include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[deliverable/linux.git] / kernel / perf_event.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/sysfs.h>
20 #include <linux/dcache.h>
21 #include <linux/percpu.h>
22 #include <linux/ptrace.h>
23 #include <linux/vmstat.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hardirq.h>
26 #include <linux/rculist.h>
27 #include <linux/uaccess.h>
28 #include <linux/syscalls.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/kernel_stat.h>
31 #include <linux/perf_event.h>
32 #include <linux/ftrace_event.h>
33 #include <linux/hw_breakpoint.h>
34
35 #include <asm/irq_regs.h>
36
37 /*
38 * Each CPU has a list of per CPU events:
39 */
40 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
41
42 int perf_max_events __read_mostly = 1;
43 static int perf_reserved_percpu __read_mostly;
44 static int perf_overcommit __read_mostly = 1;
45
46 static atomic_t nr_events __read_mostly;
47 static atomic_t nr_mmap_events __read_mostly;
48 static atomic_t nr_comm_events __read_mostly;
49 static atomic_t nr_task_events __read_mostly;
50
51 /*
52 * perf event paranoia level:
53 * -1 - not paranoid at all
54 * 0 - disallow raw tracepoint access for unpriv
55 * 1 - disallow cpu events for unpriv
56 * 2 - disallow kernel profiling for unpriv
57 */
58 int sysctl_perf_event_paranoid __read_mostly = 1;
59
60 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
61
62 /*
63 * max perf event sample rate
64 */
65 int sysctl_perf_event_sample_rate __read_mostly = 100000;
66
67 static atomic64_t perf_event_id;
68
69 /*
70 * Lock for (sysadmin-configurable) event reservations:
71 */
72 static DEFINE_SPINLOCK(perf_resource_lock);
73
74 /*
75 * Architecture provided APIs - weak aliases:
76 */
77 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
78 {
79 return NULL;
80 }
81
82 void __weak hw_perf_disable(void) { barrier(); }
83 void __weak hw_perf_enable(void) { barrier(); }
84
85 int __weak
86 hw_perf_group_sched_in(struct perf_event *group_leader,
87 struct perf_cpu_context *cpuctx,
88 struct perf_event_context *ctx)
89 {
90 return 0;
91 }
92
93 void __weak perf_event_print_debug(void) { }
94
95 static DEFINE_PER_CPU(int, perf_disable_count);
96
97 void perf_disable(void)
98 {
99 if (!__get_cpu_var(perf_disable_count)++)
100 hw_perf_disable();
101 }
102
103 void perf_enable(void)
104 {
105 if (!--__get_cpu_var(perf_disable_count))
106 hw_perf_enable();
107 }
108
109 static void get_ctx(struct perf_event_context *ctx)
110 {
111 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
112 }
113
114 static void free_ctx(struct rcu_head *head)
115 {
116 struct perf_event_context *ctx;
117
118 ctx = container_of(head, struct perf_event_context, rcu_head);
119 kfree(ctx);
120 }
121
122 static void put_ctx(struct perf_event_context *ctx)
123 {
124 if (atomic_dec_and_test(&ctx->refcount)) {
125 if (ctx->parent_ctx)
126 put_ctx(ctx->parent_ctx);
127 if (ctx->task)
128 put_task_struct(ctx->task);
129 call_rcu(&ctx->rcu_head, free_ctx);
130 }
131 }
132
133 static void unclone_ctx(struct perf_event_context *ctx)
134 {
135 if (ctx->parent_ctx) {
136 put_ctx(ctx->parent_ctx);
137 ctx->parent_ctx = NULL;
138 }
139 }
140
141 /*
142 * If we inherit events we want to return the parent event id
143 * to userspace.
144 */
145 static u64 primary_event_id(struct perf_event *event)
146 {
147 u64 id = event->id;
148
149 if (event->parent)
150 id = event->parent->id;
151
152 return id;
153 }
154
155 /*
156 * Get the perf_event_context for a task and lock it.
157 * This has to cope with with the fact that until it is locked,
158 * the context could get moved to another task.
159 */
160 static struct perf_event_context *
161 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
162 {
163 struct perf_event_context *ctx;
164
165 rcu_read_lock();
166 retry:
167 ctx = rcu_dereference(task->perf_event_ctxp);
168 if (ctx) {
169 /*
170 * If this context is a clone of another, it might
171 * get swapped for another underneath us by
172 * perf_event_task_sched_out, though the
173 * rcu_read_lock() protects us from any context
174 * getting freed. Lock the context and check if it
175 * got swapped before we could get the lock, and retry
176 * if so. If we locked the right context, then it
177 * can't get swapped on us any more.
178 */
179 raw_spin_lock_irqsave(&ctx->lock, *flags);
180 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
181 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
182 goto retry;
183 }
184
185 if (!atomic_inc_not_zero(&ctx->refcount)) {
186 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
187 ctx = NULL;
188 }
189 }
190 rcu_read_unlock();
191 return ctx;
192 }
193
194 /*
195 * Get the context for a task and increment its pin_count so it
196 * can't get swapped to another task. This also increments its
197 * reference count so that the context can't get freed.
198 */
199 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
200 {
201 struct perf_event_context *ctx;
202 unsigned long flags;
203
204 ctx = perf_lock_task_context(task, &flags);
205 if (ctx) {
206 ++ctx->pin_count;
207 raw_spin_unlock_irqrestore(&ctx->lock, flags);
208 }
209 return ctx;
210 }
211
212 static void perf_unpin_context(struct perf_event_context *ctx)
213 {
214 unsigned long flags;
215
216 raw_spin_lock_irqsave(&ctx->lock, flags);
217 --ctx->pin_count;
218 raw_spin_unlock_irqrestore(&ctx->lock, flags);
219 put_ctx(ctx);
220 }
221
222 static inline u64 perf_clock(void)
223 {
224 return cpu_clock(raw_smp_processor_id());
225 }
226
227 /*
228 * Update the record of the current time in a context.
229 */
230 static void update_context_time(struct perf_event_context *ctx)
231 {
232 u64 now = perf_clock();
233
234 ctx->time += now - ctx->timestamp;
235 ctx->timestamp = now;
236 }
237
238 /*
239 * Update the total_time_enabled and total_time_running fields for a event.
240 */
241 static void update_event_times(struct perf_event *event)
242 {
243 struct perf_event_context *ctx = event->ctx;
244 u64 run_end;
245
246 if (event->state < PERF_EVENT_STATE_INACTIVE ||
247 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
248 return;
249
250 if (ctx->is_active)
251 run_end = ctx->time;
252 else
253 run_end = event->tstamp_stopped;
254
255 event->total_time_enabled = run_end - event->tstamp_enabled;
256
257 if (event->state == PERF_EVENT_STATE_INACTIVE)
258 run_end = event->tstamp_stopped;
259 else
260 run_end = ctx->time;
261
262 event->total_time_running = run_end - event->tstamp_running;
263 }
264
265 static struct list_head *
266 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
267 {
268 if (event->attr.pinned)
269 return &ctx->pinned_groups;
270 else
271 return &ctx->flexible_groups;
272 }
273
274 /*
275 * Add a event from the lists for its context.
276 * Must be called with ctx->mutex and ctx->lock held.
277 */
278 static void
279 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
280 {
281 struct perf_event *group_leader = event->group_leader;
282
283 /*
284 * Depending on whether it is a standalone or sibling event,
285 * add it straight to the context's event list, or to the group
286 * leader's sibling list:
287 */
288 if (group_leader == event) {
289 struct list_head *list;
290
291 if (is_software_event(event))
292 event->group_flags |= PERF_GROUP_SOFTWARE;
293
294 list = ctx_group_list(event, ctx);
295 list_add_tail(&event->group_entry, list);
296 } else {
297 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
298 !is_software_event(event))
299 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
300
301 list_add_tail(&event->group_entry, &group_leader->sibling_list);
302 group_leader->nr_siblings++;
303 }
304
305 list_add_rcu(&event->event_entry, &ctx->event_list);
306 ctx->nr_events++;
307 if (event->attr.inherit_stat)
308 ctx->nr_stat++;
309 }
310
311 /*
312 * Remove a event from the lists for its context.
313 * Must be called with ctx->mutex and ctx->lock held.
314 */
315 static void
316 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
317 {
318 struct perf_event *sibling, *tmp;
319
320 if (list_empty(&event->group_entry))
321 return;
322 ctx->nr_events--;
323 if (event->attr.inherit_stat)
324 ctx->nr_stat--;
325
326 list_del_init(&event->group_entry);
327 list_del_rcu(&event->event_entry);
328
329 if (event->group_leader != event)
330 event->group_leader->nr_siblings--;
331
332 update_event_times(event);
333
334 /*
335 * If event was in error state, then keep it
336 * that way, otherwise bogus counts will be
337 * returned on read(). The only way to get out
338 * of error state is by explicit re-enabling
339 * of the event
340 */
341 if (event->state > PERF_EVENT_STATE_OFF)
342 event->state = PERF_EVENT_STATE_OFF;
343
344 /*
345 * If this was a group event with sibling events then
346 * upgrade the siblings to singleton events by adding them
347 * to the context list directly:
348 */
349 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
350 struct list_head *list;
351
352 list = ctx_group_list(event, ctx);
353 list_move_tail(&sibling->group_entry, list);
354 sibling->group_leader = sibling;
355
356 /* Inherit group flags from the previous leader */
357 sibling->group_flags = event->group_flags;
358 }
359 }
360
361 static void
362 event_sched_out(struct perf_event *event,
363 struct perf_cpu_context *cpuctx,
364 struct perf_event_context *ctx)
365 {
366 if (event->state != PERF_EVENT_STATE_ACTIVE)
367 return;
368
369 event->state = PERF_EVENT_STATE_INACTIVE;
370 if (event->pending_disable) {
371 event->pending_disable = 0;
372 event->state = PERF_EVENT_STATE_OFF;
373 }
374 event->tstamp_stopped = ctx->time;
375 event->pmu->disable(event);
376 event->oncpu = -1;
377
378 if (!is_software_event(event))
379 cpuctx->active_oncpu--;
380 ctx->nr_active--;
381 if (event->attr.exclusive || !cpuctx->active_oncpu)
382 cpuctx->exclusive = 0;
383 }
384
385 static void
386 group_sched_out(struct perf_event *group_event,
387 struct perf_cpu_context *cpuctx,
388 struct perf_event_context *ctx)
389 {
390 struct perf_event *event;
391
392 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
393 return;
394
395 event_sched_out(group_event, cpuctx, ctx);
396
397 /*
398 * Schedule out siblings (if any):
399 */
400 list_for_each_entry(event, &group_event->sibling_list, group_entry)
401 event_sched_out(event, cpuctx, ctx);
402
403 if (group_event->attr.exclusive)
404 cpuctx->exclusive = 0;
405 }
406
407 /*
408 * Cross CPU call to remove a performance event
409 *
410 * We disable the event on the hardware level first. After that we
411 * remove it from the context list.
412 */
413 static void __perf_event_remove_from_context(void *info)
414 {
415 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
416 struct perf_event *event = info;
417 struct perf_event_context *ctx = event->ctx;
418
419 /*
420 * If this is a task context, we need to check whether it is
421 * the current task context of this cpu. If not it has been
422 * scheduled out before the smp call arrived.
423 */
424 if (ctx->task && cpuctx->task_ctx != ctx)
425 return;
426
427 raw_spin_lock(&ctx->lock);
428 /*
429 * Protect the list operation against NMI by disabling the
430 * events on a global level.
431 */
432 perf_disable();
433
434 event_sched_out(event, cpuctx, ctx);
435
436 list_del_event(event, ctx);
437
438 if (!ctx->task) {
439 /*
440 * Allow more per task events with respect to the
441 * reservation:
442 */
443 cpuctx->max_pertask =
444 min(perf_max_events - ctx->nr_events,
445 perf_max_events - perf_reserved_percpu);
446 }
447
448 perf_enable();
449 raw_spin_unlock(&ctx->lock);
450 }
451
452
453 /*
454 * Remove the event from a task's (or a CPU's) list of events.
455 *
456 * Must be called with ctx->mutex held.
457 *
458 * CPU events are removed with a smp call. For task events we only
459 * call when the task is on a CPU.
460 *
461 * If event->ctx is a cloned context, callers must make sure that
462 * every task struct that event->ctx->task could possibly point to
463 * remains valid. This is OK when called from perf_release since
464 * that only calls us on the top-level context, which can't be a clone.
465 * When called from perf_event_exit_task, it's OK because the
466 * context has been detached from its task.
467 */
468 static void perf_event_remove_from_context(struct perf_event *event)
469 {
470 struct perf_event_context *ctx = event->ctx;
471 struct task_struct *task = ctx->task;
472
473 if (!task) {
474 /*
475 * Per cpu events are removed via an smp call and
476 * the removal is always successful.
477 */
478 smp_call_function_single(event->cpu,
479 __perf_event_remove_from_context,
480 event, 1);
481 return;
482 }
483
484 retry:
485 task_oncpu_function_call(task, __perf_event_remove_from_context,
486 event);
487
488 raw_spin_lock_irq(&ctx->lock);
489 /*
490 * If the context is active we need to retry the smp call.
491 */
492 if (ctx->nr_active && !list_empty(&event->group_entry)) {
493 raw_spin_unlock_irq(&ctx->lock);
494 goto retry;
495 }
496
497 /*
498 * The lock prevents that this context is scheduled in so we
499 * can remove the event safely, if the call above did not
500 * succeed.
501 */
502 if (!list_empty(&event->group_entry))
503 list_del_event(event, ctx);
504 raw_spin_unlock_irq(&ctx->lock);
505 }
506
507 /*
508 * Update total_time_enabled and total_time_running for all events in a group.
509 */
510 static void update_group_times(struct perf_event *leader)
511 {
512 struct perf_event *event;
513
514 update_event_times(leader);
515 list_for_each_entry(event, &leader->sibling_list, group_entry)
516 update_event_times(event);
517 }
518
519 /*
520 * Cross CPU call to disable a performance event
521 */
522 static void __perf_event_disable(void *info)
523 {
524 struct perf_event *event = info;
525 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
526 struct perf_event_context *ctx = event->ctx;
527
528 /*
529 * If this is a per-task event, need to check whether this
530 * event's task is the current task on this cpu.
531 */
532 if (ctx->task && cpuctx->task_ctx != ctx)
533 return;
534
535 raw_spin_lock(&ctx->lock);
536
537 /*
538 * If the event is on, turn it off.
539 * If it is in error state, leave it in error state.
540 */
541 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
542 update_context_time(ctx);
543 update_group_times(event);
544 if (event == event->group_leader)
545 group_sched_out(event, cpuctx, ctx);
546 else
547 event_sched_out(event, cpuctx, ctx);
548 event->state = PERF_EVENT_STATE_OFF;
549 }
550
551 raw_spin_unlock(&ctx->lock);
552 }
553
554 /*
555 * Disable a event.
556 *
557 * If event->ctx is a cloned context, callers must make sure that
558 * every task struct that event->ctx->task could possibly point to
559 * remains valid. This condition is satisifed when called through
560 * perf_event_for_each_child or perf_event_for_each because they
561 * hold the top-level event's child_mutex, so any descendant that
562 * goes to exit will block in sync_child_event.
563 * When called from perf_pending_event it's OK because event->ctx
564 * is the current context on this CPU and preemption is disabled,
565 * hence we can't get into perf_event_task_sched_out for this context.
566 */
567 void perf_event_disable(struct perf_event *event)
568 {
569 struct perf_event_context *ctx = event->ctx;
570 struct task_struct *task = ctx->task;
571
572 if (!task) {
573 /*
574 * Disable the event on the cpu that it's on
575 */
576 smp_call_function_single(event->cpu, __perf_event_disable,
577 event, 1);
578 return;
579 }
580
581 retry:
582 task_oncpu_function_call(task, __perf_event_disable, event);
583
584 raw_spin_lock_irq(&ctx->lock);
585 /*
586 * If the event is still active, we need to retry the cross-call.
587 */
588 if (event->state == PERF_EVENT_STATE_ACTIVE) {
589 raw_spin_unlock_irq(&ctx->lock);
590 goto retry;
591 }
592
593 /*
594 * Since we have the lock this context can't be scheduled
595 * in, so we can change the state safely.
596 */
597 if (event->state == PERF_EVENT_STATE_INACTIVE) {
598 update_group_times(event);
599 event->state = PERF_EVENT_STATE_OFF;
600 }
601
602 raw_spin_unlock_irq(&ctx->lock);
603 }
604
605 static int
606 event_sched_in(struct perf_event *event,
607 struct perf_cpu_context *cpuctx,
608 struct perf_event_context *ctx)
609 {
610 if (event->state <= PERF_EVENT_STATE_OFF)
611 return 0;
612
613 event->state = PERF_EVENT_STATE_ACTIVE;
614 event->oncpu = smp_processor_id();
615 /*
616 * The new state must be visible before we turn it on in the hardware:
617 */
618 smp_wmb();
619
620 if (event->pmu->enable(event)) {
621 event->state = PERF_EVENT_STATE_INACTIVE;
622 event->oncpu = -1;
623 return -EAGAIN;
624 }
625
626 event->tstamp_running += ctx->time - event->tstamp_stopped;
627
628 if (!is_software_event(event))
629 cpuctx->active_oncpu++;
630 ctx->nr_active++;
631
632 if (event->attr.exclusive)
633 cpuctx->exclusive = 1;
634
635 return 0;
636 }
637
638 static int
639 group_sched_in(struct perf_event *group_event,
640 struct perf_cpu_context *cpuctx,
641 struct perf_event_context *ctx)
642 {
643 struct perf_event *event, *partial_group;
644 int ret;
645
646 if (group_event->state == PERF_EVENT_STATE_OFF)
647 return 0;
648
649 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx);
650 if (ret)
651 return ret < 0 ? ret : 0;
652
653 if (event_sched_in(group_event, cpuctx, ctx))
654 return -EAGAIN;
655
656 /*
657 * Schedule in siblings as one group (if any):
658 */
659 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
660 if (event_sched_in(event, cpuctx, ctx)) {
661 partial_group = event;
662 goto group_error;
663 }
664 }
665
666 return 0;
667
668 group_error:
669 /*
670 * Groups can be scheduled in as one unit only, so undo any
671 * partial group before returning:
672 */
673 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
674 if (event == partial_group)
675 break;
676 event_sched_out(event, cpuctx, ctx);
677 }
678 event_sched_out(group_event, cpuctx, ctx);
679
680 return -EAGAIN;
681 }
682
683 /*
684 * Work out whether we can put this event group on the CPU now.
685 */
686 static int group_can_go_on(struct perf_event *event,
687 struct perf_cpu_context *cpuctx,
688 int can_add_hw)
689 {
690 /*
691 * Groups consisting entirely of software events can always go on.
692 */
693 if (event->group_flags & PERF_GROUP_SOFTWARE)
694 return 1;
695 /*
696 * If an exclusive group is already on, no other hardware
697 * events can go on.
698 */
699 if (cpuctx->exclusive)
700 return 0;
701 /*
702 * If this group is exclusive and there are already
703 * events on the CPU, it can't go on.
704 */
705 if (event->attr.exclusive && cpuctx->active_oncpu)
706 return 0;
707 /*
708 * Otherwise, try to add it if all previous groups were able
709 * to go on.
710 */
711 return can_add_hw;
712 }
713
714 static void add_event_to_ctx(struct perf_event *event,
715 struct perf_event_context *ctx)
716 {
717 list_add_event(event, ctx);
718 event->tstamp_enabled = ctx->time;
719 event->tstamp_running = ctx->time;
720 event->tstamp_stopped = ctx->time;
721 }
722
723 /*
724 * Cross CPU call to install and enable a performance event
725 *
726 * Must be called with ctx->mutex held
727 */
728 static void __perf_install_in_context(void *info)
729 {
730 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
731 struct perf_event *event = info;
732 struct perf_event_context *ctx = event->ctx;
733 struct perf_event *leader = event->group_leader;
734 int err;
735
736 /*
737 * If this is a task context, we need to check whether it is
738 * the current task context of this cpu. If not it has been
739 * scheduled out before the smp call arrived.
740 * Or possibly this is the right context but it isn't
741 * on this cpu because it had no events.
742 */
743 if (ctx->task && cpuctx->task_ctx != ctx) {
744 if (cpuctx->task_ctx || ctx->task != current)
745 return;
746 cpuctx->task_ctx = ctx;
747 }
748
749 raw_spin_lock(&ctx->lock);
750 ctx->is_active = 1;
751 update_context_time(ctx);
752
753 /*
754 * Protect the list operation against NMI by disabling the
755 * events on a global level. NOP for non NMI based events.
756 */
757 perf_disable();
758
759 add_event_to_ctx(event, ctx);
760
761 if (event->cpu != -1 && event->cpu != smp_processor_id())
762 goto unlock;
763
764 /*
765 * Don't put the event on if it is disabled or if
766 * it is in a group and the group isn't on.
767 */
768 if (event->state != PERF_EVENT_STATE_INACTIVE ||
769 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
770 goto unlock;
771
772 /*
773 * An exclusive event can't go on if there are already active
774 * hardware events, and no hardware event can go on if there
775 * is already an exclusive event on.
776 */
777 if (!group_can_go_on(event, cpuctx, 1))
778 err = -EEXIST;
779 else
780 err = event_sched_in(event, cpuctx, ctx);
781
782 if (err) {
783 /*
784 * This event couldn't go on. If it is in a group
785 * then we have to pull the whole group off.
786 * If the event group is pinned then put it in error state.
787 */
788 if (leader != event)
789 group_sched_out(leader, cpuctx, ctx);
790 if (leader->attr.pinned) {
791 update_group_times(leader);
792 leader->state = PERF_EVENT_STATE_ERROR;
793 }
794 }
795
796 if (!err && !ctx->task && cpuctx->max_pertask)
797 cpuctx->max_pertask--;
798
799 unlock:
800 perf_enable();
801
802 raw_spin_unlock(&ctx->lock);
803 }
804
805 /*
806 * Attach a performance event to a context
807 *
808 * First we add the event to the list with the hardware enable bit
809 * in event->hw_config cleared.
810 *
811 * If the event is attached to a task which is on a CPU we use a smp
812 * call to enable it in the task context. The task might have been
813 * scheduled away, but we check this in the smp call again.
814 *
815 * Must be called with ctx->mutex held.
816 */
817 static void
818 perf_install_in_context(struct perf_event_context *ctx,
819 struct perf_event *event,
820 int cpu)
821 {
822 struct task_struct *task = ctx->task;
823
824 if (!task) {
825 /*
826 * Per cpu events are installed via an smp call and
827 * the install is always successful.
828 */
829 smp_call_function_single(cpu, __perf_install_in_context,
830 event, 1);
831 return;
832 }
833
834 retry:
835 task_oncpu_function_call(task, __perf_install_in_context,
836 event);
837
838 raw_spin_lock_irq(&ctx->lock);
839 /*
840 * we need to retry the smp call.
841 */
842 if (ctx->is_active && list_empty(&event->group_entry)) {
843 raw_spin_unlock_irq(&ctx->lock);
844 goto retry;
845 }
846
847 /*
848 * The lock prevents that this context is scheduled in so we
849 * can add the event safely, if it the call above did not
850 * succeed.
851 */
852 if (list_empty(&event->group_entry))
853 add_event_to_ctx(event, ctx);
854 raw_spin_unlock_irq(&ctx->lock);
855 }
856
857 /*
858 * Put a event into inactive state and update time fields.
859 * Enabling the leader of a group effectively enables all
860 * the group members that aren't explicitly disabled, so we
861 * have to update their ->tstamp_enabled also.
862 * Note: this works for group members as well as group leaders
863 * since the non-leader members' sibling_lists will be empty.
864 */
865 static void __perf_event_mark_enabled(struct perf_event *event,
866 struct perf_event_context *ctx)
867 {
868 struct perf_event *sub;
869
870 event->state = PERF_EVENT_STATE_INACTIVE;
871 event->tstamp_enabled = ctx->time - event->total_time_enabled;
872 list_for_each_entry(sub, &event->sibling_list, group_entry)
873 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
874 sub->tstamp_enabled =
875 ctx->time - sub->total_time_enabled;
876 }
877
878 /*
879 * Cross CPU call to enable a performance event
880 */
881 static void __perf_event_enable(void *info)
882 {
883 struct perf_event *event = info;
884 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
885 struct perf_event_context *ctx = event->ctx;
886 struct perf_event *leader = event->group_leader;
887 int err;
888
889 /*
890 * If this is a per-task event, need to check whether this
891 * event's task is the current task on this cpu.
892 */
893 if (ctx->task && cpuctx->task_ctx != ctx) {
894 if (cpuctx->task_ctx || ctx->task != current)
895 return;
896 cpuctx->task_ctx = ctx;
897 }
898
899 raw_spin_lock(&ctx->lock);
900 ctx->is_active = 1;
901 update_context_time(ctx);
902
903 if (event->state >= PERF_EVENT_STATE_INACTIVE)
904 goto unlock;
905 __perf_event_mark_enabled(event, ctx);
906
907 if (event->cpu != -1 && event->cpu != smp_processor_id())
908 goto unlock;
909
910 /*
911 * If the event is in a group and isn't the group leader,
912 * then don't put it on unless the group is on.
913 */
914 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
915 goto unlock;
916
917 if (!group_can_go_on(event, cpuctx, 1)) {
918 err = -EEXIST;
919 } else {
920 perf_disable();
921 if (event == leader)
922 err = group_sched_in(event, cpuctx, ctx);
923 else
924 err = event_sched_in(event, cpuctx, ctx);
925 perf_enable();
926 }
927
928 if (err) {
929 /*
930 * If this event can't go on and it's part of a
931 * group, then the whole group has to come off.
932 */
933 if (leader != event)
934 group_sched_out(leader, cpuctx, ctx);
935 if (leader->attr.pinned) {
936 update_group_times(leader);
937 leader->state = PERF_EVENT_STATE_ERROR;
938 }
939 }
940
941 unlock:
942 raw_spin_unlock(&ctx->lock);
943 }
944
945 /*
946 * Enable a event.
947 *
948 * If event->ctx is a cloned context, callers must make sure that
949 * every task struct that event->ctx->task could possibly point to
950 * remains valid. This condition is satisfied when called through
951 * perf_event_for_each_child or perf_event_for_each as described
952 * for perf_event_disable.
953 */
954 void perf_event_enable(struct perf_event *event)
955 {
956 struct perf_event_context *ctx = event->ctx;
957 struct task_struct *task = ctx->task;
958
959 if (!task) {
960 /*
961 * Enable the event on the cpu that it's on
962 */
963 smp_call_function_single(event->cpu, __perf_event_enable,
964 event, 1);
965 return;
966 }
967
968 raw_spin_lock_irq(&ctx->lock);
969 if (event->state >= PERF_EVENT_STATE_INACTIVE)
970 goto out;
971
972 /*
973 * If the event is in error state, clear that first.
974 * That way, if we see the event in error state below, we
975 * know that it has gone back into error state, as distinct
976 * from the task having been scheduled away before the
977 * cross-call arrived.
978 */
979 if (event->state == PERF_EVENT_STATE_ERROR)
980 event->state = PERF_EVENT_STATE_OFF;
981
982 retry:
983 raw_spin_unlock_irq(&ctx->lock);
984 task_oncpu_function_call(task, __perf_event_enable, event);
985
986 raw_spin_lock_irq(&ctx->lock);
987
988 /*
989 * If the context is active and the event is still off,
990 * we need to retry the cross-call.
991 */
992 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
993 goto retry;
994
995 /*
996 * Since we have the lock this context can't be scheduled
997 * in, so we can change the state safely.
998 */
999 if (event->state == PERF_EVENT_STATE_OFF)
1000 __perf_event_mark_enabled(event, ctx);
1001
1002 out:
1003 raw_spin_unlock_irq(&ctx->lock);
1004 }
1005
1006 static int perf_event_refresh(struct perf_event *event, int refresh)
1007 {
1008 /*
1009 * not supported on inherited events
1010 */
1011 if (event->attr.inherit)
1012 return -EINVAL;
1013
1014 atomic_add(refresh, &event->event_limit);
1015 perf_event_enable(event);
1016
1017 return 0;
1018 }
1019
1020 enum event_type_t {
1021 EVENT_FLEXIBLE = 0x1,
1022 EVENT_PINNED = 0x2,
1023 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1024 };
1025
1026 static void ctx_sched_out(struct perf_event_context *ctx,
1027 struct perf_cpu_context *cpuctx,
1028 enum event_type_t event_type)
1029 {
1030 struct perf_event *event;
1031
1032 raw_spin_lock(&ctx->lock);
1033 ctx->is_active = 0;
1034 if (likely(!ctx->nr_events))
1035 goto out;
1036 update_context_time(ctx);
1037
1038 perf_disable();
1039 if (!ctx->nr_active)
1040 goto out_enable;
1041
1042 if (event_type & EVENT_PINNED)
1043 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1044 group_sched_out(event, cpuctx, ctx);
1045
1046 if (event_type & EVENT_FLEXIBLE)
1047 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1048 group_sched_out(event, cpuctx, ctx);
1049
1050 out_enable:
1051 perf_enable();
1052 out:
1053 raw_spin_unlock(&ctx->lock);
1054 }
1055
1056 /*
1057 * Test whether two contexts are equivalent, i.e. whether they
1058 * have both been cloned from the same version of the same context
1059 * and they both have the same number of enabled events.
1060 * If the number of enabled events is the same, then the set
1061 * of enabled events should be the same, because these are both
1062 * inherited contexts, therefore we can't access individual events
1063 * in them directly with an fd; we can only enable/disable all
1064 * events via prctl, or enable/disable all events in a family
1065 * via ioctl, which will have the same effect on both contexts.
1066 */
1067 static int context_equiv(struct perf_event_context *ctx1,
1068 struct perf_event_context *ctx2)
1069 {
1070 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1071 && ctx1->parent_gen == ctx2->parent_gen
1072 && !ctx1->pin_count && !ctx2->pin_count;
1073 }
1074
1075 static void __perf_event_sync_stat(struct perf_event *event,
1076 struct perf_event *next_event)
1077 {
1078 u64 value;
1079
1080 if (!event->attr.inherit_stat)
1081 return;
1082
1083 /*
1084 * Update the event value, we cannot use perf_event_read()
1085 * because we're in the middle of a context switch and have IRQs
1086 * disabled, which upsets smp_call_function_single(), however
1087 * we know the event must be on the current CPU, therefore we
1088 * don't need to use it.
1089 */
1090 switch (event->state) {
1091 case PERF_EVENT_STATE_ACTIVE:
1092 event->pmu->read(event);
1093 /* fall-through */
1094
1095 case PERF_EVENT_STATE_INACTIVE:
1096 update_event_times(event);
1097 break;
1098
1099 default:
1100 break;
1101 }
1102
1103 /*
1104 * In order to keep per-task stats reliable we need to flip the event
1105 * values when we flip the contexts.
1106 */
1107 value = atomic64_read(&next_event->count);
1108 value = atomic64_xchg(&event->count, value);
1109 atomic64_set(&next_event->count, value);
1110
1111 swap(event->total_time_enabled, next_event->total_time_enabled);
1112 swap(event->total_time_running, next_event->total_time_running);
1113
1114 /*
1115 * Since we swizzled the values, update the user visible data too.
1116 */
1117 perf_event_update_userpage(event);
1118 perf_event_update_userpage(next_event);
1119 }
1120
1121 #define list_next_entry(pos, member) \
1122 list_entry(pos->member.next, typeof(*pos), member)
1123
1124 static void perf_event_sync_stat(struct perf_event_context *ctx,
1125 struct perf_event_context *next_ctx)
1126 {
1127 struct perf_event *event, *next_event;
1128
1129 if (!ctx->nr_stat)
1130 return;
1131
1132 update_context_time(ctx);
1133
1134 event = list_first_entry(&ctx->event_list,
1135 struct perf_event, event_entry);
1136
1137 next_event = list_first_entry(&next_ctx->event_list,
1138 struct perf_event, event_entry);
1139
1140 while (&event->event_entry != &ctx->event_list &&
1141 &next_event->event_entry != &next_ctx->event_list) {
1142
1143 __perf_event_sync_stat(event, next_event);
1144
1145 event = list_next_entry(event, event_entry);
1146 next_event = list_next_entry(next_event, event_entry);
1147 }
1148 }
1149
1150 /*
1151 * Called from scheduler to remove the events of the current task,
1152 * with interrupts disabled.
1153 *
1154 * We stop each event and update the event value in event->count.
1155 *
1156 * This does not protect us against NMI, but disable()
1157 * sets the disabled bit in the control field of event _before_
1158 * accessing the event control register. If a NMI hits, then it will
1159 * not restart the event.
1160 */
1161 void perf_event_task_sched_out(struct task_struct *task,
1162 struct task_struct *next)
1163 {
1164 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1165 struct perf_event_context *ctx = task->perf_event_ctxp;
1166 struct perf_event_context *next_ctx;
1167 struct perf_event_context *parent;
1168 struct pt_regs *regs;
1169 int do_switch = 1;
1170
1171 regs = task_pt_regs(task);
1172 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1173
1174 if (likely(!ctx || !cpuctx->task_ctx))
1175 return;
1176
1177 rcu_read_lock();
1178 parent = rcu_dereference(ctx->parent_ctx);
1179 next_ctx = next->perf_event_ctxp;
1180 if (parent && next_ctx &&
1181 rcu_dereference(next_ctx->parent_ctx) == parent) {
1182 /*
1183 * Looks like the two contexts are clones, so we might be
1184 * able to optimize the context switch. We lock both
1185 * contexts and check that they are clones under the
1186 * lock (including re-checking that neither has been
1187 * uncloned in the meantime). It doesn't matter which
1188 * order we take the locks because no other cpu could
1189 * be trying to lock both of these tasks.
1190 */
1191 raw_spin_lock(&ctx->lock);
1192 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1193 if (context_equiv(ctx, next_ctx)) {
1194 /*
1195 * XXX do we need a memory barrier of sorts
1196 * wrt to rcu_dereference() of perf_event_ctxp
1197 */
1198 task->perf_event_ctxp = next_ctx;
1199 next->perf_event_ctxp = ctx;
1200 ctx->task = next;
1201 next_ctx->task = task;
1202 do_switch = 0;
1203
1204 perf_event_sync_stat(ctx, next_ctx);
1205 }
1206 raw_spin_unlock(&next_ctx->lock);
1207 raw_spin_unlock(&ctx->lock);
1208 }
1209 rcu_read_unlock();
1210
1211 if (do_switch) {
1212 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1213 cpuctx->task_ctx = NULL;
1214 }
1215 }
1216
1217 static void task_ctx_sched_out(struct perf_event_context *ctx,
1218 enum event_type_t event_type)
1219 {
1220 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1221
1222 if (!cpuctx->task_ctx)
1223 return;
1224
1225 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1226 return;
1227
1228 ctx_sched_out(ctx, cpuctx, event_type);
1229 cpuctx->task_ctx = NULL;
1230 }
1231
1232 /*
1233 * Called with IRQs disabled
1234 */
1235 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1236 {
1237 task_ctx_sched_out(ctx, EVENT_ALL);
1238 }
1239
1240 /*
1241 * Called with IRQs disabled
1242 */
1243 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1244 enum event_type_t event_type)
1245 {
1246 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1247 }
1248
1249 static void
1250 ctx_pinned_sched_in(struct perf_event_context *ctx,
1251 struct perf_cpu_context *cpuctx)
1252 {
1253 struct perf_event *event;
1254
1255 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1256 if (event->state <= PERF_EVENT_STATE_OFF)
1257 continue;
1258 if (event->cpu != -1 && event->cpu != smp_processor_id())
1259 continue;
1260
1261 if (group_can_go_on(event, cpuctx, 1))
1262 group_sched_in(event, cpuctx, ctx);
1263
1264 /*
1265 * If this pinned group hasn't been scheduled,
1266 * put it in error state.
1267 */
1268 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1269 update_group_times(event);
1270 event->state = PERF_EVENT_STATE_ERROR;
1271 }
1272 }
1273 }
1274
1275 static void
1276 ctx_flexible_sched_in(struct perf_event_context *ctx,
1277 struct perf_cpu_context *cpuctx)
1278 {
1279 struct perf_event *event;
1280 int can_add_hw = 1;
1281
1282 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1283 /* Ignore events in OFF or ERROR state */
1284 if (event->state <= PERF_EVENT_STATE_OFF)
1285 continue;
1286 /*
1287 * Listen to the 'cpu' scheduling filter constraint
1288 * of events:
1289 */
1290 if (event->cpu != -1 && event->cpu != smp_processor_id())
1291 continue;
1292
1293 if (group_can_go_on(event, cpuctx, can_add_hw))
1294 if (group_sched_in(event, cpuctx, ctx))
1295 can_add_hw = 0;
1296 }
1297 }
1298
1299 static void
1300 ctx_sched_in(struct perf_event_context *ctx,
1301 struct perf_cpu_context *cpuctx,
1302 enum event_type_t event_type)
1303 {
1304 raw_spin_lock(&ctx->lock);
1305 ctx->is_active = 1;
1306 if (likely(!ctx->nr_events))
1307 goto out;
1308
1309 ctx->timestamp = perf_clock();
1310
1311 perf_disable();
1312
1313 /*
1314 * First go through the list and put on any pinned groups
1315 * in order to give them the best chance of going on.
1316 */
1317 if (event_type & EVENT_PINNED)
1318 ctx_pinned_sched_in(ctx, cpuctx);
1319
1320 /* Then walk through the lower prio flexible groups */
1321 if (event_type & EVENT_FLEXIBLE)
1322 ctx_flexible_sched_in(ctx, cpuctx);
1323
1324 perf_enable();
1325 out:
1326 raw_spin_unlock(&ctx->lock);
1327 }
1328
1329 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1330 enum event_type_t event_type)
1331 {
1332 struct perf_event_context *ctx = &cpuctx->ctx;
1333
1334 ctx_sched_in(ctx, cpuctx, event_type);
1335 }
1336
1337 static void task_ctx_sched_in(struct task_struct *task,
1338 enum event_type_t event_type)
1339 {
1340 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1341 struct perf_event_context *ctx = task->perf_event_ctxp;
1342
1343 if (likely(!ctx))
1344 return;
1345 if (cpuctx->task_ctx == ctx)
1346 return;
1347 ctx_sched_in(ctx, cpuctx, event_type);
1348 cpuctx->task_ctx = ctx;
1349 }
1350 /*
1351 * Called from scheduler to add the events of the current task
1352 * with interrupts disabled.
1353 *
1354 * We restore the event value and then enable it.
1355 *
1356 * This does not protect us against NMI, but enable()
1357 * sets the enabled bit in the control field of event _before_
1358 * accessing the event control register. If a NMI hits, then it will
1359 * keep the event running.
1360 */
1361 void perf_event_task_sched_in(struct task_struct *task)
1362 {
1363 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1364 struct perf_event_context *ctx = task->perf_event_ctxp;
1365
1366 if (likely(!ctx))
1367 return;
1368
1369 if (cpuctx->task_ctx == ctx)
1370 return;
1371
1372 /*
1373 * We want to keep the following priority order:
1374 * cpu pinned (that don't need to move), task pinned,
1375 * cpu flexible, task flexible.
1376 */
1377 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1378
1379 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1380 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1381 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1382
1383 cpuctx->task_ctx = ctx;
1384 }
1385
1386 #define MAX_INTERRUPTS (~0ULL)
1387
1388 static void perf_log_throttle(struct perf_event *event, int enable);
1389
1390 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1391 {
1392 u64 frequency = event->attr.sample_freq;
1393 u64 sec = NSEC_PER_SEC;
1394 u64 divisor, dividend;
1395
1396 int count_fls, nsec_fls, frequency_fls, sec_fls;
1397
1398 count_fls = fls64(count);
1399 nsec_fls = fls64(nsec);
1400 frequency_fls = fls64(frequency);
1401 sec_fls = 30;
1402
1403 /*
1404 * We got @count in @nsec, with a target of sample_freq HZ
1405 * the target period becomes:
1406 *
1407 * @count * 10^9
1408 * period = -------------------
1409 * @nsec * sample_freq
1410 *
1411 */
1412
1413 /*
1414 * Reduce accuracy by one bit such that @a and @b converge
1415 * to a similar magnitude.
1416 */
1417 #define REDUCE_FLS(a, b) \
1418 do { \
1419 if (a##_fls > b##_fls) { \
1420 a >>= 1; \
1421 a##_fls--; \
1422 } else { \
1423 b >>= 1; \
1424 b##_fls--; \
1425 } \
1426 } while (0)
1427
1428 /*
1429 * Reduce accuracy until either term fits in a u64, then proceed with
1430 * the other, so that finally we can do a u64/u64 division.
1431 */
1432 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1433 REDUCE_FLS(nsec, frequency);
1434 REDUCE_FLS(sec, count);
1435 }
1436
1437 if (count_fls + sec_fls > 64) {
1438 divisor = nsec * frequency;
1439
1440 while (count_fls + sec_fls > 64) {
1441 REDUCE_FLS(count, sec);
1442 divisor >>= 1;
1443 }
1444
1445 dividend = count * sec;
1446 } else {
1447 dividend = count * sec;
1448
1449 while (nsec_fls + frequency_fls > 64) {
1450 REDUCE_FLS(nsec, frequency);
1451 dividend >>= 1;
1452 }
1453
1454 divisor = nsec * frequency;
1455 }
1456
1457 return div64_u64(dividend, divisor);
1458 }
1459
1460 static void perf_event_stop(struct perf_event *event)
1461 {
1462 if (!event->pmu->stop)
1463 return event->pmu->disable(event);
1464
1465 return event->pmu->stop(event);
1466 }
1467
1468 static int perf_event_start(struct perf_event *event)
1469 {
1470 if (!event->pmu->start)
1471 return event->pmu->enable(event);
1472
1473 return event->pmu->start(event);
1474 }
1475
1476 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1477 {
1478 struct hw_perf_event *hwc = &event->hw;
1479 u64 period, sample_period;
1480 s64 delta;
1481
1482 period = perf_calculate_period(event, nsec, count);
1483
1484 delta = (s64)(period - hwc->sample_period);
1485 delta = (delta + 7) / 8; /* low pass filter */
1486
1487 sample_period = hwc->sample_period + delta;
1488
1489 if (!sample_period)
1490 sample_period = 1;
1491
1492 hwc->sample_period = sample_period;
1493
1494 if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1495 perf_disable();
1496 perf_event_stop(event);
1497 atomic64_set(&hwc->period_left, 0);
1498 perf_event_start(event);
1499 perf_enable();
1500 }
1501 }
1502
1503 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1504 {
1505 struct perf_event *event;
1506 struct hw_perf_event *hwc;
1507 u64 interrupts, now;
1508 s64 delta;
1509
1510 raw_spin_lock(&ctx->lock);
1511 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1512 if (event->state != PERF_EVENT_STATE_ACTIVE)
1513 continue;
1514
1515 if (event->cpu != -1 && event->cpu != smp_processor_id())
1516 continue;
1517
1518 hwc = &event->hw;
1519
1520 interrupts = hwc->interrupts;
1521 hwc->interrupts = 0;
1522
1523 /*
1524 * unthrottle events on the tick
1525 */
1526 if (interrupts == MAX_INTERRUPTS) {
1527 perf_log_throttle(event, 1);
1528 perf_disable();
1529 event->pmu->unthrottle(event);
1530 perf_enable();
1531 }
1532
1533 if (!event->attr.freq || !event->attr.sample_freq)
1534 continue;
1535
1536 perf_disable();
1537 event->pmu->read(event);
1538 now = atomic64_read(&event->count);
1539 delta = now - hwc->freq_count_stamp;
1540 hwc->freq_count_stamp = now;
1541
1542 if (delta > 0)
1543 perf_adjust_period(event, TICK_NSEC, delta);
1544 perf_enable();
1545 }
1546 raw_spin_unlock(&ctx->lock);
1547 }
1548
1549 /*
1550 * Round-robin a context's events:
1551 */
1552 static void rotate_ctx(struct perf_event_context *ctx)
1553 {
1554 raw_spin_lock(&ctx->lock);
1555
1556 /* Rotate the first entry last of non-pinned groups */
1557 list_rotate_left(&ctx->flexible_groups);
1558
1559 raw_spin_unlock(&ctx->lock);
1560 }
1561
1562 void perf_event_task_tick(struct task_struct *curr)
1563 {
1564 struct perf_cpu_context *cpuctx;
1565 struct perf_event_context *ctx;
1566 int rotate = 0;
1567
1568 if (!atomic_read(&nr_events))
1569 return;
1570
1571 cpuctx = &__get_cpu_var(perf_cpu_context);
1572 if (cpuctx->ctx.nr_events &&
1573 cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1574 rotate = 1;
1575
1576 ctx = curr->perf_event_ctxp;
1577 if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1578 rotate = 1;
1579
1580 perf_ctx_adjust_freq(&cpuctx->ctx);
1581 if (ctx)
1582 perf_ctx_adjust_freq(ctx);
1583
1584 if (!rotate)
1585 return;
1586
1587 perf_disable();
1588 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1589 if (ctx)
1590 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1591
1592 rotate_ctx(&cpuctx->ctx);
1593 if (ctx)
1594 rotate_ctx(ctx);
1595
1596 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1597 if (ctx)
1598 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1599 perf_enable();
1600 }
1601
1602 static int event_enable_on_exec(struct perf_event *event,
1603 struct perf_event_context *ctx)
1604 {
1605 if (!event->attr.enable_on_exec)
1606 return 0;
1607
1608 event->attr.enable_on_exec = 0;
1609 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1610 return 0;
1611
1612 __perf_event_mark_enabled(event, ctx);
1613
1614 return 1;
1615 }
1616
1617 /*
1618 * Enable all of a task's events that have been marked enable-on-exec.
1619 * This expects task == current.
1620 */
1621 static void perf_event_enable_on_exec(struct task_struct *task)
1622 {
1623 struct perf_event_context *ctx;
1624 struct perf_event *event;
1625 unsigned long flags;
1626 int enabled = 0;
1627 int ret;
1628
1629 local_irq_save(flags);
1630 ctx = task->perf_event_ctxp;
1631 if (!ctx || !ctx->nr_events)
1632 goto out;
1633
1634 __perf_event_task_sched_out(ctx);
1635
1636 raw_spin_lock(&ctx->lock);
1637
1638 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1639 ret = event_enable_on_exec(event, ctx);
1640 if (ret)
1641 enabled = 1;
1642 }
1643
1644 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1645 ret = event_enable_on_exec(event, ctx);
1646 if (ret)
1647 enabled = 1;
1648 }
1649
1650 /*
1651 * Unclone this context if we enabled any event.
1652 */
1653 if (enabled)
1654 unclone_ctx(ctx);
1655
1656 raw_spin_unlock(&ctx->lock);
1657
1658 perf_event_task_sched_in(task);
1659 out:
1660 local_irq_restore(flags);
1661 }
1662
1663 /*
1664 * Cross CPU call to read the hardware event
1665 */
1666 static void __perf_event_read(void *info)
1667 {
1668 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1669 struct perf_event *event = info;
1670 struct perf_event_context *ctx = event->ctx;
1671
1672 /*
1673 * If this is a task context, we need to check whether it is
1674 * the current task context of this cpu. If not it has been
1675 * scheduled out before the smp call arrived. In that case
1676 * event->count would have been updated to a recent sample
1677 * when the event was scheduled out.
1678 */
1679 if (ctx->task && cpuctx->task_ctx != ctx)
1680 return;
1681
1682 raw_spin_lock(&ctx->lock);
1683 update_context_time(ctx);
1684 update_event_times(event);
1685 raw_spin_unlock(&ctx->lock);
1686
1687 event->pmu->read(event);
1688 }
1689
1690 static u64 perf_event_read(struct perf_event *event)
1691 {
1692 /*
1693 * If event is enabled and currently active on a CPU, update the
1694 * value in the event structure:
1695 */
1696 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1697 smp_call_function_single(event->oncpu,
1698 __perf_event_read, event, 1);
1699 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1700 struct perf_event_context *ctx = event->ctx;
1701 unsigned long flags;
1702
1703 raw_spin_lock_irqsave(&ctx->lock, flags);
1704 update_context_time(ctx);
1705 update_event_times(event);
1706 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1707 }
1708
1709 return atomic64_read(&event->count);
1710 }
1711
1712 /*
1713 * Initialize the perf_event context in a task_struct:
1714 */
1715 static void
1716 __perf_event_init_context(struct perf_event_context *ctx,
1717 struct task_struct *task)
1718 {
1719 raw_spin_lock_init(&ctx->lock);
1720 mutex_init(&ctx->mutex);
1721 INIT_LIST_HEAD(&ctx->pinned_groups);
1722 INIT_LIST_HEAD(&ctx->flexible_groups);
1723 INIT_LIST_HEAD(&ctx->event_list);
1724 atomic_set(&ctx->refcount, 1);
1725 ctx->task = task;
1726 }
1727
1728 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1729 {
1730 struct perf_event_context *ctx;
1731 struct perf_cpu_context *cpuctx;
1732 struct task_struct *task;
1733 unsigned long flags;
1734 int err;
1735
1736 if (pid == -1 && cpu != -1) {
1737 /* Must be root to operate on a CPU event: */
1738 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1739 return ERR_PTR(-EACCES);
1740
1741 if (cpu < 0 || cpu >= nr_cpumask_bits)
1742 return ERR_PTR(-EINVAL);
1743
1744 /*
1745 * We could be clever and allow to attach a event to an
1746 * offline CPU and activate it when the CPU comes up, but
1747 * that's for later.
1748 */
1749 if (!cpu_online(cpu))
1750 return ERR_PTR(-ENODEV);
1751
1752 cpuctx = &per_cpu(perf_cpu_context, cpu);
1753 ctx = &cpuctx->ctx;
1754 get_ctx(ctx);
1755
1756 return ctx;
1757 }
1758
1759 rcu_read_lock();
1760 if (!pid)
1761 task = current;
1762 else
1763 task = find_task_by_vpid(pid);
1764 if (task)
1765 get_task_struct(task);
1766 rcu_read_unlock();
1767
1768 if (!task)
1769 return ERR_PTR(-ESRCH);
1770
1771 /*
1772 * Can't attach events to a dying task.
1773 */
1774 err = -ESRCH;
1775 if (task->flags & PF_EXITING)
1776 goto errout;
1777
1778 /* Reuse ptrace permission checks for now. */
1779 err = -EACCES;
1780 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1781 goto errout;
1782
1783 retry:
1784 ctx = perf_lock_task_context(task, &flags);
1785 if (ctx) {
1786 unclone_ctx(ctx);
1787 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1788 }
1789
1790 if (!ctx) {
1791 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1792 err = -ENOMEM;
1793 if (!ctx)
1794 goto errout;
1795 __perf_event_init_context(ctx, task);
1796 get_ctx(ctx);
1797 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1798 /*
1799 * We raced with some other task; use
1800 * the context they set.
1801 */
1802 kfree(ctx);
1803 goto retry;
1804 }
1805 get_task_struct(task);
1806 }
1807
1808 put_task_struct(task);
1809 return ctx;
1810
1811 errout:
1812 put_task_struct(task);
1813 return ERR_PTR(err);
1814 }
1815
1816 static void perf_event_free_filter(struct perf_event *event);
1817
1818 static void free_event_rcu(struct rcu_head *head)
1819 {
1820 struct perf_event *event;
1821
1822 event = container_of(head, struct perf_event, rcu_head);
1823 if (event->ns)
1824 put_pid_ns(event->ns);
1825 perf_event_free_filter(event);
1826 kfree(event);
1827 }
1828
1829 static void perf_pending_sync(struct perf_event *event);
1830
1831 static void free_event(struct perf_event *event)
1832 {
1833 perf_pending_sync(event);
1834
1835 if (!event->parent) {
1836 atomic_dec(&nr_events);
1837 if (event->attr.mmap)
1838 atomic_dec(&nr_mmap_events);
1839 if (event->attr.comm)
1840 atomic_dec(&nr_comm_events);
1841 if (event->attr.task)
1842 atomic_dec(&nr_task_events);
1843 }
1844
1845 if (event->output) {
1846 fput(event->output->filp);
1847 event->output = NULL;
1848 }
1849
1850 if (event->destroy)
1851 event->destroy(event);
1852
1853 put_ctx(event->ctx);
1854 call_rcu(&event->rcu_head, free_event_rcu);
1855 }
1856
1857 int perf_event_release_kernel(struct perf_event *event)
1858 {
1859 struct perf_event_context *ctx = event->ctx;
1860
1861 WARN_ON_ONCE(ctx->parent_ctx);
1862 mutex_lock(&ctx->mutex);
1863 perf_event_remove_from_context(event);
1864 mutex_unlock(&ctx->mutex);
1865
1866 mutex_lock(&event->owner->perf_event_mutex);
1867 list_del_init(&event->owner_entry);
1868 mutex_unlock(&event->owner->perf_event_mutex);
1869 put_task_struct(event->owner);
1870
1871 free_event(event);
1872
1873 return 0;
1874 }
1875 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1876
1877 /*
1878 * Called when the last reference to the file is gone.
1879 */
1880 static int perf_release(struct inode *inode, struct file *file)
1881 {
1882 struct perf_event *event = file->private_data;
1883
1884 file->private_data = NULL;
1885
1886 return perf_event_release_kernel(event);
1887 }
1888
1889 static int perf_event_read_size(struct perf_event *event)
1890 {
1891 int entry = sizeof(u64); /* value */
1892 int size = 0;
1893 int nr = 1;
1894
1895 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1896 size += sizeof(u64);
1897
1898 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1899 size += sizeof(u64);
1900
1901 if (event->attr.read_format & PERF_FORMAT_ID)
1902 entry += sizeof(u64);
1903
1904 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1905 nr += event->group_leader->nr_siblings;
1906 size += sizeof(u64);
1907 }
1908
1909 size += entry * nr;
1910
1911 return size;
1912 }
1913
1914 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1915 {
1916 struct perf_event *child;
1917 u64 total = 0;
1918
1919 *enabled = 0;
1920 *running = 0;
1921
1922 mutex_lock(&event->child_mutex);
1923 total += perf_event_read(event);
1924 *enabled += event->total_time_enabled +
1925 atomic64_read(&event->child_total_time_enabled);
1926 *running += event->total_time_running +
1927 atomic64_read(&event->child_total_time_running);
1928
1929 list_for_each_entry(child, &event->child_list, child_list) {
1930 total += perf_event_read(child);
1931 *enabled += child->total_time_enabled;
1932 *running += child->total_time_running;
1933 }
1934 mutex_unlock(&event->child_mutex);
1935
1936 return total;
1937 }
1938 EXPORT_SYMBOL_GPL(perf_event_read_value);
1939
1940 static int perf_event_read_group(struct perf_event *event,
1941 u64 read_format, char __user *buf)
1942 {
1943 struct perf_event *leader = event->group_leader, *sub;
1944 int n = 0, size = 0, ret = -EFAULT;
1945 struct perf_event_context *ctx = leader->ctx;
1946 u64 values[5];
1947 u64 count, enabled, running;
1948
1949 mutex_lock(&ctx->mutex);
1950 count = perf_event_read_value(leader, &enabled, &running);
1951
1952 values[n++] = 1 + leader->nr_siblings;
1953 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1954 values[n++] = enabled;
1955 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1956 values[n++] = running;
1957 values[n++] = count;
1958 if (read_format & PERF_FORMAT_ID)
1959 values[n++] = primary_event_id(leader);
1960
1961 size = n * sizeof(u64);
1962
1963 if (copy_to_user(buf, values, size))
1964 goto unlock;
1965
1966 ret = size;
1967
1968 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1969 n = 0;
1970
1971 values[n++] = perf_event_read_value(sub, &enabled, &running);
1972 if (read_format & PERF_FORMAT_ID)
1973 values[n++] = primary_event_id(sub);
1974
1975 size = n * sizeof(u64);
1976
1977 if (copy_to_user(buf + ret, values, size)) {
1978 ret = -EFAULT;
1979 goto unlock;
1980 }
1981
1982 ret += size;
1983 }
1984 unlock:
1985 mutex_unlock(&ctx->mutex);
1986
1987 return ret;
1988 }
1989
1990 static int perf_event_read_one(struct perf_event *event,
1991 u64 read_format, char __user *buf)
1992 {
1993 u64 enabled, running;
1994 u64 values[4];
1995 int n = 0;
1996
1997 values[n++] = perf_event_read_value(event, &enabled, &running);
1998 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1999 values[n++] = enabled;
2000 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2001 values[n++] = running;
2002 if (read_format & PERF_FORMAT_ID)
2003 values[n++] = primary_event_id(event);
2004
2005 if (copy_to_user(buf, values, n * sizeof(u64)))
2006 return -EFAULT;
2007
2008 return n * sizeof(u64);
2009 }
2010
2011 /*
2012 * Read the performance event - simple non blocking version for now
2013 */
2014 static ssize_t
2015 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2016 {
2017 u64 read_format = event->attr.read_format;
2018 int ret;
2019
2020 /*
2021 * Return end-of-file for a read on a event that is in
2022 * error state (i.e. because it was pinned but it couldn't be
2023 * scheduled on to the CPU at some point).
2024 */
2025 if (event->state == PERF_EVENT_STATE_ERROR)
2026 return 0;
2027
2028 if (count < perf_event_read_size(event))
2029 return -ENOSPC;
2030
2031 WARN_ON_ONCE(event->ctx->parent_ctx);
2032 if (read_format & PERF_FORMAT_GROUP)
2033 ret = perf_event_read_group(event, read_format, buf);
2034 else
2035 ret = perf_event_read_one(event, read_format, buf);
2036
2037 return ret;
2038 }
2039
2040 static ssize_t
2041 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2042 {
2043 struct perf_event *event = file->private_data;
2044
2045 return perf_read_hw(event, buf, count);
2046 }
2047
2048 static unsigned int perf_poll(struct file *file, poll_table *wait)
2049 {
2050 struct perf_event *event = file->private_data;
2051 struct perf_mmap_data *data;
2052 unsigned int events = POLL_HUP;
2053
2054 rcu_read_lock();
2055 data = rcu_dereference(event->data);
2056 if (data)
2057 events = atomic_xchg(&data->poll, 0);
2058 rcu_read_unlock();
2059
2060 poll_wait(file, &event->waitq, wait);
2061
2062 return events;
2063 }
2064
2065 static void perf_event_reset(struct perf_event *event)
2066 {
2067 (void)perf_event_read(event);
2068 atomic64_set(&event->count, 0);
2069 perf_event_update_userpage(event);
2070 }
2071
2072 /*
2073 * Holding the top-level event's child_mutex means that any
2074 * descendant process that has inherited this event will block
2075 * in sync_child_event if it goes to exit, thus satisfying the
2076 * task existence requirements of perf_event_enable/disable.
2077 */
2078 static void perf_event_for_each_child(struct perf_event *event,
2079 void (*func)(struct perf_event *))
2080 {
2081 struct perf_event *child;
2082
2083 WARN_ON_ONCE(event->ctx->parent_ctx);
2084 mutex_lock(&event->child_mutex);
2085 func(event);
2086 list_for_each_entry(child, &event->child_list, child_list)
2087 func(child);
2088 mutex_unlock(&event->child_mutex);
2089 }
2090
2091 static void perf_event_for_each(struct perf_event *event,
2092 void (*func)(struct perf_event *))
2093 {
2094 struct perf_event_context *ctx = event->ctx;
2095 struct perf_event *sibling;
2096
2097 WARN_ON_ONCE(ctx->parent_ctx);
2098 mutex_lock(&ctx->mutex);
2099 event = event->group_leader;
2100
2101 perf_event_for_each_child(event, func);
2102 func(event);
2103 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2104 perf_event_for_each_child(event, func);
2105 mutex_unlock(&ctx->mutex);
2106 }
2107
2108 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2109 {
2110 struct perf_event_context *ctx = event->ctx;
2111 unsigned long size;
2112 int ret = 0;
2113 u64 value;
2114
2115 if (!event->attr.sample_period)
2116 return -EINVAL;
2117
2118 size = copy_from_user(&value, arg, sizeof(value));
2119 if (size != sizeof(value))
2120 return -EFAULT;
2121
2122 if (!value)
2123 return -EINVAL;
2124
2125 raw_spin_lock_irq(&ctx->lock);
2126 if (event->attr.freq) {
2127 if (value > sysctl_perf_event_sample_rate) {
2128 ret = -EINVAL;
2129 goto unlock;
2130 }
2131
2132 event->attr.sample_freq = value;
2133 } else {
2134 event->attr.sample_period = value;
2135 event->hw.sample_period = value;
2136 }
2137 unlock:
2138 raw_spin_unlock_irq(&ctx->lock);
2139
2140 return ret;
2141 }
2142
2143 static int perf_event_set_output(struct perf_event *event, int output_fd);
2144 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2145
2146 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2147 {
2148 struct perf_event *event = file->private_data;
2149 void (*func)(struct perf_event *);
2150 u32 flags = arg;
2151
2152 switch (cmd) {
2153 case PERF_EVENT_IOC_ENABLE:
2154 func = perf_event_enable;
2155 break;
2156 case PERF_EVENT_IOC_DISABLE:
2157 func = perf_event_disable;
2158 break;
2159 case PERF_EVENT_IOC_RESET:
2160 func = perf_event_reset;
2161 break;
2162
2163 case PERF_EVENT_IOC_REFRESH:
2164 return perf_event_refresh(event, arg);
2165
2166 case PERF_EVENT_IOC_PERIOD:
2167 return perf_event_period(event, (u64 __user *)arg);
2168
2169 case PERF_EVENT_IOC_SET_OUTPUT:
2170 return perf_event_set_output(event, arg);
2171
2172 case PERF_EVENT_IOC_SET_FILTER:
2173 return perf_event_set_filter(event, (void __user *)arg);
2174
2175 default:
2176 return -ENOTTY;
2177 }
2178
2179 if (flags & PERF_IOC_FLAG_GROUP)
2180 perf_event_for_each(event, func);
2181 else
2182 perf_event_for_each_child(event, func);
2183
2184 return 0;
2185 }
2186
2187 int perf_event_task_enable(void)
2188 {
2189 struct perf_event *event;
2190
2191 mutex_lock(&current->perf_event_mutex);
2192 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2193 perf_event_for_each_child(event, perf_event_enable);
2194 mutex_unlock(&current->perf_event_mutex);
2195
2196 return 0;
2197 }
2198
2199 int perf_event_task_disable(void)
2200 {
2201 struct perf_event *event;
2202
2203 mutex_lock(&current->perf_event_mutex);
2204 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2205 perf_event_for_each_child(event, perf_event_disable);
2206 mutex_unlock(&current->perf_event_mutex);
2207
2208 return 0;
2209 }
2210
2211 #ifndef PERF_EVENT_INDEX_OFFSET
2212 # define PERF_EVENT_INDEX_OFFSET 0
2213 #endif
2214
2215 static int perf_event_index(struct perf_event *event)
2216 {
2217 if (event->state != PERF_EVENT_STATE_ACTIVE)
2218 return 0;
2219
2220 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2221 }
2222
2223 /*
2224 * Callers need to ensure there can be no nesting of this function, otherwise
2225 * the seqlock logic goes bad. We can not serialize this because the arch
2226 * code calls this from NMI context.
2227 */
2228 void perf_event_update_userpage(struct perf_event *event)
2229 {
2230 struct perf_event_mmap_page *userpg;
2231 struct perf_mmap_data *data;
2232
2233 rcu_read_lock();
2234 data = rcu_dereference(event->data);
2235 if (!data)
2236 goto unlock;
2237
2238 userpg = data->user_page;
2239
2240 /*
2241 * Disable preemption so as to not let the corresponding user-space
2242 * spin too long if we get preempted.
2243 */
2244 preempt_disable();
2245 ++userpg->lock;
2246 barrier();
2247 userpg->index = perf_event_index(event);
2248 userpg->offset = atomic64_read(&event->count);
2249 if (event->state == PERF_EVENT_STATE_ACTIVE)
2250 userpg->offset -= atomic64_read(&event->hw.prev_count);
2251
2252 userpg->time_enabled = event->total_time_enabled +
2253 atomic64_read(&event->child_total_time_enabled);
2254
2255 userpg->time_running = event->total_time_running +
2256 atomic64_read(&event->child_total_time_running);
2257
2258 barrier();
2259 ++userpg->lock;
2260 preempt_enable();
2261 unlock:
2262 rcu_read_unlock();
2263 }
2264
2265 static unsigned long perf_data_size(struct perf_mmap_data *data)
2266 {
2267 return data->nr_pages << (PAGE_SHIFT + data->data_order);
2268 }
2269
2270 #ifndef CONFIG_PERF_USE_VMALLOC
2271
2272 /*
2273 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2274 */
2275
2276 static struct page *
2277 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2278 {
2279 if (pgoff > data->nr_pages)
2280 return NULL;
2281
2282 if (pgoff == 0)
2283 return virt_to_page(data->user_page);
2284
2285 return virt_to_page(data->data_pages[pgoff - 1]);
2286 }
2287
2288 static struct perf_mmap_data *
2289 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2290 {
2291 struct perf_mmap_data *data;
2292 unsigned long size;
2293 int i;
2294
2295 WARN_ON(atomic_read(&event->mmap_count));
2296
2297 size = sizeof(struct perf_mmap_data);
2298 size += nr_pages * sizeof(void *);
2299
2300 data = kzalloc(size, GFP_KERNEL);
2301 if (!data)
2302 goto fail;
2303
2304 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2305 if (!data->user_page)
2306 goto fail_user_page;
2307
2308 for (i = 0; i < nr_pages; i++) {
2309 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2310 if (!data->data_pages[i])
2311 goto fail_data_pages;
2312 }
2313
2314 data->data_order = 0;
2315 data->nr_pages = nr_pages;
2316
2317 return data;
2318
2319 fail_data_pages:
2320 for (i--; i >= 0; i--)
2321 free_page((unsigned long)data->data_pages[i]);
2322
2323 free_page((unsigned long)data->user_page);
2324
2325 fail_user_page:
2326 kfree(data);
2327
2328 fail:
2329 return NULL;
2330 }
2331
2332 static void perf_mmap_free_page(unsigned long addr)
2333 {
2334 struct page *page = virt_to_page((void *)addr);
2335
2336 page->mapping = NULL;
2337 __free_page(page);
2338 }
2339
2340 static void perf_mmap_data_free(struct perf_mmap_data *data)
2341 {
2342 int i;
2343
2344 perf_mmap_free_page((unsigned long)data->user_page);
2345 for (i = 0; i < data->nr_pages; i++)
2346 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2347 kfree(data);
2348 }
2349
2350 #else
2351
2352 /*
2353 * Back perf_mmap() with vmalloc memory.
2354 *
2355 * Required for architectures that have d-cache aliasing issues.
2356 */
2357
2358 static struct page *
2359 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2360 {
2361 if (pgoff > (1UL << data->data_order))
2362 return NULL;
2363
2364 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2365 }
2366
2367 static void perf_mmap_unmark_page(void *addr)
2368 {
2369 struct page *page = vmalloc_to_page(addr);
2370
2371 page->mapping = NULL;
2372 }
2373
2374 static void perf_mmap_data_free_work(struct work_struct *work)
2375 {
2376 struct perf_mmap_data *data;
2377 void *base;
2378 int i, nr;
2379
2380 data = container_of(work, struct perf_mmap_data, work);
2381 nr = 1 << data->data_order;
2382
2383 base = data->user_page;
2384 for (i = 0; i < nr + 1; i++)
2385 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2386
2387 vfree(base);
2388 kfree(data);
2389 }
2390
2391 static void perf_mmap_data_free(struct perf_mmap_data *data)
2392 {
2393 schedule_work(&data->work);
2394 }
2395
2396 static struct perf_mmap_data *
2397 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2398 {
2399 struct perf_mmap_data *data;
2400 unsigned long size;
2401 void *all_buf;
2402
2403 WARN_ON(atomic_read(&event->mmap_count));
2404
2405 size = sizeof(struct perf_mmap_data);
2406 size += sizeof(void *);
2407
2408 data = kzalloc(size, GFP_KERNEL);
2409 if (!data)
2410 goto fail;
2411
2412 INIT_WORK(&data->work, perf_mmap_data_free_work);
2413
2414 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2415 if (!all_buf)
2416 goto fail_all_buf;
2417
2418 data->user_page = all_buf;
2419 data->data_pages[0] = all_buf + PAGE_SIZE;
2420 data->data_order = ilog2(nr_pages);
2421 data->nr_pages = 1;
2422
2423 return data;
2424
2425 fail_all_buf:
2426 kfree(data);
2427
2428 fail:
2429 return NULL;
2430 }
2431
2432 #endif
2433
2434 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2435 {
2436 struct perf_event *event = vma->vm_file->private_data;
2437 struct perf_mmap_data *data;
2438 int ret = VM_FAULT_SIGBUS;
2439
2440 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2441 if (vmf->pgoff == 0)
2442 ret = 0;
2443 return ret;
2444 }
2445
2446 rcu_read_lock();
2447 data = rcu_dereference(event->data);
2448 if (!data)
2449 goto unlock;
2450
2451 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2452 goto unlock;
2453
2454 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2455 if (!vmf->page)
2456 goto unlock;
2457
2458 get_page(vmf->page);
2459 vmf->page->mapping = vma->vm_file->f_mapping;
2460 vmf->page->index = vmf->pgoff;
2461
2462 ret = 0;
2463 unlock:
2464 rcu_read_unlock();
2465
2466 return ret;
2467 }
2468
2469 static void
2470 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2471 {
2472 long max_size = perf_data_size(data);
2473
2474 atomic_set(&data->lock, -1);
2475
2476 if (event->attr.watermark) {
2477 data->watermark = min_t(long, max_size,
2478 event->attr.wakeup_watermark);
2479 }
2480
2481 if (!data->watermark)
2482 data->watermark = max_size / 2;
2483
2484
2485 rcu_assign_pointer(event->data, data);
2486 }
2487
2488 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2489 {
2490 struct perf_mmap_data *data;
2491
2492 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2493 perf_mmap_data_free(data);
2494 }
2495
2496 static void perf_mmap_data_release(struct perf_event *event)
2497 {
2498 struct perf_mmap_data *data = event->data;
2499
2500 WARN_ON(atomic_read(&event->mmap_count));
2501
2502 rcu_assign_pointer(event->data, NULL);
2503 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2504 }
2505
2506 static void perf_mmap_open(struct vm_area_struct *vma)
2507 {
2508 struct perf_event *event = vma->vm_file->private_data;
2509
2510 atomic_inc(&event->mmap_count);
2511 }
2512
2513 static void perf_mmap_close(struct vm_area_struct *vma)
2514 {
2515 struct perf_event *event = vma->vm_file->private_data;
2516
2517 WARN_ON_ONCE(event->ctx->parent_ctx);
2518 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2519 unsigned long size = perf_data_size(event->data);
2520 struct user_struct *user = current_user();
2521
2522 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2523 vma->vm_mm->locked_vm -= event->data->nr_locked;
2524 perf_mmap_data_release(event);
2525 mutex_unlock(&event->mmap_mutex);
2526 }
2527 }
2528
2529 static const struct vm_operations_struct perf_mmap_vmops = {
2530 .open = perf_mmap_open,
2531 .close = perf_mmap_close,
2532 .fault = perf_mmap_fault,
2533 .page_mkwrite = perf_mmap_fault,
2534 };
2535
2536 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2537 {
2538 struct perf_event *event = file->private_data;
2539 unsigned long user_locked, user_lock_limit;
2540 struct user_struct *user = current_user();
2541 unsigned long locked, lock_limit;
2542 struct perf_mmap_data *data;
2543 unsigned long vma_size;
2544 unsigned long nr_pages;
2545 long user_extra, extra;
2546 int ret = 0;
2547
2548 if (!(vma->vm_flags & VM_SHARED))
2549 return -EINVAL;
2550
2551 vma_size = vma->vm_end - vma->vm_start;
2552 nr_pages = (vma_size / PAGE_SIZE) - 1;
2553
2554 /*
2555 * If we have data pages ensure they're a power-of-two number, so we
2556 * can do bitmasks instead of modulo.
2557 */
2558 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2559 return -EINVAL;
2560
2561 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2562 return -EINVAL;
2563
2564 if (vma->vm_pgoff != 0)
2565 return -EINVAL;
2566
2567 WARN_ON_ONCE(event->ctx->parent_ctx);
2568 mutex_lock(&event->mmap_mutex);
2569 if (event->output) {
2570 ret = -EINVAL;
2571 goto unlock;
2572 }
2573
2574 if (atomic_inc_not_zero(&event->mmap_count)) {
2575 if (nr_pages != event->data->nr_pages)
2576 ret = -EINVAL;
2577 goto unlock;
2578 }
2579
2580 user_extra = nr_pages + 1;
2581 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2582
2583 /*
2584 * Increase the limit linearly with more CPUs:
2585 */
2586 user_lock_limit *= num_online_cpus();
2587
2588 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2589
2590 extra = 0;
2591 if (user_locked > user_lock_limit)
2592 extra = user_locked - user_lock_limit;
2593
2594 lock_limit = rlimit(RLIMIT_MEMLOCK);
2595 lock_limit >>= PAGE_SHIFT;
2596 locked = vma->vm_mm->locked_vm + extra;
2597
2598 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2599 !capable(CAP_IPC_LOCK)) {
2600 ret = -EPERM;
2601 goto unlock;
2602 }
2603
2604 WARN_ON(event->data);
2605
2606 data = perf_mmap_data_alloc(event, nr_pages);
2607 ret = -ENOMEM;
2608 if (!data)
2609 goto unlock;
2610
2611 ret = 0;
2612 perf_mmap_data_init(event, data);
2613
2614 atomic_set(&event->mmap_count, 1);
2615 atomic_long_add(user_extra, &user->locked_vm);
2616 vma->vm_mm->locked_vm += extra;
2617 event->data->nr_locked = extra;
2618 if (vma->vm_flags & VM_WRITE)
2619 event->data->writable = 1;
2620
2621 unlock:
2622 mutex_unlock(&event->mmap_mutex);
2623
2624 vma->vm_flags |= VM_RESERVED;
2625 vma->vm_ops = &perf_mmap_vmops;
2626
2627 return ret;
2628 }
2629
2630 static int perf_fasync(int fd, struct file *filp, int on)
2631 {
2632 struct inode *inode = filp->f_path.dentry->d_inode;
2633 struct perf_event *event = filp->private_data;
2634 int retval;
2635
2636 mutex_lock(&inode->i_mutex);
2637 retval = fasync_helper(fd, filp, on, &event->fasync);
2638 mutex_unlock(&inode->i_mutex);
2639
2640 if (retval < 0)
2641 return retval;
2642
2643 return 0;
2644 }
2645
2646 static const struct file_operations perf_fops = {
2647 .release = perf_release,
2648 .read = perf_read,
2649 .poll = perf_poll,
2650 .unlocked_ioctl = perf_ioctl,
2651 .compat_ioctl = perf_ioctl,
2652 .mmap = perf_mmap,
2653 .fasync = perf_fasync,
2654 };
2655
2656 /*
2657 * Perf event wakeup
2658 *
2659 * If there's data, ensure we set the poll() state and publish everything
2660 * to user-space before waking everybody up.
2661 */
2662
2663 void perf_event_wakeup(struct perf_event *event)
2664 {
2665 wake_up_all(&event->waitq);
2666
2667 if (event->pending_kill) {
2668 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2669 event->pending_kill = 0;
2670 }
2671 }
2672
2673 /*
2674 * Pending wakeups
2675 *
2676 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2677 *
2678 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2679 * single linked list and use cmpxchg() to add entries lockless.
2680 */
2681
2682 static void perf_pending_event(struct perf_pending_entry *entry)
2683 {
2684 struct perf_event *event = container_of(entry,
2685 struct perf_event, pending);
2686
2687 if (event->pending_disable) {
2688 event->pending_disable = 0;
2689 __perf_event_disable(event);
2690 }
2691
2692 if (event->pending_wakeup) {
2693 event->pending_wakeup = 0;
2694 perf_event_wakeup(event);
2695 }
2696 }
2697
2698 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2699
2700 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2701 PENDING_TAIL,
2702 };
2703
2704 static void perf_pending_queue(struct perf_pending_entry *entry,
2705 void (*func)(struct perf_pending_entry *))
2706 {
2707 struct perf_pending_entry **head;
2708
2709 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2710 return;
2711
2712 entry->func = func;
2713
2714 head = &get_cpu_var(perf_pending_head);
2715
2716 do {
2717 entry->next = *head;
2718 } while (cmpxchg(head, entry->next, entry) != entry->next);
2719
2720 set_perf_event_pending();
2721
2722 put_cpu_var(perf_pending_head);
2723 }
2724
2725 static int __perf_pending_run(void)
2726 {
2727 struct perf_pending_entry *list;
2728 int nr = 0;
2729
2730 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2731 while (list != PENDING_TAIL) {
2732 void (*func)(struct perf_pending_entry *);
2733 struct perf_pending_entry *entry = list;
2734
2735 list = list->next;
2736
2737 func = entry->func;
2738 entry->next = NULL;
2739 /*
2740 * Ensure we observe the unqueue before we issue the wakeup,
2741 * so that we won't be waiting forever.
2742 * -- see perf_not_pending().
2743 */
2744 smp_wmb();
2745
2746 func(entry);
2747 nr++;
2748 }
2749
2750 return nr;
2751 }
2752
2753 static inline int perf_not_pending(struct perf_event *event)
2754 {
2755 /*
2756 * If we flush on whatever cpu we run, there is a chance we don't
2757 * need to wait.
2758 */
2759 get_cpu();
2760 __perf_pending_run();
2761 put_cpu();
2762
2763 /*
2764 * Ensure we see the proper queue state before going to sleep
2765 * so that we do not miss the wakeup. -- see perf_pending_handle()
2766 */
2767 smp_rmb();
2768 return event->pending.next == NULL;
2769 }
2770
2771 static void perf_pending_sync(struct perf_event *event)
2772 {
2773 wait_event(event->waitq, perf_not_pending(event));
2774 }
2775
2776 void perf_event_do_pending(void)
2777 {
2778 __perf_pending_run();
2779 }
2780
2781 /*
2782 * Callchain support -- arch specific
2783 */
2784
2785 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2786 {
2787 return NULL;
2788 }
2789
2790 #ifdef CONFIG_EVENT_TRACING
2791 __weak
2792 void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
2793 {
2794 }
2795 #endif
2796
2797 /*
2798 * Output
2799 */
2800 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2801 unsigned long offset, unsigned long head)
2802 {
2803 unsigned long mask;
2804
2805 if (!data->writable)
2806 return true;
2807
2808 mask = perf_data_size(data) - 1;
2809
2810 offset = (offset - tail) & mask;
2811 head = (head - tail) & mask;
2812
2813 if ((int)(head - offset) < 0)
2814 return false;
2815
2816 return true;
2817 }
2818
2819 static void perf_output_wakeup(struct perf_output_handle *handle)
2820 {
2821 atomic_set(&handle->data->poll, POLL_IN);
2822
2823 if (handle->nmi) {
2824 handle->event->pending_wakeup = 1;
2825 perf_pending_queue(&handle->event->pending,
2826 perf_pending_event);
2827 } else
2828 perf_event_wakeup(handle->event);
2829 }
2830
2831 /*
2832 * Curious locking construct.
2833 *
2834 * We need to ensure a later event_id doesn't publish a head when a former
2835 * event_id isn't done writing. However since we need to deal with NMIs we
2836 * cannot fully serialize things.
2837 *
2838 * What we do is serialize between CPUs so we only have to deal with NMI
2839 * nesting on a single CPU.
2840 *
2841 * We only publish the head (and generate a wakeup) when the outer-most
2842 * event_id completes.
2843 */
2844 static void perf_output_lock(struct perf_output_handle *handle)
2845 {
2846 struct perf_mmap_data *data = handle->data;
2847 int cur, cpu = get_cpu();
2848
2849 handle->locked = 0;
2850
2851 for (;;) {
2852 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2853 if (cur == -1) {
2854 handle->locked = 1;
2855 break;
2856 }
2857 if (cur == cpu)
2858 break;
2859
2860 cpu_relax();
2861 }
2862 }
2863
2864 static void perf_output_unlock(struct perf_output_handle *handle)
2865 {
2866 struct perf_mmap_data *data = handle->data;
2867 unsigned long head;
2868 int cpu;
2869
2870 data->done_head = data->head;
2871
2872 if (!handle->locked)
2873 goto out;
2874
2875 again:
2876 /*
2877 * The xchg implies a full barrier that ensures all writes are done
2878 * before we publish the new head, matched by a rmb() in userspace when
2879 * reading this position.
2880 */
2881 while ((head = atomic_long_xchg(&data->done_head, 0)))
2882 data->user_page->data_head = head;
2883
2884 /*
2885 * NMI can happen here, which means we can miss a done_head update.
2886 */
2887
2888 cpu = atomic_xchg(&data->lock, -1);
2889 WARN_ON_ONCE(cpu != smp_processor_id());
2890
2891 /*
2892 * Therefore we have to validate we did not indeed do so.
2893 */
2894 if (unlikely(atomic_long_read(&data->done_head))) {
2895 /*
2896 * Since we had it locked, we can lock it again.
2897 */
2898 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2899 cpu_relax();
2900
2901 goto again;
2902 }
2903
2904 if (atomic_xchg(&data->wakeup, 0))
2905 perf_output_wakeup(handle);
2906 out:
2907 put_cpu();
2908 }
2909
2910 void perf_output_copy(struct perf_output_handle *handle,
2911 const void *buf, unsigned int len)
2912 {
2913 unsigned int pages_mask;
2914 unsigned long offset;
2915 unsigned int size;
2916 void **pages;
2917
2918 offset = handle->offset;
2919 pages_mask = handle->data->nr_pages - 1;
2920 pages = handle->data->data_pages;
2921
2922 do {
2923 unsigned long page_offset;
2924 unsigned long page_size;
2925 int nr;
2926
2927 nr = (offset >> PAGE_SHIFT) & pages_mask;
2928 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2929 page_offset = offset & (page_size - 1);
2930 size = min_t(unsigned int, page_size - page_offset, len);
2931
2932 memcpy(pages[nr] + page_offset, buf, size);
2933
2934 len -= size;
2935 buf += size;
2936 offset += size;
2937 } while (len);
2938
2939 handle->offset = offset;
2940
2941 /*
2942 * Check we didn't copy past our reservation window, taking the
2943 * possible unsigned int wrap into account.
2944 */
2945 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2946 }
2947
2948 int perf_output_begin(struct perf_output_handle *handle,
2949 struct perf_event *event, unsigned int size,
2950 int nmi, int sample)
2951 {
2952 struct perf_event *output_event;
2953 struct perf_mmap_data *data;
2954 unsigned long tail, offset, head;
2955 int have_lost;
2956 struct {
2957 struct perf_event_header header;
2958 u64 id;
2959 u64 lost;
2960 } lost_event;
2961
2962 rcu_read_lock();
2963 /*
2964 * For inherited events we send all the output towards the parent.
2965 */
2966 if (event->parent)
2967 event = event->parent;
2968
2969 output_event = rcu_dereference(event->output);
2970 if (output_event)
2971 event = output_event;
2972
2973 data = rcu_dereference(event->data);
2974 if (!data)
2975 goto out;
2976
2977 handle->data = data;
2978 handle->event = event;
2979 handle->nmi = nmi;
2980 handle->sample = sample;
2981
2982 if (!data->nr_pages)
2983 goto fail;
2984
2985 have_lost = atomic_read(&data->lost);
2986 if (have_lost)
2987 size += sizeof(lost_event);
2988
2989 perf_output_lock(handle);
2990
2991 do {
2992 /*
2993 * Userspace could choose to issue a mb() before updating the
2994 * tail pointer. So that all reads will be completed before the
2995 * write is issued.
2996 */
2997 tail = ACCESS_ONCE(data->user_page->data_tail);
2998 smp_rmb();
2999 offset = head = atomic_long_read(&data->head);
3000 head += size;
3001 if (unlikely(!perf_output_space(data, tail, offset, head)))
3002 goto fail;
3003 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
3004
3005 handle->offset = offset;
3006 handle->head = head;
3007
3008 if (head - tail > data->watermark)
3009 atomic_set(&data->wakeup, 1);
3010
3011 if (have_lost) {
3012 lost_event.header.type = PERF_RECORD_LOST;
3013 lost_event.header.misc = 0;
3014 lost_event.header.size = sizeof(lost_event);
3015 lost_event.id = event->id;
3016 lost_event.lost = atomic_xchg(&data->lost, 0);
3017
3018 perf_output_put(handle, lost_event);
3019 }
3020
3021 return 0;
3022
3023 fail:
3024 atomic_inc(&data->lost);
3025 perf_output_unlock(handle);
3026 out:
3027 rcu_read_unlock();
3028
3029 return -ENOSPC;
3030 }
3031
3032 void perf_output_end(struct perf_output_handle *handle)
3033 {
3034 struct perf_event *event = handle->event;
3035 struct perf_mmap_data *data = handle->data;
3036
3037 int wakeup_events = event->attr.wakeup_events;
3038
3039 if (handle->sample && wakeup_events) {
3040 int events = atomic_inc_return(&data->events);
3041 if (events >= wakeup_events) {
3042 atomic_sub(wakeup_events, &data->events);
3043 atomic_set(&data->wakeup, 1);
3044 }
3045 }
3046
3047 perf_output_unlock(handle);
3048 rcu_read_unlock();
3049 }
3050
3051 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3052 {
3053 /*
3054 * only top level events have the pid namespace they were created in
3055 */
3056 if (event->parent)
3057 event = event->parent;
3058
3059 return task_tgid_nr_ns(p, event->ns);
3060 }
3061
3062 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3063 {
3064 /*
3065 * only top level events have the pid namespace they were created in
3066 */
3067 if (event->parent)
3068 event = event->parent;
3069
3070 return task_pid_nr_ns(p, event->ns);
3071 }
3072
3073 static void perf_output_read_one(struct perf_output_handle *handle,
3074 struct perf_event *event)
3075 {
3076 u64 read_format = event->attr.read_format;
3077 u64 values[4];
3078 int n = 0;
3079
3080 values[n++] = atomic64_read(&event->count);
3081 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3082 values[n++] = event->total_time_enabled +
3083 atomic64_read(&event->child_total_time_enabled);
3084 }
3085 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3086 values[n++] = event->total_time_running +
3087 atomic64_read(&event->child_total_time_running);
3088 }
3089 if (read_format & PERF_FORMAT_ID)
3090 values[n++] = primary_event_id(event);
3091
3092 perf_output_copy(handle, values, n * sizeof(u64));
3093 }
3094
3095 /*
3096 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3097 */
3098 static void perf_output_read_group(struct perf_output_handle *handle,
3099 struct perf_event *event)
3100 {
3101 struct perf_event *leader = event->group_leader, *sub;
3102 u64 read_format = event->attr.read_format;
3103 u64 values[5];
3104 int n = 0;
3105
3106 values[n++] = 1 + leader->nr_siblings;
3107
3108 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3109 values[n++] = leader->total_time_enabled;
3110
3111 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3112 values[n++] = leader->total_time_running;
3113
3114 if (leader != event)
3115 leader->pmu->read(leader);
3116
3117 values[n++] = atomic64_read(&leader->count);
3118 if (read_format & PERF_FORMAT_ID)
3119 values[n++] = primary_event_id(leader);
3120
3121 perf_output_copy(handle, values, n * sizeof(u64));
3122
3123 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3124 n = 0;
3125
3126 if (sub != event)
3127 sub->pmu->read(sub);
3128
3129 values[n++] = atomic64_read(&sub->count);
3130 if (read_format & PERF_FORMAT_ID)
3131 values[n++] = primary_event_id(sub);
3132
3133 perf_output_copy(handle, values, n * sizeof(u64));
3134 }
3135 }
3136
3137 static void perf_output_read(struct perf_output_handle *handle,
3138 struct perf_event *event)
3139 {
3140 if (event->attr.read_format & PERF_FORMAT_GROUP)
3141 perf_output_read_group(handle, event);
3142 else
3143 perf_output_read_one(handle, event);
3144 }
3145
3146 void perf_output_sample(struct perf_output_handle *handle,
3147 struct perf_event_header *header,
3148 struct perf_sample_data *data,
3149 struct perf_event *event)
3150 {
3151 u64 sample_type = data->type;
3152
3153 perf_output_put(handle, *header);
3154
3155 if (sample_type & PERF_SAMPLE_IP)
3156 perf_output_put(handle, data->ip);
3157
3158 if (sample_type & PERF_SAMPLE_TID)
3159 perf_output_put(handle, data->tid_entry);
3160
3161 if (sample_type & PERF_SAMPLE_TIME)
3162 perf_output_put(handle, data->time);
3163
3164 if (sample_type & PERF_SAMPLE_ADDR)
3165 perf_output_put(handle, data->addr);
3166
3167 if (sample_type & PERF_SAMPLE_ID)
3168 perf_output_put(handle, data->id);
3169
3170 if (sample_type & PERF_SAMPLE_STREAM_ID)
3171 perf_output_put(handle, data->stream_id);
3172
3173 if (sample_type & PERF_SAMPLE_CPU)
3174 perf_output_put(handle, data->cpu_entry);
3175
3176 if (sample_type & PERF_SAMPLE_PERIOD)
3177 perf_output_put(handle, data->period);
3178
3179 if (sample_type & PERF_SAMPLE_READ)
3180 perf_output_read(handle, event);
3181
3182 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3183 if (data->callchain) {
3184 int size = 1;
3185
3186 if (data->callchain)
3187 size += data->callchain->nr;
3188
3189 size *= sizeof(u64);
3190
3191 perf_output_copy(handle, data->callchain, size);
3192 } else {
3193 u64 nr = 0;
3194 perf_output_put(handle, nr);
3195 }
3196 }
3197
3198 if (sample_type & PERF_SAMPLE_RAW) {
3199 if (data->raw) {
3200 perf_output_put(handle, data->raw->size);
3201 perf_output_copy(handle, data->raw->data,
3202 data->raw->size);
3203 } else {
3204 struct {
3205 u32 size;
3206 u32 data;
3207 } raw = {
3208 .size = sizeof(u32),
3209 .data = 0,
3210 };
3211 perf_output_put(handle, raw);
3212 }
3213 }
3214 }
3215
3216 void perf_prepare_sample(struct perf_event_header *header,
3217 struct perf_sample_data *data,
3218 struct perf_event *event,
3219 struct pt_regs *regs)
3220 {
3221 u64 sample_type = event->attr.sample_type;
3222
3223 data->type = sample_type;
3224
3225 header->type = PERF_RECORD_SAMPLE;
3226 header->size = sizeof(*header);
3227
3228 header->misc = 0;
3229 header->misc |= perf_misc_flags(regs);
3230
3231 if (sample_type & PERF_SAMPLE_IP) {
3232 data->ip = perf_instruction_pointer(regs);
3233
3234 header->size += sizeof(data->ip);
3235 }
3236
3237 if (sample_type & PERF_SAMPLE_TID) {
3238 /* namespace issues */
3239 data->tid_entry.pid = perf_event_pid(event, current);
3240 data->tid_entry.tid = perf_event_tid(event, current);
3241
3242 header->size += sizeof(data->tid_entry);
3243 }
3244
3245 if (sample_type & PERF_SAMPLE_TIME) {
3246 data->time = perf_clock();
3247
3248 header->size += sizeof(data->time);
3249 }
3250
3251 if (sample_type & PERF_SAMPLE_ADDR)
3252 header->size += sizeof(data->addr);
3253
3254 if (sample_type & PERF_SAMPLE_ID) {
3255 data->id = primary_event_id(event);
3256
3257 header->size += sizeof(data->id);
3258 }
3259
3260 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3261 data->stream_id = event->id;
3262
3263 header->size += sizeof(data->stream_id);
3264 }
3265
3266 if (sample_type & PERF_SAMPLE_CPU) {
3267 data->cpu_entry.cpu = raw_smp_processor_id();
3268 data->cpu_entry.reserved = 0;
3269
3270 header->size += sizeof(data->cpu_entry);
3271 }
3272
3273 if (sample_type & PERF_SAMPLE_PERIOD)
3274 header->size += sizeof(data->period);
3275
3276 if (sample_type & PERF_SAMPLE_READ)
3277 header->size += perf_event_read_size(event);
3278
3279 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3280 int size = 1;
3281
3282 data->callchain = perf_callchain(regs);
3283
3284 if (data->callchain)
3285 size += data->callchain->nr;
3286
3287 header->size += size * sizeof(u64);
3288 }
3289
3290 if (sample_type & PERF_SAMPLE_RAW) {
3291 int size = sizeof(u32);
3292
3293 if (data->raw)
3294 size += data->raw->size;
3295 else
3296 size += sizeof(u32);
3297
3298 WARN_ON_ONCE(size & (sizeof(u64)-1));
3299 header->size += size;
3300 }
3301 }
3302
3303 static void perf_event_output(struct perf_event *event, int nmi,
3304 struct perf_sample_data *data,
3305 struct pt_regs *regs)
3306 {
3307 struct perf_output_handle handle;
3308 struct perf_event_header header;
3309
3310 perf_prepare_sample(&header, data, event, regs);
3311
3312 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3313 return;
3314
3315 perf_output_sample(&handle, &header, data, event);
3316
3317 perf_output_end(&handle);
3318 }
3319
3320 /*
3321 * read event_id
3322 */
3323
3324 struct perf_read_event {
3325 struct perf_event_header header;
3326
3327 u32 pid;
3328 u32 tid;
3329 };
3330
3331 static void
3332 perf_event_read_event(struct perf_event *event,
3333 struct task_struct *task)
3334 {
3335 struct perf_output_handle handle;
3336 struct perf_read_event read_event = {
3337 .header = {
3338 .type = PERF_RECORD_READ,
3339 .misc = 0,
3340 .size = sizeof(read_event) + perf_event_read_size(event),
3341 },
3342 .pid = perf_event_pid(event, task),
3343 .tid = perf_event_tid(event, task),
3344 };
3345 int ret;
3346
3347 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3348 if (ret)
3349 return;
3350
3351 perf_output_put(&handle, read_event);
3352 perf_output_read(&handle, event);
3353
3354 perf_output_end(&handle);
3355 }
3356
3357 /*
3358 * task tracking -- fork/exit
3359 *
3360 * enabled by: attr.comm | attr.mmap | attr.task
3361 */
3362
3363 struct perf_task_event {
3364 struct task_struct *task;
3365 struct perf_event_context *task_ctx;
3366
3367 struct {
3368 struct perf_event_header header;
3369
3370 u32 pid;
3371 u32 ppid;
3372 u32 tid;
3373 u32 ptid;
3374 u64 time;
3375 } event_id;
3376 };
3377
3378 static void perf_event_task_output(struct perf_event *event,
3379 struct perf_task_event *task_event)
3380 {
3381 struct perf_output_handle handle;
3382 int size;
3383 struct task_struct *task = task_event->task;
3384 int ret;
3385
3386 size = task_event->event_id.header.size;
3387 ret = perf_output_begin(&handle, event, size, 0, 0);
3388
3389 if (ret)
3390 return;
3391
3392 task_event->event_id.pid = perf_event_pid(event, task);
3393 task_event->event_id.ppid = perf_event_pid(event, current);
3394
3395 task_event->event_id.tid = perf_event_tid(event, task);
3396 task_event->event_id.ptid = perf_event_tid(event, current);
3397
3398 perf_output_put(&handle, task_event->event_id);
3399
3400 perf_output_end(&handle);
3401 }
3402
3403 static int perf_event_task_match(struct perf_event *event)
3404 {
3405 if (event->state < PERF_EVENT_STATE_INACTIVE)
3406 return 0;
3407
3408 if (event->cpu != -1 && event->cpu != smp_processor_id())
3409 return 0;
3410
3411 if (event->attr.comm || event->attr.mmap || event->attr.task)
3412 return 1;
3413
3414 return 0;
3415 }
3416
3417 static void perf_event_task_ctx(struct perf_event_context *ctx,
3418 struct perf_task_event *task_event)
3419 {
3420 struct perf_event *event;
3421
3422 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3423 if (perf_event_task_match(event))
3424 perf_event_task_output(event, task_event);
3425 }
3426 }
3427
3428 static void perf_event_task_event(struct perf_task_event *task_event)
3429 {
3430 struct perf_cpu_context *cpuctx;
3431 struct perf_event_context *ctx = task_event->task_ctx;
3432
3433 rcu_read_lock();
3434 cpuctx = &get_cpu_var(perf_cpu_context);
3435 perf_event_task_ctx(&cpuctx->ctx, task_event);
3436 if (!ctx)
3437 ctx = rcu_dereference(current->perf_event_ctxp);
3438 if (ctx)
3439 perf_event_task_ctx(ctx, task_event);
3440 put_cpu_var(perf_cpu_context);
3441 rcu_read_unlock();
3442 }
3443
3444 static void perf_event_task(struct task_struct *task,
3445 struct perf_event_context *task_ctx,
3446 int new)
3447 {
3448 struct perf_task_event task_event;
3449
3450 if (!atomic_read(&nr_comm_events) &&
3451 !atomic_read(&nr_mmap_events) &&
3452 !atomic_read(&nr_task_events))
3453 return;
3454
3455 task_event = (struct perf_task_event){
3456 .task = task,
3457 .task_ctx = task_ctx,
3458 .event_id = {
3459 .header = {
3460 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3461 .misc = 0,
3462 .size = sizeof(task_event.event_id),
3463 },
3464 /* .pid */
3465 /* .ppid */
3466 /* .tid */
3467 /* .ptid */
3468 .time = perf_clock(),
3469 },
3470 };
3471
3472 perf_event_task_event(&task_event);
3473 }
3474
3475 void perf_event_fork(struct task_struct *task)
3476 {
3477 perf_event_task(task, NULL, 1);
3478 }
3479
3480 /*
3481 * comm tracking
3482 */
3483
3484 struct perf_comm_event {
3485 struct task_struct *task;
3486 char *comm;
3487 int comm_size;
3488
3489 struct {
3490 struct perf_event_header header;
3491
3492 u32 pid;
3493 u32 tid;
3494 } event_id;
3495 };
3496
3497 static void perf_event_comm_output(struct perf_event *event,
3498 struct perf_comm_event *comm_event)
3499 {
3500 struct perf_output_handle handle;
3501 int size = comm_event->event_id.header.size;
3502 int ret = perf_output_begin(&handle, event, size, 0, 0);
3503
3504 if (ret)
3505 return;
3506
3507 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3508 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3509
3510 perf_output_put(&handle, comm_event->event_id);
3511 perf_output_copy(&handle, comm_event->comm,
3512 comm_event->comm_size);
3513 perf_output_end(&handle);
3514 }
3515
3516 static int perf_event_comm_match(struct perf_event *event)
3517 {
3518 if (event->state < PERF_EVENT_STATE_INACTIVE)
3519 return 0;
3520
3521 if (event->cpu != -1 && event->cpu != smp_processor_id())
3522 return 0;
3523
3524 if (event->attr.comm)
3525 return 1;
3526
3527 return 0;
3528 }
3529
3530 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3531 struct perf_comm_event *comm_event)
3532 {
3533 struct perf_event *event;
3534
3535 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3536 if (perf_event_comm_match(event))
3537 perf_event_comm_output(event, comm_event);
3538 }
3539 }
3540
3541 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3542 {
3543 struct perf_cpu_context *cpuctx;
3544 struct perf_event_context *ctx;
3545 unsigned int size;
3546 char comm[TASK_COMM_LEN];
3547
3548 memset(comm, 0, sizeof(comm));
3549 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3550 size = ALIGN(strlen(comm)+1, sizeof(u64));
3551
3552 comm_event->comm = comm;
3553 comm_event->comm_size = size;
3554
3555 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3556
3557 rcu_read_lock();
3558 cpuctx = &get_cpu_var(perf_cpu_context);
3559 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3560 ctx = rcu_dereference(current->perf_event_ctxp);
3561 if (ctx)
3562 perf_event_comm_ctx(ctx, comm_event);
3563 put_cpu_var(perf_cpu_context);
3564 rcu_read_unlock();
3565 }
3566
3567 void perf_event_comm(struct task_struct *task)
3568 {
3569 struct perf_comm_event comm_event;
3570
3571 if (task->perf_event_ctxp)
3572 perf_event_enable_on_exec(task);
3573
3574 if (!atomic_read(&nr_comm_events))
3575 return;
3576
3577 comm_event = (struct perf_comm_event){
3578 .task = task,
3579 /* .comm */
3580 /* .comm_size */
3581 .event_id = {
3582 .header = {
3583 .type = PERF_RECORD_COMM,
3584 .misc = 0,
3585 /* .size */
3586 },
3587 /* .pid */
3588 /* .tid */
3589 },
3590 };
3591
3592 perf_event_comm_event(&comm_event);
3593 }
3594
3595 /*
3596 * mmap tracking
3597 */
3598
3599 struct perf_mmap_event {
3600 struct vm_area_struct *vma;
3601
3602 const char *file_name;
3603 int file_size;
3604
3605 struct {
3606 struct perf_event_header header;
3607
3608 u32 pid;
3609 u32 tid;
3610 u64 start;
3611 u64 len;
3612 u64 pgoff;
3613 } event_id;
3614 };
3615
3616 static void perf_event_mmap_output(struct perf_event *event,
3617 struct perf_mmap_event *mmap_event)
3618 {
3619 struct perf_output_handle handle;
3620 int size = mmap_event->event_id.header.size;
3621 int ret = perf_output_begin(&handle, event, size, 0, 0);
3622
3623 if (ret)
3624 return;
3625
3626 mmap_event->event_id.pid = perf_event_pid(event, current);
3627 mmap_event->event_id.tid = perf_event_tid(event, current);
3628
3629 perf_output_put(&handle, mmap_event->event_id);
3630 perf_output_copy(&handle, mmap_event->file_name,
3631 mmap_event->file_size);
3632 perf_output_end(&handle);
3633 }
3634
3635 static int perf_event_mmap_match(struct perf_event *event,
3636 struct perf_mmap_event *mmap_event)
3637 {
3638 if (event->state < PERF_EVENT_STATE_INACTIVE)
3639 return 0;
3640
3641 if (event->cpu != -1 && event->cpu != smp_processor_id())
3642 return 0;
3643
3644 if (event->attr.mmap)
3645 return 1;
3646
3647 return 0;
3648 }
3649
3650 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3651 struct perf_mmap_event *mmap_event)
3652 {
3653 struct perf_event *event;
3654
3655 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3656 if (perf_event_mmap_match(event, mmap_event))
3657 perf_event_mmap_output(event, mmap_event);
3658 }
3659 }
3660
3661 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3662 {
3663 struct perf_cpu_context *cpuctx;
3664 struct perf_event_context *ctx;
3665 struct vm_area_struct *vma = mmap_event->vma;
3666 struct file *file = vma->vm_file;
3667 unsigned int size;
3668 char tmp[16];
3669 char *buf = NULL;
3670 const char *name;
3671
3672 memset(tmp, 0, sizeof(tmp));
3673
3674 if (file) {
3675 /*
3676 * d_path works from the end of the buffer backwards, so we
3677 * need to add enough zero bytes after the string to handle
3678 * the 64bit alignment we do later.
3679 */
3680 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3681 if (!buf) {
3682 name = strncpy(tmp, "//enomem", sizeof(tmp));
3683 goto got_name;
3684 }
3685 name = d_path(&file->f_path, buf, PATH_MAX);
3686 if (IS_ERR(name)) {
3687 name = strncpy(tmp, "//toolong", sizeof(tmp));
3688 goto got_name;
3689 }
3690 } else {
3691 if (arch_vma_name(mmap_event->vma)) {
3692 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3693 sizeof(tmp));
3694 goto got_name;
3695 }
3696
3697 if (!vma->vm_mm) {
3698 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3699 goto got_name;
3700 }
3701
3702 name = strncpy(tmp, "//anon", sizeof(tmp));
3703 goto got_name;
3704 }
3705
3706 got_name:
3707 size = ALIGN(strlen(name)+1, sizeof(u64));
3708
3709 mmap_event->file_name = name;
3710 mmap_event->file_size = size;
3711
3712 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3713
3714 rcu_read_lock();
3715 cpuctx = &get_cpu_var(perf_cpu_context);
3716 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3717 ctx = rcu_dereference(current->perf_event_ctxp);
3718 if (ctx)
3719 perf_event_mmap_ctx(ctx, mmap_event);
3720 put_cpu_var(perf_cpu_context);
3721 rcu_read_unlock();
3722
3723 kfree(buf);
3724 }
3725
3726 void __perf_event_mmap(struct vm_area_struct *vma)
3727 {
3728 struct perf_mmap_event mmap_event;
3729
3730 if (!atomic_read(&nr_mmap_events))
3731 return;
3732
3733 mmap_event = (struct perf_mmap_event){
3734 .vma = vma,
3735 /* .file_name */
3736 /* .file_size */
3737 .event_id = {
3738 .header = {
3739 .type = PERF_RECORD_MMAP,
3740 .misc = 0,
3741 /* .size */
3742 },
3743 /* .pid */
3744 /* .tid */
3745 .start = vma->vm_start,
3746 .len = vma->vm_end - vma->vm_start,
3747 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
3748 },
3749 };
3750
3751 perf_event_mmap_event(&mmap_event);
3752 }
3753
3754 /*
3755 * IRQ throttle logging
3756 */
3757
3758 static void perf_log_throttle(struct perf_event *event, int enable)
3759 {
3760 struct perf_output_handle handle;
3761 int ret;
3762
3763 struct {
3764 struct perf_event_header header;
3765 u64 time;
3766 u64 id;
3767 u64 stream_id;
3768 } throttle_event = {
3769 .header = {
3770 .type = PERF_RECORD_THROTTLE,
3771 .misc = 0,
3772 .size = sizeof(throttle_event),
3773 },
3774 .time = perf_clock(),
3775 .id = primary_event_id(event),
3776 .stream_id = event->id,
3777 };
3778
3779 if (enable)
3780 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3781
3782 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3783 if (ret)
3784 return;
3785
3786 perf_output_put(&handle, throttle_event);
3787 perf_output_end(&handle);
3788 }
3789
3790 /*
3791 * Generic event overflow handling, sampling.
3792 */
3793
3794 static int __perf_event_overflow(struct perf_event *event, int nmi,
3795 int throttle, struct perf_sample_data *data,
3796 struct pt_regs *regs)
3797 {
3798 int events = atomic_read(&event->event_limit);
3799 struct hw_perf_event *hwc = &event->hw;
3800 int ret = 0;
3801
3802 throttle = (throttle && event->pmu->unthrottle != NULL);
3803
3804 if (!throttle) {
3805 hwc->interrupts++;
3806 } else {
3807 if (hwc->interrupts != MAX_INTERRUPTS) {
3808 hwc->interrupts++;
3809 if (HZ * hwc->interrupts >
3810 (u64)sysctl_perf_event_sample_rate) {
3811 hwc->interrupts = MAX_INTERRUPTS;
3812 perf_log_throttle(event, 0);
3813 ret = 1;
3814 }
3815 } else {
3816 /*
3817 * Keep re-disabling events even though on the previous
3818 * pass we disabled it - just in case we raced with a
3819 * sched-in and the event got enabled again:
3820 */
3821 ret = 1;
3822 }
3823 }
3824
3825 if (event->attr.freq) {
3826 u64 now = perf_clock();
3827 s64 delta = now - hwc->freq_time_stamp;
3828
3829 hwc->freq_time_stamp = now;
3830
3831 if (delta > 0 && delta < 2*TICK_NSEC)
3832 perf_adjust_period(event, delta, hwc->last_period);
3833 }
3834
3835 /*
3836 * XXX event_limit might not quite work as expected on inherited
3837 * events
3838 */
3839
3840 event->pending_kill = POLL_IN;
3841 if (events && atomic_dec_and_test(&event->event_limit)) {
3842 ret = 1;
3843 event->pending_kill = POLL_HUP;
3844 if (nmi) {
3845 event->pending_disable = 1;
3846 perf_pending_queue(&event->pending,
3847 perf_pending_event);
3848 } else
3849 perf_event_disable(event);
3850 }
3851
3852 if (event->overflow_handler)
3853 event->overflow_handler(event, nmi, data, regs);
3854 else
3855 perf_event_output(event, nmi, data, regs);
3856
3857 return ret;
3858 }
3859
3860 int perf_event_overflow(struct perf_event *event, int nmi,
3861 struct perf_sample_data *data,
3862 struct pt_regs *regs)
3863 {
3864 return __perf_event_overflow(event, nmi, 1, data, regs);
3865 }
3866
3867 /*
3868 * Generic software event infrastructure
3869 */
3870
3871 /*
3872 * We directly increment event->count and keep a second value in
3873 * event->hw.period_left to count intervals. This period event
3874 * is kept in the range [-sample_period, 0] so that we can use the
3875 * sign as trigger.
3876 */
3877
3878 static u64 perf_swevent_set_period(struct perf_event *event)
3879 {
3880 struct hw_perf_event *hwc = &event->hw;
3881 u64 period = hwc->last_period;
3882 u64 nr, offset;
3883 s64 old, val;
3884
3885 hwc->last_period = hwc->sample_period;
3886
3887 again:
3888 old = val = atomic64_read(&hwc->period_left);
3889 if (val < 0)
3890 return 0;
3891
3892 nr = div64_u64(period + val, period);
3893 offset = nr * period;
3894 val -= offset;
3895 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3896 goto again;
3897
3898 return nr;
3899 }
3900
3901 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3902 int nmi, struct perf_sample_data *data,
3903 struct pt_regs *regs)
3904 {
3905 struct hw_perf_event *hwc = &event->hw;
3906 int throttle = 0;
3907
3908 data->period = event->hw.last_period;
3909 if (!overflow)
3910 overflow = perf_swevent_set_period(event);
3911
3912 if (hwc->interrupts == MAX_INTERRUPTS)
3913 return;
3914
3915 for (; overflow; overflow--) {
3916 if (__perf_event_overflow(event, nmi, throttle,
3917 data, regs)) {
3918 /*
3919 * We inhibit the overflow from happening when
3920 * hwc->interrupts == MAX_INTERRUPTS.
3921 */
3922 break;
3923 }
3924 throttle = 1;
3925 }
3926 }
3927
3928 static void perf_swevent_unthrottle(struct perf_event *event)
3929 {
3930 /*
3931 * Nothing to do, we already reset hwc->interrupts.
3932 */
3933 }
3934
3935 static void perf_swevent_add(struct perf_event *event, u64 nr,
3936 int nmi, struct perf_sample_data *data,
3937 struct pt_regs *regs)
3938 {
3939 struct hw_perf_event *hwc = &event->hw;
3940
3941 atomic64_add(nr, &event->count);
3942
3943 if (!regs)
3944 return;
3945
3946 if (!hwc->sample_period)
3947 return;
3948
3949 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3950 return perf_swevent_overflow(event, 1, nmi, data, regs);
3951
3952 if (atomic64_add_negative(nr, &hwc->period_left))
3953 return;
3954
3955 perf_swevent_overflow(event, 0, nmi, data, regs);
3956 }
3957
3958 static int perf_swevent_is_counting(struct perf_event *event)
3959 {
3960 /*
3961 * The event is active, we're good!
3962 */
3963 if (event->state == PERF_EVENT_STATE_ACTIVE)
3964 return 1;
3965
3966 /*
3967 * The event is off/error, not counting.
3968 */
3969 if (event->state != PERF_EVENT_STATE_INACTIVE)
3970 return 0;
3971
3972 /*
3973 * The event is inactive, if the context is active
3974 * we're part of a group that didn't make it on the 'pmu',
3975 * not counting.
3976 */
3977 if (event->ctx->is_active)
3978 return 0;
3979
3980 /*
3981 * We're inactive and the context is too, this means the
3982 * task is scheduled out, we're counting events that happen
3983 * to us, like migration events.
3984 */
3985 return 1;
3986 }
3987
3988 static int perf_tp_event_match(struct perf_event *event,
3989 struct perf_sample_data *data);
3990
3991 static int perf_exclude_event(struct perf_event *event,
3992 struct pt_regs *regs)
3993 {
3994 if (regs) {
3995 if (event->attr.exclude_user && user_mode(regs))
3996 return 1;
3997
3998 if (event->attr.exclude_kernel && !user_mode(regs))
3999 return 1;
4000 }
4001
4002 return 0;
4003 }
4004
4005 static int perf_swevent_match(struct perf_event *event,
4006 enum perf_type_id type,
4007 u32 event_id,
4008 struct perf_sample_data *data,
4009 struct pt_regs *regs)
4010 {
4011 if (event->cpu != -1 && event->cpu != smp_processor_id())
4012 return 0;
4013
4014 if (!perf_swevent_is_counting(event))
4015 return 0;
4016
4017 if (event->attr.type != type)
4018 return 0;
4019
4020 if (event->attr.config != event_id)
4021 return 0;
4022
4023 if (perf_exclude_event(event, regs))
4024 return 0;
4025
4026 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
4027 !perf_tp_event_match(event, data))
4028 return 0;
4029
4030 return 1;
4031 }
4032
4033 static void perf_swevent_ctx_event(struct perf_event_context *ctx,
4034 enum perf_type_id type,
4035 u32 event_id, u64 nr, int nmi,
4036 struct perf_sample_data *data,
4037 struct pt_regs *regs)
4038 {
4039 struct perf_event *event;
4040
4041 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4042 if (perf_swevent_match(event, type, event_id, data, regs))
4043 perf_swevent_add(event, nr, nmi, data, regs);
4044 }
4045 }
4046
4047 int perf_swevent_get_recursion_context(void)
4048 {
4049 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
4050 int rctx;
4051
4052 if (in_nmi())
4053 rctx = 3;
4054 else if (in_irq())
4055 rctx = 2;
4056 else if (in_softirq())
4057 rctx = 1;
4058 else
4059 rctx = 0;
4060
4061 if (cpuctx->recursion[rctx]) {
4062 put_cpu_var(perf_cpu_context);
4063 return -1;
4064 }
4065
4066 cpuctx->recursion[rctx]++;
4067 barrier();
4068
4069 return rctx;
4070 }
4071 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4072
4073 void perf_swevent_put_recursion_context(int rctx)
4074 {
4075 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4076 barrier();
4077 cpuctx->recursion[rctx]--;
4078 put_cpu_var(perf_cpu_context);
4079 }
4080 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
4081
4082 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4083 u64 nr, int nmi,
4084 struct perf_sample_data *data,
4085 struct pt_regs *regs)
4086 {
4087 struct perf_cpu_context *cpuctx;
4088 struct perf_event_context *ctx;
4089
4090 cpuctx = &__get_cpu_var(perf_cpu_context);
4091 rcu_read_lock();
4092 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
4093 nr, nmi, data, regs);
4094 /*
4095 * doesn't really matter which of the child contexts the
4096 * events ends up in.
4097 */
4098 ctx = rcu_dereference(current->perf_event_ctxp);
4099 if (ctx)
4100 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
4101 rcu_read_unlock();
4102 }
4103
4104 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4105 struct pt_regs *regs, u64 addr)
4106 {
4107 struct perf_sample_data data;
4108 int rctx;
4109
4110 rctx = perf_swevent_get_recursion_context();
4111 if (rctx < 0)
4112 return;
4113
4114 perf_sample_data_init(&data, addr);
4115
4116 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4117
4118 perf_swevent_put_recursion_context(rctx);
4119 }
4120
4121 static void perf_swevent_read(struct perf_event *event)
4122 {
4123 }
4124
4125 static int perf_swevent_enable(struct perf_event *event)
4126 {
4127 struct hw_perf_event *hwc = &event->hw;
4128
4129 if (hwc->sample_period) {
4130 hwc->last_period = hwc->sample_period;
4131 perf_swevent_set_period(event);
4132 }
4133 return 0;
4134 }
4135
4136 static void perf_swevent_disable(struct perf_event *event)
4137 {
4138 }
4139
4140 static const struct pmu perf_ops_generic = {
4141 .enable = perf_swevent_enable,
4142 .disable = perf_swevent_disable,
4143 .read = perf_swevent_read,
4144 .unthrottle = perf_swevent_unthrottle,
4145 };
4146
4147 /*
4148 * hrtimer based swevent callback
4149 */
4150
4151 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4152 {
4153 enum hrtimer_restart ret = HRTIMER_RESTART;
4154 struct perf_sample_data data;
4155 struct pt_regs *regs;
4156 struct perf_event *event;
4157 u64 period;
4158
4159 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4160 event->pmu->read(event);
4161
4162 perf_sample_data_init(&data, 0);
4163 data.period = event->hw.last_period;
4164 regs = get_irq_regs();
4165 /*
4166 * In case we exclude kernel IPs or are somehow not in interrupt
4167 * context, provide the next best thing, the user IP.
4168 */
4169 if ((event->attr.exclude_kernel || !regs) &&
4170 !event->attr.exclude_user)
4171 regs = task_pt_regs(current);
4172
4173 if (regs) {
4174 if (!(event->attr.exclude_idle && current->pid == 0))
4175 if (perf_event_overflow(event, 0, &data, regs))
4176 ret = HRTIMER_NORESTART;
4177 }
4178
4179 period = max_t(u64, 10000, event->hw.sample_period);
4180 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4181
4182 return ret;
4183 }
4184
4185 static void perf_swevent_start_hrtimer(struct perf_event *event)
4186 {
4187 struct hw_perf_event *hwc = &event->hw;
4188
4189 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4190 hwc->hrtimer.function = perf_swevent_hrtimer;
4191 if (hwc->sample_period) {
4192 u64 period;
4193
4194 if (hwc->remaining) {
4195 if (hwc->remaining < 0)
4196 period = 10000;
4197 else
4198 period = hwc->remaining;
4199 hwc->remaining = 0;
4200 } else {
4201 period = max_t(u64, 10000, hwc->sample_period);
4202 }
4203 __hrtimer_start_range_ns(&hwc->hrtimer,
4204 ns_to_ktime(period), 0,
4205 HRTIMER_MODE_REL, 0);
4206 }
4207 }
4208
4209 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4210 {
4211 struct hw_perf_event *hwc = &event->hw;
4212
4213 if (hwc->sample_period) {
4214 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4215 hwc->remaining = ktime_to_ns(remaining);
4216
4217 hrtimer_cancel(&hwc->hrtimer);
4218 }
4219 }
4220
4221 /*
4222 * Software event: cpu wall time clock
4223 */
4224
4225 static void cpu_clock_perf_event_update(struct perf_event *event)
4226 {
4227 int cpu = raw_smp_processor_id();
4228 s64 prev;
4229 u64 now;
4230
4231 now = cpu_clock(cpu);
4232 prev = atomic64_xchg(&event->hw.prev_count, now);
4233 atomic64_add(now - prev, &event->count);
4234 }
4235
4236 static int cpu_clock_perf_event_enable(struct perf_event *event)
4237 {
4238 struct hw_perf_event *hwc = &event->hw;
4239 int cpu = raw_smp_processor_id();
4240
4241 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4242 perf_swevent_start_hrtimer(event);
4243
4244 return 0;
4245 }
4246
4247 static void cpu_clock_perf_event_disable(struct perf_event *event)
4248 {
4249 perf_swevent_cancel_hrtimer(event);
4250 cpu_clock_perf_event_update(event);
4251 }
4252
4253 static void cpu_clock_perf_event_read(struct perf_event *event)
4254 {
4255 cpu_clock_perf_event_update(event);
4256 }
4257
4258 static const struct pmu perf_ops_cpu_clock = {
4259 .enable = cpu_clock_perf_event_enable,
4260 .disable = cpu_clock_perf_event_disable,
4261 .read = cpu_clock_perf_event_read,
4262 };
4263
4264 /*
4265 * Software event: task time clock
4266 */
4267
4268 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4269 {
4270 u64 prev;
4271 s64 delta;
4272
4273 prev = atomic64_xchg(&event->hw.prev_count, now);
4274 delta = now - prev;
4275 atomic64_add(delta, &event->count);
4276 }
4277
4278 static int task_clock_perf_event_enable(struct perf_event *event)
4279 {
4280 struct hw_perf_event *hwc = &event->hw;
4281 u64 now;
4282
4283 now = event->ctx->time;
4284
4285 atomic64_set(&hwc->prev_count, now);
4286
4287 perf_swevent_start_hrtimer(event);
4288
4289 return 0;
4290 }
4291
4292 static void task_clock_perf_event_disable(struct perf_event *event)
4293 {
4294 perf_swevent_cancel_hrtimer(event);
4295 task_clock_perf_event_update(event, event->ctx->time);
4296
4297 }
4298
4299 static void task_clock_perf_event_read(struct perf_event *event)
4300 {
4301 u64 time;
4302
4303 if (!in_nmi()) {
4304 update_context_time(event->ctx);
4305 time = event->ctx->time;
4306 } else {
4307 u64 now = perf_clock();
4308 u64 delta = now - event->ctx->timestamp;
4309 time = event->ctx->time + delta;
4310 }
4311
4312 task_clock_perf_event_update(event, time);
4313 }
4314
4315 static const struct pmu perf_ops_task_clock = {
4316 .enable = task_clock_perf_event_enable,
4317 .disable = task_clock_perf_event_disable,
4318 .read = task_clock_perf_event_read,
4319 };
4320
4321 #ifdef CONFIG_EVENT_TRACING
4322
4323 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4324 int entry_size, struct pt_regs *regs)
4325 {
4326 struct perf_sample_data data;
4327 struct perf_raw_record raw = {
4328 .size = entry_size,
4329 .data = record,
4330 };
4331
4332 perf_sample_data_init(&data, addr);
4333 data.raw = &raw;
4334
4335 /* Trace events already protected against recursion */
4336 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4337 &data, regs);
4338 }
4339 EXPORT_SYMBOL_GPL(perf_tp_event);
4340
4341 static int perf_tp_event_match(struct perf_event *event,
4342 struct perf_sample_data *data)
4343 {
4344 void *record = data->raw->data;
4345
4346 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4347 return 1;
4348 return 0;
4349 }
4350
4351 static void tp_perf_event_destroy(struct perf_event *event)
4352 {
4353 perf_trace_disable(event->attr.config);
4354 }
4355
4356 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4357 {
4358 /*
4359 * Raw tracepoint data is a severe data leak, only allow root to
4360 * have these.
4361 */
4362 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4363 perf_paranoid_tracepoint_raw() &&
4364 !capable(CAP_SYS_ADMIN))
4365 return ERR_PTR(-EPERM);
4366
4367 if (perf_trace_enable(event->attr.config))
4368 return NULL;
4369
4370 event->destroy = tp_perf_event_destroy;
4371
4372 return &perf_ops_generic;
4373 }
4374
4375 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4376 {
4377 char *filter_str;
4378 int ret;
4379
4380 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4381 return -EINVAL;
4382
4383 filter_str = strndup_user(arg, PAGE_SIZE);
4384 if (IS_ERR(filter_str))
4385 return PTR_ERR(filter_str);
4386
4387 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4388
4389 kfree(filter_str);
4390 return ret;
4391 }
4392
4393 static void perf_event_free_filter(struct perf_event *event)
4394 {
4395 ftrace_profile_free_filter(event);
4396 }
4397
4398 #else
4399
4400 static int perf_tp_event_match(struct perf_event *event,
4401 struct perf_sample_data *data)
4402 {
4403 return 1;
4404 }
4405
4406 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4407 {
4408 return NULL;
4409 }
4410
4411 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4412 {
4413 return -ENOENT;
4414 }
4415
4416 static void perf_event_free_filter(struct perf_event *event)
4417 {
4418 }
4419
4420 #endif /* CONFIG_EVENT_TRACING */
4421
4422 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4423 static void bp_perf_event_destroy(struct perf_event *event)
4424 {
4425 release_bp_slot(event);
4426 }
4427
4428 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4429 {
4430 int err;
4431
4432 err = register_perf_hw_breakpoint(bp);
4433 if (err)
4434 return ERR_PTR(err);
4435
4436 bp->destroy = bp_perf_event_destroy;
4437
4438 return &perf_ops_bp;
4439 }
4440
4441 void perf_bp_event(struct perf_event *bp, void *data)
4442 {
4443 struct perf_sample_data sample;
4444 struct pt_regs *regs = data;
4445
4446 perf_sample_data_init(&sample, bp->attr.bp_addr);
4447
4448 if (!perf_exclude_event(bp, regs))
4449 perf_swevent_add(bp, 1, 1, &sample, regs);
4450 }
4451 #else
4452 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4453 {
4454 return NULL;
4455 }
4456
4457 void perf_bp_event(struct perf_event *bp, void *regs)
4458 {
4459 }
4460 #endif
4461
4462 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4463
4464 static void sw_perf_event_destroy(struct perf_event *event)
4465 {
4466 u64 event_id = event->attr.config;
4467
4468 WARN_ON(event->parent);
4469
4470 atomic_dec(&perf_swevent_enabled[event_id]);
4471 }
4472
4473 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4474 {
4475 const struct pmu *pmu = NULL;
4476 u64 event_id = event->attr.config;
4477
4478 /*
4479 * Software events (currently) can't in general distinguish
4480 * between user, kernel and hypervisor events.
4481 * However, context switches and cpu migrations are considered
4482 * to be kernel events, and page faults are never hypervisor
4483 * events.
4484 */
4485 switch (event_id) {
4486 case PERF_COUNT_SW_CPU_CLOCK:
4487 pmu = &perf_ops_cpu_clock;
4488
4489 break;
4490 case PERF_COUNT_SW_TASK_CLOCK:
4491 /*
4492 * If the user instantiates this as a per-cpu event,
4493 * use the cpu_clock event instead.
4494 */
4495 if (event->ctx->task)
4496 pmu = &perf_ops_task_clock;
4497 else
4498 pmu = &perf_ops_cpu_clock;
4499
4500 break;
4501 case PERF_COUNT_SW_PAGE_FAULTS:
4502 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4503 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4504 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4505 case PERF_COUNT_SW_CPU_MIGRATIONS:
4506 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4507 case PERF_COUNT_SW_EMULATION_FAULTS:
4508 if (!event->parent) {
4509 atomic_inc(&perf_swevent_enabled[event_id]);
4510 event->destroy = sw_perf_event_destroy;
4511 }
4512 pmu = &perf_ops_generic;
4513 break;
4514 }
4515
4516 return pmu;
4517 }
4518
4519 /*
4520 * Allocate and initialize a event structure
4521 */
4522 static struct perf_event *
4523 perf_event_alloc(struct perf_event_attr *attr,
4524 int cpu,
4525 struct perf_event_context *ctx,
4526 struct perf_event *group_leader,
4527 struct perf_event *parent_event,
4528 perf_overflow_handler_t overflow_handler,
4529 gfp_t gfpflags)
4530 {
4531 const struct pmu *pmu;
4532 struct perf_event *event;
4533 struct hw_perf_event *hwc;
4534 long err;
4535
4536 event = kzalloc(sizeof(*event), gfpflags);
4537 if (!event)
4538 return ERR_PTR(-ENOMEM);
4539
4540 /*
4541 * Single events are their own group leaders, with an
4542 * empty sibling list:
4543 */
4544 if (!group_leader)
4545 group_leader = event;
4546
4547 mutex_init(&event->child_mutex);
4548 INIT_LIST_HEAD(&event->child_list);
4549
4550 INIT_LIST_HEAD(&event->group_entry);
4551 INIT_LIST_HEAD(&event->event_entry);
4552 INIT_LIST_HEAD(&event->sibling_list);
4553 init_waitqueue_head(&event->waitq);
4554
4555 mutex_init(&event->mmap_mutex);
4556
4557 event->cpu = cpu;
4558 event->attr = *attr;
4559 event->group_leader = group_leader;
4560 event->pmu = NULL;
4561 event->ctx = ctx;
4562 event->oncpu = -1;
4563
4564 event->parent = parent_event;
4565
4566 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4567 event->id = atomic64_inc_return(&perf_event_id);
4568
4569 event->state = PERF_EVENT_STATE_INACTIVE;
4570
4571 if (!overflow_handler && parent_event)
4572 overflow_handler = parent_event->overflow_handler;
4573
4574 event->overflow_handler = overflow_handler;
4575
4576 if (attr->disabled)
4577 event->state = PERF_EVENT_STATE_OFF;
4578
4579 pmu = NULL;
4580
4581 hwc = &event->hw;
4582 hwc->sample_period = attr->sample_period;
4583 if (attr->freq && attr->sample_freq)
4584 hwc->sample_period = 1;
4585 hwc->last_period = hwc->sample_period;
4586
4587 atomic64_set(&hwc->period_left, hwc->sample_period);
4588
4589 /*
4590 * we currently do not support PERF_FORMAT_GROUP on inherited events
4591 */
4592 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4593 goto done;
4594
4595 switch (attr->type) {
4596 case PERF_TYPE_RAW:
4597 case PERF_TYPE_HARDWARE:
4598 case PERF_TYPE_HW_CACHE:
4599 pmu = hw_perf_event_init(event);
4600 break;
4601
4602 case PERF_TYPE_SOFTWARE:
4603 pmu = sw_perf_event_init(event);
4604 break;
4605
4606 case PERF_TYPE_TRACEPOINT:
4607 pmu = tp_perf_event_init(event);
4608 break;
4609
4610 case PERF_TYPE_BREAKPOINT:
4611 pmu = bp_perf_event_init(event);
4612 break;
4613
4614
4615 default:
4616 break;
4617 }
4618 done:
4619 err = 0;
4620 if (!pmu)
4621 err = -EINVAL;
4622 else if (IS_ERR(pmu))
4623 err = PTR_ERR(pmu);
4624
4625 if (err) {
4626 if (event->ns)
4627 put_pid_ns(event->ns);
4628 kfree(event);
4629 return ERR_PTR(err);
4630 }
4631
4632 event->pmu = pmu;
4633
4634 if (!event->parent) {
4635 atomic_inc(&nr_events);
4636 if (event->attr.mmap)
4637 atomic_inc(&nr_mmap_events);
4638 if (event->attr.comm)
4639 atomic_inc(&nr_comm_events);
4640 if (event->attr.task)
4641 atomic_inc(&nr_task_events);
4642 }
4643
4644 return event;
4645 }
4646
4647 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4648 struct perf_event_attr *attr)
4649 {
4650 u32 size;
4651 int ret;
4652
4653 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4654 return -EFAULT;
4655
4656 /*
4657 * zero the full structure, so that a short copy will be nice.
4658 */
4659 memset(attr, 0, sizeof(*attr));
4660
4661 ret = get_user(size, &uattr->size);
4662 if (ret)
4663 return ret;
4664
4665 if (size > PAGE_SIZE) /* silly large */
4666 goto err_size;
4667
4668 if (!size) /* abi compat */
4669 size = PERF_ATTR_SIZE_VER0;
4670
4671 if (size < PERF_ATTR_SIZE_VER0)
4672 goto err_size;
4673
4674 /*
4675 * If we're handed a bigger struct than we know of,
4676 * ensure all the unknown bits are 0 - i.e. new
4677 * user-space does not rely on any kernel feature
4678 * extensions we dont know about yet.
4679 */
4680 if (size > sizeof(*attr)) {
4681 unsigned char __user *addr;
4682 unsigned char __user *end;
4683 unsigned char val;
4684
4685 addr = (void __user *)uattr + sizeof(*attr);
4686 end = (void __user *)uattr + size;
4687
4688 for (; addr < end; addr++) {
4689 ret = get_user(val, addr);
4690 if (ret)
4691 return ret;
4692 if (val)
4693 goto err_size;
4694 }
4695 size = sizeof(*attr);
4696 }
4697
4698 ret = copy_from_user(attr, uattr, size);
4699 if (ret)
4700 return -EFAULT;
4701
4702 /*
4703 * If the type exists, the corresponding creation will verify
4704 * the attr->config.
4705 */
4706 if (attr->type >= PERF_TYPE_MAX)
4707 return -EINVAL;
4708
4709 if (attr->__reserved_1)
4710 return -EINVAL;
4711
4712 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4713 return -EINVAL;
4714
4715 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4716 return -EINVAL;
4717
4718 out:
4719 return ret;
4720
4721 err_size:
4722 put_user(sizeof(*attr), &uattr->size);
4723 ret = -E2BIG;
4724 goto out;
4725 }
4726
4727 static int perf_event_set_output(struct perf_event *event, int output_fd)
4728 {
4729 struct perf_event *output_event = NULL;
4730 struct file *output_file = NULL;
4731 struct perf_event *old_output;
4732 int fput_needed = 0;
4733 int ret = -EINVAL;
4734
4735 if (!output_fd)
4736 goto set;
4737
4738 output_file = fget_light(output_fd, &fput_needed);
4739 if (!output_file)
4740 return -EBADF;
4741
4742 if (output_file->f_op != &perf_fops)
4743 goto out;
4744
4745 output_event = output_file->private_data;
4746
4747 /* Don't chain output fds */
4748 if (output_event->output)
4749 goto out;
4750
4751 /* Don't set an output fd when we already have an output channel */
4752 if (event->data)
4753 goto out;
4754
4755 atomic_long_inc(&output_file->f_count);
4756
4757 set:
4758 mutex_lock(&event->mmap_mutex);
4759 old_output = event->output;
4760 rcu_assign_pointer(event->output, output_event);
4761 mutex_unlock(&event->mmap_mutex);
4762
4763 if (old_output) {
4764 /*
4765 * we need to make sure no existing perf_output_*()
4766 * is still referencing this event.
4767 */
4768 synchronize_rcu();
4769 fput(old_output->filp);
4770 }
4771
4772 ret = 0;
4773 out:
4774 fput_light(output_file, fput_needed);
4775 return ret;
4776 }
4777
4778 /**
4779 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4780 *
4781 * @attr_uptr: event_id type attributes for monitoring/sampling
4782 * @pid: target pid
4783 * @cpu: target cpu
4784 * @group_fd: group leader event fd
4785 */
4786 SYSCALL_DEFINE5(perf_event_open,
4787 struct perf_event_attr __user *, attr_uptr,
4788 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4789 {
4790 struct perf_event *event, *group_leader;
4791 struct perf_event_attr attr;
4792 struct perf_event_context *ctx;
4793 struct file *event_file = NULL;
4794 struct file *group_file = NULL;
4795 int fput_needed = 0;
4796 int fput_needed2 = 0;
4797 int err;
4798
4799 /* for future expandability... */
4800 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4801 return -EINVAL;
4802
4803 err = perf_copy_attr(attr_uptr, &attr);
4804 if (err)
4805 return err;
4806
4807 if (!attr.exclude_kernel) {
4808 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4809 return -EACCES;
4810 }
4811
4812 if (attr.freq) {
4813 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4814 return -EINVAL;
4815 }
4816
4817 /*
4818 * Get the target context (task or percpu):
4819 */
4820 ctx = find_get_context(pid, cpu);
4821 if (IS_ERR(ctx))
4822 return PTR_ERR(ctx);
4823
4824 /*
4825 * Look up the group leader (we will attach this event to it):
4826 */
4827 group_leader = NULL;
4828 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4829 err = -EINVAL;
4830 group_file = fget_light(group_fd, &fput_needed);
4831 if (!group_file)
4832 goto err_put_context;
4833 if (group_file->f_op != &perf_fops)
4834 goto err_put_context;
4835
4836 group_leader = group_file->private_data;
4837 /*
4838 * Do not allow a recursive hierarchy (this new sibling
4839 * becoming part of another group-sibling):
4840 */
4841 if (group_leader->group_leader != group_leader)
4842 goto err_put_context;
4843 /*
4844 * Do not allow to attach to a group in a different
4845 * task or CPU context:
4846 */
4847 if (group_leader->ctx != ctx)
4848 goto err_put_context;
4849 /*
4850 * Only a group leader can be exclusive or pinned
4851 */
4852 if (attr.exclusive || attr.pinned)
4853 goto err_put_context;
4854 }
4855
4856 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4857 NULL, NULL, GFP_KERNEL);
4858 err = PTR_ERR(event);
4859 if (IS_ERR(event))
4860 goto err_put_context;
4861
4862 err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
4863 if (err < 0)
4864 goto err_free_put_context;
4865
4866 event_file = fget_light(err, &fput_needed2);
4867 if (!event_file)
4868 goto err_free_put_context;
4869
4870 if (flags & PERF_FLAG_FD_OUTPUT) {
4871 err = perf_event_set_output(event, group_fd);
4872 if (err)
4873 goto err_fput_free_put_context;
4874 }
4875
4876 event->filp = event_file;
4877 WARN_ON_ONCE(ctx->parent_ctx);
4878 mutex_lock(&ctx->mutex);
4879 perf_install_in_context(ctx, event, cpu);
4880 ++ctx->generation;
4881 mutex_unlock(&ctx->mutex);
4882
4883 event->owner = current;
4884 get_task_struct(current);
4885 mutex_lock(&current->perf_event_mutex);
4886 list_add_tail(&event->owner_entry, &current->perf_event_list);
4887 mutex_unlock(&current->perf_event_mutex);
4888
4889 err_fput_free_put_context:
4890 fput_light(event_file, fput_needed2);
4891
4892 err_free_put_context:
4893 if (err < 0)
4894 kfree(event);
4895
4896 err_put_context:
4897 if (err < 0)
4898 put_ctx(ctx);
4899
4900 fput_light(group_file, fput_needed);
4901
4902 return err;
4903 }
4904
4905 /**
4906 * perf_event_create_kernel_counter
4907 *
4908 * @attr: attributes of the counter to create
4909 * @cpu: cpu in which the counter is bound
4910 * @pid: task to profile
4911 */
4912 struct perf_event *
4913 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4914 pid_t pid,
4915 perf_overflow_handler_t overflow_handler)
4916 {
4917 struct perf_event *event;
4918 struct perf_event_context *ctx;
4919 int err;
4920
4921 /*
4922 * Get the target context (task or percpu):
4923 */
4924
4925 ctx = find_get_context(pid, cpu);
4926 if (IS_ERR(ctx)) {
4927 err = PTR_ERR(ctx);
4928 goto err_exit;
4929 }
4930
4931 event = perf_event_alloc(attr, cpu, ctx, NULL,
4932 NULL, overflow_handler, GFP_KERNEL);
4933 if (IS_ERR(event)) {
4934 err = PTR_ERR(event);
4935 goto err_put_context;
4936 }
4937
4938 event->filp = NULL;
4939 WARN_ON_ONCE(ctx->parent_ctx);
4940 mutex_lock(&ctx->mutex);
4941 perf_install_in_context(ctx, event, cpu);
4942 ++ctx->generation;
4943 mutex_unlock(&ctx->mutex);
4944
4945 event->owner = current;
4946 get_task_struct(current);
4947 mutex_lock(&current->perf_event_mutex);
4948 list_add_tail(&event->owner_entry, &current->perf_event_list);
4949 mutex_unlock(&current->perf_event_mutex);
4950
4951 return event;
4952
4953 err_put_context:
4954 put_ctx(ctx);
4955 err_exit:
4956 return ERR_PTR(err);
4957 }
4958 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4959
4960 /*
4961 * inherit a event from parent task to child task:
4962 */
4963 static struct perf_event *
4964 inherit_event(struct perf_event *parent_event,
4965 struct task_struct *parent,
4966 struct perf_event_context *parent_ctx,
4967 struct task_struct *child,
4968 struct perf_event *group_leader,
4969 struct perf_event_context *child_ctx)
4970 {
4971 struct perf_event *child_event;
4972
4973 /*
4974 * Instead of creating recursive hierarchies of events,
4975 * we link inherited events back to the original parent,
4976 * which has a filp for sure, which we use as the reference
4977 * count:
4978 */
4979 if (parent_event->parent)
4980 parent_event = parent_event->parent;
4981
4982 child_event = perf_event_alloc(&parent_event->attr,
4983 parent_event->cpu, child_ctx,
4984 group_leader, parent_event,
4985 NULL, GFP_KERNEL);
4986 if (IS_ERR(child_event))
4987 return child_event;
4988 get_ctx(child_ctx);
4989
4990 /*
4991 * Make the child state follow the state of the parent event,
4992 * not its attr.disabled bit. We hold the parent's mutex,
4993 * so we won't race with perf_event_{en, dis}able_family.
4994 */
4995 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
4996 child_event->state = PERF_EVENT_STATE_INACTIVE;
4997 else
4998 child_event->state = PERF_EVENT_STATE_OFF;
4999
5000 if (parent_event->attr.freq) {
5001 u64 sample_period = parent_event->hw.sample_period;
5002 struct hw_perf_event *hwc = &child_event->hw;
5003
5004 hwc->sample_period = sample_period;
5005 hwc->last_period = sample_period;
5006
5007 atomic64_set(&hwc->period_left, sample_period);
5008 }
5009
5010 child_event->overflow_handler = parent_event->overflow_handler;
5011
5012 /*
5013 * Link it up in the child's context:
5014 */
5015 add_event_to_ctx(child_event, child_ctx);
5016
5017 /*
5018 * Get a reference to the parent filp - we will fput it
5019 * when the child event exits. This is safe to do because
5020 * we are in the parent and we know that the filp still
5021 * exists and has a nonzero count:
5022 */
5023 atomic_long_inc(&parent_event->filp->f_count);
5024
5025 /*
5026 * Link this into the parent event's child list
5027 */
5028 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5029 mutex_lock(&parent_event->child_mutex);
5030 list_add_tail(&child_event->child_list, &parent_event->child_list);
5031 mutex_unlock(&parent_event->child_mutex);
5032
5033 return child_event;
5034 }
5035
5036 static int inherit_group(struct perf_event *parent_event,
5037 struct task_struct *parent,
5038 struct perf_event_context *parent_ctx,
5039 struct task_struct *child,
5040 struct perf_event_context *child_ctx)
5041 {
5042 struct perf_event *leader;
5043 struct perf_event *sub;
5044 struct perf_event *child_ctr;
5045
5046 leader = inherit_event(parent_event, parent, parent_ctx,
5047 child, NULL, child_ctx);
5048 if (IS_ERR(leader))
5049 return PTR_ERR(leader);
5050 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5051 child_ctr = inherit_event(sub, parent, parent_ctx,
5052 child, leader, child_ctx);
5053 if (IS_ERR(child_ctr))
5054 return PTR_ERR(child_ctr);
5055 }
5056 return 0;
5057 }
5058
5059 static void sync_child_event(struct perf_event *child_event,
5060 struct task_struct *child)
5061 {
5062 struct perf_event *parent_event = child_event->parent;
5063 u64 child_val;
5064
5065 if (child_event->attr.inherit_stat)
5066 perf_event_read_event(child_event, child);
5067
5068 child_val = atomic64_read(&child_event->count);
5069
5070 /*
5071 * Add back the child's count to the parent's count:
5072 */
5073 atomic64_add(child_val, &parent_event->count);
5074 atomic64_add(child_event->total_time_enabled,
5075 &parent_event->child_total_time_enabled);
5076 atomic64_add(child_event->total_time_running,
5077 &parent_event->child_total_time_running);
5078
5079 /*
5080 * Remove this event from the parent's list
5081 */
5082 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5083 mutex_lock(&parent_event->child_mutex);
5084 list_del_init(&child_event->child_list);
5085 mutex_unlock(&parent_event->child_mutex);
5086
5087 /*
5088 * Release the parent event, if this was the last
5089 * reference to it.
5090 */
5091 fput(parent_event->filp);
5092 }
5093
5094 static void
5095 __perf_event_exit_task(struct perf_event *child_event,
5096 struct perf_event_context *child_ctx,
5097 struct task_struct *child)
5098 {
5099 struct perf_event *parent_event;
5100
5101 perf_event_remove_from_context(child_event);
5102
5103 parent_event = child_event->parent;
5104 /*
5105 * It can happen that parent exits first, and has events
5106 * that are still around due to the child reference. These
5107 * events need to be zapped - but otherwise linger.
5108 */
5109 if (parent_event) {
5110 sync_child_event(child_event, child);
5111 free_event(child_event);
5112 }
5113 }
5114
5115 /*
5116 * When a child task exits, feed back event values to parent events.
5117 */
5118 void perf_event_exit_task(struct task_struct *child)
5119 {
5120 struct perf_event *child_event, *tmp;
5121 struct perf_event_context *child_ctx;
5122 unsigned long flags;
5123
5124 if (likely(!child->perf_event_ctxp)) {
5125 perf_event_task(child, NULL, 0);
5126 return;
5127 }
5128
5129 local_irq_save(flags);
5130 /*
5131 * We can't reschedule here because interrupts are disabled,
5132 * and either child is current or it is a task that can't be
5133 * scheduled, so we are now safe from rescheduling changing
5134 * our context.
5135 */
5136 child_ctx = child->perf_event_ctxp;
5137 __perf_event_task_sched_out(child_ctx);
5138
5139 /*
5140 * Take the context lock here so that if find_get_context is
5141 * reading child->perf_event_ctxp, we wait until it has
5142 * incremented the context's refcount before we do put_ctx below.
5143 */
5144 raw_spin_lock(&child_ctx->lock);
5145 child->perf_event_ctxp = NULL;
5146 /*
5147 * If this context is a clone; unclone it so it can't get
5148 * swapped to another process while we're removing all
5149 * the events from it.
5150 */
5151 unclone_ctx(child_ctx);
5152 update_context_time(child_ctx);
5153 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5154
5155 /*
5156 * Report the task dead after unscheduling the events so that we
5157 * won't get any samples after PERF_RECORD_EXIT. We can however still
5158 * get a few PERF_RECORD_READ events.
5159 */
5160 perf_event_task(child, child_ctx, 0);
5161
5162 /*
5163 * We can recurse on the same lock type through:
5164 *
5165 * __perf_event_exit_task()
5166 * sync_child_event()
5167 * fput(parent_event->filp)
5168 * perf_release()
5169 * mutex_lock(&ctx->mutex)
5170 *
5171 * But since its the parent context it won't be the same instance.
5172 */
5173 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5174
5175 again:
5176 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5177 group_entry)
5178 __perf_event_exit_task(child_event, child_ctx, child);
5179
5180 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5181 group_entry)
5182 __perf_event_exit_task(child_event, child_ctx, child);
5183
5184 /*
5185 * If the last event was a group event, it will have appended all
5186 * its siblings to the list, but we obtained 'tmp' before that which
5187 * will still point to the list head terminating the iteration.
5188 */
5189 if (!list_empty(&child_ctx->pinned_groups) ||
5190 !list_empty(&child_ctx->flexible_groups))
5191 goto again;
5192
5193 mutex_unlock(&child_ctx->mutex);
5194
5195 put_ctx(child_ctx);
5196 }
5197
5198 static void perf_free_event(struct perf_event *event,
5199 struct perf_event_context *ctx)
5200 {
5201 struct perf_event *parent = event->parent;
5202
5203 if (WARN_ON_ONCE(!parent))
5204 return;
5205
5206 mutex_lock(&parent->child_mutex);
5207 list_del_init(&event->child_list);
5208 mutex_unlock(&parent->child_mutex);
5209
5210 fput(parent->filp);
5211
5212 list_del_event(event, ctx);
5213 free_event(event);
5214 }
5215
5216 /*
5217 * free an unexposed, unused context as created by inheritance by
5218 * init_task below, used by fork() in case of fail.
5219 */
5220 void perf_event_free_task(struct task_struct *task)
5221 {
5222 struct perf_event_context *ctx = task->perf_event_ctxp;
5223 struct perf_event *event, *tmp;
5224
5225 if (!ctx)
5226 return;
5227
5228 mutex_lock(&ctx->mutex);
5229 again:
5230 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5231 perf_free_event(event, ctx);
5232
5233 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5234 group_entry)
5235 perf_free_event(event, ctx);
5236
5237 if (!list_empty(&ctx->pinned_groups) ||
5238 !list_empty(&ctx->flexible_groups))
5239 goto again;
5240
5241 mutex_unlock(&ctx->mutex);
5242
5243 put_ctx(ctx);
5244 }
5245
5246 static int
5247 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5248 struct perf_event_context *parent_ctx,
5249 struct task_struct *child,
5250 int *inherited_all)
5251 {
5252 int ret;
5253 struct perf_event_context *child_ctx = child->perf_event_ctxp;
5254
5255 if (!event->attr.inherit) {
5256 *inherited_all = 0;
5257 return 0;
5258 }
5259
5260 if (!child_ctx) {
5261 /*
5262 * This is executed from the parent task context, so
5263 * inherit events that have been marked for cloning.
5264 * First allocate and initialize a context for the
5265 * child.
5266 */
5267
5268 child_ctx = kzalloc(sizeof(struct perf_event_context),
5269 GFP_KERNEL);
5270 if (!child_ctx)
5271 return -ENOMEM;
5272
5273 __perf_event_init_context(child_ctx, child);
5274 child->perf_event_ctxp = child_ctx;
5275 get_task_struct(child);
5276 }
5277
5278 ret = inherit_group(event, parent, parent_ctx,
5279 child, child_ctx);
5280
5281 if (ret)
5282 *inherited_all = 0;
5283
5284 return ret;
5285 }
5286
5287
5288 /*
5289 * Initialize the perf_event context in task_struct
5290 */
5291 int perf_event_init_task(struct task_struct *child)
5292 {
5293 struct perf_event_context *child_ctx, *parent_ctx;
5294 struct perf_event_context *cloned_ctx;
5295 struct perf_event *event;
5296 struct task_struct *parent = current;
5297 int inherited_all = 1;
5298 int ret = 0;
5299
5300 child->perf_event_ctxp = NULL;
5301
5302 mutex_init(&child->perf_event_mutex);
5303 INIT_LIST_HEAD(&child->perf_event_list);
5304
5305 if (likely(!parent->perf_event_ctxp))
5306 return 0;
5307
5308 /*
5309 * If the parent's context is a clone, pin it so it won't get
5310 * swapped under us.
5311 */
5312 parent_ctx = perf_pin_task_context(parent);
5313
5314 /*
5315 * No need to check if parent_ctx != NULL here; since we saw
5316 * it non-NULL earlier, the only reason for it to become NULL
5317 * is if we exit, and since we're currently in the middle of
5318 * a fork we can't be exiting at the same time.
5319 */
5320
5321 /*
5322 * Lock the parent list. No need to lock the child - not PID
5323 * hashed yet and not running, so nobody can access it.
5324 */
5325 mutex_lock(&parent_ctx->mutex);
5326
5327 /*
5328 * We dont have to disable NMIs - we are only looking at
5329 * the list, not manipulating it:
5330 */
5331 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5332 ret = inherit_task_group(event, parent, parent_ctx, child,
5333 &inherited_all);
5334 if (ret)
5335 break;
5336 }
5337
5338 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5339 ret = inherit_task_group(event, parent, parent_ctx, child,
5340 &inherited_all);
5341 if (ret)
5342 break;
5343 }
5344
5345 child_ctx = child->perf_event_ctxp;
5346
5347 if (child_ctx && inherited_all) {
5348 /*
5349 * Mark the child context as a clone of the parent
5350 * context, or of whatever the parent is a clone of.
5351 * Note that if the parent is a clone, it could get
5352 * uncloned at any point, but that doesn't matter
5353 * because the list of events and the generation
5354 * count can't have changed since we took the mutex.
5355 */
5356 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5357 if (cloned_ctx) {
5358 child_ctx->parent_ctx = cloned_ctx;
5359 child_ctx->parent_gen = parent_ctx->parent_gen;
5360 } else {
5361 child_ctx->parent_ctx = parent_ctx;
5362 child_ctx->parent_gen = parent_ctx->generation;
5363 }
5364 get_ctx(child_ctx->parent_ctx);
5365 }
5366
5367 mutex_unlock(&parent_ctx->mutex);
5368
5369 perf_unpin_context(parent_ctx);
5370
5371 return ret;
5372 }
5373
5374 static void __init perf_event_init_all_cpus(void)
5375 {
5376 int cpu;
5377 struct perf_cpu_context *cpuctx;
5378
5379 for_each_possible_cpu(cpu) {
5380 cpuctx = &per_cpu(perf_cpu_context, cpu);
5381 __perf_event_init_context(&cpuctx->ctx, NULL);
5382 }
5383 }
5384
5385 static void __cpuinit perf_event_init_cpu(int cpu)
5386 {
5387 struct perf_cpu_context *cpuctx;
5388
5389 cpuctx = &per_cpu(perf_cpu_context, cpu);
5390
5391 spin_lock(&perf_resource_lock);
5392 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5393 spin_unlock(&perf_resource_lock);
5394 }
5395
5396 #ifdef CONFIG_HOTPLUG_CPU
5397 static void __perf_event_exit_cpu(void *info)
5398 {
5399 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5400 struct perf_event_context *ctx = &cpuctx->ctx;
5401 struct perf_event *event, *tmp;
5402
5403 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5404 __perf_event_remove_from_context(event);
5405 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5406 __perf_event_remove_from_context(event);
5407 }
5408 static void perf_event_exit_cpu(int cpu)
5409 {
5410 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5411 struct perf_event_context *ctx = &cpuctx->ctx;
5412
5413 mutex_lock(&ctx->mutex);
5414 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5415 mutex_unlock(&ctx->mutex);
5416 }
5417 #else
5418 static inline void perf_event_exit_cpu(int cpu) { }
5419 #endif
5420
5421 static int __cpuinit
5422 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5423 {
5424 unsigned int cpu = (long)hcpu;
5425
5426 switch (action) {
5427
5428 case CPU_UP_PREPARE:
5429 case CPU_UP_PREPARE_FROZEN:
5430 perf_event_init_cpu(cpu);
5431 break;
5432
5433 case CPU_DOWN_PREPARE:
5434 case CPU_DOWN_PREPARE_FROZEN:
5435 perf_event_exit_cpu(cpu);
5436 break;
5437
5438 default:
5439 break;
5440 }
5441
5442 return NOTIFY_OK;
5443 }
5444
5445 /*
5446 * This has to have a higher priority than migration_notifier in sched.c.
5447 */
5448 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5449 .notifier_call = perf_cpu_notify,
5450 .priority = 20,
5451 };
5452
5453 void __init perf_event_init(void)
5454 {
5455 perf_event_init_all_cpus();
5456 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5457 (void *)(long)smp_processor_id());
5458 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5459 (void *)(long)smp_processor_id());
5460 register_cpu_notifier(&perf_cpu_nb);
5461 }
5462
5463 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5464 struct sysdev_class_attribute *attr,
5465 char *buf)
5466 {
5467 return sprintf(buf, "%d\n", perf_reserved_percpu);
5468 }
5469
5470 static ssize_t
5471 perf_set_reserve_percpu(struct sysdev_class *class,
5472 struct sysdev_class_attribute *attr,
5473 const char *buf,
5474 size_t count)
5475 {
5476 struct perf_cpu_context *cpuctx;
5477 unsigned long val;
5478 int err, cpu, mpt;
5479
5480 err = strict_strtoul(buf, 10, &val);
5481 if (err)
5482 return err;
5483 if (val > perf_max_events)
5484 return -EINVAL;
5485
5486 spin_lock(&perf_resource_lock);
5487 perf_reserved_percpu = val;
5488 for_each_online_cpu(cpu) {
5489 cpuctx = &per_cpu(perf_cpu_context, cpu);
5490 raw_spin_lock_irq(&cpuctx->ctx.lock);
5491 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5492 perf_max_events - perf_reserved_percpu);
5493 cpuctx->max_pertask = mpt;
5494 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5495 }
5496 spin_unlock(&perf_resource_lock);
5497
5498 return count;
5499 }
5500
5501 static ssize_t perf_show_overcommit(struct sysdev_class *class,
5502 struct sysdev_class_attribute *attr,
5503 char *buf)
5504 {
5505 return sprintf(buf, "%d\n", perf_overcommit);
5506 }
5507
5508 static ssize_t
5509 perf_set_overcommit(struct sysdev_class *class,
5510 struct sysdev_class_attribute *attr,
5511 const char *buf, size_t count)
5512 {
5513 unsigned long val;
5514 int err;
5515
5516 err = strict_strtoul(buf, 10, &val);
5517 if (err)
5518 return err;
5519 if (val > 1)
5520 return -EINVAL;
5521
5522 spin_lock(&perf_resource_lock);
5523 perf_overcommit = val;
5524 spin_unlock(&perf_resource_lock);
5525
5526 return count;
5527 }
5528
5529 static SYSDEV_CLASS_ATTR(
5530 reserve_percpu,
5531 0644,
5532 perf_show_reserve_percpu,
5533 perf_set_reserve_percpu
5534 );
5535
5536 static SYSDEV_CLASS_ATTR(
5537 overcommit,
5538 0644,
5539 perf_show_overcommit,
5540 perf_set_overcommit
5541 );
5542
5543 static struct attribute *perfclass_attrs[] = {
5544 &attr_reserve_percpu.attr,
5545 &attr_overcommit.attr,
5546 NULL
5547 };
5548
5549 static struct attribute_group perfclass_attr_group = {
5550 .attrs = perfclass_attrs,
5551 .name = "perf_events",
5552 };
5553
5554 static int __init perf_event_sysfs_init(void)
5555 {
5556 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5557 &perfclass_attr_group);
5558 }
5559 device_initcall(perf_event_sysfs_init);
This page took 0.17342 seconds and 6 git commands to generate.