Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jwessel...
[deliverable/linux.git] / kernel / perf_event.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34
35 #include <asm/irq_regs.h>
36
37 atomic_t perf_task_events __read_mostly;
38 static atomic_t nr_mmap_events __read_mostly;
39 static atomic_t nr_comm_events __read_mostly;
40 static atomic_t nr_task_events __read_mostly;
41
42 static LIST_HEAD(pmus);
43 static DEFINE_MUTEX(pmus_lock);
44 static struct srcu_struct pmus_srcu;
45
46 /*
47 * perf event paranoia level:
48 * -1 - not paranoid at all
49 * 0 - disallow raw tracepoint access for unpriv
50 * 1 - disallow cpu events for unpriv
51 * 2 - disallow kernel profiling for unpriv
52 */
53 int sysctl_perf_event_paranoid __read_mostly = 1;
54
55 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
56
57 /*
58 * max perf event sample rate
59 */
60 int sysctl_perf_event_sample_rate __read_mostly = 100000;
61
62 static atomic64_t perf_event_id;
63
64 void __weak perf_event_print_debug(void) { }
65
66 extern __weak const char *perf_pmu_name(void)
67 {
68 return "pmu";
69 }
70
71 void perf_pmu_disable(struct pmu *pmu)
72 {
73 int *count = this_cpu_ptr(pmu->pmu_disable_count);
74 if (!(*count)++)
75 pmu->pmu_disable(pmu);
76 }
77
78 void perf_pmu_enable(struct pmu *pmu)
79 {
80 int *count = this_cpu_ptr(pmu->pmu_disable_count);
81 if (!--(*count))
82 pmu->pmu_enable(pmu);
83 }
84
85 static DEFINE_PER_CPU(struct list_head, rotation_list);
86
87 /*
88 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
89 * because they're strictly cpu affine and rotate_start is called with IRQs
90 * disabled, while rotate_context is called from IRQ context.
91 */
92 static void perf_pmu_rotate_start(struct pmu *pmu)
93 {
94 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95 struct list_head *head = &__get_cpu_var(rotation_list);
96
97 WARN_ON(!irqs_disabled());
98
99 if (list_empty(&cpuctx->rotation_list))
100 list_add(&cpuctx->rotation_list, head);
101 }
102
103 static void get_ctx(struct perf_event_context *ctx)
104 {
105 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
106 }
107
108 static void free_ctx(struct rcu_head *head)
109 {
110 struct perf_event_context *ctx;
111
112 ctx = container_of(head, struct perf_event_context, rcu_head);
113 kfree(ctx);
114 }
115
116 static void put_ctx(struct perf_event_context *ctx)
117 {
118 if (atomic_dec_and_test(&ctx->refcount)) {
119 if (ctx->parent_ctx)
120 put_ctx(ctx->parent_ctx);
121 if (ctx->task)
122 put_task_struct(ctx->task);
123 call_rcu(&ctx->rcu_head, free_ctx);
124 }
125 }
126
127 static void unclone_ctx(struct perf_event_context *ctx)
128 {
129 if (ctx->parent_ctx) {
130 put_ctx(ctx->parent_ctx);
131 ctx->parent_ctx = NULL;
132 }
133 }
134
135 /*
136 * If we inherit events we want to return the parent event id
137 * to userspace.
138 */
139 static u64 primary_event_id(struct perf_event *event)
140 {
141 u64 id = event->id;
142
143 if (event->parent)
144 id = event->parent->id;
145
146 return id;
147 }
148
149 /*
150 * Get the perf_event_context for a task and lock it.
151 * This has to cope with with the fact that until it is locked,
152 * the context could get moved to another task.
153 */
154 static struct perf_event_context *
155 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
156 {
157 struct perf_event_context *ctx;
158
159 rcu_read_lock();
160 retry:
161 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
162 if (ctx) {
163 /*
164 * If this context is a clone of another, it might
165 * get swapped for another underneath us by
166 * perf_event_task_sched_out, though the
167 * rcu_read_lock() protects us from any context
168 * getting freed. Lock the context and check if it
169 * got swapped before we could get the lock, and retry
170 * if so. If we locked the right context, then it
171 * can't get swapped on us any more.
172 */
173 raw_spin_lock_irqsave(&ctx->lock, *flags);
174 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
175 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
176 goto retry;
177 }
178
179 if (!atomic_inc_not_zero(&ctx->refcount)) {
180 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
181 ctx = NULL;
182 }
183 }
184 rcu_read_unlock();
185 return ctx;
186 }
187
188 /*
189 * Get the context for a task and increment its pin_count so it
190 * can't get swapped to another task. This also increments its
191 * reference count so that the context can't get freed.
192 */
193 static struct perf_event_context *
194 perf_pin_task_context(struct task_struct *task, int ctxn)
195 {
196 struct perf_event_context *ctx;
197 unsigned long flags;
198
199 ctx = perf_lock_task_context(task, ctxn, &flags);
200 if (ctx) {
201 ++ctx->pin_count;
202 raw_spin_unlock_irqrestore(&ctx->lock, flags);
203 }
204 return ctx;
205 }
206
207 static void perf_unpin_context(struct perf_event_context *ctx)
208 {
209 unsigned long flags;
210
211 raw_spin_lock_irqsave(&ctx->lock, flags);
212 --ctx->pin_count;
213 raw_spin_unlock_irqrestore(&ctx->lock, flags);
214 put_ctx(ctx);
215 }
216
217 static inline u64 perf_clock(void)
218 {
219 return local_clock();
220 }
221
222 /*
223 * Update the record of the current time in a context.
224 */
225 static void update_context_time(struct perf_event_context *ctx)
226 {
227 u64 now = perf_clock();
228
229 ctx->time += now - ctx->timestamp;
230 ctx->timestamp = now;
231 }
232
233 /*
234 * Update the total_time_enabled and total_time_running fields for a event.
235 */
236 static void update_event_times(struct perf_event *event)
237 {
238 struct perf_event_context *ctx = event->ctx;
239 u64 run_end;
240
241 if (event->state < PERF_EVENT_STATE_INACTIVE ||
242 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
243 return;
244
245 if (ctx->is_active)
246 run_end = ctx->time;
247 else
248 run_end = event->tstamp_stopped;
249
250 event->total_time_enabled = run_end - event->tstamp_enabled;
251
252 if (event->state == PERF_EVENT_STATE_INACTIVE)
253 run_end = event->tstamp_stopped;
254 else
255 run_end = ctx->time;
256
257 event->total_time_running = run_end - event->tstamp_running;
258 }
259
260 /*
261 * Update total_time_enabled and total_time_running for all events in a group.
262 */
263 static void update_group_times(struct perf_event *leader)
264 {
265 struct perf_event *event;
266
267 update_event_times(leader);
268 list_for_each_entry(event, &leader->sibling_list, group_entry)
269 update_event_times(event);
270 }
271
272 static struct list_head *
273 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
274 {
275 if (event->attr.pinned)
276 return &ctx->pinned_groups;
277 else
278 return &ctx->flexible_groups;
279 }
280
281 /*
282 * Add a event from the lists for its context.
283 * Must be called with ctx->mutex and ctx->lock held.
284 */
285 static void
286 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
287 {
288 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
289 event->attach_state |= PERF_ATTACH_CONTEXT;
290
291 /*
292 * If we're a stand alone event or group leader, we go to the context
293 * list, group events are kept attached to the group so that
294 * perf_group_detach can, at all times, locate all siblings.
295 */
296 if (event->group_leader == event) {
297 struct list_head *list;
298
299 if (is_software_event(event))
300 event->group_flags |= PERF_GROUP_SOFTWARE;
301
302 list = ctx_group_list(event, ctx);
303 list_add_tail(&event->group_entry, list);
304 }
305
306 list_add_rcu(&event->event_entry, &ctx->event_list);
307 if (!ctx->nr_events)
308 perf_pmu_rotate_start(ctx->pmu);
309 ctx->nr_events++;
310 if (event->attr.inherit_stat)
311 ctx->nr_stat++;
312 }
313
314 static void perf_group_attach(struct perf_event *event)
315 {
316 struct perf_event *group_leader = event->group_leader;
317
318 /*
319 * We can have double attach due to group movement in perf_event_open.
320 */
321 if (event->attach_state & PERF_ATTACH_GROUP)
322 return;
323
324 event->attach_state |= PERF_ATTACH_GROUP;
325
326 if (group_leader == event)
327 return;
328
329 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
330 !is_software_event(event))
331 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
332
333 list_add_tail(&event->group_entry, &group_leader->sibling_list);
334 group_leader->nr_siblings++;
335 }
336
337 /*
338 * Remove a event from the lists for its context.
339 * Must be called with ctx->mutex and ctx->lock held.
340 */
341 static void
342 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
343 {
344 /*
345 * We can have double detach due to exit/hot-unplug + close.
346 */
347 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
348 return;
349
350 event->attach_state &= ~PERF_ATTACH_CONTEXT;
351
352 ctx->nr_events--;
353 if (event->attr.inherit_stat)
354 ctx->nr_stat--;
355
356 list_del_rcu(&event->event_entry);
357
358 if (event->group_leader == event)
359 list_del_init(&event->group_entry);
360
361 update_group_times(event);
362
363 /*
364 * If event was in error state, then keep it
365 * that way, otherwise bogus counts will be
366 * returned on read(). The only way to get out
367 * of error state is by explicit re-enabling
368 * of the event
369 */
370 if (event->state > PERF_EVENT_STATE_OFF)
371 event->state = PERF_EVENT_STATE_OFF;
372 }
373
374 static void perf_group_detach(struct perf_event *event)
375 {
376 struct perf_event *sibling, *tmp;
377 struct list_head *list = NULL;
378
379 /*
380 * We can have double detach due to exit/hot-unplug + close.
381 */
382 if (!(event->attach_state & PERF_ATTACH_GROUP))
383 return;
384
385 event->attach_state &= ~PERF_ATTACH_GROUP;
386
387 /*
388 * If this is a sibling, remove it from its group.
389 */
390 if (event->group_leader != event) {
391 list_del_init(&event->group_entry);
392 event->group_leader->nr_siblings--;
393 return;
394 }
395
396 if (!list_empty(&event->group_entry))
397 list = &event->group_entry;
398
399 /*
400 * If this was a group event with sibling events then
401 * upgrade the siblings to singleton events by adding them
402 * to whatever list we are on.
403 */
404 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
405 if (list)
406 list_move_tail(&sibling->group_entry, list);
407 sibling->group_leader = sibling;
408
409 /* Inherit group flags from the previous leader */
410 sibling->group_flags = event->group_flags;
411 }
412 }
413
414 static inline int
415 event_filter_match(struct perf_event *event)
416 {
417 return event->cpu == -1 || event->cpu == smp_processor_id();
418 }
419
420 static void
421 event_sched_out(struct perf_event *event,
422 struct perf_cpu_context *cpuctx,
423 struct perf_event_context *ctx)
424 {
425 u64 delta;
426 /*
427 * An event which could not be activated because of
428 * filter mismatch still needs to have its timings
429 * maintained, otherwise bogus information is return
430 * via read() for time_enabled, time_running:
431 */
432 if (event->state == PERF_EVENT_STATE_INACTIVE
433 && !event_filter_match(event)) {
434 delta = ctx->time - event->tstamp_stopped;
435 event->tstamp_running += delta;
436 event->tstamp_stopped = ctx->time;
437 }
438
439 if (event->state != PERF_EVENT_STATE_ACTIVE)
440 return;
441
442 event->state = PERF_EVENT_STATE_INACTIVE;
443 if (event->pending_disable) {
444 event->pending_disable = 0;
445 event->state = PERF_EVENT_STATE_OFF;
446 }
447 event->tstamp_stopped = ctx->time;
448 event->pmu->del(event, 0);
449 event->oncpu = -1;
450
451 if (!is_software_event(event))
452 cpuctx->active_oncpu--;
453 ctx->nr_active--;
454 if (event->attr.exclusive || !cpuctx->active_oncpu)
455 cpuctx->exclusive = 0;
456 }
457
458 static void
459 group_sched_out(struct perf_event *group_event,
460 struct perf_cpu_context *cpuctx,
461 struct perf_event_context *ctx)
462 {
463 struct perf_event *event;
464 int state = group_event->state;
465
466 event_sched_out(group_event, cpuctx, ctx);
467
468 /*
469 * Schedule out siblings (if any):
470 */
471 list_for_each_entry(event, &group_event->sibling_list, group_entry)
472 event_sched_out(event, cpuctx, ctx);
473
474 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
475 cpuctx->exclusive = 0;
476 }
477
478 static inline struct perf_cpu_context *
479 __get_cpu_context(struct perf_event_context *ctx)
480 {
481 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
482 }
483
484 /*
485 * Cross CPU call to remove a performance event
486 *
487 * We disable the event on the hardware level first. After that we
488 * remove it from the context list.
489 */
490 static void __perf_event_remove_from_context(void *info)
491 {
492 struct perf_event *event = info;
493 struct perf_event_context *ctx = event->ctx;
494 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
495
496 /*
497 * If this is a task context, we need to check whether it is
498 * the current task context of this cpu. If not it has been
499 * scheduled out before the smp call arrived.
500 */
501 if (ctx->task && cpuctx->task_ctx != ctx)
502 return;
503
504 raw_spin_lock(&ctx->lock);
505
506 event_sched_out(event, cpuctx, ctx);
507
508 list_del_event(event, ctx);
509
510 raw_spin_unlock(&ctx->lock);
511 }
512
513
514 /*
515 * Remove the event from a task's (or a CPU's) list of events.
516 *
517 * Must be called with ctx->mutex held.
518 *
519 * CPU events are removed with a smp call. For task events we only
520 * call when the task is on a CPU.
521 *
522 * If event->ctx is a cloned context, callers must make sure that
523 * every task struct that event->ctx->task could possibly point to
524 * remains valid. This is OK when called from perf_release since
525 * that only calls us on the top-level context, which can't be a clone.
526 * When called from perf_event_exit_task, it's OK because the
527 * context has been detached from its task.
528 */
529 static void perf_event_remove_from_context(struct perf_event *event)
530 {
531 struct perf_event_context *ctx = event->ctx;
532 struct task_struct *task = ctx->task;
533
534 if (!task) {
535 /*
536 * Per cpu events are removed via an smp call and
537 * the removal is always successful.
538 */
539 smp_call_function_single(event->cpu,
540 __perf_event_remove_from_context,
541 event, 1);
542 return;
543 }
544
545 retry:
546 task_oncpu_function_call(task, __perf_event_remove_from_context,
547 event);
548
549 raw_spin_lock_irq(&ctx->lock);
550 /*
551 * If the context is active we need to retry the smp call.
552 */
553 if (ctx->nr_active && !list_empty(&event->group_entry)) {
554 raw_spin_unlock_irq(&ctx->lock);
555 goto retry;
556 }
557
558 /*
559 * The lock prevents that this context is scheduled in so we
560 * can remove the event safely, if the call above did not
561 * succeed.
562 */
563 if (!list_empty(&event->group_entry))
564 list_del_event(event, ctx);
565 raw_spin_unlock_irq(&ctx->lock);
566 }
567
568 /*
569 * Cross CPU call to disable a performance event
570 */
571 static void __perf_event_disable(void *info)
572 {
573 struct perf_event *event = info;
574 struct perf_event_context *ctx = event->ctx;
575 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
576
577 /*
578 * If this is a per-task event, need to check whether this
579 * event's task is the current task on this cpu.
580 */
581 if (ctx->task && cpuctx->task_ctx != ctx)
582 return;
583
584 raw_spin_lock(&ctx->lock);
585
586 /*
587 * If the event is on, turn it off.
588 * If it is in error state, leave it in error state.
589 */
590 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
591 update_context_time(ctx);
592 update_group_times(event);
593 if (event == event->group_leader)
594 group_sched_out(event, cpuctx, ctx);
595 else
596 event_sched_out(event, cpuctx, ctx);
597 event->state = PERF_EVENT_STATE_OFF;
598 }
599
600 raw_spin_unlock(&ctx->lock);
601 }
602
603 /*
604 * Disable a event.
605 *
606 * If event->ctx is a cloned context, callers must make sure that
607 * every task struct that event->ctx->task could possibly point to
608 * remains valid. This condition is satisifed when called through
609 * perf_event_for_each_child or perf_event_for_each because they
610 * hold the top-level event's child_mutex, so any descendant that
611 * goes to exit will block in sync_child_event.
612 * When called from perf_pending_event it's OK because event->ctx
613 * is the current context on this CPU and preemption is disabled,
614 * hence we can't get into perf_event_task_sched_out for this context.
615 */
616 void perf_event_disable(struct perf_event *event)
617 {
618 struct perf_event_context *ctx = event->ctx;
619 struct task_struct *task = ctx->task;
620
621 if (!task) {
622 /*
623 * Disable the event on the cpu that it's on
624 */
625 smp_call_function_single(event->cpu, __perf_event_disable,
626 event, 1);
627 return;
628 }
629
630 retry:
631 task_oncpu_function_call(task, __perf_event_disable, event);
632
633 raw_spin_lock_irq(&ctx->lock);
634 /*
635 * If the event is still active, we need to retry the cross-call.
636 */
637 if (event->state == PERF_EVENT_STATE_ACTIVE) {
638 raw_spin_unlock_irq(&ctx->lock);
639 goto retry;
640 }
641
642 /*
643 * Since we have the lock this context can't be scheduled
644 * in, so we can change the state safely.
645 */
646 if (event->state == PERF_EVENT_STATE_INACTIVE) {
647 update_group_times(event);
648 event->state = PERF_EVENT_STATE_OFF;
649 }
650
651 raw_spin_unlock_irq(&ctx->lock);
652 }
653
654 static int
655 event_sched_in(struct perf_event *event,
656 struct perf_cpu_context *cpuctx,
657 struct perf_event_context *ctx)
658 {
659 if (event->state <= PERF_EVENT_STATE_OFF)
660 return 0;
661
662 event->state = PERF_EVENT_STATE_ACTIVE;
663 event->oncpu = smp_processor_id();
664 /*
665 * The new state must be visible before we turn it on in the hardware:
666 */
667 smp_wmb();
668
669 if (event->pmu->add(event, PERF_EF_START)) {
670 event->state = PERF_EVENT_STATE_INACTIVE;
671 event->oncpu = -1;
672 return -EAGAIN;
673 }
674
675 event->tstamp_running += ctx->time - event->tstamp_stopped;
676
677 event->shadow_ctx_time = ctx->time - ctx->timestamp;
678
679 if (!is_software_event(event))
680 cpuctx->active_oncpu++;
681 ctx->nr_active++;
682
683 if (event->attr.exclusive)
684 cpuctx->exclusive = 1;
685
686 return 0;
687 }
688
689 static int
690 group_sched_in(struct perf_event *group_event,
691 struct perf_cpu_context *cpuctx,
692 struct perf_event_context *ctx)
693 {
694 struct perf_event *event, *partial_group = NULL;
695 struct pmu *pmu = group_event->pmu;
696 u64 now = ctx->time;
697 bool simulate = false;
698
699 if (group_event->state == PERF_EVENT_STATE_OFF)
700 return 0;
701
702 pmu->start_txn(pmu);
703
704 if (event_sched_in(group_event, cpuctx, ctx)) {
705 pmu->cancel_txn(pmu);
706 return -EAGAIN;
707 }
708
709 /*
710 * Schedule in siblings as one group (if any):
711 */
712 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
713 if (event_sched_in(event, cpuctx, ctx)) {
714 partial_group = event;
715 goto group_error;
716 }
717 }
718
719 if (!pmu->commit_txn(pmu))
720 return 0;
721
722 group_error:
723 /*
724 * Groups can be scheduled in as one unit only, so undo any
725 * partial group before returning:
726 * The events up to the failed event are scheduled out normally,
727 * tstamp_stopped will be updated.
728 *
729 * The failed events and the remaining siblings need to have
730 * their timings updated as if they had gone thru event_sched_in()
731 * and event_sched_out(). This is required to get consistent timings
732 * across the group. This also takes care of the case where the group
733 * could never be scheduled by ensuring tstamp_stopped is set to mark
734 * the time the event was actually stopped, such that time delta
735 * calculation in update_event_times() is correct.
736 */
737 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
738 if (event == partial_group)
739 simulate = true;
740
741 if (simulate) {
742 event->tstamp_running += now - event->tstamp_stopped;
743 event->tstamp_stopped = now;
744 } else {
745 event_sched_out(event, cpuctx, ctx);
746 }
747 }
748 event_sched_out(group_event, cpuctx, ctx);
749
750 pmu->cancel_txn(pmu);
751
752 return -EAGAIN;
753 }
754
755 /*
756 * Work out whether we can put this event group on the CPU now.
757 */
758 static int group_can_go_on(struct perf_event *event,
759 struct perf_cpu_context *cpuctx,
760 int can_add_hw)
761 {
762 /*
763 * Groups consisting entirely of software events can always go on.
764 */
765 if (event->group_flags & PERF_GROUP_SOFTWARE)
766 return 1;
767 /*
768 * If an exclusive group is already on, no other hardware
769 * events can go on.
770 */
771 if (cpuctx->exclusive)
772 return 0;
773 /*
774 * If this group is exclusive and there are already
775 * events on the CPU, it can't go on.
776 */
777 if (event->attr.exclusive && cpuctx->active_oncpu)
778 return 0;
779 /*
780 * Otherwise, try to add it if all previous groups were able
781 * to go on.
782 */
783 return can_add_hw;
784 }
785
786 static void add_event_to_ctx(struct perf_event *event,
787 struct perf_event_context *ctx)
788 {
789 list_add_event(event, ctx);
790 perf_group_attach(event);
791 event->tstamp_enabled = ctx->time;
792 event->tstamp_running = ctx->time;
793 event->tstamp_stopped = ctx->time;
794 }
795
796 /*
797 * Cross CPU call to install and enable a performance event
798 *
799 * Must be called with ctx->mutex held
800 */
801 static void __perf_install_in_context(void *info)
802 {
803 struct perf_event *event = info;
804 struct perf_event_context *ctx = event->ctx;
805 struct perf_event *leader = event->group_leader;
806 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
807 int err;
808
809 /*
810 * If this is a task context, we need to check whether it is
811 * the current task context of this cpu. If not it has been
812 * scheduled out before the smp call arrived.
813 * Or possibly this is the right context but it isn't
814 * on this cpu because it had no events.
815 */
816 if (ctx->task && cpuctx->task_ctx != ctx) {
817 if (cpuctx->task_ctx || ctx->task != current)
818 return;
819 cpuctx->task_ctx = ctx;
820 }
821
822 raw_spin_lock(&ctx->lock);
823 ctx->is_active = 1;
824 update_context_time(ctx);
825
826 add_event_to_ctx(event, ctx);
827
828 if (event->cpu != -1 && event->cpu != smp_processor_id())
829 goto unlock;
830
831 /*
832 * Don't put the event on if it is disabled or if
833 * it is in a group and the group isn't on.
834 */
835 if (event->state != PERF_EVENT_STATE_INACTIVE ||
836 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
837 goto unlock;
838
839 /*
840 * An exclusive event can't go on if there are already active
841 * hardware events, and no hardware event can go on if there
842 * is already an exclusive event on.
843 */
844 if (!group_can_go_on(event, cpuctx, 1))
845 err = -EEXIST;
846 else
847 err = event_sched_in(event, cpuctx, ctx);
848
849 if (err) {
850 /*
851 * This event couldn't go on. If it is in a group
852 * then we have to pull the whole group off.
853 * If the event group is pinned then put it in error state.
854 */
855 if (leader != event)
856 group_sched_out(leader, cpuctx, ctx);
857 if (leader->attr.pinned) {
858 update_group_times(leader);
859 leader->state = PERF_EVENT_STATE_ERROR;
860 }
861 }
862
863 unlock:
864 raw_spin_unlock(&ctx->lock);
865 }
866
867 /*
868 * Attach a performance event to a context
869 *
870 * First we add the event to the list with the hardware enable bit
871 * in event->hw_config cleared.
872 *
873 * If the event is attached to a task which is on a CPU we use a smp
874 * call to enable it in the task context. The task might have been
875 * scheduled away, but we check this in the smp call again.
876 *
877 * Must be called with ctx->mutex held.
878 */
879 static void
880 perf_install_in_context(struct perf_event_context *ctx,
881 struct perf_event *event,
882 int cpu)
883 {
884 struct task_struct *task = ctx->task;
885
886 event->ctx = ctx;
887
888 if (!task) {
889 /*
890 * Per cpu events are installed via an smp call and
891 * the install is always successful.
892 */
893 smp_call_function_single(cpu, __perf_install_in_context,
894 event, 1);
895 return;
896 }
897
898 retry:
899 task_oncpu_function_call(task, __perf_install_in_context,
900 event);
901
902 raw_spin_lock_irq(&ctx->lock);
903 /*
904 * we need to retry the smp call.
905 */
906 if (ctx->is_active && list_empty(&event->group_entry)) {
907 raw_spin_unlock_irq(&ctx->lock);
908 goto retry;
909 }
910
911 /*
912 * The lock prevents that this context is scheduled in so we
913 * can add the event safely, if it the call above did not
914 * succeed.
915 */
916 if (list_empty(&event->group_entry))
917 add_event_to_ctx(event, ctx);
918 raw_spin_unlock_irq(&ctx->lock);
919 }
920
921 /*
922 * Put a event into inactive state and update time fields.
923 * Enabling the leader of a group effectively enables all
924 * the group members that aren't explicitly disabled, so we
925 * have to update their ->tstamp_enabled also.
926 * Note: this works for group members as well as group leaders
927 * since the non-leader members' sibling_lists will be empty.
928 */
929 static void __perf_event_mark_enabled(struct perf_event *event,
930 struct perf_event_context *ctx)
931 {
932 struct perf_event *sub;
933
934 event->state = PERF_EVENT_STATE_INACTIVE;
935 event->tstamp_enabled = ctx->time - event->total_time_enabled;
936 list_for_each_entry(sub, &event->sibling_list, group_entry) {
937 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
938 sub->tstamp_enabled =
939 ctx->time - sub->total_time_enabled;
940 }
941 }
942 }
943
944 /*
945 * Cross CPU call to enable a performance event
946 */
947 static void __perf_event_enable(void *info)
948 {
949 struct perf_event *event = info;
950 struct perf_event_context *ctx = event->ctx;
951 struct perf_event *leader = event->group_leader;
952 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
953 int err;
954
955 /*
956 * If this is a per-task event, need to check whether this
957 * event's task is the current task on this cpu.
958 */
959 if (ctx->task && cpuctx->task_ctx != ctx) {
960 if (cpuctx->task_ctx || ctx->task != current)
961 return;
962 cpuctx->task_ctx = ctx;
963 }
964
965 raw_spin_lock(&ctx->lock);
966 ctx->is_active = 1;
967 update_context_time(ctx);
968
969 if (event->state >= PERF_EVENT_STATE_INACTIVE)
970 goto unlock;
971 __perf_event_mark_enabled(event, ctx);
972
973 if (event->cpu != -1 && event->cpu != smp_processor_id())
974 goto unlock;
975
976 /*
977 * If the event is in a group and isn't the group leader,
978 * then don't put it on unless the group is on.
979 */
980 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
981 goto unlock;
982
983 if (!group_can_go_on(event, cpuctx, 1)) {
984 err = -EEXIST;
985 } else {
986 if (event == leader)
987 err = group_sched_in(event, cpuctx, ctx);
988 else
989 err = event_sched_in(event, cpuctx, ctx);
990 }
991
992 if (err) {
993 /*
994 * If this event can't go on and it's part of a
995 * group, then the whole group has to come off.
996 */
997 if (leader != event)
998 group_sched_out(leader, cpuctx, ctx);
999 if (leader->attr.pinned) {
1000 update_group_times(leader);
1001 leader->state = PERF_EVENT_STATE_ERROR;
1002 }
1003 }
1004
1005 unlock:
1006 raw_spin_unlock(&ctx->lock);
1007 }
1008
1009 /*
1010 * Enable a event.
1011 *
1012 * If event->ctx is a cloned context, callers must make sure that
1013 * every task struct that event->ctx->task could possibly point to
1014 * remains valid. This condition is satisfied when called through
1015 * perf_event_for_each_child or perf_event_for_each as described
1016 * for perf_event_disable.
1017 */
1018 void perf_event_enable(struct perf_event *event)
1019 {
1020 struct perf_event_context *ctx = event->ctx;
1021 struct task_struct *task = ctx->task;
1022
1023 if (!task) {
1024 /*
1025 * Enable the event on the cpu that it's on
1026 */
1027 smp_call_function_single(event->cpu, __perf_event_enable,
1028 event, 1);
1029 return;
1030 }
1031
1032 raw_spin_lock_irq(&ctx->lock);
1033 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1034 goto out;
1035
1036 /*
1037 * If the event is in error state, clear that first.
1038 * That way, if we see the event in error state below, we
1039 * know that it has gone back into error state, as distinct
1040 * from the task having been scheduled away before the
1041 * cross-call arrived.
1042 */
1043 if (event->state == PERF_EVENT_STATE_ERROR)
1044 event->state = PERF_EVENT_STATE_OFF;
1045
1046 retry:
1047 raw_spin_unlock_irq(&ctx->lock);
1048 task_oncpu_function_call(task, __perf_event_enable, event);
1049
1050 raw_spin_lock_irq(&ctx->lock);
1051
1052 /*
1053 * If the context is active and the event is still off,
1054 * we need to retry the cross-call.
1055 */
1056 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1057 goto retry;
1058
1059 /*
1060 * Since we have the lock this context can't be scheduled
1061 * in, so we can change the state safely.
1062 */
1063 if (event->state == PERF_EVENT_STATE_OFF)
1064 __perf_event_mark_enabled(event, ctx);
1065
1066 out:
1067 raw_spin_unlock_irq(&ctx->lock);
1068 }
1069
1070 static int perf_event_refresh(struct perf_event *event, int refresh)
1071 {
1072 /*
1073 * not supported on inherited events
1074 */
1075 if (event->attr.inherit)
1076 return -EINVAL;
1077
1078 atomic_add(refresh, &event->event_limit);
1079 perf_event_enable(event);
1080
1081 return 0;
1082 }
1083
1084 enum event_type_t {
1085 EVENT_FLEXIBLE = 0x1,
1086 EVENT_PINNED = 0x2,
1087 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1088 };
1089
1090 static void ctx_sched_out(struct perf_event_context *ctx,
1091 struct perf_cpu_context *cpuctx,
1092 enum event_type_t event_type)
1093 {
1094 struct perf_event *event;
1095
1096 raw_spin_lock(&ctx->lock);
1097 perf_pmu_disable(ctx->pmu);
1098 ctx->is_active = 0;
1099 if (likely(!ctx->nr_events))
1100 goto out;
1101 update_context_time(ctx);
1102
1103 if (!ctx->nr_active)
1104 goto out;
1105
1106 if (event_type & EVENT_PINNED) {
1107 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1108 group_sched_out(event, cpuctx, ctx);
1109 }
1110
1111 if (event_type & EVENT_FLEXIBLE) {
1112 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1113 group_sched_out(event, cpuctx, ctx);
1114 }
1115 out:
1116 perf_pmu_enable(ctx->pmu);
1117 raw_spin_unlock(&ctx->lock);
1118 }
1119
1120 /*
1121 * Test whether two contexts are equivalent, i.e. whether they
1122 * have both been cloned from the same version of the same context
1123 * and they both have the same number of enabled events.
1124 * If the number of enabled events is the same, then the set
1125 * of enabled events should be the same, because these are both
1126 * inherited contexts, therefore we can't access individual events
1127 * in them directly with an fd; we can only enable/disable all
1128 * events via prctl, or enable/disable all events in a family
1129 * via ioctl, which will have the same effect on both contexts.
1130 */
1131 static int context_equiv(struct perf_event_context *ctx1,
1132 struct perf_event_context *ctx2)
1133 {
1134 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1135 && ctx1->parent_gen == ctx2->parent_gen
1136 && !ctx1->pin_count && !ctx2->pin_count;
1137 }
1138
1139 static void __perf_event_sync_stat(struct perf_event *event,
1140 struct perf_event *next_event)
1141 {
1142 u64 value;
1143
1144 if (!event->attr.inherit_stat)
1145 return;
1146
1147 /*
1148 * Update the event value, we cannot use perf_event_read()
1149 * because we're in the middle of a context switch and have IRQs
1150 * disabled, which upsets smp_call_function_single(), however
1151 * we know the event must be on the current CPU, therefore we
1152 * don't need to use it.
1153 */
1154 switch (event->state) {
1155 case PERF_EVENT_STATE_ACTIVE:
1156 event->pmu->read(event);
1157 /* fall-through */
1158
1159 case PERF_EVENT_STATE_INACTIVE:
1160 update_event_times(event);
1161 break;
1162
1163 default:
1164 break;
1165 }
1166
1167 /*
1168 * In order to keep per-task stats reliable we need to flip the event
1169 * values when we flip the contexts.
1170 */
1171 value = local64_read(&next_event->count);
1172 value = local64_xchg(&event->count, value);
1173 local64_set(&next_event->count, value);
1174
1175 swap(event->total_time_enabled, next_event->total_time_enabled);
1176 swap(event->total_time_running, next_event->total_time_running);
1177
1178 /*
1179 * Since we swizzled the values, update the user visible data too.
1180 */
1181 perf_event_update_userpage(event);
1182 perf_event_update_userpage(next_event);
1183 }
1184
1185 #define list_next_entry(pos, member) \
1186 list_entry(pos->member.next, typeof(*pos), member)
1187
1188 static void perf_event_sync_stat(struct perf_event_context *ctx,
1189 struct perf_event_context *next_ctx)
1190 {
1191 struct perf_event *event, *next_event;
1192
1193 if (!ctx->nr_stat)
1194 return;
1195
1196 update_context_time(ctx);
1197
1198 event = list_first_entry(&ctx->event_list,
1199 struct perf_event, event_entry);
1200
1201 next_event = list_first_entry(&next_ctx->event_list,
1202 struct perf_event, event_entry);
1203
1204 while (&event->event_entry != &ctx->event_list &&
1205 &next_event->event_entry != &next_ctx->event_list) {
1206
1207 __perf_event_sync_stat(event, next_event);
1208
1209 event = list_next_entry(event, event_entry);
1210 next_event = list_next_entry(next_event, event_entry);
1211 }
1212 }
1213
1214 void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1215 struct task_struct *next)
1216 {
1217 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1218 struct perf_event_context *next_ctx;
1219 struct perf_event_context *parent;
1220 struct perf_cpu_context *cpuctx;
1221 int do_switch = 1;
1222
1223 if (likely(!ctx))
1224 return;
1225
1226 cpuctx = __get_cpu_context(ctx);
1227 if (!cpuctx->task_ctx)
1228 return;
1229
1230 rcu_read_lock();
1231 parent = rcu_dereference(ctx->parent_ctx);
1232 next_ctx = next->perf_event_ctxp[ctxn];
1233 if (parent && next_ctx &&
1234 rcu_dereference(next_ctx->parent_ctx) == parent) {
1235 /*
1236 * Looks like the two contexts are clones, so we might be
1237 * able to optimize the context switch. We lock both
1238 * contexts and check that they are clones under the
1239 * lock (including re-checking that neither has been
1240 * uncloned in the meantime). It doesn't matter which
1241 * order we take the locks because no other cpu could
1242 * be trying to lock both of these tasks.
1243 */
1244 raw_spin_lock(&ctx->lock);
1245 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1246 if (context_equiv(ctx, next_ctx)) {
1247 /*
1248 * XXX do we need a memory barrier of sorts
1249 * wrt to rcu_dereference() of perf_event_ctxp
1250 */
1251 task->perf_event_ctxp[ctxn] = next_ctx;
1252 next->perf_event_ctxp[ctxn] = ctx;
1253 ctx->task = next;
1254 next_ctx->task = task;
1255 do_switch = 0;
1256
1257 perf_event_sync_stat(ctx, next_ctx);
1258 }
1259 raw_spin_unlock(&next_ctx->lock);
1260 raw_spin_unlock(&ctx->lock);
1261 }
1262 rcu_read_unlock();
1263
1264 if (do_switch) {
1265 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1266 cpuctx->task_ctx = NULL;
1267 }
1268 }
1269
1270 #define for_each_task_context_nr(ctxn) \
1271 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1272
1273 /*
1274 * Called from scheduler to remove the events of the current task,
1275 * with interrupts disabled.
1276 *
1277 * We stop each event and update the event value in event->count.
1278 *
1279 * This does not protect us against NMI, but disable()
1280 * sets the disabled bit in the control field of event _before_
1281 * accessing the event control register. If a NMI hits, then it will
1282 * not restart the event.
1283 */
1284 void __perf_event_task_sched_out(struct task_struct *task,
1285 struct task_struct *next)
1286 {
1287 int ctxn;
1288
1289 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1290
1291 for_each_task_context_nr(ctxn)
1292 perf_event_context_sched_out(task, ctxn, next);
1293 }
1294
1295 static void task_ctx_sched_out(struct perf_event_context *ctx,
1296 enum event_type_t event_type)
1297 {
1298 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1299
1300 if (!cpuctx->task_ctx)
1301 return;
1302
1303 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1304 return;
1305
1306 ctx_sched_out(ctx, cpuctx, event_type);
1307 cpuctx->task_ctx = NULL;
1308 }
1309
1310 /*
1311 * Called with IRQs disabled
1312 */
1313 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1314 enum event_type_t event_type)
1315 {
1316 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1317 }
1318
1319 static void
1320 ctx_pinned_sched_in(struct perf_event_context *ctx,
1321 struct perf_cpu_context *cpuctx)
1322 {
1323 struct perf_event *event;
1324
1325 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1326 if (event->state <= PERF_EVENT_STATE_OFF)
1327 continue;
1328 if (event->cpu != -1 && event->cpu != smp_processor_id())
1329 continue;
1330
1331 if (group_can_go_on(event, cpuctx, 1))
1332 group_sched_in(event, cpuctx, ctx);
1333
1334 /*
1335 * If this pinned group hasn't been scheduled,
1336 * put it in error state.
1337 */
1338 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1339 update_group_times(event);
1340 event->state = PERF_EVENT_STATE_ERROR;
1341 }
1342 }
1343 }
1344
1345 static void
1346 ctx_flexible_sched_in(struct perf_event_context *ctx,
1347 struct perf_cpu_context *cpuctx)
1348 {
1349 struct perf_event *event;
1350 int can_add_hw = 1;
1351
1352 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1353 /* Ignore events in OFF or ERROR state */
1354 if (event->state <= PERF_EVENT_STATE_OFF)
1355 continue;
1356 /*
1357 * Listen to the 'cpu' scheduling filter constraint
1358 * of events:
1359 */
1360 if (event->cpu != -1 && event->cpu != smp_processor_id())
1361 continue;
1362
1363 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1364 if (group_sched_in(event, cpuctx, ctx))
1365 can_add_hw = 0;
1366 }
1367 }
1368 }
1369
1370 static void
1371 ctx_sched_in(struct perf_event_context *ctx,
1372 struct perf_cpu_context *cpuctx,
1373 enum event_type_t event_type)
1374 {
1375 raw_spin_lock(&ctx->lock);
1376 ctx->is_active = 1;
1377 if (likely(!ctx->nr_events))
1378 goto out;
1379
1380 ctx->timestamp = perf_clock();
1381
1382 /*
1383 * First go through the list and put on any pinned groups
1384 * in order to give them the best chance of going on.
1385 */
1386 if (event_type & EVENT_PINNED)
1387 ctx_pinned_sched_in(ctx, cpuctx);
1388
1389 /* Then walk through the lower prio flexible groups */
1390 if (event_type & EVENT_FLEXIBLE)
1391 ctx_flexible_sched_in(ctx, cpuctx);
1392
1393 out:
1394 raw_spin_unlock(&ctx->lock);
1395 }
1396
1397 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1398 enum event_type_t event_type)
1399 {
1400 struct perf_event_context *ctx = &cpuctx->ctx;
1401
1402 ctx_sched_in(ctx, cpuctx, event_type);
1403 }
1404
1405 static void task_ctx_sched_in(struct perf_event_context *ctx,
1406 enum event_type_t event_type)
1407 {
1408 struct perf_cpu_context *cpuctx;
1409
1410 cpuctx = __get_cpu_context(ctx);
1411 if (cpuctx->task_ctx == ctx)
1412 return;
1413
1414 ctx_sched_in(ctx, cpuctx, event_type);
1415 cpuctx->task_ctx = ctx;
1416 }
1417
1418 void perf_event_context_sched_in(struct perf_event_context *ctx)
1419 {
1420 struct perf_cpu_context *cpuctx;
1421
1422 cpuctx = __get_cpu_context(ctx);
1423 if (cpuctx->task_ctx == ctx)
1424 return;
1425
1426 perf_pmu_disable(ctx->pmu);
1427 /*
1428 * We want to keep the following priority order:
1429 * cpu pinned (that don't need to move), task pinned,
1430 * cpu flexible, task flexible.
1431 */
1432 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1433
1434 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1435 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1436 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1437
1438 cpuctx->task_ctx = ctx;
1439
1440 /*
1441 * Since these rotations are per-cpu, we need to ensure the
1442 * cpu-context we got scheduled on is actually rotating.
1443 */
1444 perf_pmu_rotate_start(ctx->pmu);
1445 perf_pmu_enable(ctx->pmu);
1446 }
1447
1448 /*
1449 * Called from scheduler to add the events of the current task
1450 * with interrupts disabled.
1451 *
1452 * We restore the event value and then enable it.
1453 *
1454 * This does not protect us against NMI, but enable()
1455 * sets the enabled bit in the control field of event _before_
1456 * accessing the event control register. If a NMI hits, then it will
1457 * keep the event running.
1458 */
1459 void __perf_event_task_sched_in(struct task_struct *task)
1460 {
1461 struct perf_event_context *ctx;
1462 int ctxn;
1463
1464 for_each_task_context_nr(ctxn) {
1465 ctx = task->perf_event_ctxp[ctxn];
1466 if (likely(!ctx))
1467 continue;
1468
1469 perf_event_context_sched_in(ctx);
1470 }
1471 }
1472
1473 #define MAX_INTERRUPTS (~0ULL)
1474
1475 static void perf_log_throttle(struct perf_event *event, int enable);
1476
1477 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1478 {
1479 u64 frequency = event->attr.sample_freq;
1480 u64 sec = NSEC_PER_SEC;
1481 u64 divisor, dividend;
1482
1483 int count_fls, nsec_fls, frequency_fls, sec_fls;
1484
1485 count_fls = fls64(count);
1486 nsec_fls = fls64(nsec);
1487 frequency_fls = fls64(frequency);
1488 sec_fls = 30;
1489
1490 /*
1491 * We got @count in @nsec, with a target of sample_freq HZ
1492 * the target period becomes:
1493 *
1494 * @count * 10^9
1495 * period = -------------------
1496 * @nsec * sample_freq
1497 *
1498 */
1499
1500 /*
1501 * Reduce accuracy by one bit such that @a and @b converge
1502 * to a similar magnitude.
1503 */
1504 #define REDUCE_FLS(a, b) \
1505 do { \
1506 if (a##_fls > b##_fls) { \
1507 a >>= 1; \
1508 a##_fls--; \
1509 } else { \
1510 b >>= 1; \
1511 b##_fls--; \
1512 } \
1513 } while (0)
1514
1515 /*
1516 * Reduce accuracy until either term fits in a u64, then proceed with
1517 * the other, so that finally we can do a u64/u64 division.
1518 */
1519 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1520 REDUCE_FLS(nsec, frequency);
1521 REDUCE_FLS(sec, count);
1522 }
1523
1524 if (count_fls + sec_fls > 64) {
1525 divisor = nsec * frequency;
1526
1527 while (count_fls + sec_fls > 64) {
1528 REDUCE_FLS(count, sec);
1529 divisor >>= 1;
1530 }
1531
1532 dividend = count * sec;
1533 } else {
1534 dividend = count * sec;
1535
1536 while (nsec_fls + frequency_fls > 64) {
1537 REDUCE_FLS(nsec, frequency);
1538 dividend >>= 1;
1539 }
1540
1541 divisor = nsec * frequency;
1542 }
1543
1544 if (!divisor)
1545 return dividend;
1546
1547 return div64_u64(dividend, divisor);
1548 }
1549
1550 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1551 {
1552 struct hw_perf_event *hwc = &event->hw;
1553 s64 period, sample_period;
1554 s64 delta;
1555
1556 period = perf_calculate_period(event, nsec, count);
1557
1558 delta = (s64)(period - hwc->sample_period);
1559 delta = (delta + 7) / 8; /* low pass filter */
1560
1561 sample_period = hwc->sample_period + delta;
1562
1563 if (!sample_period)
1564 sample_period = 1;
1565
1566 hwc->sample_period = sample_period;
1567
1568 if (local64_read(&hwc->period_left) > 8*sample_period) {
1569 event->pmu->stop(event, PERF_EF_UPDATE);
1570 local64_set(&hwc->period_left, 0);
1571 event->pmu->start(event, PERF_EF_RELOAD);
1572 }
1573 }
1574
1575 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1576 {
1577 struct perf_event *event;
1578 struct hw_perf_event *hwc;
1579 u64 interrupts, now;
1580 s64 delta;
1581
1582 raw_spin_lock(&ctx->lock);
1583 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1584 if (event->state != PERF_EVENT_STATE_ACTIVE)
1585 continue;
1586
1587 if (event->cpu != -1 && event->cpu != smp_processor_id())
1588 continue;
1589
1590 hwc = &event->hw;
1591
1592 interrupts = hwc->interrupts;
1593 hwc->interrupts = 0;
1594
1595 /*
1596 * unthrottle events on the tick
1597 */
1598 if (interrupts == MAX_INTERRUPTS) {
1599 perf_log_throttle(event, 1);
1600 event->pmu->start(event, 0);
1601 }
1602
1603 if (!event->attr.freq || !event->attr.sample_freq)
1604 continue;
1605
1606 event->pmu->read(event);
1607 now = local64_read(&event->count);
1608 delta = now - hwc->freq_count_stamp;
1609 hwc->freq_count_stamp = now;
1610
1611 if (delta > 0)
1612 perf_adjust_period(event, period, delta);
1613 }
1614 raw_spin_unlock(&ctx->lock);
1615 }
1616
1617 /*
1618 * Round-robin a context's events:
1619 */
1620 static void rotate_ctx(struct perf_event_context *ctx)
1621 {
1622 raw_spin_lock(&ctx->lock);
1623
1624 /* Rotate the first entry last of non-pinned groups */
1625 list_rotate_left(&ctx->flexible_groups);
1626
1627 raw_spin_unlock(&ctx->lock);
1628 }
1629
1630 /*
1631 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
1632 * because they're strictly cpu affine and rotate_start is called with IRQs
1633 * disabled, while rotate_context is called from IRQ context.
1634 */
1635 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
1636 {
1637 u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
1638 struct perf_event_context *ctx = NULL;
1639 int rotate = 0, remove = 1;
1640
1641 if (cpuctx->ctx.nr_events) {
1642 remove = 0;
1643 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1644 rotate = 1;
1645 }
1646
1647 ctx = cpuctx->task_ctx;
1648 if (ctx && ctx->nr_events) {
1649 remove = 0;
1650 if (ctx->nr_events != ctx->nr_active)
1651 rotate = 1;
1652 }
1653
1654 perf_pmu_disable(cpuctx->ctx.pmu);
1655 perf_ctx_adjust_freq(&cpuctx->ctx, interval);
1656 if (ctx)
1657 perf_ctx_adjust_freq(ctx, interval);
1658
1659 if (!rotate)
1660 goto done;
1661
1662 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1663 if (ctx)
1664 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1665
1666 rotate_ctx(&cpuctx->ctx);
1667 if (ctx)
1668 rotate_ctx(ctx);
1669
1670 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1671 if (ctx)
1672 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1673
1674 done:
1675 if (remove)
1676 list_del_init(&cpuctx->rotation_list);
1677
1678 perf_pmu_enable(cpuctx->ctx.pmu);
1679 }
1680
1681 void perf_event_task_tick(void)
1682 {
1683 struct list_head *head = &__get_cpu_var(rotation_list);
1684 struct perf_cpu_context *cpuctx, *tmp;
1685
1686 WARN_ON(!irqs_disabled());
1687
1688 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
1689 if (cpuctx->jiffies_interval == 1 ||
1690 !(jiffies % cpuctx->jiffies_interval))
1691 perf_rotate_context(cpuctx);
1692 }
1693 }
1694
1695 static int event_enable_on_exec(struct perf_event *event,
1696 struct perf_event_context *ctx)
1697 {
1698 if (!event->attr.enable_on_exec)
1699 return 0;
1700
1701 event->attr.enable_on_exec = 0;
1702 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1703 return 0;
1704
1705 __perf_event_mark_enabled(event, ctx);
1706
1707 return 1;
1708 }
1709
1710 /*
1711 * Enable all of a task's events that have been marked enable-on-exec.
1712 * This expects task == current.
1713 */
1714 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1715 {
1716 struct perf_event *event;
1717 unsigned long flags;
1718 int enabled = 0;
1719 int ret;
1720
1721 local_irq_save(flags);
1722 if (!ctx || !ctx->nr_events)
1723 goto out;
1724
1725 task_ctx_sched_out(ctx, EVENT_ALL);
1726
1727 raw_spin_lock(&ctx->lock);
1728
1729 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1730 ret = event_enable_on_exec(event, ctx);
1731 if (ret)
1732 enabled = 1;
1733 }
1734
1735 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1736 ret = event_enable_on_exec(event, ctx);
1737 if (ret)
1738 enabled = 1;
1739 }
1740
1741 /*
1742 * Unclone this context if we enabled any event.
1743 */
1744 if (enabled)
1745 unclone_ctx(ctx);
1746
1747 raw_spin_unlock(&ctx->lock);
1748
1749 perf_event_context_sched_in(ctx);
1750 out:
1751 local_irq_restore(flags);
1752 }
1753
1754 /*
1755 * Cross CPU call to read the hardware event
1756 */
1757 static void __perf_event_read(void *info)
1758 {
1759 struct perf_event *event = info;
1760 struct perf_event_context *ctx = event->ctx;
1761 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1762
1763 /*
1764 * If this is a task context, we need to check whether it is
1765 * the current task context of this cpu. If not it has been
1766 * scheduled out before the smp call arrived. In that case
1767 * event->count would have been updated to a recent sample
1768 * when the event was scheduled out.
1769 */
1770 if (ctx->task && cpuctx->task_ctx != ctx)
1771 return;
1772
1773 raw_spin_lock(&ctx->lock);
1774 update_context_time(ctx);
1775 update_event_times(event);
1776 raw_spin_unlock(&ctx->lock);
1777
1778 event->pmu->read(event);
1779 }
1780
1781 static inline u64 perf_event_count(struct perf_event *event)
1782 {
1783 return local64_read(&event->count) + atomic64_read(&event->child_count);
1784 }
1785
1786 static u64 perf_event_read(struct perf_event *event)
1787 {
1788 /*
1789 * If event is enabled and currently active on a CPU, update the
1790 * value in the event structure:
1791 */
1792 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1793 smp_call_function_single(event->oncpu,
1794 __perf_event_read, event, 1);
1795 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1796 struct perf_event_context *ctx = event->ctx;
1797 unsigned long flags;
1798
1799 raw_spin_lock_irqsave(&ctx->lock, flags);
1800 /*
1801 * may read while context is not active
1802 * (e.g., thread is blocked), in that case
1803 * we cannot update context time
1804 */
1805 if (ctx->is_active)
1806 update_context_time(ctx);
1807 update_event_times(event);
1808 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1809 }
1810
1811 return perf_event_count(event);
1812 }
1813
1814 /*
1815 * Callchain support
1816 */
1817
1818 struct callchain_cpus_entries {
1819 struct rcu_head rcu_head;
1820 struct perf_callchain_entry *cpu_entries[0];
1821 };
1822
1823 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1824 static atomic_t nr_callchain_events;
1825 static DEFINE_MUTEX(callchain_mutex);
1826 struct callchain_cpus_entries *callchain_cpus_entries;
1827
1828
1829 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1830 struct pt_regs *regs)
1831 {
1832 }
1833
1834 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1835 struct pt_regs *regs)
1836 {
1837 }
1838
1839 static void release_callchain_buffers_rcu(struct rcu_head *head)
1840 {
1841 struct callchain_cpus_entries *entries;
1842 int cpu;
1843
1844 entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1845
1846 for_each_possible_cpu(cpu)
1847 kfree(entries->cpu_entries[cpu]);
1848
1849 kfree(entries);
1850 }
1851
1852 static void release_callchain_buffers(void)
1853 {
1854 struct callchain_cpus_entries *entries;
1855
1856 entries = callchain_cpus_entries;
1857 rcu_assign_pointer(callchain_cpus_entries, NULL);
1858 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1859 }
1860
1861 static int alloc_callchain_buffers(void)
1862 {
1863 int cpu;
1864 int size;
1865 struct callchain_cpus_entries *entries;
1866
1867 /*
1868 * We can't use the percpu allocation API for data that can be
1869 * accessed from NMI. Use a temporary manual per cpu allocation
1870 * until that gets sorted out.
1871 */
1872 size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
1873 num_possible_cpus();
1874
1875 entries = kzalloc(size, GFP_KERNEL);
1876 if (!entries)
1877 return -ENOMEM;
1878
1879 size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1880
1881 for_each_possible_cpu(cpu) {
1882 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
1883 cpu_to_node(cpu));
1884 if (!entries->cpu_entries[cpu])
1885 goto fail;
1886 }
1887
1888 rcu_assign_pointer(callchain_cpus_entries, entries);
1889
1890 return 0;
1891
1892 fail:
1893 for_each_possible_cpu(cpu)
1894 kfree(entries->cpu_entries[cpu]);
1895 kfree(entries);
1896
1897 return -ENOMEM;
1898 }
1899
1900 static int get_callchain_buffers(void)
1901 {
1902 int err = 0;
1903 int count;
1904
1905 mutex_lock(&callchain_mutex);
1906
1907 count = atomic_inc_return(&nr_callchain_events);
1908 if (WARN_ON_ONCE(count < 1)) {
1909 err = -EINVAL;
1910 goto exit;
1911 }
1912
1913 if (count > 1) {
1914 /* If the allocation failed, give up */
1915 if (!callchain_cpus_entries)
1916 err = -ENOMEM;
1917 goto exit;
1918 }
1919
1920 err = alloc_callchain_buffers();
1921 if (err)
1922 release_callchain_buffers();
1923 exit:
1924 mutex_unlock(&callchain_mutex);
1925
1926 return err;
1927 }
1928
1929 static void put_callchain_buffers(void)
1930 {
1931 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
1932 release_callchain_buffers();
1933 mutex_unlock(&callchain_mutex);
1934 }
1935 }
1936
1937 static int get_recursion_context(int *recursion)
1938 {
1939 int rctx;
1940
1941 if (in_nmi())
1942 rctx = 3;
1943 else if (in_irq())
1944 rctx = 2;
1945 else if (in_softirq())
1946 rctx = 1;
1947 else
1948 rctx = 0;
1949
1950 if (recursion[rctx])
1951 return -1;
1952
1953 recursion[rctx]++;
1954 barrier();
1955
1956 return rctx;
1957 }
1958
1959 static inline void put_recursion_context(int *recursion, int rctx)
1960 {
1961 barrier();
1962 recursion[rctx]--;
1963 }
1964
1965 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
1966 {
1967 int cpu;
1968 struct callchain_cpus_entries *entries;
1969
1970 *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
1971 if (*rctx == -1)
1972 return NULL;
1973
1974 entries = rcu_dereference(callchain_cpus_entries);
1975 if (!entries)
1976 return NULL;
1977
1978 cpu = smp_processor_id();
1979
1980 return &entries->cpu_entries[cpu][*rctx];
1981 }
1982
1983 static void
1984 put_callchain_entry(int rctx)
1985 {
1986 put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
1987 }
1988
1989 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1990 {
1991 int rctx;
1992 struct perf_callchain_entry *entry;
1993
1994
1995 entry = get_callchain_entry(&rctx);
1996 if (rctx == -1)
1997 return NULL;
1998
1999 if (!entry)
2000 goto exit_put;
2001
2002 entry->nr = 0;
2003
2004 if (!user_mode(regs)) {
2005 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2006 perf_callchain_kernel(entry, regs);
2007 if (current->mm)
2008 regs = task_pt_regs(current);
2009 else
2010 regs = NULL;
2011 }
2012
2013 if (regs) {
2014 perf_callchain_store(entry, PERF_CONTEXT_USER);
2015 perf_callchain_user(entry, regs);
2016 }
2017
2018 exit_put:
2019 put_callchain_entry(rctx);
2020
2021 return entry;
2022 }
2023
2024 /*
2025 * Initialize the perf_event context in a task_struct:
2026 */
2027 static void __perf_event_init_context(struct perf_event_context *ctx)
2028 {
2029 raw_spin_lock_init(&ctx->lock);
2030 mutex_init(&ctx->mutex);
2031 INIT_LIST_HEAD(&ctx->pinned_groups);
2032 INIT_LIST_HEAD(&ctx->flexible_groups);
2033 INIT_LIST_HEAD(&ctx->event_list);
2034 atomic_set(&ctx->refcount, 1);
2035 }
2036
2037 static struct perf_event_context *
2038 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2039 {
2040 struct perf_event_context *ctx;
2041
2042 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2043 if (!ctx)
2044 return NULL;
2045
2046 __perf_event_init_context(ctx);
2047 if (task) {
2048 ctx->task = task;
2049 get_task_struct(task);
2050 }
2051 ctx->pmu = pmu;
2052
2053 return ctx;
2054 }
2055
2056 static struct task_struct *
2057 find_lively_task_by_vpid(pid_t vpid)
2058 {
2059 struct task_struct *task;
2060 int err;
2061
2062 rcu_read_lock();
2063 if (!vpid)
2064 task = current;
2065 else
2066 task = find_task_by_vpid(vpid);
2067 if (task)
2068 get_task_struct(task);
2069 rcu_read_unlock();
2070
2071 if (!task)
2072 return ERR_PTR(-ESRCH);
2073
2074 /*
2075 * Can't attach events to a dying task.
2076 */
2077 err = -ESRCH;
2078 if (task->flags & PF_EXITING)
2079 goto errout;
2080
2081 /* Reuse ptrace permission checks for now. */
2082 err = -EACCES;
2083 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2084 goto errout;
2085
2086 return task;
2087 errout:
2088 put_task_struct(task);
2089 return ERR_PTR(err);
2090
2091 }
2092
2093 static struct perf_event_context *
2094 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2095 {
2096 struct perf_event_context *ctx;
2097 struct perf_cpu_context *cpuctx;
2098 unsigned long flags;
2099 int ctxn, err;
2100
2101 if (!task && cpu != -1) {
2102 /* Must be root to operate on a CPU event: */
2103 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2104 return ERR_PTR(-EACCES);
2105
2106 if (cpu < 0 || cpu >= nr_cpumask_bits)
2107 return ERR_PTR(-EINVAL);
2108
2109 /*
2110 * We could be clever and allow to attach a event to an
2111 * offline CPU and activate it when the CPU comes up, but
2112 * that's for later.
2113 */
2114 if (!cpu_online(cpu))
2115 return ERR_PTR(-ENODEV);
2116
2117 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2118 ctx = &cpuctx->ctx;
2119 get_ctx(ctx);
2120
2121 return ctx;
2122 }
2123
2124 err = -EINVAL;
2125 ctxn = pmu->task_ctx_nr;
2126 if (ctxn < 0)
2127 goto errout;
2128
2129 retry:
2130 ctx = perf_lock_task_context(task, ctxn, &flags);
2131 if (ctx) {
2132 unclone_ctx(ctx);
2133 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2134 }
2135
2136 if (!ctx) {
2137 ctx = alloc_perf_context(pmu, task);
2138 err = -ENOMEM;
2139 if (!ctx)
2140 goto errout;
2141
2142 get_ctx(ctx);
2143
2144 if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2145 /*
2146 * We raced with some other task; use
2147 * the context they set.
2148 */
2149 put_task_struct(task);
2150 kfree(ctx);
2151 goto retry;
2152 }
2153 }
2154
2155 return ctx;
2156
2157 errout:
2158 return ERR_PTR(err);
2159 }
2160
2161 static void perf_event_free_filter(struct perf_event *event);
2162
2163 static void free_event_rcu(struct rcu_head *head)
2164 {
2165 struct perf_event *event;
2166
2167 event = container_of(head, struct perf_event, rcu_head);
2168 if (event->ns)
2169 put_pid_ns(event->ns);
2170 perf_event_free_filter(event);
2171 kfree(event);
2172 }
2173
2174 static void perf_buffer_put(struct perf_buffer *buffer);
2175
2176 static void free_event(struct perf_event *event)
2177 {
2178 irq_work_sync(&event->pending);
2179
2180 if (!event->parent) {
2181 if (event->attach_state & PERF_ATTACH_TASK)
2182 jump_label_dec(&perf_task_events);
2183 if (event->attr.mmap || event->attr.mmap_data)
2184 atomic_dec(&nr_mmap_events);
2185 if (event->attr.comm)
2186 atomic_dec(&nr_comm_events);
2187 if (event->attr.task)
2188 atomic_dec(&nr_task_events);
2189 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2190 put_callchain_buffers();
2191 }
2192
2193 if (event->buffer) {
2194 perf_buffer_put(event->buffer);
2195 event->buffer = NULL;
2196 }
2197
2198 if (event->destroy)
2199 event->destroy(event);
2200
2201 if (event->ctx)
2202 put_ctx(event->ctx);
2203
2204 call_rcu(&event->rcu_head, free_event_rcu);
2205 }
2206
2207 int perf_event_release_kernel(struct perf_event *event)
2208 {
2209 struct perf_event_context *ctx = event->ctx;
2210
2211 /*
2212 * Remove from the PMU, can't get re-enabled since we got
2213 * here because the last ref went.
2214 */
2215 perf_event_disable(event);
2216
2217 WARN_ON_ONCE(ctx->parent_ctx);
2218 /*
2219 * There are two ways this annotation is useful:
2220 *
2221 * 1) there is a lock recursion from perf_event_exit_task
2222 * see the comment there.
2223 *
2224 * 2) there is a lock-inversion with mmap_sem through
2225 * perf_event_read_group(), which takes faults while
2226 * holding ctx->mutex, however this is called after
2227 * the last filedesc died, so there is no possibility
2228 * to trigger the AB-BA case.
2229 */
2230 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2231 raw_spin_lock_irq(&ctx->lock);
2232 perf_group_detach(event);
2233 list_del_event(event, ctx);
2234 raw_spin_unlock_irq(&ctx->lock);
2235 mutex_unlock(&ctx->mutex);
2236
2237 mutex_lock(&event->owner->perf_event_mutex);
2238 list_del_init(&event->owner_entry);
2239 mutex_unlock(&event->owner->perf_event_mutex);
2240 put_task_struct(event->owner);
2241
2242 free_event(event);
2243
2244 return 0;
2245 }
2246 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2247
2248 /*
2249 * Called when the last reference to the file is gone.
2250 */
2251 static int perf_release(struct inode *inode, struct file *file)
2252 {
2253 struct perf_event *event = file->private_data;
2254
2255 file->private_data = NULL;
2256
2257 return perf_event_release_kernel(event);
2258 }
2259
2260 static int perf_event_read_size(struct perf_event *event)
2261 {
2262 int entry = sizeof(u64); /* value */
2263 int size = 0;
2264 int nr = 1;
2265
2266 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2267 size += sizeof(u64);
2268
2269 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2270 size += sizeof(u64);
2271
2272 if (event->attr.read_format & PERF_FORMAT_ID)
2273 entry += sizeof(u64);
2274
2275 if (event->attr.read_format & PERF_FORMAT_GROUP) {
2276 nr += event->group_leader->nr_siblings;
2277 size += sizeof(u64);
2278 }
2279
2280 size += entry * nr;
2281
2282 return size;
2283 }
2284
2285 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2286 {
2287 struct perf_event *child;
2288 u64 total = 0;
2289
2290 *enabled = 0;
2291 *running = 0;
2292
2293 mutex_lock(&event->child_mutex);
2294 total += perf_event_read(event);
2295 *enabled += event->total_time_enabled +
2296 atomic64_read(&event->child_total_time_enabled);
2297 *running += event->total_time_running +
2298 atomic64_read(&event->child_total_time_running);
2299
2300 list_for_each_entry(child, &event->child_list, child_list) {
2301 total += perf_event_read(child);
2302 *enabled += child->total_time_enabled;
2303 *running += child->total_time_running;
2304 }
2305 mutex_unlock(&event->child_mutex);
2306
2307 return total;
2308 }
2309 EXPORT_SYMBOL_GPL(perf_event_read_value);
2310
2311 static int perf_event_read_group(struct perf_event *event,
2312 u64 read_format, char __user *buf)
2313 {
2314 struct perf_event *leader = event->group_leader, *sub;
2315 int n = 0, size = 0, ret = -EFAULT;
2316 struct perf_event_context *ctx = leader->ctx;
2317 u64 values[5];
2318 u64 count, enabled, running;
2319
2320 mutex_lock(&ctx->mutex);
2321 count = perf_event_read_value(leader, &enabled, &running);
2322
2323 values[n++] = 1 + leader->nr_siblings;
2324 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2325 values[n++] = enabled;
2326 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2327 values[n++] = running;
2328 values[n++] = count;
2329 if (read_format & PERF_FORMAT_ID)
2330 values[n++] = primary_event_id(leader);
2331
2332 size = n * sizeof(u64);
2333
2334 if (copy_to_user(buf, values, size))
2335 goto unlock;
2336
2337 ret = size;
2338
2339 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2340 n = 0;
2341
2342 values[n++] = perf_event_read_value(sub, &enabled, &running);
2343 if (read_format & PERF_FORMAT_ID)
2344 values[n++] = primary_event_id(sub);
2345
2346 size = n * sizeof(u64);
2347
2348 if (copy_to_user(buf + ret, values, size)) {
2349 ret = -EFAULT;
2350 goto unlock;
2351 }
2352
2353 ret += size;
2354 }
2355 unlock:
2356 mutex_unlock(&ctx->mutex);
2357
2358 return ret;
2359 }
2360
2361 static int perf_event_read_one(struct perf_event *event,
2362 u64 read_format, char __user *buf)
2363 {
2364 u64 enabled, running;
2365 u64 values[4];
2366 int n = 0;
2367
2368 values[n++] = perf_event_read_value(event, &enabled, &running);
2369 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2370 values[n++] = enabled;
2371 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2372 values[n++] = running;
2373 if (read_format & PERF_FORMAT_ID)
2374 values[n++] = primary_event_id(event);
2375
2376 if (copy_to_user(buf, values, n * sizeof(u64)))
2377 return -EFAULT;
2378
2379 return n * sizeof(u64);
2380 }
2381
2382 /*
2383 * Read the performance event - simple non blocking version for now
2384 */
2385 static ssize_t
2386 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2387 {
2388 u64 read_format = event->attr.read_format;
2389 int ret;
2390
2391 /*
2392 * Return end-of-file for a read on a event that is in
2393 * error state (i.e. because it was pinned but it couldn't be
2394 * scheduled on to the CPU at some point).
2395 */
2396 if (event->state == PERF_EVENT_STATE_ERROR)
2397 return 0;
2398
2399 if (count < perf_event_read_size(event))
2400 return -ENOSPC;
2401
2402 WARN_ON_ONCE(event->ctx->parent_ctx);
2403 if (read_format & PERF_FORMAT_GROUP)
2404 ret = perf_event_read_group(event, read_format, buf);
2405 else
2406 ret = perf_event_read_one(event, read_format, buf);
2407
2408 return ret;
2409 }
2410
2411 static ssize_t
2412 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2413 {
2414 struct perf_event *event = file->private_data;
2415
2416 return perf_read_hw(event, buf, count);
2417 }
2418
2419 static unsigned int perf_poll(struct file *file, poll_table *wait)
2420 {
2421 struct perf_event *event = file->private_data;
2422 struct perf_buffer *buffer;
2423 unsigned int events = POLL_HUP;
2424
2425 rcu_read_lock();
2426 buffer = rcu_dereference(event->buffer);
2427 if (buffer)
2428 events = atomic_xchg(&buffer->poll, 0);
2429 rcu_read_unlock();
2430
2431 poll_wait(file, &event->waitq, wait);
2432
2433 return events;
2434 }
2435
2436 static void perf_event_reset(struct perf_event *event)
2437 {
2438 (void)perf_event_read(event);
2439 local64_set(&event->count, 0);
2440 perf_event_update_userpage(event);
2441 }
2442
2443 /*
2444 * Holding the top-level event's child_mutex means that any
2445 * descendant process that has inherited this event will block
2446 * in sync_child_event if it goes to exit, thus satisfying the
2447 * task existence requirements of perf_event_enable/disable.
2448 */
2449 static void perf_event_for_each_child(struct perf_event *event,
2450 void (*func)(struct perf_event *))
2451 {
2452 struct perf_event *child;
2453
2454 WARN_ON_ONCE(event->ctx->parent_ctx);
2455 mutex_lock(&event->child_mutex);
2456 func(event);
2457 list_for_each_entry(child, &event->child_list, child_list)
2458 func(child);
2459 mutex_unlock(&event->child_mutex);
2460 }
2461
2462 static void perf_event_for_each(struct perf_event *event,
2463 void (*func)(struct perf_event *))
2464 {
2465 struct perf_event_context *ctx = event->ctx;
2466 struct perf_event *sibling;
2467
2468 WARN_ON_ONCE(ctx->parent_ctx);
2469 mutex_lock(&ctx->mutex);
2470 event = event->group_leader;
2471
2472 perf_event_for_each_child(event, func);
2473 func(event);
2474 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2475 perf_event_for_each_child(event, func);
2476 mutex_unlock(&ctx->mutex);
2477 }
2478
2479 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2480 {
2481 struct perf_event_context *ctx = event->ctx;
2482 int ret = 0;
2483 u64 value;
2484
2485 if (!event->attr.sample_period)
2486 return -EINVAL;
2487
2488 if (copy_from_user(&value, arg, sizeof(value)))
2489 return -EFAULT;
2490
2491 if (!value)
2492 return -EINVAL;
2493
2494 raw_spin_lock_irq(&ctx->lock);
2495 if (event->attr.freq) {
2496 if (value > sysctl_perf_event_sample_rate) {
2497 ret = -EINVAL;
2498 goto unlock;
2499 }
2500
2501 event->attr.sample_freq = value;
2502 } else {
2503 event->attr.sample_period = value;
2504 event->hw.sample_period = value;
2505 }
2506 unlock:
2507 raw_spin_unlock_irq(&ctx->lock);
2508
2509 return ret;
2510 }
2511
2512 static const struct file_operations perf_fops;
2513
2514 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2515 {
2516 struct file *file;
2517
2518 file = fget_light(fd, fput_needed);
2519 if (!file)
2520 return ERR_PTR(-EBADF);
2521
2522 if (file->f_op != &perf_fops) {
2523 fput_light(file, *fput_needed);
2524 *fput_needed = 0;
2525 return ERR_PTR(-EBADF);
2526 }
2527
2528 return file->private_data;
2529 }
2530
2531 static int perf_event_set_output(struct perf_event *event,
2532 struct perf_event *output_event);
2533 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2534
2535 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2536 {
2537 struct perf_event *event = file->private_data;
2538 void (*func)(struct perf_event *);
2539 u32 flags = arg;
2540
2541 switch (cmd) {
2542 case PERF_EVENT_IOC_ENABLE:
2543 func = perf_event_enable;
2544 break;
2545 case PERF_EVENT_IOC_DISABLE:
2546 func = perf_event_disable;
2547 break;
2548 case PERF_EVENT_IOC_RESET:
2549 func = perf_event_reset;
2550 break;
2551
2552 case PERF_EVENT_IOC_REFRESH:
2553 return perf_event_refresh(event, arg);
2554
2555 case PERF_EVENT_IOC_PERIOD:
2556 return perf_event_period(event, (u64 __user *)arg);
2557
2558 case PERF_EVENT_IOC_SET_OUTPUT:
2559 {
2560 struct perf_event *output_event = NULL;
2561 int fput_needed = 0;
2562 int ret;
2563
2564 if (arg != -1) {
2565 output_event = perf_fget_light(arg, &fput_needed);
2566 if (IS_ERR(output_event))
2567 return PTR_ERR(output_event);
2568 }
2569
2570 ret = perf_event_set_output(event, output_event);
2571 if (output_event)
2572 fput_light(output_event->filp, fput_needed);
2573
2574 return ret;
2575 }
2576
2577 case PERF_EVENT_IOC_SET_FILTER:
2578 return perf_event_set_filter(event, (void __user *)arg);
2579
2580 default:
2581 return -ENOTTY;
2582 }
2583
2584 if (flags & PERF_IOC_FLAG_GROUP)
2585 perf_event_for_each(event, func);
2586 else
2587 perf_event_for_each_child(event, func);
2588
2589 return 0;
2590 }
2591
2592 int perf_event_task_enable(void)
2593 {
2594 struct perf_event *event;
2595
2596 mutex_lock(&current->perf_event_mutex);
2597 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2598 perf_event_for_each_child(event, perf_event_enable);
2599 mutex_unlock(&current->perf_event_mutex);
2600
2601 return 0;
2602 }
2603
2604 int perf_event_task_disable(void)
2605 {
2606 struct perf_event *event;
2607
2608 mutex_lock(&current->perf_event_mutex);
2609 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2610 perf_event_for_each_child(event, perf_event_disable);
2611 mutex_unlock(&current->perf_event_mutex);
2612
2613 return 0;
2614 }
2615
2616 #ifndef PERF_EVENT_INDEX_OFFSET
2617 # define PERF_EVENT_INDEX_OFFSET 0
2618 #endif
2619
2620 static int perf_event_index(struct perf_event *event)
2621 {
2622 if (event->hw.state & PERF_HES_STOPPED)
2623 return 0;
2624
2625 if (event->state != PERF_EVENT_STATE_ACTIVE)
2626 return 0;
2627
2628 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2629 }
2630
2631 /*
2632 * Callers need to ensure there can be no nesting of this function, otherwise
2633 * the seqlock logic goes bad. We can not serialize this because the arch
2634 * code calls this from NMI context.
2635 */
2636 void perf_event_update_userpage(struct perf_event *event)
2637 {
2638 struct perf_event_mmap_page *userpg;
2639 struct perf_buffer *buffer;
2640
2641 rcu_read_lock();
2642 buffer = rcu_dereference(event->buffer);
2643 if (!buffer)
2644 goto unlock;
2645
2646 userpg = buffer->user_page;
2647
2648 /*
2649 * Disable preemption so as to not let the corresponding user-space
2650 * spin too long if we get preempted.
2651 */
2652 preempt_disable();
2653 ++userpg->lock;
2654 barrier();
2655 userpg->index = perf_event_index(event);
2656 userpg->offset = perf_event_count(event);
2657 if (event->state == PERF_EVENT_STATE_ACTIVE)
2658 userpg->offset -= local64_read(&event->hw.prev_count);
2659
2660 userpg->time_enabled = event->total_time_enabled +
2661 atomic64_read(&event->child_total_time_enabled);
2662
2663 userpg->time_running = event->total_time_running +
2664 atomic64_read(&event->child_total_time_running);
2665
2666 barrier();
2667 ++userpg->lock;
2668 preempt_enable();
2669 unlock:
2670 rcu_read_unlock();
2671 }
2672
2673 static unsigned long perf_data_size(struct perf_buffer *buffer);
2674
2675 static void
2676 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2677 {
2678 long max_size = perf_data_size(buffer);
2679
2680 if (watermark)
2681 buffer->watermark = min(max_size, watermark);
2682
2683 if (!buffer->watermark)
2684 buffer->watermark = max_size / 2;
2685
2686 if (flags & PERF_BUFFER_WRITABLE)
2687 buffer->writable = 1;
2688
2689 atomic_set(&buffer->refcount, 1);
2690 }
2691
2692 #ifndef CONFIG_PERF_USE_VMALLOC
2693
2694 /*
2695 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2696 */
2697
2698 static struct page *
2699 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2700 {
2701 if (pgoff > buffer->nr_pages)
2702 return NULL;
2703
2704 if (pgoff == 0)
2705 return virt_to_page(buffer->user_page);
2706
2707 return virt_to_page(buffer->data_pages[pgoff - 1]);
2708 }
2709
2710 static void *perf_mmap_alloc_page(int cpu)
2711 {
2712 struct page *page;
2713 int node;
2714
2715 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2716 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2717 if (!page)
2718 return NULL;
2719
2720 return page_address(page);
2721 }
2722
2723 static struct perf_buffer *
2724 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2725 {
2726 struct perf_buffer *buffer;
2727 unsigned long size;
2728 int i;
2729
2730 size = sizeof(struct perf_buffer);
2731 size += nr_pages * sizeof(void *);
2732
2733 buffer = kzalloc(size, GFP_KERNEL);
2734 if (!buffer)
2735 goto fail;
2736
2737 buffer->user_page = perf_mmap_alloc_page(cpu);
2738 if (!buffer->user_page)
2739 goto fail_user_page;
2740
2741 for (i = 0; i < nr_pages; i++) {
2742 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2743 if (!buffer->data_pages[i])
2744 goto fail_data_pages;
2745 }
2746
2747 buffer->nr_pages = nr_pages;
2748
2749 perf_buffer_init(buffer, watermark, flags);
2750
2751 return buffer;
2752
2753 fail_data_pages:
2754 for (i--; i >= 0; i--)
2755 free_page((unsigned long)buffer->data_pages[i]);
2756
2757 free_page((unsigned long)buffer->user_page);
2758
2759 fail_user_page:
2760 kfree(buffer);
2761
2762 fail:
2763 return NULL;
2764 }
2765
2766 static void perf_mmap_free_page(unsigned long addr)
2767 {
2768 struct page *page = virt_to_page((void *)addr);
2769
2770 page->mapping = NULL;
2771 __free_page(page);
2772 }
2773
2774 static void perf_buffer_free(struct perf_buffer *buffer)
2775 {
2776 int i;
2777
2778 perf_mmap_free_page((unsigned long)buffer->user_page);
2779 for (i = 0; i < buffer->nr_pages; i++)
2780 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2781 kfree(buffer);
2782 }
2783
2784 static inline int page_order(struct perf_buffer *buffer)
2785 {
2786 return 0;
2787 }
2788
2789 #else
2790
2791 /*
2792 * Back perf_mmap() with vmalloc memory.
2793 *
2794 * Required for architectures that have d-cache aliasing issues.
2795 */
2796
2797 static inline int page_order(struct perf_buffer *buffer)
2798 {
2799 return buffer->page_order;
2800 }
2801
2802 static struct page *
2803 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2804 {
2805 if (pgoff > (1UL << page_order(buffer)))
2806 return NULL;
2807
2808 return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2809 }
2810
2811 static void perf_mmap_unmark_page(void *addr)
2812 {
2813 struct page *page = vmalloc_to_page(addr);
2814
2815 page->mapping = NULL;
2816 }
2817
2818 static void perf_buffer_free_work(struct work_struct *work)
2819 {
2820 struct perf_buffer *buffer;
2821 void *base;
2822 int i, nr;
2823
2824 buffer = container_of(work, struct perf_buffer, work);
2825 nr = 1 << page_order(buffer);
2826
2827 base = buffer->user_page;
2828 for (i = 0; i < nr + 1; i++)
2829 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2830
2831 vfree(base);
2832 kfree(buffer);
2833 }
2834
2835 static void perf_buffer_free(struct perf_buffer *buffer)
2836 {
2837 schedule_work(&buffer->work);
2838 }
2839
2840 static struct perf_buffer *
2841 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2842 {
2843 struct perf_buffer *buffer;
2844 unsigned long size;
2845 void *all_buf;
2846
2847 size = sizeof(struct perf_buffer);
2848 size += sizeof(void *);
2849
2850 buffer = kzalloc(size, GFP_KERNEL);
2851 if (!buffer)
2852 goto fail;
2853
2854 INIT_WORK(&buffer->work, perf_buffer_free_work);
2855
2856 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2857 if (!all_buf)
2858 goto fail_all_buf;
2859
2860 buffer->user_page = all_buf;
2861 buffer->data_pages[0] = all_buf + PAGE_SIZE;
2862 buffer->page_order = ilog2(nr_pages);
2863 buffer->nr_pages = 1;
2864
2865 perf_buffer_init(buffer, watermark, flags);
2866
2867 return buffer;
2868
2869 fail_all_buf:
2870 kfree(buffer);
2871
2872 fail:
2873 return NULL;
2874 }
2875
2876 #endif
2877
2878 static unsigned long perf_data_size(struct perf_buffer *buffer)
2879 {
2880 return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2881 }
2882
2883 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2884 {
2885 struct perf_event *event = vma->vm_file->private_data;
2886 struct perf_buffer *buffer;
2887 int ret = VM_FAULT_SIGBUS;
2888
2889 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2890 if (vmf->pgoff == 0)
2891 ret = 0;
2892 return ret;
2893 }
2894
2895 rcu_read_lock();
2896 buffer = rcu_dereference(event->buffer);
2897 if (!buffer)
2898 goto unlock;
2899
2900 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2901 goto unlock;
2902
2903 vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2904 if (!vmf->page)
2905 goto unlock;
2906
2907 get_page(vmf->page);
2908 vmf->page->mapping = vma->vm_file->f_mapping;
2909 vmf->page->index = vmf->pgoff;
2910
2911 ret = 0;
2912 unlock:
2913 rcu_read_unlock();
2914
2915 return ret;
2916 }
2917
2918 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2919 {
2920 struct perf_buffer *buffer;
2921
2922 buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
2923 perf_buffer_free(buffer);
2924 }
2925
2926 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2927 {
2928 struct perf_buffer *buffer;
2929
2930 rcu_read_lock();
2931 buffer = rcu_dereference(event->buffer);
2932 if (buffer) {
2933 if (!atomic_inc_not_zero(&buffer->refcount))
2934 buffer = NULL;
2935 }
2936 rcu_read_unlock();
2937
2938 return buffer;
2939 }
2940
2941 static void perf_buffer_put(struct perf_buffer *buffer)
2942 {
2943 if (!atomic_dec_and_test(&buffer->refcount))
2944 return;
2945
2946 call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2947 }
2948
2949 static void perf_mmap_open(struct vm_area_struct *vma)
2950 {
2951 struct perf_event *event = vma->vm_file->private_data;
2952
2953 atomic_inc(&event->mmap_count);
2954 }
2955
2956 static void perf_mmap_close(struct vm_area_struct *vma)
2957 {
2958 struct perf_event *event = vma->vm_file->private_data;
2959
2960 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2961 unsigned long size = perf_data_size(event->buffer);
2962 struct user_struct *user = event->mmap_user;
2963 struct perf_buffer *buffer = event->buffer;
2964
2965 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2966 vma->vm_mm->locked_vm -= event->mmap_locked;
2967 rcu_assign_pointer(event->buffer, NULL);
2968 mutex_unlock(&event->mmap_mutex);
2969
2970 perf_buffer_put(buffer);
2971 free_uid(user);
2972 }
2973 }
2974
2975 static const struct vm_operations_struct perf_mmap_vmops = {
2976 .open = perf_mmap_open,
2977 .close = perf_mmap_close,
2978 .fault = perf_mmap_fault,
2979 .page_mkwrite = perf_mmap_fault,
2980 };
2981
2982 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2983 {
2984 struct perf_event *event = file->private_data;
2985 unsigned long user_locked, user_lock_limit;
2986 struct user_struct *user = current_user();
2987 unsigned long locked, lock_limit;
2988 struct perf_buffer *buffer;
2989 unsigned long vma_size;
2990 unsigned long nr_pages;
2991 long user_extra, extra;
2992 int ret = 0, flags = 0;
2993
2994 /*
2995 * Don't allow mmap() of inherited per-task counters. This would
2996 * create a performance issue due to all children writing to the
2997 * same buffer.
2998 */
2999 if (event->cpu == -1 && event->attr.inherit)
3000 return -EINVAL;
3001
3002 if (!(vma->vm_flags & VM_SHARED))
3003 return -EINVAL;
3004
3005 vma_size = vma->vm_end - vma->vm_start;
3006 nr_pages = (vma_size / PAGE_SIZE) - 1;
3007
3008 /*
3009 * If we have buffer pages ensure they're a power-of-two number, so we
3010 * can do bitmasks instead of modulo.
3011 */
3012 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3013 return -EINVAL;
3014
3015 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3016 return -EINVAL;
3017
3018 if (vma->vm_pgoff != 0)
3019 return -EINVAL;
3020
3021 WARN_ON_ONCE(event->ctx->parent_ctx);
3022 mutex_lock(&event->mmap_mutex);
3023 if (event->buffer) {
3024 if (event->buffer->nr_pages == nr_pages)
3025 atomic_inc(&event->buffer->refcount);
3026 else
3027 ret = -EINVAL;
3028 goto unlock;
3029 }
3030
3031 user_extra = nr_pages + 1;
3032 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3033
3034 /*
3035 * Increase the limit linearly with more CPUs:
3036 */
3037 user_lock_limit *= num_online_cpus();
3038
3039 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3040
3041 extra = 0;
3042 if (user_locked > user_lock_limit)
3043 extra = user_locked - user_lock_limit;
3044
3045 lock_limit = rlimit(RLIMIT_MEMLOCK);
3046 lock_limit >>= PAGE_SHIFT;
3047 locked = vma->vm_mm->locked_vm + extra;
3048
3049 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3050 !capable(CAP_IPC_LOCK)) {
3051 ret = -EPERM;
3052 goto unlock;
3053 }
3054
3055 WARN_ON(event->buffer);
3056
3057 if (vma->vm_flags & VM_WRITE)
3058 flags |= PERF_BUFFER_WRITABLE;
3059
3060 buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3061 event->cpu, flags);
3062 if (!buffer) {
3063 ret = -ENOMEM;
3064 goto unlock;
3065 }
3066 rcu_assign_pointer(event->buffer, buffer);
3067
3068 atomic_long_add(user_extra, &user->locked_vm);
3069 event->mmap_locked = extra;
3070 event->mmap_user = get_current_user();
3071 vma->vm_mm->locked_vm += event->mmap_locked;
3072
3073 unlock:
3074 if (!ret)
3075 atomic_inc(&event->mmap_count);
3076 mutex_unlock(&event->mmap_mutex);
3077
3078 vma->vm_flags |= VM_RESERVED;
3079 vma->vm_ops = &perf_mmap_vmops;
3080
3081 return ret;
3082 }
3083
3084 static int perf_fasync(int fd, struct file *filp, int on)
3085 {
3086 struct inode *inode = filp->f_path.dentry->d_inode;
3087 struct perf_event *event = filp->private_data;
3088 int retval;
3089
3090 mutex_lock(&inode->i_mutex);
3091 retval = fasync_helper(fd, filp, on, &event->fasync);
3092 mutex_unlock(&inode->i_mutex);
3093
3094 if (retval < 0)
3095 return retval;
3096
3097 return 0;
3098 }
3099
3100 static const struct file_operations perf_fops = {
3101 .llseek = no_llseek,
3102 .release = perf_release,
3103 .read = perf_read,
3104 .poll = perf_poll,
3105 .unlocked_ioctl = perf_ioctl,
3106 .compat_ioctl = perf_ioctl,
3107 .mmap = perf_mmap,
3108 .fasync = perf_fasync,
3109 };
3110
3111 /*
3112 * Perf event wakeup
3113 *
3114 * If there's data, ensure we set the poll() state and publish everything
3115 * to user-space before waking everybody up.
3116 */
3117
3118 void perf_event_wakeup(struct perf_event *event)
3119 {
3120 wake_up_all(&event->waitq);
3121
3122 if (event->pending_kill) {
3123 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3124 event->pending_kill = 0;
3125 }
3126 }
3127
3128 static void perf_pending_event(struct irq_work *entry)
3129 {
3130 struct perf_event *event = container_of(entry,
3131 struct perf_event, pending);
3132
3133 if (event->pending_disable) {
3134 event->pending_disable = 0;
3135 __perf_event_disable(event);
3136 }
3137
3138 if (event->pending_wakeup) {
3139 event->pending_wakeup = 0;
3140 perf_event_wakeup(event);
3141 }
3142 }
3143
3144 /*
3145 * We assume there is only KVM supporting the callbacks.
3146 * Later on, we might change it to a list if there is
3147 * another virtualization implementation supporting the callbacks.
3148 */
3149 struct perf_guest_info_callbacks *perf_guest_cbs;
3150
3151 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3152 {
3153 perf_guest_cbs = cbs;
3154 return 0;
3155 }
3156 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3157
3158 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3159 {
3160 perf_guest_cbs = NULL;
3161 return 0;
3162 }
3163 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3164
3165 /*
3166 * Output
3167 */
3168 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3169 unsigned long offset, unsigned long head)
3170 {
3171 unsigned long mask;
3172
3173 if (!buffer->writable)
3174 return true;
3175
3176 mask = perf_data_size(buffer) - 1;
3177
3178 offset = (offset - tail) & mask;
3179 head = (head - tail) & mask;
3180
3181 if ((int)(head - offset) < 0)
3182 return false;
3183
3184 return true;
3185 }
3186
3187 static void perf_output_wakeup(struct perf_output_handle *handle)
3188 {
3189 atomic_set(&handle->buffer->poll, POLL_IN);
3190
3191 if (handle->nmi) {
3192 handle->event->pending_wakeup = 1;
3193 irq_work_queue(&handle->event->pending);
3194 } else
3195 perf_event_wakeup(handle->event);
3196 }
3197
3198 /*
3199 * We need to ensure a later event_id doesn't publish a head when a former
3200 * event isn't done writing. However since we need to deal with NMIs we
3201 * cannot fully serialize things.
3202 *
3203 * We only publish the head (and generate a wakeup) when the outer-most
3204 * event completes.
3205 */
3206 static void perf_output_get_handle(struct perf_output_handle *handle)
3207 {
3208 struct perf_buffer *buffer = handle->buffer;
3209
3210 preempt_disable();
3211 local_inc(&buffer->nest);
3212 handle->wakeup = local_read(&buffer->wakeup);
3213 }
3214
3215 static void perf_output_put_handle(struct perf_output_handle *handle)
3216 {
3217 struct perf_buffer *buffer = handle->buffer;
3218 unsigned long head;
3219
3220 again:
3221 head = local_read(&buffer->head);
3222
3223 /*
3224 * IRQ/NMI can happen here, which means we can miss a head update.
3225 */
3226
3227 if (!local_dec_and_test(&buffer->nest))
3228 goto out;
3229
3230 /*
3231 * Publish the known good head. Rely on the full barrier implied
3232 * by atomic_dec_and_test() order the buffer->head read and this
3233 * write.
3234 */
3235 buffer->user_page->data_head = head;
3236
3237 /*
3238 * Now check if we missed an update, rely on the (compiler)
3239 * barrier in atomic_dec_and_test() to re-read buffer->head.
3240 */
3241 if (unlikely(head != local_read(&buffer->head))) {
3242 local_inc(&buffer->nest);
3243 goto again;
3244 }
3245
3246 if (handle->wakeup != local_read(&buffer->wakeup))
3247 perf_output_wakeup(handle);
3248
3249 out:
3250 preempt_enable();
3251 }
3252
3253 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3254 const void *buf, unsigned int len)
3255 {
3256 do {
3257 unsigned long size = min_t(unsigned long, handle->size, len);
3258
3259 memcpy(handle->addr, buf, size);
3260
3261 len -= size;
3262 handle->addr += size;
3263 buf += size;
3264 handle->size -= size;
3265 if (!handle->size) {
3266 struct perf_buffer *buffer = handle->buffer;
3267
3268 handle->page++;
3269 handle->page &= buffer->nr_pages - 1;
3270 handle->addr = buffer->data_pages[handle->page];
3271 handle->size = PAGE_SIZE << page_order(buffer);
3272 }
3273 } while (len);
3274 }
3275
3276 int perf_output_begin(struct perf_output_handle *handle,
3277 struct perf_event *event, unsigned int size,
3278 int nmi, int sample)
3279 {
3280 struct perf_buffer *buffer;
3281 unsigned long tail, offset, head;
3282 int have_lost;
3283 struct {
3284 struct perf_event_header header;
3285 u64 id;
3286 u64 lost;
3287 } lost_event;
3288
3289 rcu_read_lock();
3290 /*
3291 * For inherited events we send all the output towards the parent.
3292 */
3293 if (event->parent)
3294 event = event->parent;
3295
3296 buffer = rcu_dereference(event->buffer);
3297 if (!buffer)
3298 goto out;
3299
3300 handle->buffer = buffer;
3301 handle->event = event;
3302 handle->nmi = nmi;
3303 handle->sample = sample;
3304
3305 if (!buffer->nr_pages)
3306 goto out;
3307
3308 have_lost = local_read(&buffer->lost);
3309 if (have_lost)
3310 size += sizeof(lost_event);
3311
3312 perf_output_get_handle(handle);
3313
3314 do {
3315 /*
3316 * Userspace could choose to issue a mb() before updating the
3317 * tail pointer. So that all reads will be completed before the
3318 * write is issued.
3319 */
3320 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3321 smp_rmb();
3322 offset = head = local_read(&buffer->head);
3323 head += size;
3324 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3325 goto fail;
3326 } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3327
3328 if (head - local_read(&buffer->wakeup) > buffer->watermark)
3329 local_add(buffer->watermark, &buffer->wakeup);
3330
3331 handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3332 handle->page &= buffer->nr_pages - 1;
3333 handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3334 handle->addr = buffer->data_pages[handle->page];
3335 handle->addr += handle->size;
3336 handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3337
3338 if (have_lost) {
3339 lost_event.header.type = PERF_RECORD_LOST;
3340 lost_event.header.misc = 0;
3341 lost_event.header.size = sizeof(lost_event);
3342 lost_event.id = event->id;
3343 lost_event.lost = local_xchg(&buffer->lost, 0);
3344
3345 perf_output_put(handle, lost_event);
3346 }
3347
3348 return 0;
3349
3350 fail:
3351 local_inc(&buffer->lost);
3352 perf_output_put_handle(handle);
3353 out:
3354 rcu_read_unlock();
3355
3356 return -ENOSPC;
3357 }
3358
3359 void perf_output_end(struct perf_output_handle *handle)
3360 {
3361 struct perf_event *event = handle->event;
3362 struct perf_buffer *buffer = handle->buffer;
3363
3364 int wakeup_events = event->attr.wakeup_events;
3365
3366 if (handle->sample && wakeup_events) {
3367 int events = local_inc_return(&buffer->events);
3368 if (events >= wakeup_events) {
3369 local_sub(wakeup_events, &buffer->events);
3370 local_inc(&buffer->wakeup);
3371 }
3372 }
3373
3374 perf_output_put_handle(handle);
3375 rcu_read_unlock();
3376 }
3377
3378 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3379 {
3380 /*
3381 * only top level events have the pid namespace they were created in
3382 */
3383 if (event->parent)
3384 event = event->parent;
3385
3386 return task_tgid_nr_ns(p, event->ns);
3387 }
3388
3389 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3390 {
3391 /*
3392 * only top level events have the pid namespace they were created in
3393 */
3394 if (event->parent)
3395 event = event->parent;
3396
3397 return task_pid_nr_ns(p, event->ns);
3398 }
3399
3400 static void perf_output_read_one(struct perf_output_handle *handle,
3401 struct perf_event *event,
3402 u64 enabled, u64 running)
3403 {
3404 u64 read_format = event->attr.read_format;
3405 u64 values[4];
3406 int n = 0;
3407
3408 values[n++] = perf_event_count(event);
3409 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3410 values[n++] = enabled +
3411 atomic64_read(&event->child_total_time_enabled);
3412 }
3413 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3414 values[n++] = running +
3415 atomic64_read(&event->child_total_time_running);
3416 }
3417 if (read_format & PERF_FORMAT_ID)
3418 values[n++] = primary_event_id(event);
3419
3420 perf_output_copy(handle, values, n * sizeof(u64));
3421 }
3422
3423 /*
3424 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3425 */
3426 static void perf_output_read_group(struct perf_output_handle *handle,
3427 struct perf_event *event,
3428 u64 enabled, u64 running)
3429 {
3430 struct perf_event *leader = event->group_leader, *sub;
3431 u64 read_format = event->attr.read_format;
3432 u64 values[5];
3433 int n = 0;
3434
3435 values[n++] = 1 + leader->nr_siblings;
3436
3437 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3438 values[n++] = enabled;
3439
3440 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3441 values[n++] = running;
3442
3443 if (leader != event)
3444 leader->pmu->read(leader);
3445
3446 values[n++] = perf_event_count(leader);
3447 if (read_format & PERF_FORMAT_ID)
3448 values[n++] = primary_event_id(leader);
3449
3450 perf_output_copy(handle, values, n * sizeof(u64));
3451
3452 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3453 n = 0;
3454
3455 if (sub != event)
3456 sub->pmu->read(sub);
3457
3458 values[n++] = perf_event_count(sub);
3459 if (read_format & PERF_FORMAT_ID)
3460 values[n++] = primary_event_id(sub);
3461
3462 perf_output_copy(handle, values, n * sizeof(u64));
3463 }
3464 }
3465
3466 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3467 PERF_FORMAT_TOTAL_TIME_RUNNING)
3468
3469 static void perf_output_read(struct perf_output_handle *handle,
3470 struct perf_event *event)
3471 {
3472 u64 enabled = 0, running = 0, now, ctx_time;
3473 u64 read_format = event->attr.read_format;
3474
3475 /*
3476 * compute total_time_enabled, total_time_running
3477 * based on snapshot values taken when the event
3478 * was last scheduled in.
3479 *
3480 * we cannot simply called update_context_time()
3481 * because of locking issue as we are called in
3482 * NMI context
3483 */
3484 if (read_format & PERF_FORMAT_TOTAL_TIMES) {
3485 now = perf_clock();
3486 ctx_time = event->shadow_ctx_time + now;
3487 enabled = ctx_time - event->tstamp_enabled;
3488 running = ctx_time - event->tstamp_running;
3489 }
3490
3491 if (event->attr.read_format & PERF_FORMAT_GROUP)
3492 perf_output_read_group(handle, event, enabled, running);
3493 else
3494 perf_output_read_one(handle, event, enabled, running);
3495 }
3496
3497 void perf_output_sample(struct perf_output_handle *handle,
3498 struct perf_event_header *header,
3499 struct perf_sample_data *data,
3500 struct perf_event *event)
3501 {
3502 u64 sample_type = data->type;
3503
3504 perf_output_put(handle, *header);
3505
3506 if (sample_type & PERF_SAMPLE_IP)
3507 perf_output_put(handle, data->ip);
3508
3509 if (sample_type & PERF_SAMPLE_TID)
3510 perf_output_put(handle, data->tid_entry);
3511
3512 if (sample_type & PERF_SAMPLE_TIME)
3513 perf_output_put(handle, data->time);
3514
3515 if (sample_type & PERF_SAMPLE_ADDR)
3516 perf_output_put(handle, data->addr);
3517
3518 if (sample_type & PERF_SAMPLE_ID)
3519 perf_output_put(handle, data->id);
3520
3521 if (sample_type & PERF_SAMPLE_STREAM_ID)
3522 perf_output_put(handle, data->stream_id);
3523
3524 if (sample_type & PERF_SAMPLE_CPU)
3525 perf_output_put(handle, data->cpu_entry);
3526
3527 if (sample_type & PERF_SAMPLE_PERIOD)
3528 perf_output_put(handle, data->period);
3529
3530 if (sample_type & PERF_SAMPLE_READ)
3531 perf_output_read(handle, event);
3532
3533 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3534 if (data->callchain) {
3535 int size = 1;
3536
3537 if (data->callchain)
3538 size += data->callchain->nr;
3539
3540 size *= sizeof(u64);
3541
3542 perf_output_copy(handle, data->callchain, size);
3543 } else {
3544 u64 nr = 0;
3545 perf_output_put(handle, nr);
3546 }
3547 }
3548
3549 if (sample_type & PERF_SAMPLE_RAW) {
3550 if (data->raw) {
3551 perf_output_put(handle, data->raw->size);
3552 perf_output_copy(handle, data->raw->data,
3553 data->raw->size);
3554 } else {
3555 struct {
3556 u32 size;
3557 u32 data;
3558 } raw = {
3559 .size = sizeof(u32),
3560 .data = 0,
3561 };
3562 perf_output_put(handle, raw);
3563 }
3564 }
3565 }
3566
3567 void perf_prepare_sample(struct perf_event_header *header,
3568 struct perf_sample_data *data,
3569 struct perf_event *event,
3570 struct pt_regs *regs)
3571 {
3572 u64 sample_type = event->attr.sample_type;
3573
3574 data->type = sample_type;
3575
3576 header->type = PERF_RECORD_SAMPLE;
3577 header->size = sizeof(*header);
3578
3579 header->misc = 0;
3580 header->misc |= perf_misc_flags(regs);
3581
3582 if (sample_type & PERF_SAMPLE_IP) {
3583 data->ip = perf_instruction_pointer(regs);
3584
3585 header->size += sizeof(data->ip);
3586 }
3587
3588 if (sample_type & PERF_SAMPLE_TID) {
3589 /* namespace issues */
3590 data->tid_entry.pid = perf_event_pid(event, current);
3591 data->tid_entry.tid = perf_event_tid(event, current);
3592
3593 header->size += sizeof(data->tid_entry);
3594 }
3595
3596 if (sample_type & PERF_SAMPLE_TIME) {
3597 data->time = perf_clock();
3598
3599 header->size += sizeof(data->time);
3600 }
3601
3602 if (sample_type & PERF_SAMPLE_ADDR)
3603 header->size += sizeof(data->addr);
3604
3605 if (sample_type & PERF_SAMPLE_ID) {
3606 data->id = primary_event_id(event);
3607
3608 header->size += sizeof(data->id);
3609 }
3610
3611 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3612 data->stream_id = event->id;
3613
3614 header->size += sizeof(data->stream_id);
3615 }
3616
3617 if (sample_type & PERF_SAMPLE_CPU) {
3618 data->cpu_entry.cpu = raw_smp_processor_id();
3619 data->cpu_entry.reserved = 0;
3620
3621 header->size += sizeof(data->cpu_entry);
3622 }
3623
3624 if (sample_type & PERF_SAMPLE_PERIOD)
3625 header->size += sizeof(data->period);
3626
3627 if (sample_type & PERF_SAMPLE_READ)
3628 header->size += perf_event_read_size(event);
3629
3630 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3631 int size = 1;
3632
3633 data->callchain = perf_callchain(regs);
3634
3635 if (data->callchain)
3636 size += data->callchain->nr;
3637
3638 header->size += size * sizeof(u64);
3639 }
3640
3641 if (sample_type & PERF_SAMPLE_RAW) {
3642 int size = sizeof(u32);
3643
3644 if (data->raw)
3645 size += data->raw->size;
3646 else
3647 size += sizeof(u32);
3648
3649 WARN_ON_ONCE(size & (sizeof(u64)-1));
3650 header->size += size;
3651 }
3652 }
3653
3654 static void perf_event_output(struct perf_event *event, int nmi,
3655 struct perf_sample_data *data,
3656 struct pt_regs *regs)
3657 {
3658 struct perf_output_handle handle;
3659 struct perf_event_header header;
3660
3661 /* protect the callchain buffers */
3662 rcu_read_lock();
3663
3664 perf_prepare_sample(&header, data, event, regs);
3665
3666 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3667 goto exit;
3668
3669 perf_output_sample(&handle, &header, data, event);
3670
3671 perf_output_end(&handle);
3672
3673 exit:
3674 rcu_read_unlock();
3675 }
3676
3677 /*
3678 * read event_id
3679 */
3680
3681 struct perf_read_event {
3682 struct perf_event_header header;
3683
3684 u32 pid;
3685 u32 tid;
3686 };
3687
3688 static void
3689 perf_event_read_event(struct perf_event *event,
3690 struct task_struct *task)
3691 {
3692 struct perf_output_handle handle;
3693 struct perf_read_event read_event = {
3694 .header = {
3695 .type = PERF_RECORD_READ,
3696 .misc = 0,
3697 .size = sizeof(read_event) + perf_event_read_size(event),
3698 },
3699 .pid = perf_event_pid(event, task),
3700 .tid = perf_event_tid(event, task),
3701 };
3702 int ret;
3703
3704 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3705 if (ret)
3706 return;
3707
3708 perf_output_put(&handle, read_event);
3709 perf_output_read(&handle, event);
3710
3711 perf_output_end(&handle);
3712 }
3713
3714 /*
3715 * task tracking -- fork/exit
3716 *
3717 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3718 */
3719
3720 struct perf_task_event {
3721 struct task_struct *task;
3722 struct perf_event_context *task_ctx;
3723
3724 struct {
3725 struct perf_event_header header;
3726
3727 u32 pid;
3728 u32 ppid;
3729 u32 tid;
3730 u32 ptid;
3731 u64 time;
3732 } event_id;
3733 };
3734
3735 static void perf_event_task_output(struct perf_event *event,
3736 struct perf_task_event *task_event)
3737 {
3738 struct perf_output_handle handle;
3739 struct task_struct *task = task_event->task;
3740 int size, ret;
3741
3742 size = task_event->event_id.header.size;
3743 ret = perf_output_begin(&handle, event, size, 0, 0);
3744
3745 if (ret)
3746 return;
3747
3748 task_event->event_id.pid = perf_event_pid(event, task);
3749 task_event->event_id.ppid = perf_event_pid(event, current);
3750
3751 task_event->event_id.tid = perf_event_tid(event, task);
3752 task_event->event_id.ptid = perf_event_tid(event, current);
3753
3754 perf_output_put(&handle, task_event->event_id);
3755
3756 perf_output_end(&handle);
3757 }
3758
3759 static int perf_event_task_match(struct perf_event *event)
3760 {
3761 if (event->state < PERF_EVENT_STATE_INACTIVE)
3762 return 0;
3763
3764 if (event->cpu != -1 && event->cpu != smp_processor_id())
3765 return 0;
3766
3767 if (event->attr.comm || event->attr.mmap ||
3768 event->attr.mmap_data || event->attr.task)
3769 return 1;
3770
3771 return 0;
3772 }
3773
3774 static void perf_event_task_ctx(struct perf_event_context *ctx,
3775 struct perf_task_event *task_event)
3776 {
3777 struct perf_event *event;
3778
3779 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3780 if (perf_event_task_match(event))
3781 perf_event_task_output(event, task_event);
3782 }
3783 }
3784
3785 static void perf_event_task_event(struct perf_task_event *task_event)
3786 {
3787 struct perf_cpu_context *cpuctx;
3788 struct perf_event_context *ctx;
3789 struct pmu *pmu;
3790 int ctxn;
3791
3792 rcu_read_lock();
3793 list_for_each_entry_rcu(pmu, &pmus, entry) {
3794 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3795 perf_event_task_ctx(&cpuctx->ctx, task_event);
3796
3797 ctx = task_event->task_ctx;
3798 if (!ctx) {
3799 ctxn = pmu->task_ctx_nr;
3800 if (ctxn < 0)
3801 goto next;
3802 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3803 }
3804 if (ctx)
3805 perf_event_task_ctx(ctx, task_event);
3806 next:
3807 put_cpu_ptr(pmu->pmu_cpu_context);
3808 }
3809 rcu_read_unlock();
3810 }
3811
3812 static void perf_event_task(struct task_struct *task,
3813 struct perf_event_context *task_ctx,
3814 int new)
3815 {
3816 struct perf_task_event task_event;
3817
3818 if (!atomic_read(&nr_comm_events) &&
3819 !atomic_read(&nr_mmap_events) &&
3820 !atomic_read(&nr_task_events))
3821 return;
3822
3823 task_event = (struct perf_task_event){
3824 .task = task,
3825 .task_ctx = task_ctx,
3826 .event_id = {
3827 .header = {
3828 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3829 .misc = 0,
3830 .size = sizeof(task_event.event_id),
3831 },
3832 /* .pid */
3833 /* .ppid */
3834 /* .tid */
3835 /* .ptid */
3836 .time = perf_clock(),
3837 },
3838 };
3839
3840 perf_event_task_event(&task_event);
3841 }
3842
3843 void perf_event_fork(struct task_struct *task)
3844 {
3845 perf_event_task(task, NULL, 1);
3846 }
3847
3848 /*
3849 * comm tracking
3850 */
3851
3852 struct perf_comm_event {
3853 struct task_struct *task;
3854 char *comm;
3855 int comm_size;
3856
3857 struct {
3858 struct perf_event_header header;
3859
3860 u32 pid;
3861 u32 tid;
3862 } event_id;
3863 };
3864
3865 static void perf_event_comm_output(struct perf_event *event,
3866 struct perf_comm_event *comm_event)
3867 {
3868 struct perf_output_handle handle;
3869 int size = comm_event->event_id.header.size;
3870 int ret = perf_output_begin(&handle, event, size, 0, 0);
3871
3872 if (ret)
3873 return;
3874
3875 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3876 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3877
3878 perf_output_put(&handle, comm_event->event_id);
3879 perf_output_copy(&handle, comm_event->comm,
3880 comm_event->comm_size);
3881 perf_output_end(&handle);
3882 }
3883
3884 static int perf_event_comm_match(struct perf_event *event)
3885 {
3886 if (event->state < PERF_EVENT_STATE_INACTIVE)
3887 return 0;
3888
3889 if (event->cpu != -1 && event->cpu != smp_processor_id())
3890 return 0;
3891
3892 if (event->attr.comm)
3893 return 1;
3894
3895 return 0;
3896 }
3897
3898 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3899 struct perf_comm_event *comm_event)
3900 {
3901 struct perf_event *event;
3902
3903 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3904 if (perf_event_comm_match(event))
3905 perf_event_comm_output(event, comm_event);
3906 }
3907 }
3908
3909 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3910 {
3911 struct perf_cpu_context *cpuctx;
3912 struct perf_event_context *ctx;
3913 char comm[TASK_COMM_LEN];
3914 unsigned int size;
3915 struct pmu *pmu;
3916 int ctxn;
3917
3918 memset(comm, 0, sizeof(comm));
3919 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3920 size = ALIGN(strlen(comm)+1, sizeof(u64));
3921
3922 comm_event->comm = comm;
3923 comm_event->comm_size = size;
3924
3925 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3926
3927 rcu_read_lock();
3928 list_for_each_entry_rcu(pmu, &pmus, entry) {
3929 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3930 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3931
3932 ctxn = pmu->task_ctx_nr;
3933 if (ctxn < 0)
3934 goto next;
3935
3936 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3937 if (ctx)
3938 perf_event_comm_ctx(ctx, comm_event);
3939 next:
3940 put_cpu_ptr(pmu->pmu_cpu_context);
3941 }
3942 rcu_read_unlock();
3943 }
3944
3945 void perf_event_comm(struct task_struct *task)
3946 {
3947 struct perf_comm_event comm_event;
3948 struct perf_event_context *ctx;
3949 int ctxn;
3950
3951 for_each_task_context_nr(ctxn) {
3952 ctx = task->perf_event_ctxp[ctxn];
3953 if (!ctx)
3954 continue;
3955
3956 perf_event_enable_on_exec(ctx);
3957 }
3958
3959 if (!atomic_read(&nr_comm_events))
3960 return;
3961
3962 comm_event = (struct perf_comm_event){
3963 .task = task,
3964 /* .comm */
3965 /* .comm_size */
3966 .event_id = {
3967 .header = {
3968 .type = PERF_RECORD_COMM,
3969 .misc = 0,
3970 /* .size */
3971 },
3972 /* .pid */
3973 /* .tid */
3974 },
3975 };
3976
3977 perf_event_comm_event(&comm_event);
3978 }
3979
3980 /*
3981 * mmap tracking
3982 */
3983
3984 struct perf_mmap_event {
3985 struct vm_area_struct *vma;
3986
3987 const char *file_name;
3988 int file_size;
3989
3990 struct {
3991 struct perf_event_header header;
3992
3993 u32 pid;
3994 u32 tid;
3995 u64 start;
3996 u64 len;
3997 u64 pgoff;
3998 } event_id;
3999 };
4000
4001 static void perf_event_mmap_output(struct perf_event *event,
4002 struct perf_mmap_event *mmap_event)
4003 {
4004 struct perf_output_handle handle;
4005 int size = mmap_event->event_id.header.size;
4006 int ret = perf_output_begin(&handle, event, size, 0, 0);
4007
4008 if (ret)
4009 return;
4010
4011 mmap_event->event_id.pid = perf_event_pid(event, current);
4012 mmap_event->event_id.tid = perf_event_tid(event, current);
4013
4014 perf_output_put(&handle, mmap_event->event_id);
4015 perf_output_copy(&handle, mmap_event->file_name,
4016 mmap_event->file_size);
4017 perf_output_end(&handle);
4018 }
4019
4020 static int perf_event_mmap_match(struct perf_event *event,
4021 struct perf_mmap_event *mmap_event,
4022 int executable)
4023 {
4024 if (event->state < PERF_EVENT_STATE_INACTIVE)
4025 return 0;
4026
4027 if (event->cpu != -1 && event->cpu != smp_processor_id())
4028 return 0;
4029
4030 if ((!executable && event->attr.mmap_data) ||
4031 (executable && event->attr.mmap))
4032 return 1;
4033
4034 return 0;
4035 }
4036
4037 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4038 struct perf_mmap_event *mmap_event,
4039 int executable)
4040 {
4041 struct perf_event *event;
4042
4043 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4044 if (perf_event_mmap_match(event, mmap_event, executable))
4045 perf_event_mmap_output(event, mmap_event);
4046 }
4047 }
4048
4049 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4050 {
4051 struct perf_cpu_context *cpuctx;
4052 struct perf_event_context *ctx;
4053 struct vm_area_struct *vma = mmap_event->vma;
4054 struct file *file = vma->vm_file;
4055 unsigned int size;
4056 char tmp[16];
4057 char *buf = NULL;
4058 const char *name;
4059 struct pmu *pmu;
4060 int ctxn;
4061
4062 memset(tmp, 0, sizeof(tmp));
4063
4064 if (file) {
4065 /*
4066 * d_path works from the end of the buffer backwards, so we
4067 * need to add enough zero bytes after the string to handle
4068 * the 64bit alignment we do later.
4069 */
4070 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4071 if (!buf) {
4072 name = strncpy(tmp, "//enomem", sizeof(tmp));
4073 goto got_name;
4074 }
4075 name = d_path(&file->f_path, buf, PATH_MAX);
4076 if (IS_ERR(name)) {
4077 name = strncpy(tmp, "//toolong", sizeof(tmp));
4078 goto got_name;
4079 }
4080 } else {
4081 if (arch_vma_name(mmap_event->vma)) {
4082 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4083 sizeof(tmp));
4084 goto got_name;
4085 }
4086
4087 if (!vma->vm_mm) {
4088 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4089 goto got_name;
4090 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4091 vma->vm_end >= vma->vm_mm->brk) {
4092 name = strncpy(tmp, "[heap]", sizeof(tmp));
4093 goto got_name;
4094 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4095 vma->vm_end >= vma->vm_mm->start_stack) {
4096 name = strncpy(tmp, "[stack]", sizeof(tmp));
4097 goto got_name;
4098 }
4099
4100 name = strncpy(tmp, "//anon", sizeof(tmp));
4101 goto got_name;
4102 }
4103
4104 got_name:
4105 size = ALIGN(strlen(name)+1, sizeof(u64));
4106
4107 mmap_event->file_name = name;
4108 mmap_event->file_size = size;
4109
4110 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4111
4112 rcu_read_lock();
4113 list_for_each_entry_rcu(pmu, &pmus, entry) {
4114 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4115 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4116 vma->vm_flags & VM_EXEC);
4117
4118 ctxn = pmu->task_ctx_nr;
4119 if (ctxn < 0)
4120 goto next;
4121
4122 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4123 if (ctx) {
4124 perf_event_mmap_ctx(ctx, mmap_event,
4125 vma->vm_flags & VM_EXEC);
4126 }
4127 next:
4128 put_cpu_ptr(pmu->pmu_cpu_context);
4129 }
4130 rcu_read_unlock();
4131
4132 kfree(buf);
4133 }
4134
4135 void perf_event_mmap(struct vm_area_struct *vma)
4136 {
4137 struct perf_mmap_event mmap_event;
4138
4139 if (!atomic_read(&nr_mmap_events))
4140 return;
4141
4142 mmap_event = (struct perf_mmap_event){
4143 .vma = vma,
4144 /* .file_name */
4145 /* .file_size */
4146 .event_id = {
4147 .header = {
4148 .type = PERF_RECORD_MMAP,
4149 .misc = PERF_RECORD_MISC_USER,
4150 /* .size */
4151 },
4152 /* .pid */
4153 /* .tid */
4154 .start = vma->vm_start,
4155 .len = vma->vm_end - vma->vm_start,
4156 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4157 },
4158 };
4159
4160 perf_event_mmap_event(&mmap_event);
4161 }
4162
4163 /*
4164 * IRQ throttle logging
4165 */
4166
4167 static void perf_log_throttle(struct perf_event *event, int enable)
4168 {
4169 struct perf_output_handle handle;
4170 int ret;
4171
4172 struct {
4173 struct perf_event_header header;
4174 u64 time;
4175 u64 id;
4176 u64 stream_id;
4177 } throttle_event = {
4178 .header = {
4179 .type = PERF_RECORD_THROTTLE,
4180 .misc = 0,
4181 .size = sizeof(throttle_event),
4182 },
4183 .time = perf_clock(),
4184 .id = primary_event_id(event),
4185 .stream_id = event->id,
4186 };
4187
4188 if (enable)
4189 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4190
4191 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4192 if (ret)
4193 return;
4194
4195 perf_output_put(&handle, throttle_event);
4196 perf_output_end(&handle);
4197 }
4198
4199 /*
4200 * Generic event overflow handling, sampling.
4201 */
4202
4203 static int __perf_event_overflow(struct perf_event *event, int nmi,
4204 int throttle, struct perf_sample_data *data,
4205 struct pt_regs *regs)
4206 {
4207 int events = atomic_read(&event->event_limit);
4208 struct hw_perf_event *hwc = &event->hw;
4209 int ret = 0;
4210
4211 if (!throttle) {
4212 hwc->interrupts++;
4213 } else {
4214 if (hwc->interrupts != MAX_INTERRUPTS) {
4215 hwc->interrupts++;
4216 if (HZ * hwc->interrupts >
4217 (u64)sysctl_perf_event_sample_rate) {
4218 hwc->interrupts = MAX_INTERRUPTS;
4219 perf_log_throttle(event, 0);
4220 ret = 1;
4221 }
4222 } else {
4223 /*
4224 * Keep re-disabling events even though on the previous
4225 * pass we disabled it - just in case we raced with a
4226 * sched-in and the event got enabled again:
4227 */
4228 ret = 1;
4229 }
4230 }
4231
4232 if (event->attr.freq) {
4233 u64 now = perf_clock();
4234 s64 delta = now - hwc->freq_time_stamp;
4235
4236 hwc->freq_time_stamp = now;
4237
4238 if (delta > 0 && delta < 2*TICK_NSEC)
4239 perf_adjust_period(event, delta, hwc->last_period);
4240 }
4241
4242 /*
4243 * XXX event_limit might not quite work as expected on inherited
4244 * events
4245 */
4246
4247 event->pending_kill = POLL_IN;
4248 if (events && atomic_dec_and_test(&event->event_limit)) {
4249 ret = 1;
4250 event->pending_kill = POLL_HUP;
4251 if (nmi) {
4252 event->pending_disable = 1;
4253 irq_work_queue(&event->pending);
4254 } else
4255 perf_event_disable(event);
4256 }
4257
4258 if (event->overflow_handler)
4259 event->overflow_handler(event, nmi, data, regs);
4260 else
4261 perf_event_output(event, nmi, data, regs);
4262
4263 return ret;
4264 }
4265
4266 int perf_event_overflow(struct perf_event *event, int nmi,
4267 struct perf_sample_data *data,
4268 struct pt_regs *regs)
4269 {
4270 return __perf_event_overflow(event, nmi, 1, data, regs);
4271 }
4272
4273 /*
4274 * Generic software event infrastructure
4275 */
4276
4277 struct swevent_htable {
4278 struct swevent_hlist *swevent_hlist;
4279 struct mutex hlist_mutex;
4280 int hlist_refcount;
4281
4282 /* Recursion avoidance in each contexts */
4283 int recursion[PERF_NR_CONTEXTS];
4284 };
4285
4286 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4287
4288 /*
4289 * We directly increment event->count and keep a second value in
4290 * event->hw.period_left to count intervals. This period event
4291 * is kept in the range [-sample_period, 0] so that we can use the
4292 * sign as trigger.
4293 */
4294
4295 static u64 perf_swevent_set_period(struct perf_event *event)
4296 {
4297 struct hw_perf_event *hwc = &event->hw;
4298 u64 period = hwc->last_period;
4299 u64 nr, offset;
4300 s64 old, val;
4301
4302 hwc->last_period = hwc->sample_period;
4303
4304 again:
4305 old = val = local64_read(&hwc->period_left);
4306 if (val < 0)
4307 return 0;
4308
4309 nr = div64_u64(period + val, period);
4310 offset = nr * period;
4311 val -= offset;
4312 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4313 goto again;
4314
4315 return nr;
4316 }
4317
4318 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4319 int nmi, struct perf_sample_data *data,
4320 struct pt_regs *regs)
4321 {
4322 struct hw_perf_event *hwc = &event->hw;
4323 int throttle = 0;
4324
4325 data->period = event->hw.last_period;
4326 if (!overflow)
4327 overflow = perf_swevent_set_period(event);
4328
4329 if (hwc->interrupts == MAX_INTERRUPTS)
4330 return;
4331
4332 for (; overflow; overflow--) {
4333 if (__perf_event_overflow(event, nmi, throttle,
4334 data, regs)) {
4335 /*
4336 * We inhibit the overflow from happening when
4337 * hwc->interrupts == MAX_INTERRUPTS.
4338 */
4339 break;
4340 }
4341 throttle = 1;
4342 }
4343 }
4344
4345 static void perf_swevent_event(struct perf_event *event, u64 nr,
4346 int nmi, struct perf_sample_data *data,
4347 struct pt_regs *regs)
4348 {
4349 struct hw_perf_event *hwc = &event->hw;
4350
4351 local64_add(nr, &event->count);
4352
4353 if (!regs)
4354 return;
4355
4356 if (!hwc->sample_period)
4357 return;
4358
4359 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4360 return perf_swevent_overflow(event, 1, nmi, data, regs);
4361
4362 if (local64_add_negative(nr, &hwc->period_left))
4363 return;
4364
4365 perf_swevent_overflow(event, 0, nmi, data, regs);
4366 }
4367
4368 static int perf_exclude_event(struct perf_event *event,
4369 struct pt_regs *regs)
4370 {
4371 if (event->hw.state & PERF_HES_STOPPED)
4372 return 0;
4373
4374 if (regs) {
4375 if (event->attr.exclude_user && user_mode(regs))
4376 return 1;
4377
4378 if (event->attr.exclude_kernel && !user_mode(regs))
4379 return 1;
4380 }
4381
4382 return 0;
4383 }
4384
4385 static int perf_swevent_match(struct perf_event *event,
4386 enum perf_type_id type,
4387 u32 event_id,
4388 struct perf_sample_data *data,
4389 struct pt_regs *regs)
4390 {
4391 if (event->attr.type != type)
4392 return 0;
4393
4394 if (event->attr.config != event_id)
4395 return 0;
4396
4397 if (perf_exclude_event(event, regs))
4398 return 0;
4399
4400 return 1;
4401 }
4402
4403 static inline u64 swevent_hash(u64 type, u32 event_id)
4404 {
4405 u64 val = event_id | (type << 32);
4406
4407 return hash_64(val, SWEVENT_HLIST_BITS);
4408 }
4409
4410 static inline struct hlist_head *
4411 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4412 {
4413 u64 hash = swevent_hash(type, event_id);
4414
4415 return &hlist->heads[hash];
4416 }
4417
4418 /* For the read side: events when they trigger */
4419 static inline struct hlist_head *
4420 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4421 {
4422 struct swevent_hlist *hlist;
4423
4424 hlist = rcu_dereference(swhash->swevent_hlist);
4425 if (!hlist)
4426 return NULL;
4427
4428 return __find_swevent_head(hlist, type, event_id);
4429 }
4430
4431 /* For the event head insertion and removal in the hlist */
4432 static inline struct hlist_head *
4433 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4434 {
4435 struct swevent_hlist *hlist;
4436 u32 event_id = event->attr.config;
4437 u64 type = event->attr.type;
4438
4439 /*
4440 * Event scheduling is always serialized against hlist allocation
4441 * and release. Which makes the protected version suitable here.
4442 * The context lock guarantees that.
4443 */
4444 hlist = rcu_dereference_protected(swhash->swevent_hlist,
4445 lockdep_is_held(&event->ctx->lock));
4446 if (!hlist)
4447 return NULL;
4448
4449 return __find_swevent_head(hlist, type, event_id);
4450 }
4451
4452 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4453 u64 nr, int nmi,
4454 struct perf_sample_data *data,
4455 struct pt_regs *regs)
4456 {
4457 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4458 struct perf_event *event;
4459 struct hlist_node *node;
4460 struct hlist_head *head;
4461
4462 rcu_read_lock();
4463 head = find_swevent_head_rcu(swhash, type, event_id);
4464 if (!head)
4465 goto end;
4466
4467 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4468 if (perf_swevent_match(event, type, event_id, data, regs))
4469 perf_swevent_event(event, nr, nmi, data, regs);
4470 }
4471 end:
4472 rcu_read_unlock();
4473 }
4474
4475 int perf_swevent_get_recursion_context(void)
4476 {
4477 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4478
4479 return get_recursion_context(swhash->recursion);
4480 }
4481 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4482
4483 void inline perf_swevent_put_recursion_context(int rctx)
4484 {
4485 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4486
4487 put_recursion_context(swhash->recursion, rctx);
4488 }
4489
4490 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4491 struct pt_regs *regs, u64 addr)
4492 {
4493 struct perf_sample_data data;
4494 int rctx;
4495
4496 preempt_disable_notrace();
4497 rctx = perf_swevent_get_recursion_context();
4498 if (rctx < 0)
4499 return;
4500
4501 perf_sample_data_init(&data, addr);
4502
4503 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4504
4505 perf_swevent_put_recursion_context(rctx);
4506 preempt_enable_notrace();
4507 }
4508
4509 static void perf_swevent_read(struct perf_event *event)
4510 {
4511 }
4512
4513 static int perf_swevent_add(struct perf_event *event, int flags)
4514 {
4515 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4516 struct hw_perf_event *hwc = &event->hw;
4517 struct hlist_head *head;
4518
4519 if (hwc->sample_period) {
4520 hwc->last_period = hwc->sample_period;
4521 perf_swevent_set_period(event);
4522 }
4523
4524 hwc->state = !(flags & PERF_EF_START);
4525
4526 head = find_swevent_head(swhash, event);
4527 if (WARN_ON_ONCE(!head))
4528 return -EINVAL;
4529
4530 hlist_add_head_rcu(&event->hlist_entry, head);
4531
4532 return 0;
4533 }
4534
4535 static void perf_swevent_del(struct perf_event *event, int flags)
4536 {
4537 hlist_del_rcu(&event->hlist_entry);
4538 }
4539
4540 static void perf_swevent_start(struct perf_event *event, int flags)
4541 {
4542 event->hw.state = 0;
4543 }
4544
4545 static void perf_swevent_stop(struct perf_event *event, int flags)
4546 {
4547 event->hw.state = PERF_HES_STOPPED;
4548 }
4549
4550 /* Deref the hlist from the update side */
4551 static inline struct swevent_hlist *
4552 swevent_hlist_deref(struct swevent_htable *swhash)
4553 {
4554 return rcu_dereference_protected(swhash->swevent_hlist,
4555 lockdep_is_held(&swhash->hlist_mutex));
4556 }
4557
4558 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4559 {
4560 struct swevent_hlist *hlist;
4561
4562 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4563 kfree(hlist);
4564 }
4565
4566 static void swevent_hlist_release(struct swevent_htable *swhash)
4567 {
4568 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4569
4570 if (!hlist)
4571 return;
4572
4573 rcu_assign_pointer(swhash->swevent_hlist, NULL);
4574 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4575 }
4576
4577 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4578 {
4579 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4580
4581 mutex_lock(&swhash->hlist_mutex);
4582
4583 if (!--swhash->hlist_refcount)
4584 swevent_hlist_release(swhash);
4585
4586 mutex_unlock(&swhash->hlist_mutex);
4587 }
4588
4589 static void swevent_hlist_put(struct perf_event *event)
4590 {
4591 int cpu;
4592
4593 if (event->cpu != -1) {
4594 swevent_hlist_put_cpu(event, event->cpu);
4595 return;
4596 }
4597
4598 for_each_possible_cpu(cpu)
4599 swevent_hlist_put_cpu(event, cpu);
4600 }
4601
4602 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4603 {
4604 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4605 int err = 0;
4606
4607 mutex_lock(&swhash->hlist_mutex);
4608
4609 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4610 struct swevent_hlist *hlist;
4611
4612 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4613 if (!hlist) {
4614 err = -ENOMEM;
4615 goto exit;
4616 }
4617 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4618 }
4619 swhash->hlist_refcount++;
4620 exit:
4621 mutex_unlock(&swhash->hlist_mutex);
4622
4623 return err;
4624 }
4625
4626 static int swevent_hlist_get(struct perf_event *event)
4627 {
4628 int err;
4629 int cpu, failed_cpu;
4630
4631 if (event->cpu != -1)
4632 return swevent_hlist_get_cpu(event, event->cpu);
4633
4634 get_online_cpus();
4635 for_each_possible_cpu(cpu) {
4636 err = swevent_hlist_get_cpu(event, cpu);
4637 if (err) {
4638 failed_cpu = cpu;
4639 goto fail;
4640 }
4641 }
4642 put_online_cpus();
4643
4644 return 0;
4645 fail:
4646 for_each_possible_cpu(cpu) {
4647 if (cpu == failed_cpu)
4648 break;
4649 swevent_hlist_put_cpu(event, cpu);
4650 }
4651
4652 put_online_cpus();
4653 return err;
4654 }
4655
4656 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4657
4658 static void sw_perf_event_destroy(struct perf_event *event)
4659 {
4660 u64 event_id = event->attr.config;
4661
4662 WARN_ON(event->parent);
4663
4664 jump_label_dec(&perf_swevent_enabled[event_id]);
4665 swevent_hlist_put(event);
4666 }
4667
4668 static int perf_swevent_init(struct perf_event *event)
4669 {
4670 int event_id = event->attr.config;
4671
4672 if (event->attr.type != PERF_TYPE_SOFTWARE)
4673 return -ENOENT;
4674
4675 switch (event_id) {
4676 case PERF_COUNT_SW_CPU_CLOCK:
4677 case PERF_COUNT_SW_TASK_CLOCK:
4678 return -ENOENT;
4679
4680 default:
4681 break;
4682 }
4683
4684 if (event_id > PERF_COUNT_SW_MAX)
4685 return -ENOENT;
4686
4687 if (!event->parent) {
4688 int err;
4689
4690 err = swevent_hlist_get(event);
4691 if (err)
4692 return err;
4693
4694 jump_label_inc(&perf_swevent_enabled[event_id]);
4695 event->destroy = sw_perf_event_destroy;
4696 }
4697
4698 return 0;
4699 }
4700
4701 static struct pmu perf_swevent = {
4702 .task_ctx_nr = perf_sw_context,
4703
4704 .event_init = perf_swevent_init,
4705 .add = perf_swevent_add,
4706 .del = perf_swevent_del,
4707 .start = perf_swevent_start,
4708 .stop = perf_swevent_stop,
4709 .read = perf_swevent_read,
4710 };
4711
4712 #ifdef CONFIG_EVENT_TRACING
4713
4714 static int perf_tp_filter_match(struct perf_event *event,
4715 struct perf_sample_data *data)
4716 {
4717 void *record = data->raw->data;
4718
4719 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4720 return 1;
4721 return 0;
4722 }
4723
4724 static int perf_tp_event_match(struct perf_event *event,
4725 struct perf_sample_data *data,
4726 struct pt_regs *regs)
4727 {
4728 /*
4729 * All tracepoints are from kernel-space.
4730 */
4731 if (event->attr.exclude_kernel)
4732 return 0;
4733
4734 if (!perf_tp_filter_match(event, data))
4735 return 0;
4736
4737 return 1;
4738 }
4739
4740 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4741 struct pt_regs *regs, struct hlist_head *head, int rctx)
4742 {
4743 struct perf_sample_data data;
4744 struct perf_event *event;
4745 struct hlist_node *node;
4746
4747 struct perf_raw_record raw = {
4748 .size = entry_size,
4749 .data = record,
4750 };
4751
4752 perf_sample_data_init(&data, addr);
4753 data.raw = &raw;
4754
4755 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4756 if (perf_tp_event_match(event, &data, regs))
4757 perf_swevent_event(event, count, 1, &data, regs);
4758 }
4759
4760 perf_swevent_put_recursion_context(rctx);
4761 }
4762 EXPORT_SYMBOL_GPL(perf_tp_event);
4763
4764 static void tp_perf_event_destroy(struct perf_event *event)
4765 {
4766 perf_trace_destroy(event);
4767 }
4768
4769 static int perf_tp_event_init(struct perf_event *event)
4770 {
4771 int err;
4772
4773 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4774 return -ENOENT;
4775
4776 /*
4777 * Raw tracepoint data is a severe data leak, only allow root to
4778 * have these.
4779 */
4780 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4781 perf_paranoid_tracepoint_raw() &&
4782 !capable(CAP_SYS_ADMIN))
4783 return -EPERM;
4784
4785 err = perf_trace_init(event);
4786 if (err)
4787 return err;
4788
4789 event->destroy = tp_perf_event_destroy;
4790
4791 return 0;
4792 }
4793
4794 static struct pmu perf_tracepoint = {
4795 .task_ctx_nr = perf_sw_context,
4796
4797 .event_init = perf_tp_event_init,
4798 .add = perf_trace_add,
4799 .del = perf_trace_del,
4800 .start = perf_swevent_start,
4801 .stop = perf_swevent_stop,
4802 .read = perf_swevent_read,
4803 };
4804
4805 static inline void perf_tp_register(void)
4806 {
4807 perf_pmu_register(&perf_tracepoint);
4808 }
4809
4810 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4811 {
4812 char *filter_str;
4813 int ret;
4814
4815 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4816 return -EINVAL;
4817
4818 filter_str = strndup_user(arg, PAGE_SIZE);
4819 if (IS_ERR(filter_str))
4820 return PTR_ERR(filter_str);
4821
4822 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4823
4824 kfree(filter_str);
4825 return ret;
4826 }
4827
4828 static void perf_event_free_filter(struct perf_event *event)
4829 {
4830 ftrace_profile_free_filter(event);
4831 }
4832
4833 #else
4834
4835 static inline void perf_tp_register(void)
4836 {
4837 }
4838
4839 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4840 {
4841 return -ENOENT;
4842 }
4843
4844 static void perf_event_free_filter(struct perf_event *event)
4845 {
4846 }
4847
4848 #endif /* CONFIG_EVENT_TRACING */
4849
4850 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4851 void perf_bp_event(struct perf_event *bp, void *data)
4852 {
4853 struct perf_sample_data sample;
4854 struct pt_regs *regs = data;
4855
4856 perf_sample_data_init(&sample, bp->attr.bp_addr);
4857
4858 if (!bp->hw.state && !perf_exclude_event(bp, regs))
4859 perf_swevent_event(bp, 1, 1, &sample, regs);
4860 }
4861 #endif
4862
4863 /*
4864 * hrtimer based swevent callback
4865 */
4866
4867 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4868 {
4869 enum hrtimer_restart ret = HRTIMER_RESTART;
4870 struct perf_sample_data data;
4871 struct pt_regs *regs;
4872 struct perf_event *event;
4873 u64 period;
4874
4875 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4876 event->pmu->read(event);
4877
4878 perf_sample_data_init(&data, 0);
4879 data.period = event->hw.last_period;
4880 regs = get_irq_regs();
4881
4882 if (regs && !perf_exclude_event(event, regs)) {
4883 if (!(event->attr.exclude_idle && current->pid == 0))
4884 if (perf_event_overflow(event, 0, &data, regs))
4885 ret = HRTIMER_NORESTART;
4886 }
4887
4888 period = max_t(u64, 10000, event->hw.sample_period);
4889 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4890
4891 return ret;
4892 }
4893
4894 static void perf_swevent_start_hrtimer(struct perf_event *event)
4895 {
4896 struct hw_perf_event *hwc = &event->hw;
4897
4898 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4899 hwc->hrtimer.function = perf_swevent_hrtimer;
4900 if (hwc->sample_period) {
4901 s64 period = local64_read(&hwc->period_left);
4902
4903 if (period) {
4904 if (period < 0)
4905 period = 10000;
4906
4907 local64_set(&hwc->period_left, 0);
4908 } else {
4909 period = max_t(u64, 10000, hwc->sample_period);
4910 }
4911 __hrtimer_start_range_ns(&hwc->hrtimer,
4912 ns_to_ktime(period), 0,
4913 HRTIMER_MODE_REL_PINNED, 0);
4914 }
4915 }
4916
4917 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4918 {
4919 struct hw_perf_event *hwc = &event->hw;
4920
4921 if (hwc->sample_period) {
4922 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4923 local64_set(&hwc->period_left, ktime_to_ns(remaining));
4924
4925 hrtimer_cancel(&hwc->hrtimer);
4926 }
4927 }
4928
4929 /*
4930 * Software event: cpu wall time clock
4931 */
4932
4933 static void cpu_clock_event_update(struct perf_event *event)
4934 {
4935 s64 prev;
4936 u64 now;
4937
4938 now = local_clock();
4939 prev = local64_xchg(&event->hw.prev_count, now);
4940 local64_add(now - prev, &event->count);
4941 }
4942
4943 static void cpu_clock_event_start(struct perf_event *event, int flags)
4944 {
4945 local64_set(&event->hw.prev_count, local_clock());
4946 perf_swevent_start_hrtimer(event);
4947 }
4948
4949 static void cpu_clock_event_stop(struct perf_event *event, int flags)
4950 {
4951 perf_swevent_cancel_hrtimer(event);
4952 cpu_clock_event_update(event);
4953 }
4954
4955 static int cpu_clock_event_add(struct perf_event *event, int flags)
4956 {
4957 if (flags & PERF_EF_START)
4958 cpu_clock_event_start(event, flags);
4959
4960 return 0;
4961 }
4962
4963 static void cpu_clock_event_del(struct perf_event *event, int flags)
4964 {
4965 cpu_clock_event_stop(event, flags);
4966 }
4967
4968 static void cpu_clock_event_read(struct perf_event *event)
4969 {
4970 cpu_clock_event_update(event);
4971 }
4972
4973 static int cpu_clock_event_init(struct perf_event *event)
4974 {
4975 if (event->attr.type != PERF_TYPE_SOFTWARE)
4976 return -ENOENT;
4977
4978 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
4979 return -ENOENT;
4980
4981 return 0;
4982 }
4983
4984 static struct pmu perf_cpu_clock = {
4985 .task_ctx_nr = perf_sw_context,
4986
4987 .event_init = cpu_clock_event_init,
4988 .add = cpu_clock_event_add,
4989 .del = cpu_clock_event_del,
4990 .start = cpu_clock_event_start,
4991 .stop = cpu_clock_event_stop,
4992 .read = cpu_clock_event_read,
4993 };
4994
4995 /*
4996 * Software event: task time clock
4997 */
4998
4999 static void task_clock_event_update(struct perf_event *event, u64 now)
5000 {
5001 u64 prev;
5002 s64 delta;
5003
5004 prev = local64_xchg(&event->hw.prev_count, now);
5005 delta = now - prev;
5006 local64_add(delta, &event->count);
5007 }
5008
5009 static void task_clock_event_start(struct perf_event *event, int flags)
5010 {
5011 local64_set(&event->hw.prev_count, event->ctx->time);
5012 perf_swevent_start_hrtimer(event);
5013 }
5014
5015 static void task_clock_event_stop(struct perf_event *event, int flags)
5016 {
5017 perf_swevent_cancel_hrtimer(event);
5018 task_clock_event_update(event, event->ctx->time);
5019 }
5020
5021 static int task_clock_event_add(struct perf_event *event, int flags)
5022 {
5023 if (flags & PERF_EF_START)
5024 task_clock_event_start(event, flags);
5025
5026 return 0;
5027 }
5028
5029 static void task_clock_event_del(struct perf_event *event, int flags)
5030 {
5031 task_clock_event_stop(event, PERF_EF_UPDATE);
5032 }
5033
5034 static void task_clock_event_read(struct perf_event *event)
5035 {
5036 u64 time;
5037
5038 if (!in_nmi()) {
5039 update_context_time(event->ctx);
5040 time = event->ctx->time;
5041 } else {
5042 u64 now = perf_clock();
5043 u64 delta = now - event->ctx->timestamp;
5044 time = event->ctx->time + delta;
5045 }
5046
5047 task_clock_event_update(event, time);
5048 }
5049
5050 static int task_clock_event_init(struct perf_event *event)
5051 {
5052 if (event->attr.type != PERF_TYPE_SOFTWARE)
5053 return -ENOENT;
5054
5055 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5056 return -ENOENT;
5057
5058 return 0;
5059 }
5060
5061 static struct pmu perf_task_clock = {
5062 .task_ctx_nr = perf_sw_context,
5063
5064 .event_init = task_clock_event_init,
5065 .add = task_clock_event_add,
5066 .del = task_clock_event_del,
5067 .start = task_clock_event_start,
5068 .stop = task_clock_event_stop,
5069 .read = task_clock_event_read,
5070 };
5071
5072 static void perf_pmu_nop_void(struct pmu *pmu)
5073 {
5074 }
5075
5076 static int perf_pmu_nop_int(struct pmu *pmu)
5077 {
5078 return 0;
5079 }
5080
5081 static void perf_pmu_start_txn(struct pmu *pmu)
5082 {
5083 perf_pmu_disable(pmu);
5084 }
5085
5086 static int perf_pmu_commit_txn(struct pmu *pmu)
5087 {
5088 perf_pmu_enable(pmu);
5089 return 0;
5090 }
5091
5092 static void perf_pmu_cancel_txn(struct pmu *pmu)
5093 {
5094 perf_pmu_enable(pmu);
5095 }
5096
5097 /*
5098 * Ensures all contexts with the same task_ctx_nr have the same
5099 * pmu_cpu_context too.
5100 */
5101 static void *find_pmu_context(int ctxn)
5102 {
5103 struct pmu *pmu;
5104
5105 if (ctxn < 0)
5106 return NULL;
5107
5108 list_for_each_entry(pmu, &pmus, entry) {
5109 if (pmu->task_ctx_nr == ctxn)
5110 return pmu->pmu_cpu_context;
5111 }
5112
5113 return NULL;
5114 }
5115
5116 static void free_pmu_context(void * __percpu cpu_context)
5117 {
5118 struct pmu *pmu;
5119
5120 mutex_lock(&pmus_lock);
5121 /*
5122 * Like a real lame refcount.
5123 */
5124 list_for_each_entry(pmu, &pmus, entry) {
5125 if (pmu->pmu_cpu_context == cpu_context)
5126 goto out;
5127 }
5128
5129 free_percpu(cpu_context);
5130 out:
5131 mutex_unlock(&pmus_lock);
5132 }
5133
5134 int perf_pmu_register(struct pmu *pmu)
5135 {
5136 int cpu, ret;
5137
5138 mutex_lock(&pmus_lock);
5139 ret = -ENOMEM;
5140 pmu->pmu_disable_count = alloc_percpu(int);
5141 if (!pmu->pmu_disable_count)
5142 goto unlock;
5143
5144 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5145 if (pmu->pmu_cpu_context)
5146 goto got_cpu_context;
5147
5148 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5149 if (!pmu->pmu_cpu_context)
5150 goto free_pdc;
5151
5152 for_each_possible_cpu(cpu) {
5153 struct perf_cpu_context *cpuctx;
5154
5155 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5156 __perf_event_init_context(&cpuctx->ctx);
5157 cpuctx->ctx.type = cpu_context;
5158 cpuctx->ctx.pmu = pmu;
5159 cpuctx->jiffies_interval = 1;
5160 INIT_LIST_HEAD(&cpuctx->rotation_list);
5161 }
5162
5163 got_cpu_context:
5164 if (!pmu->start_txn) {
5165 if (pmu->pmu_enable) {
5166 /*
5167 * If we have pmu_enable/pmu_disable calls, install
5168 * transaction stubs that use that to try and batch
5169 * hardware accesses.
5170 */
5171 pmu->start_txn = perf_pmu_start_txn;
5172 pmu->commit_txn = perf_pmu_commit_txn;
5173 pmu->cancel_txn = perf_pmu_cancel_txn;
5174 } else {
5175 pmu->start_txn = perf_pmu_nop_void;
5176 pmu->commit_txn = perf_pmu_nop_int;
5177 pmu->cancel_txn = perf_pmu_nop_void;
5178 }
5179 }
5180
5181 if (!pmu->pmu_enable) {
5182 pmu->pmu_enable = perf_pmu_nop_void;
5183 pmu->pmu_disable = perf_pmu_nop_void;
5184 }
5185
5186 list_add_rcu(&pmu->entry, &pmus);
5187 ret = 0;
5188 unlock:
5189 mutex_unlock(&pmus_lock);
5190
5191 return ret;
5192
5193 free_pdc:
5194 free_percpu(pmu->pmu_disable_count);
5195 goto unlock;
5196 }
5197
5198 void perf_pmu_unregister(struct pmu *pmu)
5199 {
5200 mutex_lock(&pmus_lock);
5201 list_del_rcu(&pmu->entry);
5202 mutex_unlock(&pmus_lock);
5203
5204 /*
5205 * We dereference the pmu list under both SRCU and regular RCU, so
5206 * synchronize against both of those.
5207 */
5208 synchronize_srcu(&pmus_srcu);
5209 synchronize_rcu();
5210
5211 free_percpu(pmu->pmu_disable_count);
5212 free_pmu_context(pmu->pmu_cpu_context);
5213 }
5214
5215 struct pmu *perf_init_event(struct perf_event *event)
5216 {
5217 struct pmu *pmu = NULL;
5218 int idx;
5219
5220 idx = srcu_read_lock(&pmus_srcu);
5221 list_for_each_entry_rcu(pmu, &pmus, entry) {
5222 int ret = pmu->event_init(event);
5223 if (!ret)
5224 goto unlock;
5225
5226 if (ret != -ENOENT) {
5227 pmu = ERR_PTR(ret);
5228 goto unlock;
5229 }
5230 }
5231 pmu = ERR_PTR(-ENOENT);
5232 unlock:
5233 srcu_read_unlock(&pmus_srcu, idx);
5234
5235 return pmu;
5236 }
5237
5238 /*
5239 * Allocate and initialize a event structure
5240 */
5241 static struct perf_event *
5242 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5243 struct task_struct *task,
5244 struct perf_event *group_leader,
5245 struct perf_event *parent_event,
5246 perf_overflow_handler_t overflow_handler)
5247 {
5248 struct pmu *pmu;
5249 struct perf_event *event;
5250 struct hw_perf_event *hwc;
5251 long err;
5252
5253 event = kzalloc(sizeof(*event), GFP_KERNEL);
5254 if (!event)
5255 return ERR_PTR(-ENOMEM);
5256
5257 /*
5258 * Single events are their own group leaders, with an
5259 * empty sibling list:
5260 */
5261 if (!group_leader)
5262 group_leader = event;
5263
5264 mutex_init(&event->child_mutex);
5265 INIT_LIST_HEAD(&event->child_list);
5266
5267 INIT_LIST_HEAD(&event->group_entry);
5268 INIT_LIST_HEAD(&event->event_entry);
5269 INIT_LIST_HEAD(&event->sibling_list);
5270 init_waitqueue_head(&event->waitq);
5271 init_irq_work(&event->pending, perf_pending_event);
5272
5273 mutex_init(&event->mmap_mutex);
5274
5275 event->cpu = cpu;
5276 event->attr = *attr;
5277 event->group_leader = group_leader;
5278 event->pmu = NULL;
5279 event->oncpu = -1;
5280
5281 event->parent = parent_event;
5282
5283 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5284 event->id = atomic64_inc_return(&perf_event_id);
5285
5286 event->state = PERF_EVENT_STATE_INACTIVE;
5287
5288 if (task) {
5289 event->attach_state = PERF_ATTACH_TASK;
5290 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5291 /*
5292 * hw_breakpoint is a bit difficult here..
5293 */
5294 if (attr->type == PERF_TYPE_BREAKPOINT)
5295 event->hw.bp_target = task;
5296 #endif
5297 }
5298
5299 if (!overflow_handler && parent_event)
5300 overflow_handler = parent_event->overflow_handler;
5301
5302 event->overflow_handler = overflow_handler;
5303
5304 if (attr->disabled)
5305 event->state = PERF_EVENT_STATE_OFF;
5306
5307 pmu = NULL;
5308
5309 hwc = &event->hw;
5310 hwc->sample_period = attr->sample_period;
5311 if (attr->freq && attr->sample_freq)
5312 hwc->sample_period = 1;
5313 hwc->last_period = hwc->sample_period;
5314
5315 local64_set(&hwc->period_left, hwc->sample_period);
5316
5317 /*
5318 * we currently do not support PERF_FORMAT_GROUP on inherited events
5319 */
5320 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5321 goto done;
5322
5323 pmu = perf_init_event(event);
5324
5325 done:
5326 err = 0;
5327 if (!pmu)
5328 err = -EINVAL;
5329 else if (IS_ERR(pmu))
5330 err = PTR_ERR(pmu);
5331
5332 if (err) {
5333 if (event->ns)
5334 put_pid_ns(event->ns);
5335 kfree(event);
5336 return ERR_PTR(err);
5337 }
5338
5339 event->pmu = pmu;
5340
5341 if (!event->parent) {
5342 if (event->attach_state & PERF_ATTACH_TASK)
5343 jump_label_inc(&perf_task_events);
5344 if (event->attr.mmap || event->attr.mmap_data)
5345 atomic_inc(&nr_mmap_events);
5346 if (event->attr.comm)
5347 atomic_inc(&nr_comm_events);
5348 if (event->attr.task)
5349 atomic_inc(&nr_task_events);
5350 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5351 err = get_callchain_buffers();
5352 if (err) {
5353 free_event(event);
5354 return ERR_PTR(err);
5355 }
5356 }
5357 }
5358
5359 return event;
5360 }
5361
5362 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5363 struct perf_event_attr *attr)
5364 {
5365 u32 size;
5366 int ret;
5367
5368 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5369 return -EFAULT;
5370
5371 /*
5372 * zero the full structure, so that a short copy will be nice.
5373 */
5374 memset(attr, 0, sizeof(*attr));
5375
5376 ret = get_user(size, &uattr->size);
5377 if (ret)
5378 return ret;
5379
5380 if (size > PAGE_SIZE) /* silly large */
5381 goto err_size;
5382
5383 if (!size) /* abi compat */
5384 size = PERF_ATTR_SIZE_VER0;
5385
5386 if (size < PERF_ATTR_SIZE_VER0)
5387 goto err_size;
5388
5389 /*
5390 * If we're handed a bigger struct than we know of,
5391 * ensure all the unknown bits are 0 - i.e. new
5392 * user-space does not rely on any kernel feature
5393 * extensions we dont know about yet.
5394 */
5395 if (size > sizeof(*attr)) {
5396 unsigned char __user *addr;
5397 unsigned char __user *end;
5398 unsigned char val;
5399
5400 addr = (void __user *)uattr + sizeof(*attr);
5401 end = (void __user *)uattr + size;
5402
5403 for (; addr < end; addr++) {
5404 ret = get_user(val, addr);
5405 if (ret)
5406 return ret;
5407 if (val)
5408 goto err_size;
5409 }
5410 size = sizeof(*attr);
5411 }
5412
5413 ret = copy_from_user(attr, uattr, size);
5414 if (ret)
5415 return -EFAULT;
5416
5417 /*
5418 * If the type exists, the corresponding creation will verify
5419 * the attr->config.
5420 */
5421 if (attr->type >= PERF_TYPE_MAX)
5422 return -EINVAL;
5423
5424 if (attr->__reserved_1)
5425 return -EINVAL;
5426
5427 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5428 return -EINVAL;
5429
5430 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5431 return -EINVAL;
5432
5433 out:
5434 return ret;
5435
5436 err_size:
5437 put_user(sizeof(*attr), &uattr->size);
5438 ret = -E2BIG;
5439 goto out;
5440 }
5441
5442 static int
5443 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5444 {
5445 struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5446 int ret = -EINVAL;
5447
5448 if (!output_event)
5449 goto set;
5450
5451 /* don't allow circular references */
5452 if (event == output_event)
5453 goto out;
5454
5455 /*
5456 * Don't allow cross-cpu buffers
5457 */
5458 if (output_event->cpu != event->cpu)
5459 goto out;
5460
5461 /*
5462 * If its not a per-cpu buffer, it must be the same task.
5463 */
5464 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5465 goto out;
5466
5467 set:
5468 mutex_lock(&event->mmap_mutex);
5469 /* Can't redirect output if we've got an active mmap() */
5470 if (atomic_read(&event->mmap_count))
5471 goto unlock;
5472
5473 if (output_event) {
5474 /* get the buffer we want to redirect to */
5475 buffer = perf_buffer_get(output_event);
5476 if (!buffer)
5477 goto unlock;
5478 }
5479
5480 old_buffer = event->buffer;
5481 rcu_assign_pointer(event->buffer, buffer);
5482 ret = 0;
5483 unlock:
5484 mutex_unlock(&event->mmap_mutex);
5485
5486 if (old_buffer)
5487 perf_buffer_put(old_buffer);
5488 out:
5489 return ret;
5490 }
5491
5492 /**
5493 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5494 *
5495 * @attr_uptr: event_id type attributes for monitoring/sampling
5496 * @pid: target pid
5497 * @cpu: target cpu
5498 * @group_fd: group leader event fd
5499 */
5500 SYSCALL_DEFINE5(perf_event_open,
5501 struct perf_event_attr __user *, attr_uptr,
5502 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5503 {
5504 struct perf_event *group_leader = NULL, *output_event = NULL;
5505 struct perf_event *event, *sibling;
5506 struct perf_event_attr attr;
5507 struct perf_event_context *ctx;
5508 struct file *event_file = NULL;
5509 struct file *group_file = NULL;
5510 struct task_struct *task = NULL;
5511 struct pmu *pmu;
5512 int event_fd;
5513 int move_group = 0;
5514 int fput_needed = 0;
5515 int err;
5516
5517 /* for future expandability... */
5518 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5519 return -EINVAL;
5520
5521 err = perf_copy_attr(attr_uptr, &attr);
5522 if (err)
5523 return err;
5524
5525 if (!attr.exclude_kernel) {
5526 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5527 return -EACCES;
5528 }
5529
5530 if (attr.freq) {
5531 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5532 return -EINVAL;
5533 }
5534
5535 event_fd = get_unused_fd_flags(O_RDWR);
5536 if (event_fd < 0)
5537 return event_fd;
5538
5539 if (group_fd != -1) {
5540 group_leader = perf_fget_light(group_fd, &fput_needed);
5541 if (IS_ERR(group_leader)) {
5542 err = PTR_ERR(group_leader);
5543 goto err_fd;
5544 }
5545 group_file = group_leader->filp;
5546 if (flags & PERF_FLAG_FD_OUTPUT)
5547 output_event = group_leader;
5548 if (flags & PERF_FLAG_FD_NO_GROUP)
5549 group_leader = NULL;
5550 }
5551
5552 if (pid != -1) {
5553 task = find_lively_task_by_vpid(pid);
5554 if (IS_ERR(task)) {
5555 err = PTR_ERR(task);
5556 goto err_group_fd;
5557 }
5558 }
5559
5560 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
5561 if (IS_ERR(event)) {
5562 err = PTR_ERR(event);
5563 goto err_task;
5564 }
5565
5566 /*
5567 * Special case software events and allow them to be part of
5568 * any hardware group.
5569 */
5570 pmu = event->pmu;
5571
5572 if (group_leader &&
5573 (is_software_event(event) != is_software_event(group_leader))) {
5574 if (is_software_event(event)) {
5575 /*
5576 * If event and group_leader are not both a software
5577 * event, and event is, then group leader is not.
5578 *
5579 * Allow the addition of software events to !software
5580 * groups, this is safe because software events never
5581 * fail to schedule.
5582 */
5583 pmu = group_leader->pmu;
5584 } else if (is_software_event(group_leader) &&
5585 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
5586 /*
5587 * In case the group is a pure software group, and we
5588 * try to add a hardware event, move the whole group to
5589 * the hardware context.
5590 */
5591 move_group = 1;
5592 }
5593 }
5594
5595 /*
5596 * Get the target context (task or percpu):
5597 */
5598 ctx = find_get_context(pmu, task, cpu);
5599 if (IS_ERR(ctx)) {
5600 err = PTR_ERR(ctx);
5601 goto err_alloc;
5602 }
5603
5604 /*
5605 * Look up the group leader (we will attach this event to it):
5606 */
5607 if (group_leader) {
5608 err = -EINVAL;
5609
5610 /*
5611 * Do not allow a recursive hierarchy (this new sibling
5612 * becoming part of another group-sibling):
5613 */
5614 if (group_leader->group_leader != group_leader)
5615 goto err_context;
5616 /*
5617 * Do not allow to attach to a group in a different
5618 * task or CPU context:
5619 */
5620 if (move_group) {
5621 if (group_leader->ctx->type != ctx->type)
5622 goto err_context;
5623 } else {
5624 if (group_leader->ctx != ctx)
5625 goto err_context;
5626 }
5627
5628 /*
5629 * Only a group leader can be exclusive or pinned
5630 */
5631 if (attr.exclusive || attr.pinned)
5632 goto err_context;
5633 }
5634
5635 if (output_event) {
5636 err = perf_event_set_output(event, output_event);
5637 if (err)
5638 goto err_context;
5639 }
5640
5641 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5642 if (IS_ERR(event_file)) {
5643 err = PTR_ERR(event_file);
5644 goto err_context;
5645 }
5646
5647 if (move_group) {
5648 struct perf_event_context *gctx = group_leader->ctx;
5649
5650 mutex_lock(&gctx->mutex);
5651 perf_event_remove_from_context(group_leader);
5652 list_for_each_entry(sibling, &group_leader->sibling_list,
5653 group_entry) {
5654 perf_event_remove_from_context(sibling);
5655 put_ctx(gctx);
5656 }
5657 mutex_unlock(&gctx->mutex);
5658 put_ctx(gctx);
5659 }
5660
5661 event->filp = event_file;
5662 WARN_ON_ONCE(ctx->parent_ctx);
5663 mutex_lock(&ctx->mutex);
5664
5665 if (move_group) {
5666 perf_install_in_context(ctx, group_leader, cpu);
5667 get_ctx(ctx);
5668 list_for_each_entry(sibling, &group_leader->sibling_list,
5669 group_entry) {
5670 perf_install_in_context(ctx, sibling, cpu);
5671 get_ctx(ctx);
5672 }
5673 }
5674
5675 perf_install_in_context(ctx, event, cpu);
5676 ++ctx->generation;
5677 mutex_unlock(&ctx->mutex);
5678
5679 event->owner = current;
5680 get_task_struct(current);
5681 mutex_lock(&current->perf_event_mutex);
5682 list_add_tail(&event->owner_entry, &current->perf_event_list);
5683 mutex_unlock(&current->perf_event_mutex);
5684
5685 /*
5686 * Drop the reference on the group_event after placing the
5687 * new event on the sibling_list. This ensures destruction
5688 * of the group leader will find the pointer to itself in
5689 * perf_group_detach().
5690 */
5691 fput_light(group_file, fput_needed);
5692 fd_install(event_fd, event_file);
5693 return event_fd;
5694
5695 err_context:
5696 put_ctx(ctx);
5697 err_alloc:
5698 free_event(event);
5699 err_task:
5700 if (task)
5701 put_task_struct(task);
5702 err_group_fd:
5703 fput_light(group_file, fput_needed);
5704 err_fd:
5705 put_unused_fd(event_fd);
5706 return err;
5707 }
5708
5709 /**
5710 * perf_event_create_kernel_counter
5711 *
5712 * @attr: attributes of the counter to create
5713 * @cpu: cpu in which the counter is bound
5714 * @task: task to profile (NULL for percpu)
5715 */
5716 struct perf_event *
5717 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5718 struct task_struct *task,
5719 perf_overflow_handler_t overflow_handler)
5720 {
5721 struct perf_event_context *ctx;
5722 struct perf_event *event;
5723 int err;
5724
5725 /*
5726 * Get the target context (task or percpu):
5727 */
5728
5729 event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
5730 if (IS_ERR(event)) {
5731 err = PTR_ERR(event);
5732 goto err;
5733 }
5734
5735 ctx = find_get_context(event->pmu, task, cpu);
5736 if (IS_ERR(ctx)) {
5737 err = PTR_ERR(ctx);
5738 goto err_free;
5739 }
5740
5741 event->filp = NULL;
5742 WARN_ON_ONCE(ctx->parent_ctx);
5743 mutex_lock(&ctx->mutex);
5744 perf_install_in_context(ctx, event, cpu);
5745 ++ctx->generation;
5746 mutex_unlock(&ctx->mutex);
5747
5748 event->owner = current;
5749 get_task_struct(current);
5750 mutex_lock(&current->perf_event_mutex);
5751 list_add_tail(&event->owner_entry, &current->perf_event_list);
5752 mutex_unlock(&current->perf_event_mutex);
5753
5754 return event;
5755
5756 err_free:
5757 free_event(event);
5758 err:
5759 return ERR_PTR(err);
5760 }
5761 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5762
5763 static void sync_child_event(struct perf_event *child_event,
5764 struct task_struct *child)
5765 {
5766 struct perf_event *parent_event = child_event->parent;
5767 u64 child_val;
5768
5769 if (child_event->attr.inherit_stat)
5770 perf_event_read_event(child_event, child);
5771
5772 child_val = perf_event_count(child_event);
5773
5774 /*
5775 * Add back the child's count to the parent's count:
5776 */
5777 atomic64_add(child_val, &parent_event->child_count);
5778 atomic64_add(child_event->total_time_enabled,
5779 &parent_event->child_total_time_enabled);
5780 atomic64_add(child_event->total_time_running,
5781 &parent_event->child_total_time_running);
5782
5783 /*
5784 * Remove this event from the parent's list
5785 */
5786 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5787 mutex_lock(&parent_event->child_mutex);
5788 list_del_init(&child_event->child_list);
5789 mutex_unlock(&parent_event->child_mutex);
5790
5791 /*
5792 * Release the parent event, if this was the last
5793 * reference to it.
5794 */
5795 fput(parent_event->filp);
5796 }
5797
5798 static void
5799 __perf_event_exit_task(struct perf_event *child_event,
5800 struct perf_event_context *child_ctx,
5801 struct task_struct *child)
5802 {
5803 struct perf_event *parent_event;
5804
5805 perf_event_remove_from_context(child_event);
5806
5807 parent_event = child_event->parent;
5808 /*
5809 * It can happen that parent exits first, and has events
5810 * that are still around due to the child reference. These
5811 * events need to be zapped - but otherwise linger.
5812 */
5813 if (parent_event) {
5814 sync_child_event(child_event, child);
5815 free_event(child_event);
5816 }
5817 }
5818
5819 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
5820 {
5821 struct perf_event *child_event, *tmp;
5822 struct perf_event_context *child_ctx;
5823 unsigned long flags;
5824
5825 if (likely(!child->perf_event_ctxp[ctxn])) {
5826 perf_event_task(child, NULL, 0);
5827 return;
5828 }
5829
5830 local_irq_save(flags);
5831 /*
5832 * We can't reschedule here because interrupts are disabled,
5833 * and either child is current or it is a task that can't be
5834 * scheduled, so we are now safe from rescheduling changing
5835 * our context.
5836 */
5837 child_ctx = child->perf_event_ctxp[ctxn];
5838 task_ctx_sched_out(child_ctx, EVENT_ALL);
5839
5840 /*
5841 * Take the context lock here so that if find_get_context is
5842 * reading child->perf_event_ctxp, we wait until it has
5843 * incremented the context's refcount before we do put_ctx below.
5844 */
5845 raw_spin_lock(&child_ctx->lock);
5846 child->perf_event_ctxp[ctxn] = NULL;
5847 /*
5848 * If this context is a clone; unclone it so it can't get
5849 * swapped to another process while we're removing all
5850 * the events from it.
5851 */
5852 unclone_ctx(child_ctx);
5853 update_context_time(child_ctx);
5854 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5855
5856 /*
5857 * Report the task dead after unscheduling the events so that we
5858 * won't get any samples after PERF_RECORD_EXIT. We can however still
5859 * get a few PERF_RECORD_READ events.
5860 */
5861 perf_event_task(child, child_ctx, 0);
5862
5863 /*
5864 * We can recurse on the same lock type through:
5865 *
5866 * __perf_event_exit_task()
5867 * sync_child_event()
5868 * fput(parent_event->filp)
5869 * perf_release()
5870 * mutex_lock(&ctx->mutex)
5871 *
5872 * But since its the parent context it won't be the same instance.
5873 */
5874 mutex_lock(&child_ctx->mutex);
5875
5876 again:
5877 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5878 group_entry)
5879 __perf_event_exit_task(child_event, child_ctx, child);
5880
5881 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5882 group_entry)
5883 __perf_event_exit_task(child_event, child_ctx, child);
5884
5885 /*
5886 * If the last event was a group event, it will have appended all
5887 * its siblings to the list, but we obtained 'tmp' before that which
5888 * will still point to the list head terminating the iteration.
5889 */
5890 if (!list_empty(&child_ctx->pinned_groups) ||
5891 !list_empty(&child_ctx->flexible_groups))
5892 goto again;
5893
5894 mutex_unlock(&child_ctx->mutex);
5895
5896 put_ctx(child_ctx);
5897 }
5898
5899 /*
5900 * When a child task exits, feed back event values to parent events.
5901 */
5902 void perf_event_exit_task(struct task_struct *child)
5903 {
5904 int ctxn;
5905
5906 for_each_task_context_nr(ctxn)
5907 perf_event_exit_task_context(child, ctxn);
5908 }
5909
5910 static void perf_free_event(struct perf_event *event,
5911 struct perf_event_context *ctx)
5912 {
5913 struct perf_event *parent = event->parent;
5914
5915 if (WARN_ON_ONCE(!parent))
5916 return;
5917
5918 mutex_lock(&parent->child_mutex);
5919 list_del_init(&event->child_list);
5920 mutex_unlock(&parent->child_mutex);
5921
5922 fput(parent->filp);
5923
5924 perf_group_detach(event);
5925 list_del_event(event, ctx);
5926 free_event(event);
5927 }
5928
5929 /*
5930 * free an unexposed, unused context as created by inheritance by
5931 * perf_event_init_task below, used by fork() in case of fail.
5932 */
5933 void perf_event_free_task(struct task_struct *task)
5934 {
5935 struct perf_event_context *ctx;
5936 struct perf_event *event, *tmp;
5937 int ctxn;
5938
5939 for_each_task_context_nr(ctxn) {
5940 ctx = task->perf_event_ctxp[ctxn];
5941 if (!ctx)
5942 continue;
5943
5944 mutex_lock(&ctx->mutex);
5945 again:
5946 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
5947 group_entry)
5948 perf_free_event(event, ctx);
5949
5950 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5951 group_entry)
5952 perf_free_event(event, ctx);
5953
5954 if (!list_empty(&ctx->pinned_groups) ||
5955 !list_empty(&ctx->flexible_groups))
5956 goto again;
5957
5958 mutex_unlock(&ctx->mutex);
5959
5960 put_ctx(ctx);
5961 }
5962 }
5963
5964 void perf_event_delayed_put(struct task_struct *task)
5965 {
5966 int ctxn;
5967
5968 for_each_task_context_nr(ctxn)
5969 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
5970 }
5971
5972 /*
5973 * inherit a event from parent task to child task:
5974 */
5975 static struct perf_event *
5976 inherit_event(struct perf_event *parent_event,
5977 struct task_struct *parent,
5978 struct perf_event_context *parent_ctx,
5979 struct task_struct *child,
5980 struct perf_event *group_leader,
5981 struct perf_event_context *child_ctx)
5982 {
5983 struct perf_event *child_event;
5984 unsigned long flags;
5985
5986 /*
5987 * Instead of creating recursive hierarchies of events,
5988 * we link inherited events back to the original parent,
5989 * which has a filp for sure, which we use as the reference
5990 * count:
5991 */
5992 if (parent_event->parent)
5993 parent_event = parent_event->parent;
5994
5995 child_event = perf_event_alloc(&parent_event->attr,
5996 parent_event->cpu,
5997 child,
5998 group_leader, parent_event,
5999 NULL);
6000 if (IS_ERR(child_event))
6001 return child_event;
6002 get_ctx(child_ctx);
6003
6004 /*
6005 * Make the child state follow the state of the parent event,
6006 * not its attr.disabled bit. We hold the parent's mutex,
6007 * so we won't race with perf_event_{en, dis}able_family.
6008 */
6009 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6010 child_event->state = PERF_EVENT_STATE_INACTIVE;
6011 else
6012 child_event->state = PERF_EVENT_STATE_OFF;
6013
6014 if (parent_event->attr.freq) {
6015 u64 sample_period = parent_event->hw.sample_period;
6016 struct hw_perf_event *hwc = &child_event->hw;
6017
6018 hwc->sample_period = sample_period;
6019 hwc->last_period = sample_period;
6020
6021 local64_set(&hwc->period_left, sample_period);
6022 }
6023
6024 child_event->ctx = child_ctx;
6025 child_event->overflow_handler = parent_event->overflow_handler;
6026
6027 /*
6028 * Link it up in the child's context:
6029 */
6030 raw_spin_lock_irqsave(&child_ctx->lock, flags);
6031 add_event_to_ctx(child_event, child_ctx);
6032 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6033
6034 /*
6035 * Get a reference to the parent filp - we will fput it
6036 * when the child event exits. This is safe to do because
6037 * we are in the parent and we know that the filp still
6038 * exists and has a nonzero count:
6039 */
6040 atomic_long_inc(&parent_event->filp->f_count);
6041
6042 /*
6043 * Link this into the parent event's child list
6044 */
6045 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6046 mutex_lock(&parent_event->child_mutex);
6047 list_add_tail(&child_event->child_list, &parent_event->child_list);
6048 mutex_unlock(&parent_event->child_mutex);
6049
6050 return child_event;
6051 }
6052
6053 static int inherit_group(struct perf_event *parent_event,
6054 struct task_struct *parent,
6055 struct perf_event_context *parent_ctx,
6056 struct task_struct *child,
6057 struct perf_event_context *child_ctx)
6058 {
6059 struct perf_event *leader;
6060 struct perf_event *sub;
6061 struct perf_event *child_ctr;
6062
6063 leader = inherit_event(parent_event, parent, parent_ctx,
6064 child, NULL, child_ctx);
6065 if (IS_ERR(leader))
6066 return PTR_ERR(leader);
6067 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6068 child_ctr = inherit_event(sub, parent, parent_ctx,
6069 child, leader, child_ctx);
6070 if (IS_ERR(child_ctr))
6071 return PTR_ERR(child_ctr);
6072 }
6073 return 0;
6074 }
6075
6076 static int
6077 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6078 struct perf_event_context *parent_ctx,
6079 struct task_struct *child, int ctxn,
6080 int *inherited_all)
6081 {
6082 int ret;
6083 struct perf_event_context *child_ctx;
6084
6085 if (!event->attr.inherit) {
6086 *inherited_all = 0;
6087 return 0;
6088 }
6089
6090 child_ctx = child->perf_event_ctxp[ctxn];
6091 if (!child_ctx) {
6092 /*
6093 * This is executed from the parent task context, so
6094 * inherit events that have been marked for cloning.
6095 * First allocate and initialize a context for the
6096 * child.
6097 */
6098
6099 child_ctx = alloc_perf_context(event->pmu, child);
6100 if (!child_ctx)
6101 return -ENOMEM;
6102
6103 child->perf_event_ctxp[ctxn] = child_ctx;
6104 }
6105
6106 ret = inherit_group(event, parent, parent_ctx,
6107 child, child_ctx);
6108
6109 if (ret)
6110 *inherited_all = 0;
6111
6112 return ret;
6113 }
6114
6115 /*
6116 * Initialize the perf_event context in task_struct
6117 */
6118 int perf_event_init_context(struct task_struct *child, int ctxn)
6119 {
6120 struct perf_event_context *child_ctx, *parent_ctx;
6121 struct perf_event_context *cloned_ctx;
6122 struct perf_event *event;
6123 struct task_struct *parent = current;
6124 int inherited_all = 1;
6125 int ret = 0;
6126
6127 child->perf_event_ctxp[ctxn] = NULL;
6128
6129 mutex_init(&child->perf_event_mutex);
6130 INIT_LIST_HEAD(&child->perf_event_list);
6131
6132 if (likely(!parent->perf_event_ctxp[ctxn]))
6133 return 0;
6134
6135 /*
6136 * If the parent's context is a clone, pin it so it won't get
6137 * swapped under us.
6138 */
6139 parent_ctx = perf_pin_task_context(parent, ctxn);
6140
6141 /*
6142 * No need to check if parent_ctx != NULL here; since we saw
6143 * it non-NULL earlier, the only reason for it to become NULL
6144 * is if we exit, and since we're currently in the middle of
6145 * a fork we can't be exiting at the same time.
6146 */
6147
6148 /*
6149 * Lock the parent list. No need to lock the child - not PID
6150 * hashed yet and not running, so nobody can access it.
6151 */
6152 mutex_lock(&parent_ctx->mutex);
6153
6154 /*
6155 * We dont have to disable NMIs - we are only looking at
6156 * the list, not manipulating it:
6157 */
6158 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6159 ret = inherit_task_group(event, parent, parent_ctx,
6160 child, ctxn, &inherited_all);
6161 if (ret)
6162 break;
6163 }
6164
6165 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6166 ret = inherit_task_group(event, parent, parent_ctx,
6167 child, ctxn, &inherited_all);
6168 if (ret)
6169 break;
6170 }
6171
6172 child_ctx = child->perf_event_ctxp[ctxn];
6173
6174 if (child_ctx && inherited_all) {
6175 /*
6176 * Mark the child context as a clone of the parent
6177 * context, or of whatever the parent is a clone of.
6178 * Note that if the parent is a clone, it could get
6179 * uncloned at any point, but that doesn't matter
6180 * because the list of events and the generation
6181 * count can't have changed since we took the mutex.
6182 */
6183 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
6184 if (cloned_ctx) {
6185 child_ctx->parent_ctx = cloned_ctx;
6186 child_ctx->parent_gen = parent_ctx->parent_gen;
6187 } else {
6188 child_ctx->parent_ctx = parent_ctx;
6189 child_ctx->parent_gen = parent_ctx->generation;
6190 }
6191 get_ctx(child_ctx->parent_ctx);
6192 }
6193
6194 mutex_unlock(&parent_ctx->mutex);
6195
6196 perf_unpin_context(parent_ctx);
6197
6198 return ret;
6199 }
6200
6201 /*
6202 * Initialize the perf_event context in task_struct
6203 */
6204 int perf_event_init_task(struct task_struct *child)
6205 {
6206 int ctxn, ret;
6207
6208 for_each_task_context_nr(ctxn) {
6209 ret = perf_event_init_context(child, ctxn);
6210 if (ret)
6211 return ret;
6212 }
6213
6214 return 0;
6215 }
6216
6217 static void __init perf_event_init_all_cpus(void)
6218 {
6219 struct swevent_htable *swhash;
6220 int cpu;
6221
6222 for_each_possible_cpu(cpu) {
6223 swhash = &per_cpu(swevent_htable, cpu);
6224 mutex_init(&swhash->hlist_mutex);
6225 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6226 }
6227 }
6228
6229 static void __cpuinit perf_event_init_cpu(int cpu)
6230 {
6231 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6232
6233 mutex_lock(&swhash->hlist_mutex);
6234 if (swhash->hlist_refcount > 0) {
6235 struct swevent_hlist *hlist;
6236
6237 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6238 WARN_ON(!hlist);
6239 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6240 }
6241 mutex_unlock(&swhash->hlist_mutex);
6242 }
6243
6244 #ifdef CONFIG_HOTPLUG_CPU
6245 static void perf_pmu_rotate_stop(struct pmu *pmu)
6246 {
6247 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6248
6249 WARN_ON(!irqs_disabled());
6250
6251 list_del_init(&cpuctx->rotation_list);
6252 }
6253
6254 static void __perf_event_exit_context(void *__info)
6255 {
6256 struct perf_event_context *ctx = __info;
6257 struct perf_event *event, *tmp;
6258
6259 perf_pmu_rotate_stop(ctx->pmu);
6260
6261 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6262 __perf_event_remove_from_context(event);
6263 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6264 __perf_event_remove_from_context(event);
6265 }
6266
6267 static void perf_event_exit_cpu_context(int cpu)
6268 {
6269 struct perf_event_context *ctx;
6270 struct pmu *pmu;
6271 int idx;
6272
6273 idx = srcu_read_lock(&pmus_srcu);
6274 list_for_each_entry_rcu(pmu, &pmus, entry) {
6275 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6276
6277 mutex_lock(&ctx->mutex);
6278 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6279 mutex_unlock(&ctx->mutex);
6280 }
6281 srcu_read_unlock(&pmus_srcu, idx);
6282 }
6283
6284 static void perf_event_exit_cpu(int cpu)
6285 {
6286 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6287
6288 mutex_lock(&swhash->hlist_mutex);
6289 swevent_hlist_release(swhash);
6290 mutex_unlock(&swhash->hlist_mutex);
6291
6292 perf_event_exit_cpu_context(cpu);
6293 }
6294 #else
6295 static inline void perf_event_exit_cpu(int cpu) { }
6296 #endif
6297
6298 static int __cpuinit
6299 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6300 {
6301 unsigned int cpu = (long)hcpu;
6302
6303 switch (action & ~CPU_TASKS_FROZEN) {
6304
6305 case CPU_UP_PREPARE:
6306 case CPU_DOWN_FAILED:
6307 perf_event_init_cpu(cpu);
6308 break;
6309
6310 case CPU_UP_CANCELED:
6311 case CPU_DOWN_PREPARE:
6312 perf_event_exit_cpu(cpu);
6313 break;
6314
6315 default:
6316 break;
6317 }
6318
6319 return NOTIFY_OK;
6320 }
6321
6322 void __init perf_event_init(void)
6323 {
6324 perf_event_init_all_cpus();
6325 init_srcu_struct(&pmus_srcu);
6326 perf_pmu_register(&perf_swevent);
6327 perf_pmu_register(&perf_cpu_clock);
6328 perf_pmu_register(&perf_task_clock);
6329 perf_tp_register();
6330 perf_cpu_notifier(perf_cpu_notify);
6331 }
This page took 0.276054 seconds and 5 git commands to generate.