Merge branch 'fix/asoc' into for-linus
[deliverable/linux.git] / kernel / perf_event.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34 #include <linux/hw_breakpoint.h>
35
36 #include <asm/irq_regs.h>
37
38 /*
39 * Each CPU has a list of per CPU events:
40 */
41 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
42
43 int perf_max_events __read_mostly = 1;
44 static int perf_reserved_percpu __read_mostly;
45 static int perf_overcommit __read_mostly = 1;
46
47 static atomic_t nr_events __read_mostly;
48 static atomic_t nr_mmap_events __read_mostly;
49 static atomic_t nr_comm_events __read_mostly;
50 static atomic_t nr_task_events __read_mostly;
51
52 /*
53 * perf event paranoia level:
54 * -1 - not paranoid at all
55 * 0 - disallow raw tracepoint access for unpriv
56 * 1 - disallow cpu events for unpriv
57 * 2 - disallow kernel profiling for unpriv
58 */
59 int sysctl_perf_event_paranoid __read_mostly = 1;
60
61 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
62
63 /*
64 * max perf event sample rate
65 */
66 int sysctl_perf_event_sample_rate __read_mostly = 100000;
67
68 static atomic64_t perf_event_id;
69
70 /*
71 * Lock for (sysadmin-configurable) event reservations:
72 */
73 static DEFINE_SPINLOCK(perf_resource_lock);
74
75 /*
76 * Architecture provided APIs - weak aliases:
77 */
78 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
79 {
80 return NULL;
81 }
82
83 void __weak hw_perf_disable(void) { barrier(); }
84 void __weak hw_perf_enable(void) { barrier(); }
85
86 void __weak perf_event_print_debug(void) { }
87
88 static DEFINE_PER_CPU(int, perf_disable_count);
89
90 void perf_disable(void)
91 {
92 if (!__get_cpu_var(perf_disable_count)++)
93 hw_perf_disable();
94 }
95
96 void perf_enable(void)
97 {
98 if (!--__get_cpu_var(perf_disable_count))
99 hw_perf_enable();
100 }
101
102 static void get_ctx(struct perf_event_context *ctx)
103 {
104 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
105 }
106
107 static void free_ctx(struct rcu_head *head)
108 {
109 struct perf_event_context *ctx;
110
111 ctx = container_of(head, struct perf_event_context, rcu_head);
112 kfree(ctx);
113 }
114
115 static void put_ctx(struct perf_event_context *ctx)
116 {
117 if (atomic_dec_and_test(&ctx->refcount)) {
118 if (ctx->parent_ctx)
119 put_ctx(ctx->parent_ctx);
120 if (ctx->task)
121 put_task_struct(ctx->task);
122 call_rcu(&ctx->rcu_head, free_ctx);
123 }
124 }
125
126 static void unclone_ctx(struct perf_event_context *ctx)
127 {
128 if (ctx->parent_ctx) {
129 put_ctx(ctx->parent_ctx);
130 ctx->parent_ctx = NULL;
131 }
132 }
133
134 /*
135 * If we inherit events we want to return the parent event id
136 * to userspace.
137 */
138 static u64 primary_event_id(struct perf_event *event)
139 {
140 u64 id = event->id;
141
142 if (event->parent)
143 id = event->parent->id;
144
145 return id;
146 }
147
148 /*
149 * Get the perf_event_context for a task and lock it.
150 * This has to cope with with the fact that until it is locked,
151 * the context could get moved to another task.
152 */
153 static struct perf_event_context *
154 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
155 {
156 struct perf_event_context *ctx;
157
158 rcu_read_lock();
159 retry:
160 ctx = rcu_dereference(task->perf_event_ctxp);
161 if (ctx) {
162 /*
163 * If this context is a clone of another, it might
164 * get swapped for another underneath us by
165 * perf_event_task_sched_out, though the
166 * rcu_read_lock() protects us from any context
167 * getting freed. Lock the context and check if it
168 * got swapped before we could get the lock, and retry
169 * if so. If we locked the right context, then it
170 * can't get swapped on us any more.
171 */
172 raw_spin_lock_irqsave(&ctx->lock, *flags);
173 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
174 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
175 goto retry;
176 }
177
178 if (!atomic_inc_not_zero(&ctx->refcount)) {
179 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
180 ctx = NULL;
181 }
182 }
183 rcu_read_unlock();
184 return ctx;
185 }
186
187 /*
188 * Get the context for a task and increment its pin_count so it
189 * can't get swapped to another task. This also increments its
190 * reference count so that the context can't get freed.
191 */
192 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
193 {
194 struct perf_event_context *ctx;
195 unsigned long flags;
196
197 ctx = perf_lock_task_context(task, &flags);
198 if (ctx) {
199 ++ctx->pin_count;
200 raw_spin_unlock_irqrestore(&ctx->lock, flags);
201 }
202 return ctx;
203 }
204
205 static void perf_unpin_context(struct perf_event_context *ctx)
206 {
207 unsigned long flags;
208
209 raw_spin_lock_irqsave(&ctx->lock, flags);
210 --ctx->pin_count;
211 raw_spin_unlock_irqrestore(&ctx->lock, flags);
212 put_ctx(ctx);
213 }
214
215 static inline u64 perf_clock(void)
216 {
217 return cpu_clock(raw_smp_processor_id());
218 }
219
220 /*
221 * Update the record of the current time in a context.
222 */
223 static void update_context_time(struct perf_event_context *ctx)
224 {
225 u64 now = perf_clock();
226
227 ctx->time += now - ctx->timestamp;
228 ctx->timestamp = now;
229 }
230
231 /*
232 * Update the total_time_enabled and total_time_running fields for a event.
233 */
234 static void update_event_times(struct perf_event *event)
235 {
236 struct perf_event_context *ctx = event->ctx;
237 u64 run_end;
238
239 if (event->state < PERF_EVENT_STATE_INACTIVE ||
240 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
241 return;
242
243 if (ctx->is_active)
244 run_end = ctx->time;
245 else
246 run_end = event->tstamp_stopped;
247
248 event->total_time_enabled = run_end - event->tstamp_enabled;
249
250 if (event->state == PERF_EVENT_STATE_INACTIVE)
251 run_end = event->tstamp_stopped;
252 else
253 run_end = ctx->time;
254
255 event->total_time_running = run_end - event->tstamp_running;
256 }
257
258 /*
259 * Update total_time_enabled and total_time_running for all events in a group.
260 */
261 static void update_group_times(struct perf_event *leader)
262 {
263 struct perf_event *event;
264
265 update_event_times(leader);
266 list_for_each_entry(event, &leader->sibling_list, group_entry)
267 update_event_times(event);
268 }
269
270 static struct list_head *
271 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
272 {
273 if (event->attr.pinned)
274 return &ctx->pinned_groups;
275 else
276 return &ctx->flexible_groups;
277 }
278
279 /*
280 * Add a event from the lists for its context.
281 * Must be called with ctx->mutex and ctx->lock held.
282 */
283 static void
284 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
285 {
286 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
287 event->attach_state |= PERF_ATTACH_CONTEXT;
288
289 /*
290 * If we're a stand alone event or group leader, we go to the context
291 * list, group events are kept attached to the group so that
292 * perf_group_detach can, at all times, locate all siblings.
293 */
294 if (event->group_leader == event) {
295 struct list_head *list;
296
297 if (is_software_event(event))
298 event->group_flags |= PERF_GROUP_SOFTWARE;
299
300 list = ctx_group_list(event, ctx);
301 list_add_tail(&event->group_entry, list);
302 }
303
304 list_add_rcu(&event->event_entry, &ctx->event_list);
305 ctx->nr_events++;
306 if (event->attr.inherit_stat)
307 ctx->nr_stat++;
308 }
309
310 static void perf_group_attach(struct perf_event *event)
311 {
312 struct perf_event *group_leader = event->group_leader;
313
314 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
315 event->attach_state |= PERF_ATTACH_GROUP;
316
317 if (group_leader == event)
318 return;
319
320 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
321 !is_software_event(event))
322 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
323
324 list_add_tail(&event->group_entry, &group_leader->sibling_list);
325 group_leader->nr_siblings++;
326 }
327
328 /*
329 * Remove a event from the lists for its context.
330 * Must be called with ctx->mutex and ctx->lock held.
331 */
332 static void
333 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
334 {
335 /*
336 * We can have double detach due to exit/hot-unplug + close.
337 */
338 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
339 return;
340
341 event->attach_state &= ~PERF_ATTACH_CONTEXT;
342
343 ctx->nr_events--;
344 if (event->attr.inherit_stat)
345 ctx->nr_stat--;
346
347 list_del_rcu(&event->event_entry);
348
349 if (event->group_leader == event)
350 list_del_init(&event->group_entry);
351
352 update_group_times(event);
353
354 /*
355 * If event was in error state, then keep it
356 * that way, otherwise bogus counts will be
357 * returned on read(). The only way to get out
358 * of error state is by explicit re-enabling
359 * of the event
360 */
361 if (event->state > PERF_EVENT_STATE_OFF)
362 event->state = PERF_EVENT_STATE_OFF;
363 }
364
365 static void perf_group_detach(struct perf_event *event)
366 {
367 struct perf_event *sibling, *tmp;
368 struct list_head *list = NULL;
369
370 /*
371 * We can have double detach due to exit/hot-unplug + close.
372 */
373 if (!(event->attach_state & PERF_ATTACH_GROUP))
374 return;
375
376 event->attach_state &= ~PERF_ATTACH_GROUP;
377
378 /*
379 * If this is a sibling, remove it from its group.
380 */
381 if (event->group_leader != event) {
382 list_del_init(&event->group_entry);
383 event->group_leader->nr_siblings--;
384 return;
385 }
386
387 if (!list_empty(&event->group_entry))
388 list = &event->group_entry;
389
390 /*
391 * If this was a group event with sibling events then
392 * upgrade the siblings to singleton events by adding them
393 * to whatever list we are on.
394 */
395 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
396 if (list)
397 list_move_tail(&sibling->group_entry, list);
398 sibling->group_leader = sibling;
399
400 /* Inherit group flags from the previous leader */
401 sibling->group_flags = event->group_flags;
402 }
403 }
404
405 static void
406 event_sched_out(struct perf_event *event,
407 struct perf_cpu_context *cpuctx,
408 struct perf_event_context *ctx)
409 {
410 if (event->state != PERF_EVENT_STATE_ACTIVE)
411 return;
412
413 event->state = PERF_EVENT_STATE_INACTIVE;
414 if (event->pending_disable) {
415 event->pending_disable = 0;
416 event->state = PERF_EVENT_STATE_OFF;
417 }
418 event->tstamp_stopped = ctx->time;
419 event->pmu->disable(event);
420 event->oncpu = -1;
421
422 if (!is_software_event(event))
423 cpuctx->active_oncpu--;
424 ctx->nr_active--;
425 if (event->attr.exclusive || !cpuctx->active_oncpu)
426 cpuctx->exclusive = 0;
427 }
428
429 static void
430 group_sched_out(struct perf_event *group_event,
431 struct perf_cpu_context *cpuctx,
432 struct perf_event_context *ctx)
433 {
434 struct perf_event *event;
435
436 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
437 return;
438
439 event_sched_out(group_event, cpuctx, ctx);
440
441 /*
442 * Schedule out siblings (if any):
443 */
444 list_for_each_entry(event, &group_event->sibling_list, group_entry)
445 event_sched_out(event, cpuctx, ctx);
446
447 if (group_event->attr.exclusive)
448 cpuctx->exclusive = 0;
449 }
450
451 /*
452 * Cross CPU call to remove a performance event
453 *
454 * We disable the event on the hardware level first. After that we
455 * remove it from the context list.
456 */
457 static void __perf_event_remove_from_context(void *info)
458 {
459 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
460 struct perf_event *event = info;
461 struct perf_event_context *ctx = event->ctx;
462
463 /*
464 * If this is a task context, we need to check whether it is
465 * the current task context of this cpu. If not it has been
466 * scheduled out before the smp call arrived.
467 */
468 if (ctx->task && cpuctx->task_ctx != ctx)
469 return;
470
471 raw_spin_lock(&ctx->lock);
472 /*
473 * Protect the list operation against NMI by disabling the
474 * events on a global level.
475 */
476 perf_disable();
477
478 event_sched_out(event, cpuctx, ctx);
479
480 list_del_event(event, ctx);
481
482 if (!ctx->task) {
483 /*
484 * Allow more per task events with respect to the
485 * reservation:
486 */
487 cpuctx->max_pertask =
488 min(perf_max_events - ctx->nr_events,
489 perf_max_events - perf_reserved_percpu);
490 }
491
492 perf_enable();
493 raw_spin_unlock(&ctx->lock);
494 }
495
496
497 /*
498 * Remove the event from a task's (or a CPU's) list of events.
499 *
500 * Must be called with ctx->mutex held.
501 *
502 * CPU events are removed with a smp call. For task events we only
503 * call when the task is on a CPU.
504 *
505 * If event->ctx is a cloned context, callers must make sure that
506 * every task struct that event->ctx->task could possibly point to
507 * remains valid. This is OK when called from perf_release since
508 * that only calls us on the top-level context, which can't be a clone.
509 * When called from perf_event_exit_task, it's OK because the
510 * context has been detached from its task.
511 */
512 static void perf_event_remove_from_context(struct perf_event *event)
513 {
514 struct perf_event_context *ctx = event->ctx;
515 struct task_struct *task = ctx->task;
516
517 if (!task) {
518 /*
519 * Per cpu events are removed via an smp call and
520 * the removal is always successful.
521 */
522 smp_call_function_single(event->cpu,
523 __perf_event_remove_from_context,
524 event, 1);
525 return;
526 }
527
528 retry:
529 task_oncpu_function_call(task, __perf_event_remove_from_context,
530 event);
531
532 raw_spin_lock_irq(&ctx->lock);
533 /*
534 * If the context is active we need to retry the smp call.
535 */
536 if (ctx->nr_active && !list_empty(&event->group_entry)) {
537 raw_spin_unlock_irq(&ctx->lock);
538 goto retry;
539 }
540
541 /*
542 * The lock prevents that this context is scheduled in so we
543 * can remove the event safely, if the call above did not
544 * succeed.
545 */
546 if (!list_empty(&event->group_entry))
547 list_del_event(event, ctx);
548 raw_spin_unlock_irq(&ctx->lock);
549 }
550
551 /*
552 * Cross CPU call to disable a performance event
553 */
554 static void __perf_event_disable(void *info)
555 {
556 struct perf_event *event = info;
557 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
558 struct perf_event_context *ctx = event->ctx;
559
560 /*
561 * If this is a per-task event, need to check whether this
562 * event's task is the current task on this cpu.
563 */
564 if (ctx->task && cpuctx->task_ctx != ctx)
565 return;
566
567 raw_spin_lock(&ctx->lock);
568
569 /*
570 * If the event is on, turn it off.
571 * If it is in error state, leave it in error state.
572 */
573 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
574 update_context_time(ctx);
575 update_group_times(event);
576 if (event == event->group_leader)
577 group_sched_out(event, cpuctx, ctx);
578 else
579 event_sched_out(event, cpuctx, ctx);
580 event->state = PERF_EVENT_STATE_OFF;
581 }
582
583 raw_spin_unlock(&ctx->lock);
584 }
585
586 /*
587 * Disable a event.
588 *
589 * If event->ctx is a cloned context, callers must make sure that
590 * every task struct that event->ctx->task could possibly point to
591 * remains valid. This condition is satisifed when called through
592 * perf_event_for_each_child or perf_event_for_each because they
593 * hold the top-level event's child_mutex, so any descendant that
594 * goes to exit will block in sync_child_event.
595 * When called from perf_pending_event it's OK because event->ctx
596 * is the current context on this CPU and preemption is disabled,
597 * hence we can't get into perf_event_task_sched_out for this context.
598 */
599 void perf_event_disable(struct perf_event *event)
600 {
601 struct perf_event_context *ctx = event->ctx;
602 struct task_struct *task = ctx->task;
603
604 if (!task) {
605 /*
606 * Disable the event on the cpu that it's on
607 */
608 smp_call_function_single(event->cpu, __perf_event_disable,
609 event, 1);
610 return;
611 }
612
613 retry:
614 task_oncpu_function_call(task, __perf_event_disable, event);
615
616 raw_spin_lock_irq(&ctx->lock);
617 /*
618 * If the event is still active, we need to retry the cross-call.
619 */
620 if (event->state == PERF_EVENT_STATE_ACTIVE) {
621 raw_spin_unlock_irq(&ctx->lock);
622 goto retry;
623 }
624
625 /*
626 * Since we have the lock this context can't be scheduled
627 * in, so we can change the state safely.
628 */
629 if (event->state == PERF_EVENT_STATE_INACTIVE) {
630 update_group_times(event);
631 event->state = PERF_EVENT_STATE_OFF;
632 }
633
634 raw_spin_unlock_irq(&ctx->lock);
635 }
636
637 static int
638 event_sched_in(struct perf_event *event,
639 struct perf_cpu_context *cpuctx,
640 struct perf_event_context *ctx)
641 {
642 if (event->state <= PERF_EVENT_STATE_OFF)
643 return 0;
644
645 event->state = PERF_EVENT_STATE_ACTIVE;
646 event->oncpu = smp_processor_id();
647 /*
648 * The new state must be visible before we turn it on in the hardware:
649 */
650 smp_wmb();
651
652 if (event->pmu->enable(event)) {
653 event->state = PERF_EVENT_STATE_INACTIVE;
654 event->oncpu = -1;
655 return -EAGAIN;
656 }
657
658 event->tstamp_running += ctx->time - event->tstamp_stopped;
659
660 if (!is_software_event(event))
661 cpuctx->active_oncpu++;
662 ctx->nr_active++;
663
664 if (event->attr.exclusive)
665 cpuctx->exclusive = 1;
666
667 return 0;
668 }
669
670 static int
671 group_sched_in(struct perf_event *group_event,
672 struct perf_cpu_context *cpuctx,
673 struct perf_event_context *ctx)
674 {
675 struct perf_event *event, *partial_group = NULL;
676 const struct pmu *pmu = group_event->pmu;
677 bool txn = false;
678 int ret;
679
680 if (group_event->state == PERF_EVENT_STATE_OFF)
681 return 0;
682
683 /* Check if group transaction availabe */
684 if (pmu->start_txn)
685 txn = true;
686
687 if (txn)
688 pmu->start_txn(pmu);
689
690 if (event_sched_in(group_event, cpuctx, ctx)) {
691 if (txn)
692 pmu->cancel_txn(pmu);
693 return -EAGAIN;
694 }
695
696 /*
697 * Schedule in siblings as one group (if any):
698 */
699 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
700 if (event_sched_in(event, cpuctx, ctx)) {
701 partial_group = event;
702 goto group_error;
703 }
704 }
705
706 if (!txn)
707 return 0;
708
709 ret = pmu->commit_txn(pmu);
710 if (!ret) {
711 pmu->cancel_txn(pmu);
712 return 0;
713 }
714
715 group_error:
716 /*
717 * Groups can be scheduled in as one unit only, so undo any
718 * partial group before returning:
719 */
720 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
721 if (event == partial_group)
722 break;
723 event_sched_out(event, cpuctx, ctx);
724 }
725 event_sched_out(group_event, cpuctx, ctx);
726
727 if (txn)
728 pmu->cancel_txn(pmu);
729
730 return -EAGAIN;
731 }
732
733 /*
734 * Work out whether we can put this event group on the CPU now.
735 */
736 static int group_can_go_on(struct perf_event *event,
737 struct perf_cpu_context *cpuctx,
738 int can_add_hw)
739 {
740 /*
741 * Groups consisting entirely of software events can always go on.
742 */
743 if (event->group_flags & PERF_GROUP_SOFTWARE)
744 return 1;
745 /*
746 * If an exclusive group is already on, no other hardware
747 * events can go on.
748 */
749 if (cpuctx->exclusive)
750 return 0;
751 /*
752 * If this group is exclusive and there are already
753 * events on the CPU, it can't go on.
754 */
755 if (event->attr.exclusive && cpuctx->active_oncpu)
756 return 0;
757 /*
758 * Otherwise, try to add it if all previous groups were able
759 * to go on.
760 */
761 return can_add_hw;
762 }
763
764 static void add_event_to_ctx(struct perf_event *event,
765 struct perf_event_context *ctx)
766 {
767 list_add_event(event, ctx);
768 perf_group_attach(event);
769 event->tstamp_enabled = ctx->time;
770 event->tstamp_running = ctx->time;
771 event->tstamp_stopped = ctx->time;
772 }
773
774 /*
775 * Cross CPU call to install and enable a performance event
776 *
777 * Must be called with ctx->mutex held
778 */
779 static void __perf_install_in_context(void *info)
780 {
781 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
782 struct perf_event *event = info;
783 struct perf_event_context *ctx = event->ctx;
784 struct perf_event *leader = event->group_leader;
785 int err;
786
787 /*
788 * If this is a task context, we need to check whether it is
789 * the current task context of this cpu. If not it has been
790 * scheduled out before the smp call arrived.
791 * Or possibly this is the right context but it isn't
792 * on this cpu because it had no events.
793 */
794 if (ctx->task && cpuctx->task_ctx != ctx) {
795 if (cpuctx->task_ctx || ctx->task != current)
796 return;
797 cpuctx->task_ctx = ctx;
798 }
799
800 raw_spin_lock(&ctx->lock);
801 ctx->is_active = 1;
802 update_context_time(ctx);
803
804 /*
805 * Protect the list operation against NMI by disabling the
806 * events on a global level. NOP for non NMI based events.
807 */
808 perf_disable();
809
810 add_event_to_ctx(event, ctx);
811
812 if (event->cpu != -1 && event->cpu != smp_processor_id())
813 goto unlock;
814
815 /*
816 * Don't put the event on if it is disabled or if
817 * it is in a group and the group isn't on.
818 */
819 if (event->state != PERF_EVENT_STATE_INACTIVE ||
820 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
821 goto unlock;
822
823 /*
824 * An exclusive event can't go on if there are already active
825 * hardware events, and no hardware event can go on if there
826 * is already an exclusive event on.
827 */
828 if (!group_can_go_on(event, cpuctx, 1))
829 err = -EEXIST;
830 else
831 err = event_sched_in(event, cpuctx, ctx);
832
833 if (err) {
834 /*
835 * This event couldn't go on. If it is in a group
836 * then we have to pull the whole group off.
837 * If the event group is pinned then put it in error state.
838 */
839 if (leader != event)
840 group_sched_out(leader, cpuctx, ctx);
841 if (leader->attr.pinned) {
842 update_group_times(leader);
843 leader->state = PERF_EVENT_STATE_ERROR;
844 }
845 }
846
847 if (!err && !ctx->task && cpuctx->max_pertask)
848 cpuctx->max_pertask--;
849
850 unlock:
851 perf_enable();
852
853 raw_spin_unlock(&ctx->lock);
854 }
855
856 /*
857 * Attach a performance event to a context
858 *
859 * First we add the event to the list with the hardware enable bit
860 * in event->hw_config cleared.
861 *
862 * If the event is attached to a task which is on a CPU we use a smp
863 * call to enable it in the task context. The task might have been
864 * scheduled away, but we check this in the smp call again.
865 *
866 * Must be called with ctx->mutex held.
867 */
868 static void
869 perf_install_in_context(struct perf_event_context *ctx,
870 struct perf_event *event,
871 int cpu)
872 {
873 struct task_struct *task = ctx->task;
874
875 if (!task) {
876 /*
877 * Per cpu events are installed via an smp call and
878 * the install is always successful.
879 */
880 smp_call_function_single(cpu, __perf_install_in_context,
881 event, 1);
882 return;
883 }
884
885 retry:
886 task_oncpu_function_call(task, __perf_install_in_context,
887 event);
888
889 raw_spin_lock_irq(&ctx->lock);
890 /*
891 * we need to retry the smp call.
892 */
893 if (ctx->is_active && list_empty(&event->group_entry)) {
894 raw_spin_unlock_irq(&ctx->lock);
895 goto retry;
896 }
897
898 /*
899 * The lock prevents that this context is scheduled in so we
900 * can add the event safely, if it the call above did not
901 * succeed.
902 */
903 if (list_empty(&event->group_entry))
904 add_event_to_ctx(event, ctx);
905 raw_spin_unlock_irq(&ctx->lock);
906 }
907
908 /*
909 * Put a event into inactive state and update time fields.
910 * Enabling the leader of a group effectively enables all
911 * the group members that aren't explicitly disabled, so we
912 * have to update their ->tstamp_enabled also.
913 * Note: this works for group members as well as group leaders
914 * since the non-leader members' sibling_lists will be empty.
915 */
916 static void __perf_event_mark_enabled(struct perf_event *event,
917 struct perf_event_context *ctx)
918 {
919 struct perf_event *sub;
920
921 event->state = PERF_EVENT_STATE_INACTIVE;
922 event->tstamp_enabled = ctx->time - event->total_time_enabled;
923 list_for_each_entry(sub, &event->sibling_list, group_entry)
924 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
925 sub->tstamp_enabled =
926 ctx->time - sub->total_time_enabled;
927 }
928
929 /*
930 * Cross CPU call to enable a performance event
931 */
932 static void __perf_event_enable(void *info)
933 {
934 struct perf_event *event = info;
935 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
936 struct perf_event_context *ctx = event->ctx;
937 struct perf_event *leader = event->group_leader;
938 int err;
939
940 /*
941 * If this is a per-task event, need to check whether this
942 * event's task is the current task on this cpu.
943 */
944 if (ctx->task && cpuctx->task_ctx != ctx) {
945 if (cpuctx->task_ctx || ctx->task != current)
946 return;
947 cpuctx->task_ctx = ctx;
948 }
949
950 raw_spin_lock(&ctx->lock);
951 ctx->is_active = 1;
952 update_context_time(ctx);
953
954 if (event->state >= PERF_EVENT_STATE_INACTIVE)
955 goto unlock;
956 __perf_event_mark_enabled(event, ctx);
957
958 if (event->cpu != -1 && event->cpu != smp_processor_id())
959 goto unlock;
960
961 /*
962 * If the event is in a group and isn't the group leader,
963 * then don't put it on unless the group is on.
964 */
965 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
966 goto unlock;
967
968 if (!group_can_go_on(event, cpuctx, 1)) {
969 err = -EEXIST;
970 } else {
971 perf_disable();
972 if (event == leader)
973 err = group_sched_in(event, cpuctx, ctx);
974 else
975 err = event_sched_in(event, cpuctx, ctx);
976 perf_enable();
977 }
978
979 if (err) {
980 /*
981 * If this event can't go on and it's part of a
982 * group, then the whole group has to come off.
983 */
984 if (leader != event)
985 group_sched_out(leader, cpuctx, ctx);
986 if (leader->attr.pinned) {
987 update_group_times(leader);
988 leader->state = PERF_EVENT_STATE_ERROR;
989 }
990 }
991
992 unlock:
993 raw_spin_unlock(&ctx->lock);
994 }
995
996 /*
997 * Enable a event.
998 *
999 * If event->ctx is a cloned context, callers must make sure that
1000 * every task struct that event->ctx->task could possibly point to
1001 * remains valid. This condition is satisfied when called through
1002 * perf_event_for_each_child or perf_event_for_each as described
1003 * for perf_event_disable.
1004 */
1005 void perf_event_enable(struct perf_event *event)
1006 {
1007 struct perf_event_context *ctx = event->ctx;
1008 struct task_struct *task = ctx->task;
1009
1010 if (!task) {
1011 /*
1012 * Enable the event on the cpu that it's on
1013 */
1014 smp_call_function_single(event->cpu, __perf_event_enable,
1015 event, 1);
1016 return;
1017 }
1018
1019 raw_spin_lock_irq(&ctx->lock);
1020 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1021 goto out;
1022
1023 /*
1024 * If the event is in error state, clear that first.
1025 * That way, if we see the event in error state below, we
1026 * know that it has gone back into error state, as distinct
1027 * from the task having been scheduled away before the
1028 * cross-call arrived.
1029 */
1030 if (event->state == PERF_EVENT_STATE_ERROR)
1031 event->state = PERF_EVENT_STATE_OFF;
1032
1033 retry:
1034 raw_spin_unlock_irq(&ctx->lock);
1035 task_oncpu_function_call(task, __perf_event_enable, event);
1036
1037 raw_spin_lock_irq(&ctx->lock);
1038
1039 /*
1040 * If the context is active and the event is still off,
1041 * we need to retry the cross-call.
1042 */
1043 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1044 goto retry;
1045
1046 /*
1047 * Since we have the lock this context can't be scheduled
1048 * in, so we can change the state safely.
1049 */
1050 if (event->state == PERF_EVENT_STATE_OFF)
1051 __perf_event_mark_enabled(event, ctx);
1052
1053 out:
1054 raw_spin_unlock_irq(&ctx->lock);
1055 }
1056
1057 static int perf_event_refresh(struct perf_event *event, int refresh)
1058 {
1059 /*
1060 * not supported on inherited events
1061 */
1062 if (event->attr.inherit)
1063 return -EINVAL;
1064
1065 atomic_add(refresh, &event->event_limit);
1066 perf_event_enable(event);
1067
1068 return 0;
1069 }
1070
1071 enum event_type_t {
1072 EVENT_FLEXIBLE = 0x1,
1073 EVENT_PINNED = 0x2,
1074 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1075 };
1076
1077 static void ctx_sched_out(struct perf_event_context *ctx,
1078 struct perf_cpu_context *cpuctx,
1079 enum event_type_t event_type)
1080 {
1081 struct perf_event *event;
1082
1083 raw_spin_lock(&ctx->lock);
1084 ctx->is_active = 0;
1085 if (likely(!ctx->nr_events))
1086 goto out;
1087 update_context_time(ctx);
1088
1089 perf_disable();
1090 if (!ctx->nr_active)
1091 goto out_enable;
1092
1093 if (event_type & EVENT_PINNED)
1094 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1095 group_sched_out(event, cpuctx, ctx);
1096
1097 if (event_type & EVENT_FLEXIBLE)
1098 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1099 group_sched_out(event, cpuctx, ctx);
1100
1101 out_enable:
1102 perf_enable();
1103 out:
1104 raw_spin_unlock(&ctx->lock);
1105 }
1106
1107 /*
1108 * Test whether two contexts are equivalent, i.e. whether they
1109 * have both been cloned from the same version of the same context
1110 * and they both have the same number of enabled events.
1111 * If the number of enabled events is the same, then the set
1112 * of enabled events should be the same, because these are both
1113 * inherited contexts, therefore we can't access individual events
1114 * in them directly with an fd; we can only enable/disable all
1115 * events via prctl, or enable/disable all events in a family
1116 * via ioctl, which will have the same effect on both contexts.
1117 */
1118 static int context_equiv(struct perf_event_context *ctx1,
1119 struct perf_event_context *ctx2)
1120 {
1121 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1122 && ctx1->parent_gen == ctx2->parent_gen
1123 && !ctx1->pin_count && !ctx2->pin_count;
1124 }
1125
1126 static void __perf_event_sync_stat(struct perf_event *event,
1127 struct perf_event *next_event)
1128 {
1129 u64 value;
1130
1131 if (!event->attr.inherit_stat)
1132 return;
1133
1134 /*
1135 * Update the event value, we cannot use perf_event_read()
1136 * because we're in the middle of a context switch and have IRQs
1137 * disabled, which upsets smp_call_function_single(), however
1138 * we know the event must be on the current CPU, therefore we
1139 * don't need to use it.
1140 */
1141 switch (event->state) {
1142 case PERF_EVENT_STATE_ACTIVE:
1143 event->pmu->read(event);
1144 /* fall-through */
1145
1146 case PERF_EVENT_STATE_INACTIVE:
1147 update_event_times(event);
1148 break;
1149
1150 default:
1151 break;
1152 }
1153
1154 /*
1155 * In order to keep per-task stats reliable we need to flip the event
1156 * values when we flip the contexts.
1157 */
1158 value = atomic64_read(&next_event->count);
1159 value = atomic64_xchg(&event->count, value);
1160 atomic64_set(&next_event->count, value);
1161
1162 swap(event->total_time_enabled, next_event->total_time_enabled);
1163 swap(event->total_time_running, next_event->total_time_running);
1164
1165 /*
1166 * Since we swizzled the values, update the user visible data too.
1167 */
1168 perf_event_update_userpage(event);
1169 perf_event_update_userpage(next_event);
1170 }
1171
1172 #define list_next_entry(pos, member) \
1173 list_entry(pos->member.next, typeof(*pos), member)
1174
1175 static void perf_event_sync_stat(struct perf_event_context *ctx,
1176 struct perf_event_context *next_ctx)
1177 {
1178 struct perf_event *event, *next_event;
1179
1180 if (!ctx->nr_stat)
1181 return;
1182
1183 update_context_time(ctx);
1184
1185 event = list_first_entry(&ctx->event_list,
1186 struct perf_event, event_entry);
1187
1188 next_event = list_first_entry(&next_ctx->event_list,
1189 struct perf_event, event_entry);
1190
1191 while (&event->event_entry != &ctx->event_list &&
1192 &next_event->event_entry != &next_ctx->event_list) {
1193
1194 __perf_event_sync_stat(event, next_event);
1195
1196 event = list_next_entry(event, event_entry);
1197 next_event = list_next_entry(next_event, event_entry);
1198 }
1199 }
1200
1201 /*
1202 * Called from scheduler to remove the events of the current task,
1203 * with interrupts disabled.
1204 *
1205 * We stop each event and update the event value in event->count.
1206 *
1207 * This does not protect us against NMI, but disable()
1208 * sets the disabled bit in the control field of event _before_
1209 * accessing the event control register. If a NMI hits, then it will
1210 * not restart the event.
1211 */
1212 void perf_event_task_sched_out(struct task_struct *task,
1213 struct task_struct *next)
1214 {
1215 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1216 struct perf_event_context *ctx = task->perf_event_ctxp;
1217 struct perf_event_context *next_ctx;
1218 struct perf_event_context *parent;
1219 int do_switch = 1;
1220
1221 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1222
1223 if (likely(!ctx || !cpuctx->task_ctx))
1224 return;
1225
1226 rcu_read_lock();
1227 parent = rcu_dereference(ctx->parent_ctx);
1228 next_ctx = next->perf_event_ctxp;
1229 if (parent && next_ctx &&
1230 rcu_dereference(next_ctx->parent_ctx) == parent) {
1231 /*
1232 * Looks like the two contexts are clones, so we might be
1233 * able to optimize the context switch. We lock both
1234 * contexts and check that they are clones under the
1235 * lock (including re-checking that neither has been
1236 * uncloned in the meantime). It doesn't matter which
1237 * order we take the locks because no other cpu could
1238 * be trying to lock both of these tasks.
1239 */
1240 raw_spin_lock(&ctx->lock);
1241 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1242 if (context_equiv(ctx, next_ctx)) {
1243 /*
1244 * XXX do we need a memory barrier of sorts
1245 * wrt to rcu_dereference() of perf_event_ctxp
1246 */
1247 task->perf_event_ctxp = next_ctx;
1248 next->perf_event_ctxp = ctx;
1249 ctx->task = next;
1250 next_ctx->task = task;
1251 do_switch = 0;
1252
1253 perf_event_sync_stat(ctx, next_ctx);
1254 }
1255 raw_spin_unlock(&next_ctx->lock);
1256 raw_spin_unlock(&ctx->lock);
1257 }
1258 rcu_read_unlock();
1259
1260 if (do_switch) {
1261 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1262 cpuctx->task_ctx = NULL;
1263 }
1264 }
1265
1266 static void task_ctx_sched_out(struct perf_event_context *ctx,
1267 enum event_type_t event_type)
1268 {
1269 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1270
1271 if (!cpuctx->task_ctx)
1272 return;
1273
1274 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1275 return;
1276
1277 ctx_sched_out(ctx, cpuctx, event_type);
1278 cpuctx->task_ctx = NULL;
1279 }
1280
1281 /*
1282 * Called with IRQs disabled
1283 */
1284 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1285 {
1286 task_ctx_sched_out(ctx, EVENT_ALL);
1287 }
1288
1289 /*
1290 * Called with IRQs disabled
1291 */
1292 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1293 enum event_type_t event_type)
1294 {
1295 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1296 }
1297
1298 static void
1299 ctx_pinned_sched_in(struct perf_event_context *ctx,
1300 struct perf_cpu_context *cpuctx)
1301 {
1302 struct perf_event *event;
1303
1304 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1305 if (event->state <= PERF_EVENT_STATE_OFF)
1306 continue;
1307 if (event->cpu != -1 && event->cpu != smp_processor_id())
1308 continue;
1309
1310 if (group_can_go_on(event, cpuctx, 1))
1311 group_sched_in(event, cpuctx, ctx);
1312
1313 /*
1314 * If this pinned group hasn't been scheduled,
1315 * put it in error state.
1316 */
1317 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1318 update_group_times(event);
1319 event->state = PERF_EVENT_STATE_ERROR;
1320 }
1321 }
1322 }
1323
1324 static void
1325 ctx_flexible_sched_in(struct perf_event_context *ctx,
1326 struct perf_cpu_context *cpuctx)
1327 {
1328 struct perf_event *event;
1329 int can_add_hw = 1;
1330
1331 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1332 /* Ignore events in OFF or ERROR state */
1333 if (event->state <= PERF_EVENT_STATE_OFF)
1334 continue;
1335 /*
1336 * Listen to the 'cpu' scheduling filter constraint
1337 * of events:
1338 */
1339 if (event->cpu != -1 && event->cpu != smp_processor_id())
1340 continue;
1341
1342 if (group_can_go_on(event, cpuctx, can_add_hw))
1343 if (group_sched_in(event, cpuctx, ctx))
1344 can_add_hw = 0;
1345 }
1346 }
1347
1348 static void
1349 ctx_sched_in(struct perf_event_context *ctx,
1350 struct perf_cpu_context *cpuctx,
1351 enum event_type_t event_type)
1352 {
1353 raw_spin_lock(&ctx->lock);
1354 ctx->is_active = 1;
1355 if (likely(!ctx->nr_events))
1356 goto out;
1357
1358 ctx->timestamp = perf_clock();
1359
1360 perf_disable();
1361
1362 /*
1363 * First go through the list and put on any pinned groups
1364 * in order to give them the best chance of going on.
1365 */
1366 if (event_type & EVENT_PINNED)
1367 ctx_pinned_sched_in(ctx, cpuctx);
1368
1369 /* Then walk through the lower prio flexible groups */
1370 if (event_type & EVENT_FLEXIBLE)
1371 ctx_flexible_sched_in(ctx, cpuctx);
1372
1373 perf_enable();
1374 out:
1375 raw_spin_unlock(&ctx->lock);
1376 }
1377
1378 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1379 enum event_type_t event_type)
1380 {
1381 struct perf_event_context *ctx = &cpuctx->ctx;
1382
1383 ctx_sched_in(ctx, cpuctx, event_type);
1384 }
1385
1386 static void task_ctx_sched_in(struct task_struct *task,
1387 enum event_type_t event_type)
1388 {
1389 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1390 struct perf_event_context *ctx = task->perf_event_ctxp;
1391
1392 if (likely(!ctx))
1393 return;
1394 if (cpuctx->task_ctx == ctx)
1395 return;
1396 ctx_sched_in(ctx, cpuctx, event_type);
1397 cpuctx->task_ctx = ctx;
1398 }
1399 /*
1400 * Called from scheduler to add the events of the current task
1401 * with interrupts disabled.
1402 *
1403 * We restore the event value and then enable it.
1404 *
1405 * This does not protect us against NMI, but enable()
1406 * sets the enabled bit in the control field of event _before_
1407 * accessing the event control register. If a NMI hits, then it will
1408 * keep the event running.
1409 */
1410 void perf_event_task_sched_in(struct task_struct *task)
1411 {
1412 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1413 struct perf_event_context *ctx = task->perf_event_ctxp;
1414
1415 if (likely(!ctx))
1416 return;
1417
1418 if (cpuctx->task_ctx == ctx)
1419 return;
1420
1421 perf_disable();
1422
1423 /*
1424 * We want to keep the following priority order:
1425 * cpu pinned (that don't need to move), task pinned,
1426 * cpu flexible, task flexible.
1427 */
1428 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1429
1430 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1431 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1432 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1433
1434 cpuctx->task_ctx = ctx;
1435
1436 perf_enable();
1437 }
1438
1439 #define MAX_INTERRUPTS (~0ULL)
1440
1441 static void perf_log_throttle(struct perf_event *event, int enable);
1442
1443 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1444 {
1445 u64 frequency = event->attr.sample_freq;
1446 u64 sec = NSEC_PER_SEC;
1447 u64 divisor, dividend;
1448
1449 int count_fls, nsec_fls, frequency_fls, sec_fls;
1450
1451 count_fls = fls64(count);
1452 nsec_fls = fls64(nsec);
1453 frequency_fls = fls64(frequency);
1454 sec_fls = 30;
1455
1456 /*
1457 * We got @count in @nsec, with a target of sample_freq HZ
1458 * the target period becomes:
1459 *
1460 * @count * 10^9
1461 * period = -------------------
1462 * @nsec * sample_freq
1463 *
1464 */
1465
1466 /*
1467 * Reduce accuracy by one bit such that @a and @b converge
1468 * to a similar magnitude.
1469 */
1470 #define REDUCE_FLS(a, b) \
1471 do { \
1472 if (a##_fls > b##_fls) { \
1473 a >>= 1; \
1474 a##_fls--; \
1475 } else { \
1476 b >>= 1; \
1477 b##_fls--; \
1478 } \
1479 } while (0)
1480
1481 /*
1482 * Reduce accuracy until either term fits in a u64, then proceed with
1483 * the other, so that finally we can do a u64/u64 division.
1484 */
1485 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1486 REDUCE_FLS(nsec, frequency);
1487 REDUCE_FLS(sec, count);
1488 }
1489
1490 if (count_fls + sec_fls > 64) {
1491 divisor = nsec * frequency;
1492
1493 while (count_fls + sec_fls > 64) {
1494 REDUCE_FLS(count, sec);
1495 divisor >>= 1;
1496 }
1497
1498 dividend = count * sec;
1499 } else {
1500 dividend = count * sec;
1501
1502 while (nsec_fls + frequency_fls > 64) {
1503 REDUCE_FLS(nsec, frequency);
1504 dividend >>= 1;
1505 }
1506
1507 divisor = nsec * frequency;
1508 }
1509
1510 return div64_u64(dividend, divisor);
1511 }
1512
1513 static void perf_event_stop(struct perf_event *event)
1514 {
1515 if (!event->pmu->stop)
1516 return event->pmu->disable(event);
1517
1518 return event->pmu->stop(event);
1519 }
1520
1521 static int perf_event_start(struct perf_event *event)
1522 {
1523 if (!event->pmu->start)
1524 return event->pmu->enable(event);
1525
1526 return event->pmu->start(event);
1527 }
1528
1529 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1530 {
1531 struct hw_perf_event *hwc = &event->hw;
1532 u64 period, sample_period;
1533 s64 delta;
1534
1535 period = perf_calculate_period(event, nsec, count);
1536
1537 delta = (s64)(period - hwc->sample_period);
1538 delta = (delta + 7) / 8; /* low pass filter */
1539
1540 sample_period = hwc->sample_period + delta;
1541
1542 if (!sample_period)
1543 sample_period = 1;
1544
1545 hwc->sample_period = sample_period;
1546
1547 if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1548 perf_disable();
1549 perf_event_stop(event);
1550 atomic64_set(&hwc->period_left, 0);
1551 perf_event_start(event);
1552 perf_enable();
1553 }
1554 }
1555
1556 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1557 {
1558 struct perf_event *event;
1559 struct hw_perf_event *hwc;
1560 u64 interrupts, now;
1561 s64 delta;
1562
1563 raw_spin_lock(&ctx->lock);
1564 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1565 if (event->state != PERF_EVENT_STATE_ACTIVE)
1566 continue;
1567
1568 if (event->cpu != -1 && event->cpu != smp_processor_id())
1569 continue;
1570
1571 hwc = &event->hw;
1572
1573 interrupts = hwc->interrupts;
1574 hwc->interrupts = 0;
1575
1576 /*
1577 * unthrottle events on the tick
1578 */
1579 if (interrupts == MAX_INTERRUPTS) {
1580 perf_log_throttle(event, 1);
1581 perf_disable();
1582 event->pmu->unthrottle(event);
1583 perf_enable();
1584 }
1585
1586 if (!event->attr.freq || !event->attr.sample_freq)
1587 continue;
1588
1589 perf_disable();
1590 event->pmu->read(event);
1591 now = atomic64_read(&event->count);
1592 delta = now - hwc->freq_count_stamp;
1593 hwc->freq_count_stamp = now;
1594
1595 if (delta > 0)
1596 perf_adjust_period(event, TICK_NSEC, delta);
1597 perf_enable();
1598 }
1599 raw_spin_unlock(&ctx->lock);
1600 }
1601
1602 /*
1603 * Round-robin a context's events:
1604 */
1605 static void rotate_ctx(struct perf_event_context *ctx)
1606 {
1607 raw_spin_lock(&ctx->lock);
1608
1609 /* Rotate the first entry last of non-pinned groups */
1610 list_rotate_left(&ctx->flexible_groups);
1611
1612 raw_spin_unlock(&ctx->lock);
1613 }
1614
1615 void perf_event_task_tick(struct task_struct *curr)
1616 {
1617 struct perf_cpu_context *cpuctx;
1618 struct perf_event_context *ctx;
1619 int rotate = 0;
1620
1621 if (!atomic_read(&nr_events))
1622 return;
1623
1624 cpuctx = &__get_cpu_var(perf_cpu_context);
1625 if (cpuctx->ctx.nr_events &&
1626 cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1627 rotate = 1;
1628
1629 ctx = curr->perf_event_ctxp;
1630 if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1631 rotate = 1;
1632
1633 perf_ctx_adjust_freq(&cpuctx->ctx);
1634 if (ctx)
1635 perf_ctx_adjust_freq(ctx);
1636
1637 if (!rotate)
1638 return;
1639
1640 perf_disable();
1641 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1642 if (ctx)
1643 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1644
1645 rotate_ctx(&cpuctx->ctx);
1646 if (ctx)
1647 rotate_ctx(ctx);
1648
1649 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1650 if (ctx)
1651 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1652 perf_enable();
1653 }
1654
1655 static int event_enable_on_exec(struct perf_event *event,
1656 struct perf_event_context *ctx)
1657 {
1658 if (!event->attr.enable_on_exec)
1659 return 0;
1660
1661 event->attr.enable_on_exec = 0;
1662 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1663 return 0;
1664
1665 __perf_event_mark_enabled(event, ctx);
1666
1667 return 1;
1668 }
1669
1670 /*
1671 * Enable all of a task's events that have been marked enable-on-exec.
1672 * This expects task == current.
1673 */
1674 static void perf_event_enable_on_exec(struct task_struct *task)
1675 {
1676 struct perf_event_context *ctx;
1677 struct perf_event *event;
1678 unsigned long flags;
1679 int enabled = 0;
1680 int ret;
1681
1682 local_irq_save(flags);
1683 ctx = task->perf_event_ctxp;
1684 if (!ctx || !ctx->nr_events)
1685 goto out;
1686
1687 __perf_event_task_sched_out(ctx);
1688
1689 raw_spin_lock(&ctx->lock);
1690
1691 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1692 ret = event_enable_on_exec(event, ctx);
1693 if (ret)
1694 enabled = 1;
1695 }
1696
1697 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1698 ret = event_enable_on_exec(event, ctx);
1699 if (ret)
1700 enabled = 1;
1701 }
1702
1703 /*
1704 * Unclone this context if we enabled any event.
1705 */
1706 if (enabled)
1707 unclone_ctx(ctx);
1708
1709 raw_spin_unlock(&ctx->lock);
1710
1711 perf_event_task_sched_in(task);
1712 out:
1713 local_irq_restore(flags);
1714 }
1715
1716 /*
1717 * Cross CPU call to read the hardware event
1718 */
1719 static void __perf_event_read(void *info)
1720 {
1721 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1722 struct perf_event *event = info;
1723 struct perf_event_context *ctx = event->ctx;
1724
1725 /*
1726 * If this is a task context, we need to check whether it is
1727 * the current task context of this cpu. If not it has been
1728 * scheduled out before the smp call arrived. In that case
1729 * event->count would have been updated to a recent sample
1730 * when the event was scheduled out.
1731 */
1732 if (ctx->task && cpuctx->task_ctx != ctx)
1733 return;
1734
1735 raw_spin_lock(&ctx->lock);
1736 update_context_time(ctx);
1737 update_event_times(event);
1738 raw_spin_unlock(&ctx->lock);
1739
1740 event->pmu->read(event);
1741 }
1742
1743 static u64 perf_event_read(struct perf_event *event)
1744 {
1745 /*
1746 * If event is enabled and currently active on a CPU, update the
1747 * value in the event structure:
1748 */
1749 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1750 smp_call_function_single(event->oncpu,
1751 __perf_event_read, event, 1);
1752 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1753 struct perf_event_context *ctx = event->ctx;
1754 unsigned long flags;
1755
1756 raw_spin_lock_irqsave(&ctx->lock, flags);
1757 update_context_time(ctx);
1758 update_event_times(event);
1759 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1760 }
1761
1762 return atomic64_read(&event->count);
1763 }
1764
1765 /*
1766 * Initialize the perf_event context in a task_struct:
1767 */
1768 static void
1769 __perf_event_init_context(struct perf_event_context *ctx,
1770 struct task_struct *task)
1771 {
1772 raw_spin_lock_init(&ctx->lock);
1773 mutex_init(&ctx->mutex);
1774 INIT_LIST_HEAD(&ctx->pinned_groups);
1775 INIT_LIST_HEAD(&ctx->flexible_groups);
1776 INIT_LIST_HEAD(&ctx->event_list);
1777 atomic_set(&ctx->refcount, 1);
1778 ctx->task = task;
1779 }
1780
1781 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1782 {
1783 struct perf_event_context *ctx;
1784 struct perf_cpu_context *cpuctx;
1785 struct task_struct *task;
1786 unsigned long flags;
1787 int err;
1788
1789 if (pid == -1 && cpu != -1) {
1790 /* Must be root to operate on a CPU event: */
1791 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1792 return ERR_PTR(-EACCES);
1793
1794 if (cpu < 0 || cpu >= nr_cpumask_bits)
1795 return ERR_PTR(-EINVAL);
1796
1797 /*
1798 * We could be clever and allow to attach a event to an
1799 * offline CPU and activate it when the CPU comes up, but
1800 * that's for later.
1801 */
1802 if (!cpu_online(cpu))
1803 return ERR_PTR(-ENODEV);
1804
1805 cpuctx = &per_cpu(perf_cpu_context, cpu);
1806 ctx = &cpuctx->ctx;
1807 get_ctx(ctx);
1808
1809 return ctx;
1810 }
1811
1812 rcu_read_lock();
1813 if (!pid)
1814 task = current;
1815 else
1816 task = find_task_by_vpid(pid);
1817 if (task)
1818 get_task_struct(task);
1819 rcu_read_unlock();
1820
1821 if (!task)
1822 return ERR_PTR(-ESRCH);
1823
1824 /*
1825 * Can't attach events to a dying task.
1826 */
1827 err = -ESRCH;
1828 if (task->flags & PF_EXITING)
1829 goto errout;
1830
1831 /* Reuse ptrace permission checks for now. */
1832 err = -EACCES;
1833 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1834 goto errout;
1835
1836 retry:
1837 ctx = perf_lock_task_context(task, &flags);
1838 if (ctx) {
1839 unclone_ctx(ctx);
1840 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1841 }
1842
1843 if (!ctx) {
1844 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1845 err = -ENOMEM;
1846 if (!ctx)
1847 goto errout;
1848 __perf_event_init_context(ctx, task);
1849 get_ctx(ctx);
1850 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1851 /*
1852 * We raced with some other task; use
1853 * the context they set.
1854 */
1855 kfree(ctx);
1856 goto retry;
1857 }
1858 get_task_struct(task);
1859 }
1860
1861 put_task_struct(task);
1862 return ctx;
1863
1864 errout:
1865 put_task_struct(task);
1866 return ERR_PTR(err);
1867 }
1868
1869 static void perf_event_free_filter(struct perf_event *event);
1870
1871 static void free_event_rcu(struct rcu_head *head)
1872 {
1873 struct perf_event *event;
1874
1875 event = container_of(head, struct perf_event, rcu_head);
1876 if (event->ns)
1877 put_pid_ns(event->ns);
1878 perf_event_free_filter(event);
1879 kfree(event);
1880 }
1881
1882 static void perf_pending_sync(struct perf_event *event);
1883 static void perf_mmap_data_put(struct perf_mmap_data *data);
1884
1885 static void free_event(struct perf_event *event)
1886 {
1887 perf_pending_sync(event);
1888
1889 if (!event->parent) {
1890 atomic_dec(&nr_events);
1891 if (event->attr.mmap)
1892 atomic_dec(&nr_mmap_events);
1893 if (event->attr.comm)
1894 atomic_dec(&nr_comm_events);
1895 if (event->attr.task)
1896 atomic_dec(&nr_task_events);
1897 }
1898
1899 if (event->data) {
1900 perf_mmap_data_put(event->data);
1901 event->data = NULL;
1902 }
1903
1904 if (event->destroy)
1905 event->destroy(event);
1906
1907 put_ctx(event->ctx);
1908 call_rcu(&event->rcu_head, free_event_rcu);
1909 }
1910
1911 int perf_event_release_kernel(struct perf_event *event)
1912 {
1913 struct perf_event_context *ctx = event->ctx;
1914
1915 /*
1916 * Remove from the PMU, can't get re-enabled since we got
1917 * here because the last ref went.
1918 */
1919 perf_event_disable(event);
1920
1921 WARN_ON_ONCE(ctx->parent_ctx);
1922 /*
1923 * There are two ways this annotation is useful:
1924 *
1925 * 1) there is a lock recursion from perf_event_exit_task
1926 * see the comment there.
1927 *
1928 * 2) there is a lock-inversion with mmap_sem through
1929 * perf_event_read_group(), which takes faults while
1930 * holding ctx->mutex, however this is called after
1931 * the last filedesc died, so there is no possibility
1932 * to trigger the AB-BA case.
1933 */
1934 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
1935 raw_spin_lock_irq(&ctx->lock);
1936 perf_group_detach(event);
1937 list_del_event(event, ctx);
1938 raw_spin_unlock_irq(&ctx->lock);
1939 mutex_unlock(&ctx->mutex);
1940
1941 mutex_lock(&event->owner->perf_event_mutex);
1942 list_del_init(&event->owner_entry);
1943 mutex_unlock(&event->owner->perf_event_mutex);
1944 put_task_struct(event->owner);
1945
1946 free_event(event);
1947
1948 return 0;
1949 }
1950 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1951
1952 /*
1953 * Called when the last reference to the file is gone.
1954 */
1955 static int perf_release(struct inode *inode, struct file *file)
1956 {
1957 struct perf_event *event = file->private_data;
1958
1959 file->private_data = NULL;
1960
1961 return perf_event_release_kernel(event);
1962 }
1963
1964 static int perf_event_read_size(struct perf_event *event)
1965 {
1966 int entry = sizeof(u64); /* value */
1967 int size = 0;
1968 int nr = 1;
1969
1970 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1971 size += sizeof(u64);
1972
1973 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1974 size += sizeof(u64);
1975
1976 if (event->attr.read_format & PERF_FORMAT_ID)
1977 entry += sizeof(u64);
1978
1979 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1980 nr += event->group_leader->nr_siblings;
1981 size += sizeof(u64);
1982 }
1983
1984 size += entry * nr;
1985
1986 return size;
1987 }
1988
1989 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1990 {
1991 struct perf_event *child;
1992 u64 total = 0;
1993
1994 *enabled = 0;
1995 *running = 0;
1996
1997 mutex_lock(&event->child_mutex);
1998 total += perf_event_read(event);
1999 *enabled += event->total_time_enabled +
2000 atomic64_read(&event->child_total_time_enabled);
2001 *running += event->total_time_running +
2002 atomic64_read(&event->child_total_time_running);
2003
2004 list_for_each_entry(child, &event->child_list, child_list) {
2005 total += perf_event_read(child);
2006 *enabled += child->total_time_enabled;
2007 *running += child->total_time_running;
2008 }
2009 mutex_unlock(&event->child_mutex);
2010
2011 return total;
2012 }
2013 EXPORT_SYMBOL_GPL(perf_event_read_value);
2014
2015 static int perf_event_read_group(struct perf_event *event,
2016 u64 read_format, char __user *buf)
2017 {
2018 struct perf_event *leader = event->group_leader, *sub;
2019 int n = 0, size = 0, ret = -EFAULT;
2020 struct perf_event_context *ctx = leader->ctx;
2021 u64 values[5];
2022 u64 count, enabled, running;
2023
2024 mutex_lock(&ctx->mutex);
2025 count = perf_event_read_value(leader, &enabled, &running);
2026
2027 values[n++] = 1 + leader->nr_siblings;
2028 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2029 values[n++] = enabled;
2030 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2031 values[n++] = running;
2032 values[n++] = count;
2033 if (read_format & PERF_FORMAT_ID)
2034 values[n++] = primary_event_id(leader);
2035
2036 size = n * sizeof(u64);
2037
2038 if (copy_to_user(buf, values, size))
2039 goto unlock;
2040
2041 ret = size;
2042
2043 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2044 n = 0;
2045
2046 values[n++] = perf_event_read_value(sub, &enabled, &running);
2047 if (read_format & PERF_FORMAT_ID)
2048 values[n++] = primary_event_id(sub);
2049
2050 size = n * sizeof(u64);
2051
2052 if (copy_to_user(buf + ret, values, size)) {
2053 ret = -EFAULT;
2054 goto unlock;
2055 }
2056
2057 ret += size;
2058 }
2059 unlock:
2060 mutex_unlock(&ctx->mutex);
2061
2062 return ret;
2063 }
2064
2065 static int perf_event_read_one(struct perf_event *event,
2066 u64 read_format, char __user *buf)
2067 {
2068 u64 enabled, running;
2069 u64 values[4];
2070 int n = 0;
2071
2072 values[n++] = perf_event_read_value(event, &enabled, &running);
2073 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2074 values[n++] = enabled;
2075 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2076 values[n++] = running;
2077 if (read_format & PERF_FORMAT_ID)
2078 values[n++] = primary_event_id(event);
2079
2080 if (copy_to_user(buf, values, n * sizeof(u64)))
2081 return -EFAULT;
2082
2083 return n * sizeof(u64);
2084 }
2085
2086 /*
2087 * Read the performance event - simple non blocking version for now
2088 */
2089 static ssize_t
2090 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2091 {
2092 u64 read_format = event->attr.read_format;
2093 int ret;
2094
2095 /*
2096 * Return end-of-file for a read on a event that is in
2097 * error state (i.e. because it was pinned but it couldn't be
2098 * scheduled on to the CPU at some point).
2099 */
2100 if (event->state == PERF_EVENT_STATE_ERROR)
2101 return 0;
2102
2103 if (count < perf_event_read_size(event))
2104 return -ENOSPC;
2105
2106 WARN_ON_ONCE(event->ctx->parent_ctx);
2107 if (read_format & PERF_FORMAT_GROUP)
2108 ret = perf_event_read_group(event, read_format, buf);
2109 else
2110 ret = perf_event_read_one(event, read_format, buf);
2111
2112 return ret;
2113 }
2114
2115 static ssize_t
2116 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2117 {
2118 struct perf_event *event = file->private_data;
2119
2120 return perf_read_hw(event, buf, count);
2121 }
2122
2123 static unsigned int perf_poll(struct file *file, poll_table *wait)
2124 {
2125 struct perf_event *event = file->private_data;
2126 struct perf_mmap_data *data;
2127 unsigned int events = POLL_HUP;
2128
2129 rcu_read_lock();
2130 data = rcu_dereference(event->data);
2131 if (data)
2132 events = atomic_xchg(&data->poll, 0);
2133 rcu_read_unlock();
2134
2135 poll_wait(file, &event->waitq, wait);
2136
2137 return events;
2138 }
2139
2140 static void perf_event_reset(struct perf_event *event)
2141 {
2142 (void)perf_event_read(event);
2143 atomic64_set(&event->count, 0);
2144 perf_event_update_userpage(event);
2145 }
2146
2147 /*
2148 * Holding the top-level event's child_mutex means that any
2149 * descendant process that has inherited this event will block
2150 * in sync_child_event if it goes to exit, thus satisfying the
2151 * task existence requirements of perf_event_enable/disable.
2152 */
2153 static void perf_event_for_each_child(struct perf_event *event,
2154 void (*func)(struct perf_event *))
2155 {
2156 struct perf_event *child;
2157
2158 WARN_ON_ONCE(event->ctx->parent_ctx);
2159 mutex_lock(&event->child_mutex);
2160 func(event);
2161 list_for_each_entry(child, &event->child_list, child_list)
2162 func(child);
2163 mutex_unlock(&event->child_mutex);
2164 }
2165
2166 static void perf_event_for_each(struct perf_event *event,
2167 void (*func)(struct perf_event *))
2168 {
2169 struct perf_event_context *ctx = event->ctx;
2170 struct perf_event *sibling;
2171
2172 WARN_ON_ONCE(ctx->parent_ctx);
2173 mutex_lock(&ctx->mutex);
2174 event = event->group_leader;
2175
2176 perf_event_for_each_child(event, func);
2177 func(event);
2178 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2179 perf_event_for_each_child(event, func);
2180 mutex_unlock(&ctx->mutex);
2181 }
2182
2183 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2184 {
2185 struct perf_event_context *ctx = event->ctx;
2186 unsigned long size;
2187 int ret = 0;
2188 u64 value;
2189
2190 if (!event->attr.sample_period)
2191 return -EINVAL;
2192
2193 size = copy_from_user(&value, arg, sizeof(value));
2194 if (size != sizeof(value))
2195 return -EFAULT;
2196
2197 if (!value)
2198 return -EINVAL;
2199
2200 raw_spin_lock_irq(&ctx->lock);
2201 if (event->attr.freq) {
2202 if (value > sysctl_perf_event_sample_rate) {
2203 ret = -EINVAL;
2204 goto unlock;
2205 }
2206
2207 event->attr.sample_freq = value;
2208 } else {
2209 event->attr.sample_period = value;
2210 event->hw.sample_period = value;
2211 }
2212 unlock:
2213 raw_spin_unlock_irq(&ctx->lock);
2214
2215 return ret;
2216 }
2217
2218 static const struct file_operations perf_fops;
2219
2220 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2221 {
2222 struct file *file;
2223
2224 file = fget_light(fd, fput_needed);
2225 if (!file)
2226 return ERR_PTR(-EBADF);
2227
2228 if (file->f_op != &perf_fops) {
2229 fput_light(file, *fput_needed);
2230 *fput_needed = 0;
2231 return ERR_PTR(-EBADF);
2232 }
2233
2234 return file->private_data;
2235 }
2236
2237 static int perf_event_set_output(struct perf_event *event,
2238 struct perf_event *output_event);
2239 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2240
2241 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2242 {
2243 struct perf_event *event = file->private_data;
2244 void (*func)(struct perf_event *);
2245 u32 flags = arg;
2246
2247 switch (cmd) {
2248 case PERF_EVENT_IOC_ENABLE:
2249 func = perf_event_enable;
2250 break;
2251 case PERF_EVENT_IOC_DISABLE:
2252 func = perf_event_disable;
2253 break;
2254 case PERF_EVENT_IOC_RESET:
2255 func = perf_event_reset;
2256 break;
2257
2258 case PERF_EVENT_IOC_REFRESH:
2259 return perf_event_refresh(event, arg);
2260
2261 case PERF_EVENT_IOC_PERIOD:
2262 return perf_event_period(event, (u64 __user *)arg);
2263
2264 case PERF_EVENT_IOC_SET_OUTPUT:
2265 {
2266 struct perf_event *output_event = NULL;
2267 int fput_needed = 0;
2268 int ret;
2269
2270 if (arg != -1) {
2271 output_event = perf_fget_light(arg, &fput_needed);
2272 if (IS_ERR(output_event))
2273 return PTR_ERR(output_event);
2274 }
2275
2276 ret = perf_event_set_output(event, output_event);
2277 if (output_event)
2278 fput_light(output_event->filp, fput_needed);
2279
2280 return ret;
2281 }
2282
2283 case PERF_EVENT_IOC_SET_FILTER:
2284 return perf_event_set_filter(event, (void __user *)arg);
2285
2286 default:
2287 return -ENOTTY;
2288 }
2289
2290 if (flags & PERF_IOC_FLAG_GROUP)
2291 perf_event_for_each(event, func);
2292 else
2293 perf_event_for_each_child(event, func);
2294
2295 return 0;
2296 }
2297
2298 int perf_event_task_enable(void)
2299 {
2300 struct perf_event *event;
2301
2302 mutex_lock(&current->perf_event_mutex);
2303 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2304 perf_event_for_each_child(event, perf_event_enable);
2305 mutex_unlock(&current->perf_event_mutex);
2306
2307 return 0;
2308 }
2309
2310 int perf_event_task_disable(void)
2311 {
2312 struct perf_event *event;
2313
2314 mutex_lock(&current->perf_event_mutex);
2315 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2316 perf_event_for_each_child(event, perf_event_disable);
2317 mutex_unlock(&current->perf_event_mutex);
2318
2319 return 0;
2320 }
2321
2322 #ifndef PERF_EVENT_INDEX_OFFSET
2323 # define PERF_EVENT_INDEX_OFFSET 0
2324 #endif
2325
2326 static int perf_event_index(struct perf_event *event)
2327 {
2328 if (event->state != PERF_EVENT_STATE_ACTIVE)
2329 return 0;
2330
2331 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2332 }
2333
2334 /*
2335 * Callers need to ensure there can be no nesting of this function, otherwise
2336 * the seqlock logic goes bad. We can not serialize this because the arch
2337 * code calls this from NMI context.
2338 */
2339 void perf_event_update_userpage(struct perf_event *event)
2340 {
2341 struct perf_event_mmap_page *userpg;
2342 struct perf_mmap_data *data;
2343
2344 rcu_read_lock();
2345 data = rcu_dereference(event->data);
2346 if (!data)
2347 goto unlock;
2348
2349 userpg = data->user_page;
2350
2351 /*
2352 * Disable preemption so as to not let the corresponding user-space
2353 * spin too long if we get preempted.
2354 */
2355 preempt_disable();
2356 ++userpg->lock;
2357 barrier();
2358 userpg->index = perf_event_index(event);
2359 userpg->offset = atomic64_read(&event->count);
2360 if (event->state == PERF_EVENT_STATE_ACTIVE)
2361 userpg->offset -= atomic64_read(&event->hw.prev_count);
2362
2363 userpg->time_enabled = event->total_time_enabled +
2364 atomic64_read(&event->child_total_time_enabled);
2365
2366 userpg->time_running = event->total_time_running +
2367 atomic64_read(&event->child_total_time_running);
2368
2369 barrier();
2370 ++userpg->lock;
2371 preempt_enable();
2372 unlock:
2373 rcu_read_unlock();
2374 }
2375
2376 #ifndef CONFIG_PERF_USE_VMALLOC
2377
2378 /*
2379 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2380 */
2381
2382 static struct page *
2383 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2384 {
2385 if (pgoff > data->nr_pages)
2386 return NULL;
2387
2388 if (pgoff == 0)
2389 return virt_to_page(data->user_page);
2390
2391 return virt_to_page(data->data_pages[pgoff - 1]);
2392 }
2393
2394 static void *perf_mmap_alloc_page(int cpu)
2395 {
2396 struct page *page;
2397 int node;
2398
2399 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2400 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2401 if (!page)
2402 return NULL;
2403
2404 return page_address(page);
2405 }
2406
2407 static struct perf_mmap_data *
2408 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2409 {
2410 struct perf_mmap_data *data;
2411 unsigned long size;
2412 int i;
2413
2414 size = sizeof(struct perf_mmap_data);
2415 size += nr_pages * sizeof(void *);
2416
2417 data = kzalloc(size, GFP_KERNEL);
2418 if (!data)
2419 goto fail;
2420
2421 data->user_page = perf_mmap_alloc_page(event->cpu);
2422 if (!data->user_page)
2423 goto fail_user_page;
2424
2425 for (i = 0; i < nr_pages; i++) {
2426 data->data_pages[i] = perf_mmap_alloc_page(event->cpu);
2427 if (!data->data_pages[i])
2428 goto fail_data_pages;
2429 }
2430
2431 data->nr_pages = nr_pages;
2432
2433 return data;
2434
2435 fail_data_pages:
2436 for (i--; i >= 0; i--)
2437 free_page((unsigned long)data->data_pages[i]);
2438
2439 free_page((unsigned long)data->user_page);
2440
2441 fail_user_page:
2442 kfree(data);
2443
2444 fail:
2445 return NULL;
2446 }
2447
2448 static void perf_mmap_free_page(unsigned long addr)
2449 {
2450 struct page *page = virt_to_page((void *)addr);
2451
2452 page->mapping = NULL;
2453 __free_page(page);
2454 }
2455
2456 static void perf_mmap_data_free(struct perf_mmap_data *data)
2457 {
2458 int i;
2459
2460 perf_mmap_free_page((unsigned long)data->user_page);
2461 for (i = 0; i < data->nr_pages; i++)
2462 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2463 kfree(data);
2464 }
2465
2466 static inline int page_order(struct perf_mmap_data *data)
2467 {
2468 return 0;
2469 }
2470
2471 #else
2472
2473 /*
2474 * Back perf_mmap() with vmalloc memory.
2475 *
2476 * Required for architectures that have d-cache aliasing issues.
2477 */
2478
2479 static inline int page_order(struct perf_mmap_data *data)
2480 {
2481 return data->page_order;
2482 }
2483
2484 static struct page *
2485 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2486 {
2487 if (pgoff > (1UL << page_order(data)))
2488 return NULL;
2489
2490 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2491 }
2492
2493 static void perf_mmap_unmark_page(void *addr)
2494 {
2495 struct page *page = vmalloc_to_page(addr);
2496
2497 page->mapping = NULL;
2498 }
2499
2500 static void perf_mmap_data_free_work(struct work_struct *work)
2501 {
2502 struct perf_mmap_data *data;
2503 void *base;
2504 int i, nr;
2505
2506 data = container_of(work, struct perf_mmap_data, work);
2507 nr = 1 << page_order(data);
2508
2509 base = data->user_page;
2510 for (i = 0; i < nr + 1; i++)
2511 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2512
2513 vfree(base);
2514 kfree(data);
2515 }
2516
2517 static void perf_mmap_data_free(struct perf_mmap_data *data)
2518 {
2519 schedule_work(&data->work);
2520 }
2521
2522 static struct perf_mmap_data *
2523 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2524 {
2525 struct perf_mmap_data *data;
2526 unsigned long size;
2527 void *all_buf;
2528
2529 size = sizeof(struct perf_mmap_data);
2530 size += sizeof(void *);
2531
2532 data = kzalloc(size, GFP_KERNEL);
2533 if (!data)
2534 goto fail;
2535
2536 INIT_WORK(&data->work, perf_mmap_data_free_work);
2537
2538 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2539 if (!all_buf)
2540 goto fail_all_buf;
2541
2542 data->user_page = all_buf;
2543 data->data_pages[0] = all_buf + PAGE_SIZE;
2544 data->page_order = ilog2(nr_pages);
2545 data->nr_pages = 1;
2546
2547 return data;
2548
2549 fail_all_buf:
2550 kfree(data);
2551
2552 fail:
2553 return NULL;
2554 }
2555
2556 #endif
2557
2558 static unsigned long perf_data_size(struct perf_mmap_data *data)
2559 {
2560 return data->nr_pages << (PAGE_SHIFT + page_order(data));
2561 }
2562
2563 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2564 {
2565 struct perf_event *event = vma->vm_file->private_data;
2566 struct perf_mmap_data *data;
2567 int ret = VM_FAULT_SIGBUS;
2568
2569 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2570 if (vmf->pgoff == 0)
2571 ret = 0;
2572 return ret;
2573 }
2574
2575 rcu_read_lock();
2576 data = rcu_dereference(event->data);
2577 if (!data)
2578 goto unlock;
2579
2580 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2581 goto unlock;
2582
2583 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2584 if (!vmf->page)
2585 goto unlock;
2586
2587 get_page(vmf->page);
2588 vmf->page->mapping = vma->vm_file->f_mapping;
2589 vmf->page->index = vmf->pgoff;
2590
2591 ret = 0;
2592 unlock:
2593 rcu_read_unlock();
2594
2595 return ret;
2596 }
2597
2598 static void
2599 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2600 {
2601 long max_size = perf_data_size(data);
2602
2603 if (event->attr.watermark) {
2604 data->watermark = min_t(long, max_size,
2605 event->attr.wakeup_watermark);
2606 }
2607
2608 if (!data->watermark)
2609 data->watermark = max_size / 2;
2610
2611 atomic_set(&data->refcount, 1);
2612 rcu_assign_pointer(event->data, data);
2613 }
2614
2615 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2616 {
2617 struct perf_mmap_data *data;
2618
2619 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2620 perf_mmap_data_free(data);
2621 }
2622
2623 static struct perf_mmap_data *perf_mmap_data_get(struct perf_event *event)
2624 {
2625 struct perf_mmap_data *data;
2626
2627 rcu_read_lock();
2628 data = rcu_dereference(event->data);
2629 if (data) {
2630 if (!atomic_inc_not_zero(&data->refcount))
2631 data = NULL;
2632 }
2633 rcu_read_unlock();
2634
2635 return data;
2636 }
2637
2638 static void perf_mmap_data_put(struct perf_mmap_data *data)
2639 {
2640 if (!atomic_dec_and_test(&data->refcount))
2641 return;
2642
2643 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2644 }
2645
2646 static void perf_mmap_open(struct vm_area_struct *vma)
2647 {
2648 struct perf_event *event = vma->vm_file->private_data;
2649
2650 atomic_inc(&event->mmap_count);
2651 }
2652
2653 static void perf_mmap_close(struct vm_area_struct *vma)
2654 {
2655 struct perf_event *event = vma->vm_file->private_data;
2656
2657 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2658 unsigned long size = perf_data_size(event->data);
2659 struct user_struct *user = event->mmap_user;
2660 struct perf_mmap_data *data = event->data;
2661
2662 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2663 vma->vm_mm->locked_vm -= event->mmap_locked;
2664 rcu_assign_pointer(event->data, NULL);
2665 mutex_unlock(&event->mmap_mutex);
2666
2667 perf_mmap_data_put(data);
2668 free_uid(user);
2669 }
2670 }
2671
2672 static const struct vm_operations_struct perf_mmap_vmops = {
2673 .open = perf_mmap_open,
2674 .close = perf_mmap_close,
2675 .fault = perf_mmap_fault,
2676 .page_mkwrite = perf_mmap_fault,
2677 };
2678
2679 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2680 {
2681 struct perf_event *event = file->private_data;
2682 unsigned long user_locked, user_lock_limit;
2683 struct user_struct *user = current_user();
2684 unsigned long locked, lock_limit;
2685 struct perf_mmap_data *data;
2686 unsigned long vma_size;
2687 unsigned long nr_pages;
2688 long user_extra, extra;
2689 int ret = 0;
2690
2691 /*
2692 * Don't allow mmap() of inherited per-task counters. This would
2693 * create a performance issue due to all children writing to the
2694 * same buffer.
2695 */
2696 if (event->cpu == -1 && event->attr.inherit)
2697 return -EINVAL;
2698
2699 if (!(vma->vm_flags & VM_SHARED))
2700 return -EINVAL;
2701
2702 vma_size = vma->vm_end - vma->vm_start;
2703 nr_pages = (vma_size / PAGE_SIZE) - 1;
2704
2705 /*
2706 * If we have data pages ensure they're a power-of-two number, so we
2707 * can do bitmasks instead of modulo.
2708 */
2709 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2710 return -EINVAL;
2711
2712 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2713 return -EINVAL;
2714
2715 if (vma->vm_pgoff != 0)
2716 return -EINVAL;
2717
2718 WARN_ON_ONCE(event->ctx->parent_ctx);
2719 mutex_lock(&event->mmap_mutex);
2720 if (event->data) {
2721 if (event->data->nr_pages == nr_pages)
2722 atomic_inc(&event->data->refcount);
2723 else
2724 ret = -EINVAL;
2725 goto unlock;
2726 }
2727
2728 user_extra = nr_pages + 1;
2729 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2730
2731 /*
2732 * Increase the limit linearly with more CPUs:
2733 */
2734 user_lock_limit *= num_online_cpus();
2735
2736 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2737
2738 extra = 0;
2739 if (user_locked > user_lock_limit)
2740 extra = user_locked - user_lock_limit;
2741
2742 lock_limit = rlimit(RLIMIT_MEMLOCK);
2743 lock_limit >>= PAGE_SHIFT;
2744 locked = vma->vm_mm->locked_vm + extra;
2745
2746 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2747 !capable(CAP_IPC_LOCK)) {
2748 ret = -EPERM;
2749 goto unlock;
2750 }
2751
2752 WARN_ON(event->data);
2753
2754 data = perf_mmap_data_alloc(event, nr_pages);
2755 if (!data) {
2756 ret = -ENOMEM;
2757 goto unlock;
2758 }
2759
2760 perf_mmap_data_init(event, data);
2761 if (vma->vm_flags & VM_WRITE)
2762 event->data->writable = 1;
2763
2764 atomic_long_add(user_extra, &user->locked_vm);
2765 event->mmap_locked = extra;
2766 event->mmap_user = get_current_user();
2767 vma->vm_mm->locked_vm += event->mmap_locked;
2768
2769 unlock:
2770 if (!ret)
2771 atomic_inc(&event->mmap_count);
2772 mutex_unlock(&event->mmap_mutex);
2773
2774 vma->vm_flags |= VM_RESERVED;
2775 vma->vm_ops = &perf_mmap_vmops;
2776
2777 return ret;
2778 }
2779
2780 static int perf_fasync(int fd, struct file *filp, int on)
2781 {
2782 struct inode *inode = filp->f_path.dentry->d_inode;
2783 struct perf_event *event = filp->private_data;
2784 int retval;
2785
2786 mutex_lock(&inode->i_mutex);
2787 retval = fasync_helper(fd, filp, on, &event->fasync);
2788 mutex_unlock(&inode->i_mutex);
2789
2790 if (retval < 0)
2791 return retval;
2792
2793 return 0;
2794 }
2795
2796 static const struct file_operations perf_fops = {
2797 .llseek = no_llseek,
2798 .release = perf_release,
2799 .read = perf_read,
2800 .poll = perf_poll,
2801 .unlocked_ioctl = perf_ioctl,
2802 .compat_ioctl = perf_ioctl,
2803 .mmap = perf_mmap,
2804 .fasync = perf_fasync,
2805 };
2806
2807 /*
2808 * Perf event wakeup
2809 *
2810 * If there's data, ensure we set the poll() state and publish everything
2811 * to user-space before waking everybody up.
2812 */
2813
2814 void perf_event_wakeup(struct perf_event *event)
2815 {
2816 wake_up_all(&event->waitq);
2817
2818 if (event->pending_kill) {
2819 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2820 event->pending_kill = 0;
2821 }
2822 }
2823
2824 /*
2825 * Pending wakeups
2826 *
2827 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2828 *
2829 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2830 * single linked list and use cmpxchg() to add entries lockless.
2831 */
2832
2833 static void perf_pending_event(struct perf_pending_entry *entry)
2834 {
2835 struct perf_event *event = container_of(entry,
2836 struct perf_event, pending);
2837
2838 if (event->pending_disable) {
2839 event->pending_disable = 0;
2840 __perf_event_disable(event);
2841 }
2842
2843 if (event->pending_wakeup) {
2844 event->pending_wakeup = 0;
2845 perf_event_wakeup(event);
2846 }
2847 }
2848
2849 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2850
2851 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2852 PENDING_TAIL,
2853 };
2854
2855 static void perf_pending_queue(struct perf_pending_entry *entry,
2856 void (*func)(struct perf_pending_entry *))
2857 {
2858 struct perf_pending_entry **head;
2859
2860 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2861 return;
2862
2863 entry->func = func;
2864
2865 head = &get_cpu_var(perf_pending_head);
2866
2867 do {
2868 entry->next = *head;
2869 } while (cmpxchg(head, entry->next, entry) != entry->next);
2870
2871 set_perf_event_pending();
2872
2873 put_cpu_var(perf_pending_head);
2874 }
2875
2876 static int __perf_pending_run(void)
2877 {
2878 struct perf_pending_entry *list;
2879 int nr = 0;
2880
2881 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2882 while (list != PENDING_TAIL) {
2883 void (*func)(struct perf_pending_entry *);
2884 struct perf_pending_entry *entry = list;
2885
2886 list = list->next;
2887
2888 func = entry->func;
2889 entry->next = NULL;
2890 /*
2891 * Ensure we observe the unqueue before we issue the wakeup,
2892 * so that we won't be waiting forever.
2893 * -- see perf_not_pending().
2894 */
2895 smp_wmb();
2896
2897 func(entry);
2898 nr++;
2899 }
2900
2901 return nr;
2902 }
2903
2904 static inline int perf_not_pending(struct perf_event *event)
2905 {
2906 /*
2907 * If we flush on whatever cpu we run, there is a chance we don't
2908 * need to wait.
2909 */
2910 get_cpu();
2911 __perf_pending_run();
2912 put_cpu();
2913
2914 /*
2915 * Ensure we see the proper queue state before going to sleep
2916 * so that we do not miss the wakeup. -- see perf_pending_handle()
2917 */
2918 smp_rmb();
2919 return event->pending.next == NULL;
2920 }
2921
2922 static void perf_pending_sync(struct perf_event *event)
2923 {
2924 wait_event(event->waitq, perf_not_pending(event));
2925 }
2926
2927 void perf_event_do_pending(void)
2928 {
2929 __perf_pending_run();
2930 }
2931
2932 /*
2933 * Callchain support -- arch specific
2934 */
2935
2936 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2937 {
2938 return NULL;
2939 }
2940
2941 __weak
2942 void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
2943 {
2944 }
2945
2946
2947 /*
2948 * We assume there is only KVM supporting the callbacks.
2949 * Later on, we might change it to a list if there is
2950 * another virtualization implementation supporting the callbacks.
2951 */
2952 struct perf_guest_info_callbacks *perf_guest_cbs;
2953
2954 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2955 {
2956 perf_guest_cbs = cbs;
2957 return 0;
2958 }
2959 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
2960
2961 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
2962 {
2963 perf_guest_cbs = NULL;
2964 return 0;
2965 }
2966 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
2967
2968 /*
2969 * Output
2970 */
2971 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2972 unsigned long offset, unsigned long head)
2973 {
2974 unsigned long mask;
2975
2976 if (!data->writable)
2977 return true;
2978
2979 mask = perf_data_size(data) - 1;
2980
2981 offset = (offset - tail) & mask;
2982 head = (head - tail) & mask;
2983
2984 if ((int)(head - offset) < 0)
2985 return false;
2986
2987 return true;
2988 }
2989
2990 static void perf_output_wakeup(struct perf_output_handle *handle)
2991 {
2992 atomic_set(&handle->data->poll, POLL_IN);
2993
2994 if (handle->nmi) {
2995 handle->event->pending_wakeup = 1;
2996 perf_pending_queue(&handle->event->pending,
2997 perf_pending_event);
2998 } else
2999 perf_event_wakeup(handle->event);
3000 }
3001
3002 /*
3003 * We need to ensure a later event_id doesn't publish a head when a former
3004 * event isn't done writing. However since we need to deal with NMIs we
3005 * cannot fully serialize things.
3006 *
3007 * We only publish the head (and generate a wakeup) when the outer-most
3008 * event completes.
3009 */
3010 static void perf_output_get_handle(struct perf_output_handle *handle)
3011 {
3012 struct perf_mmap_data *data = handle->data;
3013
3014 preempt_disable();
3015 local_inc(&data->nest);
3016 handle->wakeup = local_read(&data->wakeup);
3017 }
3018
3019 static void perf_output_put_handle(struct perf_output_handle *handle)
3020 {
3021 struct perf_mmap_data *data = handle->data;
3022 unsigned long head;
3023
3024 again:
3025 head = local_read(&data->head);
3026
3027 /*
3028 * IRQ/NMI can happen here, which means we can miss a head update.
3029 */
3030
3031 if (!local_dec_and_test(&data->nest))
3032 goto out;
3033
3034 /*
3035 * Publish the known good head. Rely on the full barrier implied
3036 * by atomic_dec_and_test() order the data->head read and this
3037 * write.
3038 */
3039 data->user_page->data_head = head;
3040
3041 /*
3042 * Now check if we missed an update, rely on the (compiler)
3043 * barrier in atomic_dec_and_test() to re-read data->head.
3044 */
3045 if (unlikely(head != local_read(&data->head))) {
3046 local_inc(&data->nest);
3047 goto again;
3048 }
3049
3050 if (handle->wakeup != local_read(&data->wakeup))
3051 perf_output_wakeup(handle);
3052
3053 out:
3054 preempt_enable();
3055 }
3056
3057 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3058 const void *buf, unsigned int len)
3059 {
3060 do {
3061 unsigned long size = min_t(unsigned long, handle->size, len);
3062
3063 memcpy(handle->addr, buf, size);
3064
3065 len -= size;
3066 handle->addr += size;
3067 buf += size;
3068 handle->size -= size;
3069 if (!handle->size) {
3070 struct perf_mmap_data *data = handle->data;
3071
3072 handle->page++;
3073 handle->page &= data->nr_pages - 1;
3074 handle->addr = data->data_pages[handle->page];
3075 handle->size = PAGE_SIZE << page_order(data);
3076 }
3077 } while (len);
3078 }
3079
3080 int perf_output_begin(struct perf_output_handle *handle,
3081 struct perf_event *event, unsigned int size,
3082 int nmi, int sample)
3083 {
3084 struct perf_mmap_data *data;
3085 unsigned long tail, offset, head;
3086 int have_lost;
3087 struct {
3088 struct perf_event_header header;
3089 u64 id;
3090 u64 lost;
3091 } lost_event;
3092
3093 rcu_read_lock();
3094 /*
3095 * For inherited events we send all the output towards the parent.
3096 */
3097 if (event->parent)
3098 event = event->parent;
3099
3100 data = rcu_dereference(event->data);
3101 if (!data)
3102 goto out;
3103
3104 handle->data = data;
3105 handle->event = event;
3106 handle->nmi = nmi;
3107 handle->sample = sample;
3108
3109 if (!data->nr_pages)
3110 goto out;
3111
3112 have_lost = local_read(&data->lost);
3113 if (have_lost)
3114 size += sizeof(lost_event);
3115
3116 perf_output_get_handle(handle);
3117
3118 do {
3119 /*
3120 * Userspace could choose to issue a mb() before updating the
3121 * tail pointer. So that all reads will be completed before the
3122 * write is issued.
3123 */
3124 tail = ACCESS_ONCE(data->user_page->data_tail);
3125 smp_rmb();
3126 offset = head = local_read(&data->head);
3127 head += size;
3128 if (unlikely(!perf_output_space(data, tail, offset, head)))
3129 goto fail;
3130 } while (local_cmpxchg(&data->head, offset, head) != offset);
3131
3132 if (head - local_read(&data->wakeup) > data->watermark)
3133 local_add(data->watermark, &data->wakeup);
3134
3135 handle->page = offset >> (PAGE_SHIFT + page_order(data));
3136 handle->page &= data->nr_pages - 1;
3137 handle->size = offset & ((PAGE_SIZE << page_order(data)) - 1);
3138 handle->addr = data->data_pages[handle->page];
3139 handle->addr += handle->size;
3140 handle->size = (PAGE_SIZE << page_order(data)) - handle->size;
3141
3142 if (have_lost) {
3143 lost_event.header.type = PERF_RECORD_LOST;
3144 lost_event.header.misc = 0;
3145 lost_event.header.size = sizeof(lost_event);
3146 lost_event.id = event->id;
3147 lost_event.lost = local_xchg(&data->lost, 0);
3148
3149 perf_output_put(handle, lost_event);
3150 }
3151
3152 return 0;
3153
3154 fail:
3155 local_inc(&data->lost);
3156 perf_output_put_handle(handle);
3157 out:
3158 rcu_read_unlock();
3159
3160 return -ENOSPC;
3161 }
3162
3163 void perf_output_end(struct perf_output_handle *handle)
3164 {
3165 struct perf_event *event = handle->event;
3166 struct perf_mmap_data *data = handle->data;
3167
3168 int wakeup_events = event->attr.wakeup_events;
3169
3170 if (handle->sample && wakeup_events) {
3171 int events = local_inc_return(&data->events);
3172 if (events >= wakeup_events) {
3173 local_sub(wakeup_events, &data->events);
3174 local_inc(&data->wakeup);
3175 }
3176 }
3177
3178 perf_output_put_handle(handle);
3179 rcu_read_unlock();
3180 }
3181
3182 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3183 {
3184 /*
3185 * only top level events have the pid namespace they were created in
3186 */
3187 if (event->parent)
3188 event = event->parent;
3189
3190 return task_tgid_nr_ns(p, event->ns);
3191 }
3192
3193 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3194 {
3195 /*
3196 * only top level events have the pid namespace they were created in
3197 */
3198 if (event->parent)
3199 event = event->parent;
3200
3201 return task_pid_nr_ns(p, event->ns);
3202 }
3203
3204 static void perf_output_read_one(struct perf_output_handle *handle,
3205 struct perf_event *event)
3206 {
3207 u64 read_format = event->attr.read_format;
3208 u64 values[4];
3209 int n = 0;
3210
3211 values[n++] = atomic64_read(&event->count);
3212 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3213 values[n++] = event->total_time_enabled +
3214 atomic64_read(&event->child_total_time_enabled);
3215 }
3216 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3217 values[n++] = event->total_time_running +
3218 atomic64_read(&event->child_total_time_running);
3219 }
3220 if (read_format & PERF_FORMAT_ID)
3221 values[n++] = primary_event_id(event);
3222
3223 perf_output_copy(handle, values, n * sizeof(u64));
3224 }
3225
3226 /*
3227 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3228 */
3229 static void perf_output_read_group(struct perf_output_handle *handle,
3230 struct perf_event *event)
3231 {
3232 struct perf_event *leader = event->group_leader, *sub;
3233 u64 read_format = event->attr.read_format;
3234 u64 values[5];
3235 int n = 0;
3236
3237 values[n++] = 1 + leader->nr_siblings;
3238
3239 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3240 values[n++] = leader->total_time_enabled;
3241
3242 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3243 values[n++] = leader->total_time_running;
3244
3245 if (leader != event)
3246 leader->pmu->read(leader);
3247
3248 values[n++] = atomic64_read(&leader->count);
3249 if (read_format & PERF_FORMAT_ID)
3250 values[n++] = primary_event_id(leader);
3251
3252 perf_output_copy(handle, values, n * sizeof(u64));
3253
3254 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3255 n = 0;
3256
3257 if (sub != event)
3258 sub->pmu->read(sub);
3259
3260 values[n++] = atomic64_read(&sub->count);
3261 if (read_format & PERF_FORMAT_ID)
3262 values[n++] = primary_event_id(sub);
3263
3264 perf_output_copy(handle, values, n * sizeof(u64));
3265 }
3266 }
3267
3268 static void perf_output_read(struct perf_output_handle *handle,
3269 struct perf_event *event)
3270 {
3271 if (event->attr.read_format & PERF_FORMAT_GROUP)
3272 perf_output_read_group(handle, event);
3273 else
3274 perf_output_read_one(handle, event);
3275 }
3276
3277 void perf_output_sample(struct perf_output_handle *handle,
3278 struct perf_event_header *header,
3279 struct perf_sample_data *data,
3280 struct perf_event *event)
3281 {
3282 u64 sample_type = data->type;
3283
3284 perf_output_put(handle, *header);
3285
3286 if (sample_type & PERF_SAMPLE_IP)
3287 perf_output_put(handle, data->ip);
3288
3289 if (sample_type & PERF_SAMPLE_TID)
3290 perf_output_put(handle, data->tid_entry);
3291
3292 if (sample_type & PERF_SAMPLE_TIME)
3293 perf_output_put(handle, data->time);
3294
3295 if (sample_type & PERF_SAMPLE_ADDR)
3296 perf_output_put(handle, data->addr);
3297
3298 if (sample_type & PERF_SAMPLE_ID)
3299 perf_output_put(handle, data->id);
3300
3301 if (sample_type & PERF_SAMPLE_STREAM_ID)
3302 perf_output_put(handle, data->stream_id);
3303
3304 if (sample_type & PERF_SAMPLE_CPU)
3305 perf_output_put(handle, data->cpu_entry);
3306
3307 if (sample_type & PERF_SAMPLE_PERIOD)
3308 perf_output_put(handle, data->period);
3309
3310 if (sample_type & PERF_SAMPLE_READ)
3311 perf_output_read(handle, event);
3312
3313 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3314 if (data->callchain) {
3315 int size = 1;
3316
3317 if (data->callchain)
3318 size += data->callchain->nr;
3319
3320 size *= sizeof(u64);
3321
3322 perf_output_copy(handle, data->callchain, size);
3323 } else {
3324 u64 nr = 0;
3325 perf_output_put(handle, nr);
3326 }
3327 }
3328
3329 if (sample_type & PERF_SAMPLE_RAW) {
3330 if (data->raw) {
3331 perf_output_put(handle, data->raw->size);
3332 perf_output_copy(handle, data->raw->data,
3333 data->raw->size);
3334 } else {
3335 struct {
3336 u32 size;
3337 u32 data;
3338 } raw = {
3339 .size = sizeof(u32),
3340 .data = 0,
3341 };
3342 perf_output_put(handle, raw);
3343 }
3344 }
3345 }
3346
3347 void perf_prepare_sample(struct perf_event_header *header,
3348 struct perf_sample_data *data,
3349 struct perf_event *event,
3350 struct pt_regs *regs)
3351 {
3352 u64 sample_type = event->attr.sample_type;
3353
3354 data->type = sample_type;
3355
3356 header->type = PERF_RECORD_SAMPLE;
3357 header->size = sizeof(*header);
3358
3359 header->misc = 0;
3360 header->misc |= perf_misc_flags(regs);
3361
3362 if (sample_type & PERF_SAMPLE_IP) {
3363 data->ip = perf_instruction_pointer(regs);
3364
3365 header->size += sizeof(data->ip);
3366 }
3367
3368 if (sample_type & PERF_SAMPLE_TID) {
3369 /* namespace issues */
3370 data->tid_entry.pid = perf_event_pid(event, current);
3371 data->tid_entry.tid = perf_event_tid(event, current);
3372
3373 header->size += sizeof(data->tid_entry);
3374 }
3375
3376 if (sample_type & PERF_SAMPLE_TIME) {
3377 data->time = perf_clock();
3378
3379 header->size += sizeof(data->time);
3380 }
3381
3382 if (sample_type & PERF_SAMPLE_ADDR)
3383 header->size += sizeof(data->addr);
3384
3385 if (sample_type & PERF_SAMPLE_ID) {
3386 data->id = primary_event_id(event);
3387
3388 header->size += sizeof(data->id);
3389 }
3390
3391 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3392 data->stream_id = event->id;
3393
3394 header->size += sizeof(data->stream_id);
3395 }
3396
3397 if (sample_type & PERF_SAMPLE_CPU) {
3398 data->cpu_entry.cpu = raw_smp_processor_id();
3399 data->cpu_entry.reserved = 0;
3400
3401 header->size += sizeof(data->cpu_entry);
3402 }
3403
3404 if (sample_type & PERF_SAMPLE_PERIOD)
3405 header->size += sizeof(data->period);
3406
3407 if (sample_type & PERF_SAMPLE_READ)
3408 header->size += perf_event_read_size(event);
3409
3410 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3411 int size = 1;
3412
3413 data->callchain = perf_callchain(regs);
3414
3415 if (data->callchain)
3416 size += data->callchain->nr;
3417
3418 header->size += size * sizeof(u64);
3419 }
3420
3421 if (sample_type & PERF_SAMPLE_RAW) {
3422 int size = sizeof(u32);
3423
3424 if (data->raw)
3425 size += data->raw->size;
3426 else
3427 size += sizeof(u32);
3428
3429 WARN_ON_ONCE(size & (sizeof(u64)-1));
3430 header->size += size;
3431 }
3432 }
3433
3434 static void perf_event_output(struct perf_event *event, int nmi,
3435 struct perf_sample_data *data,
3436 struct pt_regs *regs)
3437 {
3438 struct perf_output_handle handle;
3439 struct perf_event_header header;
3440
3441 perf_prepare_sample(&header, data, event, regs);
3442
3443 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3444 return;
3445
3446 perf_output_sample(&handle, &header, data, event);
3447
3448 perf_output_end(&handle);
3449 }
3450
3451 /*
3452 * read event_id
3453 */
3454
3455 struct perf_read_event {
3456 struct perf_event_header header;
3457
3458 u32 pid;
3459 u32 tid;
3460 };
3461
3462 static void
3463 perf_event_read_event(struct perf_event *event,
3464 struct task_struct *task)
3465 {
3466 struct perf_output_handle handle;
3467 struct perf_read_event read_event = {
3468 .header = {
3469 .type = PERF_RECORD_READ,
3470 .misc = 0,
3471 .size = sizeof(read_event) + perf_event_read_size(event),
3472 },
3473 .pid = perf_event_pid(event, task),
3474 .tid = perf_event_tid(event, task),
3475 };
3476 int ret;
3477
3478 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3479 if (ret)
3480 return;
3481
3482 perf_output_put(&handle, read_event);
3483 perf_output_read(&handle, event);
3484
3485 perf_output_end(&handle);
3486 }
3487
3488 /*
3489 * task tracking -- fork/exit
3490 *
3491 * enabled by: attr.comm | attr.mmap | attr.task
3492 */
3493
3494 struct perf_task_event {
3495 struct task_struct *task;
3496 struct perf_event_context *task_ctx;
3497
3498 struct {
3499 struct perf_event_header header;
3500
3501 u32 pid;
3502 u32 ppid;
3503 u32 tid;
3504 u32 ptid;
3505 u64 time;
3506 } event_id;
3507 };
3508
3509 static void perf_event_task_output(struct perf_event *event,
3510 struct perf_task_event *task_event)
3511 {
3512 struct perf_output_handle handle;
3513 struct task_struct *task = task_event->task;
3514 int size, ret;
3515
3516 size = task_event->event_id.header.size;
3517 ret = perf_output_begin(&handle, event, size, 0, 0);
3518
3519 if (ret)
3520 return;
3521
3522 task_event->event_id.pid = perf_event_pid(event, task);
3523 task_event->event_id.ppid = perf_event_pid(event, current);
3524
3525 task_event->event_id.tid = perf_event_tid(event, task);
3526 task_event->event_id.ptid = perf_event_tid(event, current);
3527
3528 perf_output_put(&handle, task_event->event_id);
3529
3530 perf_output_end(&handle);
3531 }
3532
3533 static int perf_event_task_match(struct perf_event *event)
3534 {
3535 if (event->state < PERF_EVENT_STATE_INACTIVE)
3536 return 0;
3537
3538 if (event->cpu != -1 && event->cpu != smp_processor_id())
3539 return 0;
3540
3541 if (event->attr.comm || event->attr.mmap || event->attr.task)
3542 return 1;
3543
3544 return 0;
3545 }
3546
3547 static void perf_event_task_ctx(struct perf_event_context *ctx,
3548 struct perf_task_event *task_event)
3549 {
3550 struct perf_event *event;
3551
3552 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3553 if (perf_event_task_match(event))
3554 perf_event_task_output(event, task_event);
3555 }
3556 }
3557
3558 static void perf_event_task_event(struct perf_task_event *task_event)
3559 {
3560 struct perf_cpu_context *cpuctx;
3561 struct perf_event_context *ctx = task_event->task_ctx;
3562
3563 rcu_read_lock();
3564 cpuctx = &get_cpu_var(perf_cpu_context);
3565 perf_event_task_ctx(&cpuctx->ctx, task_event);
3566 if (!ctx)
3567 ctx = rcu_dereference(current->perf_event_ctxp);
3568 if (ctx)
3569 perf_event_task_ctx(ctx, task_event);
3570 put_cpu_var(perf_cpu_context);
3571 rcu_read_unlock();
3572 }
3573
3574 static void perf_event_task(struct task_struct *task,
3575 struct perf_event_context *task_ctx,
3576 int new)
3577 {
3578 struct perf_task_event task_event;
3579
3580 if (!atomic_read(&nr_comm_events) &&
3581 !atomic_read(&nr_mmap_events) &&
3582 !atomic_read(&nr_task_events))
3583 return;
3584
3585 task_event = (struct perf_task_event){
3586 .task = task,
3587 .task_ctx = task_ctx,
3588 .event_id = {
3589 .header = {
3590 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3591 .misc = 0,
3592 .size = sizeof(task_event.event_id),
3593 },
3594 /* .pid */
3595 /* .ppid */
3596 /* .tid */
3597 /* .ptid */
3598 .time = perf_clock(),
3599 },
3600 };
3601
3602 perf_event_task_event(&task_event);
3603 }
3604
3605 void perf_event_fork(struct task_struct *task)
3606 {
3607 perf_event_task(task, NULL, 1);
3608 }
3609
3610 /*
3611 * comm tracking
3612 */
3613
3614 struct perf_comm_event {
3615 struct task_struct *task;
3616 char *comm;
3617 int comm_size;
3618
3619 struct {
3620 struct perf_event_header header;
3621
3622 u32 pid;
3623 u32 tid;
3624 } event_id;
3625 };
3626
3627 static void perf_event_comm_output(struct perf_event *event,
3628 struct perf_comm_event *comm_event)
3629 {
3630 struct perf_output_handle handle;
3631 int size = comm_event->event_id.header.size;
3632 int ret = perf_output_begin(&handle, event, size, 0, 0);
3633
3634 if (ret)
3635 return;
3636
3637 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3638 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3639
3640 perf_output_put(&handle, comm_event->event_id);
3641 perf_output_copy(&handle, comm_event->comm,
3642 comm_event->comm_size);
3643 perf_output_end(&handle);
3644 }
3645
3646 static int perf_event_comm_match(struct perf_event *event)
3647 {
3648 if (event->state < PERF_EVENT_STATE_INACTIVE)
3649 return 0;
3650
3651 if (event->cpu != -1 && event->cpu != smp_processor_id())
3652 return 0;
3653
3654 if (event->attr.comm)
3655 return 1;
3656
3657 return 0;
3658 }
3659
3660 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3661 struct perf_comm_event *comm_event)
3662 {
3663 struct perf_event *event;
3664
3665 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3666 if (perf_event_comm_match(event))
3667 perf_event_comm_output(event, comm_event);
3668 }
3669 }
3670
3671 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3672 {
3673 struct perf_cpu_context *cpuctx;
3674 struct perf_event_context *ctx;
3675 unsigned int size;
3676 char comm[TASK_COMM_LEN];
3677
3678 memset(comm, 0, sizeof(comm));
3679 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3680 size = ALIGN(strlen(comm)+1, sizeof(u64));
3681
3682 comm_event->comm = comm;
3683 comm_event->comm_size = size;
3684
3685 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3686
3687 rcu_read_lock();
3688 cpuctx = &get_cpu_var(perf_cpu_context);
3689 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3690 ctx = rcu_dereference(current->perf_event_ctxp);
3691 if (ctx)
3692 perf_event_comm_ctx(ctx, comm_event);
3693 put_cpu_var(perf_cpu_context);
3694 rcu_read_unlock();
3695 }
3696
3697 void perf_event_comm(struct task_struct *task)
3698 {
3699 struct perf_comm_event comm_event;
3700
3701 if (task->perf_event_ctxp)
3702 perf_event_enable_on_exec(task);
3703
3704 if (!atomic_read(&nr_comm_events))
3705 return;
3706
3707 comm_event = (struct perf_comm_event){
3708 .task = task,
3709 /* .comm */
3710 /* .comm_size */
3711 .event_id = {
3712 .header = {
3713 .type = PERF_RECORD_COMM,
3714 .misc = 0,
3715 /* .size */
3716 },
3717 /* .pid */
3718 /* .tid */
3719 },
3720 };
3721
3722 perf_event_comm_event(&comm_event);
3723 }
3724
3725 /*
3726 * mmap tracking
3727 */
3728
3729 struct perf_mmap_event {
3730 struct vm_area_struct *vma;
3731
3732 const char *file_name;
3733 int file_size;
3734
3735 struct {
3736 struct perf_event_header header;
3737
3738 u32 pid;
3739 u32 tid;
3740 u64 start;
3741 u64 len;
3742 u64 pgoff;
3743 } event_id;
3744 };
3745
3746 static void perf_event_mmap_output(struct perf_event *event,
3747 struct perf_mmap_event *mmap_event)
3748 {
3749 struct perf_output_handle handle;
3750 int size = mmap_event->event_id.header.size;
3751 int ret = perf_output_begin(&handle, event, size, 0, 0);
3752
3753 if (ret)
3754 return;
3755
3756 mmap_event->event_id.pid = perf_event_pid(event, current);
3757 mmap_event->event_id.tid = perf_event_tid(event, current);
3758
3759 perf_output_put(&handle, mmap_event->event_id);
3760 perf_output_copy(&handle, mmap_event->file_name,
3761 mmap_event->file_size);
3762 perf_output_end(&handle);
3763 }
3764
3765 static int perf_event_mmap_match(struct perf_event *event,
3766 struct perf_mmap_event *mmap_event)
3767 {
3768 if (event->state < PERF_EVENT_STATE_INACTIVE)
3769 return 0;
3770
3771 if (event->cpu != -1 && event->cpu != smp_processor_id())
3772 return 0;
3773
3774 if (event->attr.mmap)
3775 return 1;
3776
3777 return 0;
3778 }
3779
3780 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3781 struct perf_mmap_event *mmap_event)
3782 {
3783 struct perf_event *event;
3784
3785 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3786 if (perf_event_mmap_match(event, mmap_event))
3787 perf_event_mmap_output(event, mmap_event);
3788 }
3789 }
3790
3791 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3792 {
3793 struct perf_cpu_context *cpuctx;
3794 struct perf_event_context *ctx;
3795 struct vm_area_struct *vma = mmap_event->vma;
3796 struct file *file = vma->vm_file;
3797 unsigned int size;
3798 char tmp[16];
3799 char *buf = NULL;
3800 const char *name;
3801
3802 memset(tmp, 0, sizeof(tmp));
3803
3804 if (file) {
3805 /*
3806 * d_path works from the end of the buffer backwards, so we
3807 * need to add enough zero bytes after the string to handle
3808 * the 64bit alignment we do later.
3809 */
3810 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3811 if (!buf) {
3812 name = strncpy(tmp, "//enomem", sizeof(tmp));
3813 goto got_name;
3814 }
3815 name = d_path(&file->f_path, buf, PATH_MAX);
3816 if (IS_ERR(name)) {
3817 name = strncpy(tmp, "//toolong", sizeof(tmp));
3818 goto got_name;
3819 }
3820 } else {
3821 if (arch_vma_name(mmap_event->vma)) {
3822 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3823 sizeof(tmp));
3824 goto got_name;
3825 }
3826
3827 if (!vma->vm_mm) {
3828 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3829 goto got_name;
3830 }
3831
3832 name = strncpy(tmp, "//anon", sizeof(tmp));
3833 goto got_name;
3834 }
3835
3836 got_name:
3837 size = ALIGN(strlen(name)+1, sizeof(u64));
3838
3839 mmap_event->file_name = name;
3840 mmap_event->file_size = size;
3841
3842 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3843
3844 rcu_read_lock();
3845 cpuctx = &get_cpu_var(perf_cpu_context);
3846 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3847 ctx = rcu_dereference(current->perf_event_ctxp);
3848 if (ctx)
3849 perf_event_mmap_ctx(ctx, mmap_event);
3850 put_cpu_var(perf_cpu_context);
3851 rcu_read_unlock();
3852
3853 kfree(buf);
3854 }
3855
3856 void __perf_event_mmap(struct vm_area_struct *vma)
3857 {
3858 struct perf_mmap_event mmap_event;
3859
3860 if (!atomic_read(&nr_mmap_events))
3861 return;
3862
3863 mmap_event = (struct perf_mmap_event){
3864 .vma = vma,
3865 /* .file_name */
3866 /* .file_size */
3867 .event_id = {
3868 .header = {
3869 .type = PERF_RECORD_MMAP,
3870 .misc = PERF_RECORD_MISC_USER,
3871 /* .size */
3872 },
3873 /* .pid */
3874 /* .tid */
3875 .start = vma->vm_start,
3876 .len = vma->vm_end - vma->vm_start,
3877 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
3878 },
3879 };
3880
3881 perf_event_mmap_event(&mmap_event);
3882 }
3883
3884 /*
3885 * IRQ throttle logging
3886 */
3887
3888 static void perf_log_throttle(struct perf_event *event, int enable)
3889 {
3890 struct perf_output_handle handle;
3891 int ret;
3892
3893 struct {
3894 struct perf_event_header header;
3895 u64 time;
3896 u64 id;
3897 u64 stream_id;
3898 } throttle_event = {
3899 .header = {
3900 .type = PERF_RECORD_THROTTLE,
3901 .misc = 0,
3902 .size = sizeof(throttle_event),
3903 },
3904 .time = perf_clock(),
3905 .id = primary_event_id(event),
3906 .stream_id = event->id,
3907 };
3908
3909 if (enable)
3910 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3911
3912 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3913 if (ret)
3914 return;
3915
3916 perf_output_put(&handle, throttle_event);
3917 perf_output_end(&handle);
3918 }
3919
3920 /*
3921 * Generic event overflow handling, sampling.
3922 */
3923
3924 static int __perf_event_overflow(struct perf_event *event, int nmi,
3925 int throttle, struct perf_sample_data *data,
3926 struct pt_regs *regs)
3927 {
3928 int events = atomic_read(&event->event_limit);
3929 struct hw_perf_event *hwc = &event->hw;
3930 int ret = 0;
3931
3932 throttle = (throttle && event->pmu->unthrottle != NULL);
3933
3934 if (!throttle) {
3935 hwc->interrupts++;
3936 } else {
3937 if (hwc->interrupts != MAX_INTERRUPTS) {
3938 hwc->interrupts++;
3939 if (HZ * hwc->interrupts >
3940 (u64)sysctl_perf_event_sample_rate) {
3941 hwc->interrupts = MAX_INTERRUPTS;
3942 perf_log_throttle(event, 0);
3943 ret = 1;
3944 }
3945 } else {
3946 /*
3947 * Keep re-disabling events even though on the previous
3948 * pass we disabled it - just in case we raced with a
3949 * sched-in and the event got enabled again:
3950 */
3951 ret = 1;
3952 }
3953 }
3954
3955 if (event->attr.freq) {
3956 u64 now = perf_clock();
3957 s64 delta = now - hwc->freq_time_stamp;
3958
3959 hwc->freq_time_stamp = now;
3960
3961 if (delta > 0 && delta < 2*TICK_NSEC)
3962 perf_adjust_period(event, delta, hwc->last_period);
3963 }
3964
3965 /*
3966 * XXX event_limit might not quite work as expected on inherited
3967 * events
3968 */
3969
3970 event->pending_kill = POLL_IN;
3971 if (events && atomic_dec_and_test(&event->event_limit)) {
3972 ret = 1;
3973 event->pending_kill = POLL_HUP;
3974 if (nmi) {
3975 event->pending_disable = 1;
3976 perf_pending_queue(&event->pending,
3977 perf_pending_event);
3978 } else
3979 perf_event_disable(event);
3980 }
3981
3982 if (event->overflow_handler)
3983 event->overflow_handler(event, nmi, data, regs);
3984 else
3985 perf_event_output(event, nmi, data, regs);
3986
3987 return ret;
3988 }
3989
3990 int perf_event_overflow(struct perf_event *event, int nmi,
3991 struct perf_sample_data *data,
3992 struct pt_regs *regs)
3993 {
3994 return __perf_event_overflow(event, nmi, 1, data, regs);
3995 }
3996
3997 /*
3998 * Generic software event infrastructure
3999 */
4000
4001 /*
4002 * We directly increment event->count and keep a second value in
4003 * event->hw.period_left to count intervals. This period event
4004 * is kept in the range [-sample_period, 0] so that we can use the
4005 * sign as trigger.
4006 */
4007
4008 static u64 perf_swevent_set_period(struct perf_event *event)
4009 {
4010 struct hw_perf_event *hwc = &event->hw;
4011 u64 period = hwc->last_period;
4012 u64 nr, offset;
4013 s64 old, val;
4014
4015 hwc->last_period = hwc->sample_period;
4016
4017 again:
4018 old = val = atomic64_read(&hwc->period_left);
4019 if (val < 0)
4020 return 0;
4021
4022 nr = div64_u64(period + val, period);
4023 offset = nr * period;
4024 val -= offset;
4025 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
4026 goto again;
4027
4028 return nr;
4029 }
4030
4031 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4032 int nmi, struct perf_sample_data *data,
4033 struct pt_regs *regs)
4034 {
4035 struct hw_perf_event *hwc = &event->hw;
4036 int throttle = 0;
4037
4038 data->period = event->hw.last_period;
4039 if (!overflow)
4040 overflow = perf_swevent_set_period(event);
4041
4042 if (hwc->interrupts == MAX_INTERRUPTS)
4043 return;
4044
4045 for (; overflow; overflow--) {
4046 if (__perf_event_overflow(event, nmi, throttle,
4047 data, regs)) {
4048 /*
4049 * We inhibit the overflow from happening when
4050 * hwc->interrupts == MAX_INTERRUPTS.
4051 */
4052 break;
4053 }
4054 throttle = 1;
4055 }
4056 }
4057
4058 static void perf_swevent_add(struct perf_event *event, u64 nr,
4059 int nmi, struct perf_sample_data *data,
4060 struct pt_regs *regs)
4061 {
4062 struct hw_perf_event *hwc = &event->hw;
4063
4064 atomic64_add(nr, &event->count);
4065
4066 if (!regs)
4067 return;
4068
4069 if (!hwc->sample_period)
4070 return;
4071
4072 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4073 return perf_swevent_overflow(event, 1, nmi, data, regs);
4074
4075 if (atomic64_add_negative(nr, &hwc->period_left))
4076 return;
4077
4078 perf_swevent_overflow(event, 0, nmi, data, regs);
4079 }
4080
4081 static int perf_exclude_event(struct perf_event *event,
4082 struct pt_regs *regs)
4083 {
4084 if (regs) {
4085 if (event->attr.exclude_user && user_mode(regs))
4086 return 1;
4087
4088 if (event->attr.exclude_kernel && !user_mode(regs))
4089 return 1;
4090 }
4091
4092 return 0;
4093 }
4094
4095 static int perf_swevent_match(struct perf_event *event,
4096 enum perf_type_id type,
4097 u32 event_id,
4098 struct perf_sample_data *data,
4099 struct pt_regs *regs)
4100 {
4101 if (event->attr.type != type)
4102 return 0;
4103
4104 if (event->attr.config != event_id)
4105 return 0;
4106
4107 if (perf_exclude_event(event, regs))
4108 return 0;
4109
4110 return 1;
4111 }
4112
4113 static inline u64 swevent_hash(u64 type, u32 event_id)
4114 {
4115 u64 val = event_id | (type << 32);
4116
4117 return hash_64(val, SWEVENT_HLIST_BITS);
4118 }
4119
4120 static inline struct hlist_head *
4121 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4122 {
4123 u64 hash = swevent_hash(type, event_id);
4124
4125 return &hlist->heads[hash];
4126 }
4127
4128 /* For the read side: events when they trigger */
4129 static inline struct hlist_head *
4130 find_swevent_head_rcu(struct perf_cpu_context *ctx, u64 type, u32 event_id)
4131 {
4132 struct swevent_hlist *hlist;
4133
4134 hlist = rcu_dereference(ctx->swevent_hlist);
4135 if (!hlist)
4136 return NULL;
4137
4138 return __find_swevent_head(hlist, type, event_id);
4139 }
4140
4141 /* For the event head insertion and removal in the hlist */
4142 static inline struct hlist_head *
4143 find_swevent_head(struct perf_cpu_context *ctx, struct perf_event *event)
4144 {
4145 struct swevent_hlist *hlist;
4146 u32 event_id = event->attr.config;
4147 u64 type = event->attr.type;
4148
4149 /*
4150 * Event scheduling is always serialized against hlist allocation
4151 * and release. Which makes the protected version suitable here.
4152 * The context lock guarantees that.
4153 */
4154 hlist = rcu_dereference_protected(ctx->swevent_hlist,
4155 lockdep_is_held(&event->ctx->lock));
4156 if (!hlist)
4157 return NULL;
4158
4159 return __find_swevent_head(hlist, type, event_id);
4160 }
4161
4162 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4163 u64 nr, int nmi,
4164 struct perf_sample_data *data,
4165 struct pt_regs *regs)
4166 {
4167 struct perf_cpu_context *cpuctx;
4168 struct perf_event *event;
4169 struct hlist_node *node;
4170 struct hlist_head *head;
4171
4172 cpuctx = &__get_cpu_var(perf_cpu_context);
4173
4174 rcu_read_lock();
4175
4176 head = find_swevent_head_rcu(cpuctx, type, event_id);
4177
4178 if (!head)
4179 goto end;
4180
4181 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4182 if (perf_swevent_match(event, type, event_id, data, regs))
4183 perf_swevent_add(event, nr, nmi, data, regs);
4184 }
4185 end:
4186 rcu_read_unlock();
4187 }
4188
4189 int perf_swevent_get_recursion_context(void)
4190 {
4191 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4192 int rctx;
4193
4194 if (in_nmi())
4195 rctx = 3;
4196 else if (in_irq())
4197 rctx = 2;
4198 else if (in_softirq())
4199 rctx = 1;
4200 else
4201 rctx = 0;
4202
4203 if (cpuctx->recursion[rctx])
4204 return -1;
4205
4206 cpuctx->recursion[rctx]++;
4207 barrier();
4208
4209 return rctx;
4210 }
4211 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4212
4213 void perf_swevent_put_recursion_context(int rctx)
4214 {
4215 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4216 barrier();
4217 cpuctx->recursion[rctx]--;
4218 }
4219 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
4220
4221
4222 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4223 struct pt_regs *regs, u64 addr)
4224 {
4225 struct perf_sample_data data;
4226 int rctx;
4227
4228 preempt_disable_notrace();
4229 rctx = perf_swevent_get_recursion_context();
4230 if (rctx < 0)
4231 return;
4232
4233 perf_sample_data_init(&data, addr);
4234
4235 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4236
4237 perf_swevent_put_recursion_context(rctx);
4238 preempt_enable_notrace();
4239 }
4240
4241 static void perf_swevent_read(struct perf_event *event)
4242 {
4243 }
4244
4245 static int perf_swevent_enable(struct perf_event *event)
4246 {
4247 struct hw_perf_event *hwc = &event->hw;
4248 struct perf_cpu_context *cpuctx;
4249 struct hlist_head *head;
4250
4251 cpuctx = &__get_cpu_var(perf_cpu_context);
4252
4253 if (hwc->sample_period) {
4254 hwc->last_period = hwc->sample_period;
4255 perf_swevent_set_period(event);
4256 }
4257
4258 head = find_swevent_head(cpuctx, event);
4259 if (WARN_ON_ONCE(!head))
4260 return -EINVAL;
4261
4262 hlist_add_head_rcu(&event->hlist_entry, head);
4263
4264 return 0;
4265 }
4266
4267 static void perf_swevent_disable(struct perf_event *event)
4268 {
4269 hlist_del_rcu(&event->hlist_entry);
4270 }
4271
4272 static void perf_swevent_void(struct perf_event *event)
4273 {
4274 }
4275
4276 static int perf_swevent_int(struct perf_event *event)
4277 {
4278 return 0;
4279 }
4280
4281 static const struct pmu perf_ops_generic = {
4282 .enable = perf_swevent_enable,
4283 .disable = perf_swevent_disable,
4284 .start = perf_swevent_int,
4285 .stop = perf_swevent_void,
4286 .read = perf_swevent_read,
4287 .unthrottle = perf_swevent_void, /* hwc->interrupts already reset */
4288 };
4289
4290 /*
4291 * hrtimer based swevent callback
4292 */
4293
4294 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4295 {
4296 enum hrtimer_restart ret = HRTIMER_RESTART;
4297 struct perf_sample_data data;
4298 struct pt_regs *regs;
4299 struct perf_event *event;
4300 u64 period;
4301
4302 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4303 event->pmu->read(event);
4304
4305 perf_sample_data_init(&data, 0);
4306 data.period = event->hw.last_period;
4307 regs = get_irq_regs();
4308
4309 if (regs && !perf_exclude_event(event, regs)) {
4310 if (!(event->attr.exclude_idle && current->pid == 0))
4311 if (perf_event_overflow(event, 0, &data, regs))
4312 ret = HRTIMER_NORESTART;
4313 }
4314
4315 period = max_t(u64, 10000, event->hw.sample_period);
4316 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4317
4318 return ret;
4319 }
4320
4321 static void perf_swevent_start_hrtimer(struct perf_event *event)
4322 {
4323 struct hw_perf_event *hwc = &event->hw;
4324
4325 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4326 hwc->hrtimer.function = perf_swevent_hrtimer;
4327 if (hwc->sample_period) {
4328 u64 period;
4329
4330 if (hwc->remaining) {
4331 if (hwc->remaining < 0)
4332 period = 10000;
4333 else
4334 period = hwc->remaining;
4335 hwc->remaining = 0;
4336 } else {
4337 period = max_t(u64, 10000, hwc->sample_period);
4338 }
4339 __hrtimer_start_range_ns(&hwc->hrtimer,
4340 ns_to_ktime(period), 0,
4341 HRTIMER_MODE_REL, 0);
4342 }
4343 }
4344
4345 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4346 {
4347 struct hw_perf_event *hwc = &event->hw;
4348
4349 if (hwc->sample_period) {
4350 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4351 hwc->remaining = ktime_to_ns(remaining);
4352
4353 hrtimer_cancel(&hwc->hrtimer);
4354 }
4355 }
4356
4357 /*
4358 * Software event: cpu wall time clock
4359 */
4360
4361 static void cpu_clock_perf_event_update(struct perf_event *event)
4362 {
4363 int cpu = raw_smp_processor_id();
4364 s64 prev;
4365 u64 now;
4366
4367 now = cpu_clock(cpu);
4368 prev = atomic64_xchg(&event->hw.prev_count, now);
4369 atomic64_add(now - prev, &event->count);
4370 }
4371
4372 static int cpu_clock_perf_event_enable(struct perf_event *event)
4373 {
4374 struct hw_perf_event *hwc = &event->hw;
4375 int cpu = raw_smp_processor_id();
4376
4377 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4378 perf_swevent_start_hrtimer(event);
4379
4380 return 0;
4381 }
4382
4383 static void cpu_clock_perf_event_disable(struct perf_event *event)
4384 {
4385 perf_swevent_cancel_hrtimer(event);
4386 cpu_clock_perf_event_update(event);
4387 }
4388
4389 static void cpu_clock_perf_event_read(struct perf_event *event)
4390 {
4391 cpu_clock_perf_event_update(event);
4392 }
4393
4394 static const struct pmu perf_ops_cpu_clock = {
4395 .enable = cpu_clock_perf_event_enable,
4396 .disable = cpu_clock_perf_event_disable,
4397 .read = cpu_clock_perf_event_read,
4398 };
4399
4400 /*
4401 * Software event: task time clock
4402 */
4403
4404 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4405 {
4406 u64 prev;
4407 s64 delta;
4408
4409 prev = atomic64_xchg(&event->hw.prev_count, now);
4410 delta = now - prev;
4411 atomic64_add(delta, &event->count);
4412 }
4413
4414 static int task_clock_perf_event_enable(struct perf_event *event)
4415 {
4416 struct hw_perf_event *hwc = &event->hw;
4417 u64 now;
4418
4419 now = event->ctx->time;
4420
4421 atomic64_set(&hwc->prev_count, now);
4422
4423 perf_swevent_start_hrtimer(event);
4424
4425 return 0;
4426 }
4427
4428 static void task_clock_perf_event_disable(struct perf_event *event)
4429 {
4430 perf_swevent_cancel_hrtimer(event);
4431 task_clock_perf_event_update(event, event->ctx->time);
4432
4433 }
4434
4435 static void task_clock_perf_event_read(struct perf_event *event)
4436 {
4437 u64 time;
4438
4439 if (!in_nmi()) {
4440 update_context_time(event->ctx);
4441 time = event->ctx->time;
4442 } else {
4443 u64 now = perf_clock();
4444 u64 delta = now - event->ctx->timestamp;
4445 time = event->ctx->time + delta;
4446 }
4447
4448 task_clock_perf_event_update(event, time);
4449 }
4450
4451 static const struct pmu perf_ops_task_clock = {
4452 .enable = task_clock_perf_event_enable,
4453 .disable = task_clock_perf_event_disable,
4454 .read = task_clock_perf_event_read,
4455 };
4456
4457 /* Deref the hlist from the update side */
4458 static inline struct swevent_hlist *
4459 swevent_hlist_deref(struct perf_cpu_context *cpuctx)
4460 {
4461 return rcu_dereference_protected(cpuctx->swevent_hlist,
4462 lockdep_is_held(&cpuctx->hlist_mutex));
4463 }
4464
4465 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4466 {
4467 struct swevent_hlist *hlist;
4468
4469 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4470 kfree(hlist);
4471 }
4472
4473 static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
4474 {
4475 struct swevent_hlist *hlist = swevent_hlist_deref(cpuctx);
4476
4477 if (!hlist)
4478 return;
4479
4480 rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
4481 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4482 }
4483
4484 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4485 {
4486 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4487
4488 mutex_lock(&cpuctx->hlist_mutex);
4489
4490 if (!--cpuctx->hlist_refcount)
4491 swevent_hlist_release(cpuctx);
4492
4493 mutex_unlock(&cpuctx->hlist_mutex);
4494 }
4495
4496 static void swevent_hlist_put(struct perf_event *event)
4497 {
4498 int cpu;
4499
4500 if (event->cpu != -1) {
4501 swevent_hlist_put_cpu(event, event->cpu);
4502 return;
4503 }
4504
4505 for_each_possible_cpu(cpu)
4506 swevent_hlist_put_cpu(event, cpu);
4507 }
4508
4509 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4510 {
4511 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4512 int err = 0;
4513
4514 mutex_lock(&cpuctx->hlist_mutex);
4515
4516 if (!swevent_hlist_deref(cpuctx) && cpu_online(cpu)) {
4517 struct swevent_hlist *hlist;
4518
4519 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4520 if (!hlist) {
4521 err = -ENOMEM;
4522 goto exit;
4523 }
4524 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
4525 }
4526 cpuctx->hlist_refcount++;
4527 exit:
4528 mutex_unlock(&cpuctx->hlist_mutex);
4529
4530 return err;
4531 }
4532
4533 static int swevent_hlist_get(struct perf_event *event)
4534 {
4535 int err;
4536 int cpu, failed_cpu;
4537
4538 if (event->cpu != -1)
4539 return swevent_hlist_get_cpu(event, event->cpu);
4540
4541 get_online_cpus();
4542 for_each_possible_cpu(cpu) {
4543 err = swevent_hlist_get_cpu(event, cpu);
4544 if (err) {
4545 failed_cpu = cpu;
4546 goto fail;
4547 }
4548 }
4549 put_online_cpus();
4550
4551 return 0;
4552 fail:
4553 for_each_possible_cpu(cpu) {
4554 if (cpu == failed_cpu)
4555 break;
4556 swevent_hlist_put_cpu(event, cpu);
4557 }
4558
4559 put_online_cpus();
4560 return err;
4561 }
4562
4563 #ifdef CONFIG_EVENT_TRACING
4564
4565 static const struct pmu perf_ops_tracepoint = {
4566 .enable = perf_trace_enable,
4567 .disable = perf_trace_disable,
4568 .start = perf_swevent_int,
4569 .stop = perf_swevent_void,
4570 .read = perf_swevent_read,
4571 .unthrottle = perf_swevent_void,
4572 };
4573
4574 static int perf_tp_filter_match(struct perf_event *event,
4575 struct perf_sample_data *data)
4576 {
4577 void *record = data->raw->data;
4578
4579 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4580 return 1;
4581 return 0;
4582 }
4583
4584 static int perf_tp_event_match(struct perf_event *event,
4585 struct perf_sample_data *data,
4586 struct pt_regs *regs)
4587 {
4588 /*
4589 * All tracepoints are from kernel-space.
4590 */
4591 if (event->attr.exclude_kernel)
4592 return 0;
4593
4594 if (!perf_tp_filter_match(event, data))
4595 return 0;
4596
4597 return 1;
4598 }
4599
4600 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4601 struct pt_regs *regs, struct hlist_head *head)
4602 {
4603 struct perf_sample_data data;
4604 struct perf_event *event;
4605 struct hlist_node *node;
4606
4607 struct perf_raw_record raw = {
4608 .size = entry_size,
4609 .data = record,
4610 };
4611
4612 perf_sample_data_init(&data, addr);
4613 data.raw = &raw;
4614
4615 rcu_read_lock();
4616 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4617 if (perf_tp_event_match(event, &data, regs))
4618 perf_swevent_add(event, count, 1, &data, regs);
4619 }
4620 rcu_read_unlock();
4621 }
4622 EXPORT_SYMBOL_GPL(perf_tp_event);
4623
4624 static void tp_perf_event_destroy(struct perf_event *event)
4625 {
4626 perf_trace_destroy(event);
4627 }
4628
4629 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4630 {
4631 int err;
4632
4633 /*
4634 * Raw tracepoint data is a severe data leak, only allow root to
4635 * have these.
4636 */
4637 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4638 perf_paranoid_tracepoint_raw() &&
4639 !capable(CAP_SYS_ADMIN))
4640 return ERR_PTR(-EPERM);
4641
4642 err = perf_trace_init(event);
4643 if (err)
4644 return NULL;
4645
4646 event->destroy = tp_perf_event_destroy;
4647
4648 return &perf_ops_tracepoint;
4649 }
4650
4651 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4652 {
4653 char *filter_str;
4654 int ret;
4655
4656 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4657 return -EINVAL;
4658
4659 filter_str = strndup_user(arg, PAGE_SIZE);
4660 if (IS_ERR(filter_str))
4661 return PTR_ERR(filter_str);
4662
4663 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4664
4665 kfree(filter_str);
4666 return ret;
4667 }
4668
4669 static void perf_event_free_filter(struct perf_event *event)
4670 {
4671 ftrace_profile_free_filter(event);
4672 }
4673
4674 #else
4675
4676 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4677 {
4678 return NULL;
4679 }
4680
4681 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4682 {
4683 return -ENOENT;
4684 }
4685
4686 static void perf_event_free_filter(struct perf_event *event)
4687 {
4688 }
4689
4690 #endif /* CONFIG_EVENT_TRACING */
4691
4692 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4693 static void bp_perf_event_destroy(struct perf_event *event)
4694 {
4695 release_bp_slot(event);
4696 }
4697
4698 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4699 {
4700 int err;
4701
4702 err = register_perf_hw_breakpoint(bp);
4703 if (err)
4704 return ERR_PTR(err);
4705
4706 bp->destroy = bp_perf_event_destroy;
4707
4708 return &perf_ops_bp;
4709 }
4710
4711 void perf_bp_event(struct perf_event *bp, void *data)
4712 {
4713 struct perf_sample_data sample;
4714 struct pt_regs *regs = data;
4715
4716 perf_sample_data_init(&sample, bp->attr.bp_addr);
4717
4718 if (!perf_exclude_event(bp, regs))
4719 perf_swevent_add(bp, 1, 1, &sample, regs);
4720 }
4721 #else
4722 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4723 {
4724 return NULL;
4725 }
4726
4727 void perf_bp_event(struct perf_event *bp, void *regs)
4728 {
4729 }
4730 #endif
4731
4732 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4733
4734 static void sw_perf_event_destroy(struct perf_event *event)
4735 {
4736 u64 event_id = event->attr.config;
4737
4738 WARN_ON(event->parent);
4739
4740 atomic_dec(&perf_swevent_enabled[event_id]);
4741 swevent_hlist_put(event);
4742 }
4743
4744 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4745 {
4746 const struct pmu *pmu = NULL;
4747 u64 event_id = event->attr.config;
4748
4749 /*
4750 * Software events (currently) can't in general distinguish
4751 * between user, kernel and hypervisor events.
4752 * However, context switches and cpu migrations are considered
4753 * to be kernel events, and page faults are never hypervisor
4754 * events.
4755 */
4756 switch (event_id) {
4757 case PERF_COUNT_SW_CPU_CLOCK:
4758 pmu = &perf_ops_cpu_clock;
4759
4760 break;
4761 case PERF_COUNT_SW_TASK_CLOCK:
4762 /*
4763 * If the user instantiates this as a per-cpu event,
4764 * use the cpu_clock event instead.
4765 */
4766 if (event->ctx->task)
4767 pmu = &perf_ops_task_clock;
4768 else
4769 pmu = &perf_ops_cpu_clock;
4770
4771 break;
4772 case PERF_COUNT_SW_PAGE_FAULTS:
4773 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4774 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4775 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4776 case PERF_COUNT_SW_CPU_MIGRATIONS:
4777 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4778 case PERF_COUNT_SW_EMULATION_FAULTS:
4779 if (!event->parent) {
4780 int err;
4781
4782 err = swevent_hlist_get(event);
4783 if (err)
4784 return ERR_PTR(err);
4785
4786 atomic_inc(&perf_swevent_enabled[event_id]);
4787 event->destroy = sw_perf_event_destroy;
4788 }
4789 pmu = &perf_ops_generic;
4790 break;
4791 }
4792
4793 return pmu;
4794 }
4795
4796 /*
4797 * Allocate and initialize a event structure
4798 */
4799 static struct perf_event *
4800 perf_event_alloc(struct perf_event_attr *attr,
4801 int cpu,
4802 struct perf_event_context *ctx,
4803 struct perf_event *group_leader,
4804 struct perf_event *parent_event,
4805 perf_overflow_handler_t overflow_handler,
4806 gfp_t gfpflags)
4807 {
4808 const struct pmu *pmu;
4809 struct perf_event *event;
4810 struct hw_perf_event *hwc;
4811 long err;
4812
4813 event = kzalloc(sizeof(*event), gfpflags);
4814 if (!event)
4815 return ERR_PTR(-ENOMEM);
4816
4817 /*
4818 * Single events are their own group leaders, with an
4819 * empty sibling list:
4820 */
4821 if (!group_leader)
4822 group_leader = event;
4823
4824 mutex_init(&event->child_mutex);
4825 INIT_LIST_HEAD(&event->child_list);
4826
4827 INIT_LIST_HEAD(&event->group_entry);
4828 INIT_LIST_HEAD(&event->event_entry);
4829 INIT_LIST_HEAD(&event->sibling_list);
4830 init_waitqueue_head(&event->waitq);
4831
4832 mutex_init(&event->mmap_mutex);
4833
4834 event->cpu = cpu;
4835 event->attr = *attr;
4836 event->group_leader = group_leader;
4837 event->pmu = NULL;
4838 event->ctx = ctx;
4839 event->oncpu = -1;
4840
4841 event->parent = parent_event;
4842
4843 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4844 event->id = atomic64_inc_return(&perf_event_id);
4845
4846 event->state = PERF_EVENT_STATE_INACTIVE;
4847
4848 if (!overflow_handler && parent_event)
4849 overflow_handler = parent_event->overflow_handler;
4850
4851 event->overflow_handler = overflow_handler;
4852
4853 if (attr->disabled)
4854 event->state = PERF_EVENT_STATE_OFF;
4855
4856 pmu = NULL;
4857
4858 hwc = &event->hw;
4859 hwc->sample_period = attr->sample_period;
4860 if (attr->freq && attr->sample_freq)
4861 hwc->sample_period = 1;
4862 hwc->last_period = hwc->sample_period;
4863
4864 atomic64_set(&hwc->period_left, hwc->sample_period);
4865
4866 /*
4867 * we currently do not support PERF_FORMAT_GROUP on inherited events
4868 */
4869 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4870 goto done;
4871
4872 switch (attr->type) {
4873 case PERF_TYPE_RAW:
4874 case PERF_TYPE_HARDWARE:
4875 case PERF_TYPE_HW_CACHE:
4876 pmu = hw_perf_event_init(event);
4877 break;
4878
4879 case PERF_TYPE_SOFTWARE:
4880 pmu = sw_perf_event_init(event);
4881 break;
4882
4883 case PERF_TYPE_TRACEPOINT:
4884 pmu = tp_perf_event_init(event);
4885 break;
4886
4887 case PERF_TYPE_BREAKPOINT:
4888 pmu = bp_perf_event_init(event);
4889 break;
4890
4891
4892 default:
4893 break;
4894 }
4895 done:
4896 err = 0;
4897 if (!pmu)
4898 err = -EINVAL;
4899 else if (IS_ERR(pmu))
4900 err = PTR_ERR(pmu);
4901
4902 if (err) {
4903 if (event->ns)
4904 put_pid_ns(event->ns);
4905 kfree(event);
4906 return ERR_PTR(err);
4907 }
4908
4909 event->pmu = pmu;
4910
4911 if (!event->parent) {
4912 atomic_inc(&nr_events);
4913 if (event->attr.mmap)
4914 atomic_inc(&nr_mmap_events);
4915 if (event->attr.comm)
4916 atomic_inc(&nr_comm_events);
4917 if (event->attr.task)
4918 atomic_inc(&nr_task_events);
4919 }
4920
4921 return event;
4922 }
4923
4924 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4925 struct perf_event_attr *attr)
4926 {
4927 u32 size;
4928 int ret;
4929
4930 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4931 return -EFAULT;
4932
4933 /*
4934 * zero the full structure, so that a short copy will be nice.
4935 */
4936 memset(attr, 0, sizeof(*attr));
4937
4938 ret = get_user(size, &uattr->size);
4939 if (ret)
4940 return ret;
4941
4942 if (size > PAGE_SIZE) /* silly large */
4943 goto err_size;
4944
4945 if (!size) /* abi compat */
4946 size = PERF_ATTR_SIZE_VER0;
4947
4948 if (size < PERF_ATTR_SIZE_VER0)
4949 goto err_size;
4950
4951 /*
4952 * If we're handed a bigger struct than we know of,
4953 * ensure all the unknown bits are 0 - i.e. new
4954 * user-space does not rely on any kernel feature
4955 * extensions we dont know about yet.
4956 */
4957 if (size > sizeof(*attr)) {
4958 unsigned char __user *addr;
4959 unsigned char __user *end;
4960 unsigned char val;
4961
4962 addr = (void __user *)uattr + sizeof(*attr);
4963 end = (void __user *)uattr + size;
4964
4965 for (; addr < end; addr++) {
4966 ret = get_user(val, addr);
4967 if (ret)
4968 return ret;
4969 if (val)
4970 goto err_size;
4971 }
4972 size = sizeof(*attr);
4973 }
4974
4975 ret = copy_from_user(attr, uattr, size);
4976 if (ret)
4977 return -EFAULT;
4978
4979 /*
4980 * If the type exists, the corresponding creation will verify
4981 * the attr->config.
4982 */
4983 if (attr->type >= PERF_TYPE_MAX)
4984 return -EINVAL;
4985
4986 if (attr->__reserved_1)
4987 return -EINVAL;
4988
4989 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4990 return -EINVAL;
4991
4992 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4993 return -EINVAL;
4994
4995 out:
4996 return ret;
4997
4998 err_size:
4999 put_user(sizeof(*attr), &uattr->size);
5000 ret = -E2BIG;
5001 goto out;
5002 }
5003
5004 static int
5005 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5006 {
5007 struct perf_mmap_data *data = NULL, *old_data = NULL;
5008 int ret = -EINVAL;
5009
5010 if (!output_event)
5011 goto set;
5012
5013 /* don't allow circular references */
5014 if (event == output_event)
5015 goto out;
5016
5017 /*
5018 * Don't allow cross-cpu buffers
5019 */
5020 if (output_event->cpu != event->cpu)
5021 goto out;
5022
5023 /*
5024 * If its not a per-cpu buffer, it must be the same task.
5025 */
5026 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5027 goto out;
5028
5029 set:
5030 mutex_lock(&event->mmap_mutex);
5031 /* Can't redirect output if we've got an active mmap() */
5032 if (atomic_read(&event->mmap_count))
5033 goto unlock;
5034
5035 if (output_event) {
5036 /* get the buffer we want to redirect to */
5037 data = perf_mmap_data_get(output_event);
5038 if (!data)
5039 goto unlock;
5040 }
5041
5042 old_data = event->data;
5043 rcu_assign_pointer(event->data, data);
5044 ret = 0;
5045 unlock:
5046 mutex_unlock(&event->mmap_mutex);
5047
5048 if (old_data)
5049 perf_mmap_data_put(old_data);
5050 out:
5051 return ret;
5052 }
5053
5054 /**
5055 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5056 *
5057 * @attr_uptr: event_id type attributes for monitoring/sampling
5058 * @pid: target pid
5059 * @cpu: target cpu
5060 * @group_fd: group leader event fd
5061 */
5062 SYSCALL_DEFINE5(perf_event_open,
5063 struct perf_event_attr __user *, attr_uptr,
5064 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5065 {
5066 struct perf_event *event, *group_leader = NULL, *output_event = NULL;
5067 struct perf_event_attr attr;
5068 struct perf_event_context *ctx;
5069 struct file *event_file = NULL;
5070 struct file *group_file = NULL;
5071 int event_fd;
5072 int fput_needed = 0;
5073 int err;
5074
5075 /* for future expandability... */
5076 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5077 return -EINVAL;
5078
5079 err = perf_copy_attr(attr_uptr, &attr);
5080 if (err)
5081 return err;
5082
5083 if (!attr.exclude_kernel) {
5084 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5085 return -EACCES;
5086 }
5087
5088 if (attr.freq) {
5089 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5090 return -EINVAL;
5091 }
5092
5093 event_fd = get_unused_fd_flags(O_RDWR);
5094 if (event_fd < 0)
5095 return event_fd;
5096
5097 /*
5098 * Get the target context (task or percpu):
5099 */
5100 ctx = find_get_context(pid, cpu);
5101 if (IS_ERR(ctx)) {
5102 err = PTR_ERR(ctx);
5103 goto err_fd;
5104 }
5105
5106 if (group_fd != -1) {
5107 group_leader = perf_fget_light(group_fd, &fput_needed);
5108 if (IS_ERR(group_leader)) {
5109 err = PTR_ERR(group_leader);
5110 goto err_put_context;
5111 }
5112 group_file = group_leader->filp;
5113 if (flags & PERF_FLAG_FD_OUTPUT)
5114 output_event = group_leader;
5115 if (flags & PERF_FLAG_FD_NO_GROUP)
5116 group_leader = NULL;
5117 }
5118
5119 /*
5120 * Look up the group leader (we will attach this event to it):
5121 */
5122 if (group_leader) {
5123 err = -EINVAL;
5124
5125 /*
5126 * Do not allow a recursive hierarchy (this new sibling
5127 * becoming part of another group-sibling):
5128 */
5129 if (group_leader->group_leader != group_leader)
5130 goto err_put_context;
5131 /*
5132 * Do not allow to attach to a group in a different
5133 * task or CPU context:
5134 */
5135 if (group_leader->ctx != ctx)
5136 goto err_put_context;
5137 /*
5138 * Only a group leader can be exclusive or pinned
5139 */
5140 if (attr.exclusive || attr.pinned)
5141 goto err_put_context;
5142 }
5143
5144 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
5145 NULL, NULL, GFP_KERNEL);
5146 if (IS_ERR(event)) {
5147 err = PTR_ERR(event);
5148 goto err_put_context;
5149 }
5150
5151 if (output_event) {
5152 err = perf_event_set_output(event, output_event);
5153 if (err)
5154 goto err_free_put_context;
5155 }
5156
5157 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5158 if (IS_ERR(event_file)) {
5159 err = PTR_ERR(event_file);
5160 goto err_free_put_context;
5161 }
5162
5163 event->filp = event_file;
5164 WARN_ON_ONCE(ctx->parent_ctx);
5165 mutex_lock(&ctx->mutex);
5166 perf_install_in_context(ctx, event, cpu);
5167 ++ctx->generation;
5168 mutex_unlock(&ctx->mutex);
5169
5170 event->owner = current;
5171 get_task_struct(current);
5172 mutex_lock(&current->perf_event_mutex);
5173 list_add_tail(&event->owner_entry, &current->perf_event_list);
5174 mutex_unlock(&current->perf_event_mutex);
5175
5176 /*
5177 * Drop the reference on the group_event after placing the
5178 * new event on the sibling_list. This ensures destruction
5179 * of the group leader will find the pointer to itself in
5180 * perf_group_detach().
5181 */
5182 fput_light(group_file, fput_needed);
5183 fd_install(event_fd, event_file);
5184 return event_fd;
5185
5186 err_free_put_context:
5187 free_event(event);
5188 err_put_context:
5189 fput_light(group_file, fput_needed);
5190 put_ctx(ctx);
5191 err_fd:
5192 put_unused_fd(event_fd);
5193 return err;
5194 }
5195
5196 /**
5197 * perf_event_create_kernel_counter
5198 *
5199 * @attr: attributes of the counter to create
5200 * @cpu: cpu in which the counter is bound
5201 * @pid: task to profile
5202 */
5203 struct perf_event *
5204 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5205 pid_t pid,
5206 perf_overflow_handler_t overflow_handler)
5207 {
5208 struct perf_event *event;
5209 struct perf_event_context *ctx;
5210 int err;
5211
5212 /*
5213 * Get the target context (task or percpu):
5214 */
5215
5216 ctx = find_get_context(pid, cpu);
5217 if (IS_ERR(ctx)) {
5218 err = PTR_ERR(ctx);
5219 goto err_exit;
5220 }
5221
5222 event = perf_event_alloc(attr, cpu, ctx, NULL,
5223 NULL, overflow_handler, GFP_KERNEL);
5224 if (IS_ERR(event)) {
5225 err = PTR_ERR(event);
5226 goto err_put_context;
5227 }
5228
5229 event->filp = NULL;
5230 WARN_ON_ONCE(ctx->parent_ctx);
5231 mutex_lock(&ctx->mutex);
5232 perf_install_in_context(ctx, event, cpu);
5233 ++ctx->generation;
5234 mutex_unlock(&ctx->mutex);
5235
5236 event->owner = current;
5237 get_task_struct(current);
5238 mutex_lock(&current->perf_event_mutex);
5239 list_add_tail(&event->owner_entry, &current->perf_event_list);
5240 mutex_unlock(&current->perf_event_mutex);
5241
5242 return event;
5243
5244 err_put_context:
5245 put_ctx(ctx);
5246 err_exit:
5247 return ERR_PTR(err);
5248 }
5249 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5250
5251 /*
5252 * inherit a event from parent task to child task:
5253 */
5254 static struct perf_event *
5255 inherit_event(struct perf_event *parent_event,
5256 struct task_struct *parent,
5257 struct perf_event_context *parent_ctx,
5258 struct task_struct *child,
5259 struct perf_event *group_leader,
5260 struct perf_event_context *child_ctx)
5261 {
5262 struct perf_event *child_event;
5263
5264 /*
5265 * Instead of creating recursive hierarchies of events,
5266 * we link inherited events back to the original parent,
5267 * which has a filp for sure, which we use as the reference
5268 * count:
5269 */
5270 if (parent_event->parent)
5271 parent_event = parent_event->parent;
5272
5273 child_event = perf_event_alloc(&parent_event->attr,
5274 parent_event->cpu, child_ctx,
5275 group_leader, parent_event,
5276 NULL, GFP_KERNEL);
5277 if (IS_ERR(child_event))
5278 return child_event;
5279 get_ctx(child_ctx);
5280
5281 /*
5282 * Make the child state follow the state of the parent event,
5283 * not its attr.disabled bit. We hold the parent's mutex,
5284 * so we won't race with perf_event_{en, dis}able_family.
5285 */
5286 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5287 child_event->state = PERF_EVENT_STATE_INACTIVE;
5288 else
5289 child_event->state = PERF_EVENT_STATE_OFF;
5290
5291 if (parent_event->attr.freq) {
5292 u64 sample_period = parent_event->hw.sample_period;
5293 struct hw_perf_event *hwc = &child_event->hw;
5294
5295 hwc->sample_period = sample_period;
5296 hwc->last_period = sample_period;
5297
5298 atomic64_set(&hwc->period_left, sample_period);
5299 }
5300
5301 child_event->overflow_handler = parent_event->overflow_handler;
5302
5303 /*
5304 * Link it up in the child's context:
5305 */
5306 add_event_to_ctx(child_event, child_ctx);
5307
5308 /*
5309 * Get a reference to the parent filp - we will fput it
5310 * when the child event exits. This is safe to do because
5311 * we are in the parent and we know that the filp still
5312 * exists and has a nonzero count:
5313 */
5314 atomic_long_inc(&parent_event->filp->f_count);
5315
5316 /*
5317 * Link this into the parent event's child list
5318 */
5319 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5320 mutex_lock(&parent_event->child_mutex);
5321 list_add_tail(&child_event->child_list, &parent_event->child_list);
5322 mutex_unlock(&parent_event->child_mutex);
5323
5324 return child_event;
5325 }
5326
5327 static int inherit_group(struct perf_event *parent_event,
5328 struct task_struct *parent,
5329 struct perf_event_context *parent_ctx,
5330 struct task_struct *child,
5331 struct perf_event_context *child_ctx)
5332 {
5333 struct perf_event *leader;
5334 struct perf_event *sub;
5335 struct perf_event *child_ctr;
5336
5337 leader = inherit_event(parent_event, parent, parent_ctx,
5338 child, NULL, child_ctx);
5339 if (IS_ERR(leader))
5340 return PTR_ERR(leader);
5341 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5342 child_ctr = inherit_event(sub, parent, parent_ctx,
5343 child, leader, child_ctx);
5344 if (IS_ERR(child_ctr))
5345 return PTR_ERR(child_ctr);
5346 }
5347 return 0;
5348 }
5349
5350 static void sync_child_event(struct perf_event *child_event,
5351 struct task_struct *child)
5352 {
5353 struct perf_event *parent_event = child_event->parent;
5354 u64 child_val;
5355
5356 if (child_event->attr.inherit_stat)
5357 perf_event_read_event(child_event, child);
5358
5359 child_val = atomic64_read(&child_event->count);
5360
5361 /*
5362 * Add back the child's count to the parent's count:
5363 */
5364 atomic64_add(child_val, &parent_event->count);
5365 atomic64_add(child_event->total_time_enabled,
5366 &parent_event->child_total_time_enabled);
5367 atomic64_add(child_event->total_time_running,
5368 &parent_event->child_total_time_running);
5369
5370 /*
5371 * Remove this event from the parent's list
5372 */
5373 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5374 mutex_lock(&parent_event->child_mutex);
5375 list_del_init(&child_event->child_list);
5376 mutex_unlock(&parent_event->child_mutex);
5377
5378 /*
5379 * Release the parent event, if this was the last
5380 * reference to it.
5381 */
5382 fput(parent_event->filp);
5383 }
5384
5385 static void
5386 __perf_event_exit_task(struct perf_event *child_event,
5387 struct perf_event_context *child_ctx,
5388 struct task_struct *child)
5389 {
5390 struct perf_event *parent_event;
5391
5392 perf_event_remove_from_context(child_event);
5393
5394 parent_event = child_event->parent;
5395 /*
5396 * It can happen that parent exits first, and has events
5397 * that are still around due to the child reference. These
5398 * events need to be zapped - but otherwise linger.
5399 */
5400 if (parent_event) {
5401 sync_child_event(child_event, child);
5402 free_event(child_event);
5403 }
5404 }
5405
5406 /*
5407 * When a child task exits, feed back event values to parent events.
5408 */
5409 void perf_event_exit_task(struct task_struct *child)
5410 {
5411 struct perf_event *child_event, *tmp;
5412 struct perf_event_context *child_ctx;
5413 unsigned long flags;
5414
5415 if (likely(!child->perf_event_ctxp)) {
5416 perf_event_task(child, NULL, 0);
5417 return;
5418 }
5419
5420 local_irq_save(flags);
5421 /*
5422 * We can't reschedule here because interrupts are disabled,
5423 * and either child is current or it is a task that can't be
5424 * scheduled, so we are now safe from rescheduling changing
5425 * our context.
5426 */
5427 child_ctx = child->perf_event_ctxp;
5428 __perf_event_task_sched_out(child_ctx);
5429
5430 /*
5431 * Take the context lock here so that if find_get_context is
5432 * reading child->perf_event_ctxp, we wait until it has
5433 * incremented the context's refcount before we do put_ctx below.
5434 */
5435 raw_spin_lock(&child_ctx->lock);
5436 child->perf_event_ctxp = NULL;
5437 /*
5438 * If this context is a clone; unclone it so it can't get
5439 * swapped to another process while we're removing all
5440 * the events from it.
5441 */
5442 unclone_ctx(child_ctx);
5443 update_context_time(child_ctx);
5444 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5445
5446 /*
5447 * Report the task dead after unscheduling the events so that we
5448 * won't get any samples after PERF_RECORD_EXIT. We can however still
5449 * get a few PERF_RECORD_READ events.
5450 */
5451 perf_event_task(child, child_ctx, 0);
5452
5453 /*
5454 * We can recurse on the same lock type through:
5455 *
5456 * __perf_event_exit_task()
5457 * sync_child_event()
5458 * fput(parent_event->filp)
5459 * perf_release()
5460 * mutex_lock(&ctx->mutex)
5461 *
5462 * But since its the parent context it won't be the same instance.
5463 */
5464 mutex_lock(&child_ctx->mutex);
5465
5466 again:
5467 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5468 group_entry)
5469 __perf_event_exit_task(child_event, child_ctx, child);
5470
5471 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5472 group_entry)
5473 __perf_event_exit_task(child_event, child_ctx, child);
5474
5475 /*
5476 * If the last event was a group event, it will have appended all
5477 * its siblings to the list, but we obtained 'tmp' before that which
5478 * will still point to the list head terminating the iteration.
5479 */
5480 if (!list_empty(&child_ctx->pinned_groups) ||
5481 !list_empty(&child_ctx->flexible_groups))
5482 goto again;
5483
5484 mutex_unlock(&child_ctx->mutex);
5485
5486 put_ctx(child_ctx);
5487 }
5488
5489 static void perf_free_event(struct perf_event *event,
5490 struct perf_event_context *ctx)
5491 {
5492 struct perf_event *parent = event->parent;
5493
5494 if (WARN_ON_ONCE(!parent))
5495 return;
5496
5497 mutex_lock(&parent->child_mutex);
5498 list_del_init(&event->child_list);
5499 mutex_unlock(&parent->child_mutex);
5500
5501 fput(parent->filp);
5502
5503 perf_group_detach(event);
5504 list_del_event(event, ctx);
5505 free_event(event);
5506 }
5507
5508 /*
5509 * free an unexposed, unused context as created by inheritance by
5510 * init_task below, used by fork() in case of fail.
5511 */
5512 void perf_event_free_task(struct task_struct *task)
5513 {
5514 struct perf_event_context *ctx = task->perf_event_ctxp;
5515 struct perf_event *event, *tmp;
5516
5517 if (!ctx)
5518 return;
5519
5520 mutex_lock(&ctx->mutex);
5521 again:
5522 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5523 perf_free_event(event, ctx);
5524
5525 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5526 group_entry)
5527 perf_free_event(event, ctx);
5528
5529 if (!list_empty(&ctx->pinned_groups) ||
5530 !list_empty(&ctx->flexible_groups))
5531 goto again;
5532
5533 mutex_unlock(&ctx->mutex);
5534
5535 put_ctx(ctx);
5536 }
5537
5538 static int
5539 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5540 struct perf_event_context *parent_ctx,
5541 struct task_struct *child,
5542 int *inherited_all)
5543 {
5544 int ret;
5545 struct perf_event_context *child_ctx = child->perf_event_ctxp;
5546
5547 if (!event->attr.inherit) {
5548 *inherited_all = 0;
5549 return 0;
5550 }
5551
5552 if (!child_ctx) {
5553 /*
5554 * This is executed from the parent task context, so
5555 * inherit events that have been marked for cloning.
5556 * First allocate and initialize a context for the
5557 * child.
5558 */
5559
5560 child_ctx = kzalloc(sizeof(struct perf_event_context),
5561 GFP_KERNEL);
5562 if (!child_ctx)
5563 return -ENOMEM;
5564
5565 __perf_event_init_context(child_ctx, child);
5566 child->perf_event_ctxp = child_ctx;
5567 get_task_struct(child);
5568 }
5569
5570 ret = inherit_group(event, parent, parent_ctx,
5571 child, child_ctx);
5572
5573 if (ret)
5574 *inherited_all = 0;
5575
5576 return ret;
5577 }
5578
5579
5580 /*
5581 * Initialize the perf_event context in task_struct
5582 */
5583 int perf_event_init_task(struct task_struct *child)
5584 {
5585 struct perf_event_context *child_ctx, *parent_ctx;
5586 struct perf_event_context *cloned_ctx;
5587 struct perf_event *event;
5588 struct task_struct *parent = current;
5589 int inherited_all = 1;
5590 int ret = 0;
5591
5592 child->perf_event_ctxp = NULL;
5593
5594 mutex_init(&child->perf_event_mutex);
5595 INIT_LIST_HEAD(&child->perf_event_list);
5596
5597 if (likely(!parent->perf_event_ctxp))
5598 return 0;
5599
5600 /*
5601 * If the parent's context is a clone, pin it so it won't get
5602 * swapped under us.
5603 */
5604 parent_ctx = perf_pin_task_context(parent);
5605
5606 /*
5607 * No need to check if parent_ctx != NULL here; since we saw
5608 * it non-NULL earlier, the only reason for it to become NULL
5609 * is if we exit, and since we're currently in the middle of
5610 * a fork we can't be exiting at the same time.
5611 */
5612
5613 /*
5614 * Lock the parent list. No need to lock the child - not PID
5615 * hashed yet and not running, so nobody can access it.
5616 */
5617 mutex_lock(&parent_ctx->mutex);
5618
5619 /*
5620 * We dont have to disable NMIs - we are only looking at
5621 * the list, not manipulating it:
5622 */
5623 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5624 ret = inherit_task_group(event, parent, parent_ctx, child,
5625 &inherited_all);
5626 if (ret)
5627 break;
5628 }
5629
5630 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5631 ret = inherit_task_group(event, parent, parent_ctx, child,
5632 &inherited_all);
5633 if (ret)
5634 break;
5635 }
5636
5637 child_ctx = child->perf_event_ctxp;
5638
5639 if (child_ctx && inherited_all) {
5640 /*
5641 * Mark the child context as a clone of the parent
5642 * context, or of whatever the parent is a clone of.
5643 * Note that if the parent is a clone, it could get
5644 * uncloned at any point, but that doesn't matter
5645 * because the list of events and the generation
5646 * count can't have changed since we took the mutex.
5647 */
5648 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5649 if (cloned_ctx) {
5650 child_ctx->parent_ctx = cloned_ctx;
5651 child_ctx->parent_gen = parent_ctx->parent_gen;
5652 } else {
5653 child_ctx->parent_ctx = parent_ctx;
5654 child_ctx->parent_gen = parent_ctx->generation;
5655 }
5656 get_ctx(child_ctx->parent_ctx);
5657 }
5658
5659 mutex_unlock(&parent_ctx->mutex);
5660
5661 perf_unpin_context(parent_ctx);
5662
5663 return ret;
5664 }
5665
5666 static void __init perf_event_init_all_cpus(void)
5667 {
5668 int cpu;
5669 struct perf_cpu_context *cpuctx;
5670
5671 for_each_possible_cpu(cpu) {
5672 cpuctx = &per_cpu(perf_cpu_context, cpu);
5673 mutex_init(&cpuctx->hlist_mutex);
5674 __perf_event_init_context(&cpuctx->ctx, NULL);
5675 }
5676 }
5677
5678 static void __cpuinit perf_event_init_cpu(int cpu)
5679 {
5680 struct perf_cpu_context *cpuctx;
5681
5682 cpuctx = &per_cpu(perf_cpu_context, cpu);
5683
5684 spin_lock(&perf_resource_lock);
5685 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5686 spin_unlock(&perf_resource_lock);
5687
5688 mutex_lock(&cpuctx->hlist_mutex);
5689 if (cpuctx->hlist_refcount > 0) {
5690 struct swevent_hlist *hlist;
5691
5692 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5693 WARN_ON_ONCE(!hlist);
5694 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
5695 }
5696 mutex_unlock(&cpuctx->hlist_mutex);
5697 }
5698
5699 #ifdef CONFIG_HOTPLUG_CPU
5700 static void __perf_event_exit_cpu(void *info)
5701 {
5702 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5703 struct perf_event_context *ctx = &cpuctx->ctx;
5704 struct perf_event *event, *tmp;
5705
5706 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5707 __perf_event_remove_from_context(event);
5708 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5709 __perf_event_remove_from_context(event);
5710 }
5711 static void perf_event_exit_cpu(int cpu)
5712 {
5713 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5714 struct perf_event_context *ctx = &cpuctx->ctx;
5715
5716 mutex_lock(&cpuctx->hlist_mutex);
5717 swevent_hlist_release(cpuctx);
5718 mutex_unlock(&cpuctx->hlist_mutex);
5719
5720 mutex_lock(&ctx->mutex);
5721 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5722 mutex_unlock(&ctx->mutex);
5723 }
5724 #else
5725 static inline void perf_event_exit_cpu(int cpu) { }
5726 #endif
5727
5728 static int __cpuinit
5729 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5730 {
5731 unsigned int cpu = (long)hcpu;
5732
5733 switch (action) {
5734
5735 case CPU_UP_PREPARE:
5736 case CPU_UP_PREPARE_FROZEN:
5737 perf_event_init_cpu(cpu);
5738 break;
5739
5740 case CPU_DOWN_PREPARE:
5741 case CPU_DOWN_PREPARE_FROZEN:
5742 perf_event_exit_cpu(cpu);
5743 break;
5744
5745 default:
5746 break;
5747 }
5748
5749 return NOTIFY_OK;
5750 }
5751
5752 /*
5753 * This has to have a higher priority than migration_notifier in sched.c.
5754 */
5755 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5756 .notifier_call = perf_cpu_notify,
5757 .priority = 20,
5758 };
5759
5760 void __init perf_event_init(void)
5761 {
5762 perf_event_init_all_cpus();
5763 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5764 (void *)(long)smp_processor_id());
5765 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5766 (void *)(long)smp_processor_id());
5767 register_cpu_notifier(&perf_cpu_nb);
5768 }
5769
5770 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5771 struct sysdev_class_attribute *attr,
5772 char *buf)
5773 {
5774 return sprintf(buf, "%d\n", perf_reserved_percpu);
5775 }
5776
5777 static ssize_t
5778 perf_set_reserve_percpu(struct sysdev_class *class,
5779 struct sysdev_class_attribute *attr,
5780 const char *buf,
5781 size_t count)
5782 {
5783 struct perf_cpu_context *cpuctx;
5784 unsigned long val;
5785 int err, cpu, mpt;
5786
5787 err = strict_strtoul(buf, 10, &val);
5788 if (err)
5789 return err;
5790 if (val > perf_max_events)
5791 return -EINVAL;
5792
5793 spin_lock(&perf_resource_lock);
5794 perf_reserved_percpu = val;
5795 for_each_online_cpu(cpu) {
5796 cpuctx = &per_cpu(perf_cpu_context, cpu);
5797 raw_spin_lock_irq(&cpuctx->ctx.lock);
5798 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5799 perf_max_events - perf_reserved_percpu);
5800 cpuctx->max_pertask = mpt;
5801 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5802 }
5803 spin_unlock(&perf_resource_lock);
5804
5805 return count;
5806 }
5807
5808 static ssize_t perf_show_overcommit(struct sysdev_class *class,
5809 struct sysdev_class_attribute *attr,
5810 char *buf)
5811 {
5812 return sprintf(buf, "%d\n", perf_overcommit);
5813 }
5814
5815 static ssize_t
5816 perf_set_overcommit(struct sysdev_class *class,
5817 struct sysdev_class_attribute *attr,
5818 const char *buf, size_t count)
5819 {
5820 unsigned long val;
5821 int err;
5822
5823 err = strict_strtoul(buf, 10, &val);
5824 if (err)
5825 return err;
5826 if (val > 1)
5827 return -EINVAL;
5828
5829 spin_lock(&perf_resource_lock);
5830 perf_overcommit = val;
5831 spin_unlock(&perf_resource_lock);
5832
5833 return count;
5834 }
5835
5836 static SYSDEV_CLASS_ATTR(
5837 reserve_percpu,
5838 0644,
5839 perf_show_reserve_percpu,
5840 perf_set_reserve_percpu
5841 );
5842
5843 static SYSDEV_CLASS_ATTR(
5844 overcommit,
5845 0644,
5846 perf_show_overcommit,
5847 perf_set_overcommit
5848 );
5849
5850 static struct attribute *perfclass_attrs[] = {
5851 &attr_reserve_percpu.attr,
5852 &attr_overcommit.attr,
5853 NULL
5854 };
5855
5856 static struct attribute_group perfclass_attr_group = {
5857 .attrs = perfclass_attrs,
5858 .name = "perf_events",
5859 };
5860
5861 static int __init perf_event_sysfs_init(void)
5862 {
5863 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5864 &perfclass_attr_group);
5865 }
5866 device_initcall(perf_event_sysfs_init);
This page took 0.216083 seconds and 6 git commands to generate.