;
384 return;
385 }
386
387 if (!list_empty(&event->group_entry))
388 list = &event->group_entry;
389
390 /*
391 * If this was a group event with sibling events then
392 * upgrade the siblings to singleton events by adding them
393 * to whatever list we are on.
394 */
395 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
396 if (list)
397 list_move_tail(&sibling->group_entry, list);
398 sibling->group_leader = sibling;
399
400 /* Inherit group flags from the previous leader */
401 sibling->group_flags = event->group_flags;
402 }
403 }
404
405 static void
406 event_sched_out(struct perf_event *event,
407 struct perf_cpu_context *cpuctx,
408 struct perf_event_context *ctx)
409 {
410 if (event->state != PERF_EVENT_STATE_ACTIVE)
411 return;
412
413 event->state = PERF_EVENT_STATE_INACTIVE;
414 if (event->pending_disable) {
415 event->pending_disable = 0;
416 event->state = PERF_EVENT_STATE_OFF;
417 }
418 event->tstamp_stopped = ctx->time;
419 event->pmu->disable(event);
420 event->oncpu = -1;
421
422 if (!is_software_event(event))
423 cpuctx->active_oncpu--;
424 ctx->nr_active--;
425 if (event->attr.exclusive || !cpuctx->active_oncpu)
426 cpuctx->exclusive = 0;
427 }
428
429 static void
430 group_sched_out(struct perf_event *group_event,
431 struct perf_cpu_context *cpuctx,
432 struct perf_event_context *ctx)
433 {
434 struct perf_event *event;
435
436 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
437 return;
438
439 event_sched_out(group_event, cpuctx, ctx);
440
441 /*
442 * Schedule out siblings (if any):
443 */
444 list_for_each_entry(event, &group_event->sibling_list, group_entry)
445 event_sched_out(event, cpuctx, ctx);
446
447 if (group_event->attr.exclusive)
448 cpuctx->exclusive = 0;
449 }
450
451 /*
452 * Cross CPU call to remove a performance event
453 *
454 * We disable the event on the hardware level first. After that we
455 * remove it from the context list.
456 */
457 static void __perf_event_remove_from_context(void *info)
458 {
459 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
460 struct perf_event *event = info;
461 struct perf_event_context *ctx = event->ctx;
462
463 /*
464 * If this is a task context, we need to check whether it is
465 * the current task context of this cpu. If not it has been
466 * scheduled out before the smp call arrived.
467 */
468 if (ctx->task && cpuctx->task_ctx != ctx)
469 return;
470
471 raw_spin_lock(&ctx->lock);
472 /*
473 * Protect the list operation against NMI by disabling the
474 * events on a global level.
475 */
476 perf_disable();
477
478 event_sched_out(event, cpuctx, ctx);
479
480 list_del_event(event, ctx);
481
482 if (!ctx->task) {
483 /*
484 * Allow more per task events with respect to the
485 * reservation:
486 */
487 cpuctx->max_pertask =
488 min(perf_max_events - ctx->nr_events,
489 perf_max_events - perf_reserved_percpu);
490 }
491
492 perf_enable();
493 raw_spin_unlock(&ctx->lock);
494 }
495
496
497 /*
498 * Remove the event from a task's (or a CPU's) list of events.
499 *
500 * Must be called with ctx->mutex held.
501 *
502 * CPU events are removed with a smp call. For task events we only
503 * call when the task is on a CPU.
504 *
505 * If event->ctx is a cloned context, callers must make sure that
506 * every task struct that event->ctx->task could possibly point to
507 * remains valid. This is OK when called from perf_release since
508 * that only calls us on the top-level context, which can't be a clone.
509 * When called from perf_event_exit_task, it's OK because the
510 * context has been detached from its task.
511 */
512 static void perf_event_remove_from_context(struct perf_event *event)
513 {
514 struct perf_event_context *ctx = event->ctx;
515 struct task_struct *task = ctx->task;
516
517 if (!task) {
518 /*
519 * Per cpu events are removed via an smp call and
520 * the removal is always successful.
521 */
522 smp_call_function_single(event->cpu,
523 __perf_event_remove_from_context,
524 event, 1);
525 return;
526 }
527
528 retry:
529 task_oncpu_function_call(task, __perf_event_remove_from_context,
530 event);
531
532 raw_spin_lock_irq(&ctx->lock);
533 /*
534 * If the context is active we need to retry the smp call.
535 */
536 if (ctx->nr_active && !list_empty(&event->group_entry)) {
537 raw_spin_unlock_irq(&ctx->lock);
538 goto retry;
539 }
540
541 /*
542 * The lock prevents that this context is scheduled in so we
543 * can remove the event safely, if the call above did not
544 * succeed.
545 */
546 if (!list_empty(&event->group_entry))
547 list_del_event(event, ctx);
548 raw_spin_unlock_irq(&ctx->lock);
549 }
550
551 /*
552 * Cross CPU call to disable a performance event
553 */
554 static void __perf_event_disable(void *info)
555 {
556 struct perf_event *event = info;
557 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
558 struct perf_event_context *ctx = event->ctx;
559
560 /*
561 * If this is a per-task event, need to check whether this
562 * event's task is the current task on this cpu.
563 */
564 if (ctx->task && cpuctx->task_ctx != ctx)
565 return;
566
567 raw_spin_lock(&ctx->lock);
568
569 /*
570 * If the event is on, turn it off.
571 * If it is in error state, leave it in error state.
572 */
573 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
574 update_context_time(ctx);
575 update_group_times(event);
576 if (event == event->group_leader)
577 group_sched_out(event, cpuctx, ctx);
578 else
579 event_sched_out(event, cpuctx, ctx);
580 event->state = PERF_EVENT_STATE_OFF;
581 }
582
583 raw_spin_unlock(&ctx->lock);
584 }
585
586 /*
587 * Disable a event.
588 *
589 * If event->ctx is a cloned context, callers must make sure that
590 * every task struct that event->ctx->task could possibly point to
591 * remains valid. This condition is satisifed when called through
592 * perf_event_for_each_child or perf_event_for_each because they
593 * hold the top-level event's child_mutex, so any descendant that
594 * goes to exit will block in sync_child_event.
595 * When called from perf_pending_event it's OK because event->ctx
596 * is the current context on this CPU and preemption is disabled,
597 * hence we can't get into perf_event_task_sched_out for this context.
598 */
599 void perf_event_disable(struct perf_event *event)
600 {
601 struct perf_event_context *ctx = event->ctx;
602 struct task_struct *task = ctx->task;
603
604 if (!task) {
605 /*
606 * Disable the event on the cpu that it's on
607 */
608 smp_call_function_single(event->cpu, __perf_event_disable,
609 event, 1);
610 return;
611 }
612
613 retry:
614 task_oncpu_function_call(task, __perf_event_disable, event);
615
616 raw_spin_lock_irq(&ctx->lock);
617 /*
618 * If the event is still active, we need to retry the cross-call.
619 */
620 if (event->state == PERF_EVENT_STATE_ACTIVE) {
621 raw_spin_unlock_irq(&ctx->lock);
622 goto retry;
623 }
624
625 /*
626 * Since we have the lock this context can't be scheduled
627 * in, so we can change the state safely.
628 */
629 if (event->state == PERF_EVENT_STATE_INACTIVE) {
630 update_group_times(event);
631 event->state = PERF_EVENT_STATE_OFF;
632 }
633
634 raw_spin_unlock_irq(&ctx->lock);
635 }
636
637 static int
638 event_sched_in(struct perf_event *event,
639 struct perf_cpu_context *cpuctx,
640 struct perf_event_context *ctx)
641 {
642 if (event->state <= PERF_EVENT_STATE_OFF)
643 return 0;
644
645 event->state = PERF_EVENT_STATE_ACTIVE;
646 event->oncpu = smp_processor_id();
647 /*
648 * The new state must be visible before we turn it on in the hardware:
649 */
650 smp_wmb();
651
652 if (event->pmu->enable(event)) {
653 event->state = PERF_EVENT_STATE_INACTIVE;
654 event->oncpu = -1;
655 return -EAGAIN;
656 }
657
658 event->tstamp_running += ctx->time - event->tstamp_stopped;
659
660 if (!is_software_event(event))
661 cpuctx->active_oncpu++;
662 ctx->nr_active++;
663
664 if (event->attr.exclusive)
665 cpuctx->exclusive = 1;
666
667 return 0;
668 }
669
670 static int
671 group_sched_in(struct perf_event *group_event,
672 struct perf_cpu_context *cpuctx,
673 struct perf_event_context *ctx)
674 {
675 struct perf_event *event, *partial_group = NULL;
676 const struct pmu *pmu = group_event->pmu;
677 bool txn = false;
678
679 if (group_event->state == PERF_EVENT_STATE_OFF)
680 return 0;
681
682 /* Check if group transaction availabe */
683 if (pmu->start_txn)
684 txn = true;
685
686 if (txn)
687 pmu->start_txn(pmu);
688
689 if (event_sched_in(group_event, cpuctx, ctx)) {
690 if (txn)
691 pmu->cancel_txn(pmu);
692 return -EAGAIN;
693 }
694
695 /*
696 * Schedule in siblings as one group (if any):
697 */
698 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
699 if (event_sched_in(event, cpuctx, ctx)) {
700 partial_group = event;
701 goto group_error;
702 }
703 }
704
705 if (!txn || !pmu->commit_txn(pmu))
706 return 0;
707
708 group_error:
709 /*
710 * Groups can be scheduled in as one unit only, so undo any
711 * partial group before returning:
712 */
713 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
714 if (event == partial_group)
715 break;
716 event_sched_out(event, cpuctx, ctx);
717 }
718 event_sched_out(group_event, cpuctx, ctx);
719
720 if (txn)
721 pmu->cancel_txn(pmu);
722
723 return -EAGAIN;
724 }
725
726 /*
727 * Work out whether we can put this event group on the CPU now.
728 */
729 static int group_can_go_on(struct perf_event *event,
730 struct perf_cpu_context *cpuctx,
731 int can_add_hw)
732 {
733 /*
734 * Groups consisting entirely of software events can always go on.
735 */
736 if (event->group_flags & PERF_GROUP_SOFTWARE)
737 return 1;
738 /*
739 * If an exclusive group is already on, no other hardware
740 * events can go on.
741 */
742 if (cpuctx->exclusive)
743 return 0;
744 /*
745 * If this group is exclusive and there are already
746 * events on the CPU, it can't go on.
747 */
748 if (event->attr.exclusive && cpuctx->active_oncpu)
749 return 0;
750 /*
751 * Otherwise, try to add it if all previous groups were able
752 * to go on.
753 */
754 return can_add_hw;
755 }
756
757 static void add_event_to_ctx(struct perf_event *event,
758 struct perf_event_context *ctx)
759 {
760 list_add_event(event, ctx);
761 perf_group_attach(event);
762 event->tstamp_enabled = ctx->time;
763 event->tstamp_running = ctx->time;
764 event->tstamp_stopped = ctx->time;
765 }
766
767 /*
768 * Cross CPU call to install and enable a performance event
769 *
770 * Must be called with ctx->mutex held
771 */
772 static void __perf_install_in_context(void *info)
773 {
774 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
775 struct perf_event *event = info;
776 struct perf_event_context *ctx = event->ctx;
777 struct perf_event *leader = event->group_leader;
778 int err;
779
780 /*
781 * If this is a task context, we need to check whether it is
782 * the current task context of this cpu. If not it has been
783 * scheduled out before the smp call arrived.
784 * Or possibly this is the right context but it isn't
785 * on this cpu because it had no events.
786 */
787 if (ctx->task && cpuctx->task_ctx != ctx) {
788 if (cpuctx->task_ctx || ctx->task != current)
789 return;
790 cpuctx->task_ctx = ctx;
791 }
792
793 raw_spin_lock(&ctx->lock);
794 ctx->is_active = 1;
795 update_context_time(ctx);
796
797 /*
798 * Protect the list operation against NMI by disabling the
799 * events on a global level. NOP for non NMI based events.
800 */
801 perf_disable();
802
803 add_event_to_ctx(event, ctx);
804
805 if (event->cpu != -1 && event->cpu != smp_processor_id())
806 goto unlock;
807
808 /*
809 * Don't put the event on if it is disabled or if
810 * it is in a group and the group isn't on.
811 */
812 if (event->state != PERF_EVENT_STATE_INACTIVE ||
813 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
814 goto unlock;
815
816 /*
817 * An exclusive event can't go on if there are already active
818 * hardware events, and no hardware event can go on if there
819 * is already an exclusive event on.
820 */
821 if (!group_can_go_on(event, cpuctx, 1))
822 err = -EEXIST;
823 else
824 err = event_sched_in(event, cpuctx, ctx);
825
826 if (err) {
827 /*
828 * This event couldn't go on. If it is in a group
829 * then we have to pull the whole group off.
830 * If the event group is pinned then put it in error state.
831 */
832 if (leader != event)
833 group_sched_out(leader, cpuctx, ctx);
834 if (leader->attr.pinned) {
835 update_group_times(leader);
836 leader->state = PERF_EVENT_STATE_ERROR;
837 }
838 }
839
840 if (!err && !ctx->task && cpuctx->max_pertask)
841 cpuctx->max_pertask--;
842
843 unlock:
844 perf_enable();
845
846 raw_spin_unlock(&ctx->lock);
847 }
848
849 /*
850 * Attach a performance event to a context
851 *
852 * First we add the event to the list with the hardware enable bit
853 * in event->hw_config cleared.
854 *
855 * If the event is attached to a task which is on a CPU we use a smp
856 * call to enable it in the task context. The task might have been
857 * scheduled away, but we check this in the smp call again.
858 *
859 * Must be called with ctx->mutex held.
860 */
861 static void
862 perf_install_in_context(struct perf_event_context *ctx,
863 struct perf_event *event,
864 int cpu)
865 {
866 struct task_struct *task = ctx->task;
867
868 if (!task) {
869 /*
870 * Per cpu events are installed via an smp call and
871 * the install is always successful.
872 */
873 smp_call_function_single(cpu, __perf_install_in_context,
874 event, 1);
875 return;
876 }
877
878 retry:
879 task_oncpu_function_call(task, __perf_install_in_context,
880 event);
881
882 raw_spin_lock_irq(&ctx->lock);
883 /*
884 * we need to retry the smp call.
885 */
886 if (ctx->is_active && list_empty(&event->group_entry)) {
887 raw_spin_unlock_irq(&ctx->lock);
888 goto retry;
889 }
890
891 /*
892 * The lock prevents that this context is scheduled in so we
893 * can add the event safely, if it the call above did not
894 * succeed.
895 */
896 if (list_empty(&event->group_entry))
897 add_event_to_ctx(event, ctx);
898 raw_spin_unlock_irq(&ctx->lock);
899 }
900
901 /*
902 * Put a event into inactive state and update time fields.
903 * Enabling the leader of a group effectively enables all
904 * the group members that aren't explicitly disabled, so we
905 * have to update their ->tstamp_enabled also.
906 * Note: this works for group members as well as group leaders
907 * since the non-leader members' sibling_lists will be empty.
908 */
909 static void __perf_event_mark_enabled(struct perf_event *event,
910 struct perf_event_context *ctx)
911 {
912 struct perf_event *sub;
913
914 event->state = PERF_EVENT_STATE_INACTIVE;
915 event->tstamp_enabled = ctx->time - event->total_time_enabled;
916 list_for_each_entry(sub, &event->sibling_list, group_entry)
917 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
918 sub->tstamp_enabled =
919 ctx->time - sub->total_time_enabled;
920 }
921
922 /*
923 * Cross CPU call to enable a performance event
924 */
925 static void __perf_event_enable(void *info)
926 {
927 struct perf_event *event = info;
928 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
929 struct perf_event_context *ctx = event->ctx;
930 struct perf_event *leader = event->group_leader;
931 int err;
932
933 /*
934 * If this is a per-task event, need to check whether this
935 * event's task is the current task on this cpu.
936 */
937 if (ctx->task && cpuctx->task_ctx != ctx) {
938 if (cpuctx->task_ctx || ctx->task != current)
939 return;
940 cpuctx->task_ctx = ctx;
941 }
942
943 raw_spin_lock(&ctx->lock);
944 ctx->is_active = 1;
945 update_context_time(ctx);
946
947 if (event->state >= PERF_EVENT_STATE_INACTIVE)
948 goto unlock;
949 __perf_event_mark_enabled(event, ctx);
950
951 if (event->cpu != -1 && event->cpu != smp_processor_id())
952 goto unlock;
953
954 /*
955 * If the event is in a group and isn't the group leader,
956 * then don't put it on unless the group is on.
957 */
958 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
959 goto unlock;
960
961 if (!group_can_go_on(event, cpuctx, 1)) {
962 err = -EEXIST;
963 } else {
964 perf_disable();
965 if (event == leader)
966 err = group_sched_in(event, cpuctx, ctx);
967 else
968 err = event_sched_in(event, cpuctx, ctx);
969 perf_enable();
970 }
971
972 if (err) {
973 /*
974 * If this event can't go on and it's part of a
975 * group, then the whole group has to come off.
976 */
977 if (leader != event)
978 group_sched_out(leader, cpuctx, ctx);
979 if (leader->attr.pinned) {
980 update_group_times(leader);
981 leader->state = PERF_EVENT_STATE_ERROR;
982 }
983 }
984
985 unlock:
986 raw_spin_unlock(&ctx->lock);
987 }
988
989 /*
990 * Enable a event.
991 *
992 * If event->ctx is a cloned context, callers must make sure that
993 * every task struct that event->ctx->task could possibly point to
994 * remains valid. This condition is satisfied when called through
995 * perf_event_for_each_child or perf_event_for_each as described
996 * for perf_event_disable.
997 */
998 void perf_event_enable(struct perf_event *event)
999 {
1000 struct perf_event_context *ctx = event->ctx;
1001 struct task_struct *task = ctx->task;
1002
1003 if (!task) {
1004 /*
1005 * Enable the event on the cpu that it's on
1006 */
1007 smp_call_function_single(event->cpu, __perf_event_enable,
1008 event, 1);
1009 return;
1010 }
1011
1012 raw_spin_lock_irq(&ctx->lock);
1013 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1014 goto out;
1015
1016 /*
1017 * If the event is in error state, clear that first.
1018 * That way, if we see the event in error state below, we
1019 * know that it has gone back into error state, as distinct
1020 * from the task having been scheduled away before the
1021 * cross-call arrived.
1022 */
1023 if (event->state == PERF_EVENT_STATE_ERROR)
1024 event->state = PERF_EVENT_STATE_OFF;
1025
1026 retry:
1027 raw_spin_unlock_irq(&ctx->lock);
1028 task_oncpu_function_call(task, __perf_event_enable, event);
1029
1030 raw_spin_lock_irq(&ctx->lock);
1031
1032 /*
1033 * If the context is active and the event is still off,
1034 * we need to retry the cross-call.
1035 */
1036 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1037 goto retry;
1038
1039 /*
1040 * Since we have the lock this context can't be scheduled
1041 * in, so we can change the state safely.
1042 */
1043 if (event->state == PERF_EVENT_STATE_OFF)
1044 __perf_event_mark_enabled(event, ctx);
1045
1046 out:
1047 raw_spin_unlock_irq(&ctx->lock);
1048 }
1049
1050 static int perf_event_refresh(struct perf_event *event, int refresh)
1051 {
1052 /*
1053 * not supported on inherited events
1054 */
1055 if (event->attr.inherit)
1056 return -EINVAL;
1057
1058 atomic_add(refresh, &event->event_limit);
1059 perf_event_enable(event);
1060
1061 return 0;
1062 }
1063
1064 enum event_type_t {
1065 EVENT_FLEXIBLE = 0x1,
1066 EVENT_PINNED = 0x2,
1067 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1068 };
1069
1070 static void ctx_sched_out(struct perf_event_context *ctx,
1071 struct perf_cpu_context *cpuctx,
1072 enum event_type_t event_type)
1073 {
1074 struct perf_event *event;
1075
1076 raw_spin_lock(&ctx->lock);
1077 ctx->is_active = 0;
1078 if (likely(!ctx->nr_events))
1079 goto out;
1080 update_context_time(ctx);
1081
1082 perf_disable();
1083 if (!ctx->nr_active)
1084 goto out_enable;
1085
1086 if (event_type & EVENT_PINNED)
1087 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1088 group_sched_out(event, cpuctx, ctx);
1089
1090 if (event_type & EVENT_FLEXIBLE)
1091 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1092 group_sched_out(event, cpuctx, ctx);
1093
1094 out_enable:
1095 perf_enable();
1096 out:
1097 raw_spin_unlock(&ctx->lock);
1098 }
1099
1100 /*
1101 * Test whether two contexts are equivalent, i.e. whether they
1102 * have both been cloned from the same version of the same context
1103 * and they both have the same number of enabled events.
1104 * If the number of enabled events is the same, then the set
1105 * of enabled events should be the same, because these are both
1106 * inherited contexts, therefore we can't access individual events
1107 * in them directly with an fd; we can only enable/disable all
1108 * events via prctl, or enable/disable all events in a family
1109 * via ioctl, which will have the same effect on both contexts.
1110 */
1111 static int context_equiv(struct perf_event_context *ctx1,
1112 struct perf_event_context *ctx2)
1113 {
1114 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1115 && ctx1->parent_gen == ctx2->parent_gen
1116 && !ctx1->pin_count && !ctx2->pin_count;
1117 }
1118
1119 static void __perf_event_sync_stat(struct perf_event *event,
1120 struct perf_event *next_event)
1121 {
1122 u64 value;
1123
1124 if (!event->attr.inherit_stat)
1125 return;
1126
1127 /*
1128 * Update the event value, we cannot use perf_event_read()
1129 * because we're in the middle of a context switch and have IRQs
1130 * disabled, which upsets smp_call_function_single(), however
1131 * we know the event must be on the current CPU, therefore we
1132 * don't need to use it.
1133 */
1134 switch (event->state) {
1135 case PERF_EVENT_STATE_ACTIVE:
1136 event->pmu->read(event);
1137 /* fall-through */
1138
1139 case PERF_EVENT_STATE_INACTIVE:
1140 update_event_times(event);
1141 break;
1142
1143 default:
1144 break;
1145 }
1146
1147 /*
1148 * In order to keep per-task stats reliable we need to flip the event
1149 * values when we flip the contexts.
1150 */
1151 value = atomic64_read(&next_event->count);
1152 value = atomic64_xchg(&event->count, value);
1153 atomic64_set(&next_event->count, value);
1154
1155 swap(event->total_time_enabled, next_event->total_time_enabled);
1156 swap(event->total_time_running, next_event->total_time_running);
1157
1158 /*
1159 * Since we swizzled the values, update the user visible data too.
1160 */
1161 perf_event_update_userpage(event);
1162 perf_event_update_userpage(next_event);
1163 }
1164
1165 #define list_next_entry(pos, member) \
1166 list_entry(pos->member.next, typeof(*pos), member)
1167
1168 static void perf_event_sync_stat(struct perf_event_context *ctx,
1169 struct perf_event_context *next_ctx)
1170 {
1171 struct perf_event *event, *next_event;
1172
1173 if (!ctx->nr_stat)
1174 return;
1175
1176 update_context_time(ctx);
1177
1178 event = list_first_entry(&ctx->event_list,
1179 struct perf_event, event_entry);
1180
1181 next_event = list_first_entry(&next_ctx->event_list,
1182 struct perf_event, event_entry);
1183
1184 while (&event->event_entry != &ctx->event_list &&
1185 &next_event->event_entry != &next_ctx->event_list) {
1186
1187 __perf_event_sync_stat(event, next_event);
1188
1189 event = list_next_entry(event, event_entry);
1190 next_event = list_next_entry(next_event, event_entry);
1191 }
1192 }
1193
1194 /*
1195 * Called from scheduler to remove the events of the current task,
1196 * with interrupts disabled.
1197 *
1198 * We stop each event and update the event value in event->count.
1199 *
1200 * This does not protect us against NMI, but disable()
1201 * sets the disabled bit in the control field of event _before_
1202 * accessing the event control register. If a NMI hits, then it will
1203 * not restart the event.
1204 */
1205 void perf_event_task_sched_out(struct task_struct *task,
1206 struct task_struct *next)
1207 {
1208 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1209 struct perf_event_context *ctx = task->perf_event_ctxp;
1210 struct perf_event_context *next_ctx;
1211 struct perf_event_context *parent;
1212 int do_switch = 1;
1213
1214 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1215
1216 if (likely(!ctx || !cpuctx->task_ctx))
1217 return;
1218
1219 rcu_read_lock();
1220 parent = rcu_dereference(ctx->parent_ctx);
1221 next_ctx = next->perf_event_ctxp;
1222 if (parent && next_ctx &&
1223 rcu_dereference(next_ctx->parent_ctx) == parent) {
1224 /*
1225 * Looks like the two contexts are clones, so we might be
1226 * able to optimize the context switch. We lock both
1227 * contexts and check that they are clones under the
1228 * lock (including re-checking that neither has been
1229 * uncloned in the meantime). It doesn't matter which
1230 * order we take the locks because no other cpu could
1231 * be trying to lock both of these tasks.
1232 */
1233 raw_spin_lock(&ctx->lock);
1234 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1235 if (context_equiv(ctx, next_ctx)) {
1236 /*
1237 * XXX do we need a memory barrier of sorts
1238 * wrt to rcu_dereference() of perf_event_ctxp
1239 */
1240 task->perf_event_ctxp = next_ctx;
1241 next->perf_event_ctxp = ctx;
1242 ctx->task = next;
1243 next_ctx->task = task;
1244 do_switch = 0;
1245
1246 perf_event_sync_stat(ctx, next_ctx);
1247 }
1248 raw_spin_unlock(&next_ctx->lock);
1249 raw_spin_unlock(&ctx->lock);
1250 }
1251 rcu_read_unlock();
1252
1253 if (do_switch) {
1254 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1255 cpuctx->task_ctx = NULL;
1256 }
1257 }
1258
1259 static void task_ctx_sched_out(struct perf_event_context *ctx,
1260 enum event_type_t event_type)
1261 {
1262 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1263
1264 if (!cpuctx->task_ctx)
1265 return;
1266
1267 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1268 return;
1269
1270 ctx_sched_out(ctx, cpuctx, event_type);
1271 cpuctx->task_ctx = NULL;
1272 }
1273
1274 /*
1275 * Called with IRQs disabled
1276 */
1277 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1278 {
1279 task_ctx_sched_out(ctx, EVENT_ALL);
1280 }
1281
1282 /*
1283 * Called with IRQs disabled
1284 */
1285 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1286 enum event_type_t event_type)
1287 {
1288 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1289 }
1290
1291 static void
1292 ctx_pinned_sched_in(struct perf_event_context *ctx,
1293 struct perf_cpu_context *cpuctx)
1294 {
1295 struct perf_event *event;
1296
1297 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1298 if (event->state <= PERF_EVENT_STATE_OFF)
1299 continue;
1300 if (event->cpu != -1 && event->cpu != smp_processor_id())
1301 continue;
1302
1303 if (group_can_go_on(event, cpuctx, 1))
1304 group_sched_in(event, cpuctx, ctx);
1305
1306 /*
1307 * If this pinned group hasn't been scheduled,
1308 * put it in error state.
1309 */
1310 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1311 update_group_times(event);
1312 event->state = PERF_EVENT_STATE_ERROR;
1313 }
1314 }
1315 }
1316
1317 static void
1318 ctx_flexible_sched_in(struct perf_event_context *ctx,
1319 struct perf_cpu_context *cpuctx)
1320 {
1321 struct perf_event *event;
1322 int can_add_hw = 1;
1323
1324 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1325 /* Ignore events in OFF or ERROR state */
1326 if (event->state <= PERF_EVENT_STATE_OFF)
1327 continue;
1328 /*
1329 * Listen to the 'cpu' scheduling filter constraint
1330 * of events:
1331 */
1332 if (event->cpu != -1 && event->cpu != smp_processor_id())
1333 continue;
1334
1335 if (group_can_go_on(event, cpuctx, can_add_hw))
1336 if (group_sched_in(event, cpuctx, ctx))
1337 can_add_hw = 0;
1338 }
1339 }
1340
1341 static void
1342 ctx_sched_in(struct perf_event_context *ctx,
1343 struct perf_cpu_context *cpuctx,
1344 enum event_type_t event_type)
1345 {
1346 raw_spin_lock(&ctx->lock);
1347 ctx->is_active = 1;
1348 if (likely(!ctx->nr_events))
1349 goto out;
1350
1351 ctx->timestamp = perf_clock();
1352
1353 perf_disable();
1354
1355 /*
1356 * First go through the list and put on any pinned groups
1357 * in order to give them the best chance of going on.
1358 */
1359 if (event_type & EVENT_PINNED)
1360 ctx_pinned_sched_in(ctx, cpuctx);
1361
1362 /* Then walk through the lower prio flexible groups */
1363 if (event_type & EVENT_FLEXIBLE)
1364 ctx_flexible_sched_in(ctx, cpuctx);
1365
1366 perf_enable();
1367 out:
1368 raw_spin_unlock(&ctx->lock);
1369 }
1370
1371 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1372 enum event_type_t event_type)
1373 {
1374 struct perf_event_context *ctx = &cpuctx->ctx;
1375
1376 ctx_sched_in(ctx, cpuctx, event_type);
1377 }
1378
1379 static void task_ctx_sched_in(struct task_struct *task,
1380 enum event_type_t event_type)
1381 {
1382 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1383 struct perf_event_context *ctx = task->perf_event_ctxp;
1384
1385 if (likely(!ctx))
1386 return;
1387 if (cpuctx->task_ctx == ctx)
1388 return;
1389 ctx_sched_in(ctx, cpuctx, event_type);
1390 cpuctx->task_ctx = ctx;
1391 }
1392 /*
1393 * Called from scheduler to add the events of the current task
1394 * with interrupts disabled.
1395 *
1396 * We restore the event value and then enable it.
1397 *
1398 * This does not protect us against NMI, but enable()
1399 * sets the enabled bit in the control field of event _before_
1400 * accessing the event control register. If a NMI hits, then it will
1401 * keep the event running.
1402 */
1403 void perf_event_task_sched_in(struct task_struct *task)
1404 {
1405 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1406 struct perf_event_context *ctx = task->perf_event_ctxp;
1407
1408 if (likely(!ctx))
1409 return;
1410
1411 if (cpuctx->task_ctx == ctx)
1412 return;
1413
1414 perf_disable();
1415
1416 /*
1417 * We want to keep the following priority order:
1418 * cpu pinned (that don't need to move), task pinned,
1419 * cpu flexible, task flexible.
1420 */
1421 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1422
1423 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1424 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1425 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1426
1427 cpuctx->task_ctx = ctx;
1428
1429 perf_enable();
1430 }
1431
1432 #define MAX_INTERRUPTS (~0ULL)
1433
1434 static void perf_log_throttle(struct perf_event *event, int enable);
1435
1436 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1437 {
1438 u64 frequency = event->attr.sample_freq;
1439 u64 sec = NSEC_PER_SEC;
1440 u64 divisor, dividend;
1441
1442 int count_fls, nsec_fls, frequency_fls, sec_fls;
1443
1444 count_fls = fls64(count);
1445 nsec_fls = fls64(nsec);
1446 frequency_fls = fls64(frequency);
1447 sec_fls = 30;
1448
1449 /*
1450 * We got @count in @nsec, with a target of sample_freq HZ
1451 * the target period becomes:
1452 *
1453 * @count * 10^9
1454 * period = -------------------
1455 * @nsec * sample_freq
1456 *
1457 */
1458
1459 /*
1460 * Reduce accuracy by one bit such that @a and @b converge
1461 * to a similar magnitude.
1462 */
1463 #define REDUCE_FLS(a, b) \
1464 do { \
1465 if (a##_fls > b##_fls) { \
1466 a >>= 1; \
1467 a##_fls--; \
1468 } else { \
1469 b >>= 1; \
1470 b##_fls--; \
1471 } \
1472 } while (0)
1473
1474 /*
1475 * Reduce accuracy until either term fits in a u64, then proceed with
1476 * the other, so that finally we can do a u64/u64 division.
1477 */
1478 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1479 REDUCE_FLS(nsec, frequency);
1480 REDUCE_FLS(sec, count);
1481 }
1482
1483 if (count_fls + sec_fls > 64) {
1484 divisor = nsec * frequency;
1485
1486 while (count_fls + sec_fls > 64) {
1487 REDUCE_FLS(count, sec);
1488 divisor >>= 1;
1489 }
1490
1491 dividend = count * sec;
1492 } else {
1493 dividend = count * sec;
1494
1495 while (nsec_fls + frequency_fls > 64) {
1496 REDUCE_FLS(nsec, frequency);
1497 dividend >>= 1;
1498 }
1499
1500 divisor = nsec * frequency;
1501 }
1502
1503 if (!divisor)
1504 return dividend;
1505
1506 return div64_u64(dividend, divisor);
1507 }
1508
1509 static void perf_event_stop(struct perf_event *event)
1510 {
1511 if (!event->pmu->stop)
1512 return event->pmu->disable(event);
1513
1514 return event->pmu->stop(event);
1515 }
1516
1517 static int perf_event_start(struct perf_event *event)
1518 {
1519 if (!event->pmu->start)
1520 return event->pmu->enable(event);
1521
1522 return event->pmu->start(event);
1523 }
1524
1525 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1526 {
1527 struct hw_perf_event *hwc = &event->hw;
1528 s64 period, sample_period;
1529 s64 delta;
1530
1531 period = perf_calculate_period(event, nsec, count);
1532
1533 delta = (s64)(period - hwc->sample_period);
1534 delta = (delta + 7) / 8; /* low pass filter */
1535
1536 sample_period = hwc->sample_period + delta;
1537
1538 if (!sample_period)
1539 sample_period = 1;
1540
1541 hwc->sample_period = sample_period;
1542
1543 if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1544 perf_disable();
1545 perf_event_stop(event);
1546 atomic64_set(&hwc->period_left, 0);
1547 perf_event_start(event);
1548 perf_enable();
1549 }
1550 }
1551
1552 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1553 {
1554 struct perf_event *event;
1555 struct hw_perf_event *hwc;
1556 u64 interrupts, now;
1557 s64 delta;
1558
1559 raw_spin_lock(&ctx->lock);
1560 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1561 if (event->state != PERF_EVENT_STATE_ACTIVE)
1562 continue;
1563
1564 if (event->cpu != -1 && event->cpu != smp_processor_id())
1565 continue;
1566
1567 hwc = &event->hw;
1568
1569 interrupts = hwc->interrupts;
1570 hwc->interrupts = 0;
1571
1572 /*
1573 * unthrottle events on the tick
1574 */
1575 if (interrupts == MAX_INTERRUPTS) {
1576 perf_log_throttle(event, 1);
1577 perf_disable();
1578 event->pmu->unthrottle(event);
1579 perf_enable();
1580 }
1581
1582 if (!event->attr.freq || !event->attr.sample_freq)
1583 continue;
1584
1585 perf_disable();
1586 event->pmu->read(event);
1587 now = atomic64_read(&event->count);
1588 delta = now - hwc->freq_count_stamp;
1589 hwc->freq_count_stamp = now;
1590
1591 if (delta > 0)
1592 perf_adjust_period(event, TICK_NSEC, delta);
1593 perf_enable();
1594 }
1595 raw_spin_unlock(&ctx->lock);
1596 }
1597
1598 /*
1599 * Round-robin a context's events:
1600 */
1601 static void rotate_ctx(struct perf_event_context *ctx)
1602 {
1603 raw_spin_lock(&ctx->lock);
1604
1605 /* Rotate the first entry last of non-pinned groups */
1606 list_rotate_left(&ctx->flexible_groups);
1607
1608 raw_spin_unlock(&ctx->lock);
1609 }
1610
1611 void perf_event_task_tick(struct task_struct *curr)
1612 {
1613 struct perf_cpu_context *cpuctx;
1614 struct perf_event_context *ctx;
1615 int rotate = 0;
1616
1617 if (!atomic_read(&nr_events))
1618 return;
1619
1620 cpuctx = &__get_cpu_var(perf_cpu_context);
1621 if (cpuctx->ctx.nr_events &&
1622 cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1623 rotate = 1;
1624
1625 ctx = curr->perf_event_ctxp;
1626 if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1627 rotate = 1;
1628
1629 perf_ctx_adjust_freq(&cpuctx->ctx);
1630 if (ctx)
1631 perf_ctx_adjust_freq(ctx);
1632
1633 if (!rotate)
1634 return;
1635
1636 perf_disable();
1637 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1638 if (ctx)
1639 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1640
1641 rotate_ctx(&cpuctx->ctx);
1642 if (ctx)
1643 rotate_ctx(ctx);
1644
1645 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1646 if (ctx)
1647 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1648 perf_enable();
1649 }
1650
1651 static int event_enable_on_exec(struct perf_event *event,
1652 struct perf_event_context *ctx)
1653 {
1654 if (!event->attr.enable_on_exec)
1655 return 0;
1656
1657 event->attr.enable_on_exec = 0;
1658 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1659 return 0;
1660
1661 __perf_event_mark_enabled(event, ctx);
1662
1663 return 1;
1664 }
1665
1666 /*
1667 * Enable all of a task's events that have been marked enable-on-exec.
1668 * This expects task == current.
1669 */
1670 static void perf_event_enable_on_exec(struct task_struct *task)
1671 {
1672 struct perf_event_context *ctx;
1673 struct perf_event *event;
1674 unsigned long flags;
1675 int enabled = 0;
1676 int ret;
1677
1678 local_irq_save(flags);
1679 ctx = task->perf_event_ctxp;
1680 if (!ctx || !ctx->nr_events)
1681 goto out;
1682
1683 __perf_event_task_sched_out(ctx);
1684
1685 raw_spin_lock(&ctx->lock);
1686
1687 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1688 ret = event_enable_on_exec(event, ctx);
1689 if (ret)
1690 enabled = 1;
1691 }
1692
1693 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1694 ret = event_enable_on_exec(event, ctx);
1695 if (ret)
1696 enabled = 1;
1697 }
1698
1699 /*
1700 * Unclone this context if we enabled any event.
1701 */
1702 if (enabled)
1703 unclone_ctx(ctx);
1704
1705 raw_spin_unlock(&ctx->lock);
1706
1707 perf_event_task_sched_in(task);
1708 out:
1709 local_irq_restore(flags);
1710 }
1711
1712 /*
1713 * Cross CPU call to read the hardware event
1714 */
1715 static void __perf_event_read(void *info)
1716 {
1717 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1718 struct perf_event *event = info;
1719 struct perf_event_context *ctx = event->ctx;
1720
1721 /*
1722 * If this is a task context, we need to check whether it is
1723 * the current task context of this cpu. If not it has been
1724 * scheduled out before the smp call arrived. In that case
1725 * event->count would have been updated to a recent sample
1726 * when the event was scheduled out.
1727 */
1728 if (ctx->task && cpuctx->task_ctx != ctx)
1729 return;
1730
1731 raw_spin_lock(&ctx->lock);
1732 update_context_time(ctx);
1733 update_event_times(event);
1734 raw_spin_unlock(&ctx->lock);
1735
1736 event->pmu->read(event);
1737 }
1738
1739 static inline u64 perf_event_count(struct perf_event *event)
1740 {
1741 return atomic64_read(&event->count) + atomic64_read(&event->child_count);
1742 }
1743
1744 static u64 perf_event_read(struct perf_event *event)
1745 {
1746 /*
1747 * If event is enabled and currently active on a CPU, update the
1748 * value in the event structure:
1749 */
1750 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1751 smp_call_function_single(event->oncpu,
1752 __perf_event_read, event, 1);
1753 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1754 struct perf_event_context *ctx = event->ctx;
1755 unsigned long flags;
1756
1757 raw_spin_lock_irqsave(&ctx->lock, flags);
1758 update_context_time(ctx);
1759 update_event_times(event);
1760 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1761 }
1762
1763 return perf_event_count(event);
1764 }
1765
1766 /*
1767 * Initialize the perf_event context in a task_struct:
1768 */
1769 static void
1770 __perf_event_init_context(struct perf_event_context *ctx,
1771 struct task_struct *task)
1772 {
1773 raw_spin_lock_init(&ctx->lock);
1774 mutex_init(&ctx->mutex);
1775 INIT_LIST_HEAD(&ctx->pinned_groups);
1776 INIT_LIST_HEAD(&ctx->flexible_groups);
1777 INIT_LIST_HEAD(&ctx->event_list);
1778 atomic_set(&ctx->refcount, 1);
1779 ctx->task = task;
1780 }
1781
1782 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1783 {
1784 struct perf_event_context *ctx;
1785 struct perf_cpu_context *cpuctx;
1786 struct task_struct *task;
1787 unsigned long flags;
1788 int err;
1789
1790 if (pid == -1 && cpu != -1) {
1791 /* Must be root to operate on a CPU event: */
1792 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1793 return ERR_PTR(-EACCES);
1794
1795 if (cpu < 0 || cpu >= nr_cpumask_bits)
1796 return ERR_PTR(-EINVAL);
1797
1798 /*
1799 * We could be clever and allow to attach a event to an
1800 * offline CPU and activate it when the CPU comes up, but
1801 * that's for later.
1802 */
1803 if (!cpu_online(cpu))
1804 return ERR_PTR(-ENODEV);
1805
1806 cpuctx = &per_cpu(perf_cpu_context, cpu);
1807 ctx = &cpuctx->ctx;
1808 get_ctx(ctx);
1809
1810 return ctx;
1811 }
1812
1813 rcu_read_lock();
1814 if (!pid)
1815 task = current;
1816 else
1817 task = find_task_by_vpid(pid);
1818 if (task)
1819 get_task_struct(task);
1820 rcu_read_unlock();
1821
1822 if (!task)
1823 return ERR_PTR(-ESRCH);
1824
1825 /*
1826 * Can't attach events to a dying task.
1827 */
1828 err = -ESRCH;
1829 if (task->flags & PF_EXITING)
1830 goto errout;
1831
1832 /* Reuse ptrace permission checks for now. */
1833 err = -EACCES;
1834 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1835 goto errout;
1836
1837 retry:
1838 ctx = perf_lock_task_context(task, &flags);
1839 if (ctx) {
1840 unclone_ctx(ctx);
1841 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1842 }
1843
1844 if (!ctx) {
1845 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1846 err = -ENOMEM;
1847 if (!ctx)
1848 goto errout;
1849 __perf_event_init_context(ctx, task);
1850 get_ctx(ctx);
1851 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1852 /*
1853 * We raced with some other task; use
1854 * the context they set.
1855 */
1856 kfree(ctx);
1857 goto retry;
1858 }
1859 get_task_struct(task);
1860 }
1861
1862 put_task_struct(task);
1863 return ctx;
1864
1865 errout:
1866 put_task_struct(task);
1867 return ERR_PTR(err);
1868 }
1869
1870 static void perf_event_free_filter(struct perf_event *event);
1871
1872 static void free_event_rcu(struct rcu_head *head)
1873 {
1874 struct perf_event *event;
1875
1876 event = container_of(head, struct perf_event, rcu_head);
1877 if (event->ns)
1878 put_pid_ns(event->ns);
1879 perf_event_free_filter(event);
1880 kfree(event);
1881 }
1882
1883 static void perf_pending_sync(struct perf_event *event);
1884 static void perf_buffer_put(struct perf_buffer *buffer);
1885
1886 static void free_event(struct perf_event *event)
1887 {
1888 perf_pending_sync(event);
1889
1890 if (!event->parent) {
1891 atomic_dec(&nr_events);
1892 if (event->attr.mmap || event->attr.mmap_data)
1893 atomic_dec(&nr_mmap_events);
1894 if (event->attr.comm)
1895 atomic_dec(&nr_comm_events);
1896 if (event->attr.task)
1897 atomic_dec(&nr_task_events);
1898 }
1899
1900 if (event->buffer) {
1901 perf_buffer_put(event->buffer);
1902 event->buffer = NULL;
1903 }
1904
1905 if (event->destroy)
1906 event->destroy(event);
1907
1908 put_ctx(event->ctx);
1909 call_rcu(&event->rcu_head, free_event_rcu);
1910 }
1911
1912 int perf_event_release_kernel(struct perf_event *event)
1913 {
1914 struct perf_event_context *ctx = event->ctx;
1915
1916 /*
1917 * Remove from the PMU, can't get re-enabled since we got
1918 * here because the last ref went.
1919 */
1920 perf_event_disable(event);
1921
1922 WARN_ON_ONCE(ctx->parent_ctx);
1923 /*
1924 * There are two ways this annotation is useful:
1925 *
1926 * 1) there is a lock recursion from perf_event_exit_task
1927 * see the comment there.
1928 *
1929 * 2) there is a lock-inversion with mmap_sem through
1930 * perf_event_read_group(), which takes faults while
1931 * holding ctx->mutex, however this is called after
1932 * the last filedesc died, so there is no possibility
1933 * to trigger the AB-BA case.
1934 */
1935 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
1936 raw_spin_lock_irq(&ctx->lock);
1937 perf_group_detach(event);
1938 list_del_event(event, ctx);
1939 raw_spin_unlock_irq(&ctx->lock);
1940 mutex_unlock(&ctx->mutex);
1941
1942 mutex_lock(&event->owner->perf_event_mutex);
1943 list_del_init(&event->owner_entry);
1944 mutex_unlock(&event->owner->perf_event_mutex);
1945 put_task_struct(event->owner);
1946
1947 free_event(event);
1948
1949 return 0;
1950 }
1951 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1952
1953 /*
1954 * Called when the last reference to the file is gone.
1955 */
1956 static int perf_release(struct inode *inode, struct file *file)
1957 {
1958 struct perf_event *event = file->private_data;
1959
1960 file->private_data = NULL;
1961
1962 return perf_event_release_kernel(event);
1963 }
1964
1965 static int perf_event_read_size(struct perf_event *event)
1966 {
1967 int entry = sizeof(u64); /* value */
1968 int size = 0;
1969 int nr = 1;
1970
1971 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1972 size += sizeof(u64);
1973
1974 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1975 size += sizeof(u64);
1976
1977 if (event->attr.read_format & PERF_FORMAT_ID)
1978 entry += sizeof(u64);
1979
1980 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1981 nr += event->group_leader->nr_siblings;
1982 size += sizeof(u64);
1983 }
1984
1985 size += entry * nr;
1986
1987 return size;
1988 }
1989
1990 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1991 {
1992 struct perf_event *child;
1993 u64 total = 0;
1994
1995 *enabled = 0;
1996 *running = 0;
1997
1998 mutex_lock(&event->child_mutex);
1999 total += perf_event_read(event);
2000 *enabled += event->total_time_enabled +
2001 atomic64_read(&event->child_total_time_enabled);
2002 *running += event->total_time_running +
2003 atomic64_read(&event->child_total_time_running);
2004
2005 list_for_each_entry(child, &event->child_list, child_list) {
2006 total += perf_event_read(child);
2007 *enabled += child->total_time_enabled;
2008 *running += child->total_time_running;
2009 }
2010 mutex_unlock(&event->child_mutex);
2011
2012 return total;
2013 }
2014 EXPORT_SYMBOL_GPL(perf_event_read_value);
2015
2016 static int perf_event_read_group(struct perf_event *event,
2017 u64 read_format, char __user *buf)
2018 {
2019 struct perf_event *leader = event->group_leader, *sub;
2020 int n = 0, size = 0, ret = -EFAULT;
2021 struct perf_event_context *ctx = leader->ctx;
2022 u64 values[5];
2023 u64 count, enabled, running;
2024
2025 mutex_lock(&ctx->mutex);
2026 count = perf_event_read_value(leader, &enabled, &running);
2027
2028 values[n++] = 1 + leader->nr_siblings;
2029 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2030 values[n++] = enabled;
2031 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2032 values[n++] = running;
2033 values[n++] = count;
2034 if (read_format & PERF_FORMAT_ID)
2035 values[n++] = primary_event_id(leader);
2036
2037 size = n * sizeof(u64);
2038
2039 if (copy_to_user(buf, values, size))
2040 goto unlock;
2041
2042 ret = size;
2043
2044 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2045 n = 0;
2046
2047 values[n++] = perf_event_read_value(sub, &enabled, &running);
2048 if (read_format & PERF_FORMAT_ID)
2049 values[n++] = primary_event_id(sub);
2050
2051 size = n * sizeof(u64);
2052
2053 if (copy_to_user(buf + ret, values, size)) {
2054 ret = -EFAULT;
2055 goto unlock;
2056 }
2057
2058 ret += size;
2059 }
2060 unlock:
2061 mutex_unlock(&ctx->mutex);
2062
2063 return ret;
2064 }
2065
2066 static int perf_event_read_one(struct perf_event *event,
2067 u64 read_format, char __user *buf)
2068 {
2069 u64 enabled, running;
2070 u64 values[4];
2071 int n = 0;
2072
2073 values[n++] = perf_event_read_value(event, &enabled, &running);
2074 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2075 values[n++] = enabled;
2076 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2077 values[n++] = running;
2078 if (read_format & PERF_FORMAT_ID)
2079 values[n++] = primary_event_id(event);
2080
2081 if (copy_to_user(buf, values, n * sizeof(u64)))
2082 return -EFAULT;
2083
2084 return n * sizeof(u64);
2085 }
2086
2087 /*
2088 * Read the performance event - simple non blocking version for now
2089 */
2090 static ssize_t
2091 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2092 {
2093 u64 read_format = event->attr.read_format;
2094 int ret;
2095
2096 /*
2097 * Return end-of-file for a read on a event that is in
2098 * error state (i.e. because it was pinned but it couldn't be
2099 * scheduled on to the CPU at some point).
2100 */
2101 if (event->state == PERF_EVENT_STATE_ERROR)
2102 return 0;
2103
2104 if (count < perf_event_read_size(event))
2105 return -ENOSPC;
2106
2107 WARN_ON_ONCE(event->ctx->parent_ctx);
2108 if (read_format & PERF_FORMAT_GROUP)
2109 ret = perf_event_read_group(event, read_format, buf);
2110 else
2111 ret = perf_event_read_one(event, read_format, buf);
2112
2113 return ret;
2114 }
2115
2116 static ssize_t
2117 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2118 {
2119 struct perf_event *event = file->private_data;
2120
2121 return perf_read_hw(event, buf, count);
2122 }
2123
2124 static unsigned int perf_poll(struct file *file, poll_table *wait)
2125 {
2126 struct perf_event *event = file->private_data;
2127 struct perf_buffer *buffer;
2128 unsigned int events = POLL_HUP;
2129
2130 rcu_read_lock();
2131 buffer = rcu_dereference(event->buffer);
2132 if (buffer)
2133 events = atomic_xchg(&buffer->poll, 0);
2134 rcu_read_unlock();
2135
2136 poll_wait(file, &event->waitq, wait);
2137
2138 return events;
2139 }
2140
2141 static void perf_event_reset(struct perf_event *event)
2142 {
2143 (void)perf_event_read(event);
2144 atomic64_set(&event->count, 0);
2145 perf_event_update_userpage(event);
2146 }
2147
2148 /*
2149 * Holding the top-level event's child_mutex means that any
2150 * descendant process that has inherited this event will block
2151 * in sync_child_event if it goes to exit, thus satisfying the
2152 * task existence requirements of perf_event_enable/disable.
2153 */
2154 static void perf_event_for_each_child(struct perf_event *event,
2155 void (*func)(struct perf_event *))
2156 {
2157 struct perf_event *child;
2158
2159 WARN_ON_ONCE(event->ctx->parent_ctx);
2160 mutex_lock(&event->child_mutex);
2161 func(event);
2162 list_for_each_entry(child, &event->child_list, child_list)
2163 func(child);
2164 mutex_unlock(&event->child_mutex);
2165 }
2166
2167 static void perf_event_for_each(struct perf_event *event,
2168 void (*func)(struct perf_event *))
2169 {
2170 struct perf_event_context *ctx = event->ctx;
2171 struct perf_event *sibling;
2172
2173 WARN_ON_ONCE(ctx->parent_ctx);
2174 mutex_lock(&ctx->mutex);
2175 event = event->group_leader;
2176
2177 perf_event_for_each_child(event, func);
2178 func(event);
2179 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2180 perf_event_for_each_child(event, func);
2181 mutex_unlock(&ctx->mutex);
2182 }
2183
2184 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2185 {
2186 struct perf_event_context *ctx = event->ctx;
2187 unsigned long size;
2188 int ret = 0;
2189 u64 value;
2190
2191 if (!event->attr.sample_period)
2192 return -EINVAL;
2193
2194 size = copy_from_user(&value, arg, sizeof(value));
2195 if (size != sizeof(value))
2196 return -EFAULT;
2197
2198 if (!value)
2199 return -EINVAL;
2200
2201 raw_spin_lock_irq(&ctx->lock);
2202 if (event->attr.freq) {
2203 if (value > sysctl_perf_event_sample_rate) {
2204 ret = -EINVAL;
2205 goto unlock;
2206 }
2207
2208 event->attr.sample_freq = value;
2209 } else {
2210 event->attr.sample_period = value;
2211 event->hw.sample_period = value;
2212 }
2213 unlock:
2214 raw_spin_unlock_irq(&ctx->lock);
2215
2216 return ret;
2217 }
2218
2219 static const struct file_operations perf_fops;
2220
2221 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2222 {
2223 struct file *file;
2224
2225 file = fget_light(fd, fput_needed);
2226 if (!file)
2227 return ERR_PTR(-EBADF);
2228
2229 if (file->f_op != &perf_fops) {
2230 fput_light(file, *fput_needed);
2231 *fput_needed = 0;
2232 return ERR_PTR(-EBADF);
2233 }
2234
2235 return file->private_data;
2236 }
2237
2238 static int perf_event_set_output(struct perf_event *event,
2239 struct perf_event *output_event);
2240 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2241
2242 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2243 {
2244 struct perf_event *event = file->private_data;
2245 void (*func)(struct perf_event *);
2246 u32 flags = arg;
2247
2248 switch (cmd) {
2249 case PERF_EVENT_IOC_ENABLE:
2250 func = perf_event_enable;
2251 break;
2252 case PERF_EVENT_IOC_DISABLE:
2253 func = perf_event_disable;
2254 break;
2255 case PERF_EVENT_IOC_RESET:
2256 func = perf_event_reset;
2257 break;
2258
2259 case PERF_EVENT_IOC_REFRESH:
2260 return perf_event_refresh(event, arg);
2261
2262 case PERF_EVENT_IOC_PERIOD:
2263 return perf_event_period(event, (u64 __user *)arg);
2264
2265 case PERF_EVENT_IOC_SET_OUTPUT:
2266 {
2267 struct perf_event *output_event = NULL;
2268 int fput_needed = 0;
2269 int ret;
2270
2271 if (arg != -1) {
2272 output_event = perf_fget_light(arg, &fput_needed);
2273 if (IS_ERR(output_event))
2274 return PTR_ERR(output_event);
2275 }
2276
2277 ret = perf_event_set_output(event, output_event);
2278 if (output_event)
2279 fput_light(output_event->filp, fput_needed);
2280
2281 return ret;
2282 }
2283
2284 case PERF_EVENT_IOC_SET_FILTER:
2285 return perf_event_set_filter(event, (void __user *)arg);
2286
2287 default:
2288 return -ENOTTY;
2289 }
2290
2291 if (flags & PERF_IOC_FLAG_GROUP)
2292 perf_event_for_each(event, func);
2293 else
2294 perf_event_for_each_child(event, func);
2295
2296 return 0;
2297 }
2298
2299 int perf_event_task_enable(void)
2300 {
2301 struct perf_event *event;
2302
2303 mutex_lock(&current->perf_event_mutex);
2304 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2305 perf_event_for_each_child(event, perf_event_enable);
2306 mutex_unlock(&current->perf_event_mutex);
2307
2308 return 0;
2309 }
2310
2311 int perf_event_task_disable(void)
2312 {
2313 struct perf_event *event;
2314
2315 mutex_lock(&current->perf_event_mutex);
2316 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2317 perf_event_for_each_child(event, perf_event_disable);
2318 mutex_unlock(&current->perf_event_mutex);
2319
2320 return 0;
2321 }
2322
2323 #ifndef PERF_EVENT_INDEX_OFFSET
2324 # define PERF_EVENT_INDEX_OFFSET 0
2325 #endif
2326
2327 static int perf_event_index(struct perf_event *event)
2328 {
2329 if (event->state != PERF_EVENT_STATE_ACTIVE)
2330 return 0;
2331
2332 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2333 }
2334
2335 /*
2336 * Callers need to ensure there can be no nesting of this function, otherwise
2337 * the seqlock logic goes bad. We can not serialize this because the arch
2338 * code calls this from NMI context.
2339 */
2340 void perf_event_update_userpage(struct perf_event *event)
2341 {
2342 struct perf_event_mmap_page *userpg;
2343 struct perf_buffer *buffer;
2344
2345 rcu_read_lock();
2346 buffer = rcu_dereference(event->buffer);
2347 if (!buffer)
2348 goto unlock;
2349
2350 userpg = buffer->user_page;
2351
2352 /*
2353 * Disable preemption so as to not let the corresponding user-space
2354 * spin too long if we get preempted.
2355 */
2356 preempt_disable();
2357 ++userpg->lock;
2358 barrier();
2359 userpg->index = perf_event_index(event);
2360 userpg->offset = perf_event_count(event);
2361 if (event->state == PERF_EVENT_STATE_ACTIVE)
2362 userpg->offset -= atomic64_read(&event->hw.prev_count);
2363
2364 userpg->time_enabled = event->total_time_enabled +
2365 atomic64_read(&event->child_total_time_enabled);
2366
2367 userpg->time_running = event->total_time_running +
2368 atomic64_read(&event->child_total_time_running);
2369
2370 barrier();
2371 ++userpg->lock;
2372 preempt_enable();
2373 unlock:
2374 rcu_read_unlock();
2375 }
2376
2377 static unsigned long perf_data_size(struct perf_buffer *buffer);
2378
2379 static void
2380 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2381 {
2382 long max_size = perf_data_size(buffer);
2383
2384 if (watermark)
2385 buffer->watermark = min(max_size, watermark);
2386
2387 if (!buffer->watermark)
2388 buffer->watermark = max_size / 2;
2389
2390 if (flags & PERF_BUFFER_WRITABLE)
2391 buffer->writable = 1;
2392
2393 atomic_set(&buffer->refcount, 1);
2394 }
2395
2396 #ifndef CONFIG_PERF_USE_VMALLOC
2397
2398 /*
2399 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2400 */
2401
2402 static struct page *
2403 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2404 {
2405 if (pgoff > buffer->nr_pages)
2406 return NULL;
2407
2408 if (pgoff == 0)
2409 return virt_to_page(buffer->user_page);
2410
2411 return virt_to_page(buffer->data_pages[pgoff - 1]);
2412 }
2413
2414 static void *perf_mmap_alloc_page(int cpu)
2415 {
2416 struct page *page;
2417 int node;
2418
2419 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2420 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2421 if (!page)
2422 return NULL;
2423
2424 return page_address(page);
2425 }
2426
2427 static struct perf_buffer *
2428 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2429 {
2430 struct perf_buffer *buffer;
2431 unsigned long size;
2432 int i;
2433
2434 size = sizeof(struct perf_buffer);
2435 size += nr_pages * sizeof(void *);
2436
2437 buffer = kzalloc(size, GFP_KERNEL);
2438 if (!buffer)
2439 goto fail;
2440
2441 buffer->user_page = perf_mmap_alloc_page(cpu);
2442 if (!buffer->user_page)
2443 goto fail_user_page;
2444
2445 for (i = 0; i < nr_pages; i++) {
2446 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2447 if (!buffer->data_pages[i])
2448 goto fail_data_pages;
2449 }
2450
2451 buffer->nr_pages = nr_pages;
2452
2453 perf_buffer_init(buffer, watermark, flags);
2454
2455 return buffer;
2456
2457 fail_data_pages:
2458 for (i--; i >= 0; i--)
2459 free_page((unsigned long)buffer->data_pages[i]);
2460
2461 free_page((unsigned long)buffer->user_page);
2462
2463 fail_user_page:
2464 kfree(buffer);
2465
2466 fail:
2467 return NULL;
2468 }
2469
2470 static void perf_mmap_free_page(unsigned long addr)
2471 {
2472 struct page *page = virt_to_page((void *)addr);
2473
2474 page->mapping = NULL;
2475 __free_page(page);
2476 }
2477
2478 static void perf_buffer_free(struct perf_buffer *buffer)
2479 {
2480 int i;
2481
2482 perf_mmap_free_page((unsigned long)buffer->user_page);
2483 for (i = 0; i < buffer->nr_pages; i++)
2484 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2485 kfree(buffer);
2486 }
2487
2488 static inline int page_order(struct perf_buffer *buffer)
2489 {
2490 return 0;
2491 }
2492
2493 #else
2494
2495 /*
2496 * Back perf_mmap() with vmalloc memory.
2497 *
2498 * Required for architectures that have d-cache aliasing issues.
2499 */
2500
2501 static inline int page_order(struct perf_buffer *buffer)
2502 {
2503 return buffer->page_order;
2504 }
2505
2506 static struct page *
2507 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2508 {
2509 if (pgoff > (1UL << page_order(buffer)))
2510 return NULL;
2511
2512 return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2513 }
2514
2515 static void perf_mmap_unmark_page(void *addr)
2516 {
2517 struct page *page = vmalloc_to_page(addr);
2518
2519 page->mapping = NULL;
2520 }
2521
2522 static void perf_buffer_free_work(struct work_struct *work)
2523 {
2524 struct perf_buffer *buffer;
2525 void *base;
2526 int i, nr;
2527
2528 buffer = container_of(work, struct perf_buffer, work);
2529 nr = 1 << page_order(buffer);
2530
2531 base = buffer->user_page;
2532 for (i = 0; i < nr + 1; i++)
2533 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2534
2535 vfree(base);
2536 kfree(buffer);
2537 }
2538
2539 static void perf_buffer_free(struct perf_buffer *buffer)
2540 {
2541 schedule_work(&buffer->work);
2542 }
2543
2544 static struct perf_buffer *
2545 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2546 {
2547 struct perf_buffer *buffer;
2548 unsigned long size;
2549 void *all_buf;
2550
2551 size = sizeof(struct perf_buffer);
2552 size += sizeof(void *);
2553
2554 buffer = kzalloc(size, GFP_KERNEL);
2555 if (!buffer)
2556 goto fail;
2557
2558 INIT_WORK(&buffer->work, perf_buffer_free_work);
2559
2560 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2561 if (!all_buf)
2562 goto fail_all_buf;
2563
2564 buffer->user_page = all_buf;
2565 buffer->data_pages[0] = all_buf + PAGE_SIZE;
2566 buffer->page_order = ilog2(nr_pages);
2567 buffer->nr_pages = 1;
2568
2569 perf_buffer_init(buffer, watermark, flags);
2570
2571 return buffer;
2572
2573 fail_all_buf:
2574 kfree(buffer);
2575
2576 fail:
2577 return NULL;
2578 }
2579
2580 #endif
2581
2582 static unsigned long perf_data_size(struct perf_buffer *buffer)
2583 {
2584 return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2585 }
2586
2587 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2588 {
2589 struct perf_event *event = vma->vm_file->private_data;
2590 struct perf_buffer *buffer;
2591 int ret = VM_FAULT_SIGBUS;
2592
2593 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2594 if (vmf->pgoff == 0)
2595 ret = 0;
2596 return ret;
2597 }
2598
2599 rcu_read_lock();
2600 buffer = rcu_dereference(event->buffer);
2601 if (!buffer)
2602 goto unlock;
2603
2604 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2605 goto unlock;
2606
2607 vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2608 if (!vmf->page)
2609 goto unlock;
2610
2611 get_page(vmf->page);
2612 vmf->page->mapping = vma->vm_file->f_mapping;
2613 vmf->page->index = vmf->pgoff;
2614
2615 ret = 0;
2616 unlock:
2617 rcu_read_unlock();
2618
2619 return ret;
2620 }
2621
2622 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2623 {
2624 struct perf_buffer *buffer;
2625
2626 buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
2627 perf_buffer_free(buffer);
2628 }
2629
2630 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2631 {
2632 struct perf_buffer *buffer;
2633
2634 rcu_read_lock();
2635 buffer = rcu_dereference(event->buffer);
2636 if (buffer) {
2637 if (!atomic_inc_not_zero(&buffer->refcount))
2638 buffer = NULL;
2639 }
2640 rcu_read_unlock();
2641
2642 return buffer;
2643 }
2644
2645 static void perf_buffer_put(struct perf_buffer *buffer)
2646 {
2647 if (!atomic_dec_and_test(&buffer->refcount))
2648 return;
2649
2650 call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2651 }
2652
2653 static void perf_mmap_open(struct vm_area_struct *vma)
2654 {
2655 struct perf_event *event = vma->vm_file->private_data;
2656
2657 atomic_inc(&event->mmap_count);
2658 }
2659
2660 static void perf_mmap_close(struct vm_area_struct *vma)
2661 {
2662 struct perf_event *event = vma->vm_file->private_data;
2663
2664 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2665 unsigned long size = perf_data_size(event->buffer);
2666 struct user_struct *user = event->mmap_user;
2667 struct perf_buffer *buffer = event->buffer;
2668
2669 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2670 vma->vm_mm->locked_vm -= event->mmap_locked;
2671 rcu_assign_pointer(event->buffer, NULL);
2672 mutex_unlock(&event->mmap_mutex);
2673
2674 perf_buffer_put(buffer);
2675 free_uid(user);
2676 }
2677 }
2678
2679 static const struct vm_operations_struct perf_mmap_vmops = {
2680 .open = perf_mmap_open,
2681 .close = perf_mmap_close,
2682 .fault = perf_mmap_fault,
2683 .page_mkwrite = perf_mmap_fault,
2684 };
2685
2686 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2687 {
2688 struct perf_event *event = file->private_data;
2689 unsigned long user_locked, user_lock_limit;
2690 struct user_struct *user = current_user();
2691 unsigned long locked, lock_limit;
2692 struct perf_buffer *buffer;
2693 unsigned long vma_size;
2694 unsigned long nr_pages;
2695 long user_extra, extra;
2696 int ret = 0, flags = 0;
2697
2698 /*
2699 * Don't allow mmap() of inherited per-task counters. This would
2700 * create a performance issue due to all children writing to the
2701 * same buffer.
2702 */
2703 if (event->cpu == -1 && event->attr.inherit)
2704 return -EINVAL;
2705
2706 if (!(vma->vm_flags & VM_SHARED))
2707 return -EINVAL;
2708
2709 vma_size = vma->vm_end - vma->vm_start;
2710 nr_pages = (vma_size / PAGE_SIZE) - 1;
2711
2712 /*
2713 * If we have buffer pages ensure they're a power-of-two number, so we
2714 * can do bitmasks instead of modulo.
2715 */
2716 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2717 return -EINVAL;
2718
2719 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2720 return -EINVAL;
2721
2722 if (vma->vm_pgoff != 0)
2723 return -EINVAL;
2724
2725 WARN_ON_ONCE(event->ctx->parent_ctx);
2726 mutex_lock(&event->mmap_mutex);
2727 if (event->buffer) {
2728 if (event->buffer->nr_pages == nr_pages)
2729 atomic_inc(&event->buffer->refcount);
2730 else
2731 ret = -EINVAL;
2732 goto unlock;
2733 }
2734
2735 user_extra = nr_pages + 1;
2736 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2737
2738 /*
2739 * Increase the limit linearly with more CPUs:
2740 */
2741 user_lock_limit *= num_online_cpus();
2742
2743 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2744
2745 extra = 0;
2746 if (user_locked > user_lock_limit)
2747 extra = user_locked - user_lock_limit;
2748
2749 lock_limit = rlimit(RLIMIT_MEMLOCK);
2750 lock_limit >>= PAGE_SHIFT;
2751 locked = vma->vm_mm->locked_vm + extra;
2752
2753 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2754 !capable(CAP_IPC_LOCK)) {
2755 ret = -EPERM;
2756 goto unlock;
2757 }
2758
2759 WARN_ON(event->buffer);
2760
2761 if (vma->vm_flags & VM_WRITE)
2762 flags |= PERF_BUFFER_WRITABLE;
2763
2764 buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
2765 event->cpu, flags);
2766 if (!buffer) {
2767 ret = -ENOMEM;
2768 goto unlock;
2769 }
2770 rcu_assign_pointer(event->buffer, buffer);
2771
2772 atomic_long_add(user_extra, &user->locked_vm);
2773 event->mmap_locked = extra;
2774 event->mmap_user = get_current_user();
2775 vma->vm_mm->locked_vm += event->mmap_locked;
2776
2777 unlock:
2778 if (!ret)
2779 atomic_inc(&event->mmap_count);
2780 mutex_unlock(&event->mmap_mutex);
2781
2782 vma->vm_flags |= VM_RESERVED;
2783 vma->vm_ops = &perf_mmap_vmops;
2784
2785 return ret;
2786 }
2787
2788 static int perf_fasync(int fd, struct file *filp, int on)
2789 {
2790 struct inode *inode = filp->f_path.dentry->d_inode;
2791 struct perf_event *event = filp->private_data;
2792 int retval;
2793
2794 mutex_lock(&inode->i_mutex);
2795 retval = fasync_helper(fd, filp, on, &event->fasync);
2796 mutex_unlock(&inode->i_mutex);
2797
2798 if (retval < 0)
2799 return retval;
2800
2801 return 0;
2802 }
2803
2804 static const struct file_operations perf_fops = {
2805 .llseek = no_llseek,
2806 .release = perf_release,
2807 .read = perf_read,
2808 .poll = perf_poll,
2809 .unlocked_ioctl = perf_ioctl,
2810 .compat_ioctl = perf_ioctl,
2811 .mmap = perf_mmap,
2812 .fasync = perf_fasync,
2813 };
2814
2815 /*
2816 * Perf event wakeup
2817 *
2818 * If there's data, ensure we set the poll() state and publish everything
2819 * to user-space before waking everybody up.
2820 */
2821
2822 void perf_event_wakeup(struct perf_event *event)
2823 {
2824 wake_up_all(&event->waitq);
2825
2826 if (event->pending_kill) {
2827 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2828 event->pending_kill = 0;
2829 }
2830 }
2831
2832 /*
2833 * Pending wakeups
2834 *
2835 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2836 *
2837 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2838 * single linked list and use cmpxchg() to add entries lockless.
2839 */
2840
2841 static void perf_pending_event(struct perf_pending_entry *entry)
2842 {
2843 struct perf_event *event = container_of(entry,
2844 struct perf_event, pending);
2845
2846 if (event->pending_disable) {
2847 event->pending_disable = 0;
2848 __perf_event_disable(event);
2849 }
2850
2851 if (event->pending_wakeup) {
2852 event->pending_wakeup = 0;
2853 perf_event_wakeup(event);
2854 }
2855 }
2856
2857 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2858
2859 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2860 PENDING_TAIL,
2861 };
2862
2863 static void perf_pending_queue(struct perf_pending_entry *entry,
2864 void (*func)(struct perf_pending_entry *))
2865 {
2866 struct perf_pending_entry **head;
2867
2868 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2869 return;
2870
2871 entry->func = func;
2872
2873 head = &get_cpu_var(perf_pending_head);
2874
2875 do {
2876 entry->next = *head;
2877 } while (cmpxchg(head, entry->next, entry) != entry->next);
2878
2879 set_perf_event_pending();
2880
2881 put_cpu_var(perf_pending_head);
2882 }
2883
2884 static int __perf_pending_run(void)
2885 {
2886 struct perf_pending_entry *list;
2887 int nr = 0;
2888
2889 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2890 while (list != PENDING_TAIL) {
2891 void (*func)(struct perf_pending_entry *);
2892 struct perf_pending_entry *entry = list;
2893
2894 list = list->next;
2895
2896 func = entry->func;
2897 entry->next = NULL;
2898 /*
2899 * Ensure we observe the unqueue before we issue the wakeup,
2900 * so that we won't be waiting forever.
2901 * -- see perf_not_pending().
2902 */
2903 smp_wmb();
2904
2905 func(entry);
2906 nr++;
2907 }
2908
2909 return nr;
2910 }
2911
2912 static inline int perf_not_pending(struct perf_event *event)
2913 {
2914 /*
2915 * If we flush on whatever cpu we run, there is a chance we don't
2916 * need to wait.
2917 */
2918 get_cpu();
2919 __perf_pending_run();
2920 put_cpu();
2921
2922 /*
2923 * Ensure we see the proper queue state before going to sleep
2924 * so that we do not miss the wakeup. -- see perf_pending_handle()
2925 */
2926 smp_rmb();
2927 return event->pending.next == NULL;
2928 }
2929
2930 static void perf_pending_sync(struct perf_event *event)
2931 {
2932 wait_event(event->waitq, perf_not_pending(event));
2933 }
2934
2935 void perf_event_do_pending(void)
2936 {
2937 __perf_pending_run();
2938 }
2939
2940 /*
2941 * Callchain support -- arch specific
2942 */
2943
2944 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2945 {
2946 return NULL;
2947 }
2948
2949 __weak
2950 void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
2951 {
2952 }
2953
2954
2955 /*
2956 * We assume there is only KVM supporting the callbacks.
2957 * Later on, we might change it to a list if there is
2958 * another virtualization implementation supporting the callbacks.
2959 */
2960 struct perf_guest_info_callbacks *perf_guest_cbs;
2961
2962 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2963 {
2964 perf_guest_cbs = cbs;
2965 return 0;
2966 }
2967 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
2968
2969 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2970 {
2971 perf_guest_cbs = NULL;
2972 return 0;
2973 }
2974 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
2975
2976 /*
2977 * Output
2978 */
2979 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
2980 unsigned long offset, unsigned long head)
2981 {
2982 unsigned long mask;
2983
2984 if (!buffer->writable)
2985 return true;
2986
2987 mask = perf_data_size(buffer) - 1;
2988
2989 offset = (offset - tail) & mask;
2990 head = (head - tail) & mask;
2991
2992 if ((int)(head - offset) < 0)
2993 return false;
2994
2995 return true;
2996 }
2997
2998 static void perf_output_wakeup(struct perf_output_handle *handle)
2999 {
3000 atomic_set(&handle->buffer->poll, POLL_IN);
3001
3002 if (handle->nmi) {
3003 handle->event->pending_wakeup = 1;
3004 perf_pending_queue(&handle->event->pending,
3005 perf_pending_event);
3006 } else
3007 perf_event_wakeup(handle->event);
3008 }
3009
3010 /*
3011 * We need to ensure a later event_id doesn't publish a head when a former
3012 * event isn't done writing. However since we need to deal with NMIs we
3013 * cannot fully serialize things.
3014 *
3015 * We only publish the head (and generate a wakeup) when the outer-most
3016 * event completes.
3017 */
3018 static void perf_output_get_handle(struct perf_output_handle *handle)
3019 {
3020 struct perf_buffer *buffer = handle->buffer;
3021
3022 preempt_disable();
3023 local_inc(&buffer->nest);
3024 handle->wakeup = local_read(&buffer->wakeup);
3025 }
3026
3027 static void perf_output_put_handle(struct perf_output_handle *handle)
3028 {
3029 struct perf_buffer *buffer = handle->buffer;
3030 unsigned long head;
3031
3032 again:
3033 head = local_read(&buffer->head);
3034
3035 /*
3036 * IRQ/NMI can happen here, which means we can miss a head update.
3037 */
3038
3039 if (!local_dec_and_test(&buffer->nest))
3040 goto out;
3041
3042 /*
3043 * Publish the known good head. Rely on the full barrier implied
3044 * by atomic_dec_and_test() order the buffer->head read and this
3045 * write.
3046 */
3047 buffer->user_page->data_head = head;
3048
3049 /*
3050 * Now check if we missed an update, rely on the (compiler)
3051 * barrier in atomic_dec_and_test() to re-read buffer->head.
3052 */
3053 if (unlikely(head != local_read(&buffer->head))) {
3054 local_inc(&buffer->nest);
3055 goto again;
3056 }
3057
3058 if (handle->wakeup != local_read(&buffer->wakeup))
3059 perf_output_wakeup(handle);
3060
3061 out:
3062 preempt_enable();
3063 }
3064
3065 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3066 const void *buf, unsigned int len)
3067 {
3068 do {
3069 unsigned long size = min_t(unsigned long, handle->size, len);
3070
3071 memcpy(handle->addr, buf, size);
3072
3073 len -= size;
3074 handle->addr += size;
3075 buf += size;
3076 handle->size -= size;
3077 if (!handle->size) {
3078 struct perf_buffer *buffer = handle->buffer;
3079
3080 handle->page++;
3081 handle->page &= buffer->nr_pages - 1;
3082 handle->addr = buffer->data_pages[handle->page];
3083 handle->size = PAGE_SIZE << page_order(buffer);
3084 }
3085 } while (len);
3086 }
3087
3088 int perf_output_begin(struct perf_output_handle *handle,
3089 struct perf_event *event, unsigned int size,
3090 int nmi, int sample)
3091 {
3092 struct perf_buffer *buffer;
3093 unsigned long tail, offset, head;
3094 int have_lost;
3095 struct {
3096 struct perf_event_header header;
3097 u64 id;
3098 u64 lost;
3099 } lost_event;
3100
3101 rcu_read_lock();
3102 /*
3103 * For inherited events we send all the output towards the parent.
3104 */
3105 if (event->parent)
3106 event = event->parent;
3107
3108 buffer = rcu_dereference(event->buffer);
3109 if (!buffer)
3110 goto out;
3111
3112 handle->buffer = buffer;
3113 handle->event = event;
3114 handle->nmi = nmi;
3115 handle->sample = sample;
3116
3117 if (!buffer->nr_pages)
3118 goto out;
3119
3120 have_lost = local_read(&buffer->lost);
3121 if (have_lost)
3122 size += sizeof(lost_event);
3123
3124 perf_output_get_handle(handle);
3125
3126 do {
3127 /*
3128 * Userspace could choose to issue a mb() before updating the
3129 * tail pointer. So that all reads will be completed before the
3130 * write is issued.
3131 */
3132 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3133 smp_rmb();
3134 offset = head = local_read(&buffer->head);
3135 head += size;
3136 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3137 goto fail;
3138 } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3139
3140 if (head - local_read(&buffer->wakeup) > buffer->watermark)
3141 local_add(buffer->watermark, &buffer->wakeup);
3142
3143 handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3144 handle->page &= buffer->nr_pages - 1;
3145 handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3146 handle->addr = buffer->data_pages[handle->page];
3147 handle->addr += handle->size;
3148 handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3149
3150 if (have_lost) {
3151 lost_event.header.type = PERF_RECORD_LOST;
3152 lost_event.header.misc = 0;
3153 lost_event.header.size = sizeof(lost_event);
3154 lost_event.id = event->id;
3155 lost_event.lost = local_xchg(&buffer->lost, 0);
3156
3157 perf_output_put(handle, lost_event);
3158 }
3159
3160 return 0;
3161
3162 fail:
3163 local_inc(&buffer->lost);
3164 perf_output_put_handle(handle);
3165 out:
3166 rcu_read_unlock();
3167
3168 return -ENOSPC;
3169 }
3170
3171 void perf_output_end(struct perf_output_handle *handle)
3172 {
3173 struct perf_event *event = handle->event;
3174 struct perf_buffer *buffer = handle->buffer;
3175
3176 int wakeup_events = event->attr.wakeup_events;
3177
3178 if (handle->sample && wakeup_events) {
3179 int events = local_inc_return(&buffer->events);
3180 if (events >= wakeup_events) {
3181 local_sub(wakeup_events, &buffer->events);
3182 local_inc(&buffer->wakeup);
3183 }
3184 }
3185
3186 perf_output_put_handle(handle);
3187 rcu_read_unlock();
3188 }
3189
3190 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3191 {
3192 /*
3193 * only top level events have the pid namespace they were created in
3194 */
3195 if (event->parent)
3196 event = event->parent;
3197
3198 return task_tgid_nr_ns(p, event->ns);
3199 }
3200
3201 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3202 {
3203 /*
3204 * only top level events have the pid namespace they were created in
3205 */
3206 if (event->parent)
3207 event = event->parent;
3208
3209 return task_pid_nr_ns(p, event->ns);
3210 }
3211
3212 static void perf_output_read_one(struct perf_output_handle *handle,
3213 struct perf_event *event)
3214 {
3215 u64 read_format = event->attr.read_format;
3216 u64 values[4];
3217 int n = 0;
3218
3219 values[n++] = perf_event_count(event);
3220 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3221 values[n++] = event->total_time_enabled +
3222 atomic64_read(&event->child_total_time_enabled);
3223 }
3224 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3225 values[n++] = event->total_time_running +
3226 atomic64_read(&event->child_total_time_running);
3227 }
3228 if (read_format & PERF_FORMAT_ID)
3229 values[n++] = primary_event_id(event);
3230
3231 perf_output_copy(handle, values, n * sizeof(u64));
3232 }
3233
3234 /*
3235 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3236 */
3237 static void perf_output_read_group(struct perf_output_handle *handle,
3238 struct perf_event *event)
3239 {
3240 struct perf_event *leader = event->group_leader, *sub;
3241 u64 read_format = event->attr.read_format;
3242 u64 values[5];
3243 int n = 0;
3244
3245 values[n++] = 1 + leader->nr_siblings;
3246
3247 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3248 values[n++] = leader->total_time_enabled;
3249
3250 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3251 values[n++] = leader->total_time_running;
3252
3253 if (leader != event)
3254 leader->pmu->read(leader);
3255
3256 values[n++] = perf_event_count(leader);
3257 if (read_format & PERF_FORMAT_ID)
3258 values[n++] = primary_event_id(leader);
3259
3260 perf_output_copy(handle, values, n * sizeof(u64));
3261
3262 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3263 n = 0;
3264
3265 if (sub != event)
3266 sub->pmu->read(sub);
3267
3268 values[n++] = perf_event_count(sub);
3269 if (read_format & PERF_FORMAT_ID)
3270 values[n++] = primary_event_id(sub);
3271
3272 perf_output_copy(handle, values, n * sizeof(u64));
3273 }
3274 }
3275
3276 static void perf_output_read(struct perf_output_handle *handle,
3277 struct perf_event *event)
3278 {
3279 if (event->attr.read_format & PERF_FORMAT_GROUP)
3280 perf_output_read_group(handle, event);
3281 else
3282 perf_output_read_one(handle, event);
3283 }
3284
3285 void perf_output_sample(struct perf_output_handle *handle,
3286 struct perf_event_header *header,
3287 struct perf_sample_data *data,
3288 struct perf_event *event)
3289 {
3290 u64 sample_type = data->type;
3291
3292 perf_output_put(handle, *header);
3293
3294 if (sample_type & PERF_SAMPLE_IP)
3295 perf_output_put(handle, data->ip);
3296
3297 if (sample_type & PERF_SAMPLE_TID)
3298 perf_output_put(handle, data->tid_entry);
3299
3300 if (sample_type & PERF_SAMPLE_TIME)
3301 perf_output_put(handle, data->time);
3302
3303 if (sample_type & PERF_SAMPLE_ADDR)
3304 perf_output_put(handle, data->addr);
3305
3306 if (sample_type & PERF_SAMPLE_ID)
3307 perf_output_put(handle, data->id);
3308
3309 if (sample_type & PERF_SAMPLE_STREAM_ID)
3310 perf_output_put(handle, data->stream_id);
3311
3312 if (sample_type & PERF_SAMPLE_CPU)
3313 perf_output_put(handle, data->cpu_entry);
3314
3315 if (sample_type & PERF_SAMPLE_PERIOD)
3316 perf_output_put(handle, data->period);
3317
3318 if (sample_type & PERF_SAMPLE_READ)
3319 perf_output_read(handle, event);
3320
3321 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3322 if (data->callchain) {
3323 int size = 1;
3324
3325 if (data->callchain)
3326 size += data->callchain->nr;
3327
3328 size *= sizeof(u64);
3329
3330 perf_output_copy(handle, data->callchain, size);
3331 } else {
3332 u64 nr = 0;
3333 perf_output_put(handle, nr);
3334 }
3335 }
3336
3337 if (sample_type & PERF_SAMPLE_RAW) {
3338 if (data->raw) {
3339 perf_output_put(handle, data->raw->size);
3340 perf_output_copy(handle, data->raw->data,
3341 data->raw->size);
3342 } else {
3343 struct {
3344 u32 size;
3345 u32 data;
3346 } raw = {
3347 .size = sizeof(u32),
3348 .data = 0,
3349 };
3350 perf_output_put(handle, raw);
3351 }
3352 }
3353 }
3354
3355 void perf_prepare_sample(struct perf_event_header *header,
3356 struct perf_sample_data *data,
3357 struct perf_event *event,
3358 struct pt_regs *regs)
3359 {
3360 u64 sample_type = event->attr.sample_type;
3361
3362 data->type = sample_type;
3363
3364 header->type = PERF_RECORD_SAMPLE;
3365 header->size = sizeof(*header);
3366
3367 header->misc = 0;
3368 header->misc |= perf_misc_flags(regs);
3369
3370 if (sample_type & PERF_SAMPLE_IP) {
3371 data->ip = perf_instruction_pointer(regs);
3372
3373 header->size += sizeof(data->ip);
3374 }
3375
3376 if (sample_type & PERF_SAMPLE_TID) {
3377 /* namespace issues */
3378 data->tid_entry.pid = perf_event_pid(event, current);
3379 data->tid_entry.tid = perf_event_tid(event, current);
3380
3381 header->size += sizeof(data->tid_entry);
3382 }
3383
3384 if (sample_type & PERF_SAMPLE_TIME) {
3385 data->time = perf_clock();
3386
3387 header->size += sizeof(data->time);
3388 }
3389
3390 if (sample_type & PERF_SAMPLE_ADDR)
3391 header->size += sizeof(data->addr);
3392
3393 if (sample_type & PERF_SAMPLE_ID) {
3394 data->id = primary_event_id(event);
3395
3396 header->size += sizeof(data->id);
3397 }
3398
3399 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3400 data->stream_id = event->id;
3401
3402 header->size += sizeof(data->stream_id);
3403 }
3404
3405 if (sample_type & PERF_SAMPLE_CPU) {
3406 data->cpu_entry.cpu = raw_smp_processor_id();
3407 data->cpu_entry.reserved = 0;
3408
3409 header->size += sizeof(data->cpu_entry);
3410 }
3411
3412 if (sample_type & PERF_SAMPLE_PERIOD)
3413 header->size += sizeof(data->period);
3414
3415 if (sample_type & PERF_SAMPLE_READ)
3416 header->size += perf_event_read_size(event);
3417
3418 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3419 int size = 1;
3420
3421 data->callchain = perf_callchain(regs);
3422
3423 if (data->callchain)
3424 size += data->callchain->nr;
3425
3426 header->size += size * sizeof(u64);
3427 }
3428
3429 if (sample_type & PERF_SAMPLE_RAW) {
3430 int size = sizeof(u32);
3431
3432 if (data->raw)
3433 size += data->raw->size;
3434 else
3435 size += sizeof(u32);
3436
3437 WARN_ON_ONCE(size & (sizeof(u64)-1));
3438 header->size += size;
3439 }
3440 }
3441
3442 static void perf_event_output(struct perf_event *event, int nmi,
3443 struct perf_sample_data *data,
3444 struct pt_regs *regs)
3445 {
3446 struct perf_output_handle handle;
3447 struct perf_event_header header;
3448
3449 perf_prepare_sample(&header, data, event, regs);
3450
3451 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3452 return;
3453
3454 perf_output_sample(&handle, &header, data, event);
3455
3456 perf_output_end(&handle);
3457 }
3458
3459 /*
3460 * read event_id
3461 */
3462
3463 struct perf_read_event {
3464 struct perf_event_header header;
3465
3466 u32 pid;
3467 u32 tid;
3468 };
3469
3470 static void
3471 perf_event_read_event(struct perf_event *event,
3472 struct task_struct *task)
3473 {
3474 struct perf_output_handle handle;
3475 struct perf_read_event read_event = {
3476 .header = {
3477 .type = PERF_RECORD_READ,
3478 .misc = 0,
3479 .size = sizeof(read_event) + perf_event_read_size(event),
3480 },
3481 .pid = perf_event_pid(event, task),
3482 .tid = perf_event_tid(event, task),
3483 };
3484 int ret;
3485
3486 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3487 if (ret)
3488 return;
3489
3490 perf_output_put(&handle, read_event);
3491 perf_output_read(&handle, event);
3492
3493 perf_output_end(&handle);
3494 }
3495
3496 /*
3497 * task tracking -- fork/exit
3498 *
3499 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3500 */
3501
3502 struct perf_task_event {
3503 struct task_struct *task;
3504 struct perf_event_context *task_ctx;
3505
3506 struct {
3507 struct perf_event_header header;
3508
3509 u32 pid;
3510 u32 ppid;
3511 u32 tid;
3512 u32 ptid;
3513 u64 time;
3514 } event_id;
3515 };
3516
3517 static void perf_event_task_output(struct perf_event *event,
3518 struct perf_task_event *task_event)
3519 {
3520 struct perf_output_handle handle;
3521 struct task_struct *task = task_event->task;
3522 int size, ret;
3523
3524 size = task_event->event_id.header.size;
3525 ret = perf_output_begin(&handle, event, size, 0, 0);
3526
3527 if (ret)
3528 return;
3529
3530 task_event->event_id.pid = perf_event_pid(event, task);
3531 task_event->event_id.ppid = perf_event_pid(event, current);
3532
3533 task_event->event_id.tid = perf_event_tid(event, task);
3534 task_event->event_id.ptid = perf_event_tid(event, current);
3535
3536 perf_output_put(&handle, task_event->event_id);
3537
3538 perf_output_end(&handle);
3539 }
3540
3541 static int perf_event_task_match(struct perf_event *event)
3542 {
3543 if (event->state < PERF_EVENT_STATE_INACTIVE)
3544 return 0;
3545
3546 if (event->cpu != -1 && event->cpu != smp_processor_id())
3547 return 0;
3548
3549 if (event->attr.comm || event->attr.mmap ||
3550 event->attr.mmap_data || event->attr.task)
3551 return 1;
3552
3553 return 0;
3554 }
3555
3556 static void perf_event_task_ctx(struct perf_event_context *ctx,
3557 struct perf_task_event *task_event)
3558 {
3559 struct perf_event *event;
3560
3561 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3562 if (perf_event_task_match(event))
3563 perf_event_task_output(event, task_event);
3564 }
3565 }
3566
3567 static void perf_event_task_event(struct perf_task_event *task_event)
3568 {
3569 struct perf_cpu_context *cpuctx;
3570 struct perf_event_context *ctx = task_event->task_ctx;
3571
3572 rcu_read_lock();
3573 cpuctx = &get_cpu_var(perf_cpu_context);
3574 perf_event_task_ctx(&cpuctx->ctx, task_event);
3575 if (!ctx)
3576 ctx = rcu_dereference(current->perf_event_ctxp);
3577 if (ctx)
3578 perf_event_task_ctx(ctx, task_event);
3579 put_cpu_var(perf_cpu_context);
3580 rcu_read_unlock();
3581 }
3582
3583 static void perf_event_task(struct task_struct *task,
3584 struct perf_event_context *task_ctx,
3585 int new)
3586 {
3587 struct perf_task_event task_event;
3588
3589 if (!atomic_read(&nr_comm_events) &&
3590 !atomic_read(&nr_mmap_events) &&
3591 !atomic_read(&nr_task_events))
3592 return;
3593
3594 task_event = (struct perf_task_event){
3595 .task = task,
3596 .task_ctx = task_ctx,
3597 .event_id = {
3598 .header = {
3599 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3600 .misc = 0,
3601 .size = sizeof(task_event.event_id),
3602 },
3603 /* .pid */
3604 /* .ppid */
3605 /* .tid */
3606 /* .ptid */
3607 .time = perf_clock(),
3608 },
3609 };
3610
3611 perf_event_task_event(&task_event);
3612 }
3613
3614 void perf_event_fork(struct task_struct *task)
3615 {
3616 perf_event_task(task, NULL, 1);
3617 }
3618
3619 /*
3620 * comm tracking
3621 */
3622
3623 struct perf_comm_event {
3624 struct task_struct *task;
3625 char *comm;
3626 int comm_size;
3627
3628 struct {
3629 struct perf_event_header header;
3630
3631 u32 pid;
3632 u32 tid;
3633 } event_id;
3634 };
3635
3636 static void perf_event_comm_output(struct perf_event *event,
3637 struct perf_comm_event *comm_event)
3638 {
3639 struct perf_output_handle handle;
3640 int size = comm_event->event_id.header.size;
3641 int ret = perf_output_begin(&handle, event, size, 0, 0);
3642
3643 if (ret)
3644 return;
3645
3646 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3647 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3648
3649 perf_output_put(&handle, comm_event->event_id);
3650 perf_output_copy(&handle, comm_event->comm,
3651 comm_event->comm_size);
3652 perf_output_end(&handle);
3653 }
3654
3655 static int perf_event_comm_match(struct perf_event *event)
3656 {
3657 if (event->state < PERF_EVENT_STATE_INACTIVE)
3658 return 0;
3659
3660 if (event->cpu != -1 && event->cpu != smp_processor_id())
3661 return 0;
3662
3663 if (event->attr.comm)
3664 return 1;
3665
3666 return 0;
3667 }
3668
3669 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3670 struct perf_comm_event *comm_event)
3671 {
3672 struct perf_event *event;
3673
3674 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3675 if (perf_event_comm_match(event))
3676 perf_event_comm_output(event, comm_event);
3677 }
3678 }
3679
3680 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3681 {
3682 struct perf_cpu_context *cpuctx;
3683 struct perf_event_context *ctx;
3684 unsigned int size;
3685 char comm[TASK_COMM_LEN];
3686
3687 memset(comm, 0, sizeof(comm));
3688 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3689 size = ALIGN(strlen(comm)+1, sizeof(u64));
3690
3691 comm_event->comm = comm;
3692 comm_event->comm_size = size;
3693
3694 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3695
3696 rcu_read_lock();
3697 cpuctx = &get_cpu_var(perf_cpu_context);
3698 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3699 ctx = rcu_dereference(current->perf_event_ctxp);
3700 if (ctx)
3701 perf_event_comm_ctx(ctx, comm_event);
3702 put_cpu_var(perf_cpu_context);
3703 rcu_read_unlock();
3704 }
3705
3706 void perf_event_comm(struct task_struct *task)
3707 {
3708 struct perf_comm_event comm_event;
3709
3710 if (task->perf_event_ctxp)
3711 perf_event_enable_on_exec(task);
3712
3713 if (!atomic_read(&nr_comm_events))
3714 return;
3715
3716 comm_event = (struct perf_comm_event){
3717 .task = task,
3718 /* .comm */
3719 /* .comm_size */
3720 .event_id = {
3721 .header = {
3722 .type = PERF_RECORD_COMM,
3723 .misc = 0,
3724 /* .size */
3725 },
3726 /* .pid */
3727 /* .tid */
3728 },
3729 };
3730
3731 perf_event_comm_event(&comm_event);
3732 }
3733
3734 /*
3735 * mmap tracking
3736 */
3737
3738 struct perf_mmap_event {
3739 struct vm_area_struct *vma;
3740
3741 const char *file_name;
3742 int file_size;
3743
3744 struct {
3745 struct perf_event_header header;
3746
3747 u32 pid;
3748 u32 tid;
3749 u64 start;
3750 u64 len;
3751 u64 pgoff;
3752 } event_id;
3753 };
3754
3755 static void perf_event_mmap_output(struct perf_event *event,
3756 struct perf_mmap_event *mmap_event)
3757 {
3758 struct perf_output_handle handle;
3759 int size = mmap_event->event_id.header.size;
3760 int ret = perf_output_begin(&handle, event, size, 0, 0);
3761
3762 if (ret)
3763 return;
3764
3765 mmap_event->event_id.pid = perf_event_pid(event, current);
3766 mmap_event->event_id.tid = perf_event_tid(event, current);
3767
3768 perf_output_put(&handle, mmap_event->event_id);
3769 perf_output_copy(&handle, mmap_event->file_name,
3770 mmap_event->file_size);
3771 perf_output_end(&handle);
3772 }
3773
3774 static int perf_event_mmap_match(struct perf_event *event,
3775 struct perf_mmap_event *mmap_event,
3776 int executable)
3777 {
3778 if (event->state < PERF_EVENT_STATE_INACTIVE)
3779 return 0;
3780
3781 if (event->cpu != -1 && event->cpu != smp_processor_id())
3782 return 0;
3783
3784 if ((!executable && event->attr.mmap_data) ||
3785 (executable && event->attr.mmap))
3786 return 1;
3787
3788 return 0;
3789 }
3790
3791 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3792 struct perf_mmap_event *mmap_event,
3793 int executable)
3794 {
3795 struct perf_event *event;
3796
3797 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3798 if (perf_event_mmap_match(event, mmap_event, executable))
3799 perf_event_mmap_output(event, mmap_event);
3800 }
3801 }
3802
3803 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3804 {
3805 struct perf_cpu_context *cpuctx;
3806 struct perf_event_context *ctx;
3807 struct vm_area_struct *vma = mmap_event->vma;
3808 struct file *file = vma->vm_file;
3809 unsigned int size;
3810 char tmp[16];
3811 char *buf = NULL;
3812 const char *name;
3813
3814 memset(tmp, 0, sizeof(tmp));
3815
3816 if (file) {
3817 /*
3818 * d_path works from the end of the buffer backwards, so we
3819 * need to add enough zero bytes after the string to handle
3820 * the 64bit alignment we do later.
3821 */
3822 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3823 if (!buf) {
3824 name = strncpy(tmp, "//enomem", sizeof(tmp));
3825 goto got_name;
3826 }
3827 name = d_path(&file->f_path, buf, PATH_MAX);
3828 if (IS_ERR(name)) {
3829 name = strncpy(tmp, "//toolong", sizeof(tmp));
3830 goto got_name;
3831 }
3832 } else {
3833 if (arch_vma_name(mmap_event->vma)) {
3834 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3835 sizeof(tmp));
3836 goto got_name;
3837 }
3838
3839 if (!vma->vm_mm) {
3840 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3841 goto got_name;
3842 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
3843 vma->vm_end >= vma->vm_mm->brk) {
3844 name = strncpy(tmp, "[heap]", sizeof(tmp));
3845 goto got_name;
3846 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
3847 vma->vm_end >= vma->vm_mm->start_stack) {
3848 name = strncpy(tmp, "[stack]", sizeof(tmp));
3849 goto got_name;
3850 }
3851
3852 name = strncpy(tmp, "//anon", sizeof(tmp));
3853 goto got_name;
3854 }
3855
3856 got_name:
3857 size = ALIGN(strlen(name)+1, sizeof(u64));
3858
3859 mmap_event->file_name = name;
3860 mmap_event->file_size = size;
3861
3862 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3863
3864 rcu_read_lock();
3865 cpuctx = &get_cpu_var(perf_cpu_context);
3866 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, vma->vm_flags & VM_EXEC);
3867 ctx = rcu_dereference(current->perf_event_ctxp);
3868 if (ctx)
3869 perf_event_mmap_ctx(ctx, mmap_event, vma->vm_flags & VM_EXEC);
3870 put_cpu_var(perf_cpu_context);
3871 rcu_read_unlock();
3872
3873 kfree(buf);
3874 }
3875
3876 void perf_event_mmap(struct vm_area_struct *vma)
3877 {
3878 struct perf_mmap_event mmap_event;
3879
3880 if (!atomic_read(&nr_mmap_events))
3881 return;
3882
3883 mmap_event = (struct perf_mmap_event){
3884 .vma = vma,
3885 /* .file_name */
3886 /* .file_size */
3887 .event_id = {
3888 .header = {
3889 .type = PERF_RECORD_MMAP,
3890 .misc = PERF_RECORD_MISC_USER,
3891 /* .size */
3892 },
3893 /* .pid */
3894 /* .tid */
3895 .start = vma->vm_start,
3896 .len = vma->vm_end - vma->vm_start,
3897 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
3898 },
3899 };
3900
3901 perf_event_mmap_event(&mmap_event);
3902 }
3903
3904 /*
3905 * IRQ throttle logging
3906 */
3907
3908 static void perf_log_throttle(struct perf_event *event, int enable)
3909 {
3910 struct perf_output_handle handle;
3911 int ret;
3912
3913 struct {
3914 struct perf_event_header header;
3915 u64 time;
3916 u64 id;
3917 u64 stream_id;
3918 } throttle_event = {
3919 .header = {
3920 .type = PERF_RECORD_THROTTLE,
3921 .misc = 0,
3922 .size = sizeof(throttle_event),
3923 },
3924 .time = perf_clock(),
3925 .id = primary_event_id(event),
3926 .stream_id = event->id,
3927 };
3928
3929 if (enable)
3930 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3931
3932 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3933 if (ret)
3934 return;
3935
3936 perf_output_put(&handle, throttle_event);
3937 perf_output_end(&handle);
3938 }
3939
3940 /*
3941 * Generic event overflow handling, sampling.
3942 */
3943
3944 static int __perf_event_overflow(struct perf_event *event, int nmi,
3945 int throttle, struct perf_sample_data *data,
3946 struct pt_regs *regs)
3947 {
3948 int events = atomic_read(&event->event_limit);
3949 struct hw_perf_event *hwc = &event->hw;
3950 int ret = 0;
3951
3952 throttle = (throttle && event->pmu->unthrottle != NULL);
3953
3954 if (!throttle) {
3955 hwc->interrupts++;
3956 } else {
3957 if (hwc->interrupts != MAX_INTERRUPTS) {
3958 hwc->interrupts++;
3959 if (HZ * hwc->interrupts >
3960 (u64)sysctl_perf_event_sample_rate) {
3961 hwc->interrupts = MAX_INTERRUPTS;
3962 perf_log_throttle(event, 0);
3963 ret = 1;
3964 }
3965 } else {
3966 /*
3967 * Keep re-disabling events even though on the previous
3968 * pass we disabled it - just in case we raced with a
3969 * sched-in and the event got enabled again:
3970 */
3971 ret = 1;
3972 }
3973 }
3974
3975 if (event->attr.freq) {
3976 u64 now = perf_clock();
3977 s64 delta = now - hwc->freq_time_stamp;
3978
3979 hwc->freq_time_stamp = now;
3980
3981 if (delta > 0 && delta < 2*TICK_NSEC)
3982 perf_adjust_period(event, delta, hwc->last_period);
3983 }
3984
3985 /*
3986 * XXX event_limit might not quite work as expected on inherited
3987 * events
3988 */
3989
3990 event->pending_kill = POLL_IN;
3991 if (events && atomic_dec_and_test(&event->event_limit)) {
3992 ret = 1;
3993 event->pending_kill = POLL_HUP;
3994 if (nmi) {
3995 event->pending_disable = 1;
3996 perf_pending_queue(&event->pending,
3997 perf_pending_event);
3998 } else
3999 perf_event_disable(event);
4000 }
4001
4002 if (event->overflow_handler)
4003 event->overflow_handler(event, nmi, data, regs);
4004 else
4005 perf_event_output(event, nmi, data, regs);
4006
4007 return ret;
4008 }
4009
4010 int perf_event_overflow(struct perf_event *event, int nmi,
4011 struct perf_sample_data *data,
4012 struct pt_regs *regs)
4013 {
4014 return __perf_event_overflow(event, nmi, 1, data, regs);
4015 }
4016
4017 /*
4018 * Generic software event infrastructure
4019 */
4020
4021 /*
4022 * We directly increment event->count and keep a second value in
4023 * event->hw.period_left to count intervals. This period event
4024 * is kept in the range [-sample_period, 0] so that we can use the
4025 * sign as trigger.
4026 */
4027
4028 static u64 perf_swevent_set_period(struct perf_event *event)
4029 {
4030 struct hw_perf_event *hwc = &event->hw;
4031 u64 period = hwc->last_period;
4032 u64 nr, offset;
4033 s64 old, val;
4034
4035 hwc->last_period = hwc->sample_period;
4036
4037 again:
4038 old = val = atomic64_read(&hwc->period_left);
4039 if (val < 0)
4040 return 0;
4041
4042 nr = div64_u64(period + val, period);
4043 offset = nr * period;
4044 val -= offset;
4045 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
4046 goto again;
4047
4048 return nr;
4049 }
4050
4051 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4052 int nmi, struct perf_sample_data *data,
4053 struct pt_regs *regs)
4054 {
4055 struct hw_perf_event *hwc = &event->hw;
4056 int throttle = 0;
4057
4058 data->period = event->hw.last_period;
4059 if (!overflow)
4060 overflow = perf_swevent_set_period(event);
4061
4062 if (hwc->interrupts == MAX_INTERRUPTS)
4063 return;
4064
4065 for (; overflow; overflow--) {
4066 if (__perf_event_overflow(event, nmi, throttle,
4067 data, regs)) {
4068 /*
4069 * We inhibit the overflow from happening when
4070 * hwc->interrupts == MAX_INTERRUPTS.
4071 */
4072 break;
4073 }
4074 throttle = 1;
4075 }
4076 }
4077
4078 static void perf_swevent_add(struct perf_event *event, u64 nr,
4079 int nmi, struct perf_sample_data *data,
4080 struct pt_regs *regs)
4081 {
4082 struct hw_perf_event *hwc = &event->hw;
4083
4084 atomic64_add(nr, &event->count);
4085
4086 if (!regs)
4087 return;
4088
4089 if (!hwc->sample_period)
4090 return;
4091
4092 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4093 return perf_swevent_overflow(event, 1, nmi, data, regs);
4094
4095 if (atomic64_add_negative(nr, &hwc->period_left))
4096 return;
4097
4098 perf_swevent_overflow(event, 0, nmi, data, regs);
4099 }
4100
4101 static int perf_exclude_event(struct perf_event *event,
4102 struct pt_regs *regs)
4103 {
4104 if (regs) {
4105 if (event->attr.exclude_user && user_mode(regs))
4106 return 1;
4107
4108 if (event->attr.exclude_kernel && !user_mode(regs))
4109 return 1;
4110 }
4111
4112 return 0;
4113 }
4114
4115 static int perf_swevent_match(struct perf_event *event,
4116 enum perf_type_id type,
4117 u32 event_id,
4118 struct perf_sample_data *data,
4119 struct pt_regs *regs)
4120 {
4121 if (event->attr.type != type)
4122 return 0;
4123
4124 if (event->attr.config != event_id)
4125 return 0;
4126
4127 if (perf_exclude_event(event, regs))
4128 return 0;
4129
4130 return 1;
4131 }
4132
4133 static inline u64 swevent_hash(u64 type, u32 event_id)
4134 {
4135 u64 val = event_id | (type << 32);
4136
4137 return hash_64(val, SWEVENT_HLIST_BITS);
4138 }
4139
4140 static inline struct hlist_head *
4141 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4142 {
4143 u64 hash = swevent_hash(type, event_id);
4144
4145 return &hlist->heads[hash];
4146 }
4147
4148 /* For the read side: events when they trigger */
4149 static inline struct hlist_head *
4150 find_swevent_head_rcu(struct perf_cpu_context *ctx, u64 type, u32 event_id)
4151 {
4152 struct swevent_hlist *hlist;
4153
4154 hlist = rcu_dereference(ctx->swevent_hlist);
4155 if (!hlist)
4156 return NULL;
4157
4158 return __find_swevent_head(hlist, type, event_id);
4159 }
4160
4161 /* For the event head insertion and removal in the hlist */
4162 static inline struct hlist_head *
4163 find_swevent_head(struct perf_cpu_context *ctx, struct perf_event *event)
4164 {
4165 struct swevent_hlist *hlist;
4166 u32 event_id = event->attr.config;
4167 u64 type = event->attr.type;
4168
4169 /*
4170 * Event scheduling is always serialized against hlist allocation
4171 * and release. Which makes the protected version suitable here.
4172 * The context lock guarantees that.
4173 */
4174 hlist = rcu_dereference_protected(ctx->swevent_hlist,
4175 lockdep_is_held(&event->ctx->lock));
4176 if (!hlist)
4177 return NULL;
4178
4179 return __find_swevent_head(hlist, type, event_id);
4180 }
4181
4182 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4183 u64 nr, int nmi,
4184 struct perf_sample_data *data,
4185 struct pt_regs *regs)
4186 {
4187 struct perf_cpu_context *cpuctx;
4188 struct perf_event *event;
4189 struct hlist_node *node;
4190 struct hlist_head *head;
4191
4192 cpuctx = &__get_cpu_var(perf_cpu_context);
4193
4194 rcu_read_lock();
4195
4196 head = find_swevent_head_rcu(cpuctx, type, event_id);
4197
4198 if (!head)
4199 goto end;
4200
4201 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4202 if (perf_swevent_match(event, type, event_id, data, regs))
4203 perf_swevent_add(event, nr, nmi, data, regs);
4204 }
4205 end:
4206 rcu_read_unlock();
4207 }
4208
4209 int perf_swevent_get_recursion_context(void)
4210 {
4211 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4212 int rctx;
4213
4214 if (in_nmi())
4215 rctx = 3;
4216 else if (in_irq())
4217 rctx = 2;
4218 else if (in_softirq())
4219 rctx = 1;
4220 else
4221 rctx = 0;
4222
4223 if (cpuctx->recursion[rctx])
4224 return -1;
4225
4226 cpuctx->recursion[rctx]++;
4227 barrier();
4228
4229 return rctx;
4230 }
4231 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4232
4233 void inline perf_swevent_put_recursion_context(int rctx)
4234 {
4235 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4236 barrier();
4237 cpuctx->recursion[rctx]--;
4238 }
4239
4240 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4241 struct pt_regs *regs, u64 addr)
4242 {
4243 struct perf_sample_data data;
4244 int rctx;
4245
4246 preempt_disable_notrace();
4247 rctx = perf_swevent_get_recursion_context();
4248 if (rctx < 0)
4249 return;
4250
4251 perf_sample_data_init(&data, addr);
4252
4253 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4254
4255 perf_swevent_put_recursion_context(rctx);
4256 preempt_enable_notrace();
4257 }
4258
4259 static void perf_swevent_read(struct perf_event *event)
4260 {
4261 }
4262
4263 static int perf_swevent_enable(struct perf_event *event)
4264 {
4265 struct hw_perf_event *hwc = &event->hw;
4266 struct perf_cpu_context *cpuctx;
4267 struct hlist_head *head;
4268
4269 cpuctx = &__get_cpu_var(perf_cpu_context);
4270
4271 if (hwc->sample_period) {
4272 hwc->last_period = hwc->sample_period;
4273 perf_swevent_set_period(event);
4274 }
4275
4276 head = find_swevent_head(cpuctx, event);
4277 if (WARN_ON_ONCE(!head))
4278 return -EINVAL;
4279
4280 hlist_add_head_rcu(&event->hlist_entry, head);
4281
4282 return 0;
4283 }
4284
4285 static void perf_swevent_disable(struct perf_event *event)
4286 {
4287 hlist_del_rcu(&event->hlist_entry);
4288 }
4289
4290 static void perf_swevent_void(struct perf_event *event)
4291 {
4292 }
4293
4294 static int perf_swevent_int(struct perf_event *event)
4295 {
4296 return 0;
4297 }
4298
4299 static const struct pmu perf_ops_generic = {
4300 .enable = perf_swevent_enable,
4301 .disable = perf_swevent_disable,
4302 .start = perf_swevent_int,
4303 .stop = perf_swevent_void,
4304 .read = perf_swevent_read,
4305 .unthrottle = perf_swevent_void, /* hwc->interrupts already reset */
4306 };
4307
4308 /*
4309 * hrtimer based swevent callback
4310 */
4311
4312 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4313 {
4314 enum hrtimer_restart ret = HRTIMER_RESTART;
4315 struct perf_sample_data data;
4316 struct pt_regs *regs;
4317 struct perf_event *event;
4318 u64 period;
4319
4320 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4321 event->pmu->read(event);
4322
4323 perf_sample_data_init(&data, 0);
4324 data.period = event->hw.last_period;
4325 regs = get_irq_regs();
4326
4327 if (regs && !perf_exclude_event(event, regs)) {
4328 if (!(event->attr.exclude_idle && current->pid == 0))
4329 if (perf_event_overflow(event, 0, &data, regs))
4330 ret = HRTIMER_NORESTART;
4331 }
4332
4333 period = max_t(u64, 10000, event->hw.sample_period);
4334 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4335
4336 return ret;
4337 }
4338
4339 static void perf_swevent_start_hrtimer(struct perf_event *event)
4340 {
4341 struct hw_perf_event *hwc = &event->hw;
4342
4343 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4344 hwc->hrtimer.function = perf_swevent_hrtimer;
4345 if (hwc->sample_period) {
4346 u64 period;
4347
4348 if (hwc->remaining) {
4349 if (hwc->remaining < 0)
4350 period = 10000;
4351 else
4352 period = hwc->remaining;
4353 hwc->remaining = 0;
4354 } else {
4355 period = max_t(u64, 10000, hwc->sample_period);
4356 }
4357 __hrtimer_start_range_ns(&hwc->hrtimer,
4358 ns_to_ktime(period), 0,
4359 HRTIMER_MODE_REL, 0);
4360 }
4361 }
4362
4363 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4364 {
4365 struct hw_perf_event *hwc = &event->hw;
4366
4367 if (hwc->sample_period) {
4368 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4369 hwc->remaining = ktime_to_ns(remaining);
4370
4371 hrtimer_cancel(&hwc->hrtimer);
4372 }
4373 }
4374
4375 /*
4376 * Software event: cpu wall time clock
4377 */
4378
4379 static void cpu_clock_perf_event_update(struct perf_event *event)
4380 {
4381 int cpu = raw_smp_processor_id();
4382 s64 prev;
4383 u64 now;
4384
4385 now = cpu_clock(cpu);
4386 prev = atomic64_xchg(&event->hw.prev_count, now);
4387 atomic64_add(now - prev, &event->count);
4388 }
4389
4390 static int cpu_clock_perf_event_enable(struct perf_event *event)
4391 {
4392 struct hw_perf_event *hwc = &event->hw;
4393 int cpu = raw_smp_processor_id();
4394
4395 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4396 perf_swevent_start_hrtimer(event);
4397
4398 return 0;
4399 }
4400
4401 static void cpu_clock_perf_event_disable(struct perf_event *event)
4402 {
4403 perf_swevent_cancel_hrtimer(event);
4404 cpu_clock_perf_event_update(event);
4405 }
4406
4407 static void cpu_clock_perf_event_read(struct perf_event *event)
4408 {
4409 cpu_clock_perf_event_update(event);
4410 }
4411
4412 static const struct pmu perf_ops_cpu_clock = {
4413 .enable = cpu_clock_perf_event_enable,
4414 .disable = cpu_clock_perf_event_disable,
4415 .read = cpu_clock_perf_event_read,
4416 };
4417
4418 /*
4419 * Software event: task time clock
4420 */
4421
4422 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4423 {
4424 u64 prev;
4425 s64 delta;
4426
4427 prev = atomic64_xchg(&event->hw.prev_count, now);
4428 delta = now - prev;
4429 atomic64_add(delta, &event->count);
4430 }
4431
4432 static int task_clock_perf_event_enable(struct perf_event *event)
4433 {
4434 struct hw_perf_event *hwc = &event->hw;
4435 u64 now;
4436
4437 now = event->ctx->time;
4438
4439 atomic64_set(&hwc->prev_count, now);
4440
4441 perf_swevent_start_hrtimer(event);
4442
4443 return 0;
4444 }
4445
4446 static void task_clock_perf_event_disable(struct perf_event *event)
4447 {
4448 perf_swevent_cancel_hrtimer(event);
4449 task_clock_perf_event_update(event, event->ctx->time);
4450
4451 }
4452
4453 static void task_clock_perf_event_read(struct perf_event *event)
4454 {
4455 u64 time;
4456
4457 if (!in_nmi()) {
4458 update_context_time(event->ctx);
4459 time = event->ctx->time;
4460 } else {
4461 u64 now = perf_clock();
4462 u64 delta = now - event->ctx->timestamp;
4463 time = event->ctx->time + delta;
4464 }
4465
4466 task_clock_perf_event_update(event, time);
4467 }
4468
4469 static const struct pmu perf_ops_task_clock = {
4470 .enable = task_clock_perf_event_enable,
4471 .disable = task_clock_perf_event_disable,
4472 .read = task_clock_perf_event_read,
4473 };
4474
4475 /* Deref the hlist from the update side */
4476 static inline struct swevent_hlist *
4477 swevent_hlist_deref(struct perf_cpu_context *cpuctx)
4478 {
4479 return rcu_dereference_protected(cpuctx->swevent_hlist,
4480 lockdep_is_held(&cpuctx->hlist_mutex));
4481 }
4482
4483 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4484 {
4485 struct swevent_hlist *hlist;
4486
4487 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4488 kfree(hlist);
4489 }
4490
4491 static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
4492 {
4493 struct swevent_hlist *hlist = swevent_hlist_deref(cpuctx);
4494
4495 if (!hlist)
4496 return;
4497
4498 rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
4499 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4500 }
4501
4502 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4503 {
4504 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4505
4506 mutex_lock(&cpuctx->hlist_mutex);
4507
4508 if (!--cpuctx->hlist_refcount)
4509 swevent_hlist_release(cpuctx);
4510
4511 mutex_unlock(&cpuctx->hlist_mutex);
4512 }
4513
4514 static void swevent_hlist_put(struct perf_event *event)
4515 {
4516 int cpu;
4517
4518 if (event->cpu != -1) {
4519 swevent_hlist_put_cpu(event, event->cpu);
4520 return;
4521 }
4522
4523 for_each_possible_cpu(cpu)
4524 swevent_hlist_put_cpu(event, cpu);
4525 }
4526
4527 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4528 {
4529 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4530 int err = 0;
4531
4532 mutex_lock(&cpuctx->hlist_mutex);
4533
4534 if (!swevent_hlist_deref(cpuctx) && cpu_online(cpu)) {
4535 struct swevent_hlist *hlist;
4536
4537 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4538 if (!hlist) {
4539 err = -ENOMEM;
4540 goto exit;
4541 }
4542 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
4543 }
4544 cpuctx->hlist_refcount++;
4545 exit:
4546 mutex_unlock(&cpuctx->hlist_mutex);
4547
4548 return err;
4549 }
4550
4551 static int swevent_hlist_get(struct perf_event *event)
4552 {
4553 int err;
4554 int cpu, failed_cpu;
4555
4556 if (event->cpu != -1)
4557 return swevent_hlist_get_cpu(event, event->cpu);
4558
4559 get_online_cpus();
4560 for_each_possible_cpu(cpu) {
4561 err = swevent_hlist_get_cpu(event, cpu);
4562 if (err) {
4563 failed_cpu = cpu;
4564 goto fail;
4565 }
4566 }
4567 put_online_cpus();
4568
4569 return 0;
4570 fail:
4571 for_each_possible_cpu(cpu) {
4572 if (cpu == failed_cpu)
4573 break;
4574 swevent_hlist_put_cpu(event, cpu);
4575 }
4576
4577 put_online_cpus();
4578 return err;
4579 }
4580
4581 #ifdef CONFIG_EVENT_TRACING
4582
4583 static const struct pmu perf_ops_tracepoint = {
4584 .enable = perf_trace_enable,
4585 .disable = perf_trace_disable,
4586 .start = perf_swevent_int,
4587 .stop = perf_swevent_void,
4588 .read = perf_swevent_read,
4589 .unthrottle = perf_swevent_void,
4590 };
4591
4592 static int perf_tp_filter_match(struct perf_event *event,
4593 struct perf_sample_data *data)
4594 {
4595 void *record = data->raw->data;
4596
4597 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4598 return 1;
4599 return 0;
4600 }
4601
4602 static int perf_tp_event_match(struct perf_event *event,
4603 struct perf_sample_data *data,
4604 struct pt_regs *regs)
4605 {
4606 /*
4607 * All tracepoints are from kernel-space.
4608 */
4609 if (event->attr.exclude_kernel)
4610 return 0;
4611
4612 if (!perf_tp_filter_match(event, data))
4613 return 0;
4614
4615 return 1;
4616 }
4617
4618 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4619 struct pt_regs *regs, struct hlist_head *head, int rctx)
4620 {
4621 struct perf_sample_data data;
4622 struct perf_event *event;
4623 struct hlist_node *node;
4624
4625 struct perf_raw_record raw = {
4626 .size = entry_size,
4627 .data = record,
4628 };
4629
4630 perf_sample_data_init(&data, addr);
4631 data.raw = &raw;
4632
4633 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4634 if (perf_tp_event_match(event, &data, regs))
4635 perf_swevent_add(event, count, 1, &data, regs);
4636 }
4637
4638 perf_swevent_put_recursion_context(rctx);
4639 }
4640 EXPORT_SYMBOL_GPL(perf_tp_event);
4641
4642 static void tp_perf_event_destroy(struct perf_event *event)
4643 {
4644 perf_trace_destroy(event);
4645 }
4646
4647 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4648 {
4649 int err;
4650
4651 /*
4652 * Raw tracepoint data is a severe data leak, only allow root to
4653 * have these.
4654 */
4655 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4656 perf_paranoid_tracepoint_raw() &&
4657 !capable(CAP_SYS_ADMIN))
4658 return ERR_PTR(-EPERM);
4659
4660 err = perf_trace_init(event);
4661 if (err)
4662 return NULL;
4663
4664 event->destroy = tp_perf_event_destroy;
4665
4666 return &perf_ops_tracepoint;
4667 }
4668
4669 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4670 {
4671 char *filter_str;
4672 int ret;
4673
4674 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4675 return -EINVAL;
4676
4677 filter_str = strndup_user(arg, PAGE_SIZE);
4678 if (IS_ERR(filter_str))
4679 return PTR_ERR(filter_str);
4680
4681 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4682
4683 kfree(filter_str);
4684 return ret;
4685 }
4686
4687 static void perf_event_free_filter(struct perf_event *event)
4688 {
4689 ftrace_profile_free_filter(event);
4690 }
4691
4692 #else
4693
4694 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4695 {
4696 return NULL;
4697 }
4698
4699 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4700 {
4701 return -ENOENT;
4702 }
4703
4704 static void perf_event_free_filter(struct perf_event *event)
4705 {
4706 }
4707
4708 #endif /* CONFIG_EVENT_TRACING */
4709
4710 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4711 static void bp_perf_event_destroy(struct perf_event *event)
4712 {
4713 release_bp_slot(event);
4714 }
4715
4716 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4717 {
4718 int err;
4719
4720 err = register_perf_hw_breakpoint(bp);
4721 if (err)
4722 return ERR_PTR(err);
4723
4724 bp->destroy = bp_perf_event_destroy;
4725
4726 return &perf_ops_bp;
4727 }
4728
4729 void perf_bp_event(struct perf_event *bp, void *data)
4730 {
4731 struct perf_sample_data sample;
4732 struct pt_regs *regs = data;
4733
4734 perf_sample_data_init(&sample, bp->attr.bp_addr);
4735
4736 if (!perf_exclude_event(bp, regs))
4737 perf_swevent_add(bp, 1, 1, &sample, regs);
4738 }
4739 #else
4740 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4741 {
4742 return NULL;
4743 }
4744
4745 void perf_bp_event(struct perf_event *bp, void *regs)
4746 {
4747 }
4748 #endif
4749
4750 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4751
4752 static void sw_perf_event_destroy(struct perf_event *event)
4753 {
4754 u64 event_id = event->attr.config;
4755
4756 WARN_ON(event->parent);
4757
4758 atomic_dec(&perf_swevent_enabled[event_id]);
4759 swevent_hlist_put(event);
4760 }
4761
4762 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4763 {
4764 const struct pmu *pmu = NULL;
4765 u64 event_id = event->attr.config;
4766
4767 /*
4768 * Software events (currently) can't in general distinguish
4769 * between user, kernel and hypervisor events.
4770 * However, context switches and cpu migrations are considered
4771 * to be kernel events, and page faults are never hypervisor
4772 * events.
4773 */
4774 switch (event_id) {
4775 case PERF_COUNT_SW_CPU_CLOCK:
4776 pmu = &perf_ops_cpu_clock;
4777
4778 break;
4779 case PERF_COUNT_SW_TASK_CLOCK:
4780 /*
4781 * If the user instantiates this as a per-cpu event,
4782 * use the cpu_clock event instead.
4783 */
4784 if (event->ctx->task)
4785 pmu = &perf_ops_task_clock;
4786 else
4787 pmu = &perf_ops_cpu_clock;
4788
4789 break;
4790 case PERF_COUNT_SW_PAGE_FAULTS:
4791 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4792 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4793 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4794 case PERF_COUNT_SW_CPU_MIGRATIONS:
4795 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4796 case PERF_COUNT_SW_EMULATION_FAULTS:
4797 if (!event->parent) {
4798 int err;
4799
4800 err = swevent_hlist_get(event);
4801 if (err)
4802 return ERR_PTR(err);
4803
4804 atomic_inc(&perf_swevent_enabled[event_id]);
4805 event->destroy = sw_perf_event_destroy;
4806 }
4807 pmu = &perf_ops_generic;
4808 break;
4809 }
4810
4811 return pmu;
4812 }
4813
4814 /*
4815 * Allocate and initialize a event structure
4816 */
4817 static struct perf_event *
4818 perf_event_alloc(struct perf_event_attr *attr,
4819 int cpu,
4820 struct perf_event_context *ctx,
4821 struct perf_event *group_leader,
4822 struct perf_event *parent_event,
4823 perf_overflow_handler_t overflow_handler,
4824 gfp_t gfpflags)
4825 {
4826 const struct pmu *pmu;
4827 struct perf_event *event;
4828 struct hw_perf_event *hwc;
4829 long err;
4830
4831 event = kzalloc(sizeof(*event), gfpflags);
4832 if (!event)
4833 return ERR_PTR(-ENOMEM);
4834
4835 /*
4836 * Single events are their own group leaders, with an
4837 * empty sibling list:
4838 */
4839 if (!group_leader)
4840 group_leader = event;
4841
4842 mutex_init(&event->child_mutex);
4843 INIT_LIST_HEAD(&event->child_list);
4844
4845 INIT_LIST_HEAD(&event->group_entry);
4846 INIT_LIST_HEAD(&event->event_entry);
4847 INIT_LIST_HEAD(&event->sibling_list);
4848 init_waitqueue_head(&event->waitq);
4849
4850 mutex_init(&event->mmap_mutex);
4851
4852 event->cpu = cpu;
4853 event->attr = *attr;
4854 event->group_leader = group_leader;
4855 event->pmu = NULL;
4856 event->ctx = ctx;
4857 event->oncpu = -1;
4858
4859 event->parent = parent_event;
4860
4861 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4862 event->id = atomic64_inc_return(&perf_event_id);
4863
4864 event->state = PERF_EVENT_STATE_INACTIVE;
4865
4866 if (!overflow_handler && parent_event)
4867 overflow_handler = parent_event->overflow_handler;
4868
4869 event->overflow_handler = overflow_handler;
4870
4871 if (attr->disabled)
4872 event->state = PERF_EVENT_STATE_OFF;
4873
4874 pmu = NULL;
4875
4876 hwc = &event->hw;
4877 hwc->sample_period = attr->sample_period;
4878 if (attr->freq && attr->sample_freq)
4879 hwc->sample_period = 1;
4880 hwc->last_period = hwc->sample_period;
4881
4882 atomic64_set(&hwc->period_left, hwc->sample_period);
4883
4884 /*
4885 * we currently do not support PERF_FORMAT_GROUP on inherited events
4886 */
4887 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4888 goto done;
4889
4890 switch (attr->type) {
4891 case PERF_TYPE_RAW:
4892 case PERF_TYPE_HARDWARE:
4893 case PERF_TYPE_HW_CACHE:
4894 pmu = hw_perf_event_init(event);
4895 break;
4896
4897 case PERF_TYPE_SOFTWARE:
4898 pmu = sw_perf_event_init(event);
4899 break;
4900
4901 case PERF_TYPE_TRACEPOINT:
4902 pmu = tp_perf_event_init(event);
4903 break;
4904
4905 case PERF_TYPE_BREAKPOINT:
4906 pmu = bp_perf_event_init(event);
4907 break;
4908
4909
4910 default:
4911 break;
4912 }
4913 done:
4914 err = 0;
4915 if (!pmu)
4916 err = -EINVAL;
4917 else if (IS_ERR(pmu))
4918 err = PTR_ERR(pmu);
4919
4920 if (err) {
4921 if (event->ns)
4922 put_pid_ns(event->ns);
4923 kfree(event);
4924 return ERR_PTR(err);
4925 }
4926
4927 event->pmu = pmu;
4928
4929 if (!event->parent) {
4930 atomic_inc(&nr_events);
4931 if (event->attr.mmap || event->attr.mmap_data)
4932 atomic_inc(&nr_mmap_events);
4933 if (event->attr.comm)
4934 atomic_inc(&nr_comm_events);
4935 if (event->attr.task)
4936 atomic_inc(&nr_task_events);
4937 }
4938
4939 return event;
4940 }
4941
4942 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4943 struct perf_event_attr *attr)
4944 {
4945 u32 size;
4946 int ret;
4947
4948 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4949 return -EFAULT;
4950
4951 /*
4952 * zero the full structure, so that a short copy will be nice.
4953 */
4954 memset(attr, 0, sizeof(*attr));
4955
4956 ret = get_user(size, &uattr->size);
4957 if (ret)
4958 return ret;
4959
4960 if (size > PAGE_SIZE) /* silly large */
4961 goto err_size;
4962
4963 if (!size) /* abi compat */
4964 size = PERF_ATTR_SIZE_VER0;
4965
4966 if (size < PERF_ATTR_SIZE_VER0)
4967 goto err_size;
4968
4969 /*
4970 * If we're handed a bigger struct than we know of,
4971 * ensure all the unknown bits are 0 - i.e. new
4972 * user-space does not rely on any kernel feature
4973 * extensions we dont know about yet.
4974 */
4975 if (size > sizeof(*attr)) {
4976 unsigned char __user *addr;
4977 unsigned char __user *end;
4978 unsigned char val;
4979
4980 addr = (void __user *)uattr + sizeof(*attr);
4981 end = (void __user *)uattr + size;
4982
4983 for (; addr < end; addr++) {
4984 ret = get_user(val, addr);
4985 if (ret)
4986 return ret;
4987 if (val)
4988 goto err_size;
4989 }
4990 size = sizeof(*attr);
4991 }
4992
4993 ret = copy_from_user(attr, uattr, size);
4994 if (ret)
4995 return -EFAULT;
4996
4997 /*
4998 * If the type exists, the corresponding creation will verify
4999 * the attr->config.
5000 */
5001 if (attr->type >= PERF_TYPE_MAX)
5002 return -EINVAL;
5003
5004 if (attr->__reserved_1)
5005 return -EINVAL;
5006
5007 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5008 return -EINVAL;
5009
5010 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5011 return -EINVAL;
5012
5013 out:
5014 return ret;
5015
5016 err_size:
5017 put_user(sizeof(*attr), &uattr->size);
5018 ret = -E2BIG;
5019 goto out;
5020 }
5021
5022 static int
5023 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5024 {
5025 struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5026 int ret = -EINVAL;
5027
5028 if (!output_event)
5029 goto set;
5030
5031 /* don't allow circular references */
5032 if (event == output_event)
5033 goto out;
5034
5035 /*
5036 * Don't allow cross-cpu buffers
5037 */
5038 if (output_event->cpu != event->cpu)
5039 goto out;
5040
5041 /*
5042 * If its not a per-cpu buffer, it must be the same task.
5043 */
5044 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5045 goto out;
5046
5047 set:
5048 mutex_lock(&event->mmap_mutex);
5049 /* Can't redirect output if we've got an active mmap() */
5050 if (atomic_read(&event->mmap_count))
5051 goto unlock;
5052
5053 if (output_event) {
5054 /* get the buffer we want to redirect to */
5055 buffer = perf_buffer_get(output_event);
5056 if (!buffer)
5057 goto unlock;
5058 }
5059
5060 old_buffer = event->buffer;
5061 rcu_assign_pointer(event->buffer, buffer);
5062 ret = 0;
5063 unlock:
5064 mutex_unlock(&event->mmap_mutex);
5065
5066 if (old_buffer)
5067 perf_buffer_put(old_buffer);
5068 out:
5069 return ret;
5070 }
5071
5072 /**
5073 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5074 *
5075 * @attr_uptr: event_id type attributes for monitoring/sampling
5076 * @pid: target pid
5077 * @cpu: target cpu
5078 * @group_fd: group leader event fd
5079 */
5080 SYSCALL_DEFINE5(perf_event_open,
5081 struct perf_event_attr __user *, attr_uptr,
5082 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5083 {
5084 struct perf_event *event, *group_leader = NULL, *output_event = NULL;
5085 struct perf_event_attr attr;
5086 struct perf_event_context *ctx;
5087 struct file *event_file = NULL;
5088 struct file *group_file = NULL;
5089 int event_fd;
5090 int fput_needed = 0;
5091 int err;
5092
5093 /* for future expandability... */
5094 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5095 return -EINVAL;
5096
5097 err = perf_copy_attr(attr_uptr, &attr);
5098 if (err)
5099 return err;
5100
5101 if (!attr.exclude_kernel) {
5102 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5103 return -EACCES;
5104 }
5105
5106 if (attr.freq) {
5107 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5108 return -EINVAL;
5109 }
5110
5111 event_fd = get_unused_fd_flags(O_RDWR);
5112 if (event_fd < 0)
5113 return event_fd;
5114
5115 /*
5116 * Get the target context (task or percpu):
5117 */
5118 ctx = find_get_context(pid, cpu);
5119 if (IS_ERR(ctx)) {
5120 err = PTR_ERR(ctx);
5121 goto err_fd;
5122 }
5123
5124 if (group_fd != -1) {
5125 group_leader = perf_fget_light(group_fd, &fput_needed);
5126 if (IS_ERR(group_leader)) {
5127 err = PTR_ERR(group_leader);
5128 goto err_put_context;
5129 }
5130 group_file = group_leader->filp;
5131 if (flags & PERF_FLAG_FD_OUTPUT)
5132 output_event = group_leader;
5133 if (flags & PERF_FLAG_FD_NO_GROUP)
5134 group_leader = NULL;
5135 }
5136
5137 /*
5138 * Look up the group leader (we will attach this event to it):
5139 */
5140 if (group_leader) {
5141 err = -EINVAL;
5142
5143 /*
5144 * Do not allow a recursive hierarchy (this new sibling
5145 * becoming part of another group-sibling):
5146 */
5147 if (group_leader->group_leader != group_leader)
5148 goto err_put_context;
5149 /*
5150 * Do not allow to attach to a group in a different
5151 * task or CPU context:
5152 */
5153 if (group_leader->ctx != ctx)
5154 goto err_put_context;
5155 /*
5156 * Only a group leader can be exclusive or pinned
5157 */
5158 if (attr.exclusive || attr.pinned)
5159 goto err_put_context;
5160 }
5161
5162 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
5163 NULL, NULL, GFP_KERNEL);
5164 if (IS_ERR(event)) {
5165 err = PTR_ERR(event);
5166 goto err_put_context;
5167 }
5168
5169 if (output_event) {
5170 err = perf_event_set_output(event, output_event);
5171 if (err)
5172 goto err_free_put_context;
5173 }
5174
5175 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5176 if (IS_ERR(event_file)) {
5177 err = PTR_ERR(event_file);
5178 goto err_free_put_context;
5179 }
5180
5181 event->filp = event_file;
5182 WARN_ON_ONCE(ctx->parent_ctx);
5183 mutex_lock(&ctx->mutex);
5184 perf_install_in_context(ctx, event, cpu);
5185 ++ctx->generation;
5186 mutex_unlock(&ctx->mutex);
5187
5188 event->owner = current;
5189 get_task_struct(current);
5190 mutex_lock(&current->perf_event_mutex);
5191 list_add_tail(&event->owner_entry, &current->perf_event_list);
5192 mutex_unlock(&current->perf_event_mutex);
5193
5194 /*
5195 * Drop the reference on the group_event after placing the
5196 * new event on the sibling_list. This ensures destruction
5197 * of the group leader will find the pointer to itself in
5198 * perf_group_detach().
5199 */
5200 fput_light(group_file, fput_needed);
5201 fd_install(event_fd, event_file);
5202 return event_fd;
5203
5204 err_free_put_context:
5205 free_event(event);
5206 err_put_context:
5207 fput_light(group_file, fput_needed);
5208 put_ctx(ctx);
5209 err_fd:
5210 put_unused_fd(event_fd);
5211 return err;
5212 }
5213
5214 /**
5215 * perf_event_create_kernel_counter
5216 *
5217 * @attr: attributes of the counter to create
5218 * @cpu: cpu in which the counter is bound
5219 * @pid: task to profile
5220 */
5221 struct perf_event *
5222 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5223 pid_t pid,
5224 perf_overflow_handler_t overflow_handler)
5225 {
5226 struct perf_event *event;
5227 struct perf_event_context *ctx;
5228 int err;
5229
5230 /*
5231 * Get the target context (task or percpu):
5232 */
5233
5234 ctx = find_get_context(pid, cpu);
5235 if (IS_ERR(ctx)) {
5236 err = PTR_ERR(ctx);
5237 goto err_exit;
5238 }
5239
5240 event = perf_event_alloc(attr, cpu, ctx, NULL,
5241 NULL, overflow_handler, GFP_KERNEL);
5242 if (IS_ERR(event)) {
5243 err = PTR_ERR(event);
5244 goto err_put_context;
5245 }
5246
5247 event->filp = NULL;
5248 WARN_ON_ONCE(ctx->parent_ctx);
5249 mutex_lock(&ctx->mutex);
5250 perf_install_in_context(ctx, event, cpu);
5251 ++ctx->generation;
5252 mutex_unlock(&ctx->mutex);
5253
5254 event->owner = current;
5255 get_task_struct(current);
5256 mutex_lock(&current->perf_event_mutex);
5257 list_add_tail(&event->owner_entry, &current->perf_event_list);
5258 mutex_unlock(&current->perf_event_mutex);
5259
5260 return event;
5261
5262 err_put_context:
5263 put_ctx(ctx);
5264 err_exit:
5265 return ERR_PTR(err);
5266 }
5267 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5268
5269 /*
5270 * inherit a event from parent task to child task:
5271 */
5272 static struct perf_event *
5273 inherit_event(struct perf_event *parent_event,
5274 struct task_struct *parent,
5275 struct perf_event_context *parent_ctx,
5276 struct task_struct *child,
5277 struct perf_event *group_leader,
5278 struct perf_event_context *child_ctx)
5279 {
5280 struct perf_event *child_event;
5281
5282 /*
5283 * Instead of creating recursive hierarchies of events,
5284 * we link inherited events back to the original parent,
5285 * which has a filp for sure, which we use as the reference
5286 * count:
5287 */
5288 if (parent_event->parent)
5289 parent_event = parent_event->parent;
5290
5291 child_event = perf_event_alloc(&parent_event->attr,
5292 parent_event->cpu, child_ctx,
5293 group_leader, parent_event,
5294 NULL, GFP_KERNEL);
5295 if (IS_ERR(child_event))
5296 return child_event;
5297 get_ctx(child_ctx);
5298
5299 /*
5300 * Make the child state follow the state of the parent event,
5301 * not its attr.disabled bit. We hold the parent's mutex,
5302 * so we won't race with perf_event_{en, dis}able_family.
5303 */
5304 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5305 child_event->state = PERF_EVENT_STATE_INACTIVE;
5306 else
5307 child_event->state = PERF_EVENT_STATE_OFF;
5308
5309 if (parent_event->attr.freq) {
5310 u64 sample_period = parent_event->hw.sample_period;
5311 struct hw_perf_event *hwc = &child_event->hw;
5312
5313 hwc->sample_period = sample_period;
5314 hwc->last_period = sample_period;
5315
5316 atomic64_set(&hwc->period_left, sample_period);
5317 }
5318
5319 child_event->overflow_handler = parent_event->overflow_handler;
5320
5321 /*
5322 * Link it up in the child's context:
5323 */
5324 add_event_to_ctx(child_event, child_ctx);
5325
5326 /*
5327 * Get a reference to the parent filp - we will fput it
5328 * when the child event exits. This is safe to do because
5329 * we are in the parent and we know that the filp still
5330 * exists and has a nonzero count:
5331 */
5332 atomic_long_inc(&parent_event->filp->f_count);
5333
5334 /*
5335 * Link this into the parent event's child list
5336 */
5337 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5338 mutex_lock(&parent_event->child_mutex);
5339 list_add_tail(&child_event->child_list, &parent_event->child_list);
5340 mutex_unlock(&parent_event->child_mutex);
5341
5342 return child_event;
5343 }
5344
5345 static int inherit_group(struct perf_event *parent_event,
5346 struct task_struct *parent,
5347 struct perf_event_context *parent_ctx,
5348 struct task_struct *child,
5349 struct perf_event_context *child_ctx)
5350 {
5351 struct perf_event *leader;
5352 struct perf_event *sub;
5353 struct perf_event *child_ctr;
5354
5355 leader = inherit_event(parent_event, parent, parent_ctx,
5356 child, NULL, child_ctx);
5357 if (IS_ERR(leader))
5358 return PTR_ERR(leader);
5359 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5360 child_ctr = inherit_event(sub, parent, parent_ctx,
5361 child, leader, child_ctx);
5362 if (IS_ERR(child_ctr))
5363 return PTR_ERR(child_ctr);
5364 }
5365 return 0;
5366 }
5367
5368 static void sync_child_event(struct perf_event *child_event,
5369 struct task_struct *child)
5370 {
5371 struct perf_event *parent_event = child_event->parent;
5372 u64 child_val;
5373
5374 if (child_event->attr.inherit_stat)
5375 perf_event_read_event(child_event, child);
5376
5377 child_val = perf_event_count(child_event);
5378
5379 /*
5380 * Add back the child's count to the parent's count:
5381 */
5382 atomic64_add(child_val, &parent_event->child_count);
5383 atomic64_add(child_event->total_time_enabled,
5384 &parent_event->child_total_time_enabled);
5385 atomic64_add(child_event->total_time_running,
5386 &parent_event->child_total_time_running);
5387
5388 /*
5389 * Remove this event from the parent's list
5390 */
5391 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5392 mutex_lock(&parent_event->child_mutex);
5393 list_del_init(&child_event->child_list);
5394 mutex_unlock(&parent_event->child_mutex);
5395
5396 /*
5397 * Release the parent event, if this was the last
5398 * reference to it.
5399 */
5400 fput(parent_event->filp);
5401 }
5402
5403 static void
5404 __perf_event_exit_task(struct perf_event *child_event,
5405 struct perf_event_context *child_ctx,
5406 struct task_struct *child)
5407 {
5408 struct perf_event *parent_event;
5409
5410 perf_event_remove_from_context(child_event);
5411
5412 parent_event = child_event->parent;
5413 /*
5414 * It can happen that parent exits first, and has events
5415 * that are still around due to the child reference. These
5416 * events need to be zapped - but otherwise linger.
5417 */
5418 if (parent_event) {
5419 sync_child_event(child_event, child);
5420 free_event(child_event);
5421 }
5422 }
5423
5424 /*
5425 * When a child task exits, feed back event values to parent events.
5426 */
5427 void perf_event_exit_task(struct task_struct *child)
5428 {
5429 struct perf_event *child_event, *tmp;
5430 struct perf_event_context *child_ctx;
5431 unsigned long flags;
5432
5433 if (likely(!child->perf_event_ctxp)) {
5434 perf_event_task(child, NULL, 0);
5435 return;
5436 }
5437
5438 local_irq_save(flags);
5439 /*
5440 * We can't reschedule here because interrupts are disabled,
5441 * and either child is current or it is a task that can't be
5442 * scheduled, so we are now safe from rescheduling changing
5443 * our context.
5444 */
5445 child_ctx = child->perf_event_ctxp;
5446 __perf_event_task_sched_out(child_ctx);
5447
5448 /*
5449 * Take the context lock here so that if find_get_context is
5450 * reading child->perf_event_ctxp, we wait until it has
5451 * incremented the context's refcount before we do put_ctx below.
5452 */
5453 raw_spin_lock(&child_ctx->lock);
5454 child->perf_event_ctxp = NULL;
5455 /*
5456 * If this context is a clone; unclone it so it can't get
5457 * swapped to another process while we're removing all
5458 * the events from it.
5459 */
5460 unclone_ctx(child_ctx);
5461 update_context_time(child_ctx);
5462 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5463
5464 /*
5465 * Report the task dead after unscheduling the events so that we
5466 * won't get any samples after PERF_RECORD_EXIT. We can however still
5467 * get a few PERF_RECORD_READ events.
5468 */
5469 perf_event_task(child, child_ctx, 0);
5470
5471 /*
5472 * We can recurse on the same lock type through:
5473 *
5474 * __perf_event_exit_task()
5475 * sync_child_event()
5476 * fput(parent_event->filp)
5477 * perf_release()
5478 * mutex_lock(&ctx->mutex)
5479 *
5480 * But since its the parent context it won't be the same instance.
5481 */
5482 mutex_lock(&child_ctx->mutex);
5483
5484 again:
5485 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5486 group_entry)
5487 __perf_event_exit_task(child_event, child_ctx, child);
5488
5489 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5490 group_entry)
5491 __perf_event_exit_task(child_event, child_ctx, child);
5492
5493 /*
5494 * If the last event was a group event, it will have appended all
5495 * its siblings to the list, but we obtained 'tmp' before that which
5496 * will still point to the list head terminating the iteration.
5497 */
5498 if (!list_empty(&child_ctx->pinned_groups) ||
5499 !list_empty(&child_ctx->flexible_groups))
5500 goto again;
5501
5502 mutex_unlock(&child_ctx->mutex);
5503
5504 put_ctx(child_ctx);
5505 }
5506
5507 static void perf_free_event(struct perf_event *event,
5508 struct perf_event_context *ctx)
5509 {
5510 struct perf_event *parent = event->parent;
5511
5512 if (WARN_ON_ONCE(!parent))
5513 return;
5514
5515 mutex_lock(&parent->child_mutex);
5516 list_del_init(&event->child_list);
5517 mutex_unlock(&parent->child_mutex);
5518
5519 fput(parent->filp);
5520
5521 perf_group_detach(event);
5522 list_del_event(event, ctx);
5523 free_event(event);
5524 }
5525
5526 /*
5527 * free an unexposed, unused context as created by inheritance by
5528 * init_task below, used by fork() in case of fail.
5529 */
5530 void perf_event_free_task(struct task_struct *task)
5531 {
5532 struct perf_event_context *ctx = task->perf_event_ctxp;
5533 struct perf_event *event, *tmp;
5534
5535 if (!ctx)
5536 return;
5537
5538 mutex_lock(&ctx->mutex);
5539 again:
5540 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5541 perf_free_event(event, ctx);
5542
5543 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5544 group_entry)
5545 perf_free_event(event, ctx);
5546
5547 if (!list_empty(&ctx->pinned_groups) ||
5548 !list_empty(&ctx->flexible_groups))
5549 goto again;
5550
5551 mutex_unlock(&ctx->mutex);
5552
5553 put_ctx(ctx);
5554 }
5555
5556 static int
5557 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5558 struct perf_event_context *parent_ctx,
5559 struct task_struct *child,
5560 int *inherited_all)
5561 {
5562 int ret;
5563 struct perf_event_context *child_ctx = child->perf_event_ctxp;
5564
5565 if (!event->attr.inherit) {
5566 *inherited_all = 0;
5567 return 0;
5568 }
5569
5570 if (!child_ctx) {
5571 /*
5572 * This is executed from the parent task context, so
5573 * inherit events that have been marked for cloning.
5574 * First allocate and initialize a context for the
5575 * child.
5576 */
5577
5578 child_ctx = kzalloc(sizeof(struct perf_event_context),
5579 GFP_KERNEL);
5580 if (!child_ctx)
5581 return -ENOMEM;
5582
5583 __perf_event_init_context(child_ctx, child);
5584 child->perf_event_ctxp = child_ctx;
5585 get_task_struct(child);
5586 }
5587
5588 ret = inherit_group(event, parent, parent_ctx,
5589 child, child_ctx);
5590
5591 if (ret)
5592 *inherited_all = 0;
5593
5594 return ret;
5595 }
5596
5597
5598 /*
5599 * Initialize the perf_event context in task_struct
5600 */
5601 int perf_event_init_task(struct task_struct *child)
5602 {
5603 struct perf_event_context *child_ctx, *parent_ctx;
5604 struct perf_event_context *cloned_ctx;
5605 struct perf_event *event;
5606 struct task_struct *parent = current;
5607 int inherited_all = 1;
5608 int ret = 0;
5609
5610 child->perf_event_ctxp = NULL;
5611
5612 mutex_init(&child->perf_event_mutex);
5613 INIT_LIST_HEAD(&child->perf_event_list);
5614
5615 if (likely(!parent->perf_event_ctxp))
5616 return 0;
5617
5618 /*
5619 * If the parent's context is a clone, pin it so it won't get
5620 * swapped under us.
5621 */
5622 parent_ctx = perf_pin_task_context(parent);
5623
5624 /*
5625 * No need to check if parent_ctx != NULL here; since we saw
5626 * it non-NULL earlier, the only reason for it to become NULL
5627 * is if we exit, and since we're currently in the middle of
5628 * a fork we can't be exiting at the same time.
5629 */
5630
5631 /*
5632 * Lock the parent list. No need to lock the child - not PID
5633 * hashed yet and not running, so nobody can access it.
5634 */
5635 mutex_lock(&parent_ctx->mutex);
5636
5637 /*
5638 * We dont have to disable NMIs - we are only looking at
5639 * the list, not manipulating it:
5640 */
5641 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5642 ret = inherit_task_group(event, parent, parent_ctx, child,
5643 &inherited_all);
5644 if (ret)
5645 break;
5646 }
5647
5648 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5649 ret = inherit_task_group(event, parent, parent_ctx, child,
5650 &inherited_all);
5651 if (ret)
5652 break;
5653 }
5654
5655 child_ctx = child->perf_event_ctxp;
5656
5657 if (child_ctx && inherited_all) {
5658 /*
5659 * Mark the child context as a clone of the parent
5660 * context, or of whatever the parent is a clone of.
5661 * Note that if the parent is a clone, it could get
5662 * uncloned at any point, but that doesn't matter
5663 * because the list of events and the generation
5664 * count can't have changed since we took the mutex.
5665 */
5666 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5667 if (cloned_ctx) {
5668 child_ctx->parent_ctx = cloned_ctx;
5669 child_ctx->parent_gen = parent_ctx->parent_gen;
5670 } else {
5671 child_ctx->parent_ctx = parent_ctx;
5672 child_ctx->parent_gen = parent_ctx->generation;
5673 }
5674 get_ctx(child_ctx->parent_ctx);
5675 }
5676
5677 mutex_unlock(&parent_ctx->mutex);
5678
5679 perf_unpin_context(parent_ctx);
5680
5681 return ret;
5682 }
5683
5684 static void __init perf_event_init_all_cpus(void)
5685 {
5686 int cpu;
5687 struct perf_cpu_context *cpuctx;
5688
5689 for_each_possible_cpu(cpu) {
5690 cpuctx = &per_cpu(perf_cpu_context, cpu);
5691 mutex_init(&cpuctx->hlist_mutex);
5692 __perf_event_init_context(&cpuctx->ctx, NULL);
5693 }
5694 }
5695
5696 static void __cpuinit perf_event_init_cpu(int cpu)
5697 {
5698 struct perf_cpu_context *cpuctx;
5699
5700 cpuctx = &per_cpu(perf_cpu_context, cpu);
5701
5702 spin_lock(&perf_resource_lock);
5703 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5704 spin_unlock(&perf_resource_lock);
5705
5706 mutex_lock(&cpuctx->hlist_mutex);
5707 if (cpuctx->hlist_refcount > 0) {
5708 struct swevent_hlist *hlist;
5709
5710 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5711 WARN_ON_ONCE(!hlist);
5712 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
5713 }
5714 mutex_unlock(&cpuctx->hlist_mutex);
5715 }
5716
5717 #ifdef CONFIG_HOTPLUG_CPU
5718 static void __perf_event_exit_cpu(void *info)
5719 {
5720 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5721 struct perf_event_context *ctx = &cpuctx->ctx;
5722 struct perf_event *event, *tmp;
5723
5724 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5725 __perf_event_remove_from_context(event);
5726 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5727 __perf_event_remove_from_context(event);
5728 }
5729 static void perf_event_exit_cpu(int cpu)
5730 {
5731 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5732 struct perf_event_context *ctx = &cpuctx->ctx;
5733
5734 mutex_lock(&cpuctx->hlist_mutex);
5735 swevent_hlist_release(cpuctx);
5736 mutex_unlock(&cpuctx->hlist_mutex);
5737
5738 mutex_lock(&ctx->mutex);
5739 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5740 mutex_unlock(&ctx->mutex);
5741 }
5742 #else
5743 static inline void perf_event_exit_cpu(int cpu) { }
5744 #endif
5745
5746 static int __cpuinit
5747 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5748 {
5749 unsigned int cpu = (long)hcpu;
5750
5751 switch (action) {
5752
5753 case CPU_UP_PREPARE:
5754 case CPU_UP_PREPARE_FROZEN:
5755 perf_event_init_cpu(cpu);
5756 break;
5757
5758 case CPU_DOWN_PREPARE:
5759 case CPU_DOWN_PREPARE_FROZEN:
5760 perf_event_exit_cpu(cpu);
5761 break;
5762
5763 default:
5764 break;
5765 }
5766
5767 return NOTIFY_OK;
5768 }
5769
5770 /*
5771 * This has to have a higher priority than migration_notifier in sched.c.
5772 */
5773 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5774 .notifier_call = perf_cpu_notify,
5775 .priority = 20,
5776 };
5777
5778 void __init perf_event_init(void)
5779 {
5780 perf_event_init_all_cpus();
5781 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5782 (void *)(long)smp_processor_id());
5783 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5784 (void *)(long)smp_processor_id());
5785 register_cpu_notifier(&perf_cpu_nb);
5786 }
5787
5788 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5789 struct sysdev_class_attribute *attr,
5790 char *buf)
5791 {
5792 return sprintf(buf, "%d\n", perf_reserved_percpu);
5793 }
5794
5795 static ssize_t
5796 perf_set_reserve_percpu(struct sysdev_class *class,
5797 struct sysdev_class_attribute *attr,
5798 const char *buf,
5799 size_t count)
5800 {
5801 struct perf_cpu_context *cpuctx;
5802 unsigned long val;
5803 int err, cpu, mpt;
5804
5805 err = strict_strtoul(buf, 10, &val);
5806 if (err)
5807 return err;
5808 if (val > perf_max_events)
5809 return -EINVAL;
5810
5811 spin_lock(&perf_resource_lock);
5812 perf_reserved_percpu = val;
5813 for_each_online_cpu(cpu) {
5814 cpuctx = &per_cpu(perf_cpu_context, cpu);
5815 raw_spin_lock_irq(&cpuctx->ctx.lock);
5816 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5817 perf_max_events - perf_reserved_percpu);
5818 cpuctx->max_pertask = mpt;
5819 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5820 }
5821 spin_unlock(&perf_resource_lock);
5822
5823 return count;
5824 }
5825
5826 static ssize_t perf_show_overcommit(struct sysdev_class *class,
5827 struct sysdev_class_attribute *attr,
5828 char *buf)
5829 {
5830 return sprintf(buf, "%d\n", perf_overcommit);
5831 }
5832
5833 static ssize_t
5834 perf_set_overcommit(struct sysdev_class *class,
5835 struct sysdev_class_attribute *attr,
5836 const char *buf, size_t count)
5837 {
5838 unsigned long val;
5839 int err;
5840
5841 err = strict_strtoul(buf, 10, &val);
5842 if (err)
5843 return err;
5844 if (val > 1)
5845 return -EINVAL;
5846
5847 spin_lock(&perf_resource_lock);
5848 perf_overcommit = val;
5849 spin_unlock(&perf_resource_lock);
5850
5851 return count;
5852 }
5853
5854 static SYSDEV_CLASS_ATTR(
5855 reserve_percpu,
5856 0644,
5857 perf_show_reserve_percpu,
5858 perf_set_reserve_percpu
5859 );
5860
5861 static SYSDEV_CLASS_ATTR(
5862 overcommit,
5863 0644,
5864 perf_show_overcommit,
5865 perf_set_overcommit
5866 );
5867
5868 static struct attribute *perfclass_attrs[] = {
5869 &attr_reserve_percpu.attr,
5870 &attr_overcommit.attr,
5871 NULL
5872 };
5873
5874 static struct attribute_group perfclass_attr_group = {
5875 .attrs = perfclass_attrs,
5876 .name = "perf_events",
5877 };
5878
5879 static int __init perf_event_sysfs_init(void)
5880 {
5881 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5882 &perfclass_attr_group);
5883 }
5884 device_initcall(perf_event_sysfs_init);
This page took 0.265286 seconds and 5 git commands to generate.