btrfs: check NULL or not
[deliverable/linux.git] / kernel / perf_event.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34 #include <linux/hw_breakpoint.h>
35
36 #include <asm/irq_regs.h>
37
38 /*
39 * Each CPU has a list of per CPU events:
40 */
41 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
42
43 int perf_max_events __read_mostly = 1;
44 static int perf_reserved_percpu __read_mostly;
45 static int perf_overcommit __read_mostly = 1;
46
47 static atomic_t nr_events __read_mostly;
48 static atomic_t nr_mmap_events __read_mostly;
49 static atomic_t nr_comm_events __read_mostly;
50 static atomic_t nr_task_events __read_mostly;
51
52 /*
53 * perf event paranoia level:
54 * -1 - not paranoid at all
55 * 0 - disallow raw tracepoint access for unpriv
56 * 1 - disallow cpu events for unpriv
57 * 2 - disallow kernel profiling for unpriv
58 */
59 int sysctl_perf_event_paranoid __read_mostly = 1;
60
61 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
62
63 /*
64 * max perf event sample rate
65 */
66 int sysctl_perf_event_sample_rate __read_mostly = 100000;
67
68 static atomic64_t perf_event_id;
69
70 /*
71 * Lock for (sysadmin-configurable) event reservations:
72 */
73 static DEFINE_SPINLOCK(perf_resource_lock);
74
75 /*
76 * Architecture provided APIs - weak aliases:
77 */
78 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
79 {
80 return NULL;
81 }
82
83 void __weak hw_perf_disable(void) { barrier(); }
84 void __weak hw_perf_enable(void) { barrier(); }
85
86 void __weak perf_event_print_debug(void) { }
87
88 static DEFINE_PER_CPU(int, perf_disable_count);
89
90 void perf_disable(void)
91 {
92 if (!__get_cpu_var(perf_disable_count)++)
93 hw_perf_disable();
94 }
95
96 void perf_enable(void)
97 {
98 if (!--__get_cpu_var(perf_disable_count))
99 hw_perf_enable();
100 }
101
102 static void get_ctx(struct perf_event_context *ctx)
103 {
104 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
105 }
106
107 static void free_ctx(struct rcu_head *head)
108 {
109 struct perf_event_context *ctx;
110
111 ctx = container_of(head, struct perf_event_context, rcu_head);
112 kfree(ctx);
113 }
114
115 static void put_ctx(struct perf_event_context *ctx)
116 {
117 if (atomic_dec_and_test(&ctx->refcount)) {
118 if (ctx->parent_ctx)
119 put_ctx(ctx->parent_ctx);
120 if (ctx->task)
121 put_task_struct(ctx->task);
122 call_rcu(&ctx->rcu_head, free_ctx);
123 }
124 }
125
126 static void unclone_ctx(struct perf_event_context *ctx)
127 {
128 if (ctx->parent_ctx) {
129 put_ctx(ctx->parent_ctx);
130 ctx->parent_ctx = NULL;
131 }
132 }
133
134 /*
135 * If we inherit events we want to return the parent event id
136 * to userspace.
137 */
138 static u64 primary_event_id(struct perf_event *event)
139 {
140 u64 id = event->id;
141
142 if (event->parent)
143 id = event->parent->id;
144
145 return id;
146 }
147
148 /*
149 * Get the perf_event_context for a task and lock it.
150 * This has to cope with with the fact that until it is locked,
151 * the context could get moved to another task.
152 */
153 static struct perf_event_context *
154 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
155 {
156 struct perf_event_context *ctx;
157
158 rcu_read_lock();
159 retry:
160 ctx = rcu_dereference(task->perf_event_ctxp);
161 if (ctx) {
162 /*
163 * If this context is a clone of another, it might
164 * get swapped for another underneath us by
165 * perf_event_task_sched_out, though the
166 * rcu_read_lock() protects us from any context
167 * getting freed. Lock the context and check if it
168 * got swapped before we could get the lock, and retry
169 * if so. If we locked the right context, then it
170 * can't get swapped on us any more.
171 */
172 raw_spin_lock_irqsave(&ctx->lock, *flags);
173 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
174 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
175 goto retry;
176 }
177
178 if (!atomic_inc_not_zero(&ctx->refcount)) {
179 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
180 ctx = NULL;
181 }
182 }
183 rcu_read_unlock();
184 return ctx;
185 }
186
187 /*
188 * Get the context for a task and increment its pin_count so it
189 * can't get swapped to another task. This also increments its
190 * reference count so that the context can't get freed.
191 */
192 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
193 {
194 struct perf_event_context *ctx;
195 unsigned long flags;
196
197 ctx = perf_lock_task_context(task, &flags);
198 if (ctx) {
199 ++ctx->pin_count;
200 raw_spin_unlock_irqrestore(&ctx->lock, flags);
201 }
202 return ctx;
203 }
204
205 static void perf_unpin_context(struct perf_event_context *ctx)
206 {
207 unsigned long flags;
208
209 raw_spin_lock_irqsave(&ctx->lock, flags);
210 --ctx->pin_count;
211 raw_spin_unlock_irqrestore(&ctx->lock, flags);
212 put_ctx(ctx);
213 }
214
215 static inline u64 perf_clock(void)
216 {
217 return local_clock();
218 }
219
220 /*
221 * Update the record of the current time in a context.
222 */
223 static void update_context_time(struct perf_event_context *ctx)
224 {
225 u64 now = perf_clock();
226
227 ctx->time += now - ctx->timestamp;
228 ctx->timestamp = now;
229 }
230
231 /*
232 * Update the total_time_enabled and total_time_running fields for a event.
233 */
234 static void update_event_times(struct perf_event *event)
235 {
236 struct perf_event_context *ctx = event->ctx;
237 u64 run_end;
238
239 if (event->state < PERF_EVENT_STATE_INACTIVE ||
240 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
241 return;
242
243 if (ctx->is_active)
244 run_end = ctx->time;
245 else
246 run_end = event->tstamp_stopped;
247
248 event->total_time_enabled = run_end - event->tstamp_enabled;
249
250 if (event->state == PERF_EVENT_STATE_INACTIVE)
251 run_end = event->tstamp_stopped;
252 else
253 run_end = ctx->time;
254
255 event->total_time_running = run_end - event->tstamp_running;
256 }
257
258 /*
259 * Update total_time_enabled and total_time_running for all events in a group.
260 */
261 static void update_group_times(struct perf_event *leader)
262 {
263 struct perf_event *event;
264
265 update_event_times(leader);
266 list_for_each_entry(event, &leader->sibling_list, group_entry)
267 update_event_times(event);
268 }
269
270 static struct list_head *
271 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
272 {
273 if (event->attr.pinned)
274 return &ctx->pinned_groups;
275 else
276 return &ctx->flexible_groups;
277 }
278
279 /*
280 * Add a event from the lists for its context.
281 * Must be called with ctx->mutex and ctx->lock held.
282 */
283 static void
284 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
285 {
286 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
287 event->attach_state |= PERF_ATTACH_CONTEXT;
288
289 /*
290 * If we're a stand alone event or group leader, we go to the context
291 * list, group events are kept attached to the group so that
292 * perf_group_detach can, at all times, locate all siblings.
293 */
294 if (event->group_leader == event) {
295 struct list_head *list;
296
297 if (is_software_event(event))
298 event->group_flags |= PERF_GROUP_SOFTWARE;
299
300 list = ctx_group_list(event, ctx);
301 list_add_tail(&event->group_entry, list);
302 }
303
304 list_add_rcu(&event->event_entry, &ctx->event_list);
305 ctx->nr_events++;
306 if (event->attr.inherit_stat)
307 ctx->nr_stat++;
308 }
309
310 static void perf_group_attach(struct perf_event *event)
311 {
312 struct perf_event *group_leader = event->group_leader;
313
314 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
315 event->attach_state |= PERF_ATTACH_GROUP;
316
317 if (group_leader == event)
318 return;
319
320 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
321 !is_software_event(event))
322 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
323
324 list_add_tail(&event->group_entry, &group_leader->sibling_list);
325 group_leader->nr_siblings++;
326 }
327
328 /*
329 * Remove a event from the lists for its context.
330 * Must be called with ctx->mutex and ctx->lock held.
331 */
332 static void
333 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
334 {
335 /*
336 * We can have double detach due to exit/hot-unplug + close.
337 */
338 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
339 return;
340
341 event->attach_state &= ~PERF_ATTACH_CONTEXT;
342
343 ctx->nr_events--;
344 if (event->attr.inherit_stat)
345 ctx->nr_stat--;
346
347 list_del_rcu(&event->event_entry);
348
349 if (event->group_leader == event)
350 list_del_init(&event->group_entry);
351
352 update_group_times(event);
353
354 /*
355 * If event was in error state, then keep it
356 * that way, otherwise bogus counts will be
357 * returned on read(). The only way to get out
358 * of error state is by explicit re-enabling
359 * of the event
360 */
361 if (event->state > PERF_EVENT_STATE_OFF)
362 event->state = PERF_EVENT_STATE_OFF;
363 }
364
365 static void perf_group_detach(struct perf_event *event)
366 {
367 struct perf_event *sibling, *tmp;
368 struct list_head *list = NULL;
369
370 /*
371 * We can have double detach due to exit/hot-unplug + close.
372 */
373 if (!(event->attach_state & PERF_ATTACH_GROUP))
374 return;
375
376 event->attach_state &= ~PERF_ATTACH_GROUP;
377
378 /*
379 * If this is a sibling, remove it from its group.
380 */
381 if (event->group_leader != event) {
382 list_del_init(&event->group_entry);
383 event->group_leader->nr_siblings--;
384 return;
385 }
386
387 if (!list_empty(&event->group_entry))
388 list = &event->group_entry;
389
390 /*
391 * If this was a group event with sibling events then
392 * upgrade the siblings to singleton events by adding them
393 * to whatever list we are on.
394 */
395 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
396 if (list)
397 list_move_tail(&sibling->group_entry, list);
398 sibling->group_leader = sibling;
399
400 /* Inherit group flags from the previous leader */
401 sibling->group_flags = event->group_flags;
402 }
403 }
404
405 static inline int
406 event_filter_match(struct perf_event *event)
407 {
408 return event->cpu == -1 || event->cpu == smp_processor_id();
409 }
410
411 static void
412 event_sched_out(struct perf_event *event,
413 struct perf_cpu_context *cpuctx,
414 struct perf_event_context *ctx)
415 {
416 u64 delta;
417 /*
418 * An event which could not be activated because of
419 * filter mismatch still needs to have its timings
420 * maintained, otherwise bogus information is return
421 * via read() for time_enabled, time_running:
422 */
423 if (event->state == PERF_EVENT_STATE_INACTIVE
424 && !event_filter_match(event)) {
425 delta = ctx->time - event->tstamp_stopped;
426 event->tstamp_running += delta;
427 event->tstamp_stopped = ctx->time;
428 }
429
430 if (event->state != PERF_EVENT_STATE_ACTIVE)
431 return;
432
433 event->state = PERF_EVENT_STATE_INACTIVE;
434 if (event->pending_disable) {
435 event->pending_disable = 0;
436 event->state = PERF_EVENT_STATE_OFF;
437 }
438 event->tstamp_stopped = ctx->time;
439 event->pmu->disable(event);
440 event->oncpu = -1;
441
442 if (!is_software_event(event))
443 cpuctx->active_oncpu--;
444 ctx->nr_active--;
445 if (event->attr.exclusive || !cpuctx->active_oncpu)
446 cpuctx->exclusive = 0;
447 }
448
449 static void
450 group_sched_out(struct perf_event *group_event,
451 struct perf_cpu_context *cpuctx,
452 struct perf_event_context *ctx)
453 {
454 struct perf_event *event;
455 int state = group_event->state;
456
457 event_sched_out(group_event, cpuctx, ctx);
458
459 /*
460 * Schedule out siblings (if any):
461 */
462 list_for_each_entry(event, &group_event->sibling_list, group_entry)
463 event_sched_out(event, cpuctx, ctx);
464
465 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
466 cpuctx->exclusive = 0;
467 }
468
469 /*
470 * Cross CPU call to remove a performance event
471 *
472 * We disable the event on the hardware level first. After that we
473 * remove it from the context list.
474 */
475 static void __perf_event_remove_from_context(void *info)
476 {
477 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
478 struct perf_event *event = info;
479 struct perf_event_context *ctx = event->ctx;
480
481 /*
482 * If this is a task context, we need to check whether it is
483 * the current task context of this cpu. If not it has been
484 * scheduled out before the smp call arrived.
485 */
486 if (ctx->task && cpuctx->task_ctx != ctx)
487 return;
488
489 raw_spin_lock(&ctx->lock);
490 /*
491 * Protect the list operation against NMI by disabling the
492 * events on a global level.
493 */
494 perf_disable();
495
496 event_sched_out(event, cpuctx, ctx);
497
498 list_del_event(event, ctx);
499
500 if (!ctx->task) {
501 /*
502 * Allow more per task events with respect to the
503 * reservation:
504 */
505 cpuctx->max_pertask =
506 min(perf_max_events - ctx->nr_events,
507 perf_max_events - perf_reserved_percpu);
508 }
509
510 perf_enable();
511 raw_spin_unlock(&ctx->lock);
512 }
513
514
515 /*
516 * Remove the event from a task's (or a CPU's) list of events.
517 *
518 * Must be called with ctx->mutex held.
519 *
520 * CPU events are removed with a smp call. For task events we only
521 * call when the task is on a CPU.
522 *
523 * If event->ctx is a cloned context, callers must make sure that
524 * every task struct that event->ctx->task could possibly point to
525 * remains valid. This is OK when called from perf_release since
526 * that only calls us on the top-level context, which can't be a clone.
527 * When called from perf_event_exit_task, it's OK because the
528 * context has been detached from its task.
529 */
530 static void perf_event_remove_from_context(struct perf_event *event)
531 {
532 struct perf_event_context *ctx = event->ctx;
533 struct task_struct *task = ctx->task;
534
535 if (!task) {
536 /*
537 * Per cpu events are removed via an smp call and
538 * the removal is always successful.
539 */
540 smp_call_function_single(event->cpu,
541 __perf_event_remove_from_context,
542 event, 1);
543 return;
544 }
545
546 retry:
547 task_oncpu_function_call(task, __perf_event_remove_from_context,
548 event);
549
550 raw_spin_lock_irq(&ctx->lock);
551 /*
552 * If the context is active we need to retry the smp call.
553 */
554 if (ctx->nr_active && !list_empty(&event->group_entry)) {
555 raw_spin_unlock_irq(&ctx->lock);
556 goto retry;
557 }
558
559 /*
560 * The lock prevents that this context is scheduled in so we
561 * can remove the event safely, if the call above did not
562 * succeed.
563 */
564 if (!list_empty(&event->group_entry))
565 list_del_event(event, ctx);
566 raw_spin_unlock_irq(&ctx->lock);
567 }
568
569 /*
570 * Cross CPU call to disable a performance event
571 */
572 static void __perf_event_disable(void *info)
573 {
574 struct perf_event *event = info;
575 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
576 struct perf_event_context *ctx = event->ctx;
577
578 /*
579 * If this is a per-task event, need to check whether this
580 * event's task is the current task on this cpu.
581 */
582 if (ctx->task && cpuctx->task_ctx != ctx)
583 return;
584
585 raw_spin_lock(&ctx->lock);
586
587 /*
588 * If the event is on, turn it off.
589 * If it is in error state, leave it in error state.
590 */
591 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
592 update_context_time(ctx);
593 update_group_times(event);
594 if (event == event->group_leader)
595 group_sched_out(event, cpuctx, ctx);
596 else
597 event_sched_out(event, cpuctx, ctx);
598 event->state = PERF_EVENT_STATE_OFF;
599 }
600
601 raw_spin_unlock(&ctx->lock);
602 }
603
604 /*
605 * Disable a event.
606 *
607 * If event->ctx is a cloned context, callers must make sure that
608 * every task struct that event->ctx->task could possibly point to
609 * remains valid. This condition is satisifed when called through
610 * perf_event_for_each_child or perf_event_for_each because they
611 * hold the top-level event's child_mutex, so any descendant that
612 * goes to exit will block in sync_child_event.
613 * When called from perf_pending_event it's OK because event->ctx
614 * is the current context on this CPU and preemption is disabled,
615 * hence we can't get into perf_event_task_sched_out for this context.
616 */
617 void perf_event_disable(struct perf_event *event)
618 {
619 struct perf_event_context *ctx = event->ctx;
620 struct task_struct *task = ctx->task;
621
622 if (!task) {
623 /*
624 * Disable the event on the cpu that it's on
625 */
626 smp_call_function_single(event->cpu, __perf_event_disable,
627 event, 1);
628 return;
629 }
630
631 retry:
632 task_oncpu_function_call(task, __perf_event_disable, event);
633
634 raw_spin_lock_irq(&ctx->lock);
635 /*
636 * If the event is still active, we need to retry the cross-call.
637 */
638 if (event->state == PERF_EVENT_STATE_ACTIVE) {
639 raw_spin_unlock_irq(&ctx->lock);
640 goto retry;
641 }
642
643 /*
644 * Since we have the lock this context can't be scheduled
645 * in, so we can change the state safely.
646 */
647 if (event->state == PERF_EVENT_STATE_INACTIVE) {
648 update_group_times(event);
649 event->state = PERF_EVENT_STATE_OFF;
650 }
651
652 raw_spin_unlock_irq(&ctx->lock);
653 }
654
655 static int
656 event_sched_in(struct perf_event *event,
657 struct perf_cpu_context *cpuctx,
658 struct perf_event_context *ctx)
659 {
660 if (event->state <= PERF_EVENT_STATE_OFF)
661 return 0;
662
663 event->state = PERF_EVENT_STATE_ACTIVE;
664 event->oncpu = smp_processor_id();
665 /*
666 * The new state must be visible before we turn it on in the hardware:
667 */
668 smp_wmb();
669
670 if (event->pmu->enable(event)) {
671 event->state = PERF_EVENT_STATE_INACTIVE;
672 event->oncpu = -1;
673 return -EAGAIN;
674 }
675
676 event->tstamp_running += ctx->time - event->tstamp_stopped;
677
678 if (!is_software_event(event))
679 cpuctx->active_oncpu++;
680 ctx->nr_active++;
681
682 if (event->attr.exclusive)
683 cpuctx->exclusive = 1;
684
685 return 0;
686 }
687
688 static int
689 group_sched_in(struct perf_event *group_event,
690 struct perf_cpu_context *cpuctx,
691 struct perf_event_context *ctx)
692 {
693 struct perf_event *event, *partial_group = NULL;
694 const struct pmu *pmu = group_event->pmu;
695 bool txn = false;
696
697 if (group_event->state == PERF_EVENT_STATE_OFF)
698 return 0;
699
700 /* Check if group transaction availabe */
701 if (pmu->start_txn)
702 txn = true;
703
704 if (txn)
705 pmu->start_txn(pmu);
706
707 if (event_sched_in(group_event, cpuctx, ctx)) {
708 if (txn)
709 pmu->cancel_txn(pmu);
710 return -EAGAIN;
711 }
712
713 /*
714 * Schedule in siblings as one group (if any):
715 */
716 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
717 if (event_sched_in(event, cpuctx, ctx)) {
718 partial_group = event;
719 goto group_error;
720 }
721 }
722
723 if (!txn || !pmu->commit_txn(pmu))
724 return 0;
725
726 group_error:
727 /*
728 * Groups can be scheduled in as one unit only, so undo any
729 * partial group before returning:
730 */
731 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
732 if (event == partial_group)
733 break;
734 event_sched_out(event, cpuctx, ctx);
735 }
736 event_sched_out(group_event, cpuctx, ctx);
737
738 if (txn)
739 pmu->cancel_txn(pmu);
740
741 return -EAGAIN;
742 }
743
744 /*
745 * Work out whether we can put this event group on the CPU now.
746 */
747 static int group_can_go_on(struct perf_event *event,
748 struct perf_cpu_context *cpuctx,
749 int can_add_hw)
750 {
751 /*
752 * Groups consisting entirely of software events can always go on.
753 */
754 if (event->group_flags & PERF_GROUP_SOFTWARE)
755 return 1;
756 /*
757 * If an exclusive group is already on, no other hardware
758 * events can go on.
759 */
760 if (cpuctx->exclusive)
761 return 0;
762 /*
763 * If this group is exclusive and there are already
764 * events on the CPU, it can't go on.
765 */
766 if (event->attr.exclusive && cpuctx->active_oncpu)
767 return 0;
768 /*
769 * Otherwise, try to add it if all previous groups were able
770 * to go on.
771 */
772 return can_add_hw;
773 }
774
775 static void add_event_to_ctx(struct perf_event *event,
776 struct perf_event_context *ctx)
777 {
778 list_add_event(event, ctx);
779 perf_group_attach(event);
780 event->tstamp_enabled = ctx->time;
781 event->tstamp_running = ctx->time;
782 event->tstamp_stopped = ctx->time;
783 }
784
785 /*
786 * Cross CPU call to install and enable a performance event
787 *
788 * Must be called with ctx->mutex held
789 */
790 static void __perf_install_in_context(void *info)
791 {
792 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
793 struct perf_event *event = info;
794 struct perf_event_context *ctx = event->ctx;
795 struct perf_event *leader = event->group_leader;
796 int err;
797
798 /*
799 * If this is a task context, we need to check whether it is
800 * the current task context of this cpu. If not it has been
801 * scheduled out before the smp call arrived.
802 * Or possibly this is the right context but it isn't
803 * on this cpu because it had no events.
804 */
805 if (ctx->task && cpuctx->task_ctx != ctx) {
806 if (cpuctx->task_ctx || ctx->task != current)
807 return;
808 cpuctx->task_ctx = ctx;
809 }
810
811 raw_spin_lock(&ctx->lock);
812 ctx->is_active = 1;
813 update_context_time(ctx);
814
815 /*
816 * Protect the list operation against NMI by disabling the
817 * events on a global level. NOP for non NMI based events.
818 */
819 perf_disable();
820
821 add_event_to_ctx(event, ctx);
822
823 if (event->cpu != -1 && event->cpu != smp_processor_id())
824 goto unlock;
825
826 /*
827 * Don't put the event on if it is disabled or if
828 * it is in a group and the group isn't on.
829 */
830 if (event->state != PERF_EVENT_STATE_INACTIVE ||
831 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
832 goto unlock;
833
834 /*
835 * An exclusive event can't go on if there are already active
836 * hardware events, and no hardware event can go on if there
837 * is already an exclusive event on.
838 */
839 if (!group_can_go_on(event, cpuctx, 1))
840 err = -EEXIST;
841 else
842 err = event_sched_in(event, cpuctx, ctx);
843
844 if (err) {
845 /*
846 * This event couldn't go on. If it is in a group
847 * then we have to pull the whole group off.
848 * If the event group is pinned then put it in error state.
849 */
850 if (leader != event)
851 group_sched_out(leader, cpuctx, ctx);
852 if (leader->attr.pinned) {
853 update_group_times(leader);
854 leader->state = PERF_EVENT_STATE_ERROR;
855 }
856 }
857
858 if (!err && !ctx->task && cpuctx->max_pertask)
859 cpuctx->max_pertask--;
860
861 unlock:
862 perf_enable();
863
864 raw_spin_unlock(&ctx->lock);
865 }
866
867 /*
868 * Attach a performance event to a context
869 *
870 * First we add the event to the list with the hardware enable bit
871 * in event->hw_config cleared.
872 *
873 * If the event is attached to a task which is on a CPU we use a smp
874 * call to enable it in the task context. The task might have been
875 * scheduled away, but we check this in the smp call again.
876 *
877 * Must be called with ctx->mutex held.
878 */
879 static void
880 perf_install_in_context(struct perf_event_context *ctx,
881 struct perf_event *event,
882 int cpu)
883 {
884 struct task_struct *task = ctx->task;
885
886 if (!task) {
887 /*
888 * Per cpu events are installed via an smp call and
889 * the install is always successful.
890 */
891 smp_call_function_single(cpu, __perf_install_in_context,
892 event, 1);
893 return;
894 }
895
896 retry:
897 task_oncpu_function_call(task, __perf_install_in_context,
898 event);
899
900 raw_spin_lock_irq(&ctx->lock);
901 /*
902 * we need to retry the smp call.
903 */
904 if (ctx->is_active && list_empty(&event->group_entry)) {
905 raw_spin_unlock_irq(&ctx->lock);
906 goto retry;
907 }
908
909 /*
910 * The lock prevents that this context is scheduled in so we
911 * can add the event safely, if it the call above did not
912 * succeed.
913 */
914 if (list_empty(&event->group_entry))
915 add_event_to_ctx(event, ctx);
916 raw_spin_unlock_irq(&ctx->lock);
917 }
918
919 /*
920 * Put a event into inactive state and update time fields.
921 * Enabling the leader of a group effectively enables all
922 * the group members that aren't explicitly disabled, so we
923 * have to update their ->tstamp_enabled also.
924 * Note: this works for group members as well as group leaders
925 * since the non-leader members' sibling_lists will be empty.
926 */
927 static void __perf_event_mark_enabled(struct perf_event *event,
928 struct perf_event_context *ctx)
929 {
930 struct perf_event *sub;
931
932 event->state = PERF_EVENT_STATE_INACTIVE;
933 event->tstamp_enabled = ctx->time - event->total_time_enabled;
934 list_for_each_entry(sub, &event->sibling_list, group_entry)
935 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
936 sub->tstamp_enabled =
937 ctx->time - sub->total_time_enabled;
938 }
939
940 /*
941 * Cross CPU call to enable a performance event
942 */
943 static void __perf_event_enable(void *info)
944 {
945 struct perf_event *event = info;
946 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
947 struct perf_event_context *ctx = event->ctx;
948 struct perf_event *leader = event->group_leader;
949 int err;
950
951 /*
952 * If this is a per-task event, need to check whether this
953 * event's task is the current task on this cpu.
954 */
955 if (ctx->task && cpuctx->task_ctx != ctx) {
956 if (cpuctx->task_ctx || ctx->task != current)
957 return;
958 cpuctx->task_ctx = ctx;
959 }
960
961 raw_spin_lock(&ctx->lock);
962 ctx->is_active = 1;
963 update_context_time(ctx);
964
965 if (event->state >= PERF_EVENT_STATE_INACTIVE)
966 goto unlock;
967 __perf_event_mark_enabled(event, ctx);
968
969 if (event->cpu != -1 && event->cpu != smp_processor_id())
970 goto unlock;
971
972 /*
973 * If the event is in a group and isn't the group leader,
974 * then don't put it on unless the group is on.
975 */
976 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
977 goto unlock;
978
979 if (!group_can_go_on(event, cpuctx, 1)) {
980 err = -EEXIST;
981 } else {
982 perf_disable();
983 if (event == leader)
984 err = group_sched_in(event, cpuctx, ctx);
985 else
986 err = event_sched_in(event, cpuctx, ctx);
987 perf_enable();
988 }
989
990 if (err) {
991 /*
992 * If this event can't go on and it's part of a
993 * group, then the whole group has to come off.
994 */
995 if (leader != event)
996 group_sched_out(leader, cpuctx, ctx);
997 if (leader->attr.pinned) {
998 update_group_times(leader);
999 leader->state = PERF_EVENT_STATE_ERROR;
1000 }
1001 }
1002
1003 unlock:
1004 raw_spin_unlock(&ctx->lock);
1005 }
1006
1007 /*
1008 * Enable a event.
1009 *
1010 * If event->ctx is a cloned context, callers must make sure that
1011 * every task struct that event->ctx->task could possibly point to
1012 * remains valid. This condition is satisfied when called through
1013 * perf_event_for_each_child or perf_event_for_each as described
1014 * for perf_event_disable.
1015 */
1016 void perf_event_enable(struct perf_event *event)
1017 {
1018 struct perf_event_context *ctx = event->ctx;
1019 struct task_struct *task = ctx->task;
1020
1021 if (!task) {
1022 /*
1023 * Enable the event on the cpu that it's on
1024 */
1025 smp_call_function_single(event->cpu, __perf_event_enable,
1026 event, 1);
1027 return;
1028 }
1029
1030 raw_spin_lock_irq(&ctx->lock);
1031 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1032 goto out;
1033
1034 /*
1035 * If the event is in error state, clear that first.
1036 * That way, if we see the event in error state below, we
1037 * know that it has gone back into error state, as distinct
1038 * from the task having been scheduled away before the
1039 * cross-call arrived.
1040 */
1041 if (event->state == PERF_EVENT_STATE_ERROR)
1042 event->state = PERF_EVENT_STATE_OFF;
1043
1044 retry:
1045 raw_spin_unlock_irq(&ctx->lock);
1046 task_oncpu_function_call(task, __perf_event_enable, event);
1047
1048 raw_spin_lock_irq(&ctx->lock);
1049
1050 /*
1051 * If the context is active and the event is still off,
1052 * we need to retry the cross-call.
1053 */
1054 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1055 goto retry;
1056
1057 /*
1058 * Since we have the lock this context can't be scheduled
1059 * in, so we can change the state safely.
1060 */
1061 if (event->state == PERF_EVENT_STATE_OFF)
1062 __perf_event_mark_enabled(event, ctx);
1063
1064 out:
1065 raw_spin_unlock_irq(&ctx->lock);
1066 }
1067
1068 static int perf_event_refresh(struct perf_event *event, int refresh)
1069 {
1070 /*
1071 * not supported on inherited events
1072 */
1073 if (event->attr.inherit)
1074 return -EINVAL;
1075
1076 atomic_add(refresh, &event->event_limit);
1077 perf_event_enable(event);
1078
1079 return 0;
1080 }
1081
1082 enum event_type_t {
1083 EVENT_FLEXIBLE = 0x1,
1084 EVENT_PINNED = 0x2,
1085 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1086 };
1087
1088 static void ctx_sched_out(struct perf_event_context *ctx,
1089 struct perf_cpu_context *cpuctx,
1090 enum event_type_t event_type)
1091 {
1092 struct perf_event *event;
1093
1094 raw_spin_lock(&ctx->lock);
1095 ctx->is_active = 0;
1096 if (likely(!ctx->nr_events))
1097 goto out;
1098 update_context_time(ctx);
1099
1100 perf_disable();
1101 if (!ctx->nr_active)
1102 goto out_enable;
1103
1104 if (event_type & EVENT_PINNED)
1105 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1106 group_sched_out(event, cpuctx, ctx);
1107
1108 if (event_type & EVENT_FLEXIBLE)
1109 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1110 group_sched_out(event, cpuctx, ctx);
1111
1112 out_enable:
1113 perf_enable();
1114 out:
1115 raw_spin_unlock(&ctx->lock);
1116 }
1117
1118 /*
1119 * Test whether two contexts are equivalent, i.e. whether they
1120 * have both been cloned from the same version of the same context
1121 * and they both have the same number of enabled events.
1122 * If the number of enabled events is the same, then the set
1123 * of enabled events should be the same, because these are both
1124 * inherited contexts, therefore we can't access individual events
1125 * in them directly with an fd; we can only enable/disable all
1126 * events via prctl, or enable/disable all events in a family
1127 * via ioctl, which will have the same effect on both contexts.
1128 */
1129 static int context_equiv(struct perf_event_context *ctx1,
1130 struct perf_event_context *ctx2)
1131 {
1132 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1133 && ctx1->parent_gen == ctx2->parent_gen
1134 && !ctx1->pin_count && !ctx2->pin_count;
1135 }
1136
1137 static void __perf_event_sync_stat(struct perf_event *event,
1138 struct perf_event *next_event)
1139 {
1140 u64 value;
1141
1142 if (!event->attr.inherit_stat)
1143 return;
1144
1145 /*
1146 * Update the event value, we cannot use perf_event_read()
1147 * because we're in the middle of a context switch and have IRQs
1148 * disabled, which upsets smp_call_function_single(), however
1149 * we know the event must be on the current CPU, therefore we
1150 * don't need to use it.
1151 */
1152 switch (event->state) {
1153 case PERF_EVENT_STATE_ACTIVE:
1154 event->pmu->read(event);
1155 /* fall-through */
1156
1157 case PERF_EVENT_STATE_INACTIVE:
1158 update_event_times(event);
1159 break;
1160
1161 default:
1162 break;
1163 }
1164
1165 /*
1166 * In order to keep per-task stats reliable we need to flip the event
1167 * values when we flip the contexts.
1168 */
1169 value = local64_read(&next_event->count);
1170 value = local64_xchg(&event->count, value);
1171 local64_set(&next_event->count, value);
1172
1173 swap(event->total_time_enabled, next_event->total_time_enabled);
1174 swap(event->total_time_running, next_event->total_time_running);
1175
1176 /*
1177 * Since we swizzled the values, update the user visible data too.
1178 */
1179 perf_event_update_userpage(event);
1180 perf_event_update_userpage(next_event);
1181 }
1182
1183 #define list_next_entry(pos, member) \
1184 list_entry(pos->member.next, typeof(*pos), member)
1185
1186 static void perf_event_sync_stat(struct perf_event_context *ctx,
1187 struct perf_event_context *next_ctx)
1188 {
1189 struct perf_event *event, *next_event;
1190
1191 if (!ctx->nr_stat)
1192 return;
1193
1194 update_context_time(ctx);
1195
1196 event = list_first_entry(&ctx->event_list,
1197 struct perf_event, event_entry);
1198
1199 next_event = list_first_entry(&next_ctx->event_list,
1200 struct perf_event, event_entry);
1201
1202 while (&event->event_entry != &ctx->event_list &&
1203 &next_event->event_entry != &next_ctx->event_list) {
1204
1205 __perf_event_sync_stat(event, next_event);
1206
1207 event = list_next_entry(event, event_entry);
1208 next_event = list_next_entry(next_event, event_entry);
1209 }
1210 }
1211
1212 /*
1213 * Called from scheduler to remove the events of the current task,
1214 * with interrupts disabled.
1215 *
1216 * We stop each event and update the event value in event->count.
1217 *
1218 * This does not protect us against NMI, but disable()
1219 * sets the disabled bit in the control field of event _before_
1220 * accessing the event control register. If a NMI hits, then it will
1221 * not restart the event.
1222 */
1223 void perf_event_task_sched_out(struct task_struct *task,
1224 struct task_struct *next)
1225 {
1226 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1227 struct perf_event_context *ctx = task->perf_event_ctxp;
1228 struct perf_event_context *next_ctx;
1229 struct perf_event_context *parent;
1230 int do_switch = 1;
1231
1232 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1233
1234 if (likely(!ctx || !cpuctx->task_ctx))
1235 return;
1236
1237 rcu_read_lock();
1238 parent = rcu_dereference(ctx->parent_ctx);
1239 next_ctx = next->perf_event_ctxp;
1240 if (parent && next_ctx &&
1241 rcu_dereference(next_ctx->parent_ctx) == parent) {
1242 /*
1243 * Looks like the two contexts are clones, so we might be
1244 * able to optimize the context switch. We lock both
1245 * contexts and check that they are clones under the
1246 * lock (including re-checking that neither has been
1247 * uncloned in the meantime). It doesn't matter which
1248 * order we take the locks because no other cpu could
1249 * be trying to lock both of these tasks.
1250 */
1251 raw_spin_lock(&ctx->lock);
1252 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1253 if (context_equiv(ctx, next_ctx)) {
1254 /*
1255 * XXX do we need a memory barrier of sorts
1256 * wrt to rcu_dereference() of perf_event_ctxp
1257 */
1258 task->perf_event_ctxp = next_ctx;
1259 next->perf_event_ctxp = ctx;
1260 ctx->task = next;
1261 next_ctx->task = task;
1262 do_switch = 0;
1263
1264 perf_event_sync_stat(ctx, next_ctx);
1265 }
1266 raw_spin_unlock(&next_ctx->lock);
1267 raw_spin_unlock(&ctx->lock);
1268 }
1269 rcu_read_unlock();
1270
1271 if (do_switch) {
1272 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1273 cpuctx->task_ctx = NULL;
1274 }
1275 }
1276
1277 static void task_ctx_sched_out(struct perf_event_context *ctx,
1278 enum event_type_t event_type)
1279 {
1280 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1281
1282 if (!cpuctx->task_ctx)
1283 return;
1284
1285 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1286 return;
1287
1288 ctx_sched_out(ctx, cpuctx, event_type);
1289 cpuctx->task_ctx = NULL;
1290 }
1291
1292 /*
1293 * Called with IRQs disabled
1294 */
1295 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1296 {
1297 task_ctx_sched_out(ctx, EVENT_ALL);
1298 }
1299
1300 /*
1301 * Called with IRQs disabled
1302 */
1303 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1304 enum event_type_t event_type)
1305 {
1306 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1307 }
1308
1309 static void
1310 ctx_pinned_sched_in(struct perf_event_context *ctx,
1311 struct perf_cpu_context *cpuctx)
1312 {
1313 struct perf_event *event;
1314
1315 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1316 if (event->state <= PERF_EVENT_STATE_OFF)
1317 continue;
1318 if (event->cpu != -1 && event->cpu != smp_processor_id())
1319 continue;
1320
1321 if (group_can_go_on(event, cpuctx, 1))
1322 group_sched_in(event, cpuctx, ctx);
1323
1324 /*
1325 * If this pinned group hasn't been scheduled,
1326 * put it in error state.
1327 */
1328 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1329 update_group_times(event);
1330 event->state = PERF_EVENT_STATE_ERROR;
1331 }
1332 }
1333 }
1334
1335 static void
1336 ctx_flexible_sched_in(struct perf_event_context *ctx,
1337 struct perf_cpu_context *cpuctx)
1338 {
1339 struct perf_event *event;
1340 int can_add_hw = 1;
1341
1342 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1343 /* Ignore events in OFF or ERROR state */
1344 if (event->state <= PERF_EVENT_STATE_OFF)
1345 continue;
1346 /*
1347 * Listen to the 'cpu' scheduling filter constraint
1348 * of events:
1349 */
1350 if (event->cpu != -1 && event->cpu != smp_processor_id())
1351 continue;
1352
1353 if (group_can_go_on(event, cpuctx, can_add_hw))
1354 if (group_sched_in(event, cpuctx, ctx))
1355 can_add_hw = 0;
1356 }
1357 }
1358
1359 static void
1360 ctx_sched_in(struct perf_event_context *ctx,
1361 struct perf_cpu_context *cpuctx,
1362 enum event_type_t event_type)
1363 {
1364 raw_spin_lock(&ctx->lock);
1365 ctx->is_active = 1;
1366 if (likely(!ctx->nr_events))
1367 goto out;
1368
1369 ctx->timestamp = perf_clock();
1370
1371 perf_disable();
1372
1373 /*
1374 * First go through the list and put on any pinned groups
1375 * in order to give them the best chance of going on.
1376 */
1377 if (event_type & EVENT_PINNED)
1378 ctx_pinned_sched_in(ctx, cpuctx);
1379
1380 /* Then walk through the lower prio flexible groups */
1381 if (event_type & EVENT_FLEXIBLE)
1382 ctx_flexible_sched_in(ctx, cpuctx);
1383
1384 perf_enable();
1385 out:
1386 raw_spin_unlock(&ctx->lock);
1387 }
1388
1389 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1390 enum event_type_t event_type)
1391 {
1392 struct perf_event_context *ctx = &cpuctx->ctx;
1393
1394 ctx_sched_in(ctx, cpuctx, event_type);
1395 }
1396
1397 static void task_ctx_sched_in(struct task_struct *task,
1398 enum event_type_t event_type)
1399 {
1400 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1401 struct perf_event_context *ctx = task->perf_event_ctxp;
1402
1403 if (likely(!ctx))
1404 return;
1405 if (cpuctx->task_ctx == ctx)
1406 return;
1407 ctx_sched_in(ctx, cpuctx, event_type);
1408 cpuctx->task_ctx = ctx;
1409 }
1410 /*
1411 * Called from scheduler to add the events of the current task
1412 * with interrupts disabled.
1413 *
1414 * We restore the event value and then enable it.
1415 *
1416 * This does not protect us against NMI, but enable()
1417 * sets the enabled bit in the control field of event _before_
1418 * accessing the event control register. If a NMI hits, then it will
1419 * keep the event running.
1420 */
1421 void perf_event_task_sched_in(struct task_struct *task)
1422 {
1423 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1424 struct perf_event_context *ctx = task->perf_event_ctxp;
1425
1426 if (likely(!ctx))
1427 return;
1428
1429 if (cpuctx->task_ctx == ctx)
1430 return;
1431
1432 perf_disable();
1433
1434 /*
1435 * We want to keep the following priority order:
1436 * cpu pinned (that don't need to move), task pinned,
1437 * cpu flexible, task flexible.
1438 */
1439 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1440
1441 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1442 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1443 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1444
1445 cpuctx->task_ctx = ctx;
1446
1447 perf_enable();
1448 }
1449
1450 #define MAX_INTERRUPTS (~0ULL)
1451
1452 static void perf_log_throttle(struct perf_event *event, int enable);
1453
1454 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1455 {
1456 u64 frequency = event->attr.sample_freq;
1457 u64 sec = NSEC_PER_SEC;
1458 u64 divisor, dividend;
1459
1460 int count_fls, nsec_fls, frequency_fls, sec_fls;
1461
1462 count_fls = fls64(count);
1463 nsec_fls = fls64(nsec);
1464 frequency_fls = fls64(frequency);
1465 sec_fls = 30;
1466
1467 /*
1468 * We got @count in @nsec, with a target of sample_freq HZ
1469 * the target period becomes:
1470 *
1471 * @count * 10^9
1472 * period = -------------------
1473 * @nsec * sample_freq
1474 *
1475 */
1476
1477 /*
1478 * Reduce accuracy by one bit such that @a and @b converge
1479 * to a similar magnitude.
1480 */
1481 #define REDUCE_FLS(a, b) \
1482 do { \
1483 if (a##_fls > b##_fls) { \
1484 a >>= 1; \
1485 a##_fls--; \
1486 } else { \
1487 b >>= 1; \
1488 b##_fls--; \
1489 } \
1490 } while (0)
1491
1492 /*
1493 * Reduce accuracy until either term fits in a u64, then proceed with
1494 * the other, so that finally we can do a u64/u64 division.
1495 */
1496 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1497 REDUCE_FLS(nsec, frequency);
1498 REDUCE_FLS(sec, count);
1499 }
1500
1501 if (count_fls + sec_fls > 64) {
1502 divisor = nsec * frequency;
1503
1504 while (count_fls + sec_fls > 64) {
1505 REDUCE_FLS(count, sec);
1506 divisor >>= 1;
1507 }
1508
1509 dividend = count * sec;
1510 } else {
1511 dividend = count * sec;
1512
1513 while (nsec_fls + frequency_fls > 64) {
1514 REDUCE_FLS(nsec, frequency);
1515 dividend >>= 1;
1516 }
1517
1518 divisor = nsec * frequency;
1519 }
1520
1521 if (!divisor)
1522 return dividend;
1523
1524 return div64_u64(dividend, divisor);
1525 }
1526
1527 static void perf_event_stop(struct perf_event *event)
1528 {
1529 if (!event->pmu->stop)
1530 return event->pmu->disable(event);
1531
1532 return event->pmu->stop(event);
1533 }
1534
1535 static int perf_event_start(struct perf_event *event)
1536 {
1537 if (!event->pmu->start)
1538 return event->pmu->enable(event);
1539
1540 return event->pmu->start(event);
1541 }
1542
1543 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1544 {
1545 struct hw_perf_event *hwc = &event->hw;
1546 s64 period, sample_period;
1547 s64 delta;
1548
1549 period = perf_calculate_period(event, nsec, count);
1550
1551 delta = (s64)(period - hwc->sample_period);
1552 delta = (delta + 7) / 8; /* low pass filter */
1553
1554 sample_period = hwc->sample_period + delta;
1555
1556 if (!sample_period)
1557 sample_period = 1;
1558
1559 hwc->sample_period = sample_period;
1560
1561 if (local64_read(&hwc->period_left) > 8*sample_period) {
1562 perf_disable();
1563 perf_event_stop(event);
1564 local64_set(&hwc->period_left, 0);
1565 perf_event_start(event);
1566 perf_enable();
1567 }
1568 }
1569
1570 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1571 {
1572 struct perf_event *event;
1573 struct hw_perf_event *hwc;
1574 u64 interrupts, now;
1575 s64 delta;
1576
1577 raw_spin_lock(&ctx->lock);
1578 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1579 if (event->state != PERF_EVENT_STATE_ACTIVE)
1580 continue;
1581
1582 if (event->cpu != -1 && event->cpu != smp_processor_id())
1583 continue;
1584
1585 hwc = &event->hw;
1586
1587 interrupts = hwc->interrupts;
1588 hwc->interrupts = 0;
1589
1590 /*
1591 * unthrottle events on the tick
1592 */
1593 if (interrupts == MAX_INTERRUPTS) {
1594 perf_log_throttle(event, 1);
1595 perf_disable();
1596 event->pmu->unthrottle(event);
1597 perf_enable();
1598 }
1599
1600 if (!event->attr.freq || !event->attr.sample_freq)
1601 continue;
1602
1603 perf_disable();
1604 event->pmu->read(event);
1605 now = local64_read(&event->count);
1606 delta = now - hwc->freq_count_stamp;
1607 hwc->freq_count_stamp = now;
1608
1609 if (delta > 0)
1610 perf_adjust_period(event, TICK_NSEC, delta);
1611 perf_enable();
1612 }
1613 raw_spin_unlock(&ctx->lock);
1614 }
1615
1616 /*
1617 * Round-robin a context's events:
1618 */
1619 static void rotate_ctx(struct perf_event_context *ctx)
1620 {
1621 raw_spin_lock(&ctx->lock);
1622
1623 /* Rotate the first entry last of non-pinned groups */
1624 list_rotate_left(&ctx->flexible_groups);
1625
1626 raw_spin_unlock(&ctx->lock);
1627 }
1628
1629 void perf_event_task_tick(struct task_struct *curr)
1630 {
1631 struct perf_cpu_context *cpuctx;
1632 struct perf_event_context *ctx;
1633 int rotate = 0;
1634
1635 if (!atomic_read(&nr_events))
1636 return;
1637
1638 cpuctx = &__get_cpu_var(perf_cpu_context);
1639 if (cpuctx->ctx.nr_events &&
1640 cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1641 rotate = 1;
1642
1643 ctx = curr->perf_event_ctxp;
1644 if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1645 rotate = 1;
1646
1647 perf_ctx_adjust_freq(&cpuctx->ctx);
1648 if (ctx)
1649 perf_ctx_adjust_freq(ctx);
1650
1651 if (!rotate)
1652 return;
1653
1654 perf_disable();
1655 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1656 if (ctx)
1657 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1658
1659 rotate_ctx(&cpuctx->ctx);
1660 if (ctx)
1661 rotate_ctx(ctx);
1662
1663 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1664 if (ctx)
1665 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1666 perf_enable();
1667 }
1668
1669 static int event_enable_on_exec(struct perf_event *event,
1670 struct perf_event_context *ctx)
1671 {
1672 if (!event->attr.enable_on_exec)
1673 return 0;
1674
1675 event->attr.enable_on_exec = 0;
1676 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1677 return 0;
1678
1679 __perf_event_mark_enabled(event, ctx);
1680
1681 return 1;
1682 }
1683
1684 /*
1685 * Enable all of a task's events that have been marked enable-on-exec.
1686 * This expects task == current.
1687 */
1688 static void perf_event_enable_on_exec(struct task_struct *task)
1689 {
1690 struct perf_event_context *ctx;
1691 struct perf_event *event;
1692 unsigned long flags;
1693 int enabled = 0;
1694 int ret;
1695
1696 local_irq_save(flags);
1697 ctx = task->perf_event_ctxp;
1698 if (!ctx || !ctx->nr_events)
1699 goto out;
1700
1701 __perf_event_task_sched_out(ctx);
1702
1703 raw_spin_lock(&ctx->lock);
1704
1705 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1706 ret = event_enable_on_exec(event, ctx);
1707 if (ret)
1708 enabled = 1;
1709 }
1710
1711 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1712 ret = event_enable_on_exec(event, ctx);
1713 if (ret)
1714 enabled = 1;
1715 }
1716
1717 /*
1718 * Unclone this context if we enabled any event.
1719 */
1720 if (enabled)
1721 unclone_ctx(ctx);
1722
1723 raw_spin_unlock(&ctx->lock);
1724
1725 perf_event_task_sched_in(task);
1726 out:
1727 local_irq_restore(flags);
1728 }
1729
1730 /*
1731 * Cross CPU call to read the hardware event
1732 */
1733 static void __perf_event_read(void *info)
1734 {
1735 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1736 struct perf_event *event = info;
1737 struct perf_event_context *ctx = event->ctx;
1738
1739 /*
1740 * If this is a task context, we need to check whether it is
1741 * the current task context of this cpu. If not it has been
1742 * scheduled out before the smp call arrived. In that case
1743 * event->count would have been updated to a recent sample
1744 * when the event was scheduled out.
1745 */
1746 if (ctx->task && cpuctx->task_ctx != ctx)
1747 return;
1748
1749 raw_spin_lock(&ctx->lock);
1750 update_context_time(ctx);
1751 update_event_times(event);
1752 raw_spin_unlock(&ctx->lock);
1753
1754 event->pmu->read(event);
1755 }
1756
1757 static inline u64 perf_event_count(struct perf_event *event)
1758 {
1759 return local64_read(&event->count) + atomic64_read(&event->child_count);
1760 }
1761
1762 static u64 perf_event_read(struct perf_event *event)
1763 {
1764 /*
1765 * If event is enabled and currently active on a CPU, update the
1766 * value in the event structure:
1767 */
1768 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1769 smp_call_function_single(event->oncpu,
1770 __perf_event_read, event, 1);
1771 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1772 struct perf_event_context *ctx = event->ctx;
1773 unsigned long flags;
1774
1775 raw_spin_lock_irqsave(&ctx->lock, flags);
1776 update_context_time(ctx);
1777 update_event_times(event);
1778 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1779 }
1780
1781 return perf_event_count(event);
1782 }
1783
1784 /*
1785 * Initialize the perf_event context in a task_struct:
1786 */
1787 static void
1788 __perf_event_init_context(struct perf_event_context *ctx,
1789 struct task_struct *task)
1790 {
1791 raw_spin_lock_init(&ctx->lock);
1792 mutex_init(&ctx->mutex);
1793 INIT_LIST_HEAD(&ctx->pinned_groups);
1794 INIT_LIST_HEAD(&ctx->flexible_groups);
1795 INIT_LIST_HEAD(&ctx->event_list);
1796 atomic_set(&ctx->refcount, 1);
1797 ctx->task = task;
1798 }
1799
1800 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1801 {
1802 struct perf_event_context *ctx;
1803 struct perf_cpu_context *cpuctx;
1804 struct task_struct *task;
1805 unsigned long flags;
1806 int err;
1807
1808 if (pid == -1 && cpu != -1) {
1809 /* Must be root to operate on a CPU event: */
1810 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1811 return ERR_PTR(-EACCES);
1812
1813 if (cpu < 0 || cpu >= nr_cpumask_bits)
1814 return ERR_PTR(-EINVAL);
1815
1816 /*
1817 * We could be clever and allow to attach a event to an
1818 * offline CPU and activate it when the CPU comes up, but
1819 * that's for later.
1820 */
1821 if (!cpu_online(cpu))
1822 return ERR_PTR(-ENODEV);
1823
1824 cpuctx = &per_cpu(perf_cpu_context, cpu);
1825 ctx = &cpuctx->ctx;
1826 get_ctx(ctx);
1827
1828 return ctx;
1829 }
1830
1831 rcu_read_lock();
1832 if (!pid)
1833 task = current;
1834 else
1835 task = find_task_by_vpid(pid);
1836 if (task)
1837 get_task_struct(task);
1838 rcu_read_unlock();
1839
1840 if (!task)
1841 return ERR_PTR(-ESRCH);
1842
1843 /*
1844 * Can't attach events to a dying task.
1845 */
1846 err = -ESRCH;
1847 if (task->flags & PF_EXITING)
1848 goto errout;
1849
1850 /* Reuse ptrace permission checks for now. */
1851 err = -EACCES;
1852 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1853 goto errout;
1854
1855 retry:
1856 ctx = perf_lock_task_context(task, &flags);
1857 if (ctx) {
1858 unclone_ctx(ctx);
1859 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1860 }
1861
1862 if (!ctx) {
1863 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1864 err = -ENOMEM;
1865 if (!ctx)
1866 goto errout;
1867 __perf_event_init_context(ctx, task);
1868 get_ctx(ctx);
1869 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1870 /*
1871 * We raced with some other task; use
1872 * the context they set.
1873 */
1874 kfree(ctx);
1875 goto retry;
1876 }
1877 get_task_struct(task);
1878 }
1879
1880 put_task_struct(task);
1881 return ctx;
1882
1883 errout:
1884 put_task_struct(task);
1885 return ERR_PTR(err);
1886 }
1887
1888 static void perf_event_free_filter(struct perf_event *event);
1889
1890 static void free_event_rcu(struct rcu_head *head)
1891 {
1892 struct perf_event *event;
1893
1894 event = container_of(head, struct perf_event, rcu_head);
1895 if (event->ns)
1896 put_pid_ns(event->ns);
1897 perf_event_free_filter(event);
1898 kfree(event);
1899 }
1900
1901 static void perf_pending_sync(struct perf_event *event);
1902 static void perf_buffer_put(struct perf_buffer *buffer);
1903
1904 static void free_event(struct perf_event *event)
1905 {
1906 perf_pending_sync(event);
1907
1908 if (!event->parent) {
1909 atomic_dec(&nr_events);
1910 if (event->attr.mmap || event->attr.mmap_data)
1911 atomic_dec(&nr_mmap_events);
1912 if (event->attr.comm)
1913 atomic_dec(&nr_comm_events);
1914 if (event->attr.task)
1915 atomic_dec(&nr_task_events);
1916 }
1917
1918 if (event->buffer) {
1919 perf_buffer_put(event->buffer);
1920 event->buffer = NULL;
1921 }
1922
1923 if (event->destroy)
1924 event->destroy(event);
1925
1926 put_ctx(event->ctx);
1927 call_rcu(&event->rcu_head, free_event_rcu);
1928 }
1929
1930 int perf_event_release_kernel(struct perf_event *event)
1931 {
1932 struct perf_event_context *ctx = event->ctx;
1933
1934 /*
1935 * Remove from the PMU, can't get re-enabled since we got
1936 * here because the last ref went.
1937 */
1938 perf_event_disable(event);
1939
1940 WARN_ON_ONCE(ctx->parent_ctx);
1941 /*
1942 * There are two ways this annotation is useful:
1943 *
1944 * 1) there is a lock recursion from perf_event_exit_task
1945 * see the comment there.
1946 *
1947 * 2) there is a lock-inversion with mmap_sem through
1948 * perf_event_read_group(), which takes faults while
1949 * holding ctx->mutex, however this is called after
1950 * the last filedesc died, so there is no possibility
1951 * to trigger the AB-BA case.
1952 */
1953 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
1954 raw_spin_lock_irq(&ctx->lock);
1955 perf_group_detach(event);
1956 list_del_event(event, ctx);
1957 raw_spin_unlock_irq(&ctx->lock);
1958 mutex_unlock(&ctx->mutex);
1959
1960 mutex_lock(&event->owner->perf_event_mutex);
1961 list_del_init(&event->owner_entry);
1962 mutex_unlock(&event->owner->perf_event_mutex);
1963 put_task_struct(event->owner);
1964
1965 free_event(event);
1966
1967 return 0;
1968 }
1969 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1970
1971 /*
1972 * Called when the last reference to the file is gone.
1973 */
1974 static int perf_release(struct inode *inode, struct file *file)
1975 {
1976 struct perf_event *event = file->private_data;
1977
1978 file->private_data = NULL;
1979
1980 return perf_event_release_kernel(event);
1981 }
1982
1983 static int perf_event_read_size(struct perf_event *event)
1984 {
1985 int entry = sizeof(u64); /* value */
1986 int size = 0;
1987 int nr = 1;
1988
1989 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1990 size += sizeof(u64);
1991
1992 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1993 size += sizeof(u64);
1994
1995 if (event->attr.read_format & PERF_FORMAT_ID)
1996 entry += sizeof(u64);
1997
1998 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1999 nr += event->group_leader->nr_siblings;
2000 size += sizeof(u64);
2001 }
2002
2003 size += entry * nr;
2004
2005 return size;
2006 }
2007
2008 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2009 {
2010 struct perf_event *child;
2011 u64 total = 0;
2012
2013 *enabled = 0;
2014 *running = 0;
2015
2016 mutex_lock(&event->child_mutex);
2017 total += perf_event_read(event);
2018 *enabled += event->total_time_enabled +
2019 atomic64_read(&event->child_total_time_enabled);
2020 *running += event->total_time_running +
2021 atomic64_read(&event->child_total_time_running);
2022
2023 list_for_each_entry(child, &event->child_list, child_list) {
2024 total += perf_event_read(child);
2025 *enabled += child->total_time_enabled;
2026 *running += child->total_time_running;
2027 }
2028 mutex_unlock(&event->child_mutex);
2029
2030 return total;
2031 }
2032 EXPORT_SYMBOL_GPL(perf_event_read_value);
2033
2034 static int perf_event_read_group(struct perf_event *event,
2035 u64 read_format, char __user *buf)
2036 {
2037 struct perf_event *leader = event->group_leader, *sub;
2038 int n = 0, size = 0, ret = -EFAULT;
2039 struct perf_event_context *ctx = leader->ctx;
2040 u64 values[5];
2041 u64 count, enabled, running;
2042
2043 mutex_lock(&ctx->mutex);
2044 count = perf_event_read_value(leader, &enabled, &running);
2045
2046 values[n++] = 1 + leader->nr_siblings;
2047 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2048 values[n++] = enabled;
2049 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2050 values[n++] = running;
2051 values[n++] = count;
2052 if (read_format & PERF_FORMAT_ID)
2053 values[n++] = primary_event_id(leader);
2054
2055 size = n * sizeof(u64);
2056
2057 if (copy_to_user(buf, values, size))
2058 goto unlock;
2059
2060 ret = size;
2061
2062 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2063 n = 0;
2064
2065 values[n++] = perf_event_read_value(sub, &enabled, &running);
2066 if (read_format & PERF_FORMAT_ID)
2067 values[n++] = primary_event_id(sub);
2068
2069 size = n * sizeof(u64);
2070
2071 if (copy_to_user(buf + ret, values, size)) {
2072 ret = -EFAULT;
2073 goto unlock;
2074 }
2075
2076 ret += size;
2077 }
2078 unlock:
2079 mutex_unlock(&ctx->mutex);
2080
2081 return ret;
2082 }
2083
2084 static int perf_event_read_one(struct perf_event *event,
2085 u64 read_format, char __user *buf)
2086 {
2087 u64 enabled, running;
2088 u64 values[4];
2089 int n = 0;
2090
2091 values[n++] = perf_event_read_value(event, &enabled, &running);
2092 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2093 values[n++] = enabled;
2094 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2095 values[n++] = running;
2096 if (read_format & PERF_FORMAT_ID)
2097 values[n++] = primary_event_id(event);
2098
2099 if (copy_to_user(buf, values, n * sizeof(u64)))
2100 return -EFAULT;
2101
2102 return n * sizeof(u64);
2103 }
2104
2105 /*
2106 * Read the performance event - simple non blocking version for now
2107 */
2108 static ssize_t
2109 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2110 {
2111 u64 read_format = event->attr.read_format;
2112 int ret;
2113
2114 /*
2115 * Return end-of-file for a read on a event that is in
2116 * error state (i.e. because it was pinned but it couldn't be
2117 * scheduled on to the CPU at some point).
2118 */
2119 if (event->state == PERF_EVENT_STATE_ERROR)
2120 return 0;
2121
2122 if (count < perf_event_read_size(event))
2123 return -ENOSPC;
2124
2125 WARN_ON_ONCE(event->ctx->parent_ctx);
2126 if (read_format & PERF_FORMAT_GROUP)
2127 ret = perf_event_read_group(event, read_format, buf);
2128 else
2129 ret = perf_event_read_one(event, read_format, buf);
2130
2131 return ret;
2132 }
2133
2134 static ssize_t
2135 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2136 {
2137 struct perf_event *event = file->private_data;
2138
2139 return perf_read_hw(event, buf, count);
2140 }
2141
2142 static unsigned int perf_poll(struct file *file, poll_table *wait)
2143 {
2144 struct perf_event *event = file->private_data;
2145 struct perf_buffer *buffer;
2146 unsigned int events = POLL_HUP;
2147
2148 rcu_read_lock();
2149 buffer = rcu_dereference(event->buffer);
2150 if (buffer)
2151 events = atomic_xchg(&buffer->poll, 0);
2152 rcu_read_unlock();
2153
2154 poll_wait(file, &event->waitq, wait);
2155
2156 return events;
2157 }
2158
2159 static void perf_event_reset(struct perf_event *event)
2160 {
2161 (void)perf_event_read(event);
2162 local64_set(&event->count, 0);
2163 perf_event_update_userpage(event);
2164 }
2165
2166 /*
2167 * Holding the top-level event's child_mutex means that any
2168 * descendant process that has inherited this event will block
2169 * in sync_child_event if it goes to exit, thus satisfying the
2170 * task existence requirements of perf_event_enable/disable.
2171 */
2172 static void perf_event_for_each_child(struct perf_event *event,
2173 void (*func)(struct perf_event *))
2174 {
2175 struct perf_event *child;
2176
2177 WARN_ON_ONCE(event->ctx->parent_ctx);
2178 mutex_lock(&event->child_mutex);
2179 func(event);
2180 list_for_each_entry(child, &event->child_list, child_list)
2181 func(child);
2182 mutex_unlock(&event->child_mutex);
2183 }
2184
2185 static void perf_event_for_each(struct perf_event *event,
2186 void (*func)(struct perf_event *))
2187 {
2188 struct perf_event_context *ctx = event->ctx;
2189 struct perf_event *sibling;
2190
2191 WARN_ON_ONCE(ctx->parent_ctx);
2192 mutex_lock(&ctx->mutex);
2193 event = event->group_leader;
2194
2195 perf_event_for_each_child(event, func);
2196 func(event);
2197 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2198 perf_event_for_each_child(event, func);
2199 mutex_unlock(&ctx->mutex);
2200 }
2201
2202 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2203 {
2204 struct perf_event_context *ctx = event->ctx;
2205 int ret = 0;
2206 u64 value;
2207
2208 if (!event->attr.sample_period)
2209 return -EINVAL;
2210
2211 if (copy_from_user(&value, arg, sizeof(value)))
2212 return -EFAULT;
2213
2214 if (!value)
2215 return -EINVAL;
2216
2217 raw_spin_lock_irq(&ctx->lock);
2218 if (event->attr.freq) {
2219 if (value > sysctl_perf_event_sample_rate) {
2220 ret = -EINVAL;
2221 goto unlock;
2222 }
2223
2224 event->attr.sample_freq = value;
2225 } else {
2226 event->attr.sample_period = value;
2227 event->hw.sample_period = value;
2228 }
2229 unlock:
2230 raw_spin_unlock_irq(&ctx->lock);
2231
2232 return ret;
2233 }
2234
2235 static const struct file_operations perf_fops;
2236
2237 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2238 {
2239 struct file *file;
2240
2241 file = fget_light(fd, fput_needed);
2242 if (!file)
2243 return ERR_PTR(-EBADF);
2244
2245 if (file->f_op != &perf_fops) {
2246 fput_light(file, *fput_needed);
2247 *fput_needed = 0;
2248 return ERR_PTR(-EBADF);
2249 }
2250
2251 return file->private_data;
2252 }
2253
2254 static int perf_event_set_output(struct perf_event *event,
2255 struct perf_event *output_event);
2256 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2257
2258 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2259 {
2260 struct perf_event *event = file->private_data;
2261 void (*func)(struct perf_event *);
2262 u32 flags = arg;
2263
2264 switch (cmd) {
2265 case PERF_EVENT_IOC_ENABLE:
2266 func = perf_event_enable;
2267 break;
2268 case PERF_EVENT_IOC_DISABLE:
2269 func = perf_event_disable;
2270 break;
2271 case PERF_EVENT_IOC_RESET:
2272 func = perf_event_reset;
2273 break;
2274
2275 case PERF_EVENT_IOC_REFRESH:
2276 return perf_event_refresh(event, arg);
2277
2278 case PERF_EVENT_IOC_PERIOD:
2279 return perf_event_period(event, (u64 __user *)arg);
2280
2281 case PERF_EVENT_IOC_SET_OUTPUT:
2282 {
2283 struct perf_event *output_event = NULL;
2284 int fput_needed = 0;
2285 int ret;
2286
2287 if (arg != -1) {
2288 output_event = perf_fget_light(arg, &fput_needed);
2289 if (IS_ERR(output_event))
2290 return PTR_ERR(output_event);
2291 }
2292
2293 ret = perf_event_set_output(event, output_event);
2294 if (output_event)
2295 fput_light(output_event->filp, fput_needed);
2296
2297 return ret;
2298 }
2299
2300 case PERF_EVENT_IOC_SET_FILTER:
2301 return perf_event_set_filter(event, (void __user *)arg);
2302
2303 default:
2304 return -ENOTTY;
2305 }
2306
2307 if (flags & PERF_IOC_FLAG_GROUP)
2308 perf_event_for_each(event, func);
2309 else
2310 perf_event_for_each_child(event, func);
2311
2312 return 0;
2313 }
2314
2315 int perf_event_task_enable(void)
2316 {
2317 struct perf_event *event;
2318
2319 mutex_lock(&current->perf_event_mutex);
2320 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2321 perf_event_for_each_child(event, perf_event_enable);
2322 mutex_unlock(&current->perf_event_mutex);
2323
2324 return 0;
2325 }
2326
2327 int perf_event_task_disable(void)
2328 {
2329 struct perf_event *event;
2330
2331 mutex_lock(&current->perf_event_mutex);
2332 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2333 perf_event_for_each_child(event, perf_event_disable);
2334 mutex_unlock(&current->perf_event_mutex);
2335
2336 return 0;
2337 }
2338
2339 #ifndef PERF_EVENT_INDEX_OFFSET
2340 # define PERF_EVENT_INDEX_OFFSET 0
2341 #endif
2342
2343 static int perf_event_index(struct perf_event *event)
2344 {
2345 if (event->state != PERF_EVENT_STATE_ACTIVE)
2346 return 0;
2347
2348 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2349 }
2350
2351 /*
2352 * Callers need to ensure there can be no nesting of this function, otherwise
2353 * the seqlock logic goes bad. We can not serialize this because the arch
2354 * code calls this from NMI context.
2355 */
2356 void perf_event_update_userpage(struct perf_event *event)
2357 {
2358 struct perf_event_mmap_page *userpg;
2359 struct perf_buffer *buffer;
2360
2361 rcu_read_lock();
2362 buffer = rcu_dereference(event->buffer);
2363 if (!buffer)
2364 goto unlock;
2365
2366 userpg = buffer->user_page;
2367
2368 /*
2369 * Disable preemption so as to not let the corresponding user-space
2370 * spin too long if we get preempted.
2371 */
2372 preempt_disable();
2373 ++userpg->lock;
2374 barrier();
2375 userpg->index = perf_event_index(event);
2376 userpg->offset = perf_event_count(event);
2377 if (event->state == PERF_EVENT_STATE_ACTIVE)
2378 userpg->offset -= local64_read(&event->hw.prev_count);
2379
2380 userpg->time_enabled = event->total_time_enabled +
2381 atomic64_read(&event->child_total_time_enabled);
2382
2383 userpg->time_running = event->total_time_running +
2384 atomic64_read(&event->child_total_time_running);
2385
2386 barrier();
2387 ++userpg->lock;
2388 preempt_enable();
2389 unlock:
2390 rcu_read_unlock();
2391 }
2392
2393 static unsigned long perf_data_size(struct perf_buffer *buffer);
2394
2395 static void
2396 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2397 {
2398 long max_size = perf_data_size(buffer);
2399
2400 if (watermark)
2401 buffer->watermark = min(max_size, watermark);
2402
2403 if (!buffer->watermark)
2404 buffer->watermark = max_size / 2;
2405
2406 if (flags & PERF_BUFFER_WRITABLE)
2407 buffer->writable = 1;
2408
2409 atomic_set(&buffer->refcount, 1);
2410 }
2411
2412 #ifndef CONFIG_PERF_USE_VMALLOC
2413
2414 /*
2415 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2416 */
2417
2418 static struct page *
2419 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2420 {
2421 if (pgoff > buffer->nr_pages)
2422 return NULL;
2423
2424 if (pgoff == 0)
2425 return virt_to_page(buffer->user_page);
2426
2427 return virt_to_page(buffer->data_pages[pgoff - 1]);
2428 }
2429
2430 static void *perf_mmap_alloc_page(int cpu)
2431 {
2432 struct page *page;
2433 int node;
2434
2435 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2436 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2437 if (!page)
2438 return NULL;
2439
2440 return page_address(page);
2441 }
2442
2443 static struct perf_buffer *
2444 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2445 {
2446 struct perf_buffer *buffer;
2447 unsigned long size;
2448 int i;
2449
2450 size = sizeof(struct perf_buffer);
2451 size += nr_pages * sizeof(void *);
2452
2453 buffer = kzalloc(size, GFP_KERNEL);
2454 if (!buffer)
2455 goto fail;
2456
2457 buffer->user_page = perf_mmap_alloc_page(cpu);
2458 if (!buffer->user_page)
2459 goto fail_user_page;
2460
2461 for (i = 0; i < nr_pages; i++) {
2462 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2463 if (!buffer->data_pages[i])
2464 goto fail_data_pages;
2465 }
2466
2467 buffer->nr_pages = nr_pages;
2468
2469 perf_buffer_init(buffer, watermark, flags);
2470
2471 return buffer;
2472
2473 fail_data_pages:
2474 for (i--; i >= 0; i--)
2475 free_page((unsigned long)buffer->data_pages[i]);
2476
2477 free_page((unsigned long)buffer->user_page);
2478
2479 fail_user_page:
2480 kfree(buffer);
2481
2482 fail:
2483 return NULL;
2484 }
2485
2486 static void perf_mmap_free_page(unsigned long addr)
2487 {
2488 struct page *page = virt_to_page((void *)addr);
2489
2490 page->mapping = NULL;
2491 __free_page(page);
2492 }
2493
2494 static void perf_buffer_free(struct perf_buffer *buffer)
2495 {
2496 int i;
2497
2498 perf_mmap_free_page((unsigned long)buffer->user_page);
2499 for (i = 0; i < buffer->nr_pages; i++)
2500 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2501 kfree(buffer);
2502 }
2503
2504 static inline int page_order(struct perf_buffer *buffer)
2505 {
2506 return 0;
2507 }
2508
2509 #else
2510
2511 /*
2512 * Back perf_mmap() with vmalloc memory.
2513 *
2514 * Required for architectures that have d-cache aliasing issues.
2515 */
2516
2517 static inline int page_order(struct perf_buffer *buffer)
2518 {
2519 return buffer->page_order;
2520 }
2521
2522 static struct page *
2523 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2524 {
2525 if (pgoff > (1UL << page_order(buffer)))
2526 return NULL;
2527
2528 return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2529 }
2530
2531 static void perf_mmap_unmark_page(void *addr)
2532 {
2533 struct page *page = vmalloc_to_page(addr);
2534
2535 page->mapping = NULL;
2536 }
2537
2538 static void perf_buffer_free_work(struct work_struct *work)
2539 {
2540 struct perf_buffer *buffer;
2541 void *base;
2542 int i, nr;
2543
2544 buffer = container_of(work, struct perf_buffer, work);
2545 nr = 1 << page_order(buffer);
2546
2547 base = buffer->user_page;
2548 for (i = 0; i < nr + 1; i++)
2549 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2550
2551 vfree(base);
2552 kfree(buffer);
2553 }
2554
2555 static void perf_buffer_free(struct perf_buffer *buffer)
2556 {
2557 schedule_work(&buffer->work);
2558 }
2559
2560 static struct perf_buffer *
2561 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2562 {
2563 struct perf_buffer *buffer;
2564 unsigned long size;
2565 void *all_buf;
2566
2567 size = sizeof(struct perf_buffer);
2568 size += sizeof(void *);
2569
2570 buffer = kzalloc(size, GFP_KERNEL);
2571 if (!buffer)
2572 goto fail;
2573
2574 INIT_WORK(&buffer->work, perf_buffer_free_work);
2575
2576 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2577 if (!all_buf)
2578 goto fail_all_buf;
2579
2580 buffer->user_page = all_buf;
2581 buffer->data_pages[0] = all_buf + PAGE_SIZE;
2582 buffer->page_order = ilog2(nr_pages);
2583 buffer->nr_pages = 1;
2584
2585 perf_buffer_init(buffer, watermark, flags);
2586
2587 return buffer;
2588
2589 fail_all_buf:
2590 kfree(buffer);
2591
2592 fail:
2593 return NULL;
2594 }
2595
2596 #endif
2597
2598 static unsigned long perf_data_size(struct perf_buffer *buffer)
2599 {
2600 return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2601 }
2602
2603 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2604 {
2605 struct perf_event *event = vma->vm_file->private_data;
2606 struct perf_buffer *buffer;
2607 int ret = VM_FAULT_SIGBUS;
2608
2609 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2610 if (vmf->pgoff == 0)
2611 ret = 0;
2612 return ret;
2613 }
2614
2615 rcu_read_lock();
2616 buffer = rcu_dereference(event->buffer);
2617 if (!buffer)
2618 goto unlock;
2619
2620 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2621 goto unlock;
2622
2623 vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2624 if (!vmf->page)
2625 goto unlock;
2626
2627 get_page(vmf->page);
2628 vmf->page->mapping = vma->vm_file->f_mapping;
2629 vmf->page->index = vmf->pgoff;
2630
2631 ret = 0;
2632 unlock:
2633 rcu_read_unlock();
2634
2635 return ret;
2636 }
2637
2638 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2639 {
2640 struct perf_buffer *buffer;
2641
2642 buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
2643 perf_buffer_free(buffer);
2644 }
2645
2646 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2647 {
2648 struct perf_buffer *buffer;
2649
2650 rcu_read_lock();
2651 buffer = rcu_dereference(event->buffer);
2652 if (buffer) {
2653 if (!atomic_inc_not_zero(&buffer->refcount))
2654 buffer = NULL;
2655 }
2656 rcu_read_unlock();
2657
2658 return buffer;
2659 }
2660
2661 static void perf_buffer_put(struct perf_buffer *buffer)
2662 {
2663 if (!atomic_dec_and_test(&buffer->refcount))
2664 return;
2665
2666 call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2667 }
2668
2669 static void perf_mmap_open(struct vm_area_struct *vma)
2670 {
2671 struct perf_event *event = vma->vm_file->private_data;
2672
2673 atomic_inc(&event->mmap_count);
2674 }
2675
2676 static void perf_mmap_close(struct vm_area_struct *vma)
2677 {
2678 struct perf_event *event = vma->vm_file->private_data;
2679
2680 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2681 unsigned long size = perf_data_size(event->buffer);
2682 struct user_struct *user = event->mmap_user;
2683 struct perf_buffer *buffer = event->buffer;
2684
2685 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2686 vma->vm_mm->locked_vm -= event->mmap_locked;
2687 rcu_assign_pointer(event->buffer, NULL);
2688 mutex_unlock(&event->mmap_mutex);
2689
2690 perf_buffer_put(buffer);
2691 free_uid(user);
2692 }
2693 }
2694
2695 static const struct vm_operations_struct perf_mmap_vmops = {
2696 .open = perf_mmap_open,
2697 .close = perf_mmap_close,
2698 .fault = perf_mmap_fault,
2699 .page_mkwrite = perf_mmap_fault,
2700 };
2701
2702 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2703 {
2704 struct perf_event *event = file->private_data;
2705 unsigned long user_locked, user_lock_limit;
2706 struct user_struct *user = current_user();
2707 unsigned long locked, lock_limit;
2708 struct perf_buffer *buffer;
2709 unsigned long vma_size;
2710 unsigned long nr_pages;
2711 long user_extra, extra;
2712 int ret = 0, flags = 0;
2713
2714 /*
2715 * Don't allow mmap() of inherited per-task counters. This would
2716 * create a performance issue due to all children writing to the
2717 * same buffer.
2718 */
2719 if (event->cpu == -1 && event->attr.inherit)
2720 return -EINVAL;
2721
2722 if (!(vma->vm_flags & VM_SHARED))
2723 return -EINVAL;
2724
2725 vma_size = vma->vm_end - vma->vm_start;
2726 nr_pages = (vma_size / PAGE_SIZE) - 1;
2727
2728 /*
2729 * If we have buffer pages ensure they're a power-of-two number, so we
2730 * can do bitmasks instead of modulo.
2731 */
2732 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2733 return -EINVAL;
2734
2735 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2736 return -EINVAL;
2737
2738 if (vma->vm_pgoff != 0)
2739 return -EINVAL;
2740
2741 WARN_ON_ONCE(event->ctx->parent_ctx);
2742 mutex_lock(&event->mmap_mutex);
2743 if (event->buffer) {
2744 if (event->buffer->nr_pages == nr_pages)
2745 atomic_inc(&event->buffer->refcount);
2746 else
2747 ret = -EINVAL;
2748 goto unlock;
2749 }
2750
2751 user_extra = nr_pages + 1;
2752 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2753
2754 /*
2755 * Increase the limit linearly with more CPUs:
2756 */
2757 user_lock_limit *= num_online_cpus();
2758
2759 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2760
2761 extra = 0;
2762 if (user_locked > user_lock_limit)
2763 extra = user_locked - user_lock_limit;
2764
2765 lock_limit = rlimit(RLIMIT_MEMLOCK);
2766 lock_limit >>= PAGE_SHIFT;
2767 locked = vma->vm_mm->locked_vm + extra;
2768
2769 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2770 !capable(CAP_IPC_LOCK)) {
2771 ret = -EPERM;
2772 goto unlock;
2773 }
2774
2775 WARN_ON(event->buffer);
2776
2777 if (vma->vm_flags & VM_WRITE)
2778 flags |= PERF_BUFFER_WRITABLE;
2779
2780 buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
2781 event->cpu, flags);
2782 if (!buffer) {
2783 ret = -ENOMEM;
2784 goto unlock;
2785 }
2786 rcu_assign_pointer(event->buffer, buffer);
2787
2788 atomic_long_add(user_extra, &user->locked_vm);
2789 event->mmap_locked = extra;
2790 event->mmap_user = get_current_user();
2791 vma->vm_mm->locked_vm += event->mmap_locked;
2792
2793 unlock:
2794 if (!ret)
2795 atomic_inc(&event->mmap_count);
2796 mutex_unlock(&event->mmap_mutex);
2797
2798 vma->vm_flags |= VM_RESERVED;
2799 vma->vm_ops = &perf_mmap_vmops;
2800
2801 return ret;
2802 }
2803
2804 static int perf_fasync(int fd, struct file *filp, int on)
2805 {
2806 struct inode *inode = filp->f_path.dentry->d_inode;
2807 struct perf_event *event = filp->private_data;
2808 int retval;
2809
2810 mutex_lock(&inode->i_mutex);
2811 retval = fasync_helper(fd, filp, on, &event->fasync);
2812 mutex_unlock(&inode->i_mutex);
2813
2814 if (retval < 0)
2815 return retval;
2816
2817 return 0;
2818 }
2819
2820 static const struct file_operations perf_fops = {
2821 .llseek = no_llseek,
2822 .release = perf_release,
2823 .read = perf_read,
2824 .poll = perf_poll,
2825 .unlocked_ioctl = perf_ioctl,
2826 .compat_ioctl = perf_ioctl,
2827 .mmap = perf_mmap,
2828 .fasync = perf_fasync,
2829 };
2830
2831 /*
2832 * Perf event wakeup
2833 *
2834 * If there's data, ensure we set the poll() state and publish everything
2835 * to user-space before waking everybody up.
2836 */
2837
2838 void perf_event_wakeup(struct perf_event *event)
2839 {
2840 wake_up_all(&event->waitq);
2841
2842 if (event->pending_kill) {
2843 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2844 event->pending_kill = 0;
2845 }
2846 }
2847
2848 /*
2849 * Pending wakeups
2850 *
2851 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2852 *
2853 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2854 * single linked list and use cmpxchg() to add entries lockless.
2855 */
2856
2857 static void perf_pending_event(struct perf_pending_entry *entry)
2858 {
2859 struct perf_event *event = container_of(entry,
2860 struct perf_event, pending);
2861
2862 if (event->pending_disable) {
2863 event->pending_disable = 0;
2864 __perf_event_disable(event);
2865 }
2866
2867 if (event->pending_wakeup) {
2868 event->pending_wakeup = 0;
2869 perf_event_wakeup(event);
2870 }
2871 }
2872
2873 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2874
2875 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2876 PENDING_TAIL,
2877 };
2878
2879 static void perf_pending_queue(struct perf_pending_entry *entry,
2880 void (*func)(struct perf_pending_entry *))
2881 {
2882 struct perf_pending_entry **head;
2883
2884 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2885 return;
2886
2887 entry->func = func;
2888
2889 head = &get_cpu_var(perf_pending_head);
2890
2891 do {
2892 entry->next = *head;
2893 } while (cmpxchg(head, entry->next, entry) != entry->next);
2894
2895 set_perf_event_pending();
2896
2897 put_cpu_var(perf_pending_head);
2898 }
2899
2900 static int __perf_pending_run(void)
2901 {
2902 struct perf_pending_entry *list;
2903 int nr = 0;
2904
2905 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2906 while (list != PENDING_TAIL) {
2907 void (*func)(struct perf_pending_entry *);
2908 struct perf_pending_entry *entry = list;
2909
2910 list = list->next;
2911
2912 func = entry->func;
2913 entry->next = NULL;
2914 /*
2915 * Ensure we observe the unqueue before we issue the wakeup,
2916 * so that we won't be waiting forever.
2917 * -- see perf_not_pending().
2918 */
2919 smp_wmb();
2920
2921 func(entry);
2922 nr++;
2923 }
2924
2925 return nr;
2926 }
2927
2928 static inline int perf_not_pending(struct perf_event *event)
2929 {
2930 /*
2931 * If we flush on whatever cpu we run, there is a chance we don't
2932 * need to wait.
2933 */
2934 get_cpu();
2935 __perf_pending_run();
2936 put_cpu();
2937
2938 /*
2939 * Ensure we see the proper queue state before going to sleep
2940 * so that we do not miss the wakeup. -- see perf_pending_handle()
2941 */
2942 smp_rmb();
2943 return event->pending.next == NULL;
2944 }
2945
2946 static void perf_pending_sync(struct perf_event *event)
2947 {
2948 wait_event(event->waitq, perf_not_pending(event));
2949 }
2950
2951 void perf_event_do_pending(void)
2952 {
2953 __perf_pending_run();
2954 }
2955
2956 /*
2957 * Callchain support -- arch specific
2958 */
2959
2960 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2961 {
2962 return NULL;
2963 }
2964
2965
2966 /*
2967 * We assume there is only KVM supporting the callbacks.
2968 * Later on, we might change it to a list if there is
2969 * another virtualization implementation supporting the callbacks.
2970 */
2971 struct perf_guest_info_callbacks *perf_guest_cbs;
2972
2973 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2974 {
2975 perf_guest_cbs = cbs;
2976 return 0;
2977 }
2978 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
2979
2980 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2981 {
2982 perf_guest_cbs = NULL;
2983 return 0;
2984 }
2985 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
2986
2987 /*
2988 * Output
2989 */
2990 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
2991 unsigned long offset, unsigned long head)
2992 {
2993 unsigned long mask;
2994
2995 if (!buffer->writable)
2996 return true;
2997
2998 mask = perf_data_size(buffer) - 1;
2999
3000 offset = (offset - tail) & mask;
3001 head = (head - tail) & mask;
3002
3003 if ((int)(head - offset) < 0)
3004 return false;
3005
3006 return true;
3007 }
3008
3009 static void perf_output_wakeup(struct perf_output_handle *handle)
3010 {
3011 atomic_set(&handle->buffer->poll, POLL_IN);
3012
3013 if (handle->nmi) {
3014 handle->event->pending_wakeup = 1;
3015 perf_pending_queue(&handle->event->pending,
3016 perf_pending_event);
3017 } else
3018 perf_event_wakeup(handle->event);
3019 }
3020
3021 /*
3022 * We need to ensure a later event_id doesn't publish a head when a former
3023 * event isn't done writing. However since we need to deal with NMIs we
3024 * cannot fully serialize things.
3025 *
3026 * We only publish the head (and generate a wakeup) when the outer-most
3027 * event completes.
3028 */
3029 static void perf_output_get_handle(struct perf_output_handle *handle)
3030 {
3031 struct perf_buffer *buffer = handle->buffer;
3032
3033 preempt_disable();
3034 local_inc(&buffer->nest);
3035 handle->wakeup = local_read(&buffer->wakeup);
3036 }
3037
3038 static void perf_output_put_handle(struct perf_output_handle *handle)
3039 {
3040 struct perf_buffer *buffer = handle->buffer;
3041 unsigned long head;
3042
3043 again:
3044 head = local_read(&buffer->head);
3045
3046 /*
3047 * IRQ/NMI can happen here, which means we can miss a head update.
3048 */
3049
3050 if (!local_dec_and_test(&buffer->nest))
3051 goto out;
3052
3053 /*
3054 * Publish the known good head. Rely on the full barrier implied
3055 * by atomic_dec_and_test() order the buffer->head read and this
3056 * write.
3057 */
3058 buffer->user_page->data_head = head;
3059
3060 /*
3061 * Now check if we missed an update, rely on the (compiler)
3062 * barrier in atomic_dec_and_test() to re-read buffer->head.
3063 */
3064 if (unlikely(head != local_read(&buffer->head))) {
3065 local_inc(&buffer->nest);
3066 goto again;
3067 }
3068
3069 if (handle->wakeup != local_read(&buffer->wakeup))
3070 perf_output_wakeup(handle);
3071
3072 out:
3073 preempt_enable();
3074 }
3075
3076 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3077 const void *buf, unsigned int len)
3078 {
3079 do {
3080 unsigned long size = min_t(unsigned long, handle->size, len);
3081
3082 memcpy(handle->addr, buf, size);
3083
3084 len -= size;
3085 handle->addr += size;
3086 buf += size;
3087 handle->size -= size;
3088 if (!handle->size) {
3089 struct perf_buffer *buffer = handle->buffer;
3090
3091 handle->page++;
3092 handle->page &= buffer->nr_pages - 1;
3093 handle->addr = buffer->data_pages[handle->page];
3094 handle->size = PAGE_SIZE << page_order(buffer);
3095 }
3096 } while (len);
3097 }
3098
3099 int perf_output_begin(struct perf_output_handle *handle,
3100 struct perf_event *event, unsigned int size,
3101 int nmi, int sample)
3102 {
3103 struct perf_buffer *buffer;
3104 unsigned long tail, offset, head;
3105 int have_lost;
3106 struct {
3107 struct perf_event_header header;
3108 u64 id;
3109 u64 lost;
3110 } lost_event;
3111
3112 rcu_read_lock();
3113 /*
3114 * For inherited events we send all the output towards the parent.
3115 */
3116 if (event->parent)
3117 event = event->parent;
3118
3119 buffer = rcu_dereference(event->buffer);
3120 if (!buffer)
3121 goto out;
3122
3123 handle->buffer = buffer;
3124 handle->event = event;
3125 handle->nmi = nmi;
3126 handle->sample = sample;
3127
3128 if (!buffer->nr_pages)
3129 goto out;
3130
3131 have_lost = local_read(&buffer->lost);
3132 if (have_lost)
3133 size += sizeof(lost_event);
3134
3135 perf_output_get_handle(handle);
3136
3137 do {
3138 /*
3139 * Userspace could choose to issue a mb() before updating the
3140 * tail pointer. So that all reads will be completed before the
3141 * write is issued.
3142 */
3143 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3144 smp_rmb();
3145 offset = head = local_read(&buffer->head);
3146 head += size;
3147 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3148 goto fail;
3149 } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3150
3151 if (head - local_read(&buffer->wakeup) > buffer->watermark)
3152 local_add(buffer->watermark, &buffer->wakeup);
3153
3154 handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3155 handle->page &= buffer->nr_pages - 1;
3156 handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3157 handle->addr = buffer->data_pages[handle->page];
3158 handle->addr += handle->size;
3159 handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3160
3161 if (have_lost) {
3162 lost_event.header.type = PERF_RECORD_LOST;
3163 lost_event.header.misc = 0;
3164 lost_event.header.size = sizeof(lost_event);
3165 lost_event.id = event->id;
3166 lost_event.lost = local_xchg(&buffer->lost, 0);
3167
3168 perf_output_put(handle, lost_event);
3169 }
3170
3171 return 0;
3172
3173 fail:
3174 local_inc(&buffer->lost);
3175 perf_output_put_handle(handle);
3176 out:
3177 rcu_read_unlock();
3178
3179 return -ENOSPC;
3180 }
3181
3182 void perf_output_end(struct perf_output_handle *handle)
3183 {
3184 struct perf_event *event = handle->event;
3185 struct perf_buffer *buffer = handle->buffer;
3186
3187 int wakeup_events = event->attr.wakeup_events;
3188
3189 if (handle->sample && wakeup_events) {
3190 int events = local_inc_return(&buffer->events);
3191 if (events >= wakeup_events) {
3192 local_sub(wakeup_events, &buffer->events);
3193 local_inc(&buffer->wakeup);
3194 }
3195 }
3196
3197 perf_output_put_handle(handle);
3198 rcu_read_unlock();
3199 }
3200
3201 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3202 {
3203 /*
3204 * only top level events have the pid namespace they were created in
3205 */
3206 if (event->parent)
3207 event = event->parent;
3208
3209 return task_tgid_nr_ns(p, event->ns);
3210 }
3211
3212 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3213 {
3214 /*
3215 * only top level events have the pid namespace they were created in
3216 */
3217 if (event->parent)
3218 event = event->parent;
3219
3220 return task_pid_nr_ns(p, event->ns);
3221 }
3222
3223 static void perf_output_read_one(struct perf_output_handle *handle,
3224 struct perf_event *event)
3225 {
3226 u64 read_format = event->attr.read_format;
3227 u64 values[4];
3228 int n = 0;
3229
3230 values[n++] = perf_event_count(event);
3231 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3232 values[n++] = event->total_time_enabled +
3233 atomic64_read(&event->child_total_time_enabled);
3234 }
3235 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3236 values[n++] = event->total_time_running +
3237 atomic64_read(&event->child_total_time_running);
3238 }
3239 if (read_format & PERF_FORMAT_ID)
3240 values[n++] = primary_event_id(event);
3241
3242 perf_output_copy(handle, values, n * sizeof(u64));
3243 }
3244
3245 /*
3246 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3247 */
3248 static void perf_output_read_group(struct perf_output_handle *handle,
3249 struct perf_event *event)
3250 {
3251 struct perf_event *leader = event->group_leader, *sub;
3252 u64 read_format = event->attr.read_format;
3253 u64 values[5];
3254 int n = 0;
3255
3256 values[n++] = 1 + leader->nr_siblings;
3257
3258 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3259 values[n++] = leader->total_time_enabled;
3260
3261 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3262 values[n++] = leader->total_time_running;
3263
3264 if (leader != event)
3265 leader->pmu->read(leader);
3266
3267 values[n++] = perf_event_count(leader);
3268 if (read_format & PERF_FORMAT_ID)
3269 values[n++] = primary_event_id(leader);
3270
3271 perf_output_copy(handle, values, n * sizeof(u64));
3272
3273 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3274 n = 0;
3275
3276 if (sub != event)
3277 sub->pmu->read(sub);
3278
3279 values[n++] = perf_event_count(sub);
3280 if (read_format & PERF_FORMAT_ID)
3281 values[n++] = primary_event_id(sub);
3282
3283 perf_output_copy(handle, values, n * sizeof(u64));
3284 }
3285 }
3286
3287 static void perf_output_read(struct perf_output_handle *handle,
3288 struct perf_event *event)
3289 {
3290 if (event->attr.read_format & PERF_FORMAT_GROUP)
3291 perf_output_read_group(handle, event);
3292 else
3293 perf_output_read_one(handle, event);
3294 }
3295
3296 void perf_output_sample(struct perf_output_handle *handle,
3297 struct perf_event_header *header,
3298 struct perf_sample_data *data,
3299 struct perf_event *event)
3300 {
3301 u64 sample_type = data->type;
3302
3303 perf_output_put(handle, *header);
3304
3305 if (sample_type & PERF_SAMPLE_IP)
3306 perf_output_put(handle, data->ip);
3307
3308 if (sample_type & PERF_SAMPLE_TID)
3309 perf_output_put(handle, data->tid_entry);
3310
3311 if (sample_type & PERF_SAMPLE_TIME)
3312 perf_output_put(handle, data->time);
3313
3314 if (sample_type & PERF_SAMPLE_ADDR)
3315 perf_output_put(handle, data->addr);
3316
3317 if (sample_type & PERF_SAMPLE_ID)
3318 perf_output_put(handle, data->id);
3319
3320 if (sample_type & PERF_SAMPLE_STREAM_ID)
3321 perf_output_put(handle, data->stream_id);
3322
3323 if (sample_type & PERF_SAMPLE_CPU)
3324 perf_output_put(handle, data->cpu_entry);
3325
3326 if (sample_type & PERF_SAMPLE_PERIOD)
3327 perf_output_put(handle, data->period);
3328
3329 if (sample_type & PERF_SAMPLE_READ)
3330 perf_output_read(handle, event);
3331
3332 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3333 if (data->callchain) {
3334 int size = 1;
3335
3336 if (data->callchain)
3337 size += data->callchain->nr;
3338
3339 size *= sizeof(u64);
3340
3341 perf_output_copy(handle, data->callchain, size);
3342 } else {
3343 u64 nr = 0;
3344 perf_output_put(handle, nr);
3345 }
3346 }
3347
3348 if (sample_type & PERF_SAMPLE_RAW) {
3349 if (data->raw) {
3350 perf_output_put(handle, data->raw->size);
3351 perf_output_copy(handle, data->raw->data,
3352 data->raw->size);
3353 } else {
3354 struct {
3355 u32 size;
3356 u32 data;
3357 } raw = {
3358 .size = sizeof(u32),
3359 .data = 0,
3360 };
3361 perf_output_put(handle, raw);
3362 }
3363 }
3364 }
3365
3366 void perf_prepare_sample(struct perf_event_header *header,
3367 struct perf_sample_data *data,
3368 struct perf_event *event,
3369 struct pt_regs *regs)
3370 {
3371 u64 sample_type = event->attr.sample_type;
3372
3373 data->type = sample_type;
3374
3375 header->type = PERF_RECORD_SAMPLE;
3376 header->size = sizeof(*header);
3377
3378 header->misc = 0;
3379 header->misc |= perf_misc_flags(regs);
3380
3381 if (sample_type & PERF_SAMPLE_IP) {
3382 data->ip = perf_instruction_pointer(regs);
3383
3384 header->size += sizeof(data->ip);
3385 }
3386
3387 if (sample_type & PERF_SAMPLE_TID) {
3388 /* namespace issues */
3389 data->tid_entry.pid = perf_event_pid(event, current);
3390 data->tid_entry.tid = perf_event_tid(event, current);
3391
3392 header->size += sizeof(data->tid_entry);
3393 }
3394
3395 if (sample_type & PERF_SAMPLE_TIME) {
3396 data->time = perf_clock();
3397
3398 header->size += sizeof(data->time);
3399 }
3400
3401 if (sample_type & PERF_SAMPLE_ADDR)
3402 header->size += sizeof(data->addr);
3403
3404 if (sample_type & PERF_SAMPLE_ID) {
3405 data->id = primary_event_id(event);
3406
3407 header->size += sizeof(data->id);
3408 }
3409
3410 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3411 data->stream_id = event->id;
3412
3413 header->size += sizeof(data->stream_id);
3414 }
3415
3416 if (sample_type & PERF_SAMPLE_CPU) {
3417 data->cpu_entry.cpu = raw_smp_processor_id();
3418 data->cpu_entry.reserved = 0;
3419
3420 header->size += sizeof(data->cpu_entry);
3421 }
3422
3423 if (sample_type & PERF_SAMPLE_PERIOD)
3424 header->size += sizeof(data->period);
3425
3426 if (sample_type & PERF_SAMPLE_READ)
3427 header->size += perf_event_read_size(event);
3428
3429 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3430 int size = 1;
3431
3432 data->callchain = perf_callchain(regs);
3433
3434 if (data->callchain)
3435 size += data->callchain->nr;
3436
3437 header->size += size * sizeof(u64);
3438 }
3439
3440 if (sample_type & PERF_SAMPLE_RAW) {
3441 int size = sizeof(u32);
3442
3443 if (data->raw)
3444 size += data->raw->size;
3445 else
3446 size += sizeof(u32);
3447
3448 WARN_ON_ONCE(size & (sizeof(u64)-1));
3449 header->size += size;
3450 }
3451 }
3452
3453 static void perf_event_output(struct perf_event *event, int nmi,
3454 struct perf_sample_data *data,
3455 struct pt_regs *regs)
3456 {
3457 struct perf_output_handle handle;
3458 struct perf_event_header header;
3459
3460 perf_prepare_sample(&header, data, event, regs);
3461
3462 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3463 return;
3464
3465 perf_output_sample(&handle, &header, data, event);
3466
3467 perf_output_end(&handle);
3468 }
3469
3470 /*
3471 * read event_id
3472 */
3473
3474 struct perf_read_event {
3475 struct perf_event_header header;
3476
3477 u32 pid;
3478 u32 tid;
3479 };
3480
3481 static void
3482 perf_event_read_event(struct perf_event *event,
3483 struct task_struct *task)
3484 {
3485 struct perf_output_handle handle;
3486 struct perf_read_event read_event = {
3487 .header = {
3488 .type = PERF_RECORD_READ,
3489 .misc = 0,
3490 .size = sizeof(read_event) + perf_event_read_size(event),
3491 },
3492 .pid = perf_event_pid(event, task),
3493 .tid = perf_event_tid(event, task),
3494 };
3495 int ret;
3496
3497 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3498 if (ret)
3499 return;
3500
3501 perf_output_put(&handle, read_event);
3502 perf_output_read(&handle, event);
3503
3504 perf_output_end(&handle);
3505 }
3506
3507 /*
3508 * task tracking -- fork/exit
3509 *
3510 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3511 */
3512
3513 struct perf_task_event {
3514 struct task_struct *task;
3515 struct perf_event_context *task_ctx;
3516
3517 struct {
3518 struct perf_event_header header;
3519
3520 u32 pid;
3521 u32 ppid;
3522 u32 tid;
3523 u32 ptid;
3524 u64 time;
3525 } event_id;
3526 };
3527
3528 static void perf_event_task_output(struct perf_event *event,
3529 struct perf_task_event *task_event)
3530 {
3531 struct perf_output_handle handle;
3532 struct task_struct *task = task_event->task;
3533 int size, ret;
3534
3535 size = task_event->event_id.header.size;
3536 ret = perf_output_begin(&handle, event, size, 0, 0);
3537
3538 if (ret)
3539 return;
3540
3541 task_event->event_id.pid = perf_event_pid(event, task);
3542 task_event->event_id.ppid = perf_event_pid(event, current);
3543
3544 task_event->event_id.tid = perf_event_tid(event, task);
3545 task_event->event_id.ptid = perf_event_tid(event, current);
3546
3547 perf_output_put(&handle, task_event->event_id);
3548
3549 perf_output_end(&handle);
3550 }
3551
3552 static int perf_event_task_match(struct perf_event *event)
3553 {
3554 if (event->state < PERF_EVENT_STATE_INACTIVE)
3555 return 0;
3556
3557 if (event->cpu != -1 && event->cpu != smp_processor_id())
3558 return 0;
3559
3560 if (event->attr.comm || event->attr.mmap ||
3561 event->attr.mmap_data || event->attr.task)
3562 return 1;
3563
3564 return 0;
3565 }
3566
3567 static void perf_event_task_ctx(struct perf_event_context *ctx,
3568 struct perf_task_event *task_event)
3569 {
3570 struct perf_event *event;
3571
3572 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3573 if (perf_event_task_match(event))
3574 perf_event_task_output(event, task_event);
3575 }
3576 }
3577
3578 static void perf_event_task_event(struct perf_task_event *task_event)
3579 {
3580 struct perf_cpu_context *cpuctx;
3581 struct perf_event_context *ctx = task_event->task_ctx;
3582
3583 rcu_read_lock();
3584 cpuctx = &get_cpu_var(perf_cpu_context);
3585 perf_event_task_ctx(&cpuctx->ctx, task_event);
3586 if (!ctx)
3587 ctx = rcu_dereference(current->perf_event_ctxp);
3588 if (ctx)
3589 perf_event_task_ctx(ctx, task_event);
3590 put_cpu_var(perf_cpu_context);
3591 rcu_read_unlock();
3592 }
3593
3594 static void perf_event_task(struct task_struct *task,
3595 struct perf_event_context *task_ctx,
3596 int new)
3597 {
3598 struct perf_task_event task_event;
3599
3600 if (!atomic_read(&nr_comm_events) &&
3601 !atomic_read(&nr_mmap_events) &&
3602 !atomic_read(&nr_task_events))
3603 return;
3604
3605 task_event = (struct perf_task_event){
3606 .task = task,
3607 .task_ctx = task_ctx,
3608 .event_id = {
3609 .header = {
3610 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3611 .misc = 0,
3612 .size = sizeof(task_event.event_id),
3613 },
3614 /* .pid */
3615 /* .ppid */
3616 /* .tid */
3617 /* .ptid */
3618 .time = perf_clock(),
3619 },
3620 };
3621
3622 perf_event_task_event(&task_event);
3623 }
3624
3625 void perf_event_fork(struct task_struct *task)
3626 {
3627 perf_event_task(task, NULL, 1);
3628 }
3629
3630 /*
3631 * comm tracking
3632 */
3633
3634 struct perf_comm_event {
3635 struct task_struct *task;
3636 char *comm;
3637 int comm_size;
3638
3639 struct {
3640 struct perf_event_header header;
3641
3642 u32 pid;
3643 u32 tid;
3644 } event_id;
3645 };
3646
3647 static void perf_event_comm_output(struct perf_event *event,
3648 struct perf_comm_event *comm_event)
3649 {
3650 struct perf_output_handle handle;
3651 int size = comm_event->event_id.header.size;
3652 int ret = perf_output_begin(&handle, event, size, 0, 0);
3653
3654 if (ret)
3655 return;
3656
3657 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3658 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3659
3660 perf_output_put(&handle, comm_event->event_id);
3661 perf_output_copy(&handle, comm_event->comm,
3662 comm_event->comm_size);
3663 perf_output_end(&handle);
3664 }
3665
3666 static int perf_event_comm_match(struct perf_event *event)
3667 {
3668 if (event->state < PERF_EVENT_STATE_INACTIVE)
3669 return 0;
3670
3671 if (event->cpu != -1 && event->cpu != smp_processor_id())
3672 return 0;
3673
3674 if (event->attr.comm)
3675 return 1;
3676
3677 return 0;
3678 }
3679
3680 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3681 struct perf_comm_event *comm_event)
3682 {
3683 struct perf_event *event;
3684
3685 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3686 if (perf_event_comm_match(event))
3687 perf_event_comm_output(event, comm_event);
3688 }
3689 }
3690
3691 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3692 {
3693 struct perf_cpu_context *cpuctx;
3694 struct perf_event_context *ctx;
3695 unsigned int size;
3696 char comm[TASK_COMM_LEN];
3697
3698 memset(comm, 0, sizeof(comm));
3699 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3700 size = ALIGN(strlen(comm)+1, sizeof(u64));
3701
3702 comm_event->comm = comm;
3703 comm_event->comm_size = size;
3704
3705 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3706
3707 rcu_read_lock();
3708 cpuctx = &get_cpu_var(perf_cpu_context);
3709 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3710 ctx = rcu_dereference(current->perf_event_ctxp);
3711 if (ctx)
3712 perf_event_comm_ctx(ctx, comm_event);
3713 put_cpu_var(perf_cpu_context);
3714 rcu_read_unlock();
3715 }
3716
3717 void perf_event_comm(struct task_struct *task)
3718 {
3719 struct perf_comm_event comm_event;
3720
3721 if (task->perf_event_ctxp)
3722 perf_event_enable_on_exec(task);
3723
3724 if (!atomic_read(&nr_comm_events))
3725 return;
3726
3727 comm_event = (struct perf_comm_event){
3728 .task = task,
3729 /* .comm */
3730 /* .comm_size */
3731 .event_id = {
3732 .header = {
3733 .type = PERF_RECORD_COMM,
3734 .misc = 0,
3735 /* .size */
3736 },
3737 /* .pid */
3738 /* .tid */
3739 },
3740 };
3741
3742 perf_event_comm_event(&comm_event);
3743 }
3744
3745 /*
3746 * mmap tracking
3747 */
3748
3749 struct perf_mmap_event {
3750 struct vm_area_struct *vma;
3751
3752 const char *file_name;
3753 int file_size;
3754
3755 struct {
3756 struct perf_event_header header;
3757
3758 u32 pid;
3759 u32 tid;
3760 u64 start;
3761 u64 len;
3762 u64 pgoff;
3763 } event_id;
3764 };
3765
3766 static void perf_event_mmap_output(struct perf_event *event,
3767 struct perf_mmap_event *mmap_event)
3768 {
3769 struct perf_output_handle handle;
3770 int size = mmap_event->event_id.header.size;
3771 int ret = perf_output_begin(&handle, event, size, 0, 0);
3772
3773 if (ret)
3774 return;
3775
3776 mmap_event->event_id.pid = perf_event_pid(event, current);
3777 mmap_event->event_id.tid = perf_event_tid(event, current);
3778
3779 perf_output_put(&handle, mmap_event->event_id);
3780 perf_output_copy(&handle, mmap_event->file_name,
3781 mmap_event->file_size);
3782 perf_output_end(&handle);
3783 }
3784
3785 static int perf_event_mmap_match(struct perf_event *event,
3786 struct perf_mmap_event *mmap_event,
3787 int executable)
3788 {
3789 if (event->state < PERF_EVENT_STATE_INACTIVE)
3790 return 0;
3791
3792 if (event->cpu != -1 && event->cpu != smp_processor_id())
3793 return 0;
3794
3795 if ((!executable && event->attr.mmap_data) ||
3796 (executable && event->attr.mmap))
3797 return 1;
3798
3799 return 0;
3800 }
3801
3802 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3803 struct perf_mmap_event *mmap_event,
3804 int executable)
3805 {
3806 struct perf_event *event;
3807
3808 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3809 if (perf_event_mmap_match(event, mmap_event, executable))
3810 perf_event_mmap_output(event, mmap_event);
3811 }
3812 }
3813
3814 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3815 {
3816 struct perf_cpu_context *cpuctx;
3817 struct perf_event_context *ctx;
3818 struct vm_area_struct *vma = mmap_event->vma;
3819 struct file *file = vma->vm_file;
3820 unsigned int size;
3821 char tmp[16];
3822 char *buf = NULL;
3823 const char *name;
3824
3825 memset(tmp, 0, sizeof(tmp));
3826
3827 if (file) {
3828 /*
3829 * d_path works from the end of the buffer backwards, so we
3830 * need to add enough zero bytes after the string to handle
3831 * the 64bit alignment we do later.
3832 */
3833 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3834 if (!buf) {
3835 name = strncpy(tmp, "//enomem", sizeof(tmp));
3836 goto got_name;
3837 }
3838 name = d_path(&file->f_path, buf, PATH_MAX);
3839 if (IS_ERR(name)) {
3840 name = strncpy(tmp, "//toolong", sizeof(tmp));
3841 goto got_name;
3842 }
3843 } else {
3844 if (arch_vma_name(mmap_event->vma)) {
3845 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3846 sizeof(tmp));
3847 goto got_name;
3848 }
3849
3850 if (!vma->vm_mm) {
3851 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3852 goto got_name;
3853 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
3854 vma->vm_end >= vma->vm_mm->brk) {
3855 name = strncpy(tmp, "[heap]", sizeof(tmp));
3856 goto got_name;
3857 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
3858 vma->vm_end >= vma->vm_mm->start_stack) {
3859 name = strncpy(tmp, "[stack]", sizeof(tmp));
3860 goto got_name;
3861 }
3862
3863 name = strncpy(tmp, "//anon", sizeof(tmp));
3864 goto got_name;
3865 }
3866
3867 got_name:
3868 size = ALIGN(strlen(name)+1, sizeof(u64));
3869
3870 mmap_event->file_name = name;
3871 mmap_event->file_size = size;
3872
3873 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3874
3875 rcu_read_lock();
3876 cpuctx = &get_cpu_var(perf_cpu_context);
3877 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, vma->vm_flags & VM_EXEC);
3878 ctx = rcu_dereference(current->perf_event_ctxp);
3879 if (ctx)
3880 perf_event_mmap_ctx(ctx, mmap_event, vma->vm_flags & VM_EXEC);
3881 put_cpu_var(perf_cpu_context);
3882 rcu_read_unlock();
3883
3884 kfree(buf);
3885 }
3886
3887 void perf_event_mmap(struct vm_area_struct *vma)
3888 {
3889 struct perf_mmap_event mmap_event;
3890
3891 if (!atomic_read(&nr_mmap_events))
3892 return;
3893
3894 mmap_event = (struct perf_mmap_event){
3895 .vma = vma,
3896 /* .file_name */
3897 /* .file_size */
3898 .event_id = {
3899 .header = {
3900 .type = PERF_RECORD_MMAP,
3901 .misc = PERF_RECORD_MISC_USER,
3902 /* .size */
3903 },
3904 /* .pid */
3905 /* .tid */
3906 .start = vma->vm_start,
3907 .len = vma->vm_end - vma->vm_start,
3908 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
3909 },
3910 };
3911
3912 perf_event_mmap_event(&mmap_event);
3913 }
3914
3915 /*
3916 * IRQ throttle logging
3917 */
3918
3919 static void perf_log_throttle(struct perf_event *event, int enable)
3920 {
3921 struct perf_output_handle handle;
3922 int ret;
3923
3924 struct {
3925 struct perf_event_header header;
3926 u64 time;
3927 u64 id;
3928 u64 stream_id;
3929 } throttle_event = {
3930 .header = {
3931 .type = PERF_RECORD_THROTTLE,
3932 .misc = 0,
3933 .size = sizeof(throttle_event),
3934 },
3935 .time = perf_clock(),
3936 .id = primary_event_id(event),
3937 .stream_id = event->id,
3938 };
3939
3940 if (enable)
3941 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3942
3943 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3944 if (ret)
3945 return;
3946
3947 perf_output_put(&handle, throttle_event);
3948 perf_output_end(&handle);
3949 }
3950
3951 /*
3952 * Generic event overflow handling, sampling.
3953 */
3954
3955 static int __perf_event_overflow(struct perf_event *event, int nmi,
3956 int throttle, struct perf_sample_data *data,
3957 struct pt_regs *regs)
3958 {
3959 int events = atomic_read(&event->event_limit);
3960 struct hw_perf_event *hwc = &event->hw;
3961 int ret = 0;
3962
3963 throttle = (throttle && event->pmu->unthrottle != NULL);
3964
3965 if (!throttle) {
3966 hwc->interrupts++;
3967 } else {
3968 if (hwc->interrupts != MAX_INTERRUPTS) {
3969 hwc->interrupts++;
3970 if (HZ * hwc->interrupts >
3971 (u64)sysctl_perf_event_sample_rate) {
3972 hwc->interrupts = MAX_INTERRUPTS;
3973 perf_log_throttle(event, 0);
3974 ret = 1;
3975 }
3976 } else {
3977 /*
3978 * Keep re-disabling events even though on the previous
3979 * pass we disabled it - just in case we raced with a
3980 * sched-in and the event got enabled again:
3981 */
3982 ret = 1;
3983 }
3984 }
3985
3986 if (event->attr.freq) {
3987 u64 now = perf_clock();
3988 s64 delta = now - hwc->freq_time_stamp;
3989
3990 hwc->freq_time_stamp = now;
3991
3992 if (delta > 0 && delta < 2*TICK_NSEC)
3993 perf_adjust_period(event, delta, hwc->last_period);
3994 }
3995
3996 /*
3997 * XXX event_limit might not quite work as expected on inherited
3998 * events
3999 */
4000
4001 event->pending_kill = POLL_IN;
4002 if (events && atomic_dec_and_test(&event->event_limit)) {
4003 ret = 1;
4004 event->pending_kill = POLL_HUP;
4005 if (nmi) {
4006 event->pending_disable = 1;
4007 perf_pending_queue(&event->pending,
4008 perf_pending_event);
4009 } else
4010 perf_event_disable(event);
4011 }
4012
4013 if (event->overflow_handler)
4014 event->overflow_handler(event, nmi, data, regs);
4015 else
4016 perf_event_output(event, nmi, data, regs);
4017
4018 return ret;
4019 }
4020
4021 int perf_event_overflow(struct perf_event *event, int nmi,
4022 struct perf_sample_data *data,
4023 struct pt_regs *regs)
4024 {
4025 return __perf_event_overflow(event, nmi, 1, data, regs);
4026 }
4027
4028 /*
4029 * Generic software event infrastructure
4030 */
4031
4032 /*
4033 * We directly increment event->count and keep a second value in
4034 * event->hw.period_left to count intervals. This period event
4035 * is kept in the range [-sample_period, 0] so that we can use the
4036 * sign as trigger.
4037 */
4038
4039 static u64 perf_swevent_set_period(struct perf_event *event)
4040 {
4041 struct hw_perf_event *hwc = &event->hw;
4042 u64 period = hwc->last_period;
4043 u64 nr, offset;
4044 s64 old, val;
4045
4046 hwc->last_period = hwc->sample_period;
4047
4048 again:
4049 old = val = local64_read(&hwc->period_left);
4050 if (val < 0)
4051 return 0;
4052
4053 nr = div64_u64(period + val, period);
4054 offset = nr * period;
4055 val -= offset;
4056 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4057 goto again;
4058
4059 return nr;
4060 }
4061
4062 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4063 int nmi, struct perf_sample_data *data,
4064 struct pt_regs *regs)
4065 {
4066 struct hw_perf_event *hwc = &event->hw;
4067 int throttle = 0;
4068
4069 data->period = event->hw.last_period;
4070 if (!overflow)
4071 overflow = perf_swevent_set_period(event);
4072
4073 if (hwc->interrupts == MAX_INTERRUPTS)
4074 return;
4075
4076 for (; overflow; overflow--) {
4077 if (__perf_event_overflow(event, nmi, throttle,
4078 data, regs)) {
4079 /*
4080 * We inhibit the overflow from happening when
4081 * hwc->interrupts == MAX_INTERRUPTS.
4082 */
4083 break;
4084 }
4085 throttle = 1;
4086 }
4087 }
4088
4089 static void perf_swevent_add(struct perf_event *event, u64 nr,
4090 int nmi, struct perf_sample_data *data,
4091 struct pt_regs *regs)
4092 {
4093 struct hw_perf_event *hwc = &event->hw;
4094
4095 local64_add(nr, &event->count);
4096
4097 if (!regs)
4098 return;
4099
4100 if (!hwc->sample_period)
4101 return;
4102
4103 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4104 return perf_swevent_overflow(event, 1, nmi, data, regs);
4105
4106 if (local64_add_negative(nr, &hwc->period_left))
4107 return;
4108
4109 perf_swevent_overflow(event, 0, nmi, data, regs);
4110 }
4111
4112 static int perf_exclude_event(struct perf_event *event,
4113 struct pt_regs *regs)
4114 {
4115 if (regs) {
4116 if (event->attr.exclude_user && user_mode(regs))
4117 return 1;
4118
4119 if (event->attr.exclude_kernel && !user_mode(regs))
4120 return 1;
4121 }
4122
4123 return 0;
4124 }
4125
4126 static int perf_swevent_match(struct perf_event *event,
4127 enum perf_type_id type,
4128 u32 event_id,
4129 struct perf_sample_data *data,
4130 struct pt_regs *regs)
4131 {
4132 if (event->attr.type != type)
4133 return 0;
4134
4135 if (event->attr.config != event_id)
4136 return 0;
4137
4138 if (perf_exclude_event(event, regs))
4139 return 0;
4140
4141 return 1;
4142 }
4143
4144 static inline u64 swevent_hash(u64 type, u32 event_id)
4145 {
4146 u64 val = event_id | (type << 32);
4147
4148 return hash_64(val, SWEVENT_HLIST_BITS);
4149 }
4150
4151 static inline struct hlist_head *
4152 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4153 {
4154 u64 hash = swevent_hash(type, event_id);
4155
4156 return &hlist->heads[hash];
4157 }
4158
4159 /* For the read side: events when they trigger */
4160 static inline struct hlist_head *
4161 find_swevent_head_rcu(struct perf_cpu_context *ctx, u64 type, u32 event_id)
4162 {
4163 struct swevent_hlist *hlist;
4164
4165 hlist = rcu_dereference(ctx->swevent_hlist);
4166 if (!hlist)
4167 return NULL;
4168
4169 return __find_swevent_head(hlist, type, event_id);
4170 }
4171
4172 /* For the event head insertion and removal in the hlist */
4173 static inline struct hlist_head *
4174 find_swevent_head(struct perf_cpu_context *ctx, struct perf_event *event)
4175 {
4176 struct swevent_hlist *hlist;
4177 u32 event_id = event->attr.config;
4178 u64 type = event->attr.type;
4179
4180 /*
4181 * Event scheduling is always serialized against hlist allocation
4182 * and release. Which makes the protected version suitable here.
4183 * The context lock guarantees that.
4184 */
4185 hlist = rcu_dereference_protected(ctx->swevent_hlist,
4186 lockdep_is_held(&event->ctx->lock));
4187 if (!hlist)
4188 return NULL;
4189
4190 return __find_swevent_head(hlist, type, event_id);
4191 }
4192
4193 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4194 u64 nr, int nmi,
4195 struct perf_sample_data *data,
4196 struct pt_regs *regs)
4197 {
4198 struct perf_cpu_context *cpuctx;
4199 struct perf_event *event;
4200 struct hlist_node *node;
4201 struct hlist_head *head;
4202
4203 cpuctx = &__get_cpu_var(perf_cpu_context);
4204
4205 rcu_read_lock();
4206
4207 head = find_swevent_head_rcu(cpuctx, type, event_id);
4208
4209 if (!head)
4210 goto end;
4211
4212 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4213 if (perf_swevent_match(event, type, event_id, data, regs))
4214 perf_swevent_add(event, nr, nmi, data, regs);
4215 }
4216 end:
4217 rcu_read_unlock();
4218 }
4219
4220 int perf_swevent_get_recursion_context(void)
4221 {
4222 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4223 int rctx;
4224
4225 if (in_nmi())
4226 rctx = 3;
4227 else if (in_irq())
4228 rctx = 2;
4229 else if (in_softirq())
4230 rctx = 1;
4231 else
4232 rctx = 0;
4233
4234 if (cpuctx->recursion[rctx])
4235 return -1;
4236
4237 cpuctx->recursion[rctx]++;
4238 barrier();
4239
4240 return rctx;
4241 }
4242 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4243
4244 void inline perf_swevent_put_recursion_context(int rctx)
4245 {
4246 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4247 barrier();
4248 cpuctx->recursion[rctx]--;
4249 }
4250
4251 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4252 struct pt_regs *regs, u64 addr)
4253 {
4254 struct perf_sample_data data;
4255 int rctx;
4256
4257 preempt_disable_notrace();
4258 rctx = perf_swevent_get_recursion_context();
4259 if (rctx < 0)
4260 return;
4261
4262 perf_sample_data_init(&data, addr);
4263
4264 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4265
4266 perf_swevent_put_recursion_context(rctx);
4267 preempt_enable_notrace();
4268 }
4269
4270 static void perf_swevent_read(struct perf_event *event)
4271 {
4272 }
4273
4274 static int perf_swevent_enable(struct perf_event *event)
4275 {
4276 struct hw_perf_event *hwc = &event->hw;
4277 struct perf_cpu_context *cpuctx;
4278 struct hlist_head *head;
4279
4280 cpuctx = &__get_cpu_var(perf_cpu_context);
4281
4282 if (hwc->sample_period) {
4283 hwc->last_period = hwc->sample_period;
4284 perf_swevent_set_period(event);
4285 }
4286
4287 head = find_swevent_head(cpuctx, event);
4288 if (WARN_ON_ONCE(!head))
4289 return -EINVAL;
4290
4291 hlist_add_head_rcu(&event->hlist_entry, head);
4292
4293 return 0;
4294 }
4295
4296 static void perf_swevent_disable(struct perf_event *event)
4297 {
4298 hlist_del_rcu(&event->hlist_entry);
4299 }
4300
4301 static void perf_swevent_void(struct perf_event *event)
4302 {
4303 }
4304
4305 static int perf_swevent_int(struct perf_event *event)
4306 {
4307 return 0;
4308 }
4309
4310 static const struct pmu perf_ops_generic = {
4311 .enable = perf_swevent_enable,
4312 .disable = perf_swevent_disable,
4313 .start = perf_swevent_int,
4314 .stop = perf_swevent_void,
4315 .read = perf_swevent_read,
4316 .unthrottle = perf_swevent_void, /* hwc->interrupts already reset */
4317 };
4318
4319 /*
4320 * hrtimer based swevent callback
4321 */
4322
4323 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4324 {
4325 enum hrtimer_restart ret = HRTIMER_RESTART;
4326 struct perf_sample_data data;
4327 struct pt_regs *regs;
4328 struct perf_event *event;
4329 u64 period;
4330
4331 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4332 event->pmu->read(event);
4333
4334 perf_sample_data_init(&data, 0);
4335 data.period = event->hw.last_period;
4336 regs = get_irq_regs();
4337
4338 if (regs && !perf_exclude_event(event, regs)) {
4339 if (!(event->attr.exclude_idle && current->pid == 0))
4340 if (perf_event_overflow(event, 0, &data, regs))
4341 ret = HRTIMER_NORESTART;
4342 }
4343
4344 period = max_t(u64, 10000, event->hw.sample_period);
4345 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4346
4347 return ret;
4348 }
4349
4350 static void perf_swevent_start_hrtimer(struct perf_event *event)
4351 {
4352 struct hw_perf_event *hwc = &event->hw;
4353
4354 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4355 hwc->hrtimer.function = perf_swevent_hrtimer;
4356 if (hwc->sample_period) {
4357 u64 period;
4358
4359 if (hwc->remaining) {
4360 if (hwc->remaining < 0)
4361 period = 10000;
4362 else
4363 period = hwc->remaining;
4364 hwc->remaining = 0;
4365 } else {
4366 period = max_t(u64, 10000, hwc->sample_period);
4367 }
4368 __hrtimer_start_range_ns(&hwc->hrtimer,
4369 ns_to_ktime(period), 0,
4370 HRTIMER_MODE_REL, 0);
4371 }
4372 }
4373
4374 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4375 {
4376 struct hw_perf_event *hwc = &event->hw;
4377
4378 if (hwc->sample_period) {
4379 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4380 hwc->remaining = ktime_to_ns(remaining);
4381
4382 hrtimer_cancel(&hwc->hrtimer);
4383 }
4384 }
4385
4386 /*
4387 * Software event: cpu wall time clock
4388 */
4389
4390 static void cpu_clock_perf_event_update(struct perf_event *event)
4391 {
4392 int cpu = raw_smp_processor_id();
4393 s64 prev;
4394 u64 now;
4395
4396 now = cpu_clock(cpu);
4397 prev = local64_xchg(&event->hw.prev_count, now);
4398 local64_add(now - prev, &event->count);
4399 }
4400
4401 static int cpu_clock_perf_event_enable(struct perf_event *event)
4402 {
4403 struct hw_perf_event *hwc = &event->hw;
4404 int cpu = raw_smp_processor_id();
4405
4406 local64_set(&hwc->prev_count, cpu_clock(cpu));
4407 perf_swevent_start_hrtimer(event);
4408
4409 return 0;
4410 }
4411
4412 static void cpu_clock_perf_event_disable(struct perf_event *event)
4413 {
4414 perf_swevent_cancel_hrtimer(event);
4415 cpu_clock_perf_event_update(event);
4416 }
4417
4418 static void cpu_clock_perf_event_read(struct perf_event *event)
4419 {
4420 cpu_clock_perf_event_update(event);
4421 }
4422
4423 static const struct pmu perf_ops_cpu_clock = {
4424 .enable = cpu_clock_perf_event_enable,
4425 .disable = cpu_clock_perf_event_disable,
4426 .read = cpu_clock_perf_event_read,
4427 };
4428
4429 /*
4430 * Software event: task time clock
4431 */
4432
4433 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4434 {
4435 u64 prev;
4436 s64 delta;
4437
4438 prev = local64_xchg(&event->hw.prev_count, now);
4439 delta = now - prev;
4440 local64_add(delta, &event->count);
4441 }
4442
4443 static int task_clock_perf_event_enable(struct perf_event *event)
4444 {
4445 struct hw_perf_event *hwc = &event->hw;
4446 u64 now;
4447
4448 now = event->ctx->time;
4449
4450 local64_set(&hwc->prev_count, now);
4451
4452 perf_swevent_start_hrtimer(event);
4453
4454 return 0;
4455 }
4456
4457 static void task_clock_perf_event_disable(struct perf_event *event)
4458 {
4459 perf_swevent_cancel_hrtimer(event);
4460 task_clock_perf_event_update(event, event->ctx->time);
4461
4462 }
4463
4464 static void task_clock_perf_event_read(struct perf_event *event)
4465 {
4466 u64 time;
4467
4468 if (!in_nmi()) {
4469 update_context_time(event->ctx);
4470 time = event->ctx->time;
4471 } else {
4472 u64 now = perf_clock();
4473 u64 delta = now - event->ctx->timestamp;
4474 time = event->ctx->time + delta;
4475 }
4476
4477 task_clock_perf_event_update(event, time);
4478 }
4479
4480 static const struct pmu perf_ops_task_clock = {
4481 .enable = task_clock_perf_event_enable,
4482 .disable = task_clock_perf_event_disable,
4483 .read = task_clock_perf_event_read,
4484 };
4485
4486 /* Deref the hlist from the update side */
4487 static inline struct swevent_hlist *
4488 swevent_hlist_deref(struct perf_cpu_context *cpuctx)
4489 {
4490 return rcu_dereference_protected(cpuctx->swevent_hlist,
4491 lockdep_is_held(&cpuctx->hlist_mutex));
4492 }
4493
4494 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4495 {
4496 struct swevent_hlist *hlist;
4497
4498 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4499 kfree(hlist);
4500 }
4501
4502 static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
4503 {
4504 struct swevent_hlist *hlist = swevent_hlist_deref(cpuctx);
4505
4506 if (!hlist)
4507 return;
4508
4509 rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
4510 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4511 }
4512
4513 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4514 {
4515 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4516
4517 mutex_lock(&cpuctx->hlist_mutex);
4518
4519 if (!--cpuctx->hlist_refcount)
4520 swevent_hlist_release(cpuctx);
4521
4522 mutex_unlock(&cpuctx->hlist_mutex);
4523 }
4524
4525 static void swevent_hlist_put(struct perf_event *event)
4526 {
4527 int cpu;
4528
4529 if (event->cpu != -1) {
4530 swevent_hlist_put_cpu(event, event->cpu);
4531 return;
4532 }
4533
4534 for_each_possible_cpu(cpu)
4535 swevent_hlist_put_cpu(event, cpu);
4536 }
4537
4538 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4539 {
4540 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4541 int err = 0;
4542
4543 mutex_lock(&cpuctx->hlist_mutex);
4544
4545 if (!swevent_hlist_deref(cpuctx) && cpu_online(cpu)) {
4546 struct swevent_hlist *hlist;
4547
4548 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4549 if (!hlist) {
4550 err = -ENOMEM;
4551 goto exit;
4552 }
4553 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
4554 }
4555 cpuctx->hlist_refcount++;
4556 exit:
4557 mutex_unlock(&cpuctx->hlist_mutex);
4558
4559 return err;
4560 }
4561
4562 static int swevent_hlist_get(struct perf_event *event)
4563 {
4564 int err;
4565 int cpu, failed_cpu;
4566
4567 if (event->cpu != -1)
4568 return swevent_hlist_get_cpu(event, event->cpu);
4569
4570 get_online_cpus();
4571 for_each_possible_cpu(cpu) {
4572 err = swevent_hlist_get_cpu(event, cpu);
4573 if (err) {
4574 failed_cpu = cpu;
4575 goto fail;
4576 }
4577 }
4578 put_online_cpus();
4579
4580 return 0;
4581 fail:
4582 for_each_possible_cpu(cpu) {
4583 if (cpu == failed_cpu)
4584 break;
4585 swevent_hlist_put_cpu(event, cpu);
4586 }
4587
4588 put_online_cpus();
4589 return err;
4590 }
4591
4592 #ifdef CONFIG_EVENT_TRACING
4593
4594 static const struct pmu perf_ops_tracepoint = {
4595 .enable = perf_trace_enable,
4596 .disable = perf_trace_disable,
4597 .start = perf_swevent_int,
4598 .stop = perf_swevent_void,
4599 .read = perf_swevent_read,
4600 .unthrottle = perf_swevent_void,
4601 };
4602
4603 static int perf_tp_filter_match(struct perf_event *event,
4604 struct perf_sample_data *data)
4605 {
4606 void *record = data->raw->data;
4607
4608 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4609 return 1;
4610 return 0;
4611 }
4612
4613 static int perf_tp_event_match(struct perf_event *event,
4614 struct perf_sample_data *data,
4615 struct pt_regs *regs)
4616 {
4617 /*
4618 * All tracepoints are from kernel-space.
4619 */
4620 if (event->attr.exclude_kernel)
4621 return 0;
4622
4623 if (!perf_tp_filter_match(event, data))
4624 return 0;
4625
4626 return 1;
4627 }
4628
4629 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4630 struct pt_regs *regs, struct hlist_head *head, int rctx)
4631 {
4632 struct perf_sample_data data;
4633 struct perf_event *event;
4634 struct hlist_node *node;
4635
4636 struct perf_raw_record raw = {
4637 .size = entry_size,
4638 .data = record,
4639 };
4640
4641 perf_sample_data_init(&data, addr);
4642 data.raw = &raw;
4643
4644 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4645 if (perf_tp_event_match(event, &data, regs))
4646 perf_swevent_add(event, count, 1, &data, regs);
4647 }
4648
4649 perf_swevent_put_recursion_context(rctx);
4650 }
4651 EXPORT_SYMBOL_GPL(perf_tp_event);
4652
4653 static void tp_perf_event_destroy(struct perf_event *event)
4654 {
4655 perf_trace_destroy(event);
4656 }
4657
4658 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4659 {
4660 int err;
4661
4662 /*
4663 * Raw tracepoint data is a severe data leak, only allow root to
4664 * have these.
4665 */
4666 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4667 perf_paranoid_tracepoint_raw() &&
4668 !capable(CAP_SYS_ADMIN))
4669 return ERR_PTR(-EPERM);
4670
4671 err = perf_trace_init(event);
4672 if (err)
4673 return NULL;
4674
4675 event->destroy = tp_perf_event_destroy;
4676
4677 return &perf_ops_tracepoint;
4678 }
4679
4680 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4681 {
4682 char *filter_str;
4683 int ret;
4684
4685 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4686 return -EINVAL;
4687
4688 filter_str = strndup_user(arg, PAGE_SIZE);
4689 if (IS_ERR(filter_str))
4690 return PTR_ERR(filter_str);
4691
4692 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4693
4694 kfree(filter_str);
4695 return ret;
4696 }
4697
4698 static void perf_event_free_filter(struct perf_event *event)
4699 {
4700 ftrace_profile_free_filter(event);
4701 }
4702
4703 #else
4704
4705 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4706 {
4707 return NULL;
4708 }
4709
4710 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4711 {
4712 return -ENOENT;
4713 }
4714
4715 static void perf_event_free_filter(struct perf_event *event)
4716 {
4717 }
4718
4719 #endif /* CONFIG_EVENT_TRACING */
4720
4721 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4722 static void bp_perf_event_destroy(struct perf_event *event)
4723 {
4724 release_bp_slot(event);
4725 }
4726
4727 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4728 {
4729 int err;
4730
4731 err = register_perf_hw_breakpoint(bp);
4732 if (err)
4733 return ERR_PTR(err);
4734
4735 bp->destroy = bp_perf_event_destroy;
4736
4737 return &perf_ops_bp;
4738 }
4739
4740 void perf_bp_event(struct perf_event *bp, void *data)
4741 {
4742 struct perf_sample_data sample;
4743 struct pt_regs *regs = data;
4744
4745 perf_sample_data_init(&sample, bp->attr.bp_addr);
4746
4747 if (!perf_exclude_event(bp, regs))
4748 perf_swevent_add(bp, 1, 1, &sample, regs);
4749 }
4750 #else
4751 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4752 {
4753 return NULL;
4754 }
4755
4756 void perf_bp_event(struct perf_event *bp, void *regs)
4757 {
4758 }
4759 #endif
4760
4761 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4762
4763 static void sw_perf_event_destroy(struct perf_event *event)
4764 {
4765 u64 event_id = event->attr.config;
4766
4767 WARN_ON(event->parent);
4768
4769 atomic_dec(&perf_swevent_enabled[event_id]);
4770 swevent_hlist_put(event);
4771 }
4772
4773 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4774 {
4775 const struct pmu *pmu = NULL;
4776 u64 event_id = event->attr.config;
4777
4778 /*
4779 * Software events (currently) can't in general distinguish
4780 * between user, kernel and hypervisor events.
4781 * However, context switches and cpu migrations are considered
4782 * to be kernel events, and page faults are never hypervisor
4783 * events.
4784 */
4785 switch (event_id) {
4786 case PERF_COUNT_SW_CPU_CLOCK:
4787 pmu = &perf_ops_cpu_clock;
4788
4789 break;
4790 case PERF_COUNT_SW_TASK_CLOCK:
4791 /*
4792 * If the user instantiates this as a per-cpu event,
4793 * use the cpu_clock event instead.
4794 */
4795 if (event->ctx->task)
4796 pmu = &perf_ops_task_clock;
4797 else
4798 pmu = &perf_ops_cpu_clock;
4799
4800 break;
4801 case PERF_COUNT_SW_PAGE_FAULTS:
4802 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4803 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4804 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4805 case PERF_COUNT_SW_CPU_MIGRATIONS:
4806 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4807 case PERF_COUNT_SW_EMULATION_FAULTS:
4808 if (!event->parent) {
4809 int err;
4810
4811 err = swevent_hlist_get(event);
4812 if (err)
4813 return ERR_PTR(err);
4814
4815 atomic_inc(&perf_swevent_enabled[event_id]);
4816 event->destroy = sw_perf_event_destroy;
4817 }
4818 pmu = &perf_ops_generic;
4819 break;
4820 }
4821
4822 return pmu;
4823 }
4824
4825 /*
4826 * Allocate and initialize a event structure
4827 */
4828 static struct perf_event *
4829 perf_event_alloc(struct perf_event_attr *attr,
4830 int cpu,
4831 struct perf_event_context *ctx,
4832 struct perf_event *group_leader,
4833 struct perf_event *parent_event,
4834 perf_overflow_handler_t overflow_handler,
4835 gfp_t gfpflags)
4836 {
4837 const struct pmu *pmu;
4838 struct perf_event *event;
4839 struct hw_perf_event *hwc;
4840 long err;
4841
4842 event = kzalloc(sizeof(*event), gfpflags);
4843 if (!event)
4844 return ERR_PTR(-ENOMEM);
4845
4846 /*
4847 * Single events are their own group leaders, with an
4848 * empty sibling list:
4849 */
4850 if (!group_leader)
4851 group_leader = event;
4852
4853 mutex_init(&event->child_mutex);
4854 INIT_LIST_HEAD(&event->child_list);
4855
4856 INIT_LIST_HEAD(&event->group_entry);
4857 INIT_LIST_HEAD(&event->event_entry);
4858 INIT_LIST_HEAD(&event->sibling_list);
4859 init_waitqueue_head(&event->waitq);
4860
4861 mutex_init(&event->mmap_mutex);
4862
4863 event->cpu = cpu;
4864 event->attr = *attr;
4865 event->group_leader = group_leader;
4866 event->pmu = NULL;
4867 event->ctx = ctx;
4868 event->oncpu = -1;
4869
4870 event->parent = parent_event;
4871
4872 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4873 event->id = atomic64_inc_return(&perf_event_id);
4874
4875 event->state = PERF_EVENT_STATE_INACTIVE;
4876
4877 if (!overflow_handler && parent_event)
4878 overflow_handler = parent_event->overflow_handler;
4879
4880 event->overflow_handler = overflow_handler;
4881
4882 if (attr->disabled)
4883 event->state = PERF_EVENT_STATE_OFF;
4884
4885 pmu = NULL;
4886
4887 hwc = &event->hw;
4888 hwc->sample_period = attr->sample_period;
4889 if (attr->freq && attr->sample_freq)
4890 hwc->sample_period = 1;
4891 hwc->last_period = hwc->sample_period;
4892
4893 local64_set(&hwc->period_left, hwc->sample_period);
4894
4895 /*
4896 * we currently do not support PERF_FORMAT_GROUP on inherited events
4897 */
4898 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4899 goto done;
4900
4901 switch (attr->type) {
4902 case PERF_TYPE_RAW:
4903 case PERF_TYPE_HARDWARE:
4904 case PERF_TYPE_HW_CACHE:
4905 pmu = hw_perf_event_init(event);
4906 break;
4907
4908 case PERF_TYPE_SOFTWARE:
4909 pmu = sw_perf_event_init(event);
4910 break;
4911
4912 case PERF_TYPE_TRACEPOINT:
4913 pmu = tp_perf_event_init(event);
4914 break;
4915
4916 case PERF_TYPE_BREAKPOINT:
4917 pmu = bp_perf_event_init(event);
4918 break;
4919
4920
4921 default:
4922 break;
4923 }
4924 done:
4925 err = 0;
4926 if (!pmu)
4927 err = -EINVAL;
4928 else if (IS_ERR(pmu))
4929 err = PTR_ERR(pmu);
4930
4931 if (err) {
4932 if (event->ns)
4933 put_pid_ns(event->ns);
4934 kfree(event);
4935 return ERR_PTR(err);
4936 }
4937
4938 event->pmu = pmu;
4939
4940 if (!event->parent) {
4941 atomic_inc(&nr_events);
4942 if (event->attr.mmap || event->attr.mmap_data)
4943 atomic_inc(&nr_mmap_events);
4944 if (event->attr.comm)
4945 atomic_inc(&nr_comm_events);
4946 if (event->attr.task)
4947 atomic_inc(&nr_task_events);
4948 }
4949
4950 return event;
4951 }
4952
4953 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4954 struct perf_event_attr *attr)
4955 {
4956 u32 size;
4957 int ret;
4958
4959 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4960 return -EFAULT;
4961
4962 /*
4963 * zero the full structure, so that a short copy will be nice.
4964 */
4965 memset(attr, 0, sizeof(*attr));
4966
4967 ret = get_user(size, &uattr->size);
4968 if (ret)
4969 return ret;
4970
4971 if (size > PAGE_SIZE) /* silly large */
4972 goto err_size;
4973
4974 if (!size) /* abi compat */
4975 size = PERF_ATTR_SIZE_VER0;
4976
4977 if (size < PERF_ATTR_SIZE_VER0)
4978 goto err_size;
4979
4980 /*
4981 * If we're handed a bigger struct than we know of,
4982 * ensure all the unknown bits are 0 - i.e. new
4983 * user-space does not rely on any kernel feature
4984 * extensions we dont know about yet.
4985 */
4986 if (size > sizeof(*attr)) {
4987 unsigned char __user *addr;
4988 unsigned char __user *end;
4989 unsigned char val;
4990
4991 addr = (void __user *)uattr + sizeof(*attr);
4992 end = (void __user *)uattr + size;
4993
4994 for (; addr < end; addr++) {
4995 ret = get_user(val, addr);
4996 if (ret)
4997 return ret;
4998 if (val)
4999 goto err_size;
5000 }
5001 size = sizeof(*attr);
5002 }
5003
5004 ret = copy_from_user(attr, uattr, size);
5005 if (ret)
5006 return -EFAULT;
5007
5008 /*
5009 * If the type exists, the corresponding creation will verify
5010 * the attr->config.
5011 */
5012 if (attr->type >= PERF_TYPE_MAX)
5013 return -EINVAL;
5014
5015 if (attr->__reserved_1)
5016 return -EINVAL;
5017
5018 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5019 return -EINVAL;
5020
5021 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5022 return -EINVAL;
5023
5024 out:
5025 return ret;
5026
5027 err_size:
5028 put_user(sizeof(*attr), &uattr->size);
5029 ret = -E2BIG;
5030 goto out;
5031 }
5032
5033 static int
5034 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5035 {
5036 struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5037 int ret = -EINVAL;
5038
5039 if (!output_event)
5040 goto set;
5041
5042 /* don't allow circular references */
5043 if (event == output_event)
5044 goto out;
5045
5046 /*
5047 * Don't allow cross-cpu buffers
5048 */
5049 if (output_event->cpu != event->cpu)
5050 goto out;
5051
5052 /*
5053 * If its not a per-cpu buffer, it must be the same task.
5054 */
5055 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5056 goto out;
5057
5058 set:
5059 mutex_lock(&event->mmap_mutex);
5060 /* Can't redirect output if we've got an active mmap() */
5061 if (atomic_read(&event->mmap_count))
5062 goto unlock;
5063
5064 if (output_event) {
5065 /* get the buffer we want to redirect to */
5066 buffer = perf_buffer_get(output_event);
5067 if (!buffer)
5068 goto unlock;
5069 }
5070
5071 old_buffer = event->buffer;
5072 rcu_assign_pointer(event->buffer, buffer);
5073 ret = 0;
5074 unlock:
5075 mutex_unlock(&event->mmap_mutex);
5076
5077 if (old_buffer)
5078 perf_buffer_put(old_buffer);
5079 out:
5080 return ret;
5081 }
5082
5083 /**
5084 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5085 *
5086 * @attr_uptr: event_id type attributes for monitoring/sampling
5087 * @pid: target pid
5088 * @cpu: target cpu
5089 * @group_fd: group leader event fd
5090 */
5091 SYSCALL_DEFINE5(perf_event_open,
5092 struct perf_event_attr __user *, attr_uptr,
5093 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5094 {
5095 struct perf_event *event, *group_leader = NULL, *output_event = NULL;
5096 struct perf_event_attr attr;
5097 struct perf_event_context *ctx;
5098 struct file *event_file = NULL;
5099 struct file *group_file = NULL;
5100 int event_fd;
5101 int fput_needed = 0;
5102 int err;
5103
5104 /* for future expandability... */
5105 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5106 return -EINVAL;
5107
5108 err = perf_copy_attr(attr_uptr, &attr);
5109 if (err)
5110 return err;
5111
5112 if (!attr.exclude_kernel) {
5113 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5114 return -EACCES;
5115 }
5116
5117 if (attr.freq) {
5118 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5119 return -EINVAL;
5120 }
5121
5122 event_fd = get_unused_fd_flags(O_RDWR);
5123 if (event_fd < 0)
5124 return event_fd;
5125
5126 /*
5127 * Get the target context (task or percpu):
5128 */
5129 ctx = find_get_context(pid, cpu);
5130 if (IS_ERR(ctx)) {
5131 err = PTR_ERR(ctx);
5132 goto err_fd;
5133 }
5134
5135 if (group_fd != -1) {
5136 group_leader = perf_fget_light(group_fd, &fput_needed);
5137 if (IS_ERR(group_leader)) {
5138 err = PTR_ERR(group_leader);
5139 goto err_put_context;
5140 }
5141 group_file = group_leader->filp;
5142 if (flags & PERF_FLAG_FD_OUTPUT)
5143 output_event = group_leader;
5144 if (flags & PERF_FLAG_FD_NO_GROUP)
5145 group_leader = NULL;
5146 }
5147
5148 /*
5149 * Look up the group leader (we will attach this event to it):
5150 */
5151 if (group_leader) {
5152 err = -EINVAL;
5153
5154 /*
5155 * Do not allow a recursive hierarchy (this new sibling
5156 * becoming part of another group-sibling):
5157 */
5158 if (group_leader->group_leader != group_leader)
5159 goto err_put_context;
5160 /*
5161 * Do not allow to attach to a group in a different
5162 * task or CPU context:
5163 */
5164 if (group_leader->ctx != ctx)
5165 goto err_put_context;
5166 /*
5167 * Only a group leader can be exclusive or pinned
5168 */
5169 if (attr.exclusive || attr.pinned)
5170 goto err_put_context;
5171 }
5172
5173 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
5174 NULL, NULL, GFP_KERNEL);
5175 if (IS_ERR(event)) {
5176 err = PTR_ERR(event);
5177 goto err_put_context;
5178 }
5179
5180 if (output_event) {
5181 err = perf_event_set_output(event, output_event);
5182 if (err)
5183 goto err_free_put_context;
5184 }
5185
5186 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5187 if (IS_ERR(event_file)) {
5188 err = PTR_ERR(event_file);
5189 goto err_free_put_context;
5190 }
5191
5192 event->filp = event_file;
5193 WARN_ON_ONCE(ctx->parent_ctx);
5194 mutex_lock(&ctx->mutex);
5195 perf_install_in_context(ctx, event, cpu);
5196 ++ctx->generation;
5197 mutex_unlock(&ctx->mutex);
5198
5199 event->owner = current;
5200 get_task_struct(current);
5201 mutex_lock(&current->perf_event_mutex);
5202 list_add_tail(&event->owner_entry, &current->perf_event_list);
5203 mutex_unlock(&current->perf_event_mutex);
5204
5205 /*
5206 * Drop the reference on the group_event after placing the
5207 * new event on the sibling_list. This ensures destruction
5208 * of the group leader will find the pointer to itself in
5209 * perf_group_detach().
5210 */
5211 fput_light(group_file, fput_needed);
5212 fd_install(event_fd, event_file);
5213 return event_fd;
5214
5215 err_free_put_context:
5216 free_event(event);
5217 err_put_context:
5218 fput_light(group_file, fput_needed);
5219 put_ctx(ctx);
5220 err_fd:
5221 put_unused_fd(event_fd);
5222 return err;
5223 }
5224
5225 /**
5226 * perf_event_create_kernel_counter
5227 *
5228 * @attr: attributes of the counter to create
5229 * @cpu: cpu in which the counter is bound
5230 * @pid: task to profile
5231 */
5232 struct perf_event *
5233 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5234 pid_t pid,
5235 perf_overflow_handler_t overflow_handler)
5236 {
5237 struct perf_event *event;
5238 struct perf_event_context *ctx;
5239 int err;
5240
5241 /*
5242 * Get the target context (task or percpu):
5243 */
5244
5245 ctx = find_get_context(pid, cpu);
5246 if (IS_ERR(ctx)) {
5247 err = PTR_ERR(ctx);
5248 goto err_exit;
5249 }
5250
5251 event = perf_event_alloc(attr, cpu, ctx, NULL,
5252 NULL, overflow_handler, GFP_KERNEL);
5253 if (IS_ERR(event)) {
5254 err = PTR_ERR(event);
5255 goto err_put_context;
5256 }
5257
5258 event->filp = NULL;
5259 WARN_ON_ONCE(ctx->parent_ctx);
5260 mutex_lock(&ctx->mutex);
5261 perf_install_in_context(ctx, event, cpu);
5262 ++ctx->generation;
5263 mutex_unlock(&ctx->mutex);
5264
5265 event->owner = current;
5266 get_task_struct(current);
5267 mutex_lock(&current->perf_event_mutex);
5268 list_add_tail(&event->owner_entry, &current->perf_event_list);
5269 mutex_unlock(&current->perf_event_mutex);
5270
5271 return event;
5272
5273 err_put_context:
5274 put_ctx(ctx);
5275 err_exit:
5276 return ERR_PTR(err);
5277 }
5278 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5279
5280 /*
5281 * inherit a event from parent task to child task:
5282 */
5283 static struct perf_event *
5284 inherit_event(struct perf_event *parent_event,
5285 struct task_struct *parent,
5286 struct perf_event_context *parent_ctx,
5287 struct task_struct *child,
5288 struct perf_event *group_leader,
5289 struct perf_event_context *child_ctx)
5290 {
5291 struct perf_event *child_event;
5292
5293 /*
5294 * Instead of creating recursive hierarchies of events,
5295 * we link inherited events back to the original parent,
5296 * which has a filp for sure, which we use as the reference
5297 * count:
5298 */
5299 if (parent_event->parent)
5300 parent_event = parent_event->parent;
5301
5302 child_event = perf_event_alloc(&parent_event->attr,
5303 parent_event->cpu, child_ctx,
5304 group_leader, parent_event,
5305 NULL, GFP_KERNEL);
5306 if (IS_ERR(child_event))
5307 return child_event;
5308 get_ctx(child_ctx);
5309
5310 /*
5311 * Make the child state follow the state of the parent event,
5312 * not its attr.disabled bit. We hold the parent's mutex,
5313 * so we won't race with perf_event_{en, dis}able_family.
5314 */
5315 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5316 child_event->state = PERF_EVENT_STATE_INACTIVE;
5317 else
5318 child_event->state = PERF_EVENT_STATE_OFF;
5319
5320 if (parent_event->attr.freq) {
5321 u64 sample_period = parent_event->hw.sample_period;
5322 struct hw_perf_event *hwc = &child_event->hw;
5323
5324 hwc->sample_period = sample_period;
5325 hwc->last_period = sample_period;
5326
5327 local64_set(&hwc->period_left, sample_period);
5328 }
5329
5330 child_event->overflow_handler = parent_event->overflow_handler;
5331
5332 /*
5333 * Link it up in the child's context:
5334 */
5335 add_event_to_ctx(child_event, child_ctx);
5336
5337 /*
5338 * Get a reference to the parent filp - we will fput it
5339 * when the child event exits. This is safe to do because
5340 * we are in the parent and we know that the filp still
5341 * exists and has a nonzero count:
5342 */
5343 atomic_long_inc(&parent_event->filp->f_count);
5344
5345 /*
5346 * Link this into the parent event's child list
5347 */
5348 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5349 mutex_lock(&parent_event->child_mutex);
5350 list_add_tail(&child_event->child_list, &parent_event->child_list);
5351 mutex_unlock(&parent_event->child_mutex);
5352
5353 return child_event;
5354 }
5355
5356 static int inherit_group(struct perf_event *parent_event,
5357 struct task_struct *parent,
5358 struct perf_event_context *parent_ctx,
5359 struct task_struct *child,
5360 struct perf_event_context *child_ctx)
5361 {
5362 struct perf_event *leader;
5363 struct perf_event *sub;
5364 struct perf_event *child_ctr;
5365
5366 leader = inherit_event(parent_event, parent, parent_ctx,
5367 child, NULL, child_ctx);
5368 if (IS_ERR(leader))
5369 return PTR_ERR(leader);
5370 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5371 child_ctr = inherit_event(sub, parent, parent_ctx,
5372 child, leader, child_ctx);
5373 if (IS_ERR(child_ctr))
5374 return PTR_ERR(child_ctr);
5375 }
5376 return 0;
5377 }
5378
5379 static void sync_child_event(struct perf_event *child_event,
5380 struct task_struct *child)
5381 {
5382 struct perf_event *parent_event = child_event->parent;
5383 u64 child_val;
5384
5385 if (child_event->attr.inherit_stat)
5386 perf_event_read_event(child_event, child);
5387
5388 child_val = perf_event_count(child_event);
5389
5390 /*
5391 * Add back the child's count to the parent's count:
5392 */
5393 atomic64_add(child_val, &parent_event->child_count);
5394 atomic64_add(child_event->total_time_enabled,
5395 &parent_event->child_total_time_enabled);
5396 atomic64_add(child_event->total_time_running,
5397 &parent_event->child_total_time_running);
5398
5399 /*
5400 * Remove this event from the parent's list
5401 */
5402 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5403 mutex_lock(&parent_event->child_mutex);
5404 list_del_init(&child_event->child_list);
5405 mutex_unlock(&parent_event->child_mutex);
5406
5407 /*
5408 * Release the parent event, if this was the last
5409 * reference to it.
5410 */
5411 fput(parent_event->filp);
5412 }
5413
5414 static void
5415 __perf_event_exit_task(struct perf_event *child_event,
5416 struct perf_event_context *child_ctx,
5417 struct task_struct *child)
5418 {
5419 struct perf_event *parent_event;
5420
5421 perf_event_remove_from_context(child_event);
5422
5423 parent_event = child_event->parent;
5424 /*
5425 * It can happen that parent exits first, and has events
5426 * that are still around due to the child reference. These
5427 * events need to be zapped - but otherwise linger.
5428 */
5429 if (parent_event) {
5430 sync_child_event(child_event, child);
5431 free_event(child_event);
5432 }
5433 }
5434
5435 /*
5436 * When a child task exits, feed back event values to parent events.
5437 */
5438 void perf_event_exit_task(struct task_struct *child)
5439 {
5440 struct perf_event *child_event, *tmp;
5441 struct perf_event_context *child_ctx;
5442 unsigned long flags;
5443
5444 if (likely(!child->perf_event_ctxp)) {
5445 perf_event_task(child, NULL, 0);
5446 return;
5447 }
5448
5449 local_irq_save(flags);
5450 /*
5451 * We can't reschedule here because interrupts are disabled,
5452 * and either child is current or it is a task that can't be
5453 * scheduled, so we are now safe from rescheduling changing
5454 * our context.
5455 */
5456 child_ctx = child->perf_event_ctxp;
5457 __perf_event_task_sched_out(child_ctx);
5458
5459 /*
5460 * Take the context lock here so that if find_get_context is
5461 * reading child->perf_event_ctxp, we wait until it has
5462 * incremented the context's refcount before we do put_ctx below.
5463 */
5464 raw_spin_lock(&child_ctx->lock);
5465 child->perf_event_ctxp = NULL;
5466 /*
5467 * If this context is a clone; unclone it so it can't get
5468 * swapped to another process while we're removing all
5469 * the events from it.
5470 */
5471 unclone_ctx(child_ctx);
5472 update_context_time(child_ctx);
5473 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5474
5475 /*
5476 * Report the task dead after unscheduling the events so that we
5477 * won't get any samples after PERF_RECORD_EXIT. We can however still
5478 * get a few PERF_RECORD_READ events.
5479 */
5480 perf_event_task(child, child_ctx, 0);
5481
5482 /*
5483 * We can recurse on the same lock type through:
5484 *
5485 * __perf_event_exit_task()
5486 * sync_child_event()
5487 * fput(parent_event->filp)
5488 * perf_release()
5489 * mutex_lock(&ctx->mutex)
5490 *
5491 * But since its the parent context it won't be the same instance.
5492 */
5493 mutex_lock(&child_ctx->mutex);
5494
5495 again:
5496 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5497 group_entry)
5498 __perf_event_exit_task(child_event, child_ctx, child);
5499
5500 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5501 group_entry)
5502 __perf_event_exit_task(child_event, child_ctx, child);
5503
5504 /*
5505 * If the last event was a group event, it will have appended all
5506 * its siblings to the list, but we obtained 'tmp' before that which
5507 * will still point to the list head terminating the iteration.
5508 */
5509 if (!list_empty(&child_ctx->pinned_groups) ||
5510 !list_empty(&child_ctx->flexible_groups))
5511 goto again;
5512
5513 mutex_unlock(&child_ctx->mutex);
5514
5515 put_ctx(child_ctx);
5516 }
5517
5518 static void perf_free_event(struct perf_event *event,
5519 struct perf_event_context *ctx)
5520 {
5521 struct perf_event *parent = event->parent;
5522
5523 if (WARN_ON_ONCE(!parent))
5524 return;
5525
5526 mutex_lock(&parent->child_mutex);
5527 list_del_init(&event->child_list);
5528 mutex_unlock(&parent->child_mutex);
5529
5530 fput(parent->filp);
5531
5532 perf_group_detach(event);
5533 list_del_event(event, ctx);
5534 free_event(event);
5535 }
5536
5537 /*
5538 * free an unexposed, unused context as created by inheritance by
5539 * init_task below, used by fork() in case of fail.
5540 */
5541 void perf_event_free_task(struct task_struct *task)
5542 {
5543 struct perf_event_context *ctx = task->perf_event_ctxp;
5544 struct perf_event *event, *tmp;
5545
5546 if (!ctx)
5547 return;
5548
5549 mutex_lock(&ctx->mutex);
5550 again:
5551 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5552 perf_free_event(event, ctx);
5553
5554 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5555 group_entry)
5556 perf_free_event(event, ctx);
5557
5558 if (!list_empty(&ctx->pinned_groups) ||
5559 !list_empty(&ctx->flexible_groups))
5560 goto again;
5561
5562 mutex_unlock(&ctx->mutex);
5563
5564 put_ctx(ctx);
5565 }
5566
5567 static int
5568 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5569 struct perf_event_context *parent_ctx,
5570 struct task_struct *child,
5571 int *inherited_all)
5572 {
5573 int ret;
5574 struct perf_event_context *child_ctx = child->perf_event_ctxp;
5575
5576 if (!event->attr.inherit) {
5577 *inherited_all = 0;
5578 return 0;
5579 }
5580
5581 if (!child_ctx) {
5582 /*
5583 * This is executed from the parent task context, so
5584 * inherit events that have been marked for cloning.
5585 * First allocate and initialize a context for the
5586 * child.
5587 */
5588
5589 child_ctx = kzalloc(sizeof(struct perf_event_context),
5590 GFP_KERNEL);
5591 if (!child_ctx)
5592 return -ENOMEM;
5593
5594 __perf_event_init_context(child_ctx, child);
5595 child->perf_event_ctxp = child_ctx;
5596 get_task_struct(child);
5597 }
5598
5599 ret = inherit_group(event, parent, parent_ctx,
5600 child, child_ctx);
5601
5602 if (ret)
5603 *inherited_all = 0;
5604
5605 return ret;
5606 }
5607
5608
5609 /*
5610 * Initialize the perf_event context in task_struct
5611 */
5612 int perf_event_init_task(struct task_struct *child)
5613 {
5614 struct perf_event_context *child_ctx, *parent_ctx;
5615 struct perf_event_context *cloned_ctx;
5616 struct perf_event *event;
5617 struct task_struct *parent = current;
5618 int inherited_all = 1;
5619 int ret = 0;
5620
5621 child->perf_event_ctxp = NULL;
5622
5623 mutex_init(&child->perf_event_mutex);
5624 INIT_LIST_HEAD(&child->perf_event_list);
5625
5626 if (likely(!parent->perf_event_ctxp))
5627 return 0;
5628
5629 /*
5630 * If the parent's context is a clone, pin it so it won't get
5631 * swapped under us.
5632 */
5633 parent_ctx = perf_pin_task_context(parent);
5634
5635 /*
5636 * No need to check if parent_ctx != NULL here; since we saw
5637 * it non-NULL earlier, the only reason for it to become NULL
5638 * is if we exit, and since we're currently in the middle of
5639 * a fork we can't be exiting at the same time.
5640 */
5641
5642 /*
5643 * Lock the parent list. No need to lock the child - not PID
5644 * hashed yet and not running, so nobody can access it.
5645 */
5646 mutex_lock(&parent_ctx->mutex);
5647
5648 /*
5649 * We dont have to disable NMIs - we are only looking at
5650 * the list, not manipulating it:
5651 */
5652 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5653 ret = inherit_task_group(event, parent, parent_ctx, child,
5654 &inherited_all);
5655 if (ret)
5656 break;
5657 }
5658
5659 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5660 ret = inherit_task_group(event, parent, parent_ctx, child,
5661 &inherited_all);
5662 if (ret)
5663 break;
5664 }
5665
5666 child_ctx = child->perf_event_ctxp;
5667
5668 if (child_ctx && inherited_all) {
5669 /*
5670 * Mark the child context as a clone of the parent
5671 * context, or of whatever the parent is a clone of.
5672 * Note that if the parent is a clone, it could get
5673 * uncloned at any point, but that doesn't matter
5674 * because the list of events and the generation
5675 * count can't have changed since we took the mutex.
5676 */
5677 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5678 if (cloned_ctx) {
5679 child_ctx->parent_ctx = cloned_ctx;
5680 child_ctx->parent_gen = parent_ctx->parent_gen;
5681 } else {
5682 child_ctx->parent_ctx = parent_ctx;
5683 child_ctx->parent_gen = parent_ctx->generation;
5684 }
5685 get_ctx(child_ctx->parent_ctx);
5686 }
5687
5688 mutex_unlock(&parent_ctx->mutex);
5689
5690 perf_unpin_context(parent_ctx);
5691
5692 return ret;
5693 }
5694
5695 static void __init perf_event_init_all_cpus(void)
5696 {
5697 int cpu;
5698 struct perf_cpu_context *cpuctx;
5699
5700 for_each_possible_cpu(cpu) {
5701 cpuctx = &per_cpu(perf_cpu_context, cpu);
5702 mutex_init(&cpuctx->hlist_mutex);
5703 __perf_event_init_context(&cpuctx->ctx, NULL);
5704 }
5705 }
5706
5707 static void __cpuinit perf_event_init_cpu(int cpu)
5708 {
5709 struct perf_cpu_context *cpuctx;
5710
5711 cpuctx = &per_cpu(perf_cpu_context, cpu);
5712
5713 spin_lock(&perf_resource_lock);
5714 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5715 spin_unlock(&perf_resource_lock);
5716
5717 mutex_lock(&cpuctx->hlist_mutex);
5718 if (cpuctx->hlist_refcount > 0) {
5719 struct swevent_hlist *hlist;
5720
5721 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5722 WARN_ON_ONCE(!hlist);
5723 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
5724 }
5725 mutex_unlock(&cpuctx->hlist_mutex);
5726 }
5727
5728 #ifdef CONFIG_HOTPLUG_CPU
5729 static void __perf_event_exit_cpu(void *info)
5730 {
5731 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5732 struct perf_event_context *ctx = &cpuctx->ctx;
5733 struct perf_event *event, *tmp;
5734
5735 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5736 __perf_event_remove_from_context(event);
5737 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5738 __perf_event_remove_from_context(event);
5739 }
5740 static void perf_event_exit_cpu(int cpu)
5741 {
5742 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5743 struct perf_event_context *ctx = &cpuctx->ctx;
5744
5745 mutex_lock(&cpuctx->hlist_mutex);
5746 swevent_hlist_release(cpuctx);
5747 mutex_unlock(&cpuctx->hlist_mutex);
5748
5749 mutex_lock(&ctx->mutex);
5750 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5751 mutex_unlock(&ctx->mutex);
5752 }
5753 #else
5754 static inline void perf_event_exit_cpu(int cpu) { }
5755 #endif
5756
5757 static int __cpuinit
5758 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5759 {
5760 unsigned int cpu = (long)hcpu;
5761
5762 switch (action & ~CPU_TASKS_FROZEN) {
5763
5764 case CPU_UP_PREPARE:
5765 case CPU_DOWN_FAILED:
5766 perf_event_init_cpu(cpu);
5767 break;
5768
5769 case CPU_UP_CANCELED:
5770 case CPU_DOWN_PREPARE:
5771 perf_event_exit_cpu(cpu);
5772 break;
5773
5774 default:
5775 break;
5776 }
5777
5778 return NOTIFY_OK;
5779 }
5780
5781 /*
5782 * This has to have a higher priority than migration_notifier in sched.c.
5783 */
5784 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5785 .notifier_call = perf_cpu_notify,
5786 .priority = 20,
5787 };
5788
5789 void __init perf_event_init(void)
5790 {
5791 perf_event_init_all_cpus();
5792 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5793 (void *)(long)smp_processor_id());
5794 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5795 (void *)(long)smp_processor_id());
5796 register_cpu_notifier(&perf_cpu_nb);
5797 }
5798
5799 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5800 struct sysdev_class_attribute *attr,
5801 char *buf)
5802 {
5803 return sprintf(buf, "%d\n", perf_reserved_percpu);
5804 }
5805
5806 static ssize_t
5807 perf_set_reserve_percpu(struct sysdev_class *class,
5808 struct sysdev_class_attribute *attr,
5809 const char *buf,
5810 size_t count)
5811 {
5812 struct perf_cpu_context *cpuctx;
5813 unsigned long val;
5814 int err, cpu, mpt;
5815
5816 err = strict_strtoul(buf, 10, &val);
5817 if (err)
5818 return err;
5819 if (val > perf_max_events)
5820 return -EINVAL;
5821
5822 spin_lock(&perf_resource_lock);
5823 perf_reserved_percpu = val;
5824 for_each_online_cpu(cpu) {
5825 cpuctx = &per_cpu(perf_cpu_context, cpu);
5826 raw_spin_lock_irq(&cpuctx->ctx.lock);
5827 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5828 perf_max_events - perf_reserved_percpu);
5829 cpuctx->max_pertask = mpt;
5830 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5831 }
5832 spin_unlock(&perf_resource_lock);
5833
5834 return count;
5835 }
5836
5837 static ssize_t perf_show_overcommit(struct sysdev_class *class,
5838 struct sysdev_class_attribute *attr,
5839 char *buf)
5840 {
5841 return sprintf(buf, "%d\n", perf_overcommit);
5842 }
5843
5844 static ssize_t
5845 perf_set_overcommit(struct sysdev_class *class,
5846 struct sysdev_class_attribute *attr,
5847 const char *buf, size_t count)
5848 {
5849 unsigned long val;
5850 int err;
5851
5852 err = strict_strtoul(buf, 10, &val);
5853 if (err)
5854 return err;
5855 if (val > 1)
5856 return -EINVAL;
5857
5858 spin_lock(&perf_resource_lock);
5859 perf_overcommit = val;
5860 spin_unlock(&perf_resource_lock);
5861
5862 return count;
5863 }
5864
5865 static SYSDEV_CLASS_ATTR(
5866 reserve_percpu,
5867 0644,
5868 perf_show_reserve_percpu,
5869 perf_set_reserve_percpu
5870 );
5871
5872 static SYSDEV_CLASS_ATTR(
5873 overcommit,
5874 0644,
5875 perf_show_overcommit,
5876 perf_set_overcommit
5877 );
5878
5879 static struct attribute *perfclass_attrs[] = {
5880 &attr_reserve_percpu.attr,
5881 &attr_overcommit.attr,
5882 NULL
5883 };
5884
5885 static struct attribute_group perfclass_attr_group = {
5886 .attrs = perfclass_attrs,
5887 .name = "perf_events",
5888 };
5889
5890 static int __init perf_event_sysfs_init(void)
5891 {
5892 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5893 &perfclass_attr_group);
5894 }
5895 device_initcall(perf_event_sysfs_init);
This page took 0.156159 seconds and 5 git commands to generate.