perf: Use hot regs with software sched switch/migrate events
[deliverable/linux.git] / kernel / perf_event.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/vmalloc.h>
24 #include <linux/hardirq.h>
25 #include <linux/rculist.h>
26 #include <linux/uaccess.h>
27 #include <linux/syscalls.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/perf_event.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/hw_breakpoint.h>
33
34 #include <asm/irq_regs.h>
35
36 /*
37 * Each CPU has a list of per CPU events:
38 */
39 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
40
41 int perf_max_events __read_mostly = 1;
42 static int perf_reserved_percpu __read_mostly;
43 static int perf_overcommit __read_mostly = 1;
44
45 static atomic_t nr_events __read_mostly;
46 static atomic_t nr_mmap_events __read_mostly;
47 static atomic_t nr_comm_events __read_mostly;
48 static atomic_t nr_task_events __read_mostly;
49
50 /*
51 * perf event paranoia level:
52 * -1 - not paranoid at all
53 * 0 - disallow raw tracepoint access for unpriv
54 * 1 - disallow cpu events for unpriv
55 * 2 - disallow kernel profiling for unpriv
56 */
57 int sysctl_perf_event_paranoid __read_mostly = 1;
58
59 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
60
61 /*
62 * max perf event sample rate
63 */
64 int sysctl_perf_event_sample_rate __read_mostly = 100000;
65
66 static atomic64_t perf_event_id;
67
68 /*
69 * Lock for (sysadmin-configurable) event reservations:
70 */
71 static DEFINE_SPINLOCK(perf_resource_lock);
72
73 /*
74 * Architecture provided APIs - weak aliases:
75 */
76 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
77 {
78 return NULL;
79 }
80
81 void __weak hw_perf_disable(void) { barrier(); }
82 void __weak hw_perf_enable(void) { barrier(); }
83
84 int __weak
85 hw_perf_group_sched_in(struct perf_event *group_leader,
86 struct perf_cpu_context *cpuctx,
87 struct perf_event_context *ctx)
88 {
89 return 0;
90 }
91
92 void __weak perf_event_print_debug(void) { }
93
94 static DEFINE_PER_CPU(int, perf_disable_count);
95
96 void perf_disable(void)
97 {
98 if (!__get_cpu_var(perf_disable_count)++)
99 hw_perf_disable();
100 }
101
102 void perf_enable(void)
103 {
104 if (!--__get_cpu_var(perf_disable_count))
105 hw_perf_enable();
106 }
107
108 static void get_ctx(struct perf_event_context *ctx)
109 {
110 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
111 }
112
113 static void free_ctx(struct rcu_head *head)
114 {
115 struct perf_event_context *ctx;
116
117 ctx = container_of(head, struct perf_event_context, rcu_head);
118 kfree(ctx);
119 }
120
121 static void put_ctx(struct perf_event_context *ctx)
122 {
123 if (atomic_dec_and_test(&ctx->refcount)) {
124 if (ctx->parent_ctx)
125 put_ctx(ctx->parent_ctx);
126 if (ctx->task)
127 put_task_struct(ctx->task);
128 call_rcu(&ctx->rcu_head, free_ctx);
129 }
130 }
131
132 static void unclone_ctx(struct perf_event_context *ctx)
133 {
134 if (ctx->parent_ctx) {
135 put_ctx(ctx->parent_ctx);
136 ctx->parent_ctx = NULL;
137 }
138 }
139
140 /*
141 * If we inherit events we want to return the parent event id
142 * to userspace.
143 */
144 static u64 primary_event_id(struct perf_event *event)
145 {
146 u64 id = event->id;
147
148 if (event->parent)
149 id = event->parent->id;
150
151 return id;
152 }
153
154 /*
155 * Get the perf_event_context for a task and lock it.
156 * This has to cope with with the fact that until it is locked,
157 * the context could get moved to another task.
158 */
159 static struct perf_event_context *
160 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
161 {
162 struct perf_event_context *ctx;
163
164 rcu_read_lock();
165 retry:
166 ctx = rcu_dereference(task->perf_event_ctxp);
167 if (ctx) {
168 /*
169 * If this context is a clone of another, it might
170 * get swapped for another underneath us by
171 * perf_event_task_sched_out, though the
172 * rcu_read_lock() protects us from any context
173 * getting freed. Lock the context and check if it
174 * got swapped before we could get the lock, and retry
175 * if so. If we locked the right context, then it
176 * can't get swapped on us any more.
177 */
178 raw_spin_lock_irqsave(&ctx->lock, *flags);
179 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
180 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
181 goto retry;
182 }
183
184 if (!atomic_inc_not_zero(&ctx->refcount)) {
185 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
186 ctx = NULL;
187 }
188 }
189 rcu_read_unlock();
190 return ctx;
191 }
192
193 /*
194 * Get the context for a task and increment its pin_count so it
195 * can't get swapped to another task. This also increments its
196 * reference count so that the context can't get freed.
197 */
198 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
199 {
200 struct perf_event_context *ctx;
201 unsigned long flags;
202
203 ctx = perf_lock_task_context(task, &flags);
204 if (ctx) {
205 ++ctx->pin_count;
206 raw_spin_unlock_irqrestore(&ctx->lock, flags);
207 }
208 return ctx;
209 }
210
211 static void perf_unpin_context(struct perf_event_context *ctx)
212 {
213 unsigned long flags;
214
215 raw_spin_lock_irqsave(&ctx->lock, flags);
216 --ctx->pin_count;
217 raw_spin_unlock_irqrestore(&ctx->lock, flags);
218 put_ctx(ctx);
219 }
220
221 static inline u64 perf_clock(void)
222 {
223 return cpu_clock(raw_smp_processor_id());
224 }
225
226 /*
227 * Update the record of the current time in a context.
228 */
229 static void update_context_time(struct perf_event_context *ctx)
230 {
231 u64 now = perf_clock();
232
233 ctx->time += now - ctx->timestamp;
234 ctx->timestamp = now;
235 }
236
237 /*
238 * Update the total_time_enabled and total_time_running fields for a event.
239 */
240 static void update_event_times(struct perf_event *event)
241 {
242 struct perf_event_context *ctx = event->ctx;
243 u64 run_end;
244
245 if (event->state < PERF_EVENT_STATE_INACTIVE ||
246 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
247 return;
248
249 if (ctx->is_active)
250 run_end = ctx->time;
251 else
252 run_end = event->tstamp_stopped;
253
254 event->total_time_enabled = run_end - event->tstamp_enabled;
255
256 if (event->state == PERF_EVENT_STATE_INACTIVE)
257 run_end = event->tstamp_stopped;
258 else
259 run_end = ctx->time;
260
261 event->total_time_running = run_end - event->tstamp_running;
262 }
263
264 static struct list_head *
265 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
266 {
267 if (event->attr.pinned)
268 return &ctx->pinned_groups;
269 else
270 return &ctx->flexible_groups;
271 }
272
273 /*
274 * Add a event from the lists for its context.
275 * Must be called with ctx->mutex and ctx->lock held.
276 */
277 static void
278 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
279 {
280 struct perf_event *group_leader = event->group_leader;
281
282 /*
283 * Depending on whether it is a standalone or sibling event,
284 * add it straight to the context's event list, or to the group
285 * leader's sibling list:
286 */
287 if (group_leader == event) {
288 struct list_head *list;
289
290 if (is_software_event(event))
291 event->group_flags |= PERF_GROUP_SOFTWARE;
292
293 list = ctx_group_list(event, ctx);
294 list_add_tail(&event->group_entry, list);
295 } else {
296 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
297 !is_software_event(event))
298 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
299
300 list_add_tail(&event->group_entry, &group_leader->sibling_list);
301 group_leader->nr_siblings++;
302 }
303
304 list_add_rcu(&event->event_entry, &ctx->event_list);
305 ctx->nr_events++;
306 if (event->attr.inherit_stat)
307 ctx->nr_stat++;
308 }
309
310 /*
311 * Remove a event from the lists for its context.
312 * Must be called with ctx->mutex and ctx->lock held.
313 */
314 static void
315 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
316 {
317 struct perf_event *sibling, *tmp;
318
319 if (list_empty(&event->group_entry))
320 return;
321 ctx->nr_events--;
322 if (event->attr.inherit_stat)
323 ctx->nr_stat--;
324
325 list_del_init(&event->group_entry);
326 list_del_rcu(&event->event_entry);
327
328 if (event->group_leader != event)
329 event->group_leader->nr_siblings--;
330
331 update_event_times(event);
332
333 /*
334 * If event was in error state, then keep it
335 * that way, otherwise bogus counts will be
336 * returned on read(). The only way to get out
337 * of error state is by explicit re-enabling
338 * of the event
339 */
340 if (event->state > PERF_EVENT_STATE_OFF)
341 event->state = PERF_EVENT_STATE_OFF;
342
343 /*
344 * If this was a group event with sibling events then
345 * upgrade the siblings to singleton events by adding them
346 * to the context list directly:
347 */
348 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
349 struct list_head *list;
350
351 list = ctx_group_list(event, ctx);
352 list_move_tail(&sibling->group_entry, list);
353 sibling->group_leader = sibling;
354
355 /* Inherit group flags from the previous leader */
356 sibling->group_flags = event->group_flags;
357 }
358 }
359
360 static void
361 event_sched_out(struct perf_event *event,
362 struct perf_cpu_context *cpuctx,
363 struct perf_event_context *ctx)
364 {
365 if (event->state != PERF_EVENT_STATE_ACTIVE)
366 return;
367
368 event->state = PERF_EVENT_STATE_INACTIVE;
369 if (event->pending_disable) {
370 event->pending_disable = 0;
371 event->state = PERF_EVENT_STATE_OFF;
372 }
373 event->tstamp_stopped = ctx->time;
374 event->pmu->disable(event);
375 event->oncpu = -1;
376
377 if (!is_software_event(event))
378 cpuctx->active_oncpu--;
379 ctx->nr_active--;
380 if (event->attr.exclusive || !cpuctx->active_oncpu)
381 cpuctx->exclusive = 0;
382 }
383
384 static void
385 group_sched_out(struct perf_event *group_event,
386 struct perf_cpu_context *cpuctx,
387 struct perf_event_context *ctx)
388 {
389 struct perf_event *event;
390
391 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
392 return;
393
394 event_sched_out(group_event, cpuctx, ctx);
395
396 /*
397 * Schedule out siblings (if any):
398 */
399 list_for_each_entry(event, &group_event->sibling_list, group_entry)
400 event_sched_out(event, cpuctx, ctx);
401
402 if (group_event->attr.exclusive)
403 cpuctx->exclusive = 0;
404 }
405
406 /*
407 * Cross CPU call to remove a performance event
408 *
409 * We disable the event on the hardware level first. After that we
410 * remove it from the context list.
411 */
412 static void __perf_event_remove_from_context(void *info)
413 {
414 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
415 struct perf_event *event = info;
416 struct perf_event_context *ctx = event->ctx;
417
418 /*
419 * If this is a task context, we need to check whether it is
420 * the current task context of this cpu. If not it has been
421 * scheduled out before the smp call arrived.
422 */
423 if (ctx->task && cpuctx->task_ctx != ctx)
424 return;
425
426 raw_spin_lock(&ctx->lock);
427 /*
428 * Protect the list operation against NMI by disabling the
429 * events on a global level.
430 */
431 perf_disable();
432
433 event_sched_out(event, cpuctx, ctx);
434
435 list_del_event(event, ctx);
436
437 if (!ctx->task) {
438 /*
439 * Allow more per task events with respect to the
440 * reservation:
441 */
442 cpuctx->max_pertask =
443 min(perf_max_events - ctx->nr_events,
444 perf_max_events - perf_reserved_percpu);
445 }
446
447 perf_enable();
448 raw_spin_unlock(&ctx->lock);
449 }
450
451
452 /*
453 * Remove the event from a task's (or a CPU's) list of events.
454 *
455 * Must be called with ctx->mutex held.
456 *
457 * CPU events are removed with a smp call. For task events we only
458 * call when the task is on a CPU.
459 *
460 * If event->ctx is a cloned context, callers must make sure that
461 * every task struct that event->ctx->task could possibly point to
462 * remains valid. This is OK when called from perf_release since
463 * that only calls us on the top-level context, which can't be a clone.
464 * When called from perf_event_exit_task, it's OK because the
465 * context has been detached from its task.
466 */
467 static void perf_event_remove_from_context(struct perf_event *event)
468 {
469 struct perf_event_context *ctx = event->ctx;
470 struct task_struct *task = ctx->task;
471
472 if (!task) {
473 /*
474 * Per cpu events are removed via an smp call and
475 * the removal is always successful.
476 */
477 smp_call_function_single(event->cpu,
478 __perf_event_remove_from_context,
479 event, 1);
480 return;
481 }
482
483 retry:
484 task_oncpu_function_call(task, __perf_event_remove_from_context,
485 event);
486
487 raw_spin_lock_irq(&ctx->lock);
488 /*
489 * If the context is active we need to retry the smp call.
490 */
491 if (ctx->nr_active && !list_empty(&event->group_entry)) {
492 raw_spin_unlock_irq(&ctx->lock);
493 goto retry;
494 }
495
496 /*
497 * The lock prevents that this context is scheduled in so we
498 * can remove the event safely, if the call above did not
499 * succeed.
500 */
501 if (!list_empty(&event->group_entry))
502 list_del_event(event, ctx);
503 raw_spin_unlock_irq(&ctx->lock);
504 }
505
506 /*
507 * Update total_time_enabled and total_time_running for all events in a group.
508 */
509 static void update_group_times(struct perf_event *leader)
510 {
511 struct perf_event *event;
512
513 update_event_times(leader);
514 list_for_each_entry(event, &leader->sibling_list, group_entry)
515 update_event_times(event);
516 }
517
518 /*
519 * Cross CPU call to disable a performance event
520 */
521 static void __perf_event_disable(void *info)
522 {
523 struct perf_event *event = info;
524 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
525 struct perf_event_context *ctx = event->ctx;
526
527 /*
528 * If this is a per-task event, need to check whether this
529 * event's task is the current task on this cpu.
530 */
531 if (ctx->task && cpuctx->task_ctx != ctx)
532 return;
533
534 raw_spin_lock(&ctx->lock);
535
536 /*
537 * If the event is on, turn it off.
538 * If it is in error state, leave it in error state.
539 */
540 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
541 update_context_time(ctx);
542 update_group_times(event);
543 if (event == event->group_leader)
544 group_sched_out(event, cpuctx, ctx);
545 else
546 event_sched_out(event, cpuctx, ctx);
547 event->state = PERF_EVENT_STATE_OFF;
548 }
549
550 raw_spin_unlock(&ctx->lock);
551 }
552
553 /*
554 * Disable a event.
555 *
556 * If event->ctx is a cloned context, callers must make sure that
557 * every task struct that event->ctx->task could possibly point to
558 * remains valid. This condition is satisifed when called through
559 * perf_event_for_each_child or perf_event_for_each because they
560 * hold the top-level event's child_mutex, so any descendant that
561 * goes to exit will block in sync_child_event.
562 * When called from perf_pending_event it's OK because event->ctx
563 * is the current context on this CPU and preemption is disabled,
564 * hence we can't get into perf_event_task_sched_out for this context.
565 */
566 void perf_event_disable(struct perf_event *event)
567 {
568 struct perf_event_context *ctx = event->ctx;
569 struct task_struct *task = ctx->task;
570
571 if (!task) {
572 /*
573 * Disable the event on the cpu that it's on
574 */
575 smp_call_function_single(event->cpu, __perf_event_disable,
576 event, 1);
577 return;
578 }
579
580 retry:
581 task_oncpu_function_call(task, __perf_event_disable, event);
582
583 raw_spin_lock_irq(&ctx->lock);
584 /*
585 * If the event is still active, we need to retry the cross-call.
586 */
587 if (event->state == PERF_EVENT_STATE_ACTIVE) {
588 raw_spin_unlock_irq(&ctx->lock);
589 goto retry;
590 }
591
592 /*
593 * Since we have the lock this context can't be scheduled
594 * in, so we can change the state safely.
595 */
596 if (event->state == PERF_EVENT_STATE_INACTIVE) {
597 update_group_times(event);
598 event->state = PERF_EVENT_STATE_OFF;
599 }
600
601 raw_spin_unlock_irq(&ctx->lock);
602 }
603
604 static int
605 event_sched_in(struct perf_event *event,
606 struct perf_cpu_context *cpuctx,
607 struct perf_event_context *ctx)
608 {
609 if (event->state <= PERF_EVENT_STATE_OFF)
610 return 0;
611
612 event->state = PERF_EVENT_STATE_ACTIVE;
613 event->oncpu = smp_processor_id();
614 /*
615 * The new state must be visible before we turn it on in the hardware:
616 */
617 smp_wmb();
618
619 if (event->pmu->enable(event)) {
620 event->state = PERF_EVENT_STATE_INACTIVE;
621 event->oncpu = -1;
622 return -EAGAIN;
623 }
624
625 event->tstamp_running += ctx->time - event->tstamp_stopped;
626
627 if (!is_software_event(event))
628 cpuctx->active_oncpu++;
629 ctx->nr_active++;
630
631 if (event->attr.exclusive)
632 cpuctx->exclusive = 1;
633
634 return 0;
635 }
636
637 static int
638 group_sched_in(struct perf_event *group_event,
639 struct perf_cpu_context *cpuctx,
640 struct perf_event_context *ctx)
641 {
642 struct perf_event *event, *partial_group;
643 int ret;
644
645 if (group_event->state == PERF_EVENT_STATE_OFF)
646 return 0;
647
648 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx);
649 if (ret)
650 return ret < 0 ? ret : 0;
651
652 if (event_sched_in(group_event, cpuctx, ctx))
653 return -EAGAIN;
654
655 /*
656 * Schedule in siblings as one group (if any):
657 */
658 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
659 if (event_sched_in(event, cpuctx, ctx)) {
660 partial_group = event;
661 goto group_error;
662 }
663 }
664
665 return 0;
666
667 group_error:
668 /*
669 * Groups can be scheduled in as one unit only, so undo any
670 * partial group before returning:
671 */
672 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
673 if (event == partial_group)
674 break;
675 event_sched_out(event, cpuctx, ctx);
676 }
677 event_sched_out(group_event, cpuctx, ctx);
678
679 return -EAGAIN;
680 }
681
682 /*
683 * Work out whether we can put this event group on the CPU now.
684 */
685 static int group_can_go_on(struct perf_event *event,
686 struct perf_cpu_context *cpuctx,
687 int can_add_hw)
688 {
689 /*
690 * Groups consisting entirely of software events can always go on.
691 */
692 if (event->group_flags & PERF_GROUP_SOFTWARE)
693 return 1;
694 /*
695 * If an exclusive group is already on, no other hardware
696 * events can go on.
697 */
698 if (cpuctx->exclusive)
699 return 0;
700 /*
701 * If this group is exclusive and there are already
702 * events on the CPU, it can't go on.
703 */
704 if (event->attr.exclusive && cpuctx->active_oncpu)
705 return 0;
706 /*
707 * Otherwise, try to add it if all previous groups were able
708 * to go on.
709 */
710 return can_add_hw;
711 }
712
713 static void add_event_to_ctx(struct perf_event *event,
714 struct perf_event_context *ctx)
715 {
716 list_add_event(event, ctx);
717 event->tstamp_enabled = ctx->time;
718 event->tstamp_running = ctx->time;
719 event->tstamp_stopped = ctx->time;
720 }
721
722 /*
723 * Cross CPU call to install and enable a performance event
724 *
725 * Must be called with ctx->mutex held
726 */
727 static void __perf_install_in_context(void *info)
728 {
729 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
730 struct perf_event *event = info;
731 struct perf_event_context *ctx = event->ctx;
732 struct perf_event *leader = event->group_leader;
733 int err;
734
735 /*
736 * If this is a task context, we need to check whether it is
737 * the current task context of this cpu. If not it has been
738 * scheduled out before the smp call arrived.
739 * Or possibly this is the right context but it isn't
740 * on this cpu because it had no events.
741 */
742 if (ctx->task && cpuctx->task_ctx != ctx) {
743 if (cpuctx->task_ctx || ctx->task != current)
744 return;
745 cpuctx->task_ctx = ctx;
746 }
747
748 raw_spin_lock(&ctx->lock);
749 ctx->is_active = 1;
750 update_context_time(ctx);
751
752 /*
753 * Protect the list operation against NMI by disabling the
754 * events on a global level. NOP for non NMI based events.
755 */
756 perf_disable();
757
758 add_event_to_ctx(event, ctx);
759
760 if (event->cpu != -1 && event->cpu != smp_processor_id())
761 goto unlock;
762
763 /*
764 * Don't put the event on if it is disabled or if
765 * it is in a group and the group isn't on.
766 */
767 if (event->state != PERF_EVENT_STATE_INACTIVE ||
768 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
769 goto unlock;
770
771 /*
772 * An exclusive event can't go on if there are already active
773 * hardware events, and no hardware event can go on if there
774 * is already an exclusive event on.
775 */
776 if (!group_can_go_on(event, cpuctx, 1))
777 err = -EEXIST;
778 else
779 err = event_sched_in(event, cpuctx, ctx);
780
781 if (err) {
782 /*
783 * This event couldn't go on. If it is in a group
784 * then we have to pull the whole group off.
785 * If the event group is pinned then put it in error state.
786 */
787 if (leader != event)
788 group_sched_out(leader, cpuctx, ctx);
789 if (leader->attr.pinned) {
790 update_group_times(leader);
791 leader->state = PERF_EVENT_STATE_ERROR;
792 }
793 }
794
795 if (!err && !ctx->task && cpuctx->max_pertask)
796 cpuctx->max_pertask--;
797
798 unlock:
799 perf_enable();
800
801 raw_spin_unlock(&ctx->lock);
802 }
803
804 /*
805 * Attach a performance event to a context
806 *
807 * First we add the event to the list with the hardware enable bit
808 * in event->hw_config cleared.
809 *
810 * If the event is attached to a task which is on a CPU we use a smp
811 * call to enable it in the task context. The task might have been
812 * scheduled away, but we check this in the smp call again.
813 *
814 * Must be called with ctx->mutex held.
815 */
816 static void
817 perf_install_in_context(struct perf_event_context *ctx,
818 struct perf_event *event,
819 int cpu)
820 {
821 struct task_struct *task = ctx->task;
822
823 if (!task) {
824 /*
825 * Per cpu events are installed via an smp call and
826 * the install is always successful.
827 */
828 smp_call_function_single(cpu, __perf_install_in_context,
829 event, 1);
830 return;
831 }
832
833 retry:
834 task_oncpu_function_call(task, __perf_install_in_context,
835 event);
836
837 raw_spin_lock_irq(&ctx->lock);
838 /*
839 * we need to retry the smp call.
840 */
841 if (ctx->is_active && list_empty(&event->group_entry)) {
842 raw_spin_unlock_irq(&ctx->lock);
843 goto retry;
844 }
845
846 /*
847 * The lock prevents that this context is scheduled in so we
848 * can add the event safely, if it the call above did not
849 * succeed.
850 */
851 if (list_empty(&event->group_entry))
852 add_event_to_ctx(event, ctx);
853 raw_spin_unlock_irq(&ctx->lock);
854 }
855
856 /*
857 * Put a event into inactive state and update time fields.
858 * Enabling the leader of a group effectively enables all
859 * the group members that aren't explicitly disabled, so we
860 * have to update their ->tstamp_enabled also.
861 * Note: this works for group members as well as group leaders
862 * since the non-leader members' sibling_lists will be empty.
863 */
864 static void __perf_event_mark_enabled(struct perf_event *event,
865 struct perf_event_context *ctx)
866 {
867 struct perf_event *sub;
868
869 event->state = PERF_EVENT_STATE_INACTIVE;
870 event->tstamp_enabled = ctx->time - event->total_time_enabled;
871 list_for_each_entry(sub, &event->sibling_list, group_entry)
872 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
873 sub->tstamp_enabled =
874 ctx->time - sub->total_time_enabled;
875 }
876
877 /*
878 * Cross CPU call to enable a performance event
879 */
880 static void __perf_event_enable(void *info)
881 {
882 struct perf_event *event = info;
883 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
884 struct perf_event_context *ctx = event->ctx;
885 struct perf_event *leader = event->group_leader;
886 int err;
887
888 /*
889 * If this is a per-task event, need to check whether this
890 * event's task is the current task on this cpu.
891 */
892 if (ctx->task && cpuctx->task_ctx != ctx) {
893 if (cpuctx->task_ctx || ctx->task != current)
894 return;
895 cpuctx->task_ctx = ctx;
896 }
897
898 raw_spin_lock(&ctx->lock);
899 ctx->is_active = 1;
900 update_context_time(ctx);
901
902 if (event->state >= PERF_EVENT_STATE_INACTIVE)
903 goto unlock;
904 __perf_event_mark_enabled(event, ctx);
905
906 if (event->cpu != -1 && event->cpu != smp_processor_id())
907 goto unlock;
908
909 /*
910 * If the event is in a group and isn't the group leader,
911 * then don't put it on unless the group is on.
912 */
913 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
914 goto unlock;
915
916 if (!group_can_go_on(event, cpuctx, 1)) {
917 err = -EEXIST;
918 } else {
919 perf_disable();
920 if (event == leader)
921 err = group_sched_in(event, cpuctx, ctx);
922 else
923 err = event_sched_in(event, cpuctx, ctx);
924 perf_enable();
925 }
926
927 if (err) {
928 /*
929 * If this event can't go on and it's part of a
930 * group, then the whole group has to come off.
931 */
932 if (leader != event)
933 group_sched_out(leader, cpuctx, ctx);
934 if (leader->attr.pinned) {
935 update_group_times(leader);
936 leader->state = PERF_EVENT_STATE_ERROR;
937 }
938 }
939
940 unlock:
941 raw_spin_unlock(&ctx->lock);
942 }
943
944 /*
945 * Enable a event.
946 *
947 * If event->ctx is a cloned context, callers must make sure that
948 * every task struct that event->ctx->task could possibly point to
949 * remains valid. This condition is satisfied when called through
950 * perf_event_for_each_child or perf_event_for_each as described
951 * for perf_event_disable.
952 */
953 void perf_event_enable(struct perf_event *event)
954 {
955 struct perf_event_context *ctx = event->ctx;
956 struct task_struct *task = ctx->task;
957
958 if (!task) {
959 /*
960 * Enable the event on the cpu that it's on
961 */
962 smp_call_function_single(event->cpu, __perf_event_enable,
963 event, 1);
964 return;
965 }
966
967 raw_spin_lock_irq(&ctx->lock);
968 if (event->state >= PERF_EVENT_STATE_INACTIVE)
969 goto out;
970
971 /*
972 * If the event is in error state, clear that first.
973 * That way, if we see the event in error state below, we
974 * know that it has gone back into error state, as distinct
975 * from the task having been scheduled away before the
976 * cross-call arrived.
977 */
978 if (event->state == PERF_EVENT_STATE_ERROR)
979 event->state = PERF_EVENT_STATE_OFF;
980
981 retry:
982 raw_spin_unlock_irq(&ctx->lock);
983 task_oncpu_function_call(task, __perf_event_enable, event);
984
985 raw_spin_lock_irq(&ctx->lock);
986
987 /*
988 * If the context is active and the event is still off,
989 * we need to retry the cross-call.
990 */
991 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
992 goto retry;
993
994 /*
995 * Since we have the lock this context can't be scheduled
996 * in, so we can change the state safely.
997 */
998 if (event->state == PERF_EVENT_STATE_OFF)
999 __perf_event_mark_enabled(event, ctx);
1000
1001 out:
1002 raw_spin_unlock_irq(&ctx->lock);
1003 }
1004
1005 static int perf_event_refresh(struct perf_event *event, int refresh)
1006 {
1007 /*
1008 * not supported on inherited events
1009 */
1010 if (event->attr.inherit)
1011 return -EINVAL;
1012
1013 atomic_add(refresh, &event->event_limit);
1014 perf_event_enable(event);
1015
1016 return 0;
1017 }
1018
1019 enum event_type_t {
1020 EVENT_FLEXIBLE = 0x1,
1021 EVENT_PINNED = 0x2,
1022 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1023 };
1024
1025 static void ctx_sched_out(struct perf_event_context *ctx,
1026 struct perf_cpu_context *cpuctx,
1027 enum event_type_t event_type)
1028 {
1029 struct perf_event *event;
1030
1031 raw_spin_lock(&ctx->lock);
1032 ctx->is_active = 0;
1033 if (likely(!ctx->nr_events))
1034 goto out;
1035 update_context_time(ctx);
1036
1037 perf_disable();
1038 if (!ctx->nr_active)
1039 goto out_enable;
1040
1041 if (event_type & EVENT_PINNED)
1042 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1043 group_sched_out(event, cpuctx, ctx);
1044
1045 if (event_type & EVENT_FLEXIBLE)
1046 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1047 group_sched_out(event, cpuctx, ctx);
1048
1049 out_enable:
1050 perf_enable();
1051 out:
1052 raw_spin_unlock(&ctx->lock);
1053 }
1054
1055 /*
1056 * Test whether two contexts are equivalent, i.e. whether they
1057 * have both been cloned from the same version of the same context
1058 * and they both have the same number of enabled events.
1059 * If the number of enabled events is the same, then the set
1060 * of enabled events should be the same, because these are both
1061 * inherited contexts, therefore we can't access individual events
1062 * in them directly with an fd; we can only enable/disable all
1063 * events via prctl, or enable/disable all events in a family
1064 * via ioctl, which will have the same effect on both contexts.
1065 */
1066 static int context_equiv(struct perf_event_context *ctx1,
1067 struct perf_event_context *ctx2)
1068 {
1069 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1070 && ctx1->parent_gen == ctx2->parent_gen
1071 && !ctx1->pin_count && !ctx2->pin_count;
1072 }
1073
1074 static void __perf_event_sync_stat(struct perf_event *event,
1075 struct perf_event *next_event)
1076 {
1077 u64 value;
1078
1079 if (!event->attr.inherit_stat)
1080 return;
1081
1082 /*
1083 * Update the event value, we cannot use perf_event_read()
1084 * because we're in the middle of a context switch and have IRQs
1085 * disabled, which upsets smp_call_function_single(), however
1086 * we know the event must be on the current CPU, therefore we
1087 * don't need to use it.
1088 */
1089 switch (event->state) {
1090 case PERF_EVENT_STATE_ACTIVE:
1091 event->pmu->read(event);
1092 /* fall-through */
1093
1094 case PERF_EVENT_STATE_INACTIVE:
1095 update_event_times(event);
1096 break;
1097
1098 default:
1099 break;
1100 }
1101
1102 /*
1103 * In order to keep per-task stats reliable we need to flip the event
1104 * values when we flip the contexts.
1105 */
1106 value = atomic64_read(&next_event->count);
1107 value = atomic64_xchg(&event->count, value);
1108 atomic64_set(&next_event->count, value);
1109
1110 swap(event->total_time_enabled, next_event->total_time_enabled);
1111 swap(event->total_time_running, next_event->total_time_running);
1112
1113 /*
1114 * Since we swizzled the values, update the user visible data too.
1115 */
1116 perf_event_update_userpage(event);
1117 perf_event_update_userpage(next_event);
1118 }
1119
1120 #define list_next_entry(pos, member) \
1121 list_entry(pos->member.next, typeof(*pos), member)
1122
1123 static void perf_event_sync_stat(struct perf_event_context *ctx,
1124 struct perf_event_context *next_ctx)
1125 {
1126 struct perf_event *event, *next_event;
1127
1128 if (!ctx->nr_stat)
1129 return;
1130
1131 update_context_time(ctx);
1132
1133 event = list_first_entry(&ctx->event_list,
1134 struct perf_event, event_entry);
1135
1136 next_event = list_first_entry(&next_ctx->event_list,
1137 struct perf_event, event_entry);
1138
1139 while (&event->event_entry != &ctx->event_list &&
1140 &next_event->event_entry != &next_ctx->event_list) {
1141
1142 __perf_event_sync_stat(event, next_event);
1143
1144 event = list_next_entry(event, event_entry);
1145 next_event = list_next_entry(next_event, event_entry);
1146 }
1147 }
1148
1149 /*
1150 * Called from scheduler to remove the events of the current task,
1151 * with interrupts disabled.
1152 *
1153 * We stop each event and update the event value in event->count.
1154 *
1155 * This does not protect us against NMI, but disable()
1156 * sets the disabled bit in the control field of event _before_
1157 * accessing the event control register. If a NMI hits, then it will
1158 * not restart the event.
1159 */
1160 void perf_event_task_sched_out(struct task_struct *task,
1161 struct task_struct *next)
1162 {
1163 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1164 struct perf_event_context *ctx = task->perf_event_ctxp;
1165 struct perf_event_context *next_ctx;
1166 struct perf_event_context *parent;
1167 int do_switch = 1;
1168
1169 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1170
1171 if (likely(!ctx || !cpuctx->task_ctx))
1172 return;
1173
1174 rcu_read_lock();
1175 parent = rcu_dereference(ctx->parent_ctx);
1176 next_ctx = next->perf_event_ctxp;
1177 if (parent && next_ctx &&
1178 rcu_dereference(next_ctx->parent_ctx) == parent) {
1179 /*
1180 * Looks like the two contexts are clones, so we might be
1181 * able to optimize the context switch. We lock both
1182 * contexts and check that they are clones under the
1183 * lock (including re-checking that neither has been
1184 * uncloned in the meantime). It doesn't matter which
1185 * order we take the locks because no other cpu could
1186 * be trying to lock both of these tasks.
1187 */
1188 raw_spin_lock(&ctx->lock);
1189 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1190 if (context_equiv(ctx, next_ctx)) {
1191 /*
1192 * XXX do we need a memory barrier of sorts
1193 * wrt to rcu_dereference() of perf_event_ctxp
1194 */
1195 task->perf_event_ctxp = next_ctx;
1196 next->perf_event_ctxp = ctx;
1197 ctx->task = next;
1198 next_ctx->task = task;
1199 do_switch = 0;
1200
1201 perf_event_sync_stat(ctx, next_ctx);
1202 }
1203 raw_spin_unlock(&next_ctx->lock);
1204 raw_spin_unlock(&ctx->lock);
1205 }
1206 rcu_read_unlock();
1207
1208 if (do_switch) {
1209 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1210 cpuctx->task_ctx = NULL;
1211 }
1212 }
1213
1214 static void task_ctx_sched_out(struct perf_event_context *ctx,
1215 enum event_type_t event_type)
1216 {
1217 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1218
1219 if (!cpuctx->task_ctx)
1220 return;
1221
1222 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1223 return;
1224
1225 ctx_sched_out(ctx, cpuctx, event_type);
1226 cpuctx->task_ctx = NULL;
1227 }
1228
1229 /*
1230 * Called with IRQs disabled
1231 */
1232 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1233 {
1234 task_ctx_sched_out(ctx, EVENT_ALL);
1235 }
1236
1237 /*
1238 * Called with IRQs disabled
1239 */
1240 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1241 enum event_type_t event_type)
1242 {
1243 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1244 }
1245
1246 static void
1247 ctx_pinned_sched_in(struct perf_event_context *ctx,
1248 struct perf_cpu_context *cpuctx)
1249 {
1250 struct perf_event *event;
1251
1252 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1253 if (event->state <= PERF_EVENT_STATE_OFF)
1254 continue;
1255 if (event->cpu != -1 && event->cpu != smp_processor_id())
1256 continue;
1257
1258 if (group_can_go_on(event, cpuctx, 1))
1259 group_sched_in(event, cpuctx, ctx);
1260
1261 /*
1262 * If this pinned group hasn't been scheduled,
1263 * put it in error state.
1264 */
1265 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1266 update_group_times(event);
1267 event->state = PERF_EVENT_STATE_ERROR;
1268 }
1269 }
1270 }
1271
1272 static void
1273 ctx_flexible_sched_in(struct perf_event_context *ctx,
1274 struct perf_cpu_context *cpuctx)
1275 {
1276 struct perf_event *event;
1277 int can_add_hw = 1;
1278
1279 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1280 /* Ignore events in OFF or ERROR state */
1281 if (event->state <= PERF_EVENT_STATE_OFF)
1282 continue;
1283 /*
1284 * Listen to the 'cpu' scheduling filter constraint
1285 * of events:
1286 */
1287 if (event->cpu != -1 && event->cpu != smp_processor_id())
1288 continue;
1289
1290 if (group_can_go_on(event, cpuctx, can_add_hw))
1291 if (group_sched_in(event, cpuctx, ctx))
1292 can_add_hw = 0;
1293 }
1294 }
1295
1296 static void
1297 ctx_sched_in(struct perf_event_context *ctx,
1298 struct perf_cpu_context *cpuctx,
1299 enum event_type_t event_type)
1300 {
1301 raw_spin_lock(&ctx->lock);
1302 ctx->is_active = 1;
1303 if (likely(!ctx->nr_events))
1304 goto out;
1305
1306 ctx->timestamp = perf_clock();
1307
1308 perf_disable();
1309
1310 /*
1311 * First go through the list and put on any pinned groups
1312 * in order to give them the best chance of going on.
1313 */
1314 if (event_type & EVENT_PINNED)
1315 ctx_pinned_sched_in(ctx, cpuctx);
1316
1317 /* Then walk through the lower prio flexible groups */
1318 if (event_type & EVENT_FLEXIBLE)
1319 ctx_flexible_sched_in(ctx, cpuctx);
1320
1321 perf_enable();
1322 out:
1323 raw_spin_unlock(&ctx->lock);
1324 }
1325
1326 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1327 enum event_type_t event_type)
1328 {
1329 struct perf_event_context *ctx = &cpuctx->ctx;
1330
1331 ctx_sched_in(ctx, cpuctx, event_type);
1332 }
1333
1334 static void task_ctx_sched_in(struct task_struct *task,
1335 enum event_type_t event_type)
1336 {
1337 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1338 struct perf_event_context *ctx = task->perf_event_ctxp;
1339
1340 if (likely(!ctx))
1341 return;
1342 if (cpuctx->task_ctx == ctx)
1343 return;
1344 ctx_sched_in(ctx, cpuctx, event_type);
1345 cpuctx->task_ctx = ctx;
1346 }
1347 /*
1348 * Called from scheduler to add the events of the current task
1349 * with interrupts disabled.
1350 *
1351 * We restore the event value and then enable it.
1352 *
1353 * This does not protect us against NMI, but enable()
1354 * sets the enabled bit in the control field of event _before_
1355 * accessing the event control register. If a NMI hits, then it will
1356 * keep the event running.
1357 */
1358 void perf_event_task_sched_in(struct task_struct *task)
1359 {
1360 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1361 struct perf_event_context *ctx = task->perf_event_ctxp;
1362
1363 if (likely(!ctx))
1364 return;
1365
1366 if (cpuctx->task_ctx == ctx)
1367 return;
1368
1369 /*
1370 * We want to keep the following priority order:
1371 * cpu pinned (that don't need to move), task pinned,
1372 * cpu flexible, task flexible.
1373 */
1374 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1375
1376 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1377 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1378 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1379
1380 cpuctx->task_ctx = ctx;
1381 }
1382
1383 #define MAX_INTERRUPTS (~0ULL)
1384
1385 static void perf_log_throttle(struct perf_event *event, int enable);
1386
1387 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1388 {
1389 u64 frequency = event->attr.sample_freq;
1390 u64 sec = NSEC_PER_SEC;
1391 u64 divisor, dividend;
1392
1393 int count_fls, nsec_fls, frequency_fls, sec_fls;
1394
1395 count_fls = fls64(count);
1396 nsec_fls = fls64(nsec);
1397 frequency_fls = fls64(frequency);
1398 sec_fls = 30;
1399
1400 /*
1401 * We got @count in @nsec, with a target of sample_freq HZ
1402 * the target period becomes:
1403 *
1404 * @count * 10^9
1405 * period = -------------------
1406 * @nsec * sample_freq
1407 *
1408 */
1409
1410 /*
1411 * Reduce accuracy by one bit such that @a and @b converge
1412 * to a similar magnitude.
1413 */
1414 #define REDUCE_FLS(a, b) \
1415 do { \
1416 if (a##_fls > b##_fls) { \
1417 a >>= 1; \
1418 a##_fls--; \
1419 } else { \
1420 b >>= 1; \
1421 b##_fls--; \
1422 } \
1423 } while (0)
1424
1425 /*
1426 * Reduce accuracy until either term fits in a u64, then proceed with
1427 * the other, so that finally we can do a u64/u64 division.
1428 */
1429 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1430 REDUCE_FLS(nsec, frequency);
1431 REDUCE_FLS(sec, count);
1432 }
1433
1434 if (count_fls + sec_fls > 64) {
1435 divisor = nsec * frequency;
1436
1437 while (count_fls + sec_fls > 64) {
1438 REDUCE_FLS(count, sec);
1439 divisor >>= 1;
1440 }
1441
1442 dividend = count * sec;
1443 } else {
1444 dividend = count * sec;
1445
1446 while (nsec_fls + frequency_fls > 64) {
1447 REDUCE_FLS(nsec, frequency);
1448 dividend >>= 1;
1449 }
1450
1451 divisor = nsec * frequency;
1452 }
1453
1454 return div64_u64(dividend, divisor);
1455 }
1456
1457 static void perf_event_stop(struct perf_event *event)
1458 {
1459 if (!event->pmu->stop)
1460 return event->pmu->disable(event);
1461
1462 return event->pmu->stop(event);
1463 }
1464
1465 static int perf_event_start(struct perf_event *event)
1466 {
1467 if (!event->pmu->start)
1468 return event->pmu->enable(event);
1469
1470 return event->pmu->start(event);
1471 }
1472
1473 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1474 {
1475 struct hw_perf_event *hwc = &event->hw;
1476 u64 period, sample_period;
1477 s64 delta;
1478
1479 period = perf_calculate_period(event, nsec, count);
1480
1481 delta = (s64)(period - hwc->sample_period);
1482 delta = (delta + 7) / 8; /* low pass filter */
1483
1484 sample_period = hwc->sample_period + delta;
1485
1486 if (!sample_period)
1487 sample_period = 1;
1488
1489 hwc->sample_period = sample_period;
1490
1491 if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1492 perf_disable();
1493 perf_event_stop(event);
1494 atomic64_set(&hwc->period_left, 0);
1495 perf_event_start(event);
1496 perf_enable();
1497 }
1498 }
1499
1500 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1501 {
1502 struct perf_event *event;
1503 struct hw_perf_event *hwc;
1504 u64 interrupts, now;
1505 s64 delta;
1506
1507 raw_spin_lock(&ctx->lock);
1508 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1509 if (event->state != PERF_EVENT_STATE_ACTIVE)
1510 continue;
1511
1512 if (event->cpu != -1 && event->cpu != smp_processor_id())
1513 continue;
1514
1515 hwc = &event->hw;
1516
1517 interrupts = hwc->interrupts;
1518 hwc->interrupts = 0;
1519
1520 /*
1521 * unthrottle events on the tick
1522 */
1523 if (interrupts == MAX_INTERRUPTS) {
1524 perf_log_throttle(event, 1);
1525 perf_disable();
1526 event->pmu->unthrottle(event);
1527 perf_enable();
1528 }
1529
1530 if (!event->attr.freq || !event->attr.sample_freq)
1531 continue;
1532
1533 perf_disable();
1534 event->pmu->read(event);
1535 now = atomic64_read(&event->count);
1536 delta = now - hwc->freq_count_stamp;
1537 hwc->freq_count_stamp = now;
1538
1539 if (delta > 0)
1540 perf_adjust_period(event, TICK_NSEC, delta);
1541 perf_enable();
1542 }
1543 raw_spin_unlock(&ctx->lock);
1544 }
1545
1546 /*
1547 * Round-robin a context's events:
1548 */
1549 static void rotate_ctx(struct perf_event_context *ctx)
1550 {
1551 raw_spin_lock(&ctx->lock);
1552
1553 /* Rotate the first entry last of non-pinned groups */
1554 list_rotate_left(&ctx->flexible_groups);
1555
1556 raw_spin_unlock(&ctx->lock);
1557 }
1558
1559 void perf_event_task_tick(struct task_struct *curr)
1560 {
1561 struct perf_cpu_context *cpuctx;
1562 struct perf_event_context *ctx;
1563 int rotate = 0;
1564
1565 if (!atomic_read(&nr_events))
1566 return;
1567
1568 cpuctx = &__get_cpu_var(perf_cpu_context);
1569 if (cpuctx->ctx.nr_events &&
1570 cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1571 rotate = 1;
1572
1573 ctx = curr->perf_event_ctxp;
1574 if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1575 rotate = 1;
1576
1577 perf_ctx_adjust_freq(&cpuctx->ctx);
1578 if (ctx)
1579 perf_ctx_adjust_freq(ctx);
1580
1581 if (!rotate)
1582 return;
1583
1584 perf_disable();
1585 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1586 if (ctx)
1587 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1588
1589 rotate_ctx(&cpuctx->ctx);
1590 if (ctx)
1591 rotate_ctx(ctx);
1592
1593 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1594 if (ctx)
1595 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1596 perf_enable();
1597 }
1598
1599 static int event_enable_on_exec(struct perf_event *event,
1600 struct perf_event_context *ctx)
1601 {
1602 if (!event->attr.enable_on_exec)
1603 return 0;
1604
1605 event->attr.enable_on_exec = 0;
1606 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1607 return 0;
1608
1609 __perf_event_mark_enabled(event, ctx);
1610
1611 return 1;
1612 }
1613
1614 /*
1615 * Enable all of a task's events that have been marked enable-on-exec.
1616 * This expects task == current.
1617 */
1618 static void perf_event_enable_on_exec(struct task_struct *task)
1619 {
1620 struct perf_event_context *ctx;
1621 struct perf_event *event;
1622 unsigned long flags;
1623 int enabled = 0;
1624 int ret;
1625
1626 local_irq_save(flags);
1627 ctx = task->perf_event_ctxp;
1628 if (!ctx || !ctx->nr_events)
1629 goto out;
1630
1631 __perf_event_task_sched_out(ctx);
1632
1633 raw_spin_lock(&ctx->lock);
1634
1635 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1636 ret = event_enable_on_exec(event, ctx);
1637 if (ret)
1638 enabled = 1;
1639 }
1640
1641 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1642 ret = event_enable_on_exec(event, ctx);
1643 if (ret)
1644 enabled = 1;
1645 }
1646
1647 /*
1648 * Unclone this context if we enabled any event.
1649 */
1650 if (enabled)
1651 unclone_ctx(ctx);
1652
1653 raw_spin_unlock(&ctx->lock);
1654
1655 perf_event_task_sched_in(task);
1656 out:
1657 local_irq_restore(flags);
1658 }
1659
1660 /*
1661 * Cross CPU call to read the hardware event
1662 */
1663 static void __perf_event_read(void *info)
1664 {
1665 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1666 struct perf_event *event = info;
1667 struct perf_event_context *ctx = event->ctx;
1668
1669 /*
1670 * If this is a task context, we need to check whether it is
1671 * the current task context of this cpu. If not it has been
1672 * scheduled out before the smp call arrived. In that case
1673 * event->count would have been updated to a recent sample
1674 * when the event was scheduled out.
1675 */
1676 if (ctx->task && cpuctx->task_ctx != ctx)
1677 return;
1678
1679 raw_spin_lock(&ctx->lock);
1680 update_context_time(ctx);
1681 update_event_times(event);
1682 raw_spin_unlock(&ctx->lock);
1683
1684 event->pmu->read(event);
1685 }
1686
1687 static u64 perf_event_read(struct perf_event *event)
1688 {
1689 /*
1690 * If event is enabled and currently active on a CPU, update the
1691 * value in the event structure:
1692 */
1693 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1694 smp_call_function_single(event->oncpu,
1695 __perf_event_read, event, 1);
1696 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1697 struct perf_event_context *ctx = event->ctx;
1698 unsigned long flags;
1699
1700 raw_spin_lock_irqsave(&ctx->lock, flags);
1701 update_context_time(ctx);
1702 update_event_times(event);
1703 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1704 }
1705
1706 return atomic64_read(&event->count);
1707 }
1708
1709 /*
1710 * Initialize the perf_event context in a task_struct:
1711 */
1712 static void
1713 __perf_event_init_context(struct perf_event_context *ctx,
1714 struct task_struct *task)
1715 {
1716 raw_spin_lock_init(&ctx->lock);
1717 mutex_init(&ctx->mutex);
1718 INIT_LIST_HEAD(&ctx->pinned_groups);
1719 INIT_LIST_HEAD(&ctx->flexible_groups);
1720 INIT_LIST_HEAD(&ctx->event_list);
1721 atomic_set(&ctx->refcount, 1);
1722 ctx->task = task;
1723 }
1724
1725 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1726 {
1727 struct perf_event_context *ctx;
1728 struct perf_cpu_context *cpuctx;
1729 struct task_struct *task;
1730 unsigned long flags;
1731 int err;
1732
1733 if (pid == -1 && cpu != -1) {
1734 /* Must be root to operate on a CPU event: */
1735 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1736 return ERR_PTR(-EACCES);
1737
1738 if (cpu < 0 || cpu >= nr_cpumask_bits)
1739 return ERR_PTR(-EINVAL);
1740
1741 /*
1742 * We could be clever and allow to attach a event to an
1743 * offline CPU and activate it when the CPU comes up, but
1744 * that's for later.
1745 */
1746 if (!cpu_online(cpu))
1747 return ERR_PTR(-ENODEV);
1748
1749 cpuctx = &per_cpu(perf_cpu_context, cpu);
1750 ctx = &cpuctx->ctx;
1751 get_ctx(ctx);
1752
1753 return ctx;
1754 }
1755
1756 rcu_read_lock();
1757 if (!pid)
1758 task = current;
1759 else
1760 task = find_task_by_vpid(pid);
1761 if (task)
1762 get_task_struct(task);
1763 rcu_read_unlock();
1764
1765 if (!task)
1766 return ERR_PTR(-ESRCH);
1767
1768 /*
1769 * Can't attach events to a dying task.
1770 */
1771 err = -ESRCH;
1772 if (task->flags & PF_EXITING)
1773 goto errout;
1774
1775 /* Reuse ptrace permission checks for now. */
1776 err = -EACCES;
1777 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1778 goto errout;
1779
1780 retry:
1781 ctx = perf_lock_task_context(task, &flags);
1782 if (ctx) {
1783 unclone_ctx(ctx);
1784 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1785 }
1786
1787 if (!ctx) {
1788 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1789 err = -ENOMEM;
1790 if (!ctx)
1791 goto errout;
1792 __perf_event_init_context(ctx, task);
1793 get_ctx(ctx);
1794 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1795 /*
1796 * We raced with some other task; use
1797 * the context they set.
1798 */
1799 kfree(ctx);
1800 goto retry;
1801 }
1802 get_task_struct(task);
1803 }
1804
1805 put_task_struct(task);
1806 return ctx;
1807
1808 errout:
1809 put_task_struct(task);
1810 return ERR_PTR(err);
1811 }
1812
1813 static void perf_event_free_filter(struct perf_event *event);
1814
1815 static void free_event_rcu(struct rcu_head *head)
1816 {
1817 struct perf_event *event;
1818
1819 event = container_of(head, struct perf_event, rcu_head);
1820 if (event->ns)
1821 put_pid_ns(event->ns);
1822 perf_event_free_filter(event);
1823 kfree(event);
1824 }
1825
1826 static void perf_pending_sync(struct perf_event *event);
1827
1828 static void free_event(struct perf_event *event)
1829 {
1830 perf_pending_sync(event);
1831
1832 if (!event->parent) {
1833 atomic_dec(&nr_events);
1834 if (event->attr.mmap)
1835 atomic_dec(&nr_mmap_events);
1836 if (event->attr.comm)
1837 atomic_dec(&nr_comm_events);
1838 if (event->attr.task)
1839 atomic_dec(&nr_task_events);
1840 }
1841
1842 if (event->output) {
1843 fput(event->output->filp);
1844 event->output = NULL;
1845 }
1846
1847 if (event->destroy)
1848 event->destroy(event);
1849
1850 put_ctx(event->ctx);
1851 call_rcu(&event->rcu_head, free_event_rcu);
1852 }
1853
1854 int perf_event_release_kernel(struct perf_event *event)
1855 {
1856 struct perf_event_context *ctx = event->ctx;
1857
1858 WARN_ON_ONCE(ctx->parent_ctx);
1859 mutex_lock(&ctx->mutex);
1860 perf_event_remove_from_context(event);
1861 mutex_unlock(&ctx->mutex);
1862
1863 mutex_lock(&event->owner->perf_event_mutex);
1864 list_del_init(&event->owner_entry);
1865 mutex_unlock(&event->owner->perf_event_mutex);
1866 put_task_struct(event->owner);
1867
1868 free_event(event);
1869
1870 return 0;
1871 }
1872 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1873
1874 /*
1875 * Called when the last reference to the file is gone.
1876 */
1877 static int perf_release(struct inode *inode, struct file *file)
1878 {
1879 struct perf_event *event = file->private_data;
1880
1881 file->private_data = NULL;
1882
1883 return perf_event_release_kernel(event);
1884 }
1885
1886 static int perf_event_read_size(struct perf_event *event)
1887 {
1888 int entry = sizeof(u64); /* value */
1889 int size = 0;
1890 int nr = 1;
1891
1892 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1893 size += sizeof(u64);
1894
1895 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1896 size += sizeof(u64);
1897
1898 if (event->attr.read_format & PERF_FORMAT_ID)
1899 entry += sizeof(u64);
1900
1901 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1902 nr += event->group_leader->nr_siblings;
1903 size += sizeof(u64);
1904 }
1905
1906 size += entry * nr;
1907
1908 return size;
1909 }
1910
1911 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1912 {
1913 struct perf_event *child;
1914 u64 total = 0;
1915
1916 *enabled = 0;
1917 *running = 0;
1918
1919 mutex_lock(&event->child_mutex);
1920 total += perf_event_read(event);
1921 *enabled += event->total_time_enabled +
1922 atomic64_read(&event->child_total_time_enabled);
1923 *running += event->total_time_running +
1924 atomic64_read(&event->child_total_time_running);
1925
1926 list_for_each_entry(child, &event->child_list, child_list) {
1927 total += perf_event_read(child);
1928 *enabled += child->total_time_enabled;
1929 *running += child->total_time_running;
1930 }
1931 mutex_unlock(&event->child_mutex);
1932
1933 return total;
1934 }
1935 EXPORT_SYMBOL_GPL(perf_event_read_value);
1936
1937 static int perf_event_read_group(struct perf_event *event,
1938 u64 read_format, char __user *buf)
1939 {
1940 struct perf_event *leader = event->group_leader, *sub;
1941 int n = 0, size = 0, ret = -EFAULT;
1942 struct perf_event_context *ctx = leader->ctx;
1943 u64 values[5];
1944 u64 count, enabled, running;
1945
1946 mutex_lock(&ctx->mutex);
1947 count = perf_event_read_value(leader, &enabled, &running);
1948
1949 values[n++] = 1 + leader->nr_siblings;
1950 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1951 values[n++] = enabled;
1952 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1953 values[n++] = running;
1954 values[n++] = count;
1955 if (read_format & PERF_FORMAT_ID)
1956 values[n++] = primary_event_id(leader);
1957
1958 size = n * sizeof(u64);
1959
1960 if (copy_to_user(buf, values, size))
1961 goto unlock;
1962
1963 ret = size;
1964
1965 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1966 n = 0;
1967
1968 values[n++] = perf_event_read_value(sub, &enabled, &running);
1969 if (read_format & PERF_FORMAT_ID)
1970 values[n++] = primary_event_id(sub);
1971
1972 size = n * sizeof(u64);
1973
1974 if (copy_to_user(buf + ret, values, size)) {
1975 ret = -EFAULT;
1976 goto unlock;
1977 }
1978
1979 ret += size;
1980 }
1981 unlock:
1982 mutex_unlock(&ctx->mutex);
1983
1984 return ret;
1985 }
1986
1987 static int perf_event_read_one(struct perf_event *event,
1988 u64 read_format, char __user *buf)
1989 {
1990 u64 enabled, running;
1991 u64 values[4];
1992 int n = 0;
1993
1994 values[n++] = perf_event_read_value(event, &enabled, &running);
1995 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1996 values[n++] = enabled;
1997 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1998 values[n++] = running;
1999 if (read_format & PERF_FORMAT_ID)
2000 values[n++] = primary_event_id(event);
2001
2002 if (copy_to_user(buf, values, n * sizeof(u64)))
2003 return -EFAULT;
2004
2005 return n * sizeof(u64);
2006 }
2007
2008 /*
2009 * Read the performance event - simple non blocking version for now
2010 */
2011 static ssize_t
2012 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2013 {
2014 u64 read_format = event->attr.read_format;
2015 int ret;
2016
2017 /*
2018 * Return end-of-file for a read on a event that is in
2019 * error state (i.e. because it was pinned but it couldn't be
2020 * scheduled on to the CPU at some point).
2021 */
2022 if (event->state == PERF_EVENT_STATE_ERROR)
2023 return 0;
2024
2025 if (count < perf_event_read_size(event))
2026 return -ENOSPC;
2027
2028 WARN_ON_ONCE(event->ctx->parent_ctx);
2029 if (read_format & PERF_FORMAT_GROUP)
2030 ret = perf_event_read_group(event, read_format, buf);
2031 else
2032 ret = perf_event_read_one(event, read_format, buf);
2033
2034 return ret;
2035 }
2036
2037 static ssize_t
2038 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2039 {
2040 struct perf_event *event = file->private_data;
2041
2042 return perf_read_hw(event, buf, count);
2043 }
2044
2045 static unsigned int perf_poll(struct file *file, poll_table *wait)
2046 {
2047 struct perf_event *event = file->private_data;
2048 struct perf_mmap_data *data;
2049 unsigned int events = POLL_HUP;
2050
2051 rcu_read_lock();
2052 data = rcu_dereference(event->data);
2053 if (data)
2054 events = atomic_xchg(&data->poll, 0);
2055 rcu_read_unlock();
2056
2057 poll_wait(file, &event->waitq, wait);
2058
2059 return events;
2060 }
2061
2062 static void perf_event_reset(struct perf_event *event)
2063 {
2064 (void)perf_event_read(event);
2065 atomic64_set(&event->count, 0);
2066 perf_event_update_userpage(event);
2067 }
2068
2069 /*
2070 * Holding the top-level event's child_mutex means that any
2071 * descendant process that has inherited this event will block
2072 * in sync_child_event if it goes to exit, thus satisfying the
2073 * task existence requirements of perf_event_enable/disable.
2074 */
2075 static void perf_event_for_each_child(struct perf_event *event,
2076 void (*func)(struct perf_event *))
2077 {
2078 struct perf_event *child;
2079
2080 WARN_ON_ONCE(event->ctx->parent_ctx);
2081 mutex_lock(&event->child_mutex);
2082 func(event);
2083 list_for_each_entry(child, &event->child_list, child_list)
2084 func(child);
2085 mutex_unlock(&event->child_mutex);
2086 }
2087
2088 static void perf_event_for_each(struct perf_event *event,
2089 void (*func)(struct perf_event *))
2090 {
2091 struct perf_event_context *ctx = event->ctx;
2092 struct perf_event *sibling;
2093
2094 WARN_ON_ONCE(ctx->parent_ctx);
2095 mutex_lock(&ctx->mutex);
2096 event = event->group_leader;
2097
2098 perf_event_for_each_child(event, func);
2099 func(event);
2100 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2101 perf_event_for_each_child(event, func);
2102 mutex_unlock(&ctx->mutex);
2103 }
2104
2105 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2106 {
2107 struct perf_event_context *ctx = event->ctx;
2108 unsigned long size;
2109 int ret = 0;
2110 u64 value;
2111
2112 if (!event->attr.sample_period)
2113 return -EINVAL;
2114
2115 size = copy_from_user(&value, arg, sizeof(value));
2116 if (size != sizeof(value))
2117 return -EFAULT;
2118
2119 if (!value)
2120 return -EINVAL;
2121
2122 raw_spin_lock_irq(&ctx->lock);
2123 if (event->attr.freq) {
2124 if (value > sysctl_perf_event_sample_rate) {
2125 ret = -EINVAL;
2126 goto unlock;
2127 }
2128
2129 event->attr.sample_freq = value;
2130 } else {
2131 event->attr.sample_period = value;
2132 event->hw.sample_period = value;
2133 }
2134 unlock:
2135 raw_spin_unlock_irq(&ctx->lock);
2136
2137 return ret;
2138 }
2139
2140 static int perf_event_set_output(struct perf_event *event, int output_fd);
2141 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2142
2143 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2144 {
2145 struct perf_event *event = file->private_data;
2146 void (*func)(struct perf_event *);
2147 u32 flags = arg;
2148
2149 switch (cmd) {
2150 case PERF_EVENT_IOC_ENABLE:
2151 func = perf_event_enable;
2152 break;
2153 case PERF_EVENT_IOC_DISABLE:
2154 func = perf_event_disable;
2155 break;
2156 case PERF_EVENT_IOC_RESET:
2157 func = perf_event_reset;
2158 break;
2159
2160 case PERF_EVENT_IOC_REFRESH:
2161 return perf_event_refresh(event, arg);
2162
2163 case PERF_EVENT_IOC_PERIOD:
2164 return perf_event_period(event, (u64 __user *)arg);
2165
2166 case PERF_EVENT_IOC_SET_OUTPUT:
2167 return perf_event_set_output(event, arg);
2168
2169 case PERF_EVENT_IOC_SET_FILTER:
2170 return perf_event_set_filter(event, (void __user *)arg);
2171
2172 default:
2173 return -ENOTTY;
2174 }
2175
2176 if (flags & PERF_IOC_FLAG_GROUP)
2177 perf_event_for_each(event, func);
2178 else
2179 perf_event_for_each_child(event, func);
2180
2181 return 0;
2182 }
2183
2184 int perf_event_task_enable(void)
2185 {
2186 struct perf_event *event;
2187
2188 mutex_lock(&current->perf_event_mutex);
2189 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2190 perf_event_for_each_child(event, perf_event_enable);
2191 mutex_unlock(&current->perf_event_mutex);
2192
2193 return 0;
2194 }
2195
2196 int perf_event_task_disable(void)
2197 {
2198 struct perf_event *event;
2199
2200 mutex_lock(&current->perf_event_mutex);
2201 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2202 perf_event_for_each_child(event, perf_event_disable);
2203 mutex_unlock(&current->perf_event_mutex);
2204
2205 return 0;
2206 }
2207
2208 #ifndef PERF_EVENT_INDEX_OFFSET
2209 # define PERF_EVENT_INDEX_OFFSET 0
2210 #endif
2211
2212 static int perf_event_index(struct perf_event *event)
2213 {
2214 if (event->state != PERF_EVENT_STATE_ACTIVE)
2215 return 0;
2216
2217 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2218 }
2219
2220 /*
2221 * Callers need to ensure there can be no nesting of this function, otherwise
2222 * the seqlock logic goes bad. We can not serialize this because the arch
2223 * code calls this from NMI context.
2224 */
2225 void perf_event_update_userpage(struct perf_event *event)
2226 {
2227 struct perf_event_mmap_page *userpg;
2228 struct perf_mmap_data *data;
2229
2230 rcu_read_lock();
2231 data = rcu_dereference(event->data);
2232 if (!data)
2233 goto unlock;
2234
2235 userpg = data->user_page;
2236
2237 /*
2238 * Disable preemption so as to not let the corresponding user-space
2239 * spin too long if we get preempted.
2240 */
2241 preempt_disable();
2242 ++userpg->lock;
2243 barrier();
2244 userpg->index = perf_event_index(event);
2245 userpg->offset = atomic64_read(&event->count);
2246 if (event->state == PERF_EVENT_STATE_ACTIVE)
2247 userpg->offset -= atomic64_read(&event->hw.prev_count);
2248
2249 userpg->time_enabled = event->total_time_enabled +
2250 atomic64_read(&event->child_total_time_enabled);
2251
2252 userpg->time_running = event->total_time_running +
2253 atomic64_read(&event->child_total_time_running);
2254
2255 barrier();
2256 ++userpg->lock;
2257 preempt_enable();
2258 unlock:
2259 rcu_read_unlock();
2260 }
2261
2262 static unsigned long perf_data_size(struct perf_mmap_data *data)
2263 {
2264 return data->nr_pages << (PAGE_SHIFT + data->data_order);
2265 }
2266
2267 #ifndef CONFIG_PERF_USE_VMALLOC
2268
2269 /*
2270 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2271 */
2272
2273 static struct page *
2274 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2275 {
2276 if (pgoff > data->nr_pages)
2277 return NULL;
2278
2279 if (pgoff == 0)
2280 return virt_to_page(data->user_page);
2281
2282 return virt_to_page(data->data_pages[pgoff - 1]);
2283 }
2284
2285 static struct perf_mmap_data *
2286 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2287 {
2288 struct perf_mmap_data *data;
2289 unsigned long size;
2290 int i;
2291
2292 WARN_ON(atomic_read(&event->mmap_count));
2293
2294 size = sizeof(struct perf_mmap_data);
2295 size += nr_pages * sizeof(void *);
2296
2297 data = kzalloc(size, GFP_KERNEL);
2298 if (!data)
2299 goto fail;
2300
2301 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2302 if (!data->user_page)
2303 goto fail_user_page;
2304
2305 for (i = 0; i < nr_pages; i++) {
2306 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2307 if (!data->data_pages[i])
2308 goto fail_data_pages;
2309 }
2310
2311 data->data_order = 0;
2312 data->nr_pages = nr_pages;
2313
2314 return data;
2315
2316 fail_data_pages:
2317 for (i--; i >= 0; i--)
2318 free_page((unsigned long)data->data_pages[i]);
2319
2320 free_page((unsigned long)data->user_page);
2321
2322 fail_user_page:
2323 kfree(data);
2324
2325 fail:
2326 return NULL;
2327 }
2328
2329 static void perf_mmap_free_page(unsigned long addr)
2330 {
2331 struct page *page = virt_to_page((void *)addr);
2332
2333 page->mapping = NULL;
2334 __free_page(page);
2335 }
2336
2337 static void perf_mmap_data_free(struct perf_mmap_data *data)
2338 {
2339 int i;
2340
2341 perf_mmap_free_page((unsigned long)data->user_page);
2342 for (i = 0; i < data->nr_pages; i++)
2343 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2344 kfree(data);
2345 }
2346
2347 #else
2348
2349 /*
2350 * Back perf_mmap() with vmalloc memory.
2351 *
2352 * Required for architectures that have d-cache aliasing issues.
2353 */
2354
2355 static struct page *
2356 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2357 {
2358 if (pgoff > (1UL << data->data_order))
2359 return NULL;
2360
2361 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2362 }
2363
2364 static void perf_mmap_unmark_page(void *addr)
2365 {
2366 struct page *page = vmalloc_to_page(addr);
2367
2368 page->mapping = NULL;
2369 }
2370
2371 static void perf_mmap_data_free_work(struct work_struct *work)
2372 {
2373 struct perf_mmap_data *data;
2374 void *base;
2375 int i, nr;
2376
2377 data = container_of(work, struct perf_mmap_data, work);
2378 nr = 1 << data->data_order;
2379
2380 base = data->user_page;
2381 for (i = 0; i < nr + 1; i++)
2382 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2383
2384 vfree(base);
2385 kfree(data);
2386 }
2387
2388 static void perf_mmap_data_free(struct perf_mmap_data *data)
2389 {
2390 schedule_work(&data->work);
2391 }
2392
2393 static struct perf_mmap_data *
2394 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2395 {
2396 struct perf_mmap_data *data;
2397 unsigned long size;
2398 void *all_buf;
2399
2400 WARN_ON(atomic_read(&event->mmap_count));
2401
2402 size = sizeof(struct perf_mmap_data);
2403 size += sizeof(void *);
2404
2405 data = kzalloc(size, GFP_KERNEL);
2406 if (!data)
2407 goto fail;
2408
2409 INIT_WORK(&data->work, perf_mmap_data_free_work);
2410
2411 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2412 if (!all_buf)
2413 goto fail_all_buf;
2414
2415 data->user_page = all_buf;
2416 data->data_pages[0] = all_buf + PAGE_SIZE;
2417 data->data_order = ilog2(nr_pages);
2418 data->nr_pages = 1;
2419
2420 return data;
2421
2422 fail_all_buf:
2423 kfree(data);
2424
2425 fail:
2426 return NULL;
2427 }
2428
2429 #endif
2430
2431 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2432 {
2433 struct perf_event *event = vma->vm_file->private_data;
2434 struct perf_mmap_data *data;
2435 int ret = VM_FAULT_SIGBUS;
2436
2437 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2438 if (vmf->pgoff == 0)
2439 ret = 0;
2440 return ret;
2441 }
2442
2443 rcu_read_lock();
2444 data = rcu_dereference(event->data);
2445 if (!data)
2446 goto unlock;
2447
2448 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2449 goto unlock;
2450
2451 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2452 if (!vmf->page)
2453 goto unlock;
2454
2455 get_page(vmf->page);
2456 vmf->page->mapping = vma->vm_file->f_mapping;
2457 vmf->page->index = vmf->pgoff;
2458
2459 ret = 0;
2460 unlock:
2461 rcu_read_unlock();
2462
2463 return ret;
2464 }
2465
2466 static void
2467 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2468 {
2469 long max_size = perf_data_size(data);
2470
2471 atomic_set(&data->lock, -1);
2472
2473 if (event->attr.watermark) {
2474 data->watermark = min_t(long, max_size,
2475 event->attr.wakeup_watermark);
2476 }
2477
2478 if (!data->watermark)
2479 data->watermark = max_size / 2;
2480
2481
2482 rcu_assign_pointer(event->data, data);
2483 }
2484
2485 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2486 {
2487 struct perf_mmap_data *data;
2488
2489 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2490 perf_mmap_data_free(data);
2491 }
2492
2493 static void perf_mmap_data_release(struct perf_event *event)
2494 {
2495 struct perf_mmap_data *data = event->data;
2496
2497 WARN_ON(atomic_read(&event->mmap_count));
2498
2499 rcu_assign_pointer(event->data, NULL);
2500 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2501 }
2502
2503 static void perf_mmap_open(struct vm_area_struct *vma)
2504 {
2505 struct perf_event *event = vma->vm_file->private_data;
2506
2507 atomic_inc(&event->mmap_count);
2508 }
2509
2510 static void perf_mmap_close(struct vm_area_struct *vma)
2511 {
2512 struct perf_event *event = vma->vm_file->private_data;
2513
2514 WARN_ON_ONCE(event->ctx->parent_ctx);
2515 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2516 unsigned long size = perf_data_size(event->data);
2517 struct user_struct *user = current_user();
2518
2519 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2520 vma->vm_mm->locked_vm -= event->data->nr_locked;
2521 perf_mmap_data_release(event);
2522 mutex_unlock(&event->mmap_mutex);
2523 }
2524 }
2525
2526 static const struct vm_operations_struct perf_mmap_vmops = {
2527 .open = perf_mmap_open,
2528 .close = perf_mmap_close,
2529 .fault = perf_mmap_fault,
2530 .page_mkwrite = perf_mmap_fault,
2531 };
2532
2533 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2534 {
2535 struct perf_event *event = file->private_data;
2536 unsigned long user_locked, user_lock_limit;
2537 struct user_struct *user = current_user();
2538 unsigned long locked, lock_limit;
2539 struct perf_mmap_data *data;
2540 unsigned long vma_size;
2541 unsigned long nr_pages;
2542 long user_extra, extra;
2543 int ret = 0;
2544
2545 if (!(vma->vm_flags & VM_SHARED))
2546 return -EINVAL;
2547
2548 vma_size = vma->vm_end - vma->vm_start;
2549 nr_pages = (vma_size / PAGE_SIZE) - 1;
2550
2551 /*
2552 * If we have data pages ensure they're a power-of-two number, so we
2553 * can do bitmasks instead of modulo.
2554 */
2555 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2556 return -EINVAL;
2557
2558 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2559 return -EINVAL;
2560
2561 if (vma->vm_pgoff != 0)
2562 return -EINVAL;
2563
2564 WARN_ON_ONCE(event->ctx->parent_ctx);
2565 mutex_lock(&event->mmap_mutex);
2566 if (event->output) {
2567 ret = -EINVAL;
2568 goto unlock;
2569 }
2570
2571 if (atomic_inc_not_zero(&event->mmap_count)) {
2572 if (nr_pages != event->data->nr_pages)
2573 ret = -EINVAL;
2574 goto unlock;
2575 }
2576
2577 user_extra = nr_pages + 1;
2578 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2579
2580 /*
2581 * Increase the limit linearly with more CPUs:
2582 */
2583 user_lock_limit *= num_online_cpus();
2584
2585 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2586
2587 extra = 0;
2588 if (user_locked > user_lock_limit)
2589 extra = user_locked - user_lock_limit;
2590
2591 lock_limit = rlimit(RLIMIT_MEMLOCK);
2592 lock_limit >>= PAGE_SHIFT;
2593 locked = vma->vm_mm->locked_vm + extra;
2594
2595 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2596 !capable(CAP_IPC_LOCK)) {
2597 ret = -EPERM;
2598 goto unlock;
2599 }
2600
2601 WARN_ON(event->data);
2602
2603 data = perf_mmap_data_alloc(event, nr_pages);
2604 ret = -ENOMEM;
2605 if (!data)
2606 goto unlock;
2607
2608 ret = 0;
2609 perf_mmap_data_init(event, data);
2610
2611 atomic_set(&event->mmap_count, 1);
2612 atomic_long_add(user_extra, &user->locked_vm);
2613 vma->vm_mm->locked_vm += extra;
2614 event->data->nr_locked = extra;
2615 if (vma->vm_flags & VM_WRITE)
2616 event->data->writable = 1;
2617
2618 unlock:
2619 mutex_unlock(&event->mmap_mutex);
2620
2621 vma->vm_flags |= VM_RESERVED;
2622 vma->vm_ops = &perf_mmap_vmops;
2623
2624 return ret;
2625 }
2626
2627 static int perf_fasync(int fd, struct file *filp, int on)
2628 {
2629 struct inode *inode = filp->f_path.dentry->d_inode;
2630 struct perf_event *event = filp->private_data;
2631 int retval;
2632
2633 mutex_lock(&inode->i_mutex);
2634 retval = fasync_helper(fd, filp, on, &event->fasync);
2635 mutex_unlock(&inode->i_mutex);
2636
2637 if (retval < 0)
2638 return retval;
2639
2640 return 0;
2641 }
2642
2643 static const struct file_operations perf_fops = {
2644 .release = perf_release,
2645 .read = perf_read,
2646 .poll = perf_poll,
2647 .unlocked_ioctl = perf_ioctl,
2648 .compat_ioctl = perf_ioctl,
2649 .mmap = perf_mmap,
2650 .fasync = perf_fasync,
2651 };
2652
2653 /*
2654 * Perf event wakeup
2655 *
2656 * If there's data, ensure we set the poll() state and publish everything
2657 * to user-space before waking everybody up.
2658 */
2659
2660 void perf_event_wakeup(struct perf_event *event)
2661 {
2662 wake_up_all(&event->waitq);
2663
2664 if (event->pending_kill) {
2665 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2666 event->pending_kill = 0;
2667 }
2668 }
2669
2670 /*
2671 * Pending wakeups
2672 *
2673 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2674 *
2675 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2676 * single linked list and use cmpxchg() to add entries lockless.
2677 */
2678
2679 static void perf_pending_event(struct perf_pending_entry *entry)
2680 {
2681 struct perf_event *event = container_of(entry,
2682 struct perf_event, pending);
2683
2684 if (event->pending_disable) {
2685 event->pending_disable = 0;
2686 __perf_event_disable(event);
2687 }
2688
2689 if (event->pending_wakeup) {
2690 event->pending_wakeup = 0;
2691 perf_event_wakeup(event);
2692 }
2693 }
2694
2695 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2696
2697 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2698 PENDING_TAIL,
2699 };
2700
2701 static void perf_pending_queue(struct perf_pending_entry *entry,
2702 void (*func)(struct perf_pending_entry *))
2703 {
2704 struct perf_pending_entry **head;
2705
2706 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2707 return;
2708
2709 entry->func = func;
2710
2711 head = &get_cpu_var(perf_pending_head);
2712
2713 do {
2714 entry->next = *head;
2715 } while (cmpxchg(head, entry->next, entry) != entry->next);
2716
2717 set_perf_event_pending();
2718
2719 put_cpu_var(perf_pending_head);
2720 }
2721
2722 static int __perf_pending_run(void)
2723 {
2724 struct perf_pending_entry *list;
2725 int nr = 0;
2726
2727 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2728 while (list != PENDING_TAIL) {
2729 void (*func)(struct perf_pending_entry *);
2730 struct perf_pending_entry *entry = list;
2731
2732 list = list->next;
2733
2734 func = entry->func;
2735 entry->next = NULL;
2736 /*
2737 * Ensure we observe the unqueue before we issue the wakeup,
2738 * so that we won't be waiting forever.
2739 * -- see perf_not_pending().
2740 */
2741 smp_wmb();
2742
2743 func(entry);
2744 nr++;
2745 }
2746
2747 return nr;
2748 }
2749
2750 static inline int perf_not_pending(struct perf_event *event)
2751 {
2752 /*
2753 * If we flush on whatever cpu we run, there is a chance we don't
2754 * need to wait.
2755 */
2756 get_cpu();
2757 __perf_pending_run();
2758 put_cpu();
2759
2760 /*
2761 * Ensure we see the proper queue state before going to sleep
2762 * so that we do not miss the wakeup. -- see perf_pending_handle()
2763 */
2764 smp_rmb();
2765 return event->pending.next == NULL;
2766 }
2767
2768 static void perf_pending_sync(struct perf_event *event)
2769 {
2770 wait_event(event->waitq, perf_not_pending(event));
2771 }
2772
2773 void perf_event_do_pending(void)
2774 {
2775 __perf_pending_run();
2776 }
2777
2778 /*
2779 * Callchain support -- arch specific
2780 */
2781
2782 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2783 {
2784 return NULL;
2785 }
2786
2787 #ifdef CONFIG_EVENT_TRACING
2788 __weak
2789 void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
2790 {
2791 }
2792 #endif
2793
2794 /*
2795 * Output
2796 */
2797 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2798 unsigned long offset, unsigned long head)
2799 {
2800 unsigned long mask;
2801
2802 if (!data->writable)
2803 return true;
2804
2805 mask = perf_data_size(data) - 1;
2806
2807 offset = (offset - tail) & mask;
2808 head = (head - tail) & mask;
2809
2810 if ((int)(head - offset) < 0)
2811 return false;
2812
2813 return true;
2814 }
2815
2816 static void perf_output_wakeup(struct perf_output_handle *handle)
2817 {
2818 atomic_set(&handle->data->poll, POLL_IN);
2819
2820 if (handle->nmi) {
2821 handle->event->pending_wakeup = 1;
2822 perf_pending_queue(&handle->event->pending,
2823 perf_pending_event);
2824 } else
2825 perf_event_wakeup(handle->event);
2826 }
2827
2828 /*
2829 * Curious locking construct.
2830 *
2831 * We need to ensure a later event_id doesn't publish a head when a former
2832 * event_id isn't done writing. However since we need to deal with NMIs we
2833 * cannot fully serialize things.
2834 *
2835 * What we do is serialize between CPUs so we only have to deal with NMI
2836 * nesting on a single CPU.
2837 *
2838 * We only publish the head (and generate a wakeup) when the outer-most
2839 * event_id completes.
2840 */
2841 static void perf_output_lock(struct perf_output_handle *handle)
2842 {
2843 struct perf_mmap_data *data = handle->data;
2844 int cur, cpu = get_cpu();
2845
2846 handle->locked = 0;
2847
2848 for (;;) {
2849 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2850 if (cur == -1) {
2851 handle->locked = 1;
2852 break;
2853 }
2854 if (cur == cpu)
2855 break;
2856
2857 cpu_relax();
2858 }
2859 }
2860
2861 static void perf_output_unlock(struct perf_output_handle *handle)
2862 {
2863 struct perf_mmap_data *data = handle->data;
2864 unsigned long head;
2865 int cpu;
2866
2867 data->done_head = data->head;
2868
2869 if (!handle->locked)
2870 goto out;
2871
2872 again:
2873 /*
2874 * The xchg implies a full barrier that ensures all writes are done
2875 * before we publish the new head, matched by a rmb() in userspace when
2876 * reading this position.
2877 */
2878 while ((head = atomic_long_xchg(&data->done_head, 0)))
2879 data->user_page->data_head = head;
2880
2881 /*
2882 * NMI can happen here, which means we can miss a done_head update.
2883 */
2884
2885 cpu = atomic_xchg(&data->lock, -1);
2886 WARN_ON_ONCE(cpu != smp_processor_id());
2887
2888 /*
2889 * Therefore we have to validate we did not indeed do so.
2890 */
2891 if (unlikely(atomic_long_read(&data->done_head))) {
2892 /*
2893 * Since we had it locked, we can lock it again.
2894 */
2895 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2896 cpu_relax();
2897
2898 goto again;
2899 }
2900
2901 if (atomic_xchg(&data->wakeup, 0))
2902 perf_output_wakeup(handle);
2903 out:
2904 put_cpu();
2905 }
2906
2907 void perf_output_copy(struct perf_output_handle *handle,
2908 const void *buf, unsigned int len)
2909 {
2910 unsigned int pages_mask;
2911 unsigned long offset;
2912 unsigned int size;
2913 void **pages;
2914
2915 offset = handle->offset;
2916 pages_mask = handle->data->nr_pages - 1;
2917 pages = handle->data->data_pages;
2918
2919 do {
2920 unsigned long page_offset;
2921 unsigned long page_size;
2922 int nr;
2923
2924 nr = (offset >> PAGE_SHIFT) & pages_mask;
2925 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2926 page_offset = offset & (page_size - 1);
2927 size = min_t(unsigned int, page_size - page_offset, len);
2928
2929 memcpy(pages[nr] + page_offset, buf, size);
2930
2931 len -= size;
2932 buf += size;
2933 offset += size;
2934 } while (len);
2935
2936 handle->offset = offset;
2937
2938 /*
2939 * Check we didn't copy past our reservation window, taking the
2940 * possible unsigned int wrap into account.
2941 */
2942 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2943 }
2944
2945 int perf_output_begin(struct perf_output_handle *handle,
2946 struct perf_event *event, unsigned int size,
2947 int nmi, int sample)
2948 {
2949 struct perf_event *output_event;
2950 struct perf_mmap_data *data;
2951 unsigned long tail, offset, head;
2952 int have_lost;
2953 struct {
2954 struct perf_event_header header;
2955 u64 id;
2956 u64 lost;
2957 } lost_event;
2958
2959 rcu_read_lock();
2960 /*
2961 * For inherited events we send all the output towards the parent.
2962 */
2963 if (event->parent)
2964 event = event->parent;
2965
2966 output_event = rcu_dereference(event->output);
2967 if (output_event)
2968 event = output_event;
2969
2970 data = rcu_dereference(event->data);
2971 if (!data)
2972 goto out;
2973
2974 handle->data = data;
2975 handle->event = event;
2976 handle->nmi = nmi;
2977 handle->sample = sample;
2978
2979 if (!data->nr_pages)
2980 goto fail;
2981
2982 have_lost = atomic_read(&data->lost);
2983 if (have_lost)
2984 size += sizeof(lost_event);
2985
2986 perf_output_lock(handle);
2987
2988 do {
2989 /*
2990 * Userspace could choose to issue a mb() before updating the
2991 * tail pointer. So that all reads will be completed before the
2992 * write is issued.
2993 */
2994 tail = ACCESS_ONCE(data->user_page->data_tail);
2995 smp_rmb();
2996 offset = head = atomic_long_read(&data->head);
2997 head += size;
2998 if (unlikely(!perf_output_space(data, tail, offset, head)))
2999 goto fail;
3000 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
3001
3002 handle->offset = offset;
3003 handle->head = head;
3004
3005 if (head - tail > data->watermark)
3006 atomic_set(&data->wakeup, 1);
3007
3008 if (have_lost) {
3009 lost_event.header.type = PERF_RECORD_LOST;
3010 lost_event.header.misc = 0;
3011 lost_event.header.size = sizeof(lost_event);
3012 lost_event.id = event->id;
3013 lost_event.lost = atomic_xchg(&data->lost, 0);
3014
3015 perf_output_put(handle, lost_event);
3016 }
3017
3018 return 0;
3019
3020 fail:
3021 atomic_inc(&data->lost);
3022 perf_output_unlock(handle);
3023 out:
3024 rcu_read_unlock();
3025
3026 return -ENOSPC;
3027 }
3028
3029 void perf_output_end(struct perf_output_handle *handle)
3030 {
3031 struct perf_event *event = handle->event;
3032 struct perf_mmap_data *data = handle->data;
3033
3034 int wakeup_events = event->attr.wakeup_events;
3035
3036 if (handle->sample && wakeup_events) {
3037 int events = atomic_inc_return(&data->events);
3038 if (events >= wakeup_events) {
3039 atomic_sub(wakeup_events, &data->events);
3040 atomic_set(&data->wakeup, 1);
3041 }
3042 }
3043
3044 perf_output_unlock(handle);
3045 rcu_read_unlock();
3046 }
3047
3048 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3049 {
3050 /*
3051 * only top level events have the pid namespace they were created in
3052 */
3053 if (event->parent)
3054 event = event->parent;
3055
3056 return task_tgid_nr_ns(p, event->ns);
3057 }
3058
3059 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3060 {
3061 /*
3062 * only top level events have the pid namespace they were created in
3063 */
3064 if (event->parent)
3065 event = event->parent;
3066
3067 return task_pid_nr_ns(p, event->ns);
3068 }
3069
3070 static void perf_output_read_one(struct perf_output_handle *handle,
3071 struct perf_event *event)
3072 {
3073 u64 read_format = event->attr.read_format;
3074 u64 values[4];
3075 int n = 0;
3076
3077 values[n++] = atomic64_read(&event->count);
3078 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3079 values[n++] = event->total_time_enabled +
3080 atomic64_read(&event->child_total_time_enabled);
3081 }
3082 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3083 values[n++] = event->total_time_running +
3084 atomic64_read(&event->child_total_time_running);
3085 }
3086 if (read_format & PERF_FORMAT_ID)
3087 values[n++] = primary_event_id(event);
3088
3089 perf_output_copy(handle, values, n * sizeof(u64));
3090 }
3091
3092 /*
3093 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3094 */
3095 static void perf_output_read_group(struct perf_output_handle *handle,
3096 struct perf_event *event)
3097 {
3098 struct perf_event *leader = event->group_leader, *sub;
3099 u64 read_format = event->attr.read_format;
3100 u64 values[5];
3101 int n = 0;
3102
3103 values[n++] = 1 + leader->nr_siblings;
3104
3105 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3106 values[n++] = leader->total_time_enabled;
3107
3108 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3109 values[n++] = leader->total_time_running;
3110
3111 if (leader != event)
3112 leader->pmu->read(leader);
3113
3114 values[n++] = atomic64_read(&leader->count);
3115 if (read_format & PERF_FORMAT_ID)
3116 values[n++] = primary_event_id(leader);
3117
3118 perf_output_copy(handle, values, n * sizeof(u64));
3119
3120 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3121 n = 0;
3122
3123 if (sub != event)
3124 sub->pmu->read(sub);
3125
3126 values[n++] = atomic64_read(&sub->count);
3127 if (read_format & PERF_FORMAT_ID)
3128 values[n++] = primary_event_id(sub);
3129
3130 perf_output_copy(handle, values, n * sizeof(u64));
3131 }
3132 }
3133
3134 static void perf_output_read(struct perf_output_handle *handle,
3135 struct perf_event *event)
3136 {
3137 if (event->attr.read_format & PERF_FORMAT_GROUP)
3138 perf_output_read_group(handle, event);
3139 else
3140 perf_output_read_one(handle, event);
3141 }
3142
3143 void perf_output_sample(struct perf_output_handle *handle,
3144 struct perf_event_header *header,
3145 struct perf_sample_data *data,
3146 struct perf_event *event)
3147 {
3148 u64 sample_type = data->type;
3149
3150 perf_output_put(handle, *header);
3151
3152 if (sample_type & PERF_SAMPLE_IP)
3153 perf_output_put(handle, data->ip);
3154
3155 if (sample_type & PERF_SAMPLE_TID)
3156 perf_output_put(handle, data->tid_entry);
3157
3158 if (sample_type & PERF_SAMPLE_TIME)
3159 perf_output_put(handle, data->time);
3160
3161 if (sample_type & PERF_SAMPLE_ADDR)
3162 perf_output_put(handle, data->addr);
3163
3164 if (sample_type & PERF_SAMPLE_ID)
3165 perf_output_put(handle, data->id);
3166
3167 if (sample_type & PERF_SAMPLE_STREAM_ID)
3168 perf_output_put(handle, data->stream_id);
3169
3170 if (sample_type & PERF_SAMPLE_CPU)
3171 perf_output_put(handle, data->cpu_entry);
3172
3173 if (sample_type & PERF_SAMPLE_PERIOD)
3174 perf_output_put(handle, data->period);
3175
3176 if (sample_type & PERF_SAMPLE_READ)
3177 perf_output_read(handle, event);
3178
3179 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3180 if (data->callchain) {
3181 int size = 1;
3182
3183 if (data->callchain)
3184 size += data->callchain->nr;
3185
3186 size *= sizeof(u64);
3187
3188 perf_output_copy(handle, data->callchain, size);
3189 } else {
3190 u64 nr = 0;
3191 perf_output_put(handle, nr);
3192 }
3193 }
3194
3195 if (sample_type & PERF_SAMPLE_RAW) {
3196 if (data->raw) {
3197 perf_output_put(handle, data->raw->size);
3198 perf_output_copy(handle, data->raw->data,
3199 data->raw->size);
3200 } else {
3201 struct {
3202 u32 size;
3203 u32 data;
3204 } raw = {
3205 .size = sizeof(u32),
3206 .data = 0,
3207 };
3208 perf_output_put(handle, raw);
3209 }
3210 }
3211 }
3212
3213 void perf_prepare_sample(struct perf_event_header *header,
3214 struct perf_sample_data *data,
3215 struct perf_event *event,
3216 struct pt_regs *regs)
3217 {
3218 u64 sample_type = event->attr.sample_type;
3219
3220 data->type = sample_type;
3221
3222 header->type = PERF_RECORD_SAMPLE;
3223 header->size = sizeof(*header);
3224
3225 header->misc = 0;
3226 header->misc |= perf_misc_flags(regs);
3227
3228 if (sample_type & PERF_SAMPLE_IP) {
3229 data->ip = perf_instruction_pointer(regs);
3230
3231 header->size += sizeof(data->ip);
3232 }
3233
3234 if (sample_type & PERF_SAMPLE_TID) {
3235 /* namespace issues */
3236 data->tid_entry.pid = perf_event_pid(event, current);
3237 data->tid_entry.tid = perf_event_tid(event, current);
3238
3239 header->size += sizeof(data->tid_entry);
3240 }
3241
3242 if (sample_type & PERF_SAMPLE_TIME) {
3243 data->time = perf_clock();
3244
3245 header->size += sizeof(data->time);
3246 }
3247
3248 if (sample_type & PERF_SAMPLE_ADDR)
3249 header->size += sizeof(data->addr);
3250
3251 if (sample_type & PERF_SAMPLE_ID) {
3252 data->id = primary_event_id(event);
3253
3254 header->size += sizeof(data->id);
3255 }
3256
3257 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3258 data->stream_id = event->id;
3259
3260 header->size += sizeof(data->stream_id);
3261 }
3262
3263 if (sample_type & PERF_SAMPLE_CPU) {
3264 data->cpu_entry.cpu = raw_smp_processor_id();
3265 data->cpu_entry.reserved = 0;
3266
3267 header->size += sizeof(data->cpu_entry);
3268 }
3269
3270 if (sample_type & PERF_SAMPLE_PERIOD)
3271 header->size += sizeof(data->period);
3272
3273 if (sample_type & PERF_SAMPLE_READ)
3274 header->size += perf_event_read_size(event);
3275
3276 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3277 int size = 1;
3278
3279 data->callchain = perf_callchain(regs);
3280
3281 if (data->callchain)
3282 size += data->callchain->nr;
3283
3284 header->size += size * sizeof(u64);
3285 }
3286
3287 if (sample_type & PERF_SAMPLE_RAW) {
3288 int size = sizeof(u32);
3289
3290 if (data->raw)
3291 size += data->raw->size;
3292 else
3293 size += sizeof(u32);
3294
3295 WARN_ON_ONCE(size & (sizeof(u64)-1));
3296 header->size += size;
3297 }
3298 }
3299
3300 static void perf_event_output(struct perf_event *event, int nmi,
3301 struct perf_sample_data *data,
3302 struct pt_regs *regs)
3303 {
3304 struct perf_output_handle handle;
3305 struct perf_event_header header;
3306
3307 perf_prepare_sample(&header, data, event, regs);
3308
3309 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3310 return;
3311
3312 perf_output_sample(&handle, &header, data, event);
3313
3314 perf_output_end(&handle);
3315 }
3316
3317 /*
3318 * read event_id
3319 */
3320
3321 struct perf_read_event {
3322 struct perf_event_header header;
3323
3324 u32 pid;
3325 u32 tid;
3326 };
3327
3328 static void
3329 perf_event_read_event(struct perf_event *event,
3330 struct task_struct *task)
3331 {
3332 struct perf_output_handle handle;
3333 struct perf_read_event read_event = {
3334 .header = {
3335 .type = PERF_RECORD_READ,
3336 .misc = 0,
3337 .size = sizeof(read_event) + perf_event_read_size(event),
3338 },
3339 .pid = perf_event_pid(event, task),
3340 .tid = perf_event_tid(event, task),
3341 };
3342 int ret;
3343
3344 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3345 if (ret)
3346 return;
3347
3348 perf_output_put(&handle, read_event);
3349 perf_output_read(&handle, event);
3350
3351 perf_output_end(&handle);
3352 }
3353
3354 /*
3355 * task tracking -- fork/exit
3356 *
3357 * enabled by: attr.comm | attr.mmap | attr.task
3358 */
3359
3360 struct perf_task_event {
3361 struct task_struct *task;
3362 struct perf_event_context *task_ctx;
3363
3364 struct {
3365 struct perf_event_header header;
3366
3367 u32 pid;
3368 u32 ppid;
3369 u32 tid;
3370 u32 ptid;
3371 u64 time;
3372 } event_id;
3373 };
3374
3375 static void perf_event_task_output(struct perf_event *event,
3376 struct perf_task_event *task_event)
3377 {
3378 struct perf_output_handle handle;
3379 int size;
3380 struct task_struct *task = task_event->task;
3381 int ret;
3382
3383 size = task_event->event_id.header.size;
3384 ret = perf_output_begin(&handle, event, size, 0, 0);
3385
3386 if (ret)
3387 return;
3388
3389 task_event->event_id.pid = perf_event_pid(event, task);
3390 task_event->event_id.ppid = perf_event_pid(event, current);
3391
3392 task_event->event_id.tid = perf_event_tid(event, task);
3393 task_event->event_id.ptid = perf_event_tid(event, current);
3394
3395 perf_output_put(&handle, task_event->event_id);
3396
3397 perf_output_end(&handle);
3398 }
3399
3400 static int perf_event_task_match(struct perf_event *event)
3401 {
3402 if (event->state < PERF_EVENT_STATE_INACTIVE)
3403 return 0;
3404
3405 if (event->cpu != -1 && event->cpu != smp_processor_id())
3406 return 0;
3407
3408 if (event->attr.comm || event->attr.mmap || event->attr.task)
3409 return 1;
3410
3411 return 0;
3412 }
3413
3414 static void perf_event_task_ctx(struct perf_event_context *ctx,
3415 struct perf_task_event *task_event)
3416 {
3417 struct perf_event *event;
3418
3419 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3420 if (perf_event_task_match(event))
3421 perf_event_task_output(event, task_event);
3422 }
3423 }
3424
3425 static void perf_event_task_event(struct perf_task_event *task_event)
3426 {
3427 struct perf_cpu_context *cpuctx;
3428 struct perf_event_context *ctx = task_event->task_ctx;
3429
3430 rcu_read_lock();
3431 cpuctx = &get_cpu_var(perf_cpu_context);
3432 perf_event_task_ctx(&cpuctx->ctx, task_event);
3433 if (!ctx)
3434 ctx = rcu_dereference(current->perf_event_ctxp);
3435 if (ctx)
3436 perf_event_task_ctx(ctx, task_event);
3437 put_cpu_var(perf_cpu_context);
3438 rcu_read_unlock();
3439 }
3440
3441 static void perf_event_task(struct task_struct *task,
3442 struct perf_event_context *task_ctx,
3443 int new)
3444 {
3445 struct perf_task_event task_event;
3446
3447 if (!atomic_read(&nr_comm_events) &&
3448 !atomic_read(&nr_mmap_events) &&
3449 !atomic_read(&nr_task_events))
3450 return;
3451
3452 task_event = (struct perf_task_event){
3453 .task = task,
3454 .task_ctx = task_ctx,
3455 .event_id = {
3456 .header = {
3457 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3458 .misc = 0,
3459 .size = sizeof(task_event.event_id),
3460 },
3461 /* .pid */
3462 /* .ppid */
3463 /* .tid */
3464 /* .ptid */
3465 .time = perf_clock(),
3466 },
3467 };
3468
3469 perf_event_task_event(&task_event);
3470 }
3471
3472 void perf_event_fork(struct task_struct *task)
3473 {
3474 perf_event_task(task, NULL, 1);
3475 }
3476
3477 /*
3478 * comm tracking
3479 */
3480
3481 struct perf_comm_event {
3482 struct task_struct *task;
3483 char *comm;
3484 int comm_size;
3485
3486 struct {
3487 struct perf_event_header header;
3488
3489 u32 pid;
3490 u32 tid;
3491 } event_id;
3492 };
3493
3494 static void perf_event_comm_output(struct perf_event *event,
3495 struct perf_comm_event *comm_event)
3496 {
3497 struct perf_output_handle handle;
3498 int size = comm_event->event_id.header.size;
3499 int ret = perf_output_begin(&handle, event, size, 0, 0);
3500
3501 if (ret)
3502 return;
3503
3504 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3505 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3506
3507 perf_output_put(&handle, comm_event->event_id);
3508 perf_output_copy(&handle, comm_event->comm,
3509 comm_event->comm_size);
3510 perf_output_end(&handle);
3511 }
3512
3513 static int perf_event_comm_match(struct perf_event *event)
3514 {
3515 if (event->state < PERF_EVENT_STATE_INACTIVE)
3516 return 0;
3517
3518 if (event->cpu != -1 && event->cpu != smp_processor_id())
3519 return 0;
3520
3521 if (event->attr.comm)
3522 return 1;
3523
3524 return 0;
3525 }
3526
3527 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3528 struct perf_comm_event *comm_event)
3529 {
3530 struct perf_event *event;
3531
3532 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3533 if (perf_event_comm_match(event))
3534 perf_event_comm_output(event, comm_event);
3535 }
3536 }
3537
3538 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3539 {
3540 struct perf_cpu_context *cpuctx;
3541 struct perf_event_context *ctx;
3542 unsigned int size;
3543 char comm[TASK_COMM_LEN];
3544
3545 memset(comm, 0, sizeof(comm));
3546 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3547 size = ALIGN(strlen(comm)+1, sizeof(u64));
3548
3549 comm_event->comm = comm;
3550 comm_event->comm_size = size;
3551
3552 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3553
3554 rcu_read_lock();
3555 cpuctx = &get_cpu_var(perf_cpu_context);
3556 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3557 ctx = rcu_dereference(current->perf_event_ctxp);
3558 if (ctx)
3559 perf_event_comm_ctx(ctx, comm_event);
3560 put_cpu_var(perf_cpu_context);
3561 rcu_read_unlock();
3562 }
3563
3564 void perf_event_comm(struct task_struct *task)
3565 {
3566 struct perf_comm_event comm_event;
3567
3568 if (task->perf_event_ctxp)
3569 perf_event_enable_on_exec(task);
3570
3571 if (!atomic_read(&nr_comm_events))
3572 return;
3573
3574 comm_event = (struct perf_comm_event){
3575 .task = task,
3576 /* .comm */
3577 /* .comm_size */
3578 .event_id = {
3579 .header = {
3580 .type = PERF_RECORD_COMM,
3581 .misc = 0,
3582 /* .size */
3583 },
3584 /* .pid */
3585 /* .tid */
3586 },
3587 };
3588
3589 perf_event_comm_event(&comm_event);
3590 }
3591
3592 /*
3593 * mmap tracking
3594 */
3595
3596 struct perf_mmap_event {
3597 struct vm_area_struct *vma;
3598
3599 const char *file_name;
3600 int file_size;
3601
3602 struct {
3603 struct perf_event_header header;
3604
3605 u32 pid;
3606 u32 tid;
3607 u64 start;
3608 u64 len;
3609 u64 pgoff;
3610 } event_id;
3611 };
3612
3613 static void perf_event_mmap_output(struct perf_event *event,
3614 struct perf_mmap_event *mmap_event)
3615 {
3616 struct perf_output_handle handle;
3617 int size = mmap_event->event_id.header.size;
3618 int ret = perf_output_begin(&handle, event, size, 0, 0);
3619
3620 if (ret)
3621 return;
3622
3623 mmap_event->event_id.pid = perf_event_pid(event, current);
3624 mmap_event->event_id.tid = perf_event_tid(event, current);
3625
3626 perf_output_put(&handle, mmap_event->event_id);
3627 perf_output_copy(&handle, mmap_event->file_name,
3628 mmap_event->file_size);
3629 perf_output_end(&handle);
3630 }
3631
3632 static int perf_event_mmap_match(struct perf_event *event,
3633 struct perf_mmap_event *mmap_event)
3634 {
3635 if (event->state < PERF_EVENT_STATE_INACTIVE)
3636 return 0;
3637
3638 if (event->cpu != -1 && event->cpu != smp_processor_id())
3639 return 0;
3640
3641 if (event->attr.mmap)
3642 return 1;
3643
3644 return 0;
3645 }
3646
3647 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3648 struct perf_mmap_event *mmap_event)
3649 {
3650 struct perf_event *event;
3651
3652 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3653 if (perf_event_mmap_match(event, mmap_event))
3654 perf_event_mmap_output(event, mmap_event);
3655 }
3656 }
3657
3658 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3659 {
3660 struct perf_cpu_context *cpuctx;
3661 struct perf_event_context *ctx;
3662 struct vm_area_struct *vma = mmap_event->vma;
3663 struct file *file = vma->vm_file;
3664 unsigned int size;
3665 char tmp[16];
3666 char *buf = NULL;
3667 const char *name;
3668
3669 memset(tmp, 0, sizeof(tmp));
3670
3671 if (file) {
3672 /*
3673 * d_path works from the end of the buffer backwards, so we
3674 * need to add enough zero bytes after the string to handle
3675 * the 64bit alignment we do later.
3676 */
3677 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3678 if (!buf) {
3679 name = strncpy(tmp, "//enomem", sizeof(tmp));
3680 goto got_name;
3681 }
3682 name = d_path(&file->f_path, buf, PATH_MAX);
3683 if (IS_ERR(name)) {
3684 name = strncpy(tmp, "//toolong", sizeof(tmp));
3685 goto got_name;
3686 }
3687 } else {
3688 if (arch_vma_name(mmap_event->vma)) {
3689 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3690 sizeof(tmp));
3691 goto got_name;
3692 }
3693
3694 if (!vma->vm_mm) {
3695 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3696 goto got_name;
3697 }
3698
3699 name = strncpy(tmp, "//anon", sizeof(tmp));
3700 goto got_name;
3701 }
3702
3703 got_name:
3704 size = ALIGN(strlen(name)+1, sizeof(u64));
3705
3706 mmap_event->file_name = name;
3707 mmap_event->file_size = size;
3708
3709 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3710
3711 rcu_read_lock();
3712 cpuctx = &get_cpu_var(perf_cpu_context);
3713 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3714 ctx = rcu_dereference(current->perf_event_ctxp);
3715 if (ctx)
3716 perf_event_mmap_ctx(ctx, mmap_event);
3717 put_cpu_var(perf_cpu_context);
3718 rcu_read_unlock();
3719
3720 kfree(buf);
3721 }
3722
3723 void __perf_event_mmap(struct vm_area_struct *vma)
3724 {
3725 struct perf_mmap_event mmap_event;
3726
3727 if (!atomic_read(&nr_mmap_events))
3728 return;
3729
3730 mmap_event = (struct perf_mmap_event){
3731 .vma = vma,
3732 /* .file_name */
3733 /* .file_size */
3734 .event_id = {
3735 .header = {
3736 .type = PERF_RECORD_MMAP,
3737 .misc = 0,
3738 /* .size */
3739 },
3740 /* .pid */
3741 /* .tid */
3742 .start = vma->vm_start,
3743 .len = vma->vm_end - vma->vm_start,
3744 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
3745 },
3746 };
3747
3748 perf_event_mmap_event(&mmap_event);
3749 }
3750
3751 /*
3752 * IRQ throttle logging
3753 */
3754
3755 static void perf_log_throttle(struct perf_event *event, int enable)
3756 {
3757 struct perf_output_handle handle;
3758 int ret;
3759
3760 struct {
3761 struct perf_event_header header;
3762 u64 time;
3763 u64 id;
3764 u64 stream_id;
3765 } throttle_event = {
3766 .header = {
3767 .type = PERF_RECORD_THROTTLE,
3768 .misc = 0,
3769 .size = sizeof(throttle_event),
3770 },
3771 .time = perf_clock(),
3772 .id = primary_event_id(event),
3773 .stream_id = event->id,
3774 };
3775
3776 if (enable)
3777 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3778
3779 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3780 if (ret)
3781 return;
3782
3783 perf_output_put(&handle, throttle_event);
3784 perf_output_end(&handle);
3785 }
3786
3787 /*
3788 * Generic event overflow handling, sampling.
3789 */
3790
3791 static int __perf_event_overflow(struct perf_event *event, int nmi,
3792 int throttle, struct perf_sample_data *data,
3793 struct pt_regs *regs)
3794 {
3795 int events = atomic_read(&event->event_limit);
3796 struct hw_perf_event *hwc = &event->hw;
3797 int ret = 0;
3798
3799 throttle = (throttle && event->pmu->unthrottle != NULL);
3800
3801 if (!throttle) {
3802 hwc->interrupts++;
3803 } else {
3804 if (hwc->interrupts != MAX_INTERRUPTS) {
3805 hwc->interrupts++;
3806 if (HZ * hwc->interrupts >
3807 (u64)sysctl_perf_event_sample_rate) {
3808 hwc->interrupts = MAX_INTERRUPTS;
3809 perf_log_throttle(event, 0);
3810 ret = 1;
3811 }
3812 } else {
3813 /*
3814 * Keep re-disabling events even though on the previous
3815 * pass we disabled it - just in case we raced with a
3816 * sched-in and the event got enabled again:
3817 */
3818 ret = 1;
3819 }
3820 }
3821
3822 if (event->attr.freq) {
3823 u64 now = perf_clock();
3824 s64 delta = now - hwc->freq_time_stamp;
3825
3826 hwc->freq_time_stamp = now;
3827
3828 if (delta > 0 && delta < 2*TICK_NSEC)
3829 perf_adjust_period(event, delta, hwc->last_period);
3830 }
3831
3832 /*
3833 * XXX event_limit might not quite work as expected on inherited
3834 * events
3835 */
3836
3837 event->pending_kill = POLL_IN;
3838 if (events && atomic_dec_and_test(&event->event_limit)) {
3839 ret = 1;
3840 event->pending_kill = POLL_HUP;
3841 if (nmi) {
3842 event->pending_disable = 1;
3843 perf_pending_queue(&event->pending,
3844 perf_pending_event);
3845 } else
3846 perf_event_disable(event);
3847 }
3848
3849 if (event->overflow_handler)
3850 event->overflow_handler(event, nmi, data, regs);
3851 else
3852 perf_event_output(event, nmi, data, regs);
3853
3854 return ret;
3855 }
3856
3857 int perf_event_overflow(struct perf_event *event, int nmi,
3858 struct perf_sample_data *data,
3859 struct pt_regs *regs)
3860 {
3861 return __perf_event_overflow(event, nmi, 1, data, regs);
3862 }
3863
3864 /*
3865 * Generic software event infrastructure
3866 */
3867
3868 /*
3869 * We directly increment event->count and keep a second value in
3870 * event->hw.period_left to count intervals. This period event
3871 * is kept in the range [-sample_period, 0] so that we can use the
3872 * sign as trigger.
3873 */
3874
3875 static u64 perf_swevent_set_period(struct perf_event *event)
3876 {
3877 struct hw_perf_event *hwc = &event->hw;
3878 u64 period = hwc->last_period;
3879 u64 nr, offset;
3880 s64 old, val;
3881
3882 hwc->last_period = hwc->sample_period;
3883
3884 again:
3885 old = val = atomic64_read(&hwc->period_left);
3886 if (val < 0)
3887 return 0;
3888
3889 nr = div64_u64(period + val, period);
3890 offset = nr * period;
3891 val -= offset;
3892 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3893 goto again;
3894
3895 return nr;
3896 }
3897
3898 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3899 int nmi, struct perf_sample_data *data,
3900 struct pt_regs *regs)
3901 {
3902 struct hw_perf_event *hwc = &event->hw;
3903 int throttle = 0;
3904
3905 data->period = event->hw.last_period;
3906 if (!overflow)
3907 overflow = perf_swevent_set_period(event);
3908
3909 if (hwc->interrupts == MAX_INTERRUPTS)
3910 return;
3911
3912 for (; overflow; overflow--) {
3913 if (__perf_event_overflow(event, nmi, throttle,
3914 data, regs)) {
3915 /*
3916 * We inhibit the overflow from happening when
3917 * hwc->interrupts == MAX_INTERRUPTS.
3918 */
3919 break;
3920 }
3921 throttle = 1;
3922 }
3923 }
3924
3925 static void perf_swevent_unthrottle(struct perf_event *event)
3926 {
3927 /*
3928 * Nothing to do, we already reset hwc->interrupts.
3929 */
3930 }
3931
3932 static void perf_swevent_add(struct perf_event *event, u64 nr,
3933 int nmi, struct perf_sample_data *data,
3934 struct pt_regs *regs)
3935 {
3936 struct hw_perf_event *hwc = &event->hw;
3937
3938 atomic64_add(nr, &event->count);
3939
3940 if (!regs)
3941 return;
3942
3943 if (!hwc->sample_period)
3944 return;
3945
3946 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3947 return perf_swevent_overflow(event, 1, nmi, data, regs);
3948
3949 if (atomic64_add_negative(nr, &hwc->period_left))
3950 return;
3951
3952 perf_swevent_overflow(event, 0, nmi, data, regs);
3953 }
3954
3955 static int perf_swevent_is_counting(struct perf_event *event)
3956 {
3957 /*
3958 * The event is active, we're good!
3959 */
3960 if (event->state == PERF_EVENT_STATE_ACTIVE)
3961 return 1;
3962
3963 /*
3964 * The event is off/error, not counting.
3965 */
3966 if (event->state != PERF_EVENT_STATE_INACTIVE)
3967 return 0;
3968
3969 /*
3970 * The event is inactive, if the context is active
3971 * we're part of a group that didn't make it on the 'pmu',
3972 * not counting.
3973 */
3974 if (event->ctx->is_active)
3975 return 0;
3976
3977 /*
3978 * We're inactive and the context is too, this means the
3979 * task is scheduled out, we're counting events that happen
3980 * to us, like migration events.
3981 */
3982 return 1;
3983 }
3984
3985 static int perf_tp_event_match(struct perf_event *event,
3986 struct perf_sample_data *data);
3987
3988 static int perf_exclude_event(struct perf_event *event,
3989 struct pt_regs *regs)
3990 {
3991 if (regs) {
3992 if (event->attr.exclude_user && user_mode(regs))
3993 return 1;
3994
3995 if (event->attr.exclude_kernel && !user_mode(regs))
3996 return 1;
3997 }
3998
3999 return 0;
4000 }
4001
4002 static int perf_swevent_match(struct perf_event *event,
4003 enum perf_type_id type,
4004 u32 event_id,
4005 struct perf_sample_data *data,
4006 struct pt_regs *regs)
4007 {
4008 if (event->cpu != -1 && event->cpu != smp_processor_id())
4009 return 0;
4010
4011 if (!perf_swevent_is_counting(event))
4012 return 0;
4013
4014 if (event->attr.type != type)
4015 return 0;
4016
4017 if (event->attr.config != event_id)
4018 return 0;
4019
4020 if (perf_exclude_event(event, regs))
4021 return 0;
4022
4023 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
4024 !perf_tp_event_match(event, data))
4025 return 0;
4026
4027 return 1;
4028 }
4029
4030 static void perf_swevent_ctx_event(struct perf_event_context *ctx,
4031 enum perf_type_id type,
4032 u32 event_id, u64 nr, int nmi,
4033 struct perf_sample_data *data,
4034 struct pt_regs *regs)
4035 {
4036 struct perf_event *event;
4037
4038 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4039 if (perf_swevent_match(event, type, event_id, data, regs))
4040 perf_swevent_add(event, nr, nmi, data, regs);
4041 }
4042 }
4043
4044 int perf_swevent_get_recursion_context(void)
4045 {
4046 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
4047 int rctx;
4048
4049 if (in_nmi())
4050 rctx = 3;
4051 else if (in_irq())
4052 rctx = 2;
4053 else if (in_softirq())
4054 rctx = 1;
4055 else
4056 rctx = 0;
4057
4058 if (cpuctx->recursion[rctx]) {
4059 put_cpu_var(perf_cpu_context);
4060 return -1;
4061 }
4062
4063 cpuctx->recursion[rctx]++;
4064 barrier();
4065
4066 return rctx;
4067 }
4068 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4069
4070 void perf_swevent_put_recursion_context(int rctx)
4071 {
4072 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4073 barrier();
4074 cpuctx->recursion[rctx]--;
4075 put_cpu_var(perf_cpu_context);
4076 }
4077 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
4078
4079 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4080 u64 nr, int nmi,
4081 struct perf_sample_data *data,
4082 struct pt_regs *regs)
4083 {
4084 struct perf_cpu_context *cpuctx;
4085 struct perf_event_context *ctx;
4086
4087 cpuctx = &__get_cpu_var(perf_cpu_context);
4088 rcu_read_lock();
4089 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
4090 nr, nmi, data, regs);
4091 /*
4092 * doesn't really matter which of the child contexts the
4093 * events ends up in.
4094 */
4095 ctx = rcu_dereference(current->perf_event_ctxp);
4096 if (ctx)
4097 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
4098 rcu_read_unlock();
4099 }
4100
4101 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4102 struct pt_regs *regs, u64 addr)
4103 {
4104 struct perf_sample_data data;
4105 int rctx;
4106
4107 rctx = perf_swevent_get_recursion_context();
4108 if (rctx < 0)
4109 return;
4110
4111 perf_sample_data_init(&data, addr);
4112
4113 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4114
4115 perf_swevent_put_recursion_context(rctx);
4116 }
4117
4118 static void perf_swevent_read(struct perf_event *event)
4119 {
4120 }
4121
4122 static int perf_swevent_enable(struct perf_event *event)
4123 {
4124 struct hw_perf_event *hwc = &event->hw;
4125
4126 if (hwc->sample_period) {
4127 hwc->last_period = hwc->sample_period;
4128 perf_swevent_set_period(event);
4129 }
4130 return 0;
4131 }
4132
4133 static void perf_swevent_disable(struct perf_event *event)
4134 {
4135 }
4136
4137 static const struct pmu perf_ops_generic = {
4138 .enable = perf_swevent_enable,
4139 .disable = perf_swevent_disable,
4140 .read = perf_swevent_read,
4141 .unthrottle = perf_swevent_unthrottle,
4142 };
4143
4144 /*
4145 * hrtimer based swevent callback
4146 */
4147
4148 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4149 {
4150 enum hrtimer_restart ret = HRTIMER_RESTART;
4151 struct perf_sample_data data;
4152 struct pt_regs *regs;
4153 struct perf_event *event;
4154 u64 period;
4155
4156 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4157 event->pmu->read(event);
4158
4159 perf_sample_data_init(&data, 0);
4160 data.period = event->hw.last_period;
4161 regs = get_irq_regs();
4162 /*
4163 * In case we exclude kernel IPs or are somehow not in interrupt
4164 * context, provide the next best thing, the user IP.
4165 */
4166 if ((event->attr.exclude_kernel || !regs) &&
4167 !event->attr.exclude_user)
4168 regs = task_pt_regs(current);
4169
4170 if (regs) {
4171 if (!(event->attr.exclude_idle && current->pid == 0))
4172 if (perf_event_overflow(event, 0, &data, regs))
4173 ret = HRTIMER_NORESTART;
4174 }
4175
4176 period = max_t(u64, 10000, event->hw.sample_period);
4177 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4178
4179 return ret;
4180 }
4181
4182 static void perf_swevent_start_hrtimer(struct perf_event *event)
4183 {
4184 struct hw_perf_event *hwc = &event->hw;
4185
4186 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4187 hwc->hrtimer.function = perf_swevent_hrtimer;
4188 if (hwc->sample_period) {
4189 u64 period;
4190
4191 if (hwc->remaining) {
4192 if (hwc->remaining < 0)
4193 period = 10000;
4194 else
4195 period = hwc->remaining;
4196 hwc->remaining = 0;
4197 } else {
4198 period = max_t(u64, 10000, hwc->sample_period);
4199 }
4200 __hrtimer_start_range_ns(&hwc->hrtimer,
4201 ns_to_ktime(period), 0,
4202 HRTIMER_MODE_REL, 0);
4203 }
4204 }
4205
4206 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4207 {
4208 struct hw_perf_event *hwc = &event->hw;
4209
4210 if (hwc->sample_period) {
4211 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4212 hwc->remaining = ktime_to_ns(remaining);
4213
4214 hrtimer_cancel(&hwc->hrtimer);
4215 }
4216 }
4217
4218 /*
4219 * Software event: cpu wall time clock
4220 */
4221
4222 static void cpu_clock_perf_event_update(struct perf_event *event)
4223 {
4224 int cpu = raw_smp_processor_id();
4225 s64 prev;
4226 u64 now;
4227
4228 now = cpu_clock(cpu);
4229 prev = atomic64_xchg(&event->hw.prev_count, now);
4230 atomic64_add(now - prev, &event->count);
4231 }
4232
4233 static int cpu_clock_perf_event_enable(struct perf_event *event)
4234 {
4235 struct hw_perf_event *hwc = &event->hw;
4236 int cpu = raw_smp_processor_id();
4237
4238 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4239 perf_swevent_start_hrtimer(event);
4240
4241 return 0;
4242 }
4243
4244 static void cpu_clock_perf_event_disable(struct perf_event *event)
4245 {
4246 perf_swevent_cancel_hrtimer(event);
4247 cpu_clock_perf_event_update(event);
4248 }
4249
4250 static void cpu_clock_perf_event_read(struct perf_event *event)
4251 {
4252 cpu_clock_perf_event_update(event);
4253 }
4254
4255 static const struct pmu perf_ops_cpu_clock = {
4256 .enable = cpu_clock_perf_event_enable,
4257 .disable = cpu_clock_perf_event_disable,
4258 .read = cpu_clock_perf_event_read,
4259 };
4260
4261 /*
4262 * Software event: task time clock
4263 */
4264
4265 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4266 {
4267 u64 prev;
4268 s64 delta;
4269
4270 prev = atomic64_xchg(&event->hw.prev_count, now);
4271 delta = now - prev;
4272 atomic64_add(delta, &event->count);
4273 }
4274
4275 static int task_clock_perf_event_enable(struct perf_event *event)
4276 {
4277 struct hw_perf_event *hwc = &event->hw;
4278 u64 now;
4279
4280 now = event->ctx->time;
4281
4282 atomic64_set(&hwc->prev_count, now);
4283
4284 perf_swevent_start_hrtimer(event);
4285
4286 return 0;
4287 }
4288
4289 static void task_clock_perf_event_disable(struct perf_event *event)
4290 {
4291 perf_swevent_cancel_hrtimer(event);
4292 task_clock_perf_event_update(event, event->ctx->time);
4293
4294 }
4295
4296 static void task_clock_perf_event_read(struct perf_event *event)
4297 {
4298 u64 time;
4299
4300 if (!in_nmi()) {
4301 update_context_time(event->ctx);
4302 time = event->ctx->time;
4303 } else {
4304 u64 now = perf_clock();
4305 u64 delta = now - event->ctx->timestamp;
4306 time = event->ctx->time + delta;
4307 }
4308
4309 task_clock_perf_event_update(event, time);
4310 }
4311
4312 static const struct pmu perf_ops_task_clock = {
4313 .enable = task_clock_perf_event_enable,
4314 .disable = task_clock_perf_event_disable,
4315 .read = task_clock_perf_event_read,
4316 };
4317
4318 #ifdef CONFIG_EVENT_TRACING
4319
4320 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4321 int entry_size, struct pt_regs *regs)
4322 {
4323 struct perf_sample_data data;
4324 struct perf_raw_record raw = {
4325 .size = entry_size,
4326 .data = record,
4327 };
4328
4329 perf_sample_data_init(&data, addr);
4330 data.raw = &raw;
4331
4332 /* Trace events already protected against recursion */
4333 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4334 &data, regs);
4335 }
4336 EXPORT_SYMBOL_GPL(perf_tp_event);
4337
4338 static int perf_tp_event_match(struct perf_event *event,
4339 struct perf_sample_data *data)
4340 {
4341 void *record = data->raw->data;
4342
4343 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4344 return 1;
4345 return 0;
4346 }
4347
4348 static void tp_perf_event_destroy(struct perf_event *event)
4349 {
4350 perf_trace_disable(event->attr.config);
4351 }
4352
4353 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4354 {
4355 /*
4356 * Raw tracepoint data is a severe data leak, only allow root to
4357 * have these.
4358 */
4359 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4360 perf_paranoid_tracepoint_raw() &&
4361 !capable(CAP_SYS_ADMIN))
4362 return ERR_PTR(-EPERM);
4363
4364 if (perf_trace_enable(event->attr.config))
4365 return NULL;
4366
4367 event->destroy = tp_perf_event_destroy;
4368
4369 return &perf_ops_generic;
4370 }
4371
4372 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4373 {
4374 char *filter_str;
4375 int ret;
4376
4377 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4378 return -EINVAL;
4379
4380 filter_str = strndup_user(arg, PAGE_SIZE);
4381 if (IS_ERR(filter_str))
4382 return PTR_ERR(filter_str);
4383
4384 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4385
4386 kfree(filter_str);
4387 return ret;
4388 }
4389
4390 static void perf_event_free_filter(struct perf_event *event)
4391 {
4392 ftrace_profile_free_filter(event);
4393 }
4394
4395 #else
4396
4397 static int perf_tp_event_match(struct perf_event *event,
4398 struct perf_sample_data *data)
4399 {
4400 return 1;
4401 }
4402
4403 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4404 {
4405 return NULL;
4406 }
4407
4408 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4409 {
4410 return -ENOENT;
4411 }
4412
4413 static void perf_event_free_filter(struct perf_event *event)
4414 {
4415 }
4416
4417 #endif /* CONFIG_EVENT_TRACING */
4418
4419 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4420 static void bp_perf_event_destroy(struct perf_event *event)
4421 {
4422 release_bp_slot(event);
4423 }
4424
4425 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4426 {
4427 int err;
4428
4429 err = register_perf_hw_breakpoint(bp);
4430 if (err)
4431 return ERR_PTR(err);
4432
4433 bp->destroy = bp_perf_event_destroy;
4434
4435 return &perf_ops_bp;
4436 }
4437
4438 void perf_bp_event(struct perf_event *bp, void *data)
4439 {
4440 struct perf_sample_data sample;
4441 struct pt_regs *regs = data;
4442
4443 perf_sample_data_init(&sample, bp->attr.bp_addr);
4444
4445 if (!perf_exclude_event(bp, regs))
4446 perf_swevent_add(bp, 1, 1, &sample, regs);
4447 }
4448 #else
4449 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4450 {
4451 return NULL;
4452 }
4453
4454 void perf_bp_event(struct perf_event *bp, void *regs)
4455 {
4456 }
4457 #endif
4458
4459 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4460
4461 static void sw_perf_event_destroy(struct perf_event *event)
4462 {
4463 u64 event_id = event->attr.config;
4464
4465 WARN_ON(event->parent);
4466
4467 atomic_dec(&perf_swevent_enabled[event_id]);
4468 }
4469
4470 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4471 {
4472 const struct pmu *pmu = NULL;
4473 u64 event_id = event->attr.config;
4474
4475 /*
4476 * Software events (currently) can't in general distinguish
4477 * between user, kernel and hypervisor events.
4478 * However, context switches and cpu migrations are considered
4479 * to be kernel events, and page faults are never hypervisor
4480 * events.
4481 */
4482 switch (event_id) {
4483 case PERF_COUNT_SW_CPU_CLOCK:
4484 pmu = &perf_ops_cpu_clock;
4485
4486 break;
4487 case PERF_COUNT_SW_TASK_CLOCK:
4488 /*
4489 * If the user instantiates this as a per-cpu event,
4490 * use the cpu_clock event instead.
4491 */
4492 if (event->ctx->task)
4493 pmu = &perf_ops_task_clock;
4494 else
4495 pmu = &perf_ops_cpu_clock;
4496
4497 break;
4498 case PERF_COUNT_SW_PAGE_FAULTS:
4499 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4500 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4501 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4502 case PERF_COUNT_SW_CPU_MIGRATIONS:
4503 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4504 case PERF_COUNT_SW_EMULATION_FAULTS:
4505 if (!event->parent) {
4506 atomic_inc(&perf_swevent_enabled[event_id]);
4507 event->destroy = sw_perf_event_destroy;
4508 }
4509 pmu = &perf_ops_generic;
4510 break;
4511 }
4512
4513 return pmu;
4514 }
4515
4516 /*
4517 * Allocate and initialize a event structure
4518 */
4519 static struct perf_event *
4520 perf_event_alloc(struct perf_event_attr *attr,
4521 int cpu,
4522 struct perf_event_context *ctx,
4523 struct perf_event *group_leader,
4524 struct perf_event *parent_event,
4525 perf_overflow_handler_t overflow_handler,
4526 gfp_t gfpflags)
4527 {
4528 const struct pmu *pmu;
4529 struct perf_event *event;
4530 struct hw_perf_event *hwc;
4531 long err;
4532
4533 event = kzalloc(sizeof(*event), gfpflags);
4534 if (!event)
4535 return ERR_PTR(-ENOMEM);
4536
4537 /*
4538 * Single events are their own group leaders, with an
4539 * empty sibling list:
4540 */
4541 if (!group_leader)
4542 group_leader = event;
4543
4544 mutex_init(&event->child_mutex);
4545 INIT_LIST_HEAD(&event->child_list);
4546
4547 INIT_LIST_HEAD(&event->group_entry);
4548 INIT_LIST_HEAD(&event->event_entry);
4549 INIT_LIST_HEAD(&event->sibling_list);
4550 init_waitqueue_head(&event->waitq);
4551
4552 mutex_init(&event->mmap_mutex);
4553
4554 event->cpu = cpu;
4555 event->attr = *attr;
4556 event->group_leader = group_leader;
4557 event->pmu = NULL;
4558 event->ctx = ctx;
4559 event->oncpu = -1;
4560
4561 event->parent = parent_event;
4562
4563 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4564 event->id = atomic64_inc_return(&perf_event_id);
4565
4566 event->state = PERF_EVENT_STATE_INACTIVE;
4567
4568 if (!overflow_handler && parent_event)
4569 overflow_handler = parent_event->overflow_handler;
4570
4571 event->overflow_handler = overflow_handler;
4572
4573 if (attr->disabled)
4574 event->state = PERF_EVENT_STATE_OFF;
4575
4576 pmu = NULL;
4577
4578 hwc = &event->hw;
4579 hwc->sample_period = attr->sample_period;
4580 if (attr->freq && attr->sample_freq)
4581 hwc->sample_period = 1;
4582 hwc->last_period = hwc->sample_period;
4583
4584 atomic64_set(&hwc->period_left, hwc->sample_period);
4585
4586 /*
4587 * we currently do not support PERF_FORMAT_GROUP on inherited events
4588 */
4589 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4590 goto done;
4591
4592 switch (attr->type) {
4593 case PERF_TYPE_RAW:
4594 case PERF_TYPE_HARDWARE:
4595 case PERF_TYPE_HW_CACHE:
4596 pmu = hw_perf_event_init(event);
4597 break;
4598
4599 case PERF_TYPE_SOFTWARE:
4600 pmu = sw_perf_event_init(event);
4601 break;
4602
4603 case PERF_TYPE_TRACEPOINT:
4604 pmu = tp_perf_event_init(event);
4605 break;
4606
4607 case PERF_TYPE_BREAKPOINT:
4608 pmu = bp_perf_event_init(event);
4609 break;
4610
4611
4612 default:
4613 break;
4614 }
4615 done:
4616 err = 0;
4617 if (!pmu)
4618 err = -EINVAL;
4619 else if (IS_ERR(pmu))
4620 err = PTR_ERR(pmu);
4621
4622 if (err) {
4623 if (event->ns)
4624 put_pid_ns(event->ns);
4625 kfree(event);
4626 return ERR_PTR(err);
4627 }
4628
4629 event->pmu = pmu;
4630
4631 if (!event->parent) {
4632 atomic_inc(&nr_events);
4633 if (event->attr.mmap)
4634 atomic_inc(&nr_mmap_events);
4635 if (event->attr.comm)
4636 atomic_inc(&nr_comm_events);
4637 if (event->attr.task)
4638 atomic_inc(&nr_task_events);
4639 }
4640
4641 return event;
4642 }
4643
4644 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4645 struct perf_event_attr *attr)
4646 {
4647 u32 size;
4648 int ret;
4649
4650 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4651 return -EFAULT;
4652
4653 /*
4654 * zero the full structure, so that a short copy will be nice.
4655 */
4656 memset(attr, 0, sizeof(*attr));
4657
4658 ret = get_user(size, &uattr->size);
4659 if (ret)
4660 return ret;
4661
4662 if (size > PAGE_SIZE) /* silly large */
4663 goto err_size;
4664
4665 if (!size) /* abi compat */
4666 size = PERF_ATTR_SIZE_VER0;
4667
4668 if (size < PERF_ATTR_SIZE_VER0)
4669 goto err_size;
4670
4671 /*
4672 * If we're handed a bigger struct than we know of,
4673 * ensure all the unknown bits are 0 - i.e. new
4674 * user-space does not rely on any kernel feature
4675 * extensions we dont know about yet.
4676 */
4677 if (size > sizeof(*attr)) {
4678 unsigned char __user *addr;
4679 unsigned char __user *end;
4680 unsigned char val;
4681
4682 addr = (void __user *)uattr + sizeof(*attr);
4683 end = (void __user *)uattr + size;
4684
4685 for (; addr < end; addr++) {
4686 ret = get_user(val, addr);
4687 if (ret)
4688 return ret;
4689 if (val)
4690 goto err_size;
4691 }
4692 size = sizeof(*attr);
4693 }
4694
4695 ret = copy_from_user(attr, uattr, size);
4696 if (ret)
4697 return -EFAULT;
4698
4699 /*
4700 * If the type exists, the corresponding creation will verify
4701 * the attr->config.
4702 */
4703 if (attr->type >= PERF_TYPE_MAX)
4704 return -EINVAL;
4705
4706 if (attr->__reserved_1)
4707 return -EINVAL;
4708
4709 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4710 return -EINVAL;
4711
4712 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4713 return -EINVAL;
4714
4715 out:
4716 return ret;
4717
4718 err_size:
4719 put_user(sizeof(*attr), &uattr->size);
4720 ret = -E2BIG;
4721 goto out;
4722 }
4723
4724 static int perf_event_set_output(struct perf_event *event, int output_fd)
4725 {
4726 struct perf_event *output_event = NULL;
4727 struct file *output_file = NULL;
4728 struct perf_event *old_output;
4729 int fput_needed = 0;
4730 int ret = -EINVAL;
4731
4732 if (!output_fd)
4733 goto set;
4734
4735 output_file = fget_light(output_fd, &fput_needed);
4736 if (!output_file)
4737 return -EBADF;
4738
4739 if (output_file->f_op != &perf_fops)
4740 goto out;
4741
4742 output_event = output_file->private_data;
4743
4744 /* Don't chain output fds */
4745 if (output_event->output)
4746 goto out;
4747
4748 /* Don't set an output fd when we already have an output channel */
4749 if (event->data)
4750 goto out;
4751
4752 atomic_long_inc(&output_file->f_count);
4753
4754 set:
4755 mutex_lock(&event->mmap_mutex);
4756 old_output = event->output;
4757 rcu_assign_pointer(event->output, output_event);
4758 mutex_unlock(&event->mmap_mutex);
4759
4760 if (old_output) {
4761 /*
4762 * we need to make sure no existing perf_output_*()
4763 * is still referencing this event.
4764 */
4765 synchronize_rcu();
4766 fput(old_output->filp);
4767 }
4768
4769 ret = 0;
4770 out:
4771 fput_light(output_file, fput_needed);
4772 return ret;
4773 }
4774
4775 /**
4776 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4777 *
4778 * @attr_uptr: event_id type attributes for monitoring/sampling
4779 * @pid: target pid
4780 * @cpu: target cpu
4781 * @group_fd: group leader event fd
4782 */
4783 SYSCALL_DEFINE5(perf_event_open,
4784 struct perf_event_attr __user *, attr_uptr,
4785 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4786 {
4787 struct perf_event *event, *group_leader;
4788 struct perf_event_attr attr;
4789 struct perf_event_context *ctx;
4790 struct file *event_file = NULL;
4791 struct file *group_file = NULL;
4792 int fput_needed = 0;
4793 int fput_needed2 = 0;
4794 int err;
4795
4796 /* for future expandability... */
4797 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4798 return -EINVAL;
4799
4800 err = perf_copy_attr(attr_uptr, &attr);
4801 if (err)
4802 return err;
4803
4804 if (!attr.exclude_kernel) {
4805 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4806 return -EACCES;
4807 }
4808
4809 if (attr.freq) {
4810 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4811 return -EINVAL;
4812 }
4813
4814 /*
4815 * Get the target context (task or percpu):
4816 */
4817 ctx = find_get_context(pid, cpu);
4818 if (IS_ERR(ctx))
4819 return PTR_ERR(ctx);
4820
4821 /*
4822 * Look up the group leader (we will attach this event to it):
4823 */
4824 group_leader = NULL;
4825 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4826 err = -EINVAL;
4827 group_file = fget_light(group_fd, &fput_needed);
4828 if (!group_file)
4829 goto err_put_context;
4830 if (group_file->f_op != &perf_fops)
4831 goto err_put_context;
4832
4833 group_leader = group_file->private_data;
4834 /*
4835 * Do not allow a recursive hierarchy (this new sibling
4836 * becoming part of another group-sibling):
4837 */
4838 if (group_leader->group_leader != group_leader)
4839 goto err_put_context;
4840 /*
4841 * Do not allow to attach to a group in a different
4842 * task or CPU context:
4843 */
4844 if (group_leader->ctx != ctx)
4845 goto err_put_context;
4846 /*
4847 * Only a group leader can be exclusive or pinned
4848 */
4849 if (attr.exclusive || attr.pinned)
4850 goto err_put_context;
4851 }
4852
4853 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4854 NULL, NULL, GFP_KERNEL);
4855 err = PTR_ERR(event);
4856 if (IS_ERR(event))
4857 goto err_put_context;
4858
4859 err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
4860 if (err < 0)
4861 goto err_free_put_context;
4862
4863 event_file = fget_light(err, &fput_needed2);
4864 if (!event_file)
4865 goto err_free_put_context;
4866
4867 if (flags & PERF_FLAG_FD_OUTPUT) {
4868 err = perf_event_set_output(event, group_fd);
4869 if (err)
4870 goto err_fput_free_put_context;
4871 }
4872
4873 event->filp = event_file;
4874 WARN_ON_ONCE(ctx->parent_ctx);
4875 mutex_lock(&ctx->mutex);
4876 perf_install_in_context(ctx, event, cpu);
4877 ++ctx->generation;
4878 mutex_unlock(&ctx->mutex);
4879
4880 event->owner = current;
4881 get_task_struct(current);
4882 mutex_lock(&current->perf_event_mutex);
4883 list_add_tail(&event->owner_entry, &current->perf_event_list);
4884 mutex_unlock(&current->perf_event_mutex);
4885
4886 err_fput_free_put_context:
4887 fput_light(event_file, fput_needed2);
4888
4889 err_free_put_context:
4890 if (err < 0)
4891 kfree(event);
4892
4893 err_put_context:
4894 if (err < 0)
4895 put_ctx(ctx);
4896
4897 fput_light(group_file, fput_needed);
4898
4899 return err;
4900 }
4901
4902 /**
4903 * perf_event_create_kernel_counter
4904 *
4905 * @attr: attributes of the counter to create
4906 * @cpu: cpu in which the counter is bound
4907 * @pid: task to profile
4908 */
4909 struct perf_event *
4910 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4911 pid_t pid,
4912 perf_overflow_handler_t overflow_handler)
4913 {
4914 struct perf_event *event;
4915 struct perf_event_context *ctx;
4916 int err;
4917
4918 /*
4919 * Get the target context (task or percpu):
4920 */
4921
4922 ctx = find_get_context(pid, cpu);
4923 if (IS_ERR(ctx)) {
4924 err = PTR_ERR(ctx);
4925 goto err_exit;
4926 }
4927
4928 event = perf_event_alloc(attr, cpu, ctx, NULL,
4929 NULL, overflow_handler, GFP_KERNEL);
4930 if (IS_ERR(event)) {
4931 err = PTR_ERR(event);
4932 goto err_put_context;
4933 }
4934
4935 event->filp = NULL;
4936 WARN_ON_ONCE(ctx->parent_ctx);
4937 mutex_lock(&ctx->mutex);
4938 perf_install_in_context(ctx, event, cpu);
4939 ++ctx->generation;
4940 mutex_unlock(&ctx->mutex);
4941
4942 event->owner = current;
4943 get_task_struct(current);
4944 mutex_lock(&current->perf_event_mutex);
4945 list_add_tail(&event->owner_entry, &current->perf_event_list);
4946 mutex_unlock(&current->perf_event_mutex);
4947
4948 return event;
4949
4950 err_put_context:
4951 put_ctx(ctx);
4952 err_exit:
4953 return ERR_PTR(err);
4954 }
4955 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4956
4957 /*
4958 * inherit a event from parent task to child task:
4959 */
4960 static struct perf_event *
4961 inherit_event(struct perf_event *parent_event,
4962 struct task_struct *parent,
4963 struct perf_event_context *parent_ctx,
4964 struct task_struct *child,
4965 struct perf_event *group_leader,
4966 struct perf_event_context *child_ctx)
4967 {
4968 struct perf_event *child_event;
4969
4970 /*
4971 * Instead of creating recursive hierarchies of events,
4972 * we link inherited events back to the original parent,
4973 * which has a filp for sure, which we use as the reference
4974 * count:
4975 */
4976 if (parent_event->parent)
4977 parent_event = parent_event->parent;
4978
4979 child_event = perf_event_alloc(&parent_event->attr,
4980 parent_event->cpu, child_ctx,
4981 group_leader, parent_event,
4982 NULL, GFP_KERNEL);
4983 if (IS_ERR(child_event))
4984 return child_event;
4985 get_ctx(child_ctx);
4986
4987 /*
4988 * Make the child state follow the state of the parent event,
4989 * not its attr.disabled bit. We hold the parent's mutex,
4990 * so we won't race with perf_event_{en, dis}able_family.
4991 */
4992 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
4993 child_event->state = PERF_EVENT_STATE_INACTIVE;
4994 else
4995 child_event->state = PERF_EVENT_STATE_OFF;
4996
4997 if (parent_event->attr.freq) {
4998 u64 sample_period = parent_event->hw.sample_period;
4999 struct hw_perf_event *hwc = &child_event->hw;
5000
5001 hwc->sample_period = sample_period;
5002 hwc->last_period = sample_period;
5003
5004 atomic64_set(&hwc->period_left, sample_period);
5005 }
5006
5007 child_event->overflow_handler = parent_event->overflow_handler;
5008
5009 /*
5010 * Link it up in the child's context:
5011 */
5012 add_event_to_ctx(child_event, child_ctx);
5013
5014 /*
5015 * Get a reference to the parent filp - we will fput it
5016 * when the child event exits. This is safe to do because
5017 * we are in the parent and we know that the filp still
5018 * exists and has a nonzero count:
5019 */
5020 atomic_long_inc(&parent_event->filp->f_count);
5021
5022 /*
5023 * Link this into the parent event's child list
5024 */
5025 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5026 mutex_lock(&parent_event->child_mutex);
5027 list_add_tail(&child_event->child_list, &parent_event->child_list);
5028 mutex_unlock(&parent_event->child_mutex);
5029
5030 return child_event;
5031 }
5032
5033 static int inherit_group(struct perf_event *parent_event,
5034 struct task_struct *parent,
5035 struct perf_event_context *parent_ctx,
5036 struct task_struct *child,
5037 struct perf_event_context *child_ctx)
5038 {
5039 struct perf_event *leader;
5040 struct perf_event *sub;
5041 struct perf_event *child_ctr;
5042
5043 leader = inherit_event(parent_event, parent, parent_ctx,
5044 child, NULL, child_ctx);
5045 if (IS_ERR(leader))
5046 return PTR_ERR(leader);
5047 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5048 child_ctr = inherit_event(sub, parent, parent_ctx,
5049 child, leader, child_ctx);
5050 if (IS_ERR(child_ctr))
5051 return PTR_ERR(child_ctr);
5052 }
5053 return 0;
5054 }
5055
5056 static void sync_child_event(struct perf_event *child_event,
5057 struct task_struct *child)
5058 {
5059 struct perf_event *parent_event = child_event->parent;
5060 u64 child_val;
5061
5062 if (child_event->attr.inherit_stat)
5063 perf_event_read_event(child_event, child);
5064
5065 child_val = atomic64_read(&child_event->count);
5066
5067 /*
5068 * Add back the child's count to the parent's count:
5069 */
5070 atomic64_add(child_val, &parent_event->count);
5071 atomic64_add(child_event->total_time_enabled,
5072 &parent_event->child_total_time_enabled);
5073 atomic64_add(child_event->total_time_running,
5074 &parent_event->child_total_time_running);
5075
5076 /*
5077 * Remove this event from the parent's list
5078 */
5079 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5080 mutex_lock(&parent_event->child_mutex);
5081 list_del_init(&child_event->child_list);
5082 mutex_unlock(&parent_event->child_mutex);
5083
5084 /*
5085 * Release the parent event, if this was the last
5086 * reference to it.
5087 */
5088 fput(parent_event->filp);
5089 }
5090
5091 static void
5092 __perf_event_exit_task(struct perf_event *child_event,
5093 struct perf_event_context *child_ctx,
5094 struct task_struct *child)
5095 {
5096 struct perf_event *parent_event;
5097
5098 perf_event_remove_from_context(child_event);
5099
5100 parent_event = child_event->parent;
5101 /*
5102 * It can happen that parent exits first, and has events
5103 * that are still around due to the child reference. These
5104 * events need to be zapped - but otherwise linger.
5105 */
5106 if (parent_event) {
5107 sync_child_event(child_event, child);
5108 free_event(child_event);
5109 }
5110 }
5111
5112 /*
5113 * When a child task exits, feed back event values to parent events.
5114 */
5115 void perf_event_exit_task(struct task_struct *child)
5116 {
5117 struct perf_event *child_event, *tmp;
5118 struct perf_event_context *child_ctx;
5119 unsigned long flags;
5120
5121 if (likely(!child->perf_event_ctxp)) {
5122 perf_event_task(child, NULL, 0);
5123 return;
5124 }
5125
5126 local_irq_save(flags);
5127 /*
5128 * We can't reschedule here because interrupts are disabled,
5129 * and either child is current or it is a task that can't be
5130 * scheduled, so we are now safe from rescheduling changing
5131 * our context.
5132 */
5133 child_ctx = child->perf_event_ctxp;
5134 __perf_event_task_sched_out(child_ctx);
5135
5136 /*
5137 * Take the context lock here so that if find_get_context is
5138 * reading child->perf_event_ctxp, we wait until it has
5139 * incremented the context's refcount before we do put_ctx below.
5140 */
5141 raw_spin_lock(&child_ctx->lock);
5142 child->perf_event_ctxp = NULL;
5143 /*
5144 * If this context is a clone; unclone it so it can't get
5145 * swapped to another process while we're removing all
5146 * the events from it.
5147 */
5148 unclone_ctx(child_ctx);
5149 update_context_time(child_ctx);
5150 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5151
5152 /*
5153 * Report the task dead after unscheduling the events so that we
5154 * won't get any samples after PERF_RECORD_EXIT. We can however still
5155 * get a few PERF_RECORD_READ events.
5156 */
5157 perf_event_task(child, child_ctx, 0);
5158
5159 /*
5160 * We can recurse on the same lock type through:
5161 *
5162 * __perf_event_exit_task()
5163 * sync_child_event()
5164 * fput(parent_event->filp)
5165 * perf_release()
5166 * mutex_lock(&ctx->mutex)
5167 *
5168 * But since its the parent context it won't be the same instance.
5169 */
5170 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5171
5172 again:
5173 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5174 group_entry)
5175 __perf_event_exit_task(child_event, child_ctx, child);
5176
5177 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5178 group_entry)
5179 __perf_event_exit_task(child_event, child_ctx, child);
5180
5181 /*
5182 * If the last event was a group event, it will have appended all
5183 * its siblings to the list, but we obtained 'tmp' before that which
5184 * will still point to the list head terminating the iteration.
5185 */
5186 if (!list_empty(&child_ctx->pinned_groups) ||
5187 !list_empty(&child_ctx->flexible_groups))
5188 goto again;
5189
5190 mutex_unlock(&child_ctx->mutex);
5191
5192 put_ctx(child_ctx);
5193 }
5194
5195 static void perf_free_event(struct perf_event *event,
5196 struct perf_event_context *ctx)
5197 {
5198 struct perf_event *parent = event->parent;
5199
5200 if (WARN_ON_ONCE(!parent))
5201 return;
5202
5203 mutex_lock(&parent->child_mutex);
5204 list_del_init(&event->child_list);
5205 mutex_unlock(&parent->child_mutex);
5206
5207 fput(parent->filp);
5208
5209 list_del_event(event, ctx);
5210 free_event(event);
5211 }
5212
5213 /*
5214 * free an unexposed, unused context as created by inheritance by
5215 * init_task below, used by fork() in case of fail.
5216 */
5217 void perf_event_free_task(struct task_struct *task)
5218 {
5219 struct perf_event_context *ctx = task->perf_event_ctxp;
5220 struct perf_event *event, *tmp;
5221
5222 if (!ctx)
5223 return;
5224
5225 mutex_lock(&ctx->mutex);
5226 again:
5227 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5228 perf_free_event(event, ctx);
5229
5230 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5231 group_entry)
5232 perf_free_event(event, ctx);
5233
5234 if (!list_empty(&ctx->pinned_groups) ||
5235 !list_empty(&ctx->flexible_groups))
5236 goto again;
5237
5238 mutex_unlock(&ctx->mutex);
5239
5240 put_ctx(ctx);
5241 }
5242
5243 static int
5244 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5245 struct perf_event_context *parent_ctx,
5246 struct task_struct *child,
5247 int *inherited_all)
5248 {
5249 int ret;
5250 struct perf_event_context *child_ctx = child->perf_event_ctxp;
5251
5252 if (!event->attr.inherit) {
5253 *inherited_all = 0;
5254 return 0;
5255 }
5256
5257 if (!child_ctx) {
5258 /*
5259 * This is executed from the parent task context, so
5260 * inherit events that have been marked for cloning.
5261 * First allocate and initialize a context for the
5262 * child.
5263 */
5264
5265 child_ctx = kzalloc(sizeof(struct perf_event_context),
5266 GFP_KERNEL);
5267 if (!child_ctx)
5268 return -ENOMEM;
5269
5270 __perf_event_init_context(child_ctx, child);
5271 child->perf_event_ctxp = child_ctx;
5272 get_task_struct(child);
5273 }
5274
5275 ret = inherit_group(event, parent, parent_ctx,
5276 child, child_ctx);
5277
5278 if (ret)
5279 *inherited_all = 0;
5280
5281 return ret;
5282 }
5283
5284
5285 /*
5286 * Initialize the perf_event context in task_struct
5287 */
5288 int perf_event_init_task(struct task_struct *child)
5289 {
5290 struct perf_event_context *child_ctx, *parent_ctx;
5291 struct perf_event_context *cloned_ctx;
5292 struct perf_event *event;
5293 struct task_struct *parent = current;
5294 int inherited_all = 1;
5295 int ret = 0;
5296
5297 child->perf_event_ctxp = NULL;
5298
5299 mutex_init(&child->perf_event_mutex);
5300 INIT_LIST_HEAD(&child->perf_event_list);
5301
5302 if (likely(!parent->perf_event_ctxp))
5303 return 0;
5304
5305 /*
5306 * If the parent's context is a clone, pin it so it won't get
5307 * swapped under us.
5308 */
5309 parent_ctx = perf_pin_task_context(parent);
5310
5311 /*
5312 * No need to check if parent_ctx != NULL here; since we saw
5313 * it non-NULL earlier, the only reason for it to become NULL
5314 * is if we exit, and since we're currently in the middle of
5315 * a fork we can't be exiting at the same time.
5316 */
5317
5318 /*
5319 * Lock the parent list. No need to lock the child - not PID
5320 * hashed yet and not running, so nobody can access it.
5321 */
5322 mutex_lock(&parent_ctx->mutex);
5323
5324 /*
5325 * We dont have to disable NMIs - we are only looking at
5326 * the list, not manipulating it:
5327 */
5328 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5329 ret = inherit_task_group(event, parent, parent_ctx, child,
5330 &inherited_all);
5331 if (ret)
5332 break;
5333 }
5334
5335 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5336 ret = inherit_task_group(event, parent, parent_ctx, child,
5337 &inherited_all);
5338 if (ret)
5339 break;
5340 }
5341
5342 child_ctx = child->perf_event_ctxp;
5343
5344 if (child_ctx && inherited_all) {
5345 /*
5346 * Mark the child context as a clone of the parent
5347 * context, or of whatever the parent is a clone of.
5348 * Note that if the parent is a clone, it could get
5349 * uncloned at any point, but that doesn't matter
5350 * because the list of events and the generation
5351 * count can't have changed since we took the mutex.
5352 */
5353 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5354 if (cloned_ctx) {
5355 child_ctx->parent_ctx = cloned_ctx;
5356 child_ctx->parent_gen = parent_ctx->parent_gen;
5357 } else {
5358 child_ctx->parent_ctx = parent_ctx;
5359 child_ctx->parent_gen = parent_ctx->generation;
5360 }
5361 get_ctx(child_ctx->parent_ctx);
5362 }
5363
5364 mutex_unlock(&parent_ctx->mutex);
5365
5366 perf_unpin_context(parent_ctx);
5367
5368 return ret;
5369 }
5370
5371 static void __init perf_event_init_all_cpus(void)
5372 {
5373 int cpu;
5374 struct perf_cpu_context *cpuctx;
5375
5376 for_each_possible_cpu(cpu) {
5377 cpuctx = &per_cpu(perf_cpu_context, cpu);
5378 __perf_event_init_context(&cpuctx->ctx, NULL);
5379 }
5380 }
5381
5382 static void __cpuinit perf_event_init_cpu(int cpu)
5383 {
5384 struct perf_cpu_context *cpuctx;
5385
5386 cpuctx = &per_cpu(perf_cpu_context, cpu);
5387
5388 spin_lock(&perf_resource_lock);
5389 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5390 spin_unlock(&perf_resource_lock);
5391 }
5392
5393 #ifdef CONFIG_HOTPLUG_CPU
5394 static void __perf_event_exit_cpu(void *info)
5395 {
5396 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5397 struct perf_event_context *ctx = &cpuctx->ctx;
5398 struct perf_event *event, *tmp;
5399
5400 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5401 __perf_event_remove_from_context(event);
5402 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5403 __perf_event_remove_from_context(event);
5404 }
5405 static void perf_event_exit_cpu(int cpu)
5406 {
5407 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5408 struct perf_event_context *ctx = &cpuctx->ctx;
5409
5410 mutex_lock(&ctx->mutex);
5411 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5412 mutex_unlock(&ctx->mutex);
5413 }
5414 #else
5415 static inline void perf_event_exit_cpu(int cpu) { }
5416 #endif
5417
5418 static int __cpuinit
5419 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5420 {
5421 unsigned int cpu = (long)hcpu;
5422
5423 switch (action) {
5424
5425 case CPU_UP_PREPARE:
5426 case CPU_UP_PREPARE_FROZEN:
5427 perf_event_init_cpu(cpu);
5428 break;
5429
5430 case CPU_DOWN_PREPARE:
5431 case CPU_DOWN_PREPARE_FROZEN:
5432 perf_event_exit_cpu(cpu);
5433 break;
5434
5435 default:
5436 break;
5437 }
5438
5439 return NOTIFY_OK;
5440 }
5441
5442 /*
5443 * This has to have a higher priority than migration_notifier in sched.c.
5444 */
5445 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5446 .notifier_call = perf_cpu_notify,
5447 .priority = 20,
5448 };
5449
5450 void __init perf_event_init(void)
5451 {
5452 perf_event_init_all_cpus();
5453 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5454 (void *)(long)smp_processor_id());
5455 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5456 (void *)(long)smp_processor_id());
5457 register_cpu_notifier(&perf_cpu_nb);
5458 }
5459
5460 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5461 struct sysdev_class_attribute *attr,
5462 char *buf)
5463 {
5464 return sprintf(buf, "%d\n", perf_reserved_percpu);
5465 }
5466
5467 static ssize_t
5468 perf_set_reserve_percpu(struct sysdev_class *class,
5469 struct sysdev_class_attribute *attr,
5470 const char *buf,
5471 size_t count)
5472 {
5473 struct perf_cpu_context *cpuctx;
5474 unsigned long val;
5475 int err, cpu, mpt;
5476
5477 err = strict_strtoul(buf, 10, &val);
5478 if (err)
5479 return err;
5480 if (val > perf_max_events)
5481 return -EINVAL;
5482
5483 spin_lock(&perf_resource_lock);
5484 perf_reserved_percpu = val;
5485 for_each_online_cpu(cpu) {
5486 cpuctx = &per_cpu(perf_cpu_context, cpu);
5487 raw_spin_lock_irq(&cpuctx->ctx.lock);
5488 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5489 perf_max_events - perf_reserved_percpu);
5490 cpuctx->max_pertask = mpt;
5491 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5492 }
5493 spin_unlock(&perf_resource_lock);
5494
5495 return count;
5496 }
5497
5498 static ssize_t perf_show_overcommit(struct sysdev_class *class,
5499 struct sysdev_class_attribute *attr,
5500 char *buf)
5501 {
5502 return sprintf(buf, "%d\n", perf_overcommit);
5503 }
5504
5505 static ssize_t
5506 perf_set_overcommit(struct sysdev_class *class,
5507 struct sysdev_class_attribute *attr,
5508 const char *buf, size_t count)
5509 {
5510 unsigned long val;
5511 int err;
5512
5513 err = strict_strtoul(buf, 10, &val);
5514 if (err)
5515 return err;
5516 if (val > 1)
5517 return -EINVAL;
5518
5519 spin_lock(&perf_resource_lock);
5520 perf_overcommit = val;
5521 spin_unlock(&perf_resource_lock);
5522
5523 return count;
5524 }
5525
5526 static SYSDEV_CLASS_ATTR(
5527 reserve_percpu,
5528 0644,
5529 perf_show_reserve_percpu,
5530 perf_set_reserve_percpu
5531 );
5532
5533 static SYSDEV_CLASS_ATTR(
5534 overcommit,
5535 0644,
5536 perf_show_overcommit,
5537 perf_set_overcommit
5538 );
5539
5540 static struct attribute *perfclass_attrs[] = {
5541 &attr_reserve_percpu.attr,
5542 &attr_overcommit.attr,
5543 NULL
5544 };
5545
5546 static struct attribute_group perfclass_attr_group = {
5547 .attrs = perfclass_attrs,
5548 .name = "perf_events",
5549 };
5550
5551 static int __init perf_event_sysfs_init(void)
5552 {
5553 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5554 &perfclass_attr_group);
5555 }
5556 device_initcall(perf_event_sysfs_init);
This page took 0.395536 seconds and 5 git commands to generate.