perf: Rework and fix the arch CPU-hotplug hooks
[deliverable/linux.git] / kernel / perf_event.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/vmalloc.h>
24 #include <linux/hardirq.h>
25 #include <linux/rculist.h>
26 #include <linux/uaccess.h>
27 #include <linux/syscalls.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/perf_event.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/hw_breakpoint.h>
33
34 #include <asm/irq_regs.h>
35
36 /*
37 * Each CPU has a list of per CPU events:
38 */
39 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
40
41 int perf_max_events __read_mostly = 1;
42 static int perf_reserved_percpu __read_mostly;
43 static int perf_overcommit __read_mostly = 1;
44
45 static atomic_t nr_events __read_mostly;
46 static atomic_t nr_mmap_events __read_mostly;
47 static atomic_t nr_comm_events __read_mostly;
48 static atomic_t nr_task_events __read_mostly;
49
50 /*
51 * perf event paranoia level:
52 * -1 - not paranoid at all
53 * 0 - disallow raw tracepoint access for unpriv
54 * 1 - disallow cpu events for unpriv
55 * 2 - disallow kernel profiling for unpriv
56 */
57 int sysctl_perf_event_paranoid __read_mostly = 1;
58
59 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
60
61 /*
62 * max perf event sample rate
63 */
64 int sysctl_perf_event_sample_rate __read_mostly = 100000;
65
66 static atomic64_t perf_event_id;
67
68 /*
69 * Lock for (sysadmin-configurable) event reservations:
70 */
71 static DEFINE_SPINLOCK(perf_resource_lock);
72
73 /*
74 * Architecture provided APIs - weak aliases:
75 */
76 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
77 {
78 return NULL;
79 }
80
81 void __weak hw_perf_disable(void) { barrier(); }
82 void __weak hw_perf_enable(void) { barrier(); }
83
84 int __weak
85 hw_perf_group_sched_in(struct perf_event *group_leader,
86 struct perf_cpu_context *cpuctx,
87 struct perf_event_context *ctx)
88 {
89 return 0;
90 }
91
92 void __weak perf_event_print_debug(void) { }
93
94 static DEFINE_PER_CPU(int, perf_disable_count);
95
96 void __perf_disable(void)
97 {
98 __get_cpu_var(perf_disable_count)++;
99 }
100
101 bool __perf_enable(void)
102 {
103 return !--__get_cpu_var(perf_disable_count);
104 }
105
106 void perf_disable(void)
107 {
108 __perf_disable();
109 hw_perf_disable();
110 }
111
112 void perf_enable(void)
113 {
114 if (__perf_enable())
115 hw_perf_enable();
116 }
117
118 static void get_ctx(struct perf_event_context *ctx)
119 {
120 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
121 }
122
123 static void free_ctx(struct rcu_head *head)
124 {
125 struct perf_event_context *ctx;
126
127 ctx = container_of(head, struct perf_event_context, rcu_head);
128 kfree(ctx);
129 }
130
131 static void put_ctx(struct perf_event_context *ctx)
132 {
133 if (atomic_dec_and_test(&ctx->refcount)) {
134 if (ctx->parent_ctx)
135 put_ctx(ctx->parent_ctx);
136 if (ctx->task)
137 put_task_struct(ctx->task);
138 call_rcu(&ctx->rcu_head, free_ctx);
139 }
140 }
141
142 static void unclone_ctx(struct perf_event_context *ctx)
143 {
144 if (ctx->parent_ctx) {
145 put_ctx(ctx->parent_ctx);
146 ctx->parent_ctx = NULL;
147 }
148 }
149
150 /*
151 * If we inherit events we want to return the parent event id
152 * to userspace.
153 */
154 static u64 primary_event_id(struct perf_event *event)
155 {
156 u64 id = event->id;
157
158 if (event->parent)
159 id = event->parent->id;
160
161 return id;
162 }
163
164 /*
165 * Get the perf_event_context for a task and lock it.
166 * This has to cope with with the fact that until it is locked,
167 * the context could get moved to another task.
168 */
169 static struct perf_event_context *
170 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
171 {
172 struct perf_event_context *ctx;
173
174 rcu_read_lock();
175 retry:
176 ctx = rcu_dereference(task->perf_event_ctxp);
177 if (ctx) {
178 /*
179 * If this context is a clone of another, it might
180 * get swapped for another underneath us by
181 * perf_event_task_sched_out, though the
182 * rcu_read_lock() protects us from any context
183 * getting freed. Lock the context and check if it
184 * got swapped before we could get the lock, and retry
185 * if so. If we locked the right context, then it
186 * can't get swapped on us any more.
187 */
188 raw_spin_lock_irqsave(&ctx->lock, *flags);
189 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
190 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
191 goto retry;
192 }
193
194 if (!atomic_inc_not_zero(&ctx->refcount)) {
195 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
196 ctx = NULL;
197 }
198 }
199 rcu_read_unlock();
200 return ctx;
201 }
202
203 /*
204 * Get the context for a task and increment its pin_count so it
205 * can't get swapped to another task. This also increments its
206 * reference count so that the context can't get freed.
207 */
208 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
209 {
210 struct perf_event_context *ctx;
211 unsigned long flags;
212
213 ctx = perf_lock_task_context(task, &flags);
214 if (ctx) {
215 ++ctx->pin_count;
216 raw_spin_unlock_irqrestore(&ctx->lock, flags);
217 }
218 return ctx;
219 }
220
221 static void perf_unpin_context(struct perf_event_context *ctx)
222 {
223 unsigned long flags;
224
225 raw_spin_lock_irqsave(&ctx->lock, flags);
226 --ctx->pin_count;
227 raw_spin_unlock_irqrestore(&ctx->lock, flags);
228 put_ctx(ctx);
229 }
230
231 static inline u64 perf_clock(void)
232 {
233 return cpu_clock(raw_smp_processor_id());
234 }
235
236 /*
237 * Update the record of the current time in a context.
238 */
239 static void update_context_time(struct perf_event_context *ctx)
240 {
241 u64 now = perf_clock();
242
243 ctx->time += now - ctx->timestamp;
244 ctx->timestamp = now;
245 }
246
247 /*
248 * Update the total_time_enabled and total_time_running fields for a event.
249 */
250 static void update_event_times(struct perf_event *event)
251 {
252 struct perf_event_context *ctx = event->ctx;
253 u64 run_end;
254
255 if (event->state < PERF_EVENT_STATE_INACTIVE ||
256 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
257 return;
258
259 if (ctx->is_active)
260 run_end = ctx->time;
261 else
262 run_end = event->tstamp_stopped;
263
264 event->total_time_enabled = run_end - event->tstamp_enabled;
265
266 if (event->state == PERF_EVENT_STATE_INACTIVE)
267 run_end = event->tstamp_stopped;
268 else
269 run_end = ctx->time;
270
271 event->total_time_running = run_end - event->tstamp_running;
272 }
273
274 static struct list_head *
275 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
276 {
277 if (event->attr.pinned)
278 return &ctx->pinned_groups;
279 else
280 return &ctx->flexible_groups;
281 }
282
283 /*
284 * Add a event from the lists for its context.
285 * Must be called with ctx->mutex and ctx->lock held.
286 */
287 static void
288 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
289 {
290 struct perf_event *group_leader = event->group_leader;
291
292 /*
293 * Depending on whether it is a standalone or sibling event,
294 * add it straight to the context's event list, or to the group
295 * leader's sibling list:
296 */
297 if (group_leader == event) {
298 struct list_head *list;
299
300 if (is_software_event(event))
301 event->group_flags |= PERF_GROUP_SOFTWARE;
302
303 list = ctx_group_list(event, ctx);
304 list_add_tail(&event->group_entry, list);
305 } else {
306 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
307 !is_software_event(event))
308 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
309
310 list_add_tail(&event->group_entry, &group_leader->sibling_list);
311 group_leader->nr_siblings++;
312 }
313
314 list_add_rcu(&event->event_entry, &ctx->event_list);
315 ctx->nr_events++;
316 if (event->attr.inherit_stat)
317 ctx->nr_stat++;
318 }
319
320 /*
321 * Remove a event from the lists for its context.
322 * Must be called with ctx->mutex and ctx->lock held.
323 */
324 static void
325 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
326 {
327 struct perf_event *sibling, *tmp;
328
329 if (list_empty(&event->group_entry))
330 return;
331 ctx->nr_events--;
332 if (event->attr.inherit_stat)
333 ctx->nr_stat--;
334
335 list_del_init(&event->group_entry);
336 list_del_rcu(&event->event_entry);
337
338 if (event->group_leader != event)
339 event->group_leader->nr_siblings--;
340
341 update_event_times(event);
342
343 /*
344 * If event was in error state, then keep it
345 * that way, otherwise bogus counts will be
346 * returned on read(). The only way to get out
347 * of error state is by explicit re-enabling
348 * of the event
349 */
350 if (event->state > PERF_EVENT_STATE_OFF)
351 event->state = PERF_EVENT_STATE_OFF;
352
353 /*
354 * If this was a group event with sibling events then
355 * upgrade the siblings to singleton events by adding them
356 * to the context list directly:
357 */
358 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
359 struct list_head *list;
360
361 list = ctx_group_list(event, ctx);
362 list_move_tail(&sibling->group_entry, list);
363 sibling->group_leader = sibling;
364
365 /* Inherit group flags from the previous leader */
366 sibling->group_flags = event->group_flags;
367 }
368 }
369
370 static void
371 event_sched_out(struct perf_event *event,
372 struct perf_cpu_context *cpuctx,
373 struct perf_event_context *ctx)
374 {
375 if (event->state != PERF_EVENT_STATE_ACTIVE)
376 return;
377
378 event->state = PERF_EVENT_STATE_INACTIVE;
379 if (event->pending_disable) {
380 event->pending_disable = 0;
381 event->state = PERF_EVENT_STATE_OFF;
382 }
383 event->tstamp_stopped = ctx->time;
384 event->pmu->disable(event);
385 event->oncpu = -1;
386
387 if (!is_software_event(event))
388 cpuctx->active_oncpu--;
389 ctx->nr_active--;
390 if (event->attr.exclusive || !cpuctx->active_oncpu)
391 cpuctx->exclusive = 0;
392 }
393
394 static void
395 group_sched_out(struct perf_event *group_event,
396 struct perf_cpu_context *cpuctx,
397 struct perf_event_context *ctx)
398 {
399 struct perf_event *event;
400
401 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
402 return;
403
404 event_sched_out(group_event, cpuctx, ctx);
405
406 /*
407 * Schedule out siblings (if any):
408 */
409 list_for_each_entry(event, &group_event->sibling_list, group_entry)
410 event_sched_out(event, cpuctx, ctx);
411
412 if (group_event->attr.exclusive)
413 cpuctx->exclusive = 0;
414 }
415
416 /*
417 * Cross CPU call to remove a performance event
418 *
419 * We disable the event on the hardware level first. After that we
420 * remove it from the context list.
421 */
422 static void __perf_event_remove_from_context(void *info)
423 {
424 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
425 struct perf_event *event = info;
426 struct perf_event_context *ctx = event->ctx;
427
428 /*
429 * If this is a task context, we need to check whether it is
430 * the current task context of this cpu. If not it has been
431 * scheduled out before the smp call arrived.
432 */
433 if (ctx->task && cpuctx->task_ctx != ctx)
434 return;
435
436 raw_spin_lock(&ctx->lock);
437 /*
438 * Protect the list operation against NMI by disabling the
439 * events on a global level.
440 */
441 perf_disable();
442
443 event_sched_out(event, cpuctx, ctx);
444
445 list_del_event(event, ctx);
446
447 if (!ctx->task) {
448 /*
449 * Allow more per task events with respect to the
450 * reservation:
451 */
452 cpuctx->max_pertask =
453 min(perf_max_events - ctx->nr_events,
454 perf_max_events - perf_reserved_percpu);
455 }
456
457 perf_enable();
458 raw_spin_unlock(&ctx->lock);
459 }
460
461
462 /*
463 * Remove the event from a task's (or a CPU's) list of events.
464 *
465 * Must be called with ctx->mutex held.
466 *
467 * CPU events are removed with a smp call. For task events we only
468 * call when the task is on a CPU.
469 *
470 * If event->ctx is a cloned context, callers must make sure that
471 * every task struct that event->ctx->task could possibly point to
472 * remains valid. This is OK when called from perf_release since
473 * that only calls us on the top-level context, which can't be a clone.
474 * When called from perf_event_exit_task, it's OK because the
475 * context has been detached from its task.
476 */
477 static void perf_event_remove_from_context(struct perf_event *event)
478 {
479 struct perf_event_context *ctx = event->ctx;
480 struct task_struct *task = ctx->task;
481
482 if (!task) {
483 /*
484 * Per cpu events are removed via an smp call and
485 * the removal is always successful.
486 */
487 smp_call_function_single(event->cpu,
488 __perf_event_remove_from_context,
489 event, 1);
490 return;
491 }
492
493 retry:
494 task_oncpu_function_call(task, __perf_event_remove_from_context,
495 event);
496
497 raw_spin_lock_irq(&ctx->lock);
498 /*
499 * If the context is active we need to retry the smp call.
500 */
501 if (ctx->nr_active && !list_empty(&event->group_entry)) {
502 raw_spin_unlock_irq(&ctx->lock);
503 goto retry;
504 }
505
506 /*
507 * The lock prevents that this context is scheduled in so we
508 * can remove the event safely, if the call above did not
509 * succeed.
510 */
511 if (!list_empty(&event->group_entry))
512 list_del_event(event, ctx);
513 raw_spin_unlock_irq(&ctx->lock);
514 }
515
516 /*
517 * Update total_time_enabled and total_time_running for all events in a group.
518 */
519 static void update_group_times(struct perf_event *leader)
520 {
521 struct perf_event *event;
522
523 update_event_times(leader);
524 list_for_each_entry(event, &leader->sibling_list, group_entry)
525 update_event_times(event);
526 }
527
528 /*
529 * Cross CPU call to disable a performance event
530 */
531 static void __perf_event_disable(void *info)
532 {
533 struct perf_event *event = info;
534 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
535 struct perf_event_context *ctx = event->ctx;
536
537 /*
538 * If this is a per-task event, need to check whether this
539 * event's task is the current task on this cpu.
540 */
541 if (ctx->task && cpuctx->task_ctx != ctx)
542 return;
543
544 raw_spin_lock(&ctx->lock);
545
546 /*
547 * If the event is on, turn it off.
548 * If it is in error state, leave it in error state.
549 */
550 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
551 update_context_time(ctx);
552 update_group_times(event);
553 if (event == event->group_leader)
554 group_sched_out(event, cpuctx, ctx);
555 else
556 event_sched_out(event, cpuctx, ctx);
557 event->state = PERF_EVENT_STATE_OFF;
558 }
559
560 raw_spin_unlock(&ctx->lock);
561 }
562
563 /*
564 * Disable a event.
565 *
566 * If event->ctx is a cloned context, callers must make sure that
567 * every task struct that event->ctx->task could possibly point to
568 * remains valid. This condition is satisifed when called through
569 * perf_event_for_each_child or perf_event_for_each because they
570 * hold the top-level event's child_mutex, so any descendant that
571 * goes to exit will block in sync_child_event.
572 * When called from perf_pending_event it's OK because event->ctx
573 * is the current context on this CPU and preemption is disabled,
574 * hence we can't get into perf_event_task_sched_out for this context.
575 */
576 void perf_event_disable(struct perf_event *event)
577 {
578 struct perf_event_context *ctx = event->ctx;
579 struct task_struct *task = ctx->task;
580
581 if (!task) {
582 /*
583 * Disable the event on the cpu that it's on
584 */
585 smp_call_function_single(event->cpu, __perf_event_disable,
586 event, 1);
587 return;
588 }
589
590 retry:
591 task_oncpu_function_call(task, __perf_event_disable, event);
592
593 raw_spin_lock_irq(&ctx->lock);
594 /*
595 * If the event is still active, we need to retry the cross-call.
596 */
597 if (event->state == PERF_EVENT_STATE_ACTIVE) {
598 raw_spin_unlock_irq(&ctx->lock);
599 goto retry;
600 }
601
602 /*
603 * Since we have the lock this context can't be scheduled
604 * in, so we can change the state safely.
605 */
606 if (event->state == PERF_EVENT_STATE_INACTIVE) {
607 update_group_times(event);
608 event->state = PERF_EVENT_STATE_OFF;
609 }
610
611 raw_spin_unlock_irq(&ctx->lock);
612 }
613
614 static int
615 event_sched_in(struct perf_event *event,
616 struct perf_cpu_context *cpuctx,
617 struct perf_event_context *ctx)
618 {
619 if (event->state <= PERF_EVENT_STATE_OFF)
620 return 0;
621
622 event->state = PERF_EVENT_STATE_ACTIVE;
623 event->oncpu = smp_processor_id();
624 /*
625 * The new state must be visible before we turn it on in the hardware:
626 */
627 smp_wmb();
628
629 if (event->pmu->enable(event)) {
630 event->state = PERF_EVENT_STATE_INACTIVE;
631 event->oncpu = -1;
632 return -EAGAIN;
633 }
634
635 event->tstamp_running += ctx->time - event->tstamp_stopped;
636
637 if (!is_software_event(event))
638 cpuctx->active_oncpu++;
639 ctx->nr_active++;
640
641 if (event->attr.exclusive)
642 cpuctx->exclusive = 1;
643
644 return 0;
645 }
646
647 static int
648 group_sched_in(struct perf_event *group_event,
649 struct perf_cpu_context *cpuctx,
650 struct perf_event_context *ctx)
651 {
652 struct perf_event *event, *partial_group;
653 int ret;
654
655 if (group_event->state == PERF_EVENT_STATE_OFF)
656 return 0;
657
658 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx);
659 if (ret)
660 return ret < 0 ? ret : 0;
661
662 if (event_sched_in(group_event, cpuctx, ctx))
663 return -EAGAIN;
664
665 /*
666 * Schedule in siblings as one group (if any):
667 */
668 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
669 if (event_sched_in(event, cpuctx, ctx)) {
670 partial_group = event;
671 goto group_error;
672 }
673 }
674
675 return 0;
676
677 group_error:
678 /*
679 * Groups can be scheduled in as one unit only, so undo any
680 * partial group before returning:
681 */
682 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
683 if (event == partial_group)
684 break;
685 event_sched_out(event, cpuctx, ctx);
686 }
687 event_sched_out(group_event, cpuctx, ctx);
688
689 return -EAGAIN;
690 }
691
692 /*
693 * Work out whether we can put this event group on the CPU now.
694 */
695 static int group_can_go_on(struct perf_event *event,
696 struct perf_cpu_context *cpuctx,
697 int can_add_hw)
698 {
699 /*
700 * Groups consisting entirely of software events can always go on.
701 */
702 if (event->group_flags & PERF_GROUP_SOFTWARE)
703 return 1;
704 /*
705 * If an exclusive group is already on, no other hardware
706 * events can go on.
707 */
708 if (cpuctx->exclusive)
709 return 0;
710 /*
711 * If this group is exclusive and there are already
712 * events on the CPU, it can't go on.
713 */
714 if (event->attr.exclusive && cpuctx->active_oncpu)
715 return 0;
716 /*
717 * Otherwise, try to add it if all previous groups were able
718 * to go on.
719 */
720 return can_add_hw;
721 }
722
723 static void add_event_to_ctx(struct perf_event *event,
724 struct perf_event_context *ctx)
725 {
726 list_add_event(event, ctx);
727 event->tstamp_enabled = ctx->time;
728 event->tstamp_running = ctx->time;
729 event->tstamp_stopped = ctx->time;
730 }
731
732 /*
733 * Cross CPU call to install and enable a performance event
734 *
735 * Must be called with ctx->mutex held
736 */
737 static void __perf_install_in_context(void *info)
738 {
739 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
740 struct perf_event *event = info;
741 struct perf_event_context *ctx = event->ctx;
742 struct perf_event *leader = event->group_leader;
743 int err;
744
745 /*
746 * If this is a task context, we need to check whether it is
747 * the current task context of this cpu. If not it has been
748 * scheduled out before the smp call arrived.
749 * Or possibly this is the right context but it isn't
750 * on this cpu because it had no events.
751 */
752 if (ctx->task && cpuctx->task_ctx != ctx) {
753 if (cpuctx->task_ctx || ctx->task != current)
754 return;
755 cpuctx->task_ctx = ctx;
756 }
757
758 raw_spin_lock(&ctx->lock);
759 ctx->is_active = 1;
760 update_context_time(ctx);
761
762 /*
763 * Protect the list operation against NMI by disabling the
764 * events on a global level. NOP for non NMI based events.
765 */
766 perf_disable();
767
768 add_event_to_ctx(event, ctx);
769
770 if (event->cpu != -1 && event->cpu != smp_processor_id())
771 goto unlock;
772
773 /*
774 * Don't put the event on if it is disabled or if
775 * it is in a group and the group isn't on.
776 */
777 if (event->state != PERF_EVENT_STATE_INACTIVE ||
778 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
779 goto unlock;
780
781 /*
782 * An exclusive event can't go on if there are already active
783 * hardware events, and no hardware event can go on if there
784 * is already an exclusive event on.
785 */
786 if (!group_can_go_on(event, cpuctx, 1))
787 err = -EEXIST;
788 else
789 err = event_sched_in(event, cpuctx, ctx);
790
791 if (err) {
792 /*
793 * This event couldn't go on. If it is in a group
794 * then we have to pull the whole group off.
795 * If the event group is pinned then put it in error state.
796 */
797 if (leader != event)
798 group_sched_out(leader, cpuctx, ctx);
799 if (leader->attr.pinned) {
800 update_group_times(leader);
801 leader->state = PERF_EVENT_STATE_ERROR;
802 }
803 }
804
805 if (!err && !ctx->task && cpuctx->max_pertask)
806 cpuctx->max_pertask--;
807
808 unlock:
809 perf_enable();
810
811 raw_spin_unlock(&ctx->lock);
812 }
813
814 /*
815 * Attach a performance event to a context
816 *
817 * First we add the event to the list with the hardware enable bit
818 * in event->hw_config cleared.
819 *
820 * If the event is attached to a task which is on a CPU we use a smp
821 * call to enable it in the task context. The task might have been
822 * scheduled away, but we check this in the smp call again.
823 *
824 * Must be called with ctx->mutex held.
825 */
826 static void
827 perf_install_in_context(struct perf_event_context *ctx,
828 struct perf_event *event,
829 int cpu)
830 {
831 struct task_struct *task = ctx->task;
832
833 if (!task) {
834 /*
835 * Per cpu events are installed via an smp call and
836 * the install is always successful.
837 */
838 smp_call_function_single(cpu, __perf_install_in_context,
839 event, 1);
840 return;
841 }
842
843 retry:
844 task_oncpu_function_call(task, __perf_install_in_context,
845 event);
846
847 raw_spin_lock_irq(&ctx->lock);
848 /*
849 * we need to retry the smp call.
850 */
851 if (ctx->is_active && list_empty(&event->group_entry)) {
852 raw_spin_unlock_irq(&ctx->lock);
853 goto retry;
854 }
855
856 /*
857 * The lock prevents that this context is scheduled in so we
858 * can add the event safely, if it the call above did not
859 * succeed.
860 */
861 if (list_empty(&event->group_entry))
862 add_event_to_ctx(event, ctx);
863 raw_spin_unlock_irq(&ctx->lock);
864 }
865
866 /*
867 * Put a event into inactive state and update time fields.
868 * Enabling the leader of a group effectively enables all
869 * the group members that aren't explicitly disabled, so we
870 * have to update their ->tstamp_enabled also.
871 * Note: this works for group members as well as group leaders
872 * since the non-leader members' sibling_lists will be empty.
873 */
874 static void __perf_event_mark_enabled(struct perf_event *event,
875 struct perf_event_context *ctx)
876 {
877 struct perf_event *sub;
878
879 event->state = PERF_EVENT_STATE_INACTIVE;
880 event->tstamp_enabled = ctx->time - event->total_time_enabled;
881 list_for_each_entry(sub, &event->sibling_list, group_entry)
882 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
883 sub->tstamp_enabled =
884 ctx->time - sub->total_time_enabled;
885 }
886
887 /*
888 * Cross CPU call to enable a performance event
889 */
890 static void __perf_event_enable(void *info)
891 {
892 struct perf_event *event = info;
893 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
894 struct perf_event_context *ctx = event->ctx;
895 struct perf_event *leader = event->group_leader;
896 int err;
897
898 /*
899 * If this is a per-task event, need to check whether this
900 * event's task is the current task on this cpu.
901 */
902 if (ctx->task && cpuctx->task_ctx != ctx) {
903 if (cpuctx->task_ctx || ctx->task != current)
904 return;
905 cpuctx->task_ctx = ctx;
906 }
907
908 raw_spin_lock(&ctx->lock);
909 ctx->is_active = 1;
910 update_context_time(ctx);
911
912 if (event->state >= PERF_EVENT_STATE_INACTIVE)
913 goto unlock;
914 __perf_event_mark_enabled(event, ctx);
915
916 if (event->cpu != -1 && event->cpu != smp_processor_id())
917 goto unlock;
918
919 /*
920 * If the event is in a group and isn't the group leader,
921 * then don't put it on unless the group is on.
922 */
923 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
924 goto unlock;
925
926 if (!group_can_go_on(event, cpuctx, 1)) {
927 err = -EEXIST;
928 } else {
929 perf_disable();
930 if (event == leader)
931 err = group_sched_in(event, cpuctx, ctx);
932 else
933 err = event_sched_in(event, cpuctx, ctx);
934 perf_enable();
935 }
936
937 if (err) {
938 /*
939 * If this event can't go on and it's part of a
940 * group, then the whole group has to come off.
941 */
942 if (leader != event)
943 group_sched_out(leader, cpuctx, ctx);
944 if (leader->attr.pinned) {
945 update_group_times(leader);
946 leader->state = PERF_EVENT_STATE_ERROR;
947 }
948 }
949
950 unlock:
951 raw_spin_unlock(&ctx->lock);
952 }
953
954 /*
955 * Enable a event.
956 *
957 * If event->ctx is a cloned context, callers must make sure that
958 * every task struct that event->ctx->task could possibly point to
959 * remains valid. This condition is satisfied when called through
960 * perf_event_for_each_child or perf_event_for_each as described
961 * for perf_event_disable.
962 */
963 void perf_event_enable(struct perf_event *event)
964 {
965 struct perf_event_context *ctx = event->ctx;
966 struct task_struct *task = ctx->task;
967
968 if (!task) {
969 /*
970 * Enable the event on the cpu that it's on
971 */
972 smp_call_function_single(event->cpu, __perf_event_enable,
973 event, 1);
974 return;
975 }
976
977 raw_spin_lock_irq(&ctx->lock);
978 if (event->state >= PERF_EVENT_STATE_INACTIVE)
979 goto out;
980
981 /*
982 * If the event is in error state, clear that first.
983 * That way, if we see the event in error state below, we
984 * know that it has gone back into error state, as distinct
985 * from the task having been scheduled away before the
986 * cross-call arrived.
987 */
988 if (event->state == PERF_EVENT_STATE_ERROR)
989 event->state = PERF_EVENT_STATE_OFF;
990
991 retry:
992 raw_spin_unlock_irq(&ctx->lock);
993 task_oncpu_function_call(task, __perf_event_enable, event);
994
995 raw_spin_lock_irq(&ctx->lock);
996
997 /*
998 * If the context is active and the event is still off,
999 * we need to retry the cross-call.
1000 */
1001 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1002 goto retry;
1003
1004 /*
1005 * Since we have the lock this context can't be scheduled
1006 * in, so we can change the state safely.
1007 */
1008 if (event->state == PERF_EVENT_STATE_OFF)
1009 __perf_event_mark_enabled(event, ctx);
1010
1011 out:
1012 raw_spin_unlock_irq(&ctx->lock);
1013 }
1014
1015 static int perf_event_refresh(struct perf_event *event, int refresh)
1016 {
1017 /*
1018 * not supported on inherited events
1019 */
1020 if (event->attr.inherit)
1021 return -EINVAL;
1022
1023 atomic_add(refresh, &event->event_limit);
1024 perf_event_enable(event);
1025
1026 return 0;
1027 }
1028
1029 enum event_type_t {
1030 EVENT_FLEXIBLE = 0x1,
1031 EVENT_PINNED = 0x2,
1032 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1033 };
1034
1035 static void ctx_sched_out(struct perf_event_context *ctx,
1036 struct perf_cpu_context *cpuctx,
1037 enum event_type_t event_type)
1038 {
1039 struct perf_event *event;
1040
1041 raw_spin_lock(&ctx->lock);
1042 ctx->is_active = 0;
1043 if (likely(!ctx->nr_events))
1044 goto out;
1045 update_context_time(ctx);
1046
1047 perf_disable();
1048 if (!ctx->nr_active)
1049 goto out_enable;
1050
1051 if (event_type & EVENT_PINNED)
1052 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1053 group_sched_out(event, cpuctx, ctx);
1054
1055 if (event_type & EVENT_FLEXIBLE)
1056 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1057 group_sched_out(event, cpuctx, ctx);
1058
1059 out_enable:
1060 perf_enable();
1061 out:
1062 raw_spin_unlock(&ctx->lock);
1063 }
1064
1065 /*
1066 * Test whether two contexts are equivalent, i.e. whether they
1067 * have both been cloned from the same version of the same context
1068 * and they both have the same number of enabled events.
1069 * If the number of enabled events is the same, then the set
1070 * of enabled events should be the same, because these are both
1071 * inherited contexts, therefore we can't access individual events
1072 * in them directly with an fd; we can only enable/disable all
1073 * events via prctl, or enable/disable all events in a family
1074 * via ioctl, which will have the same effect on both contexts.
1075 */
1076 static int context_equiv(struct perf_event_context *ctx1,
1077 struct perf_event_context *ctx2)
1078 {
1079 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1080 && ctx1->parent_gen == ctx2->parent_gen
1081 && !ctx1->pin_count && !ctx2->pin_count;
1082 }
1083
1084 static void __perf_event_sync_stat(struct perf_event *event,
1085 struct perf_event *next_event)
1086 {
1087 u64 value;
1088
1089 if (!event->attr.inherit_stat)
1090 return;
1091
1092 /*
1093 * Update the event value, we cannot use perf_event_read()
1094 * because we're in the middle of a context switch and have IRQs
1095 * disabled, which upsets smp_call_function_single(), however
1096 * we know the event must be on the current CPU, therefore we
1097 * don't need to use it.
1098 */
1099 switch (event->state) {
1100 case PERF_EVENT_STATE_ACTIVE:
1101 event->pmu->read(event);
1102 /* fall-through */
1103
1104 case PERF_EVENT_STATE_INACTIVE:
1105 update_event_times(event);
1106 break;
1107
1108 default:
1109 break;
1110 }
1111
1112 /*
1113 * In order to keep per-task stats reliable we need to flip the event
1114 * values when we flip the contexts.
1115 */
1116 value = atomic64_read(&next_event->count);
1117 value = atomic64_xchg(&event->count, value);
1118 atomic64_set(&next_event->count, value);
1119
1120 swap(event->total_time_enabled, next_event->total_time_enabled);
1121 swap(event->total_time_running, next_event->total_time_running);
1122
1123 /*
1124 * Since we swizzled the values, update the user visible data too.
1125 */
1126 perf_event_update_userpage(event);
1127 perf_event_update_userpage(next_event);
1128 }
1129
1130 #define list_next_entry(pos, member) \
1131 list_entry(pos->member.next, typeof(*pos), member)
1132
1133 static void perf_event_sync_stat(struct perf_event_context *ctx,
1134 struct perf_event_context *next_ctx)
1135 {
1136 struct perf_event *event, *next_event;
1137
1138 if (!ctx->nr_stat)
1139 return;
1140
1141 update_context_time(ctx);
1142
1143 event = list_first_entry(&ctx->event_list,
1144 struct perf_event, event_entry);
1145
1146 next_event = list_first_entry(&next_ctx->event_list,
1147 struct perf_event, event_entry);
1148
1149 while (&event->event_entry != &ctx->event_list &&
1150 &next_event->event_entry != &next_ctx->event_list) {
1151
1152 __perf_event_sync_stat(event, next_event);
1153
1154 event = list_next_entry(event, event_entry);
1155 next_event = list_next_entry(next_event, event_entry);
1156 }
1157 }
1158
1159 /*
1160 * Called from scheduler to remove the events of the current task,
1161 * with interrupts disabled.
1162 *
1163 * We stop each event and update the event value in event->count.
1164 *
1165 * This does not protect us against NMI, but disable()
1166 * sets the disabled bit in the control field of event _before_
1167 * accessing the event control register. If a NMI hits, then it will
1168 * not restart the event.
1169 */
1170 void perf_event_task_sched_out(struct task_struct *task,
1171 struct task_struct *next)
1172 {
1173 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1174 struct perf_event_context *ctx = task->perf_event_ctxp;
1175 struct perf_event_context *next_ctx;
1176 struct perf_event_context *parent;
1177 struct pt_regs *regs;
1178 int do_switch = 1;
1179
1180 regs = task_pt_regs(task);
1181 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1182
1183 if (likely(!ctx || !cpuctx->task_ctx))
1184 return;
1185
1186 rcu_read_lock();
1187 parent = rcu_dereference(ctx->parent_ctx);
1188 next_ctx = next->perf_event_ctxp;
1189 if (parent && next_ctx &&
1190 rcu_dereference(next_ctx->parent_ctx) == parent) {
1191 /*
1192 * Looks like the two contexts are clones, so we might be
1193 * able to optimize the context switch. We lock both
1194 * contexts and check that they are clones under the
1195 * lock (including re-checking that neither has been
1196 * uncloned in the meantime). It doesn't matter which
1197 * order we take the locks because no other cpu could
1198 * be trying to lock both of these tasks.
1199 */
1200 raw_spin_lock(&ctx->lock);
1201 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1202 if (context_equiv(ctx, next_ctx)) {
1203 /*
1204 * XXX do we need a memory barrier of sorts
1205 * wrt to rcu_dereference() of perf_event_ctxp
1206 */
1207 task->perf_event_ctxp = next_ctx;
1208 next->perf_event_ctxp = ctx;
1209 ctx->task = next;
1210 next_ctx->task = task;
1211 do_switch = 0;
1212
1213 perf_event_sync_stat(ctx, next_ctx);
1214 }
1215 raw_spin_unlock(&next_ctx->lock);
1216 raw_spin_unlock(&ctx->lock);
1217 }
1218 rcu_read_unlock();
1219
1220 if (do_switch) {
1221 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1222 cpuctx->task_ctx = NULL;
1223 }
1224 }
1225
1226 static void task_ctx_sched_out(struct perf_event_context *ctx,
1227 enum event_type_t event_type)
1228 {
1229 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1230
1231 if (!cpuctx->task_ctx)
1232 return;
1233
1234 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1235 return;
1236
1237 ctx_sched_out(ctx, cpuctx, event_type);
1238 cpuctx->task_ctx = NULL;
1239 }
1240
1241 /*
1242 * Called with IRQs disabled
1243 */
1244 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1245 {
1246 task_ctx_sched_out(ctx, EVENT_ALL);
1247 }
1248
1249 /*
1250 * Called with IRQs disabled
1251 */
1252 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1253 enum event_type_t event_type)
1254 {
1255 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1256 }
1257
1258 static void
1259 ctx_pinned_sched_in(struct perf_event_context *ctx,
1260 struct perf_cpu_context *cpuctx)
1261 {
1262 struct perf_event *event;
1263
1264 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1265 if (event->state <= PERF_EVENT_STATE_OFF)
1266 continue;
1267 if (event->cpu != -1 && event->cpu != smp_processor_id())
1268 continue;
1269
1270 if (group_can_go_on(event, cpuctx, 1))
1271 group_sched_in(event, cpuctx, ctx);
1272
1273 /*
1274 * If this pinned group hasn't been scheduled,
1275 * put it in error state.
1276 */
1277 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1278 update_group_times(event);
1279 event->state = PERF_EVENT_STATE_ERROR;
1280 }
1281 }
1282 }
1283
1284 static void
1285 ctx_flexible_sched_in(struct perf_event_context *ctx,
1286 struct perf_cpu_context *cpuctx)
1287 {
1288 struct perf_event *event;
1289 int can_add_hw = 1;
1290
1291 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1292 /* Ignore events in OFF or ERROR state */
1293 if (event->state <= PERF_EVENT_STATE_OFF)
1294 continue;
1295 /*
1296 * Listen to the 'cpu' scheduling filter constraint
1297 * of events:
1298 */
1299 if (event->cpu != -1 && event->cpu != smp_processor_id())
1300 continue;
1301
1302 if (group_can_go_on(event, cpuctx, can_add_hw))
1303 if (group_sched_in(event, cpuctx, ctx))
1304 can_add_hw = 0;
1305 }
1306 }
1307
1308 static void
1309 ctx_sched_in(struct perf_event_context *ctx,
1310 struct perf_cpu_context *cpuctx,
1311 enum event_type_t event_type)
1312 {
1313 raw_spin_lock(&ctx->lock);
1314 ctx->is_active = 1;
1315 if (likely(!ctx->nr_events))
1316 goto out;
1317
1318 ctx->timestamp = perf_clock();
1319
1320 perf_disable();
1321
1322 /*
1323 * First go through the list and put on any pinned groups
1324 * in order to give them the best chance of going on.
1325 */
1326 if (event_type & EVENT_PINNED)
1327 ctx_pinned_sched_in(ctx, cpuctx);
1328
1329 /* Then walk through the lower prio flexible groups */
1330 if (event_type & EVENT_FLEXIBLE)
1331 ctx_flexible_sched_in(ctx, cpuctx);
1332
1333 perf_enable();
1334 out:
1335 raw_spin_unlock(&ctx->lock);
1336 }
1337
1338 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1339 enum event_type_t event_type)
1340 {
1341 struct perf_event_context *ctx = &cpuctx->ctx;
1342
1343 ctx_sched_in(ctx, cpuctx, event_type);
1344 }
1345
1346 static void task_ctx_sched_in(struct task_struct *task,
1347 enum event_type_t event_type)
1348 {
1349 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1350 struct perf_event_context *ctx = task->perf_event_ctxp;
1351
1352 if (likely(!ctx))
1353 return;
1354 if (cpuctx->task_ctx == ctx)
1355 return;
1356 ctx_sched_in(ctx, cpuctx, event_type);
1357 cpuctx->task_ctx = ctx;
1358 }
1359 /*
1360 * Called from scheduler to add the events of the current task
1361 * with interrupts disabled.
1362 *
1363 * We restore the event value and then enable it.
1364 *
1365 * This does not protect us against NMI, but enable()
1366 * sets the enabled bit in the control field of event _before_
1367 * accessing the event control register. If a NMI hits, then it will
1368 * keep the event running.
1369 */
1370 void perf_event_task_sched_in(struct task_struct *task)
1371 {
1372 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1373 struct perf_event_context *ctx = task->perf_event_ctxp;
1374
1375 if (likely(!ctx))
1376 return;
1377
1378 if (cpuctx->task_ctx == ctx)
1379 return;
1380
1381 /*
1382 * We want to keep the following priority order:
1383 * cpu pinned (that don't need to move), task pinned,
1384 * cpu flexible, task flexible.
1385 */
1386 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1387
1388 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1389 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1390 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1391
1392 cpuctx->task_ctx = ctx;
1393 }
1394
1395 #define MAX_INTERRUPTS (~0ULL)
1396
1397 static void perf_log_throttle(struct perf_event *event, int enable);
1398
1399 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1400 {
1401 u64 frequency = event->attr.sample_freq;
1402 u64 sec = NSEC_PER_SEC;
1403 u64 divisor, dividend;
1404
1405 int count_fls, nsec_fls, frequency_fls, sec_fls;
1406
1407 count_fls = fls64(count);
1408 nsec_fls = fls64(nsec);
1409 frequency_fls = fls64(frequency);
1410 sec_fls = 30;
1411
1412 /*
1413 * We got @count in @nsec, with a target of sample_freq HZ
1414 * the target period becomes:
1415 *
1416 * @count * 10^9
1417 * period = -------------------
1418 * @nsec * sample_freq
1419 *
1420 */
1421
1422 /*
1423 * Reduce accuracy by one bit such that @a and @b converge
1424 * to a similar magnitude.
1425 */
1426 #define REDUCE_FLS(a, b) \
1427 do { \
1428 if (a##_fls > b##_fls) { \
1429 a >>= 1; \
1430 a##_fls--; \
1431 } else { \
1432 b >>= 1; \
1433 b##_fls--; \
1434 } \
1435 } while (0)
1436
1437 /*
1438 * Reduce accuracy until either term fits in a u64, then proceed with
1439 * the other, so that finally we can do a u64/u64 division.
1440 */
1441 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1442 REDUCE_FLS(nsec, frequency);
1443 REDUCE_FLS(sec, count);
1444 }
1445
1446 if (count_fls + sec_fls > 64) {
1447 divisor = nsec * frequency;
1448
1449 while (count_fls + sec_fls > 64) {
1450 REDUCE_FLS(count, sec);
1451 divisor >>= 1;
1452 }
1453
1454 dividend = count * sec;
1455 } else {
1456 dividend = count * sec;
1457
1458 while (nsec_fls + frequency_fls > 64) {
1459 REDUCE_FLS(nsec, frequency);
1460 dividend >>= 1;
1461 }
1462
1463 divisor = nsec * frequency;
1464 }
1465
1466 return div64_u64(dividend, divisor);
1467 }
1468
1469 static void perf_event_stop(struct perf_event *event)
1470 {
1471 if (!event->pmu->stop)
1472 return event->pmu->disable(event);
1473
1474 return event->pmu->stop(event);
1475 }
1476
1477 static int perf_event_start(struct perf_event *event)
1478 {
1479 if (!event->pmu->start)
1480 return event->pmu->enable(event);
1481
1482 return event->pmu->start(event);
1483 }
1484
1485 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1486 {
1487 struct hw_perf_event *hwc = &event->hw;
1488 u64 period, sample_period;
1489 s64 delta;
1490
1491 period = perf_calculate_period(event, nsec, count);
1492
1493 delta = (s64)(period - hwc->sample_period);
1494 delta = (delta + 7) / 8; /* low pass filter */
1495
1496 sample_period = hwc->sample_period + delta;
1497
1498 if (!sample_period)
1499 sample_period = 1;
1500
1501 hwc->sample_period = sample_period;
1502
1503 if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1504 perf_disable();
1505 perf_event_stop(event);
1506 atomic64_set(&hwc->period_left, 0);
1507 perf_event_start(event);
1508 perf_enable();
1509 }
1510 }
1511
1512 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1513 {
1514 struct perf_event *event;
1515 struct hw_perf_event *hwc;
1516 u64 interrupts, now;
1517 s64 delta;
1518
1519 raw_spin_lock(&ctx->lock);
1520 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1521 if (event->state != PERF_EVENT_STATE_ACTIVE)
1522 continue;
1523
1524 if (event->cpu != -1 && event->cpu != smp_processor_id())
1525 continue;
1526
1527 hwc = &event->hw;
1528
1529 interrupts = hwc->interrupts;
1530 hwc->interrupts = 0;
1531
1532 /*
1533 * unthrottle events on the tick
1534 */
1535 if (interrupts == MAX_INTERRUPTS) {
1536 perf_log_throttle(event, 1);
1537 event->pmu->unthrottle(event);
1538 }
1539
1540 if (!event->attr.freq || !event->attr.sample_freq)
1541 continue;
1542
1543 event->pmu->read(event);
1544 now = atomic64_read(&event->count);
1545 delta = now - hwc->freq_count_stamp;
1546 hwc->freq_count_stamp = now;
1547
1548 if (delta > 0)
1549 perf_adjust_period(event, TICK_NSEC, delta);
1550 }
1551 raw_spin_unlock(&ctx->lock);
1552 }
1553
1554 /*
1555 * Round-robin a context's events:
1556 */
1557 static void rotate_ctx(struct perf_event_context *ctx)
1558 {
1559 if (!ctx->nr_events)
1560 return;
1561
1562 raw_spin_lock(&ctx->lock);
1563
1564 /* Rotate the first entry last of non-pinned groups */
1565 list_rotate_left(&ctx->flexible_groups);
1566
1567 raw_spin_unlock(&ctx->lock);
1568 }
1569
1570 void perf_event_task_tick(struct task_struct *curr)
1571 {
1572 struct perf_cpu_context *cpuctx;
1573 struct perf_event_context *ctx;
1574
1575 if (!atomic_read(&nr_events))
1576 return;
1577
1578 cpuctx = &__get_cpu_var(perf_cpu_context);
1579 ctx = curr->perf_event_ctxp;
1580
1581 perf_disable();
1582
1583 perf_ctx_adjust_freq(&cpuctx->ctx);
1584 if (ctx)
1585 perf_ctx_adjust_freq(ctx);
1586
1587 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1588 if (ctx)
1589 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1590
1591 rotate_ctx(&cpuctx->ctx);
1592 if (ctx)
1593 rotate_ctx(ctx);
1594
1595 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1596 if (ctx)
1597 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1598
1599 perf_enable();
1600 }
1601
1602 static int event_enable_on_exec(struct perf_event *event,
1603 struct perf_event_context *ctx)
1604 {
1605 if (!event->attr.enable_on_exec)
1606 return 0;
1607
1608 event->attr.enable_on_exec = 0;
1609 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1610 return 0;
1611
1612 __perf_event_mark_enabled(event, ctx);
1613
1614 return 1;
1615 }
1616
1617 /*
1618 * Enable all of a task's events that have been marked enable-on-exec.
1619 * This expects task == current.
1620 */
1621 static void perf_event_enable_on_exec(struct task_struct *task)
1622 {
1623 struct perf_event_context *ctx;
1624 struct perf_event *event;
1625 unsigned long flags;
1626 int enabled = 0;
1627 int ret;
1628
1629 local_irq_save(flags);
1630 ctx = task->perf_event_ctxp;
1631 if (!ctx || !ctx->nr_events)
1632 goto out;
1633
1634 __perf_event_task_sched_out(ctx);
1635
1636 raw_spin_lock(&ctx->lock);
1637
1638 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1639 ret = event_enable_on_exec(event, ctx);
1640 if (ret)
1641 enabled = 1;
1642 }
1643
1644 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1645 ret = event_enable_on_exec(event, ctx);
1646 if (ret)
1647 enabled = 1;
1648 }
1649
1650 /*
1651 * Unclone this context if we enabled any event.
1652 */
1653 if (enabled)
1654 unclone_ctx(ctx);
1655
1656 raw_spin_unlock(&ctx->lock);
1657
1658 perf_event_task_sched_in(task);
1659 out:
1660 local_irq_restore(flags);
1661 }
1662
1663 /*
1664 * Cross CPU call to read the hardware event
1665 */
1666 static void __perf_event_read(void *info)
1667 {
1668 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1669 struct perf_event *event = info;
1670 struct perf_event_context *ctx = event->ctx;
1671
1672 /*
1673 * If this is a task context, we need to check whether it is
1674 * the current task context of this cpu. If not it has been
1675 * scheduled out before the smp call arrived. In that case
1676 * event->count would have been updated to a recent sample
1677 * when the event was scheduled out.
1678 */
1679 if (ctx->task && cpuctx->task_ctx != ctx)
1680 return;
1681
1682 raw_spin_lock(&ctx->lock);
1683 update_context_time(ctx);
1684 update_event_times(event);
1685 raw_spin_unlock(&ctx->lock);
1686
1687 event->pmu->read(event);
1688 }
1689
1690 static u64 perf_event_read(struct perf_event *event)
1691 {
1692 /*
1693 * If event is enabled and currently active on a CPU, update the
1694 * value in the event structure:
1695 */
1696 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1697 smp_call_function_single(event->oncpu,
1698 __perf_event_read, event, 1);
1699 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1700 struct perf_event_context *ctx = event->ctx;
1701 unsigned long flags;
1702
1703 raw_spin_lock_irqsave(&ctx->lock, flags);
1704 update_context_time(ctx);
1705 update_event_times(event);
1706 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1707 }
1708
1709 return atomic64_read(&event->count);
1710 }
1711
1712 /*
1713 * Initialize the perf_event context in a task_struct:
1714 */
1715 static void
1716 __perf_event_init_context(struct perf_event_context *ctx,
1717 struct task_struct *task)
1718 {
1719 raw_spin_lock_init(&ctx->lock);
1720 mutex_init(&ctx->mutex);
1721 INIT_LIST_HEAD(&ctx->pinned_groups);
1722 INIT_LIST_HEAD(&ctx->flexible_groups);
1723 INIT_LIST_HEAD(&ctx->event_list);
1724 atomic_set(&ctx->refcount, 1);
1725 ctx->task = task;
1726 }
1727
1728 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1729 {
1730 struct perf_event_context *ctx;
1731 struct perf_cpu_context *cpuctx;
1732 struct task_struct *task;
1733 unsigned long flags;
1734 int err;
1735
1736 if (pid == -1 && cpu != -1) {
1737 /* Must be root to operate on a CPU event: */
1738 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1739 return ERR_PTR(-EACCES);
1740
1741 if (cpu < 0 || cpu >= nr_cpumask_bits)
1742 return ERR_PTR(-EINVAL);
1743
1744 /*
1745 * We could be clever and allow to attach a event to an
1746 * offline CPU and activate it when the CPU comes up, but
1747 * that's for later.
1748 */
1749 if (!cpu_online(cpu))
1750 return ERR_PTR(-ENODEV);
1751
1752 cpuctx = &per_cpu(perf_cpu_context, cpu);
1753 ctx = &cpuctx->ctx;
1754 get_ctx(ctx);
1755
1756 return ctx;
1757 }
1758
1759 rcu_read_lock();
1760 if (!pid)
1761 task = current;
1762 else
1763 task = find_task_by_vpid(pid);
1764 if (task)
1765 get_task_struct(task);
1766 rcu_read_unlock();
1767
1768 if (!task)
1769 return ERR_PTR(-ESRCH);
1770
1771 /*
1772 * Can't attach events to a dying task.
1773 */
1774 err = -ESRCH;
1775 if (task->flags & PF_EXITING)
1776 goto errout;
1777
1778 /* Reuse ptrace permission checks for now. */
1779 err = -EACCES;
1780 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1781 goto errout;
1782
1783 retry:
1784 ctx = perf_lock_task_context(task, &flags);
1785 if (ctx) {
1786 unclone_ctx(ctx);
1787 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1788 }
1789
1790 if (!ctx) {
1791 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1792 err = -ENOMEM;
1793 if (!ctx)
1794 goto errout;
1795 __perf_event_init_context(ctx, task);
1796 get_ctx(ctx);
1797 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1798 /*
1799 * We raced with some other task; use
1800 * the context they set.
1801 */
1802 kfree(ctx);
1803 goto retry;
1804 }
1805 get_task_struct(task);
1806 }
1807
1808 put_task_struct(task);
1809 return ctx;
1810
1811 errout:
1812 put_task_struct(task);
1813 return ERR_PTR(err);
1814 }
1815
1816 static void perf_event_free_filter(struct perf_event *event);
1817
1818 static void free_event_rcu(struct rcu_head *head)
1819 {
1820 struct perf_event *event;
1821
1822 event = container_of(head, struct perf_event, rcu_head);
1823 if (event->ns)
1824 put_pid_ns(event->ns);
1825 perf_event_free_filter(event);
1826 kfree(event);
1827 }
1828
1829 static void perf_pending_sync(struct perf_event *event);
1830
1831 static void free_event(struct perf_event *event)
1832 {
1833 perf_pending_sync(event);
1834
1835 if (!event->parent) {
1836 atomic_dec(&nr_events);
1837 if (event->attr.mmap)
1838 atomic_dec(&nr_mmap_events);
1839 if (event->attr.comm)
1840 atomic_dec(&nr_comm_events);
1841 if (event->attr.task)
1842 atomic_dec(&nr_task_events);
1843 }
1844
1845 if (event->output) {
1846 fput(event->output->filp);
1847 event->output = NULL;
1848 }
1849
1850 if (event->destroy)
1851 event->destroy(event);
1852
1853 put_ctx(event->ctx);
1854 call_rcu(&event->rcu_head, free_event_rcu);
1855 }
1856
1857 int perf_event_release_kernel(struct perf_event *event)
1858 {
1859 struct perf_event_context *ctx = event->ctx;
1860
1861 WARN_ON_ONCE(ctx->parent_ctx);
1862 mutex_lock(&ctx->mutex);
1863 perf_event_remove_from_context(event);
1864 mutex_unlock(&ctx->mutex);
1865
1866 mutex_lock(&event->owner->perf_event_mutex);
1867 list_del_init(&event->owner_entry);
1868 mutex_unlock(&event->owner->perf_event_mutex);
1869 put_task_struct(event->owner);
1870
1871 free_event(event);
1872
1873 return 0;
1874 }
1875 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1876
1877 /*
1878 * Called when the last reference to the file is gone.
1879 */
1880 static int perf_release(struct inode *inode, struct file *file)
1881 {
1882 struct perf_event *event = file->private_data;
1883
1884 file->private_data = NULL;
1885
1886 return perf_event_release_kernel(event);
1887 }
1888
1889 static int perf_event_read_size(struct perf_event *event)
1890 {
1891 int entry = sizeof(u64); /* value */
1892 int size = 0;
1893 int nr = 1;
1894
1895 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1896 size += sizeof(u64);
1897
1898 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1899 size += sizeof(u64);
1900
1901 if (event->attr.read_format & PERF_FORMAT_ID)
1902 entry += sizeof(u64);
1903
1904 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1905 nr += event->group_leader->nr_siblings;
1906 size += sizeof(u64);
1907 }
1908
1909 size += entry * nr;
1910
1911 return size;
1912 }
1913
1914 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1915 {
1916 struct perf_event *child;
1917 u64 total = 0;
1918
1919 *enabled = 0;
1920 *running = 0;
1921
1922 mutex_lock(&event->child_mutex);
1923 total += perf_event_read(event);
1924 *enabled += event->total_time_enabled +
1925 atomic64_read(&event->child_total_time_enabled);
1926 *running += event->total_time_running +
1927 atomic64_read(&event->child_total_time_running);
1928
1929 list_for_each_entry(child, &event->child_list, child_list) {
1930 total += perf_event_read(child);
1931 *enabled += child->total_time_enabled;
1932 *running += child->total_time_running;
1933 }
1934 mutex_unlock(&event->child_mutex);
1935
1936 return total;
1937 }
1938 EXPORT_SYMBOL_GPL(perf_event_read_value);
1939
1940 static int perf_event_read_group(struct perf_event *event,
1941 u64 read_format, char __user *buf)
1942 {
1943 struct perf_event *leader = event->group_leader, *sub;
1944 int n = 0, size = 0, ret = -EFAULT;
1945 struct perf_event_context *ctx = leader->ctx;
1946 u64 values[5];
1947 u64 count, enabled, running;
1948
1949 mutex_lock(&ctx->mutex);
1950 count = perf_event_read_value(leader, &enabled, &running);
1951
1952 values[n++] = 1 + leader->nr_siblings;
1953 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1954 values[n++] = enabled;
1955 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1956 values[n++] = running;
1957 values[n++] = count;
1958 if (read_format & PERF_FORMAT_ID)
1959 values[n++] = primary_event_id(leader);
1960
1961 size = n * sizeof(u64);
1962
1963 if (copy_to_user(buf, values, size))
1964 goto unlock;
1965
1966 ret = size;
1967
1968 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1969 n = 0;
1970
1971 values[n++] = perf_event_read_value(sub, &enabled, &running);
1972 if (read_format & PERF_FORMAT_ID)
1973 values[n++] = primary_event_id(sub);
1974
1975 size = n * sizeof(u64);
1976
1977 if (copy_to_user(buf + ret, values, size)) {
1978 ret = -EFAULT;
1979 goto unlock;
1980 }
1981
1982 ret += size;
1983 }
1984 unlock:
1985 mutex_unlock(&ctx->mutex);
1986
1987 return ret;
1988 }
1989
1990 static int perf_event_read_one(struct perf_event *event,
1991 u64 read_format, char __user *buf)
1992 {
1993 u64 enabled, running;
1994 u64 values[4];
1995 int n = 0;
1996
1997 values[n++] = perf_event_read_value(event, &enabled, &running);
1998 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1999 values[n++] = enabled;
2000 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2001 values[n++] = running;
2002 if (read_format & PERF_FORMAT_ID)
2003 values[n++] = primary_event_id(event);
2004
2005 if (copy_to_user(buf, values, n * sizeof(u64)))
2006 return -EFAULT;
2007
2008 return n * sizeof(u64);
2009 }
2010
2011 /*
2012 * Read the performance event - simple non blocking version for now
2013 */
2014 static ssize_t
2015 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2016 {
2017 u64 read_format = event->attr.read_format;
2018 int ret;
2019
2020 /*
2021 * Return end-of-file for a read on a event that is in
2022 * error state (i.e. because it was pinned but it couldn't be
2023 * scheduled on to the CPU at some point).
2024 */
2025 if (event->state == PERF_EVENT_STATE_ERROR)
2026 return 0;
2027
2028 if (count < perf_event_read_size(event))
2029 return -ENOSPC;
2030
2031 WARN_ON_ONCE(event->ctx->parent_ctx);
2032 if (read_format & PERF_FORMAT_GROUP)
2033 ret = perf_event_read_group(event, read_format, buf);
2034 else
2035 ret = perf_event_read_one(event, read_format, buf);
2036
2037 return ret;
2038 }
2039
2040 static ssize_t
2041 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2042 {
2043 struct perf_event *event = file->private_data;
2044
2045 return perf_read_hw(event, buf, count);
2046 }
2047
2048 static unsigned int perf_poll(struct file *file, poll_table *wait)
2049 {
2050 struct perf_event *event = file->private_data;
2051 struct perf_mmap_data *data;
2052 unsigned int events = POLL_HUP;
2053
2054 rcu_read_lock();
2055 data = rcu_dereference(event->data);
2056 if (data)
2057 events = atomic_xchg(&data->poll, 0);
2058 rcu_read_unlock();
2059
2060 poll_wait(file, &event->waitq, wait);
2061
2062 return events;
2063 }
2064
2065 static void perf_event_reset(struct perf_event *event)
2066 {
2067 (void)perf_event_read(event);
2068 atomic64_set(&event->count, 0);
2069 perf_event_update_userpage(event);
2070 }
2071
2072 /*
2073 * Holding the top-level event's child_mutex means that any
2074 * descendant process that has inherited this event will block
2075 * in sync_child_event if it goes to exit, thus satisfying the
2076 * task existence requirements of perf_event_enable/disable.
2077 */
2078 static void perf_event_for_each_child(struct perf_event *event,
2079 void (*func)(struct perf_event *))
2080 {
2081 struct perf_event *child;
2082
2083 WARN_ON_ONCE(event->ctx->parent_ctx);
2084 mutex_lock(&event->child_mutex);
2085 func(event);
2086 list_for_each_entry(child, &event->child_list, child_list)
2087 func(child);
2088 mutex_unlock(&event->child_mutex);
2089 }
2090
2091 static void perf_event_for_each(struct perf_event *event,
2092 void (*func)(struct perf_event *))
2093 {
2094 struct perf_event_context *ctx = event->ctx;
2095 struct perf_event *sibling;
2096
2097 WARN_ON_ONCE(ctx->parent_ctx);
2098 mutex_lock(&ctx->mutex);
2099 event = event->group_leader;
2100
2101 perf_event_for_each_child(event, func);
2102 func(event);
2103 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2104 perf_event_for_each_child(event, func);
2105 mutex_unlock(&ctx->mutex);
2106 }
2107
2108 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2109 {
2110 struct perf_event_context *ctx = event->ctx;
2111 unsigned long size;
2112 int ret = 0;
2113 u64 value;
2114
2115 if (!event->attr.sample_period)
2116 return -EINVAL;
2117
2118 size = copy_from_user(&value, arg, sizeof(value));
2119 if (size != sizeof(value))
2120 return -EFAULT;
2121
2122 if (!value)
2123 return -EINVAL;
2124
2125 raw_spin_lock_irq(&ctx->lock);
2126 if (event->attr.freq) {
2127 if (value > sysctl_perf_event_sample_rate) {
2128 ret = -EINVAL;
2129 goto unlock;
2130 }
2131
2132 event->attr.sample_freq = value;
2133 } else {
2134 event->attr.sample_period = value;
2135 event->hw.sample_period = value;
2136 }
2137 unlock:
2138 raw_spin_unlock_irq(&ctx->lock);
2139
2140 return ret;
2141 }
2142
2143 static int perf_event_set_output(struct perf_event *event, int output_fd);
2144 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2145
2146 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2147 {
2148 struct perf_event *event = file->private_data;
2149 void (*func)(struct perf_event *);
2150 u32 flags = arg;
2151
2152 switch (cmd) {
2153 case PERF_EVENT_IOC_ENABLE:
2154 func = perf_event_enable;
2155 break;
2156 case PERF_EVENT_IOC_DISABLE:
2157 func = perf_event_disable;
2158 break;
2159 case PERF_EVENT_IOC_RESET:
2160 func = perf_event_reset;
2161 break;
2162
2163 case PERF_EVENT_IOC_REFRESH:
2164 return perf_event_refresh(event, arg);
2165
2166 case PERF_EVENT_IOC_PERIOD:
2167 return perf_event_period(event, (u64 __user *)arg);
2168
2169 case PERF_EVENT_IOC_SET_OUTPUT:
2170 return perf_event_set_output(event, arg);
2171
2172 case PERF_EVENT_IOC_SET_FILTER:
2173 return perf_event_set_filter(event, (void __user *)arg);
2174
2175 default:
2176 return -ENOTTY;
2177 }
2178
2179 if (flags & PERF_IOC_FLAG_GROUP)
2180 perf_event_for_each(event, func);
2181 else
2182 perf_event_for_each_child(event, func);
2183
2184 return 0;
2185 }
2186
2187 int perf_event_task_enable(void)
2188 {
2189 struct perf_event *event;
2190
2191 mutex_lock(&current->perf_event_mutex);
2192 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2193 perf_event_for_each_child(event, perf_event_enable);
2194 mutex_unlock(&current->perf_event_mutex);
2195
2196 return 0;
2197 }
2198
2199 int perf_event_task_disable(void)
2200 {
2201 struct perf_event *event;
2202
2203 mutex_lock(&current->perf_event_mutex);
2204 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2205 perf_event_for_each_child(event, perf_event_disable);
2206 mutex_unlock(&current->perf_event_mutex);
2207
2208 return 0;
2209 }
2210
2211 #ifndef PERF_EVENT_INDEX_OFFSET
2212 # define PERF_EVENT_INDEX_OFFSET 0
2213 #endif
2214
2215 static int perf_event_index(struct perf_event *event)
2216 {
2217 if (event->state != PERF_EVENT_STATE_ACTIVE)
2218 return 0;
2219
2220 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2221 }
2222
2223 /*
2224 * Callers need to ensure there can be no nesting of this function, otherwise
2225 * the seqlock logic goes bad. We can not serialize this because the arch
2226 * code calls this from NMI context.
2227 */
2228 void perf_event_update_userpage(struct perf_event *event)
2229 {
2230 struct perf_event_mmap_page *userpg;
2231 struct perf_mmap_data *data;
2232
2233 rcu_read_lock();
2234 data = rcu_dereference(event->data);
2235 if (!data)
2236 goto unlock;
2237
2238 userpg = data->user_page;
2239
2240 /*
2241 * Disable preemption so as to not let the corresponding user-space
2242 * spin too long if we get preempted.
2243 */
2244 preempt_disable();
2245 ++userpg->lock;
2246 barrier();
2247 userpg->index = perf_event_index(event);
2248 userpg->offset = atomic64_read(&event->count);
2249 if (event->state == PERF_EVENT_STATE_ACTIVE)
2250 userpg->offset -= atomic64_read(&event->hw.prev_count);
2251
2252 userpg->time_enabled = event->total_time_enabled +
2253 atomic64_read(&event->child_total_time_enabled);
2254
2255 userpg->time_running = event->total_time_running +
2256 atomic64_read(&event->child_total_time_running);
2257
2258 barrier();
2259 ++userpg->lock;
2260 preempt_enable();
2261 unlock:
2262 rcu_read_unlock();
2263 }
2264
2265 static unsigned long perf_data_size(struct perf_mmap_data *data)
2266 {
2267 return data->nr_pages << (PAGE_SHIFT + data->data_order);
2268 }
2269
2270 #ifndef CONFIG_PERF_USE_VMALLOC
2271
2272 /*
2273 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2274 */
2275
2276 static struct page *
2277 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2278 {
2279 if (pgoff > data->nr_pages)
2280 return NULL;
2281
2282 if (pgoff == 0)
2283 return virt_to_page(data->user_page);
2284
2285 return virt_to_page(data->data_pages[pgoff - 1]);
2286 }
2287
2288 static struct perf_mmap_data *
2289 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2290 {
2291 struct perf_mmap_data *data;
2292 unsigned long size;
2293 int i;
2294
2295 WARN_ON(atomic_read(&event->mmap_count));
2296
2297 size = sizeof(struct perf_mmap_data);
2298 size += nr_pages * sizeof(void *);
2299
2300 data = kzalloc(size, GFP_KERNEL);
2301 if (!data)
2302 goto fail;
2303
2304 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2305 if (!data->user_page)
2306 goto fail_user_page;
2307
2308 for (i = 0; i < nr_pages; i++) {
2309 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2310 if (!data->data_pages[i])
2311 goto fail_data_pages;
2312 }
2313
2314 data->data_order = 0;
2315 data->nr_pages = nr_pages;
2316
2317 return data;
2318
2319 fail_data_pages:
2320 for (i--; i >= 0; i--)
2321 free_page((unsigned long)data->data_pages[i]);
2322
2323 free_page((unsigned long)data->user_page);
2324
2325 fail_user_page:
2326 kfree(data);
2327
2328 fail:
2329 return NULL;
2330 }
2331
2332 static void perf_mmap_free_page(unsigned long addr)
2333 {
2334 struct page *page = virt_to_page((void *)addr);
2335
2336 page->mapping = NULL;
2337 __free_page(page);
2338 }
2339
2340 static void perf_mmap_data_free(struct perf_mmap_data *data)
2341 {
2342 int i;
2343
2344 perf_mmap_free_page((unsigned long)data->user_page);
2345 for (i = 0; i < data->nr_pages; i++)
2346 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2347 kfree(data);
2348 }
2349
2350 #else
2351
2352 /*
2353 * Back perf_mmap() with vmalloc memory.
2354 *
2355 * Required for architectures that have d-cache aliasing issues.
2356 */
2357
2358 static struct page *
2359 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2360 {
2361 if (pgoff > (1UL << data->data_order))
2362 return NULL;
2363
2364 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2365 }
2366
2367 static void perf_mmap_unmark_page(void *addr)
2368 {
2369 struct page *page = vmalloc_to_page(addr);
2370
2371 page->mapping = NULL;
2372 }
2373
2374 static void perf_mmap_data_free_work(struct work_struct *work)
2375 {
2376 struct perf_mmap_data *data;
2377 void *base;
2378 int i, nr;
2379
2380 data = container_of(work, struct perf_mmap_data, work);
2381 nr = 1 << data->data_order;
2382
2383 base = data->user_page;
2384 for (i = 0; i < nr + 1; i++)
2385 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2386
2387 vfree(base);
2388 kfree(data);
2389 }
2390
2391 static void perf_mmap_data_free(struct perf_mmap_data *data)
2392 {
2393 schedule_work(&data->work);
2394 }
2395
2396 static struct perf_mmap_data *
2397 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2398 {
2399 struct perf_mmap_data *data;
2400 unsigned long size;
2401 void *all_buf;
2402
2403 WARN_ON(atomic_read(&event->mmap_count));
2404
2405 size = sizeof(struct perf_mmap_data);
2406 size += sizeof(void *);
2407
2408 data = kzalloc(size, GFP_KERNEL);
2409 if (!data)
2410 goto fail;
2411
2412 INIT_WORK(&data->work, perf_mmap_data_free_work);
2413
2414 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2415 if (!all_buf)
2416 goto fail_all_buf;
2417
2418 data->user_page = all_buf;
2419 data->data_pages[0] = all_buf + PAGE_SIZE;
2420 data->data_order = ilog2(nr_pages);
2421 data->nr_pages = 1;
2422
2423 return data;
2424
2425 fail_all_buf:
2426 kfree(data);
2427
2428 fail:
2429 return NULL;
2430 }
2431
2432 #endif
2433
2434 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2435 {
2436 struct perf_event *event = vma->vm_file->private_data;
2437 struct perf_mmap_data *data;
2438 int ret = VM_FAULT_SIGBUS;
2439
2440 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2441 if (vmf->pgoff == 0)
2442 ret = 0;
2443 return ret;
2444 }
2445
2446 rcu_read_lock();
2447 data = rcu_dereference(event->data);
2448 if (!data)
2449 goto unlock;
2450
2451 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2452 goto unlock;
2453
2454 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2455 if (!vmf->page)
2456 goto unlock;
2457
2458 get_page(vmf->page);
2459 vmf->page->mapping = vma->vm_file->f_mapping;
2460 vmf->page->index = vmf->pgoff;
2461
2462 ret = 0;
2463 unlock:
2464 rcu_read_unlock();
2465
2466 return ret;
2467 }
2468
2469 static void
2470 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2471 {
2472 long max_size = perf_data_size(data);
2473
2474 atomic_set(&data->lock, -1);
2475
2476 if (event->attr.watermark) {
2477 data->watermark = min_t(long, max_size,
2478 event->attr.wakeup_watermark);
2479 }
2480
2481 if (!data->watermark)
2482 data->watermark = max_size / 2;
2483
2484
2485 rcu_assign_pointer(event->data, data);
2486 }
2487
2488 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2489 {
2490 struct perf_mmap_data *data;
2491
2492 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2493 perf_mmap_data_free(data);
2494 }
2495
2496 static void perf_mmap_data_release(struct perf_event *event)
2497 {
2498 struct perf_mmap_data *data = event->data;
2499
2500 WARN_ON(atomic_read(&event->mmap_count));
2501
2502 rcu_assign_pointer(event->data, NULL);
2503 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2504 }
2505
2506 static void perf_mmap_open(struct vm_area_struct *vma)
2507 {
2508 struct perf_event *event = vma->vm_file->private_data;
2509
2510 atomic_inc(&event->mmap_count);
2511 }
2512
2513 static void perf_mmap_close(struct vm_area_struct *vma)
2514 {
2515 struct perf_event *event = vma->vm_file->private_data;
2516
2517 WARN_ON_ONCE(event->ctx->parent_ctx);
2518 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2519 unsigned long size = perf_data_size(event->data);
2520 struct user_struct *user = current_user();
2521
2522 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2523 vma->vm_mm->locked_vm -= event->data->nr_locked;
2524 perf_mmap_data_release(event);
2525 mutex_unlock(&event->mmap_mutex);
2526 }
2527 }
2528
2529 static const struct vm_operations_struct perf_mmap_vmops = {
2530 .open = perf_mmap_open,
2531 .close = perf_mmap_close,
2532 .fault = perf_mmap_fault,
2533 .page_mkwrite = perf_mmap_fault,
2534 };
2535
2536 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2537 {
2538 struct perf_event *event = file->private_data;
2539 unsigned long user_locked, user_lock_limit;
2540 struct user_struct *user = current_user();
2541 unsigned long locked, lock_limit;
2542 struct perf_mmap_data *data;
2543 unsigned long vma_size;
2544 unsigned long nr_pages;
2545 long user_extra, extra;
2546 int ret = 0;
2547
2548 if (!(vma->vm_flags & VM_SHARED))
2549 return -EINVAL;
2550
2551 vma_size = vma->vm_end - vma->vm_start;
2552 nr_pages = (vma_size / PAGE_SIZE) - 1;
2553
2554 /*
2555 * If we have data pages ensure they're a power-of-two number, so we
2556 * can do bitmasks instead of modulo.
2557 */
2558 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2559 return -EINVAL;
2560
2561 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2562 return -EINVAL;
2563
2564 if (vma->vm_pgoff != 0)
2565 return -EINVAL;
2566
2567 WARN_ON_ONCE(event->ctx->parent_ctx);
2568 mutex_lock(&event->mmap_mutex);
2569 if (event->output) {
2570 ret = -EINVAL;
2571 goto unlock;
2572 }
2573
2574 if (atomic_inc_not_zero(&event->mmap_count)) {
2575 if (nr_pages != event->data->nr_pages)
2576 ret = -EINVAL;
2577 goto unlock;
2578 }
2579
2580 user_extra = nr_pages + 1;
2581 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2582
2583 /*
2584 * Increase the limit linearly with more CPUs:
2585 */
2586 user_lock_limit *= num_online_cpus();
2587
2588 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2589
2590 extra = 0;
2591 if (user_locked > user_lock_limit)
2592 extra = user_locked - user_lock_limit;
2593
2594 lock_limit = rlimit(RLIMIT_MEMLOCK);
2595 lock_limit >>= PAGE_SHIFT;
2596 locked = vma->vm_mm->locked_vm + extra;
2597
2598 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2599 !capable(CAP_IPC_LOCK)) {
2600 ret = -EPERM;
2601 goto unlock;
2602 }
2603
2604 WARN_ON(event->data);
2605
2606 data = perf_mmap_data_alloc(event, nr_pages);
2607 ret = -ENOMEM;
2608 if (!data)
2609 goto unlock;
2610
2611 ret = 0;
2612 perf_mmap_data_init(event, data);
2613
2614 atomic_set(&event->mmap_count, 1);
2615 atomic_long_add(user_extra, &user->locked_vm);
2616 vma->vm_mm->locked_vm += extra;
2617 event->data->nr_locked = extra;
2618 if (vma->vm_flags & VM_WRITE)
2619 event->data->writable = 1;
2620
2621 unlock:
2622 mutex_unlock(&event->mmap_mutex);
2623
2624 vma->vm_flags |= VM_RESERVED;
2625 vma->vm_ops = &perf_mmap_vmops;
2626
2627 return ret;
2628 }
2629
2630 static int perf_fasync(int fd, struct file *filp, int on)
2631 {
2632 struct inode *inode = filp->f_path.dentry->d_inode;
2633 struct perf_event *event = filp->private_data;
2634 int retval;
2635
2636 mutex_lock(&inode->i_mutex);
2637 retval = fasync_helper(fd, filp, on, &event->fasync);
2638 mutex_unlock(&inode->i_mutex);
2639
2640 if (retval < 0)
2641 return retval;
2642
2643 return 0;
2644 }
2645
2646 static const struct file_operations perf_fops = {
2647 .release = perf_release,
2648 .read = perf_read,
2649 .poll = perf_poll,
2650 .unlocked_ioctl = perf_ioctl,
2651 .compat_ioctl = perf_ioctl,
2652 .mmap = perf_mmap,
2653 .fasync = perf_fasync,
2654 };
2655
2656 /*
2657 * Perf event wakeup
2658 *
2659 * If there's data, ensure we set the poll() state and publish everything
2660 * to user-space before waking everybody up.
2661 */
2662
2663 void perf_event_wakeup(struct perf_event *event)
2664 {
2665 wake_up_all(&event->waitq);
2666
2667 if (event->pending_kill) {
2668 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2669 event->pending_kill = 0;
2670 }
2671 }
2672
2673 /*
2674 * Pending wakeups
2675 *
2676 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2677 *
2678 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2679 * single linked list and use cmpxchg() to add entries lockless.
2680 */
2681
2682 static void perf_pending_event(struct perf_pending_entry *entry)
2683 {
2684 struct perf_event *event = container_of(entry,
2685 struct perf_event, pending);
2686
2687 if (event->pending_disable) {
2688 event->pending_disable = 0;
2689 __perf_event_disable(event);
2690 }
2691
2692 if (event->pending_wakeup) {
2693 event->pending_wakeup = 0;
2694 perf_event_wakeup(event);
2695 }
2696 }
2697
2698 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2699
2700 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2701 PENDING_TAIL,
2702 };
2703
2704 static void perf_pending_queue(struct perf_pending_entry *entry,
2705 void (*func)(struct perf_pending_entry *))
2706 {
2707 struct perf_pending_entry **head;
2708
2709 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2710 return;
2711
2712 entry->func = func;
2713
2714 head = &get_cpu_var(perf_pending_head);
2715
2716 do {
2717 entry->next = *head;
2718 } while (cmpxchg(head, entry->next, entry) != entry->next);
2719
2720 set_perf_event_pending();
2721
2722 put_cpu_var(perf_pending_head);
2723 }
2724
2725 static int __perf_pending_run(void)
2726 {
2727 struct perf_pending_entry *list;
2728 int nr = 0;
2729
2730 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2731 while (list != PENDING_TAIL) {
2732 void (*func)(struct perf_pending_entry *);
2733 struct perf_pending_entry *entry = list;
2734
2735 list = list->next;
2736
2737 func = entry->func;
2738 entry->next = NULL;
2739 /*
2740 * Ensure we observe the unqueue before we issue the wakeup,
2741 * so that we won't be waiting forever.
2742 * -- see perf_not_pending().
2743 */
2744 smp_wmb();
2745
2746 func(entry);
2747 nr++;
2748 }
2749
2750 return nr;
2751 }
2752
2753 static inline int perf_not_pending(struct perf_event *event)
2754 {
2755 /*
2756 * If we flush on whatever cpu we run, there is a chance we don't
2757 * need to wait.
2758 */
2759 get_cpu();
2760 __perf_pending_run();
2761 put_cpu();
2762
2763 /*
2764 * Ensure we see the proper queue state before going to sleep
2765 * so that we do not miss the wakeup. -- see perf_pending_handle()
2766 */
2767 smp_rmb();
2768 return event->pending.next == NULL;
2769 }
2770
2771 static void perf_pending_sync(struct perf_event *event)
2772 {
2773 wait_event(event->waitq, perf_not_pending(event));
2774 }
2775
2776 void perf_event_do_pending(void)
2777 {
2778 __perf_pending_run();
2779 }
2780
2781 /*
2782 * Callchain support -- arch specific
2783 */
2784
2785 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2786 {
2787 return NULL;
2788 }
2789
2790 /*
2791 * Output
2792 */
2793 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2794 unsigned long offset, unsigned long head)
2795 {
2796 unsigned long mask;
2797
2798 if (!data->writable)
2799 return true;
2800
2801 mask = perf_data_size(data) - 1;
2802
2803 offset = (offset - tail) & mask;
2804 head = (head - tail) & mask;
2805
2806 if ((int)(head - offset) < 0)
2807 return false;
2808
2809 return true;
2810 }
2811
2812 static void perf_output_wakeup(struct perf_output_handle *handle)
2813 {
2814 atomic_set(&handle->data->poll, POLL_IN);
2815
2816 if (handle->nmi) {
2817 handle->event->pending_wakeup = 1;
2818 perf_pending_queue(&handle->event->pending,
2819 perf_pending_event);
2820 } else
2821 perf_event_wakeup(handle->event);
2822 }
2823
2824 /*
2825 * Curious locking construct.
2826 *
2827 * We need to ensure a later event_id doesn't publish a head when a former
2828 * event_id isn't done writing. However since we need to deal with NMIs we
2829 * cannot fully serialize things.
2830 *
2831 * What we do is serialize between CPUs so we only have to deal with NMI
2832 * nesting on a single CPU.
2833 *
2834 * We only publish the head (and generate a wakeup) when the outer-most
2835 * event_id completes.
2836 */
2837 static void perf_output_lock(struct perf_output_handle *handle)
2838 {
2839 struct perf_mmap_data *data = handle->data;
2840 int cur, cpu = get_cpu();
2841
2842 handle->locked = 0;
2843
2844 for (;;) {
2845 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2846 if (cur == -1) {
2847 handle->locked = 1;
2848 break;
2849 }
2850 if (cur == cpu)
2851 break;
2852
2853 cpu_relax();
2854 }
2855 }
2856
2857 static void perf_output_unlock(struct perf_output_handle *handle)
2858 {
2859 struct perf_mmap_data *data = handle->data;
2860 unsigned long head;
2861 int cpu;
2862
2863 data->done_head = data->head;
2864
2865 if (!handle->locked)
2866 goto out;
2867
2868 again:
2869 /*
2870 * The xchg implies a full barrier that ensures all writes are done
2871 * before we publish the new head, matched by a rmb() in userspace when
2872 * reading this position.
2873 */
2874 while ((head = atomic_long_xchg(&data->done_head, 0)))
2875 data->user_page->data_head = head;
2876
2877 /*
2878 * NMI can happen here, which means we can miss a done_head update.
2879 */
2880
2881 cpu = atomic_xchg(&data->lock, -1);
2882 WARN_ON_ONCE(cpu != smp_processor_id());
2883
2884 /*
2885 * Therefore we have to validate we did not indeed do so.
2886 */
2887 if (unlikely(atomic_long_read(&data->done_head))) {
2888 /*
2889 * Since we had it locked, we can lock it again.
2890 */
2891 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2892 cpu_relax();
2893
2894 goto again;
2895 }
2896
2897 if (atomic_xchg(&data->wakeup, 0))
2898 perf_output_wakeup(handle);
2899 out:
2900 put_cpu();
2901 }
2902
2903 void perf_output_copy(struct perf_output_handle *handle,
2904 const void *buf, unsigned int len)
2905 {
2906 unsigned int pages_mask;
2907 unsigned long offset;
2908 unsigned int size;
2909 void **pages;
2910
2911 offset = handle->offset;
2912 pages_mask = handle->data->nr_pages - 1;
2913 pages = handle->data->data_pages;
2914
2915 do {
2916 unsigned long page_offset;
2917 unsigned long page_size;
2918 int nr;
2919
2920 nr = (offset >> PAGE_SHIFT) & pages_mask;
2921 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2922 page_offset = offset & (page_size - 1);
2923 size = min_t(unsigned int, page_size - page_offset, len);
2924
2925 memcpy(pages[nr] + page_offset, buf, size);
2926
2927 len -= size;
2928 buf += size;
2929 offset += size;
2930 } while (len);
2931
2932 handle->offset = offset;
2933
2934 /*
2935 * Check we didn't copy past our reservation window, taking the
2936 * possible unsigned int wrap into account.
2937 */
2938 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2939 }
2940
2941 int perf_output_begin(struct perf_output_handle *handle,
2942 struct perf_event *event, unsigned int size,
2943 int nmi, int sample)
2944 {
2945 struct perf_event *output_event;
2946 struct perf_mmap_data *data;
2947 unsigned long tail, offset, head;
2948 int have_lost;
2949 struct {
2950 struct perf_event_header header;
2951 u64 id;
2952 u64 lost;
2953 } lost_event;
2954
2955 rcu_read_lock();
2956 /*
2957 * For inherited events we send all the output towards the parent.
2958 */
2959 if (event->parent)
2960 event = event->parent;
2961
2962 output_event = rcu_dereference(event->output);
2963 if (output_event)
2964 event = output_event;
2965
2966 data = rcu_dereference(event->data);
2967 if (!data)
2968 goto out;
2969
2970 handle->data = data;
2971 handle->event = event;
2972 handle->nmi = nmi;
2973 handle->sample = sample;
2974
2975 if (!data->nr_pages)
2976 goto fail;
2977
2978 have_lost = atomic_read(&data->lost);
2979 if (have_lost)
2980 size += sizeof(lost_event);
2981
2982 perf_output_lock(handle);
2983
2984 do {
2985 /*
2986 * Userspace could choose to issue a mb() before updating the
2987 * tail pointer. So that all reads will be completed before the
2988 * write is issued.
2989 */
2990 tail = ACCESS_ONCE(data->user_page->data_tail);
2991 smp_rmb();
2992 offset = head = atomic_long_read(&data->head);
2993 head += size;
2994 if (unlikely(!perf_output_space(data, tail, offset, head)))
2995 goto fail;
2996 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2997
2998 handle->offset = offset;
2999 handle->head = head;
3000
3001 if (head - tail > data->watermark)
3002 atomic_set(&data->wakeup, 1);
3003
3004 if (have_lost) {
3005 lost_event.header.type = PERF_RECORD_LOST;
3006 lost_event.header.misc = 0;
3007 lost_event.header.size = sizeof(lost_event);
3008 lost_event.id = event->id;
3009 lost_event.lost = atomic_xchg(&data->lost, 0);
3010
3011 perf_output_put(handle, lost_event);
3012 }
3013
3014 return 0;
3015
3016 fail:
3017 atomic_inc(&data->lost);
3018 perf_output_unlock(handle);
3019 out:
3020 rcu_read_unlock();
3021
3022 return -ENOSPC;
3023 }
3024
3025 void perf_output_end(struct perf_output_handle *handle)
3026 {
3027 struct perf_event *event = handle->event;
3028 struct perf_mmap_data *data = handle->data;
3029
3030 int wakeup_events = event->attr.wakeup_events;
3031
3032 if (handle->sample && wakeup_events) {
3033 int events = atomic_inc_return(&data->events);
3034 if (events >= wakeup_events) {
3035 atomic_sub(wakeup_events, &data->events);
3036 atomic_set(&data->wakeup, 1);
3037 }
3038 }
3039
3040 perf_output_unlock(handle);
3041 rcu_read_unlock();
3042 }
3043
3044 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3045 {
3046 /*
3047 * only top level events have the pid namespace they were created in
3048 */
3049 if (event->parent)
3050 event = event->parent;
3051
3052 return task_tgid_nr_ns(p, event->ns);
3053 }
3054
3055 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3056 {
3057 /*
3058 * only top level events have the pid namespace they were created in
3059 */
3060 if (event->parent)
3061 event = event->parent;
3062
3063 return task_pid_nr_ns(p, event->ns);
3064 }
3065
3066 static void perf_output_read_one(struct perf_output_handle *handle,
3067 struct perf_event *event)
3068 {
3069 u64 read_format = event->attr.read_format;
3070 u64 values[4];
3071 int n = 0;
3072
3073 values[n++] = atomic64_read(&event->count);
3074 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3075 values[n++] = event->total_time_enabled +
3076 atomic64_read(&event->child_total_time_enabled);
3077 }
3078 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3079 values[n++] = event->total_time_running +
3080 atomic64_read(&event->child_total_time_running);
3081 }
3082 if (read_format & PERF_FORMAT_ID)
3083 values[n++] = primary_event_id(event);
3084
3085 perf_output_copy(handle, values, n * sizeof(u64));
3086 }
3087
3088 /*
3089 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3090 */
3091 static void perf_output_read_group(struct perf_output_handle *handle,
3092 struct perf_event *event)
3093 {
3094 struct perf_event *leader = event->group_leader, *sub;
3095 u64 read_format = event->attr.read_format;
3096 u64 values[5];
3097 int n = 0;
3098
3099 values[n++] = 1 + leader->nr_siblings;
3100
3101 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3102 values[n++] = leader->total_time_enabled;
3103
3104 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3105 values[n++] = leader->total_time_running;
3106
3107 if (leader != event)
3108 leader->pmu->read(leader);
3109
3110 values[n++] = atomic64_read(&leader->count);
3111 if (read_format & PERF_FORMAT_ID)
3112 values[n++] = primary_event_id(leader);
3113
3114 perf_output_copy(handle, values, n * sizeof(u64));
3115
3116 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3117 n = 0;
3118
3119 if (sub != event)
3120 sub->pmu->read(sub);
3121
3122 values[n++] = atomic64_read(&sub->count);
3123 if (read_format & PERF_FORMAT_ID)
3124 values[n++] = primary_event_id(sub);
3125
3126 perf_output_copy(handle, values, n * sizeof(u64));
3127 }
3128 }
3129
3130 static void perf_output_read(struct perf_output_handle *handle,
3131 struct perf_event *event)
3132 {
3133 if (event->attr.read_format & PERF_FORMAT_GROUP)
3134 perf_output_read_group(handle, event);
3135 else
3136 perf_output_read_one(handle, event);
3137 }
3138
3139 void perf_output_sample(struct perf_output_handle *handle,
3140 struct perf_event_header *header,
3141 struct perf_sample_data *data,
3142 struct perf_event *event)
3143 {
3144 u64 sample_type = data->type;
3145
3146 perf_output_put(handle, *header);
3147
3148 if (sample_type & PERF_SAMPLE_IP)
3149 perf_output_put(handle, data->ip);
3150
3151 if (sample_type & PERF_SAMPLE_TID)
3152 perf_output_put(handle, data->tid_entry);
3153
3154 if (sample_type & PERF_SAMPLE_TIME)
3155 perf_output_put(handle, data->time);
3156
3157 if (sample_type & PERF_SAMPLE_ADDR)
3158 perf_output_put(handle, data->addr);
3159
3160 if (sample_type & PERF_SAMPLE_ID)
3161 perf_output_put(handle, data->id);
3162
3163 if (sample_type & PERF_SAMPLE_STREAM_ID)
3164 perf_output_put(handle, data->stream_id);
3165
3166 if (sample_type & PERF_SAMPLE_CPU)
3167 perf_output_put(handle, data->cpu_entry);
3168
3169 if (sample_type & PERF_SAMPLE_PERIOD)
3170 perf_output_put(handle, data->period);
3171
3172 if (sample_type & PERF_SAMPLE_READ)
3173 perf_output_read(handle, event);
3174
3175 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3176 if (data->callchain) {
3177 int size = 1;
3178
3179 if (data->callchain)
3180 size += data->callchain->nr;
3181
3182 size *= sizeof(u64);
3183
3184 perf_output_copy(handle, data->callchain, size);
3185 } else {
3186 u64 nr = 0;
3187 perf_output_put(handle, nr);
3188 }
3189 }
3190
3191 if (sample_type & PERF_SAMPLE_RAW) {
3192 if (data->raw) {
3193 perf_output_put(handle, data->raw->size);
3194 perf_output_copy(handle, data->raw->data,
3195 data->raw->size);
3196 } else {
3197 struct {
3198 u32 size;
3199 u32 data;
3200 } raw = {
3201 .size = sizeof(u32),
3202 .data = 0,
3203 };
3204 perf_output_put(handle, raw);
3205 }
3206 }
3207 }
3208
3209 void perf_prepare_sample(struct perf_event_header *header,
3210 struct perf_sample_data *data,
3211 struct perf_event *event,
3212 struct pt_regs *regs)
3213 {
3214 u64 sample_type = event->attr.sample_type;
3215
3216 data->type = sample_type;
3217
3218 header->type = PERF_RECORD_SAMPLE;
3219 header->size = sizeof(*header);
3220
3221 header->misc = 0;
3222 header->misc |= perf_misc_flags(regs);
3223
3224 if (sample_type & PERF_SAMPLE_IP) {
3225 data->ip = perf_instruction_pointer(regs);
3226
3227 header->size += sizeof(data->ip);
3228 }
3229
3230 if (sample_type & PERF_SAMPLE_TID) {
3231 /* namespace issues */
3232 data->tid_entry.pid = perf_event_pid(event, current);
3233 data->tid_entry.tid = perf_event_tid(event, current);
3234
3235 header->size += sizeof(data->tid_entry);
3236 }
3237
3238 if (sample_type & PERF_SAMPLE_TIME) {
3239 data->time = perf_clock();
3240
3241 header->size += sizeof(data->time);
3242 }
3243
3244 if (sample_type & PERF_SAMPLE_ADDR)
3245 header->size += sizeof(data->addr);
3246
3247 if (sample_type & PERF_SAMPLE_ID) {
3248 data->id = primary_event_id(event);
3249
3250 header->size += sizeof(data->id);
3251 }
3252
3253 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3254 data->stream_id = event->id;
3255
3256 header->size += sizeof(data->stream_id);
3257 }
3258
3259 if (sample_type & PERF_SAMPLE_CPU) {
3260 data->cpu_entry.cpu = raw_smp_processor_id();
3261 data->cpu_entry.reserved = 0;
3262
3263 header->size += sizeof(data->cpu_entry);
3264 }
3265
3266 if (sample_type & PERF_SAMPLE_PERIOD)
3267 header->size += sizeof(data->period);
3268
3269 if (sample_type & PERF_SAMPLE_READ)
3270 header->size += perf_event_read_size(event);
3271
3272 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3273 int size = 1;
3274
3275 data->callchain = perf_callchain(regs);
3276
3277 if (data->callchain)
3278 size += data->callchain->nr;
3279
3280 header->size += size * sizeof(u64);
3281 }
3282
3283 if (sample_type & PERF_SAMPLE_RAW) {
3284 int size = sizeof(u32);
3285
3286 if (data->raw)
3287 size += data->raw->size;
3288 else
3289 size += sizeof(u32);
3290
3291 WARN_ON_ONCE(size & (sizeof(u64)-1));
3292 header->size += size;
3293 }
3294 }
3295
3296 static void perf_event_output(struct perf_event *event, int nmi,
3297 struct perf_sample_data *data,
3298 struct pt_regs *regs)
3299 {
3300 struct perf_output_handle handle;
3301 struct perf_event_header header;
3302
3303 perf_prepare_sample(&header, data, event, regs);
3304
3305 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3306 return;
3307
3308 perf_output_sample(&handle, &header, data, event);
3309
3310 perf_output_end(&handle);
3311 }
3312
3313 /*
3314 * read event_id
3315 */
3316
3317 struct perf_read_event {
3318 struct perf_event_header header;
3319
3320 u32 pid;
3321 u32 tid;
3322 };
3323
3324 static void
3325 perf_event_read_event(struct perf_event *event,
3326 struct task_struct *task)
3327 {
3328 struct perf_output_handle handle;
3329 struct perf_read_event read_event = {
3330 .header = {
3331 .type = PERF_RECORD_READ,
3332 .misc = 0,
3333 .size = sizeof(read_event) + perf_event_read_size(event),
3334 },
3335 .pid = perf_event_pid(event, task),
3336 .tid = perf_event_tid(event, task),
3337 };
3338 int ret;
3339
3340 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3341 if (ret)
3342 return;
3343
3344 perf_output_put(&handle, read_event);
3345 perf_output_read(&handle, event);
3346
3347 perf_output_end(&handle);
3348 }
3349
3350 /*
3351 * task tracking -- fork/exit
3352 *
3353 * enabled by: attr.comm | attr.mmap | attr.task
3354 */
3355
3356 struct perf_task_event {
3357 struct task_struct *task;
3358 struct perf_event_context *task_ctx;
3359
3360 struct {
3361 struct perf_event_header header;
3362
3363 u32 pid;
3364 u32 ppid;
3365 u32 tid;
3366 u32 ptid;
3367 u64 time;
3368 } event_id;
3369 };
3370
3371 static void perf_event_task_output(struct perf_event *event,
3372 struct perf_task_event *task_event)
3373 {
3374 struct perf_output_handle handle;
3375 int size;
3376 struct task_struct *task = task_event->task;
3377 int ret;
3378
3379 size = task_event->event_id.header.size;
3380 ret = perf_output_begin(&handle, event, size, 0, 0);
3381
3382 if (ret)
3383 return;
3384
3385 task_event->event_id.pid = perf_event_pid(event, task);
3386 task_event->event_id.ppid = perf_event_pid(event, current);
3387
3388 task_event->event_id.tid = perf_event_tid(event, task);
3389 task_event->event_id.ptid = perf_event_tid(event, current);
3390
3391 perf_output_put(&handle, task_event->event_id);
3392
3393 perf_output_end(&handle);
3394 }
3395
3396 static int perf_event_task_match(struct perf_event *event)
3397 {
3398 if (event->state < PERF_EVENT_STATE_INACTIVE)
3399 return 0;
3400
3401 if (event->cpu != -1 && event->cpu != smp_processor_id())
3402 return 0;
3403
3404 if (event->attr.comm || event->attr.mmap || event->attr.task)
3405 return 1;
3406
3407 return 0;
3408 }
3409
3410 static void perf_event_task_ctx(struct perf_event_context *ctx,
3411 struct perf_task_event *task_event)
3412 {
3413 struct perf_event *event;
3414
3415 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3416 if (perf_event_task_match(event))
3417 perf_event_task_output(event, task_event);
3418 }
3419 }
3420
3421 static void perf_event_task_event(struct perf_task_event *task_event)
3422 {
3423 struct perf_cpu_context *cpuctx;
3424 struct perf_event_context *ctx = task_event->task_ctx;
3425
3426 rcu_read_lock();
3427 cpuctx = &get_cpu_var(perf_cpu_context);
3428 perf_event_task_ctx(&cpuctx->ctx, task_event);
3429 if (!ctx)
3430 ctx = rcu_dereference(current->perf_event_ctxp);
3431 if (ctx)
3432 perf_event_task_ctx(ctx, task_event);
3433 put_cpu_var(perf_cpu_context);
3434 rcu_read_unlock();
3435 }
3436
3437 static void perf_event_task(struct task_struct *task,
3438 struct perf_event_context *task_ctx,
3439 int new)
3440 {
3441 struct perf_task_event task_event;
3442
3443 if (!atomic_read(&nr_comm_events) &&
3444 !atomic_read(&nr_mmap_events) &&
3445 !atomic_read(&nr_task_events))
3446 return;
3447
3448 task_event = (struct perf_task_event){
3449 .task = task,
3450 .task_ctx = task_ctx,
3451 .event_id = {
3452 .header = {
3453 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3454 .misc = 0,
3455 .size = sizeof(task_event.event_id),
3456 },
3457 /* .pid */
3458 /* .ppid */
3459 /* .tid */
3460 /* .ptid */
3461 .time = perf_clock(),
3462 },
3463 };
3464
3465 perf_event_task_event(&task_event);
3466 }
3467
3468 void perf_event_fork(struct task_struct *task)
3469 {
3470 perf_event_task(task, NULL, 1);
3471 }
3472
3473 /*
3474 * comm tracking
3475 */
3476
3477 struct perf_comm_event {
3478 struct task_struct *task;
3479 char *comm;
3480 int comm_size;
3481
3482 struct {
3483 struct perf_event_header header;
3484
3485 u32 pid;
3486 u32 tid;
3487 } event_id;
3488 };
3489
3490 static void perf_event_comm_output(struct perf_event *event,
3491 struct perf_comm_event *comm_event)
3492 {
3493 struct perf_output_handle handle;
3494 int size = comm_event->event_id.header.size;
3495 int ret = perf_output_begin(&handle, event, size, 0, 0);
3496
3497 if (ret)
3498 return;
3499
3500 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3501 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3502
3503 perf_output_put(&handle, comm_event->event_id);
3504 perf_output_copy(&handle, comm_event->comm,
3505 comm_event->comm_size);
3506 perf_output_end(&handle);
3507 }
3508
3509 static int perf_event_comm_match(struct perf_event *event)
3510 {
3511 if (event->state < PERF_EVENT_STATE_INACTIVE)
3512 return 0;
3513
3514 if (event->cpu != -1 && event->cpu != smp_processor_id())
3515 return 0;
3516
3517 if (event->attr.comm)
3518 return 1;
3519
3520 return 0;
3521 }
3522
3523 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3524 struct perf_comm_event *comm_event)
3525 {
3526 struct perf_event *event;
3527
3528 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3529 if (perf_event_comm_match(event))
3530 perf_event_comm_output(event, comm_event);
3531 }
3532 }
3533
3534 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3535 {
3536 struct perf_cpu_context *cpuctx;
3537 struct perf_event_context *ctx;
3538 unsigned int size;
3539 char comm[TASK_COMM_LEN];
3540
3541 memset(comm, 0, sizeof(comm));
3542 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3543 size = ALIGN(strlen(comm)+1, sizeof(u64));
3544
3545 comm_event->comm = comm;
3546 comm_event->comm_size = size;
3547
3548 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3549
3550 rcu_read_lock();
3551 cpuctx = &get_cpu_var(perf_cpu_context);
3552 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3553 ctx = rcu_dereference(current->perf_event_ctxp);
3554 if (ctx)
3555 perf_event_comm_ctx(ctx, comm_event);
3556 put_cpu_var(perf_cpu_context);
3557 rcu_read_unlock();
3558 }
3559
3560 void perf_event_comm(struct task_struct *task)
3561 {
3562 struct perf_comm_event comm_event;
3563
3564 if (task->perf_event_ctxp)
3565 perf_event_enable_on_exec(task);
3566
3567 if (!atomic_read(&nr_comm_events))
3568 return;
3569
3570 comm_event = (struct perf_comm_event){
3571 .task = task,
3572 /* .comm */
3573 /* .comm_size */
3574 .event_id = {
3575 .header = {
3576 .type = PERF_RECORD_COMM,
3577 .misc = 0,
3578 /* .size */
3579 },
3580 /* .pid */
3581 /* .tid */
3582 },
3583 };
3584
3585 perf_event_comm_event(&comm_event);
3586 }
3587
3588 /*
3589 * mmap tracking
3590 */
3591
3592 struct perf_mmap_event {
3593 struct vm_area_struct *vma;
3594
3595 const char *file_name;
3596 int file_size;
3597
3598 struct {
3599 struct perf_event_header header;
3600
3601 u32 pid;
3602 u32 tid;
3603 u64 start;
3604 u64 len;
3605 u64 pgoff;
3606 } event_id;
3607 };
3608
3609 static void perf_event_mmap_output(struct perf_event *event,
3610 struct perf_mmap_event *mmap_event)
3611 {
3612 struct perf_output_handle handle;
3613 int size = mmap_event->event_id.header.size;
3614 int ret = perf_output_begin(&handle, event, size, 0, 0);
3615
3616 if (ret)
3617 return;
3618
3619 mmap_event->event_id.pid = perf_event_pid(event, current);
3620 mmap_event->event_id.tid = perf_event_tid(event, current);
3621
3622 perf_output_put(&handle, mmap_event->event_id);
3623 perf_output_copy(&handle, mmap_event->file_name,
3624 mmap_event->file_size);
3625 perf_output_end(&handle);
3626 }
3627
3628 static int perf_event_mmap_match(struct perf_event *event,
3629 struct perf_mmap_event *mmap_event)
3630 {
3631 if (event->state < PERF_EVENT_STATE_INACTIVE)
3632 return 0;
3633
3634 if (event->cpu != -1 && event->cpu != smp_processor_id())
3635 return 0;
3636
3637 if (event->attr.mmap)
3638 return 1;
3639
3640 return 0;
3641 }
3642
3643 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3644 struct perf_mmap_event *mmap_event)
3645 {
3646 struct perf_event *event;
3647
3648 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3649 if (perf_event_mmap_match(event, mmap_event))
3650 perf_event_mmap_output(event, mmap_event);
3651 }
3652 }
3653
3654 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3655 {
3656 struct perf_cpu_context *cpuctx;
3657 struct perf_event_context *ctx;
3658 struct vm_area_struct *vma = mmap_event->vma;
3659 struct file *file = vma->vm_file;
3660 unsigned int size;
3661 char tmp[16];
3662 char *buf = NULL;
3663 const char *name;
3664
3665 memset(tmp, 0, sizeof(tmp));
3666
3667 if (file) {
3668 /*
3669 * d_path works from the end of the buffer backwards, so we
3670 * need to add enough zero bytes after the string to handle
3671 * the 64bit alignment we do later.
3672 */
3673 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3674 if (!buf) {
3675 name = strncpy(tmp, "//enomem", sizeof(tmp));
3676 goto got_name;
3677 }
3678 name = d_path(&file->f_path, buf, PATH_MAX);
3679 if (IS_ERR(name)) {
3680 name = strncpy(tmp, "//toolong", sizeof(tmp));
3681 goto got_name;
3682 }
3683 } else {
3684 if (arch_vma_name(mmap_event->vma)) {
3685 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3686 sizeof(tmp));
3687 goto got_name;
3688 }
3689
3690 if (!vma->vm_mm) {
3691 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3692 goto got_name;
3693 }
3694
3695 name = strncpy(tmp, "//anon", sizeof(tmp));
3696 goto got_name;
3697 }
3698
3699 got_name:
3700 size = ALIGN(strlen(name)+1, sizeof(u64));
3701
3702 mmap_event->file_name = name;
3703 mmap_event->file_size = size;
3704
3705 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3706
3707 rcu_read_lock();
3708 cpuctx = &get_cpu_var(perf_cpu_context);
3709 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3710 ctx = rcu_dereference(current->perf_event_ctxp);
3711 if (ctx)
3712 perf_event_mmap_ctx(ctx, mmap_event);
3713 put_cpu_var(perf_cpu_context);
3714 rcu_read_unlock();
3715
3716 kfree(buf);
3717 }
3718
3719 void __perf_event_mmap(struct vm_area_struct *vma)
3720 {
3721 struct perf_mmap_event mmap_event;
3722
3723 if (!atomic_read(&nr_mmap_events))
3724 return;
3725
3726 mmap_event = (struct perf_mmap_event){
3727 .vma = vma,
3728 /* .file_name */
3729 /* .file_size */
3730 .event_id = {
3731 .header = {
3732 .type = PERF_RECORD_MMAP,
3733 .misc = 0,
3734 /* .size */
3735 },
3736 /* .pid */
3737 /* .tid */
3738 .start = vma->vm_start,
3739 .len = vma->vm_end - vma->vm_start,
3740 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
3741 },
3742 };
3743
3744 perf_event_mmap_event(&mmap_event);
3745 }
3746
3747 /*
3748 * IRQ throttle logging
3749 */
3750
3751 static void perf_log_throttle(struct perf_event *event, int enable)
3752 {
3753 struct perf_output_handle handle;
3754 int ret;
3755
3756 struct {
3757 struct perf_event_header header;
3758 u64 time;
3759 u64 id;
3760 u64 stream_id;
3761 } throttle_event = {
3762 .header = {
3763 .type = PERF_RECORD_THROTTLE,
3764 .misc = 0,
3765 .size = sizeof(throttle_event),
3766 },
3767 .time = perf_clock(),
3768 .id = primary_event_id(event),
3769 .stream_id = event->id,
3770 };
3771
3772 if (enable)
3773 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3774
3775 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3776 if (ret)
3777 return;
3778
3779 perf_output_put(&handle, throttle_event);
3780 perf_output_end(&handle);
3781 }
3782
3783 /*
3784 * Generic event overflow handling, sampling.
3785 */
3786
3787 static int __perf_event_overflow(struct perf_event *event, int nmi,
3788 int throttle, struct perf_sample_data *data,
3789 struct pt_regs *regs)
3790 {
3791 int events = atomic_read(&event->event_limit);
3792 struct hw_perf_event *hwc = &event->hw;
3793 int ret = 0;
3794
3795 throttle = (throttle && event->pmu->unthrottle != NULL);
3796
3797 if (!throttle) {
3798 hwc->interrupts++;
3799 } else {
3800 if (hwc->interrupts != MAX_INTERRUPTS) {
3801 hwc->interrupts++;
3802 if (HZ * hwc->interrupts >
3803 (u64)sysctl_perf_event_sample_rate) {
3804 hwc->interrupts = MAX_INTERRUPTS;
3805 perf_log_throttle(event, 0);
3806 ret = 1;
3807 }
3808 } else {
3809 /*
3810 * Keep re-disabling events even though on the previous
3811 * pass we disabled it - just in case we raced with a
3812 * sched-in and the event got enabled again:
3813 */
3814 ret = 1;
3815 }
3816 }
3817
3818 if (event->attr.freq) {
3819 u64 now = perf_clock();
3820 s64 delta = now - hwc->freq_time_stamp;
3821
3822 hwc->freq_time_stamp = now;
3823
3824 if (delta > 0 && delta < 2*TICK_NSEC)
3825 perf_adjust_period(event, delta, hwc->last_period);
3826 }
3827
3828 /*
3829 * XXX event_limit might not quite work as expected on inherited
3830 * events
3831 */
3832
3833 event->pending_kill = POLL_IN;
3834 if (events && atomic_dec_and_test(&event->event_limit)) {
3835 ret = 1;
3836 event->pending_kill = POLL_HUP;
3837 if (nmi) {
3838 event->pending_disable = 1;
3839 perf_pending_queue(&event->pending,
3840 perf_pending_event);
3841 } else
3842 perf_event_disable(event);
3843 }
3844
3845 if (event->overflow_handler)
3846 event->overflow_handler(event, nmi, data, regs);
3847 else
3848 perf_event_output(event, nmi, data, regs);
3849
3850 return ret;
3851 }
3852
3853 int perf_event_overflow(struct perf_event *event, int nmi,
3854 struct perf_sample_data *data,
3855 struct pt_regs *regs)
3856 {
3857 return __perf_event_overflow(event, nmi, 1, data, regs);
3858 }
3859
3860 /*
3861 * Generic software event infrastructure
3862 */
3863
3864 /*
3865 * We directly increment event->count and keep a second value in
3866 * event->hw.period_left to count intervals. This period event
3867 * is kept in the range [-sample_period, 0] so that we can use the
3868 * sign as trigger.
3869 */
3870
3871 static u64 perf_swevent_set_period(struct perf_event *event)
3872 {
3873 struct hw_perf_event *hwc = &event->hw;
3874 u64 period = hwc->last_period;
3875 u64 nr, offset;
3876 s64 old, val;
3877
3878 hwc->last_period = hwc->sample_period;
3879
3880 again:
3881 old = val = atomic64_read(&hwc->period_left);
3882 if (val < 0)
3883 return 0;
3884
3885 nr = div64_u64(period + val, period);
3886 offset = nr * period;
3887 val -= offset;
3888 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3889 goto again;
3890
3891 return nr;
3892 }
3893
3894 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3895 int nmi, struct perf_sample_data *data,
3896 struct pt_regs *regs)
3897 {
3898 struct hw_perf_event *hwc = &event->hw;
3899 int throttle = 0;
3900
3901 data->period = event->hw.last_period;
3902 if (!overflow)
3903 overflow = perf_swevent_set_period(event);
3904
3905 if (hwc->interrupts == MAX_INTERRUPTS)
3906 return;
3907
3908 for (; overflow; overflow--) {
3909 if (__perf_event_overflow(event, nmi, throttle,
3910 data, regs)) {
3911 /*
3912 * We inhibit the overflow from happening when
3913 * hwc->interrupts == MAX_INTERRUPTS.
3914 */
3915 break;
3916 }
3917 throttle = 1;
3918 }
3919 }
3920
3921 static void perf_swevent_unthrottle(struct perf_event *event)
3922 {
3923 /*
3924 * Nothing to do, we already reset hwc->interrupts.
3925 */
3926 }
3927
3928 static void perf_swevent_add(struct perf_event *event, u64 nr,
3929 int nmi, struct perf_sample_data *data,
3930 struct pt_regs *regs)
3931 {
3932 struct hw_perf_event *hwc = &event->hw;
3933
3934 atomic64_add(nr, &event->count);
3935
3936 if (!regs)
3937 return;
3938
3939 if (!hwc->sample_period)
3940 return;
3941
3942 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3943 return perf_swevent_overflow(event, 1, nmi, data, regs);
3944
3945 if (atomic64_add_negative(nr, &hwc->period_left))
3946 return;
3947
3948 perf_swevent_overflow(event, 0, nmi, data, regs);
3949 }
3950
3951 static int perf_swevent_is_counting(struct perf_event *event)
3952 {
3953 /*
3954 * The event is active, we're good!
3955 */
3956 if (event->state == PERF_EVENT_STATE_ACTIVE)
3957 return 1;
3958
3959 /*
3960 * The event is off/error, not counting.
3961 */
3962 if (event->state != PERF_EVENT_STATE_INACTIVE)
3963 return 0;
3964
3965 /*
3966 * The event is inactive, if the context is active
3967 * we're part of a group that didn't make it on the 'pmu',
3968 * not counting.
3969 */
3970 if (event->ctx->is_active)
3971 return 0;
3972
3973 /*
3974 * We're inactive and the context is too, this means the
3975 * task is scheduled out, we're counting events that happen
3976 * to us, like migration events.
3977 */
3978 return 1;
3979 }
3980
3981 static int perf_tp_event_match(struct perf_event *event,
3982 struct perf_sample_data *data);
3983
3984 static int perf_exclude_event(struct perf_event *event,
3985 struct pt_regs *regs)
3986 {
3987 if (regs) {
3988 if (event->attr.exclude_user && user_mode(regs))
3989 return 1;
3990
3991 if (event->attr.exclude_kernel && !user_mode(regs))
3992 return 1;
3993 }
3994
3995 return 0;
3996 }
3997
3998 static int perf_swevent_match(struct perf_event *event,
3999 enum perf_type_id type,
4000 u32 event_id,
4001 struct perf_sample_data *data,
4002 struct pt_regs *regs)
4003 {
4004 if (event->cpu != -1 && event->cpu != smp_processor_id())
4005 return 0;
4006
4007 if (!perf_swevent_is_counting(event))
4008 return 0;
4009
4010 if (event->attr.type != type)
4011 return 0;
4012
4013 if (event->attr.config != event_id)
4014 return 0;
4015
4016 if (perf_exclude_event(event, regs))
4017 return 0;
4018
4019 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
4020 !perf_tp_event_match(event, data))
4021 return 0;
4022
4023 return 1;
4024 }
4025
4026 static void perf_swevent_ctx_event(struct perf_event_context *ctx,
4027 enum perf_type_id type,
4028 u32 event_id, u64 nr, int nmi,
4029 struct perf_sample_data *data,
4030 struct pt_regs *regs)
4031 {
4032 struct perf_event *event;
4033
4034 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4035 if (perf_swevent_match(event, type, event_id, data, regs))
4036 perf_swevent_add(event, nr, nmi, data, regs);
4037 }
4038 }
4039
4040 int perf_swevent_get_recursion_context(void)
4041 {
4042 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
4043 int rctx;
4044
4045 if (in_nmi())
4046 rctx = 3;
4047 else if (in_irq())
4048 rctx = 2;
4049 else if (in_softirq())
4050 rctx = 1;
4051 else
4052 rctx = 0;
4053
4054 if (cpuctx->recursion[rctx]) {
4055 put_cpu_var(perf_cpu_context);
4056 return -1;
4057 }
4058
4059 cpuctx->recursion[rctx]++;
4060 barrier();
4061
4062 return rctx;
4063 }
4064 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4065
4066 void perf_swevent_put_recursion_context(int rctx)
4067 {
4068 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4069 barrier();
4070 cpuctx->recursion[rctx]--;
4071 put_cpu_var(perf_cpu_context);
4072 }
4073 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
4074
4075 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4076 u64 nr, int nmi,
4077 struct perf_sample_data *data,
4078 struct pt_regs *regs)
4079 {
4080 struct perf_cpu_context *cpuctx;
4081 struct perf_event_context *ctx;
4082
4083 cpuctx = &__get_cpu_var(perf_cpu_context);
4084 rcu_read_lock();
4085 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
4086 nr, nmi, data, regs);
4087 /*
4088 * doesn't really matter which of the child contexts the
4089 * events ends up in.
4090 */
4091 ctx = rcu_dereference(current->perf_event_ctxp);
4092 if (ctx)
4093 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
4094 rcu_read_unlock();
4095 }
4096
4097 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4098 struct pt_regs *regs, u64 addr)
4099 {
4100 struct perf_sample_data data;
4101 int rctx;
4102
4103 rctx = perf_swevent_get_recursion_context();
4104 if (rctx < 0)
4105 return;
4106
4107 perf_sample_data_init(&data, addr);
4108
4109 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4110
4111 perf_swevent_put_recursion_context(rctx);
4112 }
4113
4114 static void perf_swevent_read(struct perf_event *event)
4115 {
4116 }
4117
4118 static int perf_swevent_enable(struct perf_event *event)
4119 {
4120 struct hw_perf_event *hwc = &event->hw;
4121
4122 if (hwc->sample_period) {
4123 hwc->last_period = hwc->sample_period;
4124 perf_swevent_set_period(event);
4125 }
4126 return 0;
4127 }
4128
4129 static void perf_swevent_disable(struct perf_event *event)
4130 {
4131 }
4132
4133 static const struct pmu perf_ops_generic = {
4134 .enable = perf_swevent_enable,
4135 .disable = perf_swevent_disable,
4136 .read = perf_swevent_read,
4137 .unthrottle = perf_swevent_unthrottle,
4138 };
4139
4140 /*
4141 * hrtimer based swevent callback
4142 */
4143
4144 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4145 {
4146 enum hrtimer_restart ret = HRTIMER_RESTART;
4147 struct perf_sample_data data;
4148 struct pt_regs *regs;
4149 struct perf_event *event;
4150 u64 period;
4151
4152 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4153 event->pmu->read(event);
4154
4155 perf_sample_data_init(&data, 0);
4156 data.period = event->hw.last_period;
4157 regs = get_irq_regs();
4158 /*
4159 * In case we exclude kernel IPs or are somehow not in interrupt
4160 * context, provide the next best thing, the user IP.
4161 */
4162 if ((event->attr.exclude_kernel || !regs) &&
4163 !event->attr.exclude_user)
4164 regs = task_pt_regs(current);
4165
4166 if (regs) {
4167 if (!(event->attr.exclude_idle && current->pid == 0))
4168 if (perf_event_overflow(event, 0, &data, regs))
4169 ret = HRTIMER_NORESTART;
4170 }
4171
4172 period = max_t(u64, 10000, event->hw.sample_period);
4173 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4174
4175 return ret;
4176 }
4177
4178 static void perf_swevent_start_hrtimer(struct perf_event *event)
4179 {
4180 struct hw_perf_event *hwc = &event->hw;
4181
4182 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4183 hwc->hrtimer.function = perf_swevent_hrtimer;
4184 if (hwc->sample_period) {
4185 u64 period;
4186
4187 if (hwc->remaining) {
4188 if (hwc->remaining < 0)
4189 period = 10000;
4190 else
4191 period = hwc->remaining;
4192 hwc->remaining = 0;
4193 } else {
4194 period = max_t(u64, 10000, hwc->sample_period);
4195 }
4196 __hrtimer_start_range_ns(&hwc->hrtimer,
4197 ns_to_ktime(period), 0,
4198 HRTIMER_MODE_REL, 0);
4199 }
4200 }
4201
4202 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4203 {
4204 struct hw_perf_event *hwc = &event->hw;
4205
4206 if (hwc->sample_period) {
4207 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4208 hwc->remaining = ktime_to_ns(remaining);
4209
4210 hrtimer_cancel(&hwc->hrtimer);
4211 }
4212 }
4213
4214 /*
4215 * Software event: cpu wall time clock
4216 */
4217
4218 static void cpu_clock_perf_event_update(struct perf_event *event)
4219 {
4220 int cpu = raw_smp_processor_id();
4221 s64 prev;
4222 u64 now;
4223
4224 now = cpu_clock(cpu);
4225 prev = atomic64_xchg(&event->hw.prev_count, now);
4226 atomic64_add(now - prev, &event->count);
4227 }
4228
4229 static int cpu_clock_perf_event_enable(struct perf_event *event)
4230 {
4231 struct hw_perf_event *hwc = &event->hw;
4232 int cpu = raw_smp_processor_id();
4233
4234 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4235 perf_swevent_start_hrtimer(event);
4236
4237 return 0;
4238 }
4239
4240 static void cpu_clock_perf_event_disable(struct perf_event *event)
4241 {
4242 perf_swevent_cancel_hrtimer(event);
4243 cpu_clock_perf_event_update(event);
4244 }
4245
4246 static void cpu_clock_perf_event_read(struct perf_event *event)
4247 {
4248 cpu_clock_perf_event_update(event);
4249 }
4250
4251 static const struct pmu perf_ops_cpu_clock = {
4252 .enable = cpu_clock_perf_event_enable,
4253 .disable = cpu_clock_perf_event_disable,
4254 .read = cpu_clock_perf_event_read,
4255 };
4256
4257 /*
4258 * Software event: task time clock
4259 */
4260
4261 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4262 {
4263 u64 prev;
4264 s64 delta;
4265
4266 prev = atomic64_xchg(&event->hw.prev_count, now);
4267 delta = now - prev;
4268 atomic64_add(delta, &event->count);
4269 }
4270
4271 static int task_clock_perf_event_enable(struct perf_event *event)
4272 {
4273 struct hw_perf_event *hwc = &event->hw;
4274 u64 now;
4275
4276 now = event->ctx->time;
4277
4278 atomic64_set(&hwc->prev_count, now);
4279
4280 perf_swevent_start_hrtimer(event);
4281
4282 return 0;
4283 }
4284
4285 static void task_clock_perf_event_disable(struct perf_event *event)
4286 {
4287 perf_swevent_cancel_hrtimer(event);
4288 task_clock_perf_event_update(event, event->ctx->time);
4289
4290 }
4291
4292 static void task_clock_perf_event_read(struct perf_event *event)
4293 {
4294 u64 time;
4295
4296 if (!in_nmi()) {
4297 update_context_time(event->ctx);
4298 time = event->ctx->time;
4299 } else {
4300 u64 now = perf_clock();
4301 u64 delta = now - event->ctx->timestamp;
4302 time = event->ctx->time + delta;
4303 }
4304
4305 task_clock_perf_event_update(event, time);
4306 }
4307
4308 static const struct pmu perf_ops_task_clock = {
4309 .enable = task_clock_perf_event_enable,
4310 .disable = task_clock_perf_event_disable,
4311 .read = task_clock_perf_event_read,
4312 };
4313
4314 #ifdef CONFIG_EVENT_TRACING
4315
4316 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4317 int entry_size)
4318 {
4319 struct pt_regs *regs = get_irq_regs();
4320 struct perf_sample_data data;
4321 struct perf_raw_record raw = {
4322 .size = entry_size,
4323 .data = record,
4324 };
4325
4326 perf_sample_data_init(&data, addr);
4327 data.raw = &raw;
4328
4329 if (!regs)
4330 regs = task_pt_regs(current);
4331
4332 /* Trace events already protected against recursion */
4333 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4334 &data, regs);
4335 }
4336 EXPORT_SYMBOL_GPL(perf_tp_event);
4337
4338 static int perf_tp_event_match(struct perf_event *event,
4339 struct perf_sample_data *data)
4340 {
4341 void *record = data->raw->data;
4342
4343 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4344 return 1;
4345 return 0;
4346 }
4347
4348 static void tp_perf_event_destroy(struct perf_event *event)
4349 {
4350 ftrace_profile_disable(event->attr.config);
4351 }
4352
4353 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4354 {
4355 /*
4356 * Raw tracepoint data is a severe data leak, only allow root to
4357 * have these.
4358 */
4359 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4360 perf_paranoid_tracepoint_raw() &&
4361 !capable(CAP_SYS_ADMIN))
4362 return ERR_PTR(-EPERM);
4363
4364 if (ftrace_profile_enable(event->attr.config))
4365 return NULL;
4366
4367 event->destroy = tp_perf_event_destroy;
4368
4369 return &perf_ops_generic;
4370 }
4371
4372 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4373 {
4374 char *filter_str;
4375 int ret;
4376
4377 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4378 return -EINVAL;
4379
4380 filter_str = strndup_user(arg, PAGE_SIZE);
4381 if (IS_ERR(filter_str))
4382 return PTR_ERR(filter_str);
4383
4384 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4385
4386 kfree(filter_str);
4387 return ret;
4388 }
4389
4390 static void perf_event_free_filter(struct perf_event *event)
4391 {
4392 ftrace_profile_free_filter(event);
4393 }
4394
4395 #else
4396
4397 static int perf_tp_event_match(struct perf_event *event,
4398 struct perf_sample_data *data)
4399 {
4400 return 1;
4401 }
4402
4403 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4404 {
4405 return NULL;
4406 }
4407
4408 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4409 {
4410 return -ENOENT;
4411 }
4412
4413 static void perf_event_free_filter(struct perf_event *event)
4414 {
4415 }
4416
4417 #endif /* CONFIG_EVENT_TRACING */
4418
4419 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4420 static void bp_perf_event_destroy(struct perf_event *event)
4421 {
4422 release_bp_slot(event);
4423 }
4424
4425 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4426 {
4427 int err;
4428
4429 err = register_perf_hw_breakpoint(bp);
4430 if (err)
4431 return ERR_PTR(err);
4432
4433 bp->destroy = bp_perf_event_destroy;
4434
4435 return &perf_ops_bp;
4436 }
4437
4438 void perf_bp_event(struct perf_event *bp, void *data)
4439 {
4440 struct perf_sample_data sample;
4441 struct pt_regs *regs = data;
4442
4443 perf_sample_data_init(&sample, bp->attr.bp_addr);
4444
4445 if (!perf_exclude_event(bp, regs))
4446 perf_swevent_add(bp, 1, 1, &sample, regs);
4447 }
4448 #else
4449 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4450 {
4451 return NULL;
4452 }
4453
4454 void perf_bp_event(struct perf_event *bp, void *regs)
4455 {
4456 }
4457 #endif
4458
4459 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4460
4461 static void sw_perf_event_destroy(struct perf_event *event)
4462 {
4463 u64 event_id = event->attr.config;
4464
4465 WARN_ON(event->parent);
4466
4467 atomic_dec(&perf_swevent_enabled[event_id]);
4468 }
4469
4470 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4471 {
4472 const struct pmu *pmu = NULL;
4473 u64 event_id = event->attr.config;
4474
4475 /*
4476 * Software events (currently) can't in general distinguish
4477 * between user, kernel and hypervisor events.
4478 * However, context switches and cpu migrations are considered
4479 * to be kernel events, and page faults are never hypervisor
4480 * events.
4481 */
4482 switch (event_id) {
4483 case PERF_COUNT_SW_CPU_CLOCK:
4484 pmu = &perf_ops_cpu_clock;
4485
4486 break;
4487 case PERF_COUNT_SW_TASK_CLOCK:
4488 /*
4489 * If the user instantiates this as a per-cpu event,
4490 * use the cpu_clock event instead.
4491 */
4492 if (event->ctx->task)
4493 pmu = &perf_ops_task_clock;
4494 else
4495 pmu = &perf_ops_cpu_clock;
4496
4497 break;
4498 case PERF_COUNT_SW_PAGE_FAULTS:
4499 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4500 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4501 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4502 case PERF_COUNT_SW_CPU_MIGRATIONS:
4503 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4504 case PERF_COUNT_SW_EMULATION_FAULTS:
4505 if (!event->parent) {
4506 atomic_inc(&perf_swevent_enabled[event_id]);
4507 event->destroy = sw_perf_event_destroy;
4508 }
4509 pmu = &perf_ops_generic;
4510 break;
4511 }
4512
4513 return pmu;
4514 }
4515
4516 /*
4517 * Allocate and initialize a event structure
4518 */
4519 static struct perf_event *
4520 perf_event_alloc(struct perf_event_attr *attr,
4521 int cpu,
4522 struct perf_event_context *ctx,
4523 struct perf_event *group_leader,
4524 struct perf_event *parent_event,
4525 perf_overflow_handler_t overflow_handler,
4526 gfp_t gfpflags)
4527 {
4528 const struct pmu *pmu;
4529 struct perf_event *event;
4530 struct hw_perf_event *hwc;
4531 long err;
4532
4533 event = kzalloc(sizeof(*event), gfpflags);
4534 if (!event)
4535 return ERR_PTR(-ENOMEM);
4536
4537 /*
4538 * Single events are their own group leaders, with an
4539 * empty sibling list:
4540 */
4541 if (!group_leader)
4542 group_leader = event;
4543
4544 mutex_init(&event->child_mutex);
4545 INIT_LIST_HEAD(&event->child_list);
4546
4547 INIT_LIST_HEAD(&event->group_entry);
4548 INIT_LIST_HEAD(&event->event_entry);
4549 INIT_LIST_HEAD(&event->sibling_list);
4550 init_waitqueue_head(&event->waitq);
4551
4552 mutex_init(&event->mmap_mutex);
4553
4554 event->cpu = cpu;
4555 event->attr = *attr;
4556 event->group_leader = group_leader;
4557 event->pmu = NULL;
4558 event->ctx = ctx;
4559 event->oncpu = -1;
4560
4561 event->parent = parent_event;
4562
4563 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4564 event->id = atomic64_inc_return(&perf_event_id);
4565
4566 event->state = PERF_EVENT_STATE_INACTIVE;
4567
4568 if (!overflow_handler && parent_event)
4569 overflow_handler = parent_event->overflow_handler;
4570
4571 event->overflow_handler = overflow_handler;
4572
4573 if (attr->disabled)
4574 event->state = PERF_EVENT_STATE_OFF;
4575
4576 pmu = NULL;
4577
4578 hwc = &event->hw;
4579 hwc->sample_period = attr->sample_period;
4580 if (attr->freq && attr->sample_freq)
4581 hwc->sample_period = 1;
4582 hwc->last_period = hwc->sample_period;
4583
4584 atomic64_set(&hwc->period_left, hwc->sample_period);
4585
4586 /*
4587 * we currently do not support PERF_FORMAT_GROUP on inherited events
4588 */
4589 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4590 goto done;
4591
4592 switch (attr->type) {
4593 case PERF_TYPE_RAW:
4594 case PERF_TYPE_HARDWARE:
4595 case PERF_TYPE_HW_CACHE:
4596 pmu = hw_perf_event_init(event);
4597 break;
4598
4599 case PERF_TYPE_SOFTWARE:
4600 pmu = sw_perf_event_init(event);
4601 break;
4602
4603 case PERF_TYPE_TRACEPOINT:
4604 pmu = tp_perf_event_init(event);
4605 break;
4606
4607 case PERF_TYPE_BREAKPOINT:
4608 pmu = bp_perf_event_init(event);
4609 break;
4610
4611
4612 default:
4613 break;
4614 }
4615 done:
4616 err = 0;
4617 if (!pmu)
4618 err = -EINVAL;
4619 else if (IS_ERR(pmu))
4620 err = PTR_ERR(pmu);
4621
4622 if (err) {
4623 if (event->ns)
4624 put_pid_ns(event->ns);
4625 kfree(event);
4626 return ERR_PTR(err);
4627 }
4628
4629 event->pmu = pmu;
4630
4631 if (!event->parent) {
4632 atomic_inc(&nr_events);
4633 if (event->attr.mmap)
4634 atomic_inc(&nr_mmap_events);
4635 if (event->attr.comm)
4636 atomic_inc(&nr_comm_events);
4637 if (event->attr.task)
4638 atomic_inc(&nr_task_events);
4639 }
4640
4641 return event;
4642 }
4643
4644 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4645 struct perf_event_attr *attr)
4646 {
4647 u32 size;
4648 int ret;
4649
4650 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4651 return -EFAULT;
4652
4653 /*
4654 * zero the full structure, so that a short copy will be nice.
4655 */
4656 memset(attr, 0, sizeof(*attr));
4657
4658 ret = get_user(size, &uattr->size);
4659 if (ret)
4660 return ret;
4661
4662 if (size > PAGE_SIZE) /* silly large */
4663 goto err_size;
4664
4665 if (!size) /* abi compat */
4666 size = PERF_ATTR_SIZE_VER0;
4667
4668 if (size < PERF_ATTR_SIZE_VER0)
4669 goto err_size;
4670
4671 /*
4672 * If we're handed a bigger struct than we know of,
4673 * ensure all the unknown bits are 0 - i.e. new
4674 * user-space does not rely on any kernel feature
4675 * extensions we dont know about yet.
4676 */
4677 if (size > sizeof(*attr)) {
4678 unsigned char __user *addr;
4679 unsigned char __user *end;
4680 unsigned char val;
4681
4682 addr = (void __user *)uattr + sizeof(*attr);
4683 end = (void __user *)uattr + size;
4684
4685 for (; addr < end; addr++) {
4686 ret = get_user(val, addr);
4687 if (ret)
4688 return ret;
4689 if (val)
4690 goto err_size;
4691 }
4692 size = sizeof(*attr);
4693 }
4694
4695 ret = copy_from_user(attr, uattr, size);
4696 if (ret)
4697 return -EFAULT;
4698
4699 /*
4700 * If the type exists, the corresponding creation will verify
4701 * the attr->config.
4702 */
4703 if (attr->type >= PERF_TYPE_MAX)
4704 return -EINVAL;
4705
4706 if (attr->__reserved_1)
4707 return -EINVAL;
4708
4709 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4710 return -EINVAL;
4711
4712 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4713 return -EINVAL;
4714
4715 out:
4716 return ret;
4717
4718 err_size:
4719 put_user(sizeof(*attr), &uattr->size);
4720 ret = -E2BIG;
4721 goto out;
4722 }
4723
4724 static int perf_event_set_output(struct perf_event *event, int output_fd)
4725 {
4726 struct perf_event *output_event = NULL;
4727 struct file *output_file = NULL;
4728 struct perf_event *old_output;
4729 int fput_needed = 0;
4730 int ret = -EINVAL;
4731
4732 if (!output_fd)
4733 goto set;
4734
4735 output_file = fget_light(output_fd, &fput_needed);
4736 if (!output_file)
4737 return -EBADF;
4738
4739 if (output_file->f_op != &perf_fops)
4740 goto out;
4741
4742 output_event = output_file->private_data;
4743
4744 /* Don't chain output fds */
4745 if (output_event->output)
4746 goto out;
4747
4748 /* Don't set an output fd when we already have an output channel */
4749 if (event->data)
4750 goto out;
4751
4752 atomic_long_inc(&output_file->f_count);
4753
4754 set:
4755 mutex_lock(&event->mmap_mutex);
4756 old_output = event->output;
4757 rcu_assign_pointer(event->output, output_event);
4758 mutex_unlock(&event->mmap_mutex);
4759
4760 if (old_output) {
4761 /*
4762 * we need to make sure no existing perf_output_*()
4763 * is still referencing this event.
4764 */
4765 synchronize_rcu();
4766 fput(old_output->filp);
4767 }
4768
4769 ret = 0;
4770 out:
4771 fput_light(output_file, fput_needed);
4772 return ret;
4773 }
4774
4775 /**
4776 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4777 *
4778 * @attr_uptr: event_id type attributes for monitoring/sampling
4779 * @pid: target pid
4780 * @cpu: target cpu
4781 * @group_fd: group leader event fd
4782 */
4783 SYSCALL_DEFINE5(perf_event_open,
4784 struct perf_event_attr __user *, attr_uptr,
4785 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4786 {
4787 struct perf_event *event, *group_leader;
4788 struct perf_event_attr attr;
4789 struct perf_event_context *ctx;
4790 struct file *event_file = NULL;
4791 struct file *group_file = NULL;
4792 int fput_needed = 0;
4793 int fput_needed2 = 0;
4794 int err;
4795
4796 /* for future expandability... */
4797 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4798 return -EINVAL;
4799
4800 err = perf_copy_attr(attr_uptr, &attr);
4801 if (err)
4802 return err;
4803
4804 if (!attr.exclude_kernel) {
4805 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4806 return -EACCES;
4807 }
4808
4809 if (attr.freq) {
4810 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4811 return -EINVAL;
4812 }
4813
4814 /*
4815 * Get the target context (task or percpu):
4816 */
4817 ctx = find_get_context(pid, cpu);
4818 if (IS_ERR(ctx))
4819 return PTR_ERR(ctx);
4820
4821 /*
4822 * Look up the group leader (we will attach this event to it):
4823 */
4824 group_leader = NULL;
4825 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4826 err = -EINVAL;
4827 group_file = fget_light(group_fd, &fput_needed);
4828 if (!group_file)
4829 goto err_put_context;
4830 if (group_file->f_op != &perf_fops)
4831 goto err_put_context;
4832
4833 group_leader = group_file->private_data;
4834 /*
4835 * Do not allow a recursive hierarchy (this new sibling
4836 * becoming part of another group-sibling):
4837 */
4838 if (group_leader->group_leader != group_leader)
4839 goto err_put_context;
4840 /*
4841 * Do not allow to attach to a group in a different
4842 * task or CPU context:
4843 */
4844 if (group_leader->ctx != ctx)
4845 goto err_put_context;
4846 /*
4847 * Only a group leader can be exclusive or pinned
4848 */
4849 if (attr.exclusive || attr.pinned)
4850 goto err_put_context;
4851 }
4852
4853 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4854 NULL, NULL, GFP_KERNEL);
4855 err = PTR_ERR(event);
4856 if (IS_ERR(event))
4857 goto err_put_context;
4858
4859 err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
4860 if (err < 0)
4861 goto err_free_put_context;
4862
4863 event_file = fget_light(err, &fput_needed2);
4864 if (!event_file)
4865 goto err_free_put_context;
4866
4867 if (flags & PERF_FLAG_FD_OUTPUT) {
4868 err = perf_event_set_output(event, group_fd);
4869 if (err)
4870 goto err_fput_free_put_context;
4871 }
4872
4873 event->filp = event_file;
4874 WARN_ON_ONCE(ctx->parent_ctx);
4875 mutex_lock(&ctx->mutex);
4876 perf_install_in_context(ctx, event, cpu);
4877 ++ctx->generation;
4878 mutex_unlock(&ctx->mutex);
4879
4880 event->owner = current;
4881 get_task_struct(current);
4882 mutex_lock(&current->perf_event_mutex);
4883 list_add_tail(&event->owner_entry, &current->perf_event_list);
4884 mutex_unlock(&current->perf_event_mutex);
4885
4886 err_fput_free_put_context:
4887 fput_light(event_file, fput_needed2);
4888
4889 err_free_put_context:
4890 if (err < 0)
4891 kfree(event);
4892
4893 err_put_context:
4894 if (err < 0)
4895 put_ctx(ctx);
4896
4897 fput_light(group_file, fput_needed);
4898
4899 return err;
4900 }
4901
4902 /**
4903 * perf_event_create_kernel_counter
4904 *
4905 * @attr: attributes of the counter to create
4906 * @cpu: cpu in which the counter is bound
4907 * @pid: task to profile
4908 */
4909 struct perf_event *
4910 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4911 pid_t pid,
4912 perf_overflow_handler_t overflow_handler)
4913 {
4914 struct perf_event *event;
4915 struct perf_event_context *ctx;
4916 int err;
4917
4918 /*
4919 * Get the target context (task or percpu):
4920 */
4921
4922 ctx = find_get_context(pid, cpu);
4923 if (IS_ERR(ctx)) {
4924 err = PTR_ERR(ctx);
4925 goto err_exit;
4926 }
4927
4928 event = perf_event_alloc(attr, cpu, ctx, NULL,
4929 NULL, overflow_handler, GFP_KERNEL);
4930 if (IS_ERR(event)) {
4931 err = PTR_ERR(event);
4932 goto err_put_context;
4933 }
4934
4935 event->filp = NULL;
4936 WARN_ON_ONCE(ctx->parent_ctx);
4937 mutex_lock(&ctx->mutex);
4938 perf_install_in_context(ctx, event, cpu);
4939 ++ctx->generation;
4940 mutex_unlock(&ctx->mutex);
4941
4942 event->owner = current;
4943 get_task_struct(current);
4944 mutex_lock(&current->perf_event_mutex);
4945 list_add_tail(&event->owner_entry, &current->perf_event_list);
4946 mutex_unlock(&current->perf_event_mutex);
4947
4948 return event;
4949
4950 err_put_context:
4951 put_ctx(ctx);
4952 err_exit:
4953 return ERR_PTR(err);
4954 }
4955 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4956
4957 /*
4958 * inherit a event from parent task to child task:
4959 */
4960 static struct perf_event *
4961 inherit_event(struct perf_event *parent_event,
4962 struct task_struct *parent,
4963 struct perf_event_context *parent_ctx,
4964 struct task_struct *child,
4965 struct perf_event *group_leader,
4966 struct perf_event_context *child_ctx)
4967 {
4968 struct perf_event *child_event;
4969
4970 /*
4971 * Instead of creating recursive hierarchies of events,
4972 * we link inherited events back to the original parent,
4973 * which has a filp for sure, which we use as the reference
4974 * count:
4975 */
4976 if (parent_event->parent)
4977 parent_event = parent_event->parent;
4978
4979 child_event = perf_event_alloc(&parent_event->attr,
4980 parent_event->cpu, child_ctx,
4981 group_leader, parent_event,
4982 NULL, GFP_KERNEL);
4983 if (IS_ERR(child_event))
4984 return child_event;
4985 get_ctx(child_ctx);
4986
4987 /*
4988 * Make the child state follow the state of the parent event,
4989 * not its attr.disabled bit. We hold the parent's mutex,
4990 * so we won't race with perf_event_{en, dis}able_family.
4991 */
4992 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
4993 child_event->state = PERF_EVENT_STATE_INACTIVE;
4994 else
4995 child_event->state = PERF_EVENT_STATE_OFF;
4996
4997 if (parent_event->attr.freq) {
4998 u64 sample_period = parent_event->hw.sample_period;
4999 struct hw_perf_event *hwc = &child_event->hw;
5000
5001 hwc->sample_period = sample_period;
5002 hwc->last_period = sample_period;
5003
5004 atomic64_set(&hwc->period_left, sample_period);
5005 }
5006
5007 child_event->overflow_handler = parent_event->overflow_handler;
5008
5009 /*
5010 * Link it up in the child's context:
5011 */
5012 add_event_to_ctx(child_event, child_ctx);
5013
5014 /*
5015 * Get a reference to the parent filp - we will fput it
5016 * when the child event exits. This is safe to do because
5017 * we are in the parent and we know that the filp still
5018 * exists and has a nonzero count:
5019 */
5020 atomic_long_inc(&parent_event->filp->f_count);
5021
5022 /*
5023 * Link this into the parent event's child list
5024 */
5025 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5026 mutex_lock(&parent_event->child_mutex);
5027 list_add_tail(&child_event->child_list, &parent_event->child_list);
5028 mutex_unlock(&parent_event->child_mutex);
5029
5030 return child_event;
5031 }
5032
5033 static int inherit_group(struct perf_event *parent_event,
5034 struct task_struct *parent,
5035 struct perf_event_context *parent_ctx,
5036 struct task_struct *child,
5037 struct perf_event_context *child_ctx)
5038 {
5039 struct perf_event *leader;
5040 struct perf_event *sub;
5041 struct perf_event *child_ctr;
5042
5043 leader = inherit_event(parent_event, parent, parent_ctx,
5044 child, NULL, child_ctx);
5045 if (IS_ERR(leader))
5046 return PTR_ERR(leader);
5047 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5048 child_ctr = inherit_event(sub, parent, parent_ctx,
5049 child, leader, child_ctx);
5050 if (IS_ERR(child_ctr))
5051 return PTR_ERR(child_ctr);
5052 }
5053 return 0;
5054 }
5055
5056 static void sync_child_event(struct perf_event *child_event,
5057 struct task_struct *child)
5058 {
5059 struct perf_event *parent_event = child_event->parent;
5060 u64 child_val;
5061
5062 if (child_event->attr.inherit_stat)
5063 perf_event_read_event(child_event, child);
5064
5065 child_val = atomic64_read(&child_event->count);
5066
5067 /*
5068 * Add back the child's count to the parent's count:
5069 */
5070 atomic64_add(child_val, &parent_event->count);
5071 atomic64_add(child_event->total_time_enabled,
5072 &parent_event->child_total_time_enabled);
5073 atomic64_add(child_event->total_time_running,
5074 &parent_event->child_total_time_running);
5075
5076 /*
5077 * Remove this event from the parent's list
5078 */
5079 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5080 mutex_lock(&parent_event->child_mutex);
5081 list_del_init(&child_event->child_list);
5082 mutex_unlock(&parent_event->child_mutex);
5083
5084 /*
5085 * Release the parent event, if this was the last
5086 * reference to it.
5087 */
5088 fput(parent_event->filp);
5089 }
5090
5091 static void
5092 __perf_event_exit_task(struct perf_event *child_event,
5093 struct perf_event_context *child_ctx,
5094 struct task_struct *child)
5095 {
5096 struct perf_event *parent_event;
5097
5098 perf_event_remove_from_context(child_event);
5099
5100 parent_event = child_event->parent;
5101 /*
5102 * It can happen that parent exits first, and has events
5103 * that are still around due to the child reference. These
5104 * events need to be zapped - but otherwise linger.
5105 */
5106 if (parent_event) {
5107 sync_child_event(child_event, child);
5108 free_event(child_event);
5109 }
5110 }
5111
5112 /*
5113 * When a child task exits, feed back event values to parent events.
5114 */
5115 void perf_event_exit_task(struct task_struct *child)
5116 {
5117 struct perf_event *child_event, *tmp;
5118 struct perf_event_context *child_ctx;
5119 unsigned long flags;
5120
5121 if (likely(!child->perf_event_ctxp)) {
5122 perf_event_task(child, NULL, 0);
5123 return;
5124 }
5125
5126 local_irq_save(flags);
5127 /*
5128 * We can't reschedule here because interrupts are disabled,
5129 * and either child is current or it is a task that can't be
5130 * scheduled, so we are now safe from rescheduling changing
5131 * our context.
5132 */
5133 child_ctx = child->perf_event_ctxp;
5134 __perf_event_task_sched_out(child_ctx);
5135
5136 /*
5137 * Take the context lock here so that if find_get_context is
5138 * reading child->perf_event_ctxp, we wait until it has
5139 * incremented the context's refcount before we do put_ctx below.
5140 */
5141 raw_spin_lock(&child_ctx->lock);
5142 child->perf_event_ctxp = NULL;
5143 /*
5144 * If this context is a clone; unclone it so it can't get
5145 * swapped to another process while we're removing all
5146 * the events from it.
5147 */
5148 unclone_ctx(child_ctx);
5149 update_context_time(child_ctx);
5150 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5151
5152 /*
5153 * Report the task dead after unscheduling the events so that we
5154 * won't get any samples after PERF_RECORD_EXIT. We can however still
5155 * get a few PERF_RECORD_READ events.
5156 */
5157 perf_event_task(child, child_ctx, 0);
5158
5159 /*
5160 * We can recurse on the same lock type through:
5161 *
5162 * __perf_event_exit_task()
5163 * sync_child_event()
5164 * fput(parent_event->filp)
5165 * perf_release()
5166 * mutex_lock(&ctx->mutex)
5167 *
5168 * But since its the parent context it won't be the same instance.
5169 */
5170 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5171
5172 again:
5173 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5174 group_entry)
5175 __perf_event_exit_task(child_event, child_ctx, child);
5176
5177 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5178 group_entry)
5179 __perf_event_exit_task(child_event, child_ctx, child);
5180
5181 /*
5182 * If the last event was a group event, it will have appended all
5183 * its siblings to the list, but we obtained 'tmp' before that which
5184 * will still point to the list head terminating the iteration.
5185 */
5186 if (!list_empty(&child_ctx->pinned_groups) ||
5187 !list_empty(&child_ctx->flexible_groups))
5188 goto again;
5189
5190 mutex_unlock(&child_ctx->mutex);
5191
5192 put_ctx(child_ctx);
5193 }
5194
5195 static void perf_free_event(struct perf_event *event,
5196 struct perf_event_context *ctx)
5197 {
5198 struct perf_event *parent = event->parent;
5199
5200 if (WARN_ON_ONCE(!parent))
5201 return;
5202
5203 mutex_lock(&parent->child_mutex);
5204 list_del_init(&event->child_list);
5205 mutex_unlock(&parent->child_mutex);
5206
5207 fput(parent->filp);
5208
5209 list_del_event(event, ctx);
5210 free_event(event);
5211 }
5212
5213 /*
5214 * free an unexposed, unused context as created by inheritance by
5215 * init_task below, used by fork() in case of fail.
5216 */
5217 void perf_event_free_task(struct task_struct *task)
5218 {
5219 struct perf_event_context *ctx = task->perf_event_ctxp;
5220 struct perf_event *event, *tmp;
5221
5222 if (!ctx)
5223 return;
5224
5225 mutex_lock(&ctx->mutex);
5226 again:
5227 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5228 perf_free_event(event, ctx);
5229
5230 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5231 group_entry)
5232 perf_free_event(event, ctx);
5233
5234 if (!list_empty(&ctx->pinned_groups) ||
5235 !list_empty(&ctx->flexible_groups))
5236 goto again;
5237
5238 mutex_unlock(&ctx->mutex);
5239
5240 put_ctx(ctx);
5241 }
5242
5243 static int
5244 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5245 struct perf_event_context *parent_ctx,
5246 struct task_struct *child,
5247 int *inherited_all)
5248 {
5249 int ret;
5250 struct perf_event_context *child_ctx = child->perf_event_ctxp;
5251
5252 if (!event->attr.inherit) {
5253 *inherited_all = 0;
5254 return 0;
5255 }
5256
5257 if (!child_ctx) {
5258 /*
5259 * This is executed from the parent task context, so
5260 * inherit events that have been marked for cloning.
5261 * First allocate and initialize a context for the
5262 * child.
5263 */
5264
5265 child_ctx = kzalloc(sizeof(struct perf_event_context),
5266 GFP_KERNEL);
5267 if (!child_ctx)
5268 return -ENOMEM;
5269
5270 __perf_event_init_context(child_ctx, child);
5271 child->perf_event_ctxp = child_ctx;
5272 get_task_struct(child);
5273 }
5274
5275 ret = inherit_group(event, parent, parent_ctx,
5276 child, child_ctx);
5277
5278 if (ret)
5279 *inherited_all = 0;
5280
5281 return ret;
5282 }
5283
5284
5285 /*
5286 * Initialize the perf_event context in task_struct
5287 */
5288 int perf_event_init_task(struct task_struct *child)
5289 {
5290 struct perf_event_context *child_ctx, *parent_ctx;
5291 struct perf_event_context *cloned_ctx;
5292 struct perf_event *event;
5293 struct task_struct *parent = current;
5294 int inherited_all = 1;
5295 int ret = 0;
5296
5297 child->perf_event_ctxp = NULL;
5298
5299 mutex_init(&child->perf_event_mutex);
5300 INIT_LIST_HEAD(&child->perf_event_list);
5301
5302 if (likely(!parent->perf_event_ctxp))
5303 return 0;
5304
5305 /*
5306 * If the parent's context is a clone, pin it so it won't get
5307 * swapped under us.
5308 */
5309 parent_ctx = perf_pin_task_context(parent);
5310
5311 /*
5312 * No need to check if parent_ctx != NULL here; since we saw
5313 * it non-NULL earlier, the only reason for it to become NULL
5314 * is if we exit, and since we're currently in the middle of
5315 * a fork we can't be exiting at the same time.
5316 */
5317
5318 /*
5319 * Lock the parent list. No need to lock the child - not PID
5320 * hashed yet and not running, so nobody can access it.
5321 */
5322 mutex_lock(&parent_ctx->mutex);
5323
5324 /*
5325 * We dont have to disable NMIs - we are only looking at
5326 * the list, not manipulating it:
5327 */
5328 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5329 ret = inherit_task_group(event, parent, parent_ctx, child,
5330 &inherited_all);
5331 if (ret)
5332 break;
5333 }
5334
5335 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5336 ret = inherit_task_group(event, parent, parent_ctx, child,
5337 &inherited_all);
5338 if (ret)
5339 break;
5340 }
5341
5342 child_ctx = child->perf_event_ctxp;
5343
5344 if (child_ctx && inherited_all) {
5345 /*
5346 * Mark the child context as a clone of the parent
5347 * context, or of whatever the parent is a clone of.
5348 * Note that if the parent is a clone, it could get
5349 * uncloned at any point, but that doesn't matter
5350 * because the list of events and the generation
5351 * count can't have changed since we took the mutex.
5352 */
5353 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5354 if (cloned_ctx) {
5355 child_ctx->parent_ctx = cloned_ctx;
5356 child_ctx->parent_gen = parent_ctx->parent_gen;
5357 } else {
5358 child_ctx->parent_ctx = parent_ctx;
5359 child_ctx->parent_gen = parent_ctx->generation;
5360 }
5361 get_ctx(child_ctx->parent_ctx);
5362 }
5363
5364 mutex_unlock(&parent_ctx->mutex);
5365
5366 perf_unpin_context(parent_ctx);
5367
5368 return ret;
5369 }
5370
5371 static void __cpuinit perf_event_init_cpu(int cpu)
5372 {
5373 struct perf_cpu_context *cpuctx;
5374
5375 cpuctx = &per_cpu(perf_cpu_context, cpu);
5376 __perf_event_init_context(&cpuctx->ctx, NULL);
5377
5378 spin_lock(&perf_resource_lock);
5379 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5380 spin_unlock(&perf_resource_lock);
5381 }
5382
5383 #ifdef CONFIG_HOTPLUG_CPU
5384 static void __perf_event_exit_cpu(void *info)
5385 {
5386 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5387 struct perf_event_context *ctx = &cpuctx->ctx;
5388 struct perf_event *event, *tmp;
5389
5390 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5391 __perf_event_remove_from_context(event);
5392 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5393 __perf_event_remove_from_context(event);
5394 }
5395 static void perf_event_exit_cpu(int cpu)
5396 {
5397 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5398 struct perf_event_context *ctx = &cpuctx->ctx;
5399
5400 mutex_lock(&ctx->mutex);
5401 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5402 mutex_unlock(&ctx->mutex);
5403 }
5404 #else
5405 static inline void perf_event_exit_cpu(int cpu) { }
5406 #endif
5407
5408 static int __cpuinit
5409 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5410 {
5411 unsigned int cpu = (long)hcpu;
5412
5413 switch (action) {
5414
5415 case CPU_UP_PREPARE:
5416 case CPU_UP_PREPARE_FROZEN:
5417 perf_event_init_cpu(cpu);
5418 break;
5419
5420 case CPU_DOWN_PREPARE:
5421 case CPU_DOWN_PREPARE_FROZEN:
5422 perf_event_exit_cpu(cpu);
5423 break;
5424
5425 default:
5426 break;
5427 }
5428
5429 return NOTIFY_OK;
5430 }
5431
5432 /*
5433 * This has to have a higher priority than migration_notifier in sched.c.
5434 */
5435 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5436 .notifier_call = perf_cpu_notify,
5437 .priority = 20,
5438 };
5439
5440 void __init perf_event_init(void)
5441 {
5442 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5443 (void *)(long)smp_processor_id());
5444 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5445 (void *)(long)smp_processor_id());
5446 register_cpu_notifier(&perf_cpu_nb);
5447 }
5448
5449 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5450 struct sysdev_class_attribute *attr,
5451 char *buf)
5452 {
5453 return sprintf(buf, "%d\n", perf_reserved_percpu);
5454 }
5455
5456 static ssize_t
5457 perf_set_reserve_percpu(struct sysdev_class *class,
5458 struct sysdev_class_attribute *attr,
5459 const char *buf,
5460 size_t count)
5461 {
5462 struct perf_cpu_context *cpuctx;
5463 unsigned long val;
5464 int err, cpu, mpt;
5465
5466 err = strict_strtoul(buf, 10, &val);
5467 if (err)
5468 return err;
5469 if (val > perf_max_events)
5470 return -EINVAL;
5471
5472 spin_lock(&perf_resource_lock);
5473 perf_reserved_percpu = val;
5474 for_each_online_cpu(cpu) {
5475 cpuctx = &per_cpu(perf_cpu_context, cpu);
5476 raw_spin_lock_irq(&cpuctx->ctx.lock);
5477 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5478 perf_max_events - perf_reserved_percpu);
5479 cpuctx->max_pertask = mpt;
5480 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5481 }
5482 spin_unlock(&perf_resource_lock);
5483
5484 return count;
5485 }
5486
5487 static ssize_t perf_show_overcommit(struct sysdev_class *class,
5488 struct sysdev_class_attribute *attr,
5489 char *buf)
5490 {
5491 return sprintf(buf, "%d\n", perf_overcommit);
5492 }
5493
5494 static ssize_t
5495 perf_set_overcommit(struct sysdev_class *class,
5496 struct sysdev_class_attribute *attr,
5497 const char *buf, size_t count)
5498 {
5499 unsigned long val;
5500 int err;
5501
5502 err = strict_strtoul(buf, 10, &val);
5503 if (err)
5504 return err;
5505 if (val > 1)
5506 return -EINVAL;
5507
5508 spin_lock(&perf_resource_lock);
5509 perf_overcommit = val;
5510 spin_unlock(&perf_resource_lock);
5511
5512 return count;
5513 }
5514
5515 static SYSDEV_CLASS_ATTR(
5516 reserve_percpu,
5517 0644,
5518 perf_show_reserve_percpu,
5519 perf_set_reserve_percpu
5520 );
5521
5522 static SYSDEV_CLASS_ATTR(
5523 overcommit,
5524 0644,
5525 perf_show_overcommit,
5526 perf_set_overcommit
5527 );
5528
5529 static struct attribute *perfclass_attrs[] = {
5530 &attr_reserve_percpu.attr,
5531 &attr_overcommit.attr,
5532 NULL
5533 };
5534
5535 static struct attribute_group perfclass_attr_group = {
5536 .attrs = perfclass_attrs,
5537 .name = "perf_events",
5538 };
5539
5540 static int __init perf_event_sysfs_init(void)
5541 {
5542 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5543 &perfclass_attr_group);
5544 }
5545 device_initcall(perf_event_sysfs_init);
This page took 0.211927 seconds and 6 git commands to generate.