perf: Fix inherit vs. context rotation bug
[deliverable/linux.git] / kernel / perf_event.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34 #include <linux/hw_breakpoint.h>
35
36 #include <asm/irq_regs.h>
37
38 atomic_t perf_task_events __read_mostly;
39 static atomic_t nr_mmap_events __read_mostly;
40 static atomic_t nr_comm_events __read_mostly;
41 static atomic_t nr_task_events __read_mostly;
42
43 static LIST_HEAD(pmus);
44 static DEFINE_MUTEX(pmus_lock);
45 static struct srcu_struct pmus_srcu;
46
47 /*
48 * perf event paranoia level:
49 * -1 - not paranoid at all
50 * 0 - disallow raw tracepoint access for unpriv
51 * 1 - disallow cpu events for unpriv
52 * 2 - disallow kernel profiling for unpriv
53 */
54 int sysctl_perf_event_paranoid __read_mostly = 1;
55
56 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
57
58 /*
59 * max perf event sample rate
60 */
61 int sysctl_perf_event_sample_rate __read_mostly = 100000;
62
63 static atomic64_t perf_event_id;
64
65 void __weak perf_event_print_debug(void) { }
66
67 extern __weak const char *perf_pmu_name(void)
68 {
69 return "pmu";
70 }
71
72 void perf_pmu_disable(struct pmu *pmu)
73 {
74 int *count = this_cpu_ptr(pmu->pmu_disable_count);
75 if (!(*count)++)
76 pmu->pmu_disable(pmu);
77 }
78
79 void perf_pmu_enable(struct pmu *pmu)
80 {
81 int *count = this_cpu_ptr(pmu->pmu_disable_count);
82 if (!--(*count))
83 pmu->pmu_enable(pmu);
84 }
85
86 static DEFINE_PER_CPU(struct list_head, rotation_list);
87
88 /*
89 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
90 * because they're strictly cpu affine and rotate_start is called with IRQs
91 * disabled, while rotate_context is called from IRQ context.
92 */
93 static void perf_pmu_rotate_start(struct pmu *pmu)
94 {
95 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
96 struct list_head *head = &__get_cpu_var(rotation_list);
97
98 WARN_ON(!irqs_disabled());
99
100 if (list_empty(&cpuctx->rotation_list))
101 list_add(&cpuctx->rotation_list, head);
102 }
103
104 static void get_ctx(struct perf_event_context *ctx)
105 {
106 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
107 }
108
109 static void free_ctx(struct rcu_head *head)
110 {
111 struct perf_event_context *ctx;
112
113 ctx = container_of(head, struct perf_event_context, rcu_head);
114 kfree(ctx);
115 }
116
117 static void put_ctx(struct perf_event_context *ctx)
118 {
119 if (atomic_dec_and_test(&ctx->refcount)) {
120 if (ctx->parent_ctx)
121 put_ctx(ctx->parent_ctx);
122 if (ctx->task)
123 put_task_struct(ctx->task);
124 call_rcu(&ctx->rcu_head, free_ctx);
125 }
126 }
127
128 static void unclone_ctx(struct perf_event_context *ctx)
129 {
130 if (ctx->parent_ctx) {
131 put_ctx(ctx->parent_ctx);
132 ctx->parent_ctx = NULL;
133 }
134 }
135
136 /*
137 * If we inherit events we want to return the parent event id
138 * to userspace.
139 */
140 static u64 primary_event_id(struct perf_event *event)
141 {
142 u64 id = event->id;
143
144 if (event->parent)
145 id = event->parent->id;
146
147 return id;
148 }
149
150 /*
151 * Get the perf_event_context for a task and lock it.
152 * This has to cope with with the fact that until it is locked,
153 * the context could get moved to another task.
154 */
155 static struct perf_event_context *
156 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
157 {
158 struct perf_event_context *ctx;
159
160 rcu_read_lock();
161 retry:
162 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
163 if (ctx) {
164 /*
165 * If this context is a clone of another, it might
166 * get swapped for another underneath us by
167 * perf_event_task_sched_out, though the
168 * rcu_read_lock() protects us from any context
169 * getting freed. Lock the context and check if it
170 * got swapped before we could get the lock, and retry
171 * if so. If we locked the right context, then it
172 * can't get swapped on us any more.
173 */
174 raw_spin_lock_irqsave(&ctx->lock, *flags);
175 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
176 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
177 goto retry;
178 }
179
180 if (!atomic_inc_not_zero(&ctx->refcount)) {
181 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
182 ctx = NULL;
183 }
184 }
185 rcu_read_unlock();
186 return ctx;
187 }
188
189 /*
190 * Get the context for a task and increment its pin_count so it
191 * can't get swapped to another task. This also increments its
192 * reference count so that the context can't get freed.
193 */
194 static struct perf_event_context *
195 perf_pin_task_context(struct task_struct *task, int ctxn)
196 {
197 struct perf_event_context *ctx;
198 unsigned long flags;
199
200 ctx = perf_lock_task_context(task, ctxn, &flags);
201 if (ctx) {
202 ++ctx->pin_count;
203 raw_spin_unlock_irqrestore(&ctx->lock, flags);
204 }
205 return ctx;
206 }
207
208 static void perf_unpin_context(struct perf_event_context *ctx)
209 {
210 unsigned long flags;
211
212 raw_spin_lock_irqsave(&ctx->lock, flags);
213 --ctx->pin_count;
214 raw_spin_unlock_irqrestore(&ctx->lock, flags);
215 put_ctx(ctx);
216 }
217
218 static inline u64 perf_clock(void)
219 {
220 return local_clock();
221 }
222
223 /*
224 * Update the record of the current time in a context.
225 */
226 static void update_context_time(struct perf_event_context *ctx)
227 {
228 u64 now = perf_clock();
229
230 ctx->time += now - ctx->timestamp;
231 ctx->timestamp = now;
232 }
233
234 /*
235 * Update the total_time_enabled and total_time_running fields for a event.
236 */
237 static void update_event_times(struct perf_event *event)
238 {
239 struct perf_event_context *ctx = event->ctx;
240 u64 run_end;
241
242 if (event->state < PERF_EVENT_STATE_INACTIVE ||
243 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
244 return;
245
246 if (ctx->is_active)
247 run_end = ctx->time;
248 else
249 run_end = event->tstamp_stopped;
250
251 event->total_time_enabled = run_end - event->tstamp_enabled;
252
253 if (event->state == PERF_EVENT_STATE_INACTIVE)
254 run_end = event->tstamp_stopped;
255 else
256 run_end = ctx->time;
257
258 event->total_time_running = run_end - event->tstamp_running;
259 }
260
261 /*
262 * Update total_time_enabled and total_time_running for all events in a group.
263 */
264 static void update_group_times(struct perf_event *leader)
265 {
266 struct perf_event *event;
267
268 update_event_times(leader);
269 list_for_each_entry(event, &leader->sibling_list, group_entry)
270 update_event_times(event);
271 }
272
273 static struct list_head *
274 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
275 {
276 if (event->attr.pinned)
277 return &ctx->pinned_groups;
278 else
279 return &ctx->flexible_groups;
280 }
281
282 /*
283 * Add a event from the lists for its context.
284 * Must be called with ctx->mutex and ctx->lock held.
285 */
286 static void
287 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
288 {
289 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
290 event->attach_state |= PERF_ATTACH_CONTEXT;
291
292 /*
293 * If we're a stand alone event or group leader, we go to the context
294 * list, group events are kept attached to the group so that
295 * perf_group_detach can, at all times, locate all siblings.
296 */
297 if (event->group_leader == event) {
298 struct list_head *list;
299
300 if (is_software_event(event))
301 event->group_flags |= PERF_GROUP_SOFTWARE;
302
303 list = ctx_group_list(event, ctx);
304 list_add_tail(&event->group_entry, list);
305 }
306
307 list_add_rcu(&event->event_entry, &ctx->event_list);
308 if (!ctx->nr_events)
309 perf_pmu_rotate_start(ctx->pmu);
310 ctx->nr_events++;
311 if (event->attr.inherit_stat)
312 ctx->nr_stat++;
313 }
314
315 static void perf_group_attach(struct perf_event *event)
316 {
317 struct perf_event *group_leader = event->group_leader;
318
319 /*
320 * We can have double attach due to group movement in perf_event_open.
321 */
322 if (event->attach_state & PERF_ATTACH_GROUP)
323 return;
324
325 event->attach_state |= PERF_ATTACH_GROUP;
326
327 if (group_leader == event)
328 return;
329
330 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
331 !is_software_event(event))
332 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
333
334 list_add_tail(&event->group_entry, &group_leader->sibling_list);
335 group_leader->nr_siblings++;
336 }
337
338 /*
339 * Remove a event from the lists for its context.
340 * Must be called with ctx->mutex and ctx->lock held.
341 */
342 static void
343 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
344 {
345 /*
346 * We can have double detach due to exit/hot-unplug + close.
347 */
348 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
349 return;
350
351 event->attach_state &= ~PERF_ATTACH_CONTEXT;
352
353 ctx->nr_events--;
354 if (event->attr.inherit_stat)
355 ctx->nr_stat--;
356
357 list_del_rcu(&event->event_entry);
358
359 if (event->group_leader == event)
360 list_del_init(&event->group_entry);
361
362 update_group_times(event);
363
364 /*
365 * If event was in error state, then keep it
366 * that way, otherwise bogus counts will be
367 * returned on read(). The only way to get out
368 * of error state is by explicit re-enabling
369 * of the event
370 */
371 if (event->state > PERF_EVENT_STATE_OFF)
372 event->state = PERF_EVENT_STATE_OFF;
373 }
374
375 static void perf_group_detach(struct perf_event *event)
376 {
377 struct perf_event *sibling, *tmp;
378 struct list_head *list = NULL;
379
380 /*
381 * We can have double detach due to exit/hot-unplug + close.
382 */
383 if (!(event->attach_state & PERF_ATTACH_GROUP))
384 return;
385
386 event->attach_state &= ~PERF_ATTACH_GROUP;
387
388 /*
389 * If this is a sibling, remove it from its group.
390 */
391 if (event->group_leader != event) {
392 list_del_init(&event->group_entry);
393 event->group_leader->nr_siblings--;
394 return;
395 }
396
397 if (!list_empty(&event->group_entry))
398 list = &event->group_entry;
399
400 /*
401 * If this was a group event with sibling events then
402 * upgrade the siblings to singleton events by adding them
403 * to whatever list we are on.
404 */
405 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
406 if (list)
407 list_move_tail(&sibling->group_entry, list);
408 sibling->group_leader = sibling;
409
410 /* Inherit group flags from the previous leader */
411 sibling->group_flags = event->group_flags;
412 }
413 }
414
415 static inline int
416 event_filter_match(struct perf_event *event)
417 {
418 return event->cpu == -1 || event->cpu == smp_processor_id();
419 }
420
421 static void
422 event_sched_out(struct perf_event *event,
423 struct perf_cpu_context *cpuctx,
424 struct perf_event_context *ctx)
425 {
426 u64 delta;
427 /*
428 * An event which could not be activated because of
429 * filter mismatch still needs to have its timings
430 * maintained, otherwise bogus information is return
431 * via read() for time_enabled, time_running:
432 */
433 if (event->state == PERF_EVENT_STATE_INACTIVE
434 && !event_filter_match(event)) {
435 delta = ctx->time - event->tstamp_stopped;
436 event->tstamp_running += delta;
437 event->tstamp_stopped = ctx->time;
438 }
439
440 if (event->state != PERF_EVENT_STATE_ACTIVE)
441 return;
442
443 event->state = PERF_EVENT_STATE_INACTIVE;
444 if (event->pending_disable) {
445 event->pending_disable = 0;
446 event->state = PERF_EVENT_STATE_OFF;
447 }
448 event->tstamp_stopped = ctx->time;
449 event->pmu->del(event, 0);
450 event->oncpu = -1;
451
452 if (!is_software_event(event))
453 cpuctx->active_oncpu--;
454 ctx->nr_active--;
455 if (event->attr.exclusive || !cpuctx->active_oncpu)
456 cpuctx->exclusive = 0;
457 }
458
459 static void
460 group_sched_out(struct perf_event *group_event,
461 struct perf_cpu_context *cpuctx,
462 struct perf_event_context *ctx)
463 {
464 struct perf_event *event;
465 int state = group_event->state;
466
467 event_sched_out(group_event, cpuctx, ctx);
468
469 /*
470 * Schedule out siblings (if any):
471 */
472 list_for_each_entry(event, &group_event->sibling_list, group_entry)
473 event_sched_out(event, cpuctx, ctx);
474
475 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
476 cpuctx->exclusive = 0;
477 }
478
479 static inline struct perf_cpu_context *
480 __get_cpu_context(struct perf_event_context *ctx)
481 {
482 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
483 }
484
485 /*
486 * Cross CPU call to remove a performance event
487 *
488 * We disable the event on the hardware level first. After that we
489 * remove it from the context list.
490 */
491 static void __perf_event_remove_from_context(void *info)
492 {
493 struct perf_event *event = info;
494 struct perf_event_context *ctx = event->ctx;
495 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
496
497 /*
498 * If this is a task context, we need to check whether it is
499 * the current task context of this cpu. If not it has been
500 * scheduled out before the smp call arrived.
501 */
502 if (ctx->task && cpuctx->task_ctx != ctx)
503 return;
504
505 raw_spin_lock(&ctx->lock);
506
507 event_sched_out(event, cpuctx, ctx);
508
509 list_del_event(event, ctx);
510
511 raw_spin_unlock(&ctx->lock);
512 }
513
514
515 /*
516 * Remove the event from a task's (or a CPU's) list of events.
517 *
518 * Must be called with ctx->mutex held.
519 *
520 * CPU events are removed with a smp call. For task events we only
521 * call when the task is on a CPU.
522 *
523 * If event->ctx is a cloned context, callers must make sure that
524 * every task struct that event->ctx->task could possibly point to
525 * remains valid. This is OK when called from perf_release since
526 * that only calls us on the top-level context, which can't be a clone.
527 * When called from perf_event_exit_task, it's OK because the
528 * context has been detached from its task.
529 */
530 static void perf_event_remove_from_context(struct perf_event *event)
531 {
532 struct perf_event_context *ctx = event->ctx;
533 struct task_struct *task = ctx->task;
534
535 if (!task) {
536 /*
537 * Per cpu events are removed via an smp call and
538 * the removal is always successful.
539 */
540 smp_call_function_single(event->cpu,
541 __perf_event_remove_from_context,
542 event, 1);
543 return;
544 }
545
546 retry:
547 task_oncpu_function_call(task, __perf_event_remove_from_context,
548 event);
549
550 raw_spin_lock_irq(&ctx->lock);
551 /*
552 * If the context is active we need to retry the smp call.
553 */
554 if (ctx->nr_active && !list_empty(&event->group_entry)) {
555 raw_spin_unlock_irq(&ctx->lock);
556 goto retry;
557 }
558
559 /*
560 * The lock prevents that this context is scheduled in so we
561 * can remove the event safely, if the call above did not
562 * succeed.
563 */
564 if (!list_empty(&event->group_entry))
565 list_del_event(event, ctx);
566 raw_spin_unlock_irq(&ctx->lock);
567 }
568
569 /*
570 * Cross CPU call to disable a performance event
571 */
572 static void __perf_event_disable(void *info)
573 {
574 struct perf_event *event = info;
575 struct perf_event_context *ctx = event->ctx;
576 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
577
578 /*
579 * If this is a per-task event, need to check whether this
580 * event's task is the current task on this cpu.
581 */
582 if (ctx->task && cpuctx->task_ctx != ctx)
583 return;
584
585 raw_spin_lock(&ctx->lock);
586
587 /*
588 * If the event is on, turn it off.
589 * If it is in error state, leave it in error state.
590 */
591 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
592 update_context_time(ctx);
593 update_group_times(event);
594 if (event == event->group_leader)
595 group_sched_out(event, cpuctx, ctx);
596 else
597 event_sched_out(event, cpuctx, ctx);
598 event->state = PERF_EVENT_STATE_OFF;
599 }
600
601 raw_spin_unlock(&ctx->lock);
602 }
603
604 /*
605 * Disable a event.
606 *
607 * If event->ctx is a cloned context, callers must make sure that
608 * every task struct that event->ctx->task could possibly point to
609 * remains valid. This condition is satisifed when called through
610 * perf_event_for_each_child or perf_event_for_each because they
611 * hold the top-level event's child_mutex, so any descendant that
612 * goes to exit will block in sync_child_event.
613 * When called from perf_pending_event it's OK because event->ctx
614 * is the current context on this CPU and preemption is disabled,
615 * hence we can't get into perf_event_task_sched_out for this context.
616 */
617 void perf_event_disable(struct perf_event *event)
618 {
619 struct perf_event_context *ctx = event->ctx;
620 struct task_struct *task = ctx->task;
621
622 if (!task) {
623 /*
624 * Disable the event on the cpu that it's on
625 */
626 smp_call_function_single(event->cpu, __perf_event_disable,
627 event, 1);
628 return;
629 }
630
631 retry:
632 task_oncpu_function_call(task, __perf_event_disable, event);
633
634 raw_spin_lock_irq(&ctx->lock);
635 /*
636 * If the event is still active, we need to retry the cross-call.
637 */
638 if (event->state == PERF_EVENT_STATE_ACTIVE) {
639 raw_spin_unlock_irq(&ctx->lock);
640 goto retry;
641 }
642
643 /*
644 * Since we have the lock this context can't be scheduled
645 * in, so we can change the state safely.
646 */
647 if (event->state == PERF_EVENT_STATE_INACTIVE) {
648 update_group_times(event);
649 event->state = PERF_EVENT_STATE_OFF;
650 }
651
652 raw_spin_unlock_irq(&ctx->lock);
653 }
654
655 static int
656 event_sched_in(struct perf_event *event,
657 struct perf_cpu_context *cpuctx,
658 struct perf_event_context *ctx)
659 {
660 if (event->state <= PERF_EVENT_STATE_OFF)
661 return 0;
662
663 event->state = PERF_EVENT_STATE_ACTIVE;
664 event->oncpu = smp_processor_id();
665 /*
666 * The new state must be visible before we turn it on in the hardware:
667 */
668 smp_wmb();
669
670 if (event->pmu->add(event, PERF_EF_START)) {
671 event->state = PERF_EVENT_STATE_INACTIVE;
672 event->oncpu = -1;
673 return -EAGAIN;
674 }
675
676 event->tstamp_running += ctx->time - event->tstamp_stopped;
677
678 event->shadow_ctx_time = ctx->time - ctx->timestamp;
679
680 if (!is_software_event(event))
681 cpuctx->active_oncpu++;
682 ctx->nr_active++;
683
684 if (event->attr.exclusive)
685 cpuctx->exclusive = 1;
686
687 return 0;
688 }
689
690 static int
691 group_sched_in(struct perf_event *group_event,
692 struct perf_cpu_context *cpuctx,
693 struct perf_event_context *ctx)
694 {
695 struct perf_event *event, *partial_group = NULL;
696 struct pmu *pmu = group_event->pmu;
697 u64 now = ctx->time;
698 bool simulate = false;
699
700 if (group_event->state == PERF_EVENT_STATE_OFF)
701 return 0;
702
703 pmu->start_txn(pmu);
704
705 if (event_sched_in(group_event, cpuctx, ctx)) {
706 pmu->cancel_txn(pmu);
707 return -EAGAIN;
708 }
709
710 /*
711 * Schedule in siblings as one group (if any):
712 */
713 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
714 if (event_sched_in(event, cpuctx, ctx)) {
715 partial_group = event;
716 goto group_error;
717 }
718 }
719
720 if (!pmu->commit_txn(pmu))
721 return 0;
722
723 group_error:
724 /*
725 * Groups can be scheduled in as one unit only, so undo any
726 * partial group before returning:
727 * The events up to the failed event are scheduled out normally,
728 * tstamp_stopped will be updated.
729 *
730 * The failed events and the remaining siblings need to have
731 * their timings updated as if they had gone thru event_sched_in()
732 * and event_sched_out(). This is required to get consistent timings
733 * across the group. This also takes care of the case where the group
734 * could never be scheduled by ensuring tstamp_stopped is set to mark
735 * the time the event was actually stopped, such that time delta
736 * calculation in update_event_times() is correct.
737 */
738 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
739 if (event == partial_group)
740 simulate = true;
741
742 if (simulate) {
743 event->tstamp_running += now - event->tstamp_stopped;
744 event->tstamp_stopped = now;
745 } else {
746 event_sched_out(event, cpuctx, ctx);
747 }
748 }
749 event_sched_out(group_event, cpuctx, ctx);
750
751 pmu->cancel_txn(pmu);
752
753 return -EAGAIN;
754 }
755
756 /*
757 * Work out whether we can put this event group on the CPU now.
758 */
759 static int group_can_go_on(struct perf_event *event,
760 struct perf_cpu_context *cpuctx,
761 int can_add_hw)
762 {
763 /*
764 * Groups consisting entirely of software events can always go on.
765 */
766 if (event->group_flags & PERF_GROUP_SOFTWARE)
767 return 1;
768 /*
769 * If an exclusive group is already on, no other hardware
770 * events can go on.
771 */
772 if (cpuctx->exclusive)
773 return 0;
774 /*
775 * If this group is exclusive and there are already
776 * events on the CPU, it can't go on.
777 */
778 if (event->attr.exclusive && cpuctx->active_oncpu)
779 return 0;
780 /*
781 * Otherwise, try to add it if all previous groups were able
782 * to go on.
783 */
784 return can_add_hw;
785 }
786
787 static void add_event_to_ctx(struct perf_event *event,
788 struct perf_event_context *ctx)
789 {
790 list_add_event(event, ctx);
791 perf_group_attach(event);
792 event->tstamp_enabled = ctx->time;
793 event->tstamp_running = ctx->time;
794 event->tstamp_stopped = ctx->time;
795 }
796
797 /*
798 * Cross CPU call to install and enable a performance event
799 *
800 * Must be called with ctx->mutex held
801 */
802 static void __perf_install_in_context(void *info)
803 {
804 struct perf_event *event = info;
805 struct perf_event_context *ctx = event->ctx;
806 struct perf_event *leader = event->group_leader;
807 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
808 int err;
809
810 /*
811 * If this is a task context, we need to check whether it is
812 * the current task context of this cpu. If not it has been
813 * scheduled out before the smp call arrived.
814 * Or possibly this is the right context but it isn't
815 * on this cpu because it had no events.
816 */
817 if (ctx->task && cpuctx->task_ctx != ctx) {
818 if (cpuctx->task_ctx || ctx->task != current)
819 return;
820 cpuctx->task_ctx = ctx;
821 }
822
823 raw_spin_lock(&ctx->lock);
824 ctx->is_active = 1;
825 update_context_time(ctx);
826
827 add_event_to_ctx(event, ctx);
828
829 if (event->cpu != -1 && event->cpu != smp_processor_id())
830 goto unlock;
831
832 /*
833 * Don't put the event on if it is disabled or if
834 * it is in a group and the group isn't on.
835 */
836 if (event->state != PERF_EVENT_STATE_INACTIVE ||
837 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
838 goto unlock;
839
840 /*
841 * An exclusive event can't go on if there are already active
842 * hardware events, and no hardware event can go on if there
843 * is already an exclusive event on.
844 */
845 if (!group_can_go_on(event, cpuctx, 1))
846 err = -EEXIST;
847 else
848 err = event_sched_in(event, cpuctx, ctx);
849
850 if (err) {
851 /*
852 * This event couldn't go on. If it is in a group
853 * then we have to pull the whole group off.
854 * If the event group is pinned then put it in error state.
855 */
856 if (leader != event)
857 group_sched_out(leader, cpuctx, ctx);
858 if (leader->attr.pinned) {
859 update_group_times(leader);
860 leader->state = PERF_EVENT_STATE_ERROR;
861 }
862 }
863
864 unlock:
865 raw_spin_unlock(&ctx->lock);
866 }
867
868 /*
869 * Attach a performance event to a context
870 *
871 * First we add the event to the list with the hardware enable bit
872 * in event->hw_config cleared.
873 *
874 * If the event is attached to a task which is on a CPU we use a smp
875 * call to enable it in the task context. The task might have been
876 * scheduled away, but we check this in the smp call again.
877 *
878 * Must be called with ctx->mutex held.
879 */
880 static void
881 perf_install_in_context(struct perf_event_context *ctx,
882 struct perf_event *event,
883 int cpu)
884 {
885 struct task_struct *task = ctx->task;
886
887 event->ctx = ctx;
888
889 if (!task) {
890 /*
891 * Per cpu events are installed via an smp call and
892 * the install is always successful.
893 */
894 smp_call_function_single(cpu, __perf_install_in_context,
895 event, 1);
896 return;
897 }
898
899 retry:
900 task_oncpu_function_call(task, __perf_install_in_context,
901 event);
902
903 raw_spin_lock_irq(&ctx->lock);
904 /*
905 * we need to retry the smp call.
906 */
907 if (ctx->is_active && list_empty(&event->group_entry)) {
908 raw_spin_unlock_irq(&ctx->lock);
909 goto retry;
910 }
911
912 /*
913 * The lock prevents that this context is scheduled in so we
914 * can add the event safely, if it the call above did not
915 * succeed.
916 */
917 if (list_empty(&event->group_entry))
918 add_event_to_ctx(event, ctx);
919 raw_spin_unlock_irq(&ctx->lock);
920 }
921
922 /*
923 * Put a event into inactive state and update time fields.
924 * Enabling the leader of a group effectively enables all
925 * the group members that aren't explicitly disabled, so we
926 * have to update their ->tstamp_enabled also.
927 * Note: this works for group members as well as group leaders
928 * since the non-leader members' sibling_lists will be empty.
929 */
930 static void __perf_event_mark_enabled(struct perf_event *event,
931 struct perf_event_context *ctx)
932 {
933 struct perf_event *sub;
934
935 event->state = PERF_EVENT_STATE_INACTIVE;
936 event->tstamp_enabled = ctx->time - event->total_time_enabled;
937 list_for_each_entry(sub, &event->sibling_list, group_entry) {
938 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
939 sub->tstamp_enabled =
940 ctx->time - sub->total_time_enabled;
941 }
942 }
943 }
944
945 /*
946 * Cross CPU call to enable a performance event
947 */
948 static void __perf_event_enable(void *info)
949 {
950 struct perf_event *event = info;
951 struct perf_event_context *ctx = event->ctx;
952 struct perf_event *leader = event->group_leader;
953 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
954 int err;
955
956 /*
957 * If this is a per-task event, need to check whether this
958 * event's task is the current task on this cpu.
959 */
960 if (ctx->task && cpuctx->task_ctx != ctx) {
961 if (cpuctx->task_ctx || ctx->task != current)
962 return;
963 cpuctx->task_ctx = ctx;
964 }
965
966 raw_spin_lock(&ctx->lock);
967 ctx->is_active = 1;
968 update_context_time(ctx);
969
970 if (event->state >= PERF_EVENT_STATE_INACTIVE)
971 goto unlock;
972 __perf_event_mark_enabled(event, ctx);
973
974 if (event->cpu != -1 && event->cpu != smp_processor_id())
975 goto unlock;
976
977 /*
978 * If the event is in a group and isn't the group leader,
979 * then don't put it on unless the group is on.
980 */
981 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
982 goto unlock;
983
984 if (!group_can_go_on(event, cpuctx, 1)) {
985 err = -EEXIST;
986 } else {
987 if (event == leader)
988 err = group_sched_in(event, cpuctx, ctx);
989 else
990 err = event_sched_in(event, cpuctx, ctx);
991 }
992
993 if (err) {
994 /*
995 * If this event can't go on and it's part of a
996 * group, then the whole group has to come off.
997 */
998 if (leader != event)
999 group_sched_out(leader, cpuctx, ctx);
1000 if (leader->attr.pinned) {
1001 update_group_times(leader);
1002 leader->state = PERF_EVENT_STATE_ERROR;
1003 }
1004 }
1005
1006 unlock:
1007 raw_spin_unlock(&ctx->lock);
1008 }
1009
1010 /*
1011 * Enable a event.
1012 *
1013 * If event->ctx is a cloned context, callers must make sure that
1014 * every task struct that event->ctx->task could possibly point to
1015 * remains valid. This condition is satisfied when called through
1016 * perf_event_for_each_child or perf_event_for_each as described
1017 * for perf_event_disable.
1018 */
1019 void perf_event_enable(struct perf_event *event)
1020 {
1021 struct perf_event_context *ctx = event->ctx;
1022 struct task_struct *task = ctx->task;
1023
1024 if (!task) {
1025 /*
1026 * Enable the event on the cpu that it's on
1027 */
1028 smp_call_function_single(event->cpu, __perf_event_enable,
1029 event, 1);
1030 return;
1031 }
1032
1033 raw_spin_lock_irq(&ctx->lock);
1034 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1035 goto out;
1036
1037 /*
1038 * If the event is in error state, clear that first.
1039 * That way, if we see the event in error state below, we
1040 * know that it has gone back into error state, as distinct
1041 * from the task having been scheduled away before the
1042 * cross-call arrived.
1043 */
1044 if (event->state == PERF_EVENT_STATE_ERROR)
1045 event->state = PERF_EVENT_STATE_OFF;
1046
1047 retry:
1048 raw_spin_unlock_irq(&ctx->lock);
1049 task_oncpu_function_call(task, __perf_event_enable, event);
1050
1051 raw_spin_lock_irq(&ctx->lock);
1052
1053 /*
1054 * If the context is active and the event is still off,
1055 * we need to retry the cross-call.
1056 */
1057 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1058 goto retry;
1059
1060 /*
1061 * Since we have the lock this context can't be scheduled
1062 * in, so we can change the state safely.
1063 */
1064 if (event->state == PERF_EVENT_STATE_OFF)
1065 __perf_event_mark_enabled(event, ctx);
1066
1067 out:
1068 raw_spin_unlock_irq(&ctx->lock);
1069 }
1070
1071 static int perf_event_refresh(struct perf_event *event, int refresh)
1072 {
1073 /*
1074 * not supported on inherited events
1075 */
1076 if (event->attr.inherit)
1077 return -EINVAL;
1078
1079 atomic_add(refresh, &event->event_limit);
1080 perf_event_enable(event);
1081
1082 return 0;
1083 }
1084
1085 enum event_type_t {
1086 EVENT_FLEXIBLE = 0x1,
1087 EVENT_PINNED = 0x2,
1088 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1089 };
1090
1091 static void ctx_sched_out(struct perf_event_context *ctx,
1092 struct perf_cpu_context *cpuctx,
1093 enum event_type_t event_type)
1094 {
1095 struct perf_event *event;
1096
1097 raw_spin_lock(&ctx->lock);
1098 perf_pmu_disable(ctx->pmu);
1099 ctx->is_active = 0;
1100 if (likely(!ctx->nr_events))
1101 goto out;
1102 update_context_time(ctx);
1103
1104 if (!ctx->nr_active)
1105 goto out;
1106
1107 if (event_type & EVENT_PINNED) {
1108 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1109 group_sched_out(event, cpuctx, ctx);
1110 }
1111
1112 if (event_type & EVENT_FLEXIBLE) {
1113 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1114 group_sched_out(event, cpuctx, ctx);
1115 }
1116 out:
1117 perf_pmu_enable(ctx->pmu);
1118 raw_spin_unlock(&ctx->lock);
1119 }
1120
1121 /*
1122 * Test whether two contexts are equivalent, i.e. whether they
1123 * have both been cloned from the same version of the same context
1124 * and they both have the same number of enabled events.
1125 * If the number of enabled events is the same, then the set
1126 * of enabled events should be the same, because these are both
1127 * inherited contexts, therefore we can't access individual events
1128 * in them directly with an fd; we can only enable/disable all
1129 * events via prctl, or enable/disable all events in a family
1130 * via ioctl, which will have the same effect on both contexts.
1131 */
1132 static int context_equiv(struct perf_event_context *ctx1,
1133 struct perf_event_context *ctx2)
1134 {
1135 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1136 && ctx1->parent_gen == ctx2->parent_gen
1137 && !ctx1->pin_count && !ctx2->pin_count;
1138 }
1139
1140 static void __perf_event_sync_stat(struct perf_event *event,
1141 struct perf_event *next_event)
1142 {
1143 u64 value;
1144
1145 if (!event->attr.inherit_stat)
1146 return;
1147
1148 /*
1149 * Update the event value, we cannot use perf_event_read()
1150 * because we're in the middle of a context switch and have IRQs
1151 * disabled, which upsets smp_call_function_single(), however
1152 * we know the event must be on the current CPU, therefore we
1153 * don't need to use it.
1154 */
1155 switch (event->state) {
1156 case PERF_EVENT_STATE_ACTIVE:
1157 event->pmu->read(event);
1158 /* fall-through */
1159
1160 case PERF_EVENT_STATE_INACTIVE:
1161 update_event_times(event);
1162 break;
1163
1164 default:
1165 break;
1166 }
1167
1168 /*
1169 * In order to keep per-task stats reliable we need to flip the event
1170 * values when we flip the contexts.
1171 */
1172 value = local64_read(&next_event->count);
1173 value = local64_xchg(&event->count, value);
1174 local64_set(&next_event->count, value);
1175
1176 swap(event->total_time_enabled, next_event->total_time_enabled);
1177 swap(event->total_time_running, next_event->total_time_running);
1178
1179 /*
1180 * Since we swizzled the values, update the user visible data too.
1181 */
1182 perf_event_update_userpage(event);
1183 perf_event_update_userpage(next_event);
1184 }
1185
1186 #define list_next_entry(pos, member) \
1187 list_entry(pos->member.next, typeof(*pos), member)
1188
1189 static void perf_event_sync_stat(struct perf_event_context *ctx,
1190 struct perf_event_context *next_ctx)
1191 {
1192 struct perf_event *event, *next_event;
1193
1194 if (!ctx->nr_stat)
1195 return;
1196
1197 update_context_time(ctx);
1198
1199 event = list_first_entry(&ctx->event_list,
1200 struct perf_event, event_entry);
1201
1202 next_event = list_first_entry(&next_ctx->event_list,
1203 struct perf_event, event_entry);
1204
1205 while (&event->event_entry != &ctx->event_list &&
1206 &next_event->event_entry != &next_ctx->event_list) {
1207
1208 __perf_event_sync_stat(event, next_event);
1209
1210 event = list_next_entry(event, event_entry);
1211 next_event = list_next_entry(next_event, event_entry);
1212 }
1213 }
1214
1215 void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1216 struct task_struct *next)
1217 {
1218 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1219 struct perf_event_context *next_ctx;
1220 struct perf_event_context *parent;
1221 struct perf_cpu_context *cpuctx;
1222 int do_switch = 1;
1223
1224 if (likely(!ctx))
1225 return;
1226
1227 cpuctx = __get_cpu_context(ctx);
1228 if (!cpuctx->task_ctx)
1229 return;
1230
1231 rcu_read_lock();
1232 parent = rcu_dereference(ctx->parent_ctx);
1233 next_ctx = next->perf_event_ctxp[ctxn];
1234 if (parent && next_ctx &&
1235 rcu_dereference(next_ctx->parent_ctx) == parent) {
1236 /*
1237 * Looks like the two contexts are clones, so we might be
1238 * able to optimize the context switch. We lock both
1239 * contexts and check that they are clones under the
1240 * lock (including re-checking that neither has been
1241 * uncloned in the meantime). It doesn't matter which
1242 * order we take the locks because no other cpu could
1243 * be trying to lock both of these tasks.
1244 */
1245 raw_spin_lock(&ctx->lock);
1246 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1247 if (context_equiv(ctx, next_ctx)) {
1248 /*
1249 * XXX do we need a memory barrier of sorts
1250 * wrt to rcu_dereference() of perf_event_ctxp
1251 */
1252 task->perf_event_ctxp[ctxn] = next_ctx;
1253 next->perf_event_ctxp[ctxn] = ctx;
1254 ctx->task = next;
1255 next_ctx->task = task;
1256 do_switch = 0;
1257
1258 perf_event_sync_stat(ctx, next_ctx);
1259 }
1260 raw_spin_unlock(&next_ctx->lock);
1261 raw_spin_unlock(&ctx->lock);
1262 }
1263 rcu_read_unlock();
1264
1265 if (do_switch) {
1266 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1267 cpuctx->task_ctx = NULL;
1268 }
1269 }
1270
1271 #define for_each_task_context_nr(ctxn) \
1272 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1273
1274 /*
1275 * Called from scheduler to remove the events of the current task,
1276 * with interrupts disabled.
1277 *
1278 * We stop each event and update the event value in event->count.
1279 *
1280 * This does not protect us against NMI, but disable()
1281 * sets the disabled bit in the control field of event _before_
1282 * accessing the event control register. If a NMI hits, then it will
1283 * not restart the event.
1284 */
1285 void __perf_event_task_sched_out(struct task_struct *task,
1286 struct task_struct *next)
1287 {
1288 int ctxn;
1289
1290 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1291
1292 for_each_task_context_nr(ctxn)
1293 perf_event_context_sched_out(task, ctxn, next);
1294 }
1295
1296 static void task_ctx_sched_out(struct perf_event_context *ctx,
1297 enum event_type_t event_type)
1298 {
1299 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1300
1301 if (!cpuctx->task_ctx)
1302 return;
1303
1304 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1305 return;
1306
1307 ctx_sched_out(ctx, cpuctx, event_type);
1308 cpuctx->task_ctx = NULL;
1309 }
1310
1311 /*
1312 * Called with IRQs disabled
1313 */
1314 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1315 enum event_type_t event_type)
1316 {
1317 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1318 }
1319
1320 static void
1321 ctx_pinned_sched_in(struct perf_event_context *ctx,
1322 struct perf_cpu_context *cpuctx)
1323 {
1324 struct perf_event *event;
1325
1326 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1327 if (event->state <= PERF_EVENT_STATE_OFF)
1328 continue;
1329 if (event->cpu != -1 && event->cpu != smp_processor_id())
1330 continue;
1331
1332 if (group_can_go_on(event, cpuctx, 1))
1333 group_sched_in(event, cpuctx, ctx);
1334
1335 /*
1336 * If this pinned group hasn't been scheduled,
1337 * put it in error state.
1338 */
1339 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1340 update_group_times(event);
1341 event->state = PERF_EVENT_STATE_ERROR;
1342 }
1343 }
1344 }
1345
1346 static void
1347 ctx_flexible_sched_in(struct perf_event_context *ctx,
1348 struct perf_cpu_context *cpuctx)
1349 {
1350 struct perf_event *event;
1351 int can_add_hw = 1;
1352
1353 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1354 /* Ignore events in OFF or ERROR state */
1355 if (event->state <= PERF_EVENT_STATE_OFF)
1356 continue;
1357 /*
1358 * Listen to the 'cpu' scheduling filter constraint
1359 * of events:
1360 */
1361 if (event->cpu != -1 && event->cpu != smp_processor_id())
1362 continue;
1363
1364 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1365 if (group_sched_in(event, cpuctx, ctx))
1366 can_add_hw = 0;
1367 }
1368 }
1369 }
1370
1371 static void
1372 ctx_sched_in(struct perf_event_context *ctx,
1373 struct perf_cpu_context *cpuctx,
1374 enum event_type_t event_type)
1375 {
1376 raw_spin_lock(&ctx->lock);
1377 ctx->is_active = 1;
1378 if (likely(!ctx->nr_events))
1379 goto out;
1380
1381 ctx->timestamp = perf_clock();
1382
1383 /*
1384 * First go through the list and put on any pinned groups
1385 * in order to give them the best chance of going on.
1386 */
1387 if (event_type & EVENT_PINNED)
1388 ctx_pinned_sched_in(ctx, cpuctx);
1389
1390 /* Then walk through the lower prio flexible groups */
1391 if (event_type & EVENT_FLEXIBLE)
1392 ctx_flexible_sched_in(ctx, cpuctx);
1393
1394 out:
1395 raw_spin_unlock(&ctx->lock);
1396 }
1397
1398 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1399 enum event_type_t event_type)
1400 {
1401 struct perf_event_context *ctx = &cpuctx->ctx;
1402
1403 ctx_sched_in(ctx, cpuctx, event_type);
1404 }
1405
1406 static void task_ctx_sched_in(struct perf_event_context *ctx,
1407 enum event_type_t event_type)
1408 {
1409 struct perf_cpu_context *cpuctx;
1410
1411 cpuctx = __get_cpu_context(ctx);
1412 if (cpuctx->task_ctx == ctx)
1413 return;
1414
1415 ctx_sched_in(ctx, cpuctx, event_type);
1416 cpuctx->task_ctx = ctx;
1417 }
1418
1419 void perf_event_context_sched_in(struct perf_event_context *ctx)
1420 {
1421 struct perf_cpu_context *cpuctx;
1422
1423 cpuctx = __get_cpu_context(ctx);
1424 if (cpuctx->task_ctx == ctx)
1425 return;
1426
1427 perf_pmu_disable(ctx->pmu);
1428 /*
1429 * We want to keep the following priority order:
1430 * cpu pinned (that don't need to move), task pinned,
1431 * cpu flexible, task flexible.
1432 */
1433 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1434
1435 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1436 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1437 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1438
1439 cpuctx->task_ctx = ctx;
1440
1441 /*
1442 * Since these rotations are per-cpu, we need to ensure the
1443 * cpu-context we got scheduled on is actually rotating.
1444 */
1445 perf_pmu_rotate_start(ctx->pmu);
1446 perf_pmu_enable(ctx->pmu);
1447 }
1448
1449 /*
1450 * Called from scheduler to add the events of the current task
1451 * with interrupts disabled.
1452 *
1453 * We restore the event value and then enable it.
1454 *
1455 * This does not protect us against NMI, but enable()
1456 * sets the enabled bit in the control field of event _before_
1457 * accessing the event control register. If a NMI hits, then it will
1458 * keep the event running.
1459 */
1460 void __perf_event_task_sched_in(struct task_struct *task)
1461 {
1462 struct perf_event_context *ctx;
1463 int ctxn;
1464
1465 for_each_task_context_nr(ctxn) {
1466 ctx = task->perf_event_ctxp[ctxn];
1467 if (likely(!ctx))
1468 continue;
1469
1470 perf_event_context_sched_in(ctx);
1471 }
1472 }
1473
1474 #define MAX_INTERRUPTS (~0ULL)
1475
1476 static void perf_log_throttle(struct perf_event *event, int enable);
1477
1478 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1479 {
1480 u64 frequency = event->attr.sample_freq;
1481 u64 sec = NSEC_PER_SEC;
1482 u64 divisor, dividend;
1483
1484 int count_fls, nsec_fls, frequency_fls, sec_fls;
1485
1486 count_fls = fls64(count);
1487 nsec_fls = fls64(nsec);
1488 frequency_fls = fls64(frequency);
1489 sec_fls = 30;
1490
1491 /*
1492 * We got @count in @nsec, with a target of sample_freq HZ
1493 * the target period becomes:
1494 *
1495 * @count * 10^9
1496 * period = -------------------
1497 * @nsec * sample_freq
1498 *
1499 */
1500
1501 /*
1502 * Reduce accuracy by one bit such that @a and @b converge
1503 * to a similar magnitude.
1504 */
1505 #define REDUCE_FLS(a, b) \
1506 do { \
1507 if (a##_fls > b##_fls) { \
1508 a >>= 1; \
1509 a##_fls--; \
1510 } else { \
1511 b >>= 1; \
1512 b##_fls--; \
1513 } \
1514 } while (0)
1515
1516 /*
1517 * Reduce accuracy until either term fits in a u64, then proceed with
1518 * the other, so that finally we can do a u64/u64 division.
1519 */
1520 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1521 REDUCE_FLS(nsec, frequency);
1522 REDUCE_FLS(sec, count);
1523 }
1524
1525 if (count_fls + sec_fls > 64) {
1526 divisor = nsec * frequency;
1527
1528 while (count_fls + sec_fls > 64) {
1529 REDUCE_FLS(count, sec);
1530 divisor >>= 1;
1531 }
1532
1533 dividend = count * sec;
1534 } else {
1535 dividend = count * sec;
1536
1537 while (nsec_fls + frequency_fls > 64) {
1538 REDUCE_FLS(nsec, frequency);
1539 dividend >>= 1;
1540 }
1541
1542 divisor = nsec * frequency;
1543 }
1544
1545 if (!divisor)
1546 return dividend;
1547
1548 return div64_u64(dividend, divisor);
1549 }
1550
1551 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1552 {
1553 struct hw_perf_event *hwc = &event->hw;
1554 s64 period, sample_period;
1555 s64 delta;
1556
1557 period = perf_calculate_period(event, nsec, count);
1558
1559 delta = (s64)(period - hwc->sample_period);
1560 delta = (delta + 7) / 8; /* low pass filter */
1561
1562 sample_period = hwc->sample_period + delta;
1563
1564 if (!sample_period)
1565 sample_period = 1;
1566
1567 hwc->sample_period = sample_period;
1568
1569 if (local64_read(&hwc->period_left) > 8*sample_period) {
1570 event->pmu->stop(event, PERF_EF_UPDATE);
1571 local64_set(&hwc->period_left, 0);
1572 event->pmu->start(event, PERF_EF_RELOAD);
1573 }
1574 }
1575
1576 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1577 {
1578 struct perf_event *event;
1579 struct hw_perf_event *hwc;
1580 u64 interrupts, now;
1581 s64 delta;
1582
1583 raw_spin_lock(&ctx->lock);
1584 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1585 if (event->state != PERF_EVENT_STATE_ACTIVE)
1586 continue;
1587
1588 if (event->cpu != -1 && event->cpu != smp_processor_id())
1589 continue;
1590
1591 hwc = &event->hw;
1592
1593 interrupts = hwc->interrupts;
1594 hwc->interrupts = 0;
1595
1596 /*
1597 * unthrottle events on the tick
1598 */
1599 if (interrupts == MAX_INTERRUPTS) {
1600 perf_log_throttle(event, 1);
1601 event->pmu->start(event, 0);
1602 }
1603
1604 if (!event->attr.freq || !event->attr.sample_freq)
1605 continue;
1606
1607 event->pmu->read(event);
1608 now = local64_read(&event->count);
1609 delta = now - hwc->freq_count_stamp;
1610 hwc->freq_count_stamp = now;
1611
1612 if (delta > 0)
1613 perf_adjust_period(event, period, delta);
1614 }
1615 raw_spin_unlock(&ctx->lock);
1616 }
1617
1618 /*
1619 * Round-robin a context's events:
1620 */
1621 static void rotate_ctx(struct perf_event_context *ctx)
1622 {
1623 raw_spin_lock(&ctx->lock);
1624
1625 /*
1626 * Rotate the first entry last of non-pinned groups. Rotation might be
1627 * disabled by the inheritance code.
1628 */
1629 if (!ctx->rotate_disable)
1630 list_rotate_left(&ctx->flexible_groups);
1631
1632 raw_spin_unlock(&ctx->lock);
1633 }
1634
1635 /*
1636 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
1637 * because they're strictly cpu affine and rotate_start is called with IRQs
1638 * disabled, while rotate_context is called from IRQ context.
1639 */
1640 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
1641 {
1642 u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
1643 struct perf_event_context *ctx = NULL;
1644 int rotate = 0, remove = 1;
1645
1646 if (cpuctx->ctx.nr_events) {
1647 remove = 0;
1648 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1649 rotate = 1;
1650 }
1651
1652 ctx = cpuctx->task_ctx;
1653 if (ctx && ctx->nr_events) {
1654 remove = 0;
1655 if (ctx->nr_events != ctx->nr_active)
1656 rotate = 1;
1657 }
1658
1659 perf_pmu_disable(cpuctx->ctx.pmu);
1660 perf_ctx_adjust_freq(&cpuctx->ctx, interval);
1661 if (ctx)
1662 perf_ctx_adjust_freq(ctx, interval);
1663
1664 if (!rotate)
1665 goto done;
1666
1667 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1668 if (ctx)
1669 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1670
1671 rotate_ctx(&cpuctx->ctx);
1672 if (ctx)
1673 rotate_ctx(ctx);
1674
1675 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1676 if (ctx)
1677 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1678
1679 done:
1680 if (remove)
1681 list_del_init(&cpuctx->rotation_list);
1682
1683 perf_pmu_enable(cpuctx->ctx.pmu);
1684 }
1685
1686 void perf_event_task_tick(void)
1687 {
1688 struct list_head *head = &__get_cpu_var(rotation_list);
1689 struct perf_cpu_context *cpuctx, *tmp;
1690
1691 WARN_ON(!irqs_disabled());
1692
1693 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
1694 if (cpuctx->jiffies_interval == 1 ||
1695 !(jiffies % cpuctx->jiffies_interval))
1696 perf_rotate_context(cpuctx);
1697 }
1698 }
1699
1700 static int event_enable_on_exec(struct perf_event *event,
1701 struct perf_event_context *ctx)
1702 {
1703 if (!event->attr.enable_on_exec)
1704 return 0;
1705
1706 event->attr.enable_on_exec = 0;
1707 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1708 return 0;
1709
1710 __perf_event_mark_enabled(event, ctx);
1711
1712 return 1;
1713 }
1714
1715 /*
1716 * Enable all of a task's events that have been marked enable-on-exec.
1717 * This expects task == current.
1718 */
1719 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1720 {
1721 struct perf_event *event;
1722 unsigned long flags;
1723 int enabled = 0;
1724 int ret;
1725
1726 local_irq_save(flags);
1727 if (!ctx || !ctx->nr_events)
1728 goto out;
1729
1730 task_ctx_sched_out(ctx, EVENT_ALL);
1731
1732 raw_spin_lock(&ctx->lock);
1733
1734 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1735 ret = event_enable_on_exec(event, ctx);
1736 if (ret)
1737 enabled = 1;
1738 }
1739
1740 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1741 ret = event_enable_on_exec(event, ctx);
1742 if (ret)
1743 enabled = 1;
1744 }
1745
1746 /*
1747 * Unclone this context if we enabled any event.
1748 */
1749 if (enabled)
1750 unclone_ctx(ctx);
1751
1752 raw_spin_unlock(&ctx->lock);
1753
1754 perf_event_context_sched_in(ctx);
1755 out:
1756 local_irq_restore(flags);
1757 }
1758
1759 /*
1760 * Cross CPU call to read the hardware event
1761 */
1762 static void __perf_event_read(void *info)
1763 {
1764 struct perf_event *event = info;
1765 struct perf_event_context *ctx = event->ctx;
1766 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1767
1768 /*
1769 * If this is a task context, we need to check whether it is
1770 * the current task context of this cpu. If not it has been
1771 * scheduled out before the smp call arrived. In that case
1772 * event->count would have been updated to a recent sample
1773 * when the event was scheduled out.
1774 */
1775 if (ctx->task && cpuctx->task_ctx != ctx)
1776 return;
1777
1778 raw_spin_lock(&ctx->lock);
1779 update_context_time(ctx);
1780 update_event_times(event);
1781 raw_spin_unlock(&ctx->lock);
1782
1783 event->pmu->read(event);
1784 }
1785
1786 static inline u64 perf_event_count(struct perf_event *event)
1787 {
1788 return local64_read(&event->count) + atomic64_read(&event->child_count);
1789 }
1790
1791 static u64 perf_event_read(struct perf_event *event)
1792 {
1793 /*
1794 * If event is enabled and currently active on a CPU, update the
1795 * value in the event structure:
1796 */
1797 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1798 smp_call_function_single(event->oncpu,
1799 __perf_event_read, event, 1);
1800 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1801 struct perf_event_context *ctx = event->ctx;
1802 unsigned long flags;
1803
1804 raw_spin_lock_irqsave(&ctx->lock, flags);
1805 /*
1806 * may read while context is not active
1807 * (e.g., thread is blocked), in that case
1808 * we cannot update context time
1809 */
1810 if (ctx->is_active)
1811 update_context_time(ctx);
1812 update_event_times(event);
1813 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1814 }
1815
1816 return perf_event_count(event);
1817 }
1818
1819 /*
1820 * Callchain support
1821 */
1822
1823 struct callchain_cpus_entries {
1824 struct rcu_head rcu_head;
1825 struct perf_callchain_entry *cpu_entries[0];
1826 };
1827
1828 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1829 static atomic_t nr_callchain_events;
1830 static DEFINE_MUTEX(callchain_mutex);
1831 struct callchain_cpus_entries *callchain_cpus_entries;
1832
1833
1834 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1835 struct pt_regs *regs)
1836 {
1837 }
1838
1839 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1840 struct pt_regs *regs)
1841 {
1842 }
1843
1844 static void release_callchain_buffers_rcu(struct rcu_head *head)
1845 {
1846 struct callchain_cpus_entries *entries;
1847 int cpu;
1848
1849 entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1850
1851 for_each_possible_cpu(cpu)
1852 kfree(entries->cpu_entries[cpu]);
1853
1854 kfree(entries);
1855 }
1856
1857 static void release_callchain_buffers(void)
1858 {
1859 struct callchain_cpus_entries *entries;
1860
1861 entries = callchain_cpus_entries;
1862 rcu_assign_pointer(callchain_cpus_entries, NULL);
1863 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1864 }
1865
1866 static int alloc_callchain_buffers(void)
1867 {
1868 int cpu;
1869 int size;
1870 struct callchain_cpus_entries *entries;
1871
1872 /*
1873 * We can't use the percpu allocation API for data that can be
1874 * accessed from NMI. Use a temporary manual per cpu allocation
1875 * until that gets sorted out.
1876 */
1877 size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
1878 num_possible_cpus();
1879
1880 entries = kzalloc(size, GFP_KERNEL);
1881 if (!entries)
1882 return -ENOMEM;
1883
1884 size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1885
1886 for_each_possible_cpu(cpu) {
1887 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
1888 cpu_to_node(cpu));
1889 if (!entries->cpu_entries[cpu])
1890 goto fail;
1891 }
1892
1893 rcu_assign_pointer(callchain_cpus_entries, entries);
1894
1895 return 0;
1896
1897 fail:
1898 for_each_possible_cpu(cpu)
1899 kfree(entries->cpu_entries[cpu]);
1900 kfree(entries);
1901
1902 return -ENOMEM;
1903 }
1904
1905 static int get_callchain_buffers(void)
1906 {
1907 int err = 0;
1908 int count;
1909
1910 mutex_lock(&callchain_mutex);
1911
1912 count = atomic_inc_return(&nr_callchain_events);
1913 if (WARN_ON_ONCE(count < 1)) {
1914 err = -EINVAL;
1915 goto exit;
1916 }
1917
1918 if (count > 1) {
1919 /* If the allocation failed, give up */
1920 if (!callchain_cpus_entries)
1921 err = -ENOMEM;
1922 goto exit;
1923 }
1924
1925 err = alloc_callchain_buffers();
1926 if (err)
1927 release_callchain_buffers();
1928 exit:
1929 mutex_unlock(&callchain_mutex);
1930
1931 return err;
1932 }
1933
1934 static void put_callchain_buffers(void)
1935 {
1936 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
1937 release_callchain_buffers();
1938 mutex_unlock(&callchain_mutex);
1939 }
1940 }
1941
1942 static int get_recursion_context(int *recursion)
1943 {
1944 int rctx;
1945
1946 if (in_nmi())
1947 rctx = 3;
1948 else if (in_irq())
1949 rctx = 2;
1950 else if (in_softirq())
1951 rctx = 1;
1952 else
1953 rctx = 0;
1954
1955 if (recursion[rctx])
1956 return -1;
1957
1958 recursion[rctx]++;
1959 barrier();
1960
1961 return rctx;
1962 }
1963
1964 static inline void put_recursion_context(int *recursion, int rctx)
1965 {
1966 barrier();
1967 recursion[rctx]--;
1968 }
1969
1970 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
1971 {
1972 int cpu;
1973 struct callchain_cpus_entries *entries;
1974
1975 *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
1976 if (*rctx == -1)
1977 return NULL;
1978
1979 entries = rcu_dereference(callchain_cpus_entries);
1980 if (!entries)
1981 return NULL;
1982
1983 cpu = smp_processor_id();
1984
1985 return &entries->cpu_entries[cpu][*rctx];
1986 }
1987
1988 static void
1989 put_callchain_entry(int rctx)
1990 {
1991 put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
1992 }
1993
1994 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1995 {
1996 int rctx;
1997 struct perf_callchain_entry *entry;
1998
1999
2000 entry = get_callchain_entry(&rctx);
2001 if (rctx == -1)
2002 return NULL;
2003
2004 if (!entry)
2005 goto exit_put;
2006
2007 entry->nr = 0;
2008
2009 if (!user_mode(regs)) {
2010 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2011 perf_callchain_kernel(entry, regs);
2012 if (current->mm)
2013 regs = task_pt_regs(current);
2014 else
2015 regs = NULL;
2016 }
2017
2018 if (regs) {
2019 perf_callchain_store(entry, PERF_CONTEXT_USER);
2020 perf_callchain_user(entry, regs);
2021 }
2022
2023 exit_put:
2024 put_callchain_entry(rctx);
2025
2026 return entry;
2027 }
2028
2029 /*
2030 * Initialize the perf_event context in a task_struct:
2031 */
2032 static void __perf_event_init_context(struct perf_event_context *ctx)
2033 {
2034 raw_spin_lock_init(&ctx->lock);
2035 mutex_init(&ctx->mutex);
2036 INIT_LIST_HEAD(&ctx->pinned_groups);
2037 INIT_LIST_HEAD(&ctx->flexible_groups);
2038 INIT_LIST_HEAD(&ctx->event_list);
2039 atomic_set(&ctx->refcount, 1);
2040 }
2041
2042 static struct perf_event_context *
2043 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2044 {
2045 struct perf_event_context *ctx;
2046
2047 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2048 if (!ctx)
2049 return NULL;
2050
2051 __perf_event_init_context(ctx);
2052 if (task) {
2053 ctx->task = task;
2054 get_task_struct(task);
2055 }
2056 ctx->pmu = pmu;
2057
2058 return ctx;
2059 }
2060
2061 static struct task_struct *
2062 find_lively_task_by_vpid(pid_t vpid)
2063 {
2064 struct task_struct *task;
2065 int err;
2066
2067 rcu_read_lock();
2068 if (!vpid)
2069 task = current;
2070 else
2071 task = find_task_by_vpid(vpid);
2072 if (task)
2073 get_task_struct(task);
2074 rcu_read_unlock();
2075
2076 if (!task)
2077 return ERR_PTR(-ESRCH);
2078
2079 /*
2080 * Can't attach events to a dying task.
2081 */
2082 err = -ESRCH;
2083 if (task->flags & PF_EXITING)
2084 goto errout;
2085
2086 /* Reuse ptrace permission checks for now. */
2087 err = -EACCES;
2088 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2089 goto errout;
2090
2091 return task;
2092 errout:
2093 put_task_struct(task);
2094 return ERR_PTR(err);
2095
2096 }
2097
2098 static struct perf_event_context *
2099 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2100 {
2101 struct perf_event_context *ctx;
2102 struct perf_cpu_context *cpuctx;
2103 unsigned long flags;
2104 int ctxn, err;
2105
2106 if (!task && cpu != -1) {
2107 /* Must be root to operate on a CPU event: */
2108 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2109 return ERR_PTR(-EACCES);
2110
2111 if (cpu < 0 || cpu >= nr_cpumask_bits)
2112 return ERR_PTR(-EINVAL);
2113
2114 /*
2115 * We could be clever and allow to attach a event to an
2116 * offline CPU and activate it when the CPU comes up, but
2117 * that's for later.
2118 */
2119 if (!cpu_online(cpu))
2120 return ERR_PTR(-ENODEV);
2121
2122 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2123 ctx = &cpuctx->ctx;
2124 get_ctx(ctx);
2125
2126 return ctx;
2127 }
2128
2129 err = -EINVAL;
2130 ctxn = pmu->task_ctx_nr;
2131 if (ctxn < 0)
2132 goto errout;
2133
2134 retry:
2135 ctx = perf_lock_task_context(task, ctxn, &flags);
2136 if (ctx) {
2137 unclone_ctx(ctx);
2138 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2139 }
2140
2141 if (!ctx) {
2142 ctx = alloc_perf_context(pmu, task);
2143 err = -ENOMEM;
2144 if (!ctx)
2145 goto errout;
2146
2147 get_ctx(ctx);
2148
2149 if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2150 /*
2151 * We raced with some other task; use
2152 * the context they set.
2153 */
2154 put_task_struct(task);
2155 kfree(ctx);
2156 goto retry;
2157 }
2158 }
2159
2160 return ctx;
2161
2162 errout:
2163 return ERR_PTR(err);
2164 }
2165
2166 static void perf_event_free_filter(struct perf_event *event);
2167
2168 static void free_event_rcu(struct rcu_head *head)
2169 {
2170 struct perf_event *event;
2171
2172 event = container_of(head, struct perf_event, rcu_head);
2173 if (event->ns)
2174 put_pid_ns(event->ns);
2175 perf_event_free_filter(event);
2176 kfree(event);
2177 }
2178
2179 static void perf_buffer_put(struct perf_buffer *buffer);
2180
2181 static void free_event(struct perf_event *event)
2182 {
2183 irq_work_sync(&event->pending);
2184
2185 if (!event->parent) {
2186 if (event->attach_state & PERF_ATTACH_TASK)
2187 jump_label_dec(&perf_task_events);
2188 if (event->attr.mmap || event->attr.mmap_data)
2189 atomic_dec(&nr_mmap_events);
2190 if (event->attr.comm)
2191 atomic_dec(&nr_comm_events);
2192 if (event->attr.task)
2193 atomic_dec(&nr_task_events);
2194 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2195 put_callchain_buffers();
2196 }
2197
2198 if (event->buffer) {
2199 perf_buffer_put(event->buffer);
2200 event->buffer = NULL;
2201 }
2202
2203 if (event->destroy)
2204 event->destroy(event);
2205
2206 if (event->ctx)
2207 put_ctx(event->ctx);
2208
2209 call_rcu(&event->rcu_head, free_event_rcu);
2210 }
2211
2212 int perf_event_release_kernel(struct perf_event *event)
2213 {
2214 struct perf_event_context *ctx = event->ctx;
2215
2216 /*
2217 * Remove from the PMU, can't get re-enabled since we got
2218 * here because the last ref went.
2219 */
2220 perf_event_disable(event);
2221
2222 WARN_ON_ONCE(ctx->parent_ctx);
2223 /*
2224 * There are two ways this annotation is useful:
2225 *
2226 * 1) there is a lock recursion from perf_event_exit_task
2227 * see the comment there.
2228 *
2229 * 2) there is a lock-inversion with mmap_sem through
2230 * perf_event_read_group(), which takes faults while
2231 * holding ctx->mutex, however this is called after
2232 * the last filedesc died, so there is no possibility
2233 * to trigger the AB-BA case.
2234 */
2235 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2236 raw_spin_lock_irq(&ctx->lock);
2237 perf_group_detach(event);
2238 list_del_event(event, ctx);
2239 raw_spin_unlock_irq(&ctx->lock);
2240 mutex_unlock(&ctx->mutex);
2241
2242 free_event(event);
2243
2244 return 0;
2245 }
2246 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2247
2248 /*
2249 * Called when the last reference to the file is gone.
2250 */
2251 static int perf_release(struct inode *inode, struct file *file)
2252 {
2253 struct perf_event *event = file->private_data;
2254 struct task_struct *owner;
2255
2256 file->private_data = NULL;
2257
2258 rcu_read_lock();
2259 owner = ACCESS_ONCE(event->owner);
2260 /*
2261 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2262 * !owner it means the list deletion is complete and we can indeed
2263 * free this event, otherwise we need to serialize on
2264 * owner->perf_event_mutex.
2265 */
2266 smp_read_barrier_depends();
2267 if (owner) {
2268 /*
2269 * Since delayed_put_task_struct() also drops the last
2270 * task reference we can safely take a new reference
2271 * while holding the rcu_read_lock().
2272 */
2273 get_task_struct(owner);
2274 }
2275 rcu_read_unlock();
2276
2277 if (owner) {
2278 mutex_lock(&owner->perf_event_mutex);
2279 /*
2280 * We have to re-check the event->owner field, if it is cleared
2281 * we raced with perf_event_exit_task(), acquiring the mutex
2282 * ensured they're done, and we can proceed with freeing the
2283 * event.
2284 */
2285 if (event->owner)
2286 list_del_init(&event->owner_entry);
2287 mutex_unlock(&owner->perf_event_mutex);
2288 put_task_struct(owner);
2289 }
2290
2291 return perf_event_release_kernel(event);
2292 }
2293
2294 static int perf_event_read_size(struct perf_event *event)
2295 {
2296 int entry = sizeof(u64); /* value */
2297 int size = 0;
2298 int nr = 1;
2299
2300 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2301 size += sizeof(u64);
2302
2303 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2304 size += sizeof(u64);
2305
2306 if (event->attr.read_format & PERF_FORMAT_ID)
2307 entry += sizeof(u64);
2308
2309 if (event->attr.read_format & PERF_FORMAT_GROUP) {
2310 nr += event->group_leader->nr_siblings;
2311 size += sizeof(u64);
2312 }
2313
2314 size += entry * nr;
2315
2316 return size;
2317 }
2318
2319 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2320 {
2321 struct perf_event *child;
2322 u64 total = 0;
2323
2324 *enabled = 0;
2325 *running = 0;
2326
2327 mutex_lock(&event->child_mutex);
2328 total += perf_event_read(event);
2329 *enabled += event->total_time_enabled +
2330 atomic64_read(&event->child_total_time_enabled);
2331 *running += event->total_time_running +
2332 atomic64_read(&event->child_total_time_running);
2333
2334 list_for_each_entry(child, &event->child_list, child_list) {
2335 total += perf_event_read(child);
2336 *enabled += child->total_time_enabled;
2337 *running += child->total_time_running;
2338 }
2339 mutex_unlock(&event->child_mutex);
2340
2341 return total;
2342 }
2343 EXPORT_SYMBOL_GPL(perf_event_read_value);
2344
2345 static int perf_event_read_group(struct perf_event *event,
2346 u64 read_format, char __user *buf)
2347 {
2348 struct perf_event *leader = event->group_leader, *sub;
2349 int n = 0, size = 0, ret = -EFAULT;
2350 struct perf_event_context *ctx = leader->ctx;
2351 u64 values[5];
2352 u64 count, enabled, running;
2353
2354 mutex_lock(&ctx->mutex);
2355 count = perf_event_read_value(leader, &enabled, &running);
2356
2357 values[n++] = 1 + leader->nr_siblings;
2358 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2359 values[n++] = enabled;
2360 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2361 values[n++] = running;
2362 values[n++] = count;
2363 if (read_format & PERF_FORMAT_ID)
2364 values[n++] = primary_event_id(leader);
2365
2366 size = n * sizeof(u64);
2367
2368 if (copy_to_user(buf, values, size))
2369 goto unlock;
2370
2371 ret = size;
2372
2373 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2374 n = 0;
2375
2376 values[n++] = perf_event_read_value(sub, &enabled, &running);
2377 if (read_format & PERF_FORMAT_ID)
2378 values[n++] = primary_event_id(sub);
2379
2380 size = n * sizeof(u64);
2381
2382 if (copy_to_user(buf + ret, values, size)) {
2383 ret = -EFAULT;
2384 goto unlock;
2385 }
2386
2387 ret += size;
2388 }
2389 unlock:
2390 mutex_unlock(&ctx->mutex);
2391
2392 return ret;
2393 }
2394
2395 static int perf_event_read_one(struct perf_event *event,
2396 u64 read_format, char __user *buf)
2397 {
2398 u64 enabled, running;
2399 u64 values[4];
2400 int n = 0;
2401
2402 values[n++] = perf_event_read_value(event, &enabled, &running);
2403 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2404 values[n++] = enabled;
2405 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2406 values[n++] = running;
2407 if (read_format & PERF_FORMAT_ID)
2408 values[n++] = primary_event_id(event);
2409
2410 if (copy_to_user(buf, values, n * sizeof(u64)))
2411 return -EFAULT;
2412
2413 return n * sizeof(u64);
2414 }
2415
2416 /*
2417 * Read the performance event - simple non blocking version for now
2418 */
2419 static ssize_t
2420 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2421 {
2422 u64 read_format = event->attr.read_format;
2423 int ret;
2424
2425 /*
2426 * Return end-of-file for a read on a event that is in
2427 * error state (i.e. because it was pinned but it couldn't be
2428 * scheduled on to the CPU at some point).
2429 */
2430 if (event->state == PERF_EVENT_STATE_ERROR)
2431 return 0;
2432
2433 if (count < perf_event_read_size(event))
2434 return -ENOSPC;
2435
2436 WARN_ON_ONCE(event->ctx->parent_ctx);
2437 if (read_format & PERF_FORMAT_GROUP)
2438 ret = perf_event_read_group(event, read_format, buf);
2439 else
2440 ret = perf_event_read_one(event, read_format, buf);
2441
2442 return ret;
2443 }
2444
2445 static ssize_t
2446 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2447 {
2448 struct perf_event *event = file->private_data;
2449
2450 return perf_read_hw(event, buf, count);
2451 }
2452
2453 static unsigned int perf_poll(struct file *file, poll_table *wait)
2454 {
2455 struct perf_event *event = file->private_data;
2456 struct perf_buffer *buffer;
2457 unsigned int events = POLL_HUP;
2458
2459 rcu_read_lock();
2460 buffer = rcu_dereference(event->buffer);
2461 if (buffer)
2462 events = atomic_xchg(&buffer->poll, 0);
2463 rcu_read_unlock();
2464
2465 poll_wait(file, &event->waitq, wait);
2466
2467 return events;
2468 }
2469
2470 static void perf_event_reset(struct perf_event *event)
2471 {
2472 (void)perf_event_read(event);
2473 local64_set(&event->count, 0);
2474 perf_event_update_userpage(event);
2475 }
2476
2477 /*
2478 * Holding the top-level event's child_mutex means that any
2479 * descendant process that has inherited this event will block
2480 * in sync_child_event if it goes to exit, thus satisfying the
2481 * task existence requirements of perf_event_enable/disable.
2482 */
2483 static void perf_event_for_each_child(struct perf_event *event,
2484 void (*func)(struct perf_event *))
2485 {
2486 struct perf_event *child;
2487
2488 WARN_ON_ONCE(event->ctx->parent_ctx);
2489 mutex_lock(&event->child_mutex);
2490 func(event);
2491 list_for_each_entry(child, &event->child_list, child_list)
2492 func(child);
2493 mutex_unlock(&event->child_mutex);
2494 }
2495
2496 static void perf_event_for_each(struct perf_event *event,
2497 void (*func)(struct perf_event *))
2498 {
2499 struct perf_event_context *ctx = event->ctx;
2500 struct perf_event *sibling;
2501
2502 WARN_ON_ONCE(ctx->parent_ctx);
2503 mutex_lock(&ctx->mutex);
2504 event = event->group_leader;
2505
2506 perf_event_for_each_child(event, func);
2507 func(event);
2508 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2509 perf_event_for_each_child(event, func);
2510 mutex_unlock(&ctx->mutex);
2511 }
2512
2513 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2514 {
2515 struct perf_event_context *ctx = event->ctx;
2516 int ret = 0;
2517 u64 value;
2518
2519 if (!event->attr.sample_period)
2520 return -EINVAL;
2521
2522 if (copy_from_user(&value, arg, sizeof(value)))
2523 return -EFAULT;
2524
2525 if (!value)
2526 return -EINVAL;
2527
2528 raw_spin_lock_irq(&ctx->lock);
2529 if (event->attr.freq) {
2530 if (value > sysctl_perf_event_sample_rate) {
2531 ret = -EINVAL;
2532 goto unlock;
2533 }
2534
2535 event->attr.sample_freq = value;
2536 } else {
2537 event->attr.sample_period = value;
2538 event->hw.sample_period = value;
2539 }
2540 unlock:
2541 raw_spin_unlock_irq(&ctx->lock);
2542
2543 return ret;
2544 }
2545
2546 static const struct file_operations perf_fops;
2547
2548 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2549 {
2550 struct file *file;
2551
2552 file = fget_light(fd, fput_needed);
2553 if (!file)
2554 return ERR_PTR(-EBADF);
2555
2556 if (file->f_op != &perf_fops) {
2557 fput_light(file, *fput_needed);
2558 *fput_needed = 0;
2559 return ERR_PTR(-EBADF);
2560 }
2561
2562 return file->private_data;
2563 }
2564
2565 static int perf_event_set_output(struct perf_event *event,
2566 struct perf_event *output_event);
2567 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2568
2569 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2570 {
2571 struct perf_event *event = file->private_data;
2572 void (*func)(struct perf_event *);
2573 u32 flags = arg;
2574
2575 switch (cmd) {
2576 case PERF_EVENT_IOC_ENABLE:
2577 func = perf_event_enable;
2578 break;
2579 case PERF_EVENT_IOC_DISABLE:
2580 func = perf_event_disable;
2581 break;
2582 case PERF_EVENT_IOC_RESET:
2583 func = perf_event_reset;
2584 break;
2585
2586 case PERF_EVENT_IOC_REFRESH:
2587 return perf_event_refresh(event, arg);
2588
2589 case PERF_EVENT_IOC_PERIOD:
2590 return perf_event_period(event, (u64 __user *)arg);
2591
2592 case PERF_EVENT_IOC_SET_OUTPUT:
2593 {
2594 struct perf_event *output_event = NULL;
2595 int fput_needed = 0;
2596 int ret;
2597
2598 if (arg != -1) {
2599 output_event = perf_fget_light(arg, &fput_needed);
2600 if (IS_ERR(output_event))
2601 return PTR_ERR(output_event);
2602 }
2603
2604 ret = perf_event_set_output(event, output_event);
2605 if (output_event)
2606 fput_light(output_event->filp, fput_needed);
2607
2608 return ret;
2609 }
2610
2611 case PERF_EVENT_IOC_SET_FILTER:
2612 return perf_event_set_filter(event, (void __user *)arg);
2613
2614 default:
2615 return -ENOTTY;
2616 }
2617
2618 if (flags & PERF_IOC_FLAG_GROUP)
2619 perf_event_for_each(event, func);
2620 else
2621 perf_event_for_each_child(event, func);
2622
2623 return 0;
2624 }
2625
2626 int perf_event_task_enable(void)
2627 {
2628 struct perf_event *event;
2629
2630 mutex_lock(&current->perf_event_mutex);
2631 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2632 perf_event_for_each_child(event, perf_event_enable);
2633 mutex_unlock(&current->perf_event_mutex);
2634
2635 return 0;
2636 }
2637
2638 int perf_event_task_disable(void)
2639 {
2640 struct perf_event *event;
2641
2642 mutex_lock(&current->perf_event_mutex);
2643 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2644 perf_event_for_each_child(event, perf_event_disable);
2645 mutex_unlock(&current->perf_event_mutex);
2646
2647 return 0;
2648 }
2649
2650 #ifndef PERF_EVENT_INDEX_OFFSET
2651 # define PERF_EVENT_INDEX_OFFSET 0
2652 #endif
2653
2654 static int perf_event_index(struct perf_event *event)
2655 {
2656 if (event->hw.state & PERF_HES_STOPPED)
2657 return 0;
2658
2659 if (event->state != PERF_EVENT_STATE_ACTIVE)
2660 return 0;
2661
2662 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2663 }
2664
2665 /*
2666 * Callers need to ensure there can be no nesting of this function, otherwise
2667 * the seqlock logic goes bad. We can not serialize this because the arch
2668 * code calls this from NMI context.
2669 */
2670 void perf_event_update_userpage(struct perf_event *event)
2671 {
2672 struct perf_event_mmap_page *userpg;
2673 struct perf_buffer *buffer;
2674
2675 rcu_read_lock();
2676 buffer = rcu_dereference(event->buffer);
2677 if (!buffer)
2678 goto unlock;
2679
2680 userpg = buffer->user_page;
2681
2682 /*
2683 * Disable preemption so as to not let the corresponding user-space
2684 * spin too long if we get preempted.
2685 */
2686 preempt_disable();
2687 ++userpg->lock;
2688 barrier();
2689 userpg->index = perf_event_index(event);
2690 userpg->offset = perf_event_count(event);
2691 if (event->state == PERF_EVENT_STATE_ACTIVE)
2692 userpg->offset -= local64_read(&event->hw.prev_count);
2693
2694 userpg->time_enabled = event->total_time_enabled +
2695 atomic64_read(&event->child_total_time_enabled);
2696
2697 userpg->time_running = event->total_time_running +
2698 atomic64_read(&event->child_total_time_running);
2699
2700 barrier();
2701 ++userpg->lock;
2702 preempt_enable();
2703 unlock:
2704 rcu_read_unlock();
2705 }
2706
2707 static unsigned long perf_data_size(struct perf_buffer *buffer);
2708
2709 static void
2710 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2711 {
2712 long max_size = perf_data_size(buffer);
2713
2714 if (watermark)
2715 buffer->watermark = min(max_size, watermark);
2716
2717 if (!buffer->watermark)
2718 buffer->watermark = max_size / 2;
2719
2720 if (flags & PERF_BUFFER_WRITABLE)
2721 buffer->writable = 1;
2722
2723 atomic_set(&buffer->refcount, 1);
2724 }
2725
2726 #ifndef CONFIG_PERF_USE_VMALLOC
2727
2728 /*
2729 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2730 */
2731
2732 static struct page *
2733 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2734 {
2735 if (pgoff > buffer->nr_pages)
2736 return NULL;
2737
2738 if (pgoff == 0)
2739 return virt_to_page(buffer->user_page);
2740
2741 return virt_to_page(buffer->data_pages[pgoff - 1]);
2742 }
2743
2744 static void *perf_mmap_alloc_page(int cpu)
2745 {
2746 struct page *page;
2747 int node;
2748
2749 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2750 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2751 if (!page)
2752 return NULL;
2753
2754 return page_address(page);
2755 }
2756
2757 static struct perf_buffer *
2758 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2759 {
2760 struct perf_buffer *buffer;
2761 unsigned long size;
2762 int i;
2763
2764 size = sizeof(struct perf_buffer);
2765 size += nr_pages * sizeof(void *);
2766
2767 buffer = kzalloc(size, GFP_KERNEL);
2768 if (!buffer)
2769 goto fail;
2770
2771 buffer->user_page = perf_mmap_alloc_page(cpu);
2772 if (!buffer->user_page)
2773 goto fail_user_page;
2774
2775 for (i = 0; i < nr_pages; i++) {
2776 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2777 if (!buffer->data_pages[i])
2778 goto fail_data_pages;
2779 }
2780
2781 buffer->nr_pages = nr_pages;
2782
2783 perf_buffer_init(buffer, watermark, flags);
2784
2785 return buffer;
2786
2787 fail_data_pages:
2788 for (i--; i >= 0; i--)
2789 free_page((unsigned long)buffer->data_pages[i]);
2790
2791 free_page((unsigned long)buffer->user_page);
2792
2793 fail_user_page:
2794 kfree(buffer);
2795
2796 fail:
2797 return NULL;
2798 }
2799
2800 static void perf_mmap_free_page(unsigned long addr)
2801 {
2802 struct page *page = virt_to_page((void *)addr);
2803
2804 page->mapping = NULL;
2805 __free_page(page);
2806 }
2807
2808 static void perf_buffer_free(struct perf_buffer *buffer)
2809 {
2810 int i;
2811
2812 perf_mmap_free_page((unsigned long)buffer->user_page);
2813 for (i = 0; i < buffer->nr_pages; i++)
2814 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2815 kfree(buffer);
2816 }
2817
2818 static inline int page_order(struct perf_buffer *buffer)
2819 {
2820 return 0;
2821 }
2822
2823 #else
2824
2825 /*
2826 * Back perf_mmap() with vmalloc memory.
2827 *
2828 * Required for architectures that have d-cache aliasing issues.
2829 */
2830
2831 static inline int page_order(struct perf_buffer *buffer)
2832 {
2833 return buffer->page_order;
2834 }
2835
2836 static struct page *
2837 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2838 {
2839 if (pgoff > (1UL << page_order(buffer)))
2840 return NULL;
2841
2842 return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2843 }
2844
2845 static void perf_mmap_unmark_page(void *addr)
2846 {
2847 struct page *page = vmalloc_to_page(addr);
2848
2849 page->mapping = NULL;
2850 }
2851
2852 static void perf_buffer_free_work(struct work_struct *work)
2853 {
2854 struct perf_buffer *buffer;
2855 void *base;
2856 int i, nr;
2857
2858 buffer = container_of(work, struct perf_buffer, work);
2859 nr = 1 << page_order(buffer);
2860
2861 base = buffer->user_page;
2862 for (i = 0; i < nr + 1; i++)
2863 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2864
2865 vfree(base);
2866 kfree(buffer);
2867 }
2868
2869 static void perf_buffer_free(struct perf_buffer *buffer)
2870 {
2871 schedule_work(&buffer->work);
2872 }
2873
2874 static struct perf_buffer *
2875 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2876 {
2877 struct perf_buffer *buffer;
2878 unsigned long size;
2879 void *all_buf;
2880
2881 size = sizeof(struct perf_buffer);
2882 size += sizeof(void *);
2883
2884 buffer = kzalloc(size, GFP_KERNEL);
2885 if (!buffer)
2886 goto fail;
2887
2888 INIT_WORK(&buffer->work, perf_buffer_free_work);
2889
2890 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2891 if (!all_buf)
2892 goto fail_all_buf;
2893
2894 buffer->user_page = all_buf;
2895 buffer->data_pages[0] = all_buf + PAGE_SIZE;
2896 buffer->page_order = ilog2(nr_pages);
2897 buffer->nr_pages = 1;
2898
2899 perf_buffer_init(buffer, watermark, flags);
2900
2901 return buffer;
2902
2903 fail_all_buf:
2904 kfree(buffer);
2905
2906 fail:
2907 return NULL;
2908 }
2909
2910 #endif
2911
2912 static unsigned long perf_data_size(struct perf_buffer *buffer)
2913 {
2914 return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2915 }
2916
2917 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2918 {
2919 struct perf_event *event = vma->vm_file->private_data;
2920 struct perf_buffer *buffer;
2921 int ret = VM_FAULT_SIGBUS;
2922
2923 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2924 if (vmf->pgoff == 0)
2925 ret = 0;
2926 return ret;
2927 }
2928
2929 rcu_read_lock();
2930 buffer = rcu_dereference(event->buffer);
2931 if (!buffer)
2932 goto unlock;
2933
2934 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2935 goto unlock;
2936
2937 vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2938 if (!vmf->page)
2939 goto unlock;
2940
2941 get_page(vmf->page);
2942 vmf->page->mapping = vma->vm_file->f_mapping;
2943 vmf->page->index = vmf->pgoff;
2944
2945 ret = 0;
2946 unlock:
2947 rcu_read_unlock();
2948
2949 return ret;
2950 }
2951
2952 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2953 {
2954 struct perf_buffer *buffer;
2955
2956 buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
2957 perf_buffer_free(buffer);
2958 }
2959
2960 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2961 {
2962 struct perf_buffer *buffer;
2963
2964 rcu_read_lock();
2965 buffer = rcu_dereference(event->buffer);
2966 if (buffer) {
2967 if (!atomic_inc_not_zero(&buffer->refcount))
2968 buffer = NULL;
2969 }
2970 rcu_read_unlock();
2971
2972 return buffer;
2973 }
2974
2975 static void perf_buffer_put(struct perf_buffer *buffer)
2976 {
2977 if (!atomic_dec_and_test(&buffer->refcount))
2978 return;
2979
2980 call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2981 }
2982
2983 static void perf_mmap_open(struct vm_area_struct *vma)
2984 {
2985 struct perf_event *event = vma->vm_file->private_data;
2986
2987 atomic_inc(&event->mmap_count);
2988 }
2989
2990 static void perf_mmap_close(struct vm_area_struct *vma)
2991 {
2992 struct perf_event *event = vma->vm_file->private_data;
2993
2994 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2995 unsigned long size = perf_data_size(event->buffer);
2996 struct user_struct *user = event->mmap_user;
2997 struct perf_buffer *buffer = event->buffer;
2998
2999 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3000 vma->vm_mm->locked_vm -= event->mmap_locked;
3001 rcu_assign_pointer(event->buffer, NULL);
3002 mutex_unlock(&event->mmap_mutex);
3003
3004 perf_buffer_put(buffer);
3005 free_uid(user);
3006 }
3007 }
3008
3009 static const struct vm_operations_struct perf_mmap_vmops = {
3010 .open = perf_mmap_open,
3011 .close = perf_mmap_close,
3012 .fault = perf_mmap_fault,
3013 .page_mkwrite = perf_mmap_fault,
3014 };
3015
3016 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3017 {
3018 struct perf_event *event = file->private_data;
3019 unsigned long user_locked, user_lock_limit;
3020 struct user_struct *user = current_user();
3021 unsigned long locked, lock_limit;
3022 struct perf_buffer *buffer;
3023 unsigned long vma_size;
3024 unsigned long nr_pages;
3025 long user_extra, extra;
3026 int ret = 0, flags = 0;
3027
3028 /*
3029 * Don't allow mmap() of inherited per-task counters. This would
3030 * create a performance issue due to all children writing to the
3031 * same buffer.
3032 */
3033 if (event->cpu == -1 && event->attr.inherit)
3034 return -EINVAL;
3035
3036 if (!(vma->vm_flags & VM_SHARED))
3037 return -EINVAL;
3038
3039 vma_size = vma->vm_end - vma->vm_start;
3040 nr_pages = (vma_size / PAGE_SIZE) - 1;
3041
3042 /*
3043 * If we have buffer pages ensure they're a power-of-two number, so we
3044 * can do bitmasks instead of modulo.
3045 */
3046 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3047 return -EINVAL;
3048
3049 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3050 return -EINVAL;
3051
3052 if (vma->vm_pgoff != 0)
3053 return -EINVAL;
3054
3055 WARN_ON_ONCE(event->ctx->parent_ctx);
3056 mutex_lock(&event->mmap_mutex);
3057 if (event->buffer) {
3058 if (event->buffer->nr_pages == nr_pages)
3059 atomic_inc(&event->buffer->refcount);
3060 else
3061 ret = -EINVAL;
3062 goto unlock;
3063 }
3064
3065 user_extra = nr_pages + 1;
3066 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3067
3068 /*
3069 * Increase the limit linearly with more CPUs:
3070 */
3071 user_lock_limit *= num_online_cpus();
3072
3073 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3074
3075 extra = 0;
3076 if (user_locked > user_lock_limit)
3077 extra = user_locked - user_lock_limit;
3078
3079 lock_limit = rlimit(RLIMIT_MEMLOCK);
3080 lock_limit >>= PAGE_SHIFT;
3081 locked = vma->vm_mm->locked_vm + extra;
3082
3083 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3084 !capable(CAP_IPC_LOCK)) {
3085 ret = -EPERM;
3086 goto unlock;
3087 }
3088
3089 WARN_ON(event->buffer);
3090
3091 if (vma->vm_flags & VM_WRITE)
3092 flags |= PERF_BUFFER_WRITABLE;
3093
3094 buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3095 event->cpu, flags);
3096 if (!buffer) {
3097 ret = -ENOMEM;
3098 goto unlock;
3099 }
3100 rcu_assign_pointer(event->buffer, buffer);
3101
3102 atomic_long_add(user_extra, &user->locked_vm);
3103 event->mmap_locked = extra;
3104 event->mmap_user = get_current_user();
3105 vma->vm_mm->locked_vm += event->mmap_locked;
3106
3107 unlock:
3108 if (!ret)
3109 atomic_inc(&event->mmap_count);
3110 mutex_unlock(&event->mmap_mutex);
3111
3112 vma->vm_flags |= VM_RESERVED;
3113 vma->vm_ops = &perf_mmap_vmops;
3114
3115 return ret;
3116 }
3117
3118 static int perf_fasync(int fd, struct file *filp, int on)
3119 {
3120 struct inode *inode = filp->f_path.dentry->d_inode;
3121 struct perf_event *event = filp->private_data;
3122 int retval;
3123
3124 mutex_lock(&inode->i_mutex);
3125 retval = fasync_helper(fd, filp, on, &event->fasync);
3126 mutex_unlock(&inode->i_mutex);
3127
3128 if (retval < 0)
3129 return retval;
3130
3131 return 0;
3132 }
3133
3134 static const struct file_operations perf_fops = {
3135 .llseek = no_llseek,
3136 .release = perf_release,
3137 .read = perf_read,
3138 .poll = perf_poll,
3139 .unlocked_ioctl = perf_ioctl,
3140 .compat_ioctl = perf_ioctl,
3141 .mmap = perf_mmap,
3142 .fasync = perf_fasync,
3143 };
3144
3145 /*
3146 * Perf event wakeup
3147 *
3148 * If there's data, ensure we set the poll() state and publish everything
3149 * to user-space before waking everybody up.
3150 */
3151
3152 void perf_event_wakeup(struct perf_event *event)
3153 {
3154 wake_up_all(&event->waitq);
3155
3156 if (event->pending_kill) {
3157 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3158 event->pending_kill = 0;
3159 }
3160 }
3161
3162 static void perf_pending_event(struct irq_work *entry)
3163 {
3164 struct perf_event *event = container_of(entry,
3165 struct perf_event, pending);
3166
3167 if (event->pending_disable) {
3168 event->pending_disable = 0;
3169 __perf_event_disable(event);
3170 }
3171
3172 if (event->pending_wakeup) {
3173 event->pending_wakeup = 0;
3174 perf_event_wakeup(event);
3175 }
3176 }
3177
3178 /*
3179 * We assume there is only KVM supporting the callbacks.
3180 * Later on, we might change it to a list if there is
3181 * another virtualization implementation supporting the callbacks.
3182 */
3183 struct perf_guest_info_callbacks *perf_guest_cbs;
3184
3185 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3186 {
3187 perf_guest_cbs = cbs;
3188 return 0;
3189 }
3190 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3191
3192 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3193 {
3194 perf_guest_cbs = NULL;
3195 return 0;
3196 }
3197 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3198
3199 /*
3200 * Output
3201 */
3202 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3203 unsigned long offset, unsigned long head)
3204 {
3205 unsigned long mask;
3206
3207 if (!buffer->writable)
3208 return true;
3209
3210 mask = perf_data_size(buffer) - 1;
3211
3212 offset = (offset - tail) & mask;
3213 head = (head - tail) & mask;
3214
3215 if ((int)(head - offset) < 0)
3216 return false;
3217
3218 return true;
3219 }
3220
3221 static void perf_output_wakeup(struct perf_output_handle *handle)
3222 {
3223 atomic_set(&handle->buffer->poll, POLL_IN);
3224
3225 if (handle->nmi) {
3226 handle->event->pending_wakeup = 1;
3227 irq_work_queue(&handle->event->pending);
3228 } else
3229 perf_event_wakeup(handle->event);
3230 }
3231
3232 /*
3233 * We need to ensure a later event_id doesn't publish a head when a former
3234 * event isn't done writing. However since we need to deal with NMIs we
3235 * cannot fully serialize things.
3236 *
3237 * We only publish the head (and generate a wakeup) when the outer-most
3238 * event completes.
3239 */
3240 static void perf_output_get_handle(struct perf_output_handle *handle)
3241 {
3242 struct perf_buffer *buffer = handle->buffer;
3243
3244 preempt_disable();
3245 local_inc(&buffer->nest);
3246 handle->wakeup = local_read(&buffer->wakeup);
3247 }
3248
3249 static void perf_output_put_handle(struct perf_output_handle *handle)
3250 {
3251 struct perf_buffer *buffer = handle->buffer;
3252 unsigned long head;
3253
3254 again:
3255 head = local_read(&buffer->head);
3256
3257 /*
3258 * IRQ/NMI can happen here, which means we can miss a head update.
3259 */
3260
3261 if (!local_dec_and_test(&buffer->nest))
3262 goto out;
3263
3264 /*
3265 * Publish the known good head. Rely on the full barrier implied
3266 * by atomic_dec_and_test() order the buffer->head read and this
3267 * write.
3268 */
3269 buffer->user_page->data_head = head;
3270
3271 /*
3272 * Now check if we missed an update, rely on the (compiler)
3273 * barrier in atomic_dec_and_test() to re-read buffer->head.
3274 */
3275 if (unlikely(head != local_read(&buffer->head))) {
3276 local_inc(&buffer->nest);
3277 goto again;
3278 }
3279
3280 if (handle->wakeup != local_read(&buffer->wakeup))
3281 perf_output_wakeup(handle);
3282
3283 out:
3284 preempt_enable();
3285 }
3286
3287 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3288 const void *buf, unsigned int len)
3289 {
3290 do {
3291 unsigned long size = min_t(unsigned long, handle->size, len);
3292
3293 memcpy(handle->addr, buf, size);
3294
3295 len -= size;
3296 handle->addr += size;
3297 buf += size;
3298 handle->size -= size;
3299 if (!handle->size) {
3300 struct perf_buffer *buffer = handle->buffer;
3301
3302 handle->page++;
3303 handle->page &= buffer->nr_pages - 1;
3304 handle->addr = buffer->data_pages[handle->page];
3305 handle->size = PAGE_SIZE << page_order(buffer);
3306 }
3307 } while (len);
3308 }
3309
3310 int perf_output_begin(struct perf_output_handle *handle,
3311 struct perf_event *event, unsigned int size,
3312 int nmi, int sample)
3313 {
3314 struct perf_buffer *buffer;
3315 unsigned long tail, offset, head;
3316 int have_lost;
3317 struct {
3318 struct perf_event_header header;
3319 u64 id;
3320 u64 lost;
3321 } lost_event;
3322
3323 rcu_read_lock();
3324 /*
3325 * For inherited events we send all the output towards the parent.
3326 */
3327 if (event->parent)
3328 event = event->parent;
3329
3330 buffer = rcu_dereference(event->buffer);
3331 if (!buffer)
3332 goto out;
3333
3334 handle->buffer = buffer;
3335 handle->event = event;
3336 handle->nmi = nmi;
3337 handle->sample = sample;
3338
3339 if (!buffer->nr_pages)
3340 goto out;
3341
3342 have_lost = local_read(&buffer->lost);
3343 if (have_lost)
3344 size += sizeof(lost_event);
3345
3346 perf_output_get_handle(handle);
3347
3348 do {
3349 /*
3350 * Userspace could choose to issue a mb() before updating the
3351 * tail pointer. So that all reads will be completed before the
3352 * write is issued.
3353 */
3354 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3355 smp_rmb();
3356 offset = head = local_read(&buffer->head);
3357 head += size;
3358 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3359 goto fail;
3360 } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3361
3362 if (head - local_read(&buffer->wakeup) > buffer->watermark)
3363 local_add(buffer->watermark, &buffer->wakeup);
3364
3365 handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3366 handle->page &= buffer->nr_pages - 1;
3367 handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3368 handle->addr = buffer->data_pages[handle->page];
3369 handle->addr += handle->size;
3370 handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3371
3372 if (have_lost) {
3373 lost_event.header.type = PERF_RECORD_LOST;
3374 lost_event.header.misc = 0;
3375 lost_event.header.size = sizeof(lost_event);
3376 lost_event.id = event->id;
3377 lost_event.lost = local_xchg(&buffer->lost, 0);
3378
3379 perf_output_put(handle, lost_event);
3380 }
3381
3382 return 0;
3383
3384 fail:
3385 local_inc(&buffer->lost);
3386 perf_output_put_handle(handle);
3387 out:
3388 rcu_read_unlock();
3389
3390 return -ENOSPC;
3391 }
3392
3393 void perf_output_end(struct perf_output_handle *handle)
3394 {
3395 struct perf_event *event = handle->event;
3396 struct perf_buffer *buffer = handle->buffer;
3397
3398 int wakeup_events = event->attr.wakeup_events;
3399
3400 if (handle->sample && wakeup_events) {
3401 int events = local_inc_return(&buffer->events);
3402 if (events >= wakeup_events) {
3403 local_sub(wakeup_events, &buffer->events);
3404 local_inc(&buffer->wakeup);
3405 }
3406 }
3407
3408 perf_output_put_handle(handle);
3409 rcu_read_unlock();
3410 }
3411
3412 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3413 {
3414 /*
3415 * only top level events have the pid namespace they were created in
3416 */
3417 if (event->parent)
3418 event = event->parent;
3419
3420 return task_tgid_nr_ns(p, event->ns);
3421 }
3422
3423 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3424 {
3425 /*
3426 * only top level events have the pid namespace they were created in
3427 */
3428 if (event->parent)
3429 event = event->parent;
3430
3431 return task_pid_nr_ns(p, event->ns);
3432 }
3433
3434 static void perf_output_read_one(struct perf_output_handle *handle,
3435 struct perf_event *event,
3436 u64 enabled, u64 running)
3437 {
3438 u64 read_format = event->attr.read_format;
3439 u64 values[4];
3440 int n = 0;
3441
3442 values[n++] = perf_event_count(event);
3443 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3444 values[n++] = enabled +
3445 atomic64_read(&event->child_total_time_enabled);
3446 }
3447 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3448 values[n++] = running +
3449 atomic64_read(&event->child_total_time_running);
3450 }
3451 if (read_format & PERF_FORMAT_ID)
3452 values[n++] = primary_event_id(event);
3453
3454 perf_output_copy(handle, values, n * sizeof(u64));
3455 }
3456
3457 /*
3458 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3459 */
3460 static void perf_output_read_group(struct perf_output_handle *handle,
3461 struct perf_event *event,
3462 u64 enabled, u64 running)
3463 {
3464 struct perf_event *leader = event->group_leader, *sub;
3465 u64 read_format = event->attr.read_format;
3466 u64 values[5];
3467 int n = 0;
3468
3469 values[n++] = 1 + leader->nr_siblings;
3470
3471 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3472 values[n++] = enabled;
3473
3474 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3475 values[n++] = running;
3476
3477 if (leader != event)
3478 leader->pmu->read(leader);
3479
3480 values[n++] = perf_event_count(leader);
3481 if (read_format & PERF_FORMAT_ID)
3482 values[n++] = primary_event_id(leader);
3483
3484 perf_output_copy(handle, values, n * sizeof(u64));
3485
3486 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3487 n = 0;
3488
3489 if (sub != event)
3490 sub->pmu->read(sub);
3491
3492 values[n++] = perf_event_count(sub);
3493 if (read_format & PERF_FORMAT_ID)
3494 values[n++] = primary_event_id(sub);
3495
3496 perf_output_copy(handle, values, n * sizeof(u64));
3497 }
3498 }
3499
3500 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3501 PERF_FORMAT_TOTAL_TIME_RUNNING)
3502
3503 static void perf_output_read(struct perf_output_handle *handle,
3504 struct perf_event *event)
3505 {
3506 u64 enabled = 0, running = 0, now, ctx_time;
3507 u64 read_format = event->attr.read_format;
3508
3509 /*
3510 * compute total_time_enabled, total_time_running
3511 * based on snapshot values taken when the event
3512 * was last scheduled in.
3513 *
3514 * we cannot simply called update_context_time()
3515 * because of locking issue as we are called in
3516 * NMI context
3517 */
3518 if (read_format & PERF_FORMAT_TOTAL_TIMES) {
3519 now = perf_clock();
3520 ctx_time = event->shadow_ctx_time + now;
3521 enabled = ctx_time - event->tstamp_enabled;
3522 running = ctx_time - event->tstamp_running;
3523 }
3524
3525 if (event->attr.read_format & PERF_FORMAT_GROUP)
3526 perf_output_read_group(handle, event, enabled, running);
3527 else
3528 perf_output_read_one(handle, event, enabled, running);
3529 }
3530
3531 void perf_output_sample(struct perf_output_handle *handle,
3532 struct perf_event_header *header,
3533 struct perf_sample_data *data,
3534 struct perf_event *event)
3535 {
3536 u64 sample_type = data->type;
3537
3538 perf_output_put(handle, *header);
3539
3540 if (sample_type & PERF_SAMPLE_IP)
3541 perf_output_put(handle, data->ip);
3542
3543 if (sample_type & PERF_SAMPLE_TID)
3544 perf_output_put(handle, data->tid_entry);
3545
3546 if (sample_type & PERF_SAMPLE_TIME)
3547 perf_output_put(handle, data->time);
3548
3549 if (sample_type & PERF_SAMPLE_ADDR)
3550 perf_output_put(handle, data->addr);
3551
3552 if (sample_type & PERF_SAMPLE_ID)
3553 perf_output_put(handle, data->id);
3554
3555 if (sample_type & PERF_SAMPLE_STREAM_ID)
3556 perf_output_put(handle, data->stream_id);
3557
3558 if (sample_type & PERF_SAMPLE_CPU)
3559 perf_output_put(handle, data->cpu_entry);
3560
3561 if (sample_type & PERF_SAMPLE_PERIOD)
3562 perf_output_put(handle, data->period);
3563
3564 if (sample_type & PERF_SAMPLE_READ)
3565 perf_output_read(handle, event);
3566
3567 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3568 if (data->callchain) {
3569 int size = 1;
3570
3571 if (data->callchain)
3572 size += data->callchain->nr;
3573
3574 size *= sizeof(u64);
3575
3576 perf_output_copy(handle, data->callchain, size);
3577 } else {
3578 u64 nr = 0;
3579 perf_output_put(handle, nr);
3580 }
3581 }
3582
3583 if (sample_type & PERF_SAMPLE_RAW) {
3584 if (data->raw) {
3585 perf_output_put(handle, data->raw->size);
3586 perf_output_copy(handle, data->raw->data,
3587 data->raw->size);
3588 } else {
3589 struct {
3590 u32 size;
3591 u32 data;
3592 } raw = {
3593 .size = sizeof(u32),
3594 .data = 0,
3595 };
3596 perf_output_put(handle, raw);
3597 }
3598 }
3599 }
3600
3601 void perf_prepare_sample(struct perf_event_header *header,
3602 struct perf_sample_data *data,
3603 struct perf_event *event,
3604 struct pt_regs *regs)
3605 {
3606 u64 sample_type = event->attr.sample_type;
3607
3608 data->type = sample_type;
3609
3610 header->type = PERF_RECORD_SAMPLE;
3611 header->size = sizeof(*header);
3612
3613 header->misc = 0;
3614 header->misc |= perf_misc_flags(regs);
3615
3616 if (sample_type & PERF_SAMPLE_IP) {
3617 data->ip = perf_instruction_pointer(regs);
3618
3619 header->size += sizeof(data->ip);
3620 }
3621
3622 if (sample_type & PERF_SAMPLE_TID) {
3623 /* namespace issues */
3624 data->tid_entry.pid = perf_event_pid(event, current);
3625 data->tid_entry.tid = perf_event_tid(event, current);
3626
3627 header->size += sizeof(data->tid_entry);
3628 }
3629
3630 if (sample_type & PERF_SAMPLE_TIME) {
3631 data->time = perf_clock();
3632
3633 header->size += sizeof(data->time);
3634 }
3635
3636 if (sample_type & PERF_SAMPLE_ADDR)
3637 header->size += sizeof(data->addr);
3638
3639 if (sample_type & PERF_SAMPLE_ID) {
3640 data->id = primary_event_id(event);
3641
3642 header->size += sizeof(data->id);
3643 }
3644
3645 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3646 data->stream_id = event->id;
3647
3648 header->size += sizeof(data->stream_id);
3649 }
3650
3651 if (sample_type & PERF_SAMPLE_CPU) {
3652 data->cpu_entry.cpu = raw_smp_processor_id();
3653 data->cpu_entry.reserved = 0;
3654
3655 header->size += sizeof(data->cpu_entry);
3656 }
3657
3658 if (sample_type & PERF_SAMPLE_PERIOD)
3659 header->size += sizeof(data->period);
3660
3661 if (sample_type & PERF_SAMPLE_READ)
3662 header->size += perf_event_read_size(event);
3663
3664 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3665 int size = 1;
3666
3667 data->callchain = perf_callchain(regs);
3668
3669 if (data->callchain)
3670 size += data->callchain->nr;
3671
3672 header->size += size * sizeof(u64);
3673 }
3674
3675 if (sample_type & PERF_SAMPLE_RAW) {
3676 int size = sizeof(u32);
3677
3678 if (data->raw)
3679 size += data->raw->size;
3680 else
3681 size += sizeof(u32);
3682
3683 WARN_ON_ONCE(size & (sizeof(u64)-1));
3684 header->size += size;
3685 }
3686 }
3687
3688 static void perf_event_output(struct perf_event *event, int nmi,
3689 struct perf_sample_data *data,
3690 struct pt_regs *regs)
3691 {
3692 struct perf_output_handle handle;
3693 struct perf_event_header header;
3694
3695 /* protect the callchain buffers */
3696 rcu_read_lock();
3697
3698 perf_prepare_sample(&header, data, event, regs);
3699
3700 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3701 goto exit;
3702
3703 perf_output_sample(&handle, &header, data, event);
3704
3705 perf_output_end(&handle);
3706
3707 exit:
3708 rcu_read_unlock();
3709 }
3710
3711 /*
3712 * read event_id
3713 */
3714
3715 struct perf_read_event {
3716 struct perf_event_header header;
3717
3718 u32 pid;
3719 u32 tid;
3720 };
3721
3722 static void
3723 perf_event_read_event(struct perf_event *event,
3724 struct task_struct *task)
3725 {
3726 struct perf_output_handle handle;
3727 struct perf_read_event read_event = {
3728 .header = {
3729 .type = PERF_RECORD_READ,
3730 .misc = 0,
3731 .size = sizeof(read_event) + perf_event_read_size(event),
3732 },
3733 .pid = perf_event_pid(event, task),
3734 .tid = perf_event_tid(event, task),
3735 };
3736 int ret;
3737
3738 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3739 if (ret)
3740 return;
3741
3742 perf_output_put(&handle, read_event);
3743 perf_output_read(&handle, event);
3744
3745 perf_output_end(&handle);
3746 }
3747
3748 /*
3749 * task tracking -- fork/exit
3750 *
3751 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3752 */
3753
3754 struct perf_task_event {
3755 struct task_struct *task;
3756 struct perf_event_context *task_ctx;
3757
3758 struct {
3759 struct perf_event_header header;
3760
3761 u32 pid;
3762 u32 ppid;
3763 u32 tid;
3764 u32 ptid;
3765 u64 time;
3766 } event_id;
3767 };
3768
3769 static void perf_event_task_output(struct perf_event *event,
3770 struct perf_task_event *task_event)
3771 {
3772 struct perf_output_handle handle;
3773 struct task_struct *task = task_event->task;
3774 int size, ret;
3775
3776 size = task_event->event_id.header.size;
3777 ret = perf_output_begin(&handle, event, size, 0, 0);
3778
3779 if (ret)
3780 return;
3781
3782 task_event->event_id.pid = perf_event_pid(event, task);
3783 task_event->event_id.ppid = perf_event_pid(event, current);
3784
3785 task_event->event_id.tid = perf_event_tid(event, task);
3786 task_event->event_id.ptid = perf_event_tid(event, current);
3787
3788 perf_output_put(&handle, task_event->event_id);
3789
3790 perf_output_end(&handle);
3791 }
3792
3793 static int perf_event_task_match(struct perf_event *event)
3794 {
3795 if (event->state < PERF_EVENT_STATE_INACTIVE)
3796 return 0;
3797
3798 if (event->cpu != -1 && event->cpu != smp_processor_id())
3799 return 0;
3800
3801 if (event->attr.comm || event->attr.mmap ||
3802 event->attr.mmap_data || event->attr.task)
3803 return 1;
3804
3805 return 0;
3806 }
3807
3808 static void perf_event_task_ctx(struct perf_event_context *ctx,
3809 struct perf_task_event *task_event)
3810 {
3811 struct perf_event *event;
3812
3813 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3814 if (perf_event_task_match(event))
3815 perf_event_task_output(event, task_event);
3816 }
3817 }
3818
3819 static void perf_event_task_event(struct perf_task_event *task_event)
3820 {
3821 struct perf_cpu_context *cpuctx;
3822 struct perf_event_context *ctx;
3823 struct pmu *pmu;
3824 int ctxn;
3825
3826 rcu_read_lock();
3827 list_for_each_entry_rcu(pmu, &pmus, entry) {
3828 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3829 perf_event_task_ctx(&cpuctx->ctx, task_event);
3830
3831 ctx = task_event->task_ctx;
3832 if (!ctx) {
3833 ctxn = pmu->task_ctx_nr;
3834 if (ctxn < 0)
3835 goto next;
3836 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3837 }
3838 if (ctx)
3839 perf_event_task_ctx(ctx, task_event);
3840 next:
3841 put_cpu_ptr(pmu->pmu_cpu_context);
3842 }
3843 rcu_read_unlock();
3844 }
3845
3846 static void perf_event_task(struct task_struct *task,
3847 struct perf_event_context *task_ctx,
3848 int new)
3849 {
3850 struct perf_task_event task_event;
3851
3852 if (!atomic_read(&nr_comm_events) &&
3853 !atomic_read(&nr_mmap_events) &&
3854 !atomic_read(&nr_task_events))
3855 return;
3856
3857 task_event = (struct perf_task_event){
3858 .task = task,
3859 .task_ctx = task_ctx,
3860 .event_id = {
3861 .header = {
3862 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3863 .misc = 0,
3864 .size = sizeof(task_event.event_id),
3865 },
3866 /* .pid */
3867 /* .ppid */
3868 /* .tid */
3869 /* .ptid */
3870 .time = perf_clock(),
3871 },
3872 };
3873
3874 perf_event_task_event(&task_event);
3875 }
3876
3877 void perf_event_fork(struct task_struct *task)
3878 {
3879 perf_event_task(task, NULL, 1);
3880 }
3881
3882 /*
3883 * comm tracking
3884 */
3885
3886 struct perf_comm_event {
3887 struct task_struct *task;
3888 char *comm;
3889 int comm_size;
3890
3891 struct {
3892 struct perf_event_header header;
3893
3894 u32 pid;
3895 u32 tid;
3896 } event_id;
3897 };
3898
3899 static void perf_event_comm_output(struct perf_event *event,
3900 struct perf_comm_event *comm_event)
3901 {
3902 struct perf_output_handle handle;
3903 int size = comm_event->event_id.header.size;
3904 int ret = perf_output_begin(&handle, event, size, 0, 0);
3905
3906 if (ret)
3907 return;
3908
3909 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3910 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3911
3912 perf_output_put(&handle, comm_event->event_id);
3913 perf_output_copy(&handle, comm_event->comm,
3914 comm_event->comm_size);
3915 perf_output_end(&handle);
3916 }
3917
3918 static int perf_event_comm_match(struct perf_event *event)
3919 {
3920 if (event->state < PERF_EVENT_STATE_INACTIVE)
3921 return 0;
3922
3923 if (event->cpu != -1 && event->cpu != smp_processor_id())
3924 return 0;
3925
3926 if (event->attr.comm)
3927 return 1;
3928
3929 return 0;
3930 }
3931
3932 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3933 struct perf_comm_event *comm_event)
3934 {
3935 struct perf_event *event;
3936
3937 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3938 if (perf_event_comm_match(event))
3939 perf_event_comm_output(event, comm_event);
3940 }
3941 }
3942
3943 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3944 {
3945 struct perf_cpu_context *cpuctx;
3946 struct perf_event_context *ctx;
3947 char comm[TASK_COMM_LEN];
3948 unsigned int size;
3949 struct pmu *pmu;
3950 int ctxn;
3951
3952 memset(comm, 0, sizeof(comm));
3953 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3954 size = ALIGN(strlen(comm)+1, sizeof(u64));
3955
3956 comm_event->comm = comm;
3957 comm_event->comm_size = size;
3958
3959 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3960
3961 rcu_read_lock();
3962 list_for_each_entry_rcu(pmu, &pmus, entry) {
3963 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3964 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3965
3966 ctxn = pmu->task_ctx_nr;
3967 if (ctxn < 0)
3968 goto next;
3969
3970 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3971 if (ctx)
3972 perf_event_comm_ctx(ctx, comm_event);
3973 next:
3974 put_cpu_ptr(pmu->pmu_cpu_context);
3975 }
3976 rcu_read_unlock();
3977 }
3978
3979 void perf_event_comm(struct task_struct *task)
3980 {
3981 struct perf_comm_event comm_event;
3982 struct perf_event_context *ctx;
3983 int ctxn;
3984
3985 for_each_task_context_nr(ctxn) {
3986 ctx = task->perf_event_ctxp[ctxn];
3987 if (!ctx)
3988 continue;
3989
3990 perf_event_enable_on_exec(ctx);
3991 }
3992
3993 if (!atomic_read(&nr_comm_events))
3994 return;
3995
3996 comm_event = (struct perf_comm_event){
3997 .task = task,
3998 /* .comm */
3999 /* .comm_size */
4000 .event_id = {
4001 .header = {
4002 .type = PERF_RECORD_COMM,
4003 .misc = 0,
4004 /* .size */
4005 },
4006 /* .pid */
4007 /* .tid */
4008 },
4009 };
4010
4011 perf_event_comm_event(&comm_event);
4012 }
4013
4014 /*
4015 * mmap tracking
4016 */
4017
4018 struct perf_mmap_event {
4019 struct vm_area_struct *vma;
4020
4021 const char *file_name;
4022 int file_size;
4023
4024 struct {
4025 struct perf_event_header header;
4026
4027 u32 pid;
4028 u32 tid;
4029 u64 start;
4030 u64 len;
4031 u64 pgoff;
4032 } event_id;
4033 };
4034
4035 static void perf_event_mmap_output(struct perf_event *event,
4036 struct perf_mmap_event *mmap_event)
4037 {
4038 struct perf_output_handle handle;
4039 int size = mmap_event->event_id.header.size;
4040 int ret = perf_output_begin(&handle, event, size, 0, 0);
4041
4042 if (ret)
4043 return;
4044
4045 mmap_event->event_id.pid = perf_event_pid(event, current);
4046 mmap_event->event_id.tid = perf_event_tid(event, current);
4047
4048 perf_output_put(&handle, mmap_event->event_id);
4049 perf_output_copy(&handle, mmap_event->file_name,
4050 mmap_event->file_size);
4051 perf_output_end(&handle);
4052 }
4053
4054 static int perf_event_mmap_match(struct perf_event *event,
4055 struct perf_mmap_event *mmap_event,
4056 int executable)
4057 {
4058 if (event->state < PERF_EVENT_STATE_INACTIVE)
4059 return 0;
4060
4061 if (event->cpu != -1 && event->cpu != smp_processor_id())
4062 return 0;
4063
4064 if ((!executable && event->attr.mmap_data) ||
4065 (executable && event->attr.mmap))
4066 return 1;
4067
4068 return 0;
4069 }
4070
4071 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4072 struct perf_mmap_event *mmap_event,
4073 int executable)
4074 {
4075 struct perf_event *event;
4076
4077 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4078 if (perf_event_mmap_match(event, mmap_event, executable))
4079 perf_event_mmap_output(event, mmap_event);
4080 }
4081 }
4082
4083 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4084 {
4085 struct perf_cpu_context *cpuctx;
4086 struct perf_event_context *ctx;
4087 struct vm_area_struct *vma = mmap_event->vma;
4088 struct file *file = vma->vm_file;
4089 unsigned int size;
4090 char tmp[16];
4091 char *buf = NULL;
4092 const char *name;
4093 struct pmu *pmu;
4094 int ctxn;
4095
4096 memset(tmp, 0, sizeof(tmp));
4097
4098 if (file) {
4099 /*
4100 * d_path works from the end of the buffer backwards, so we
4101 * need to add enough zero bytes after the string to handle
4102 * the 64bit alignment we do later.
4103 */
4104 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4105 if (!buf) {
4106 name = strncpy(tmp, "//enomem", sizeof(tmp));
4107 goto got_name;
4108 }
4109 name = d_path(&file->f_path, buf, PATH_MAX);
4110 if (IS_ERR(name)) {
4111 name = strncpy(tmp, "//toolong", sizeof(tmp));
4112 goto got_name;
4113 }
4114 } else {
4115 if (arch_vma_name(mmap_event->vma)) {
4116 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4117 sizeof(tmp));
4118 goto got_name;
4119 }
4120
4121 if (!vma->vm_mm) {
4122 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4123 goto got_name;
4124 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4125 vma->vm_end >= vma->vm_mm->brk) {
4126 name = strncpy(tmp, "[heap]", sizeof(tmp));
4127 goto got_name;
4128 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4129 vma->vm_end >= vma->vm_mm->start_stack) {
4130 name = strncpy(tmp, "[stack]", sizeof(tmp));
4131 goto got_name;
4132 }
4133
4134 name = strncpy(tmp, "//anon", sizeof(tmp));
4135 goto got_name;
4136 }
4137
4138 got_name:
4139 size = ALIGN(strlen(name)+1, sizeof(u64));
4140
4141 mmap_event->file_name = name;
4142 mmap_event->file_size = size;
4143
4144 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4145
4146 rcu_read_lock();
4147 list_for_each_entry_rcu(pmu, &pmus, entry) {
4148 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4149 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4150 vma->vm_flags & VM_EXEC);
4151
4152 ctxn = pmu->task_ctx_nr;
4153 if (ctxn < 0)
4154 goto next;
4155
4156 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4157 if (ctx) {
4158 perf_event_mmap_ctx(ctx, mmap_event,
4159 vma->vm_flags & VM_EXEC);
4160 }
4161 next:
4162 put_cpu_ptr(pmu->pmu_cpu_context);
4163 }
4164 rcu_read_unlock();
4165
4166 kfree(buf);
4167 }
4168
4169 void perf_event_mmap(struct vm_area_struct *vma)
4170 {
4171 struct perf_mmap_event mmap_event;
4172
4173 if (!atomic_read(&nr_mmap_events))
4174 return;
4175
4176 mmap_event = (struct perf_mmap_event){
4177 .vma = vma,
4178 /* .file_name */
4179 /* .file_size */
4180 .event_id = {
4181 .header = {
4182 .type = PERF_RECORD_MMAP,
4183 .misc = PERF_RECORD_MISC_USER,
4184 /* .size */
4185 },
4186 /* .pid */
4187 /* .tid */
4188 .start = vma->vm_start,
4189 .len = vma->vm_end - vma->vm_start,
4190 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4191 },
4192 };
4193
4194 perf_event_mmap_event(&mmap_event);
4195 }
4196
4197 /*
4198 * IRQ throttle logging
4199 */
4200
4201 static void perf_log_throttle(struct perf_event *event, int enable)
4202 {
4203 struct perf_output_handle handle;
4204 int ret;
4205
4206 struct {
4207 struct perf_event_header header;
4208 u64 time;
4209 u64 id;
4210 u64 stream_id;
4211 } throttle_event = {
4212 .header = {
4213 .type = PERF_RECORD_THROTTLE,
4214 .misc = 0,
4215 .size = sizeof(throttle_event),
4216 },
4217 .time = perf_clock(),
4218 .id = primary_event_id(event),
4219 .stream_id = event->id,
4220 };
4221
4222 if (enable)
4223 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4224
4225 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4226 if (ret)
4227 return;
4228
4229 perf_output_put(&handle, throttle_event);
4230 perf_output_end(&handle);
4231 }
4232
4233 /*
4234 * Generic event overflow handling, sampling.
4235 */
4236
4237 static int __perf_event_overflow(struct perf_event *event, int nmi,
4238 int throttle, struct perf_sample_data *data,
4239 struct pt_regs *regs)
4240 {
4241 int events = atomic_read(&event->event_limit);
4242 struct hw_perf_event *hwc = &event->hw;
4243 int ret = 0;
4244
4245 if (!throttle) {
4246 hwc->interrupts++;
4247 } else {
4248 if (hwc->interrupts != MAX_INTERRUPTS) {
4249 hwc->interrupts++;
4250 if (HZ * hwc->interrupts >
4251 (u64)sysctl_perf_event_sample_rate) {
4252 hwc->interrupts = MAX_INTERRUPTS;
4253 perf_log_throttle(event, 0);
4254 ret = 1;
4255 }
4256 } else {
4257 /*
4258 * Keep re-disabling events even though on the previous
4259 * pass we disabled it - just in case we raced with a
4260 * sched-in and the event got enabled again:
4261 */
4262 ret = 1;
4263 }
4264 }
4265
4266 if (event->attr.freq) {
4267 u64 now = perf_clock();
4268 s64 delta = now - hwc->freq_time_stamp;
4269
4270 hwc->freq_time_stamp = now;
4271
4272 if (delta > 0 && delta < 2*TICK_NSEC)
4273 perf_adjust_period(event, delta, hwc->last_period);
4274 }
4275
4276 /*
4277 * XXX event_limit might not quite work as expected on inherited
4278 * events
4279 */
4280
4281 event->pending_kill = POLL_IN;
4282 if (events && atomic_dec_and_test(&event->event_limit)) {
4283 ret = 1;
4284 event->pending_kill = POLL_HUP;
4285 if (nmi) {
4286 event->pending_disable = 1;
4287 irq_work_queue(&event->pending);
4288 } else
4289 perf_event_disable(event);
4290 }
4291
4292 if (event->overflow_handler)
4293 event->overflow_handler(event, nmi, data, regs);
4294 else
4295 perf_event_output(event, nmi, data, regs);
4296
4297 return ret;
4298 }
4299
4300 int perf_event_overflow(struct perf_event *event, int nmi,
4301 struct perf_sample_data *data,
4302 struct pt_regs *regs)
4303 {
4304 return __perf_event_overflow(event, nmi, 1, data, regs);
4305 }
4306
4307 /*
4308 * Generic software event infrastructure
4309 */
4310
4311 struct swevent_htable {
4312 struct swevent_hlist *swevent_hlist;
4313 struct mutex hlist_mutex;
4314 int hlist_refcount;
4315
4316 /* Recursion avoidance in each contexts */
4317 int recursion[PERF_NR_CONTEXTS];
4318 };
4319
4320 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4321
4322 /*
4323 * We directly increment event->count and keep a second value in
4324 * event->hw.period_left to count intervals. This period event
4325 * is kept in the range [-sample_period, 0] so that we can use the
4326 * sign as trigger.
4327 */
4328
4329 static u64 perf_swevent_set_period(struct perf_event *event)
4330 {
4331 struct hw_perf_event *hwc = &event->hw;
4332 u64 period = hwc->last_period;
4333 u64 nr, offset;
4334 s64 old, val;
4335
4336 hwc->last_period = hwc->sample_period;
4337
4338 again:
4339 old = val = local64_read(&hwc->period_left);
4340 if (val < 0)
4341 return 0;
4342
4343 nr = div64_u64(period + val, period);
4344 offset = nr * period;
4345 val -= offset;
4346 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4347 goto again;
4348
4349 return nr;
4350 }
4351
4352 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4353 int nmi, struct perf_sample_data *data,
4354 struct pt_regs *regs)
4355 {
4356 struct hw_perf_event *hwc = &event->hw;
4357 int throttle = 0;
4358
4359 data->period = event->hw.last_period;
4360 if (!overflow)
4361 overflow = perf_swevent_set_period(event);
4362
4363 if (hwc->interrupts == MAX_INTERRUPTS)
4364 return;
4365
4366 for (; overflow; overflow--) {
4367 if (__perf_event_overflow(event, nmi, throttle,
4368 data, regs)) {
4369 /*
4370 * We inhibit the overflow from happening when
4371 * hwc->interrupts == MAX_INTERRUPTS.
4372 */
4373 break;
4374 }
4375 throttle = 1;
4376 }
4377 }
4378
4379 static void perf_swevent_event(struct perf_event *event, u64 nr,
4380 int nmi, struct perf_sample_data *data,
4381 struct pt_regs *regs)
4382 {
4383 struct hw_perf_event *hwc = &event->hw;
4384
4385 local64_add(nr, &event->count);
4386
4387 if (!regs)
4388 return;
4389
4390 if (!hwc->sample_period)
4391 return;
4392
4393 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4394 return perf_swevent_overflow(event, 1, nmi, data, regs);
4395
4396 if (local64_add_negative(nr, &hwc->period_left))
4397 return;
4398
4399 perf_swevent_overflow(event, 0, nmi, data, regs);
4400 }
4401
4402 static int perf_exclude_event(struct perf_event *event,
4403 struct pt_regs *regs)
4404 {
4405 if (event->hw.state & PERF_HES_STOPPED)
4406 return 0;
4407
4408 if (regs) {
4409 if (event->attr.exclude_user && user_mode(regs))
4410 return 1;
4411
4412 if (event->attr.exclude_kernel && !user_mode(regs))
4413 return 1;
4414 }
4415
4416 return 0;
4417 }
4418
4419 static int perf_swevent_match(struct perf_event *event,
4420 enum perf_type_id type,
4421 u32 event_id,
4422 struct perf_sample_data *data,
4423 struct pt_regs *regs)
4424 {
4425 if (event->attr.type != type)
4426 return 0;
4427
4428 if (event->attr.config != event_id)
4429 return 0;
4430
4431 if (perf_exclude_event(event, regs))
4432 return 0;
4433
4434 return 1;
4435 }
4436
4437 static inline u64 swevent_hash(u64 type, u32 event_id)
4438 {
4439 u64 val = event_id | (type << 32);
4440
4441 return hash_64(val, SWEVENT_HLIST_BITS);
4442 }
4443
4444 static inline struct hlist_head *
4445 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4446 {
4447 u64 hash = swevent_hash(type, event_id);
4448
4449 return &hlist->heads[hash];
4450 }
4451
4452 /* For the read side: events when they trigger */
4453 static inline struct hlist_head *
4454 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4455 {
4456 struct swevent_hlist *hlist;
4457
4458 hlist = rcu_dereference(swhash->swevent_hlist);
4459 if (!hlist)
4460 return NULL;
4461
4462 return __find_swevent_head(hlist, type, event_id);
4463 }
4464
4465 /* For the event head insertion and removal in the hlist */
4466 static inline struct hlist_head *
4467 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4468 {
4469 struct swevent_hlist *hlist;
4470 u32 event_id = event->attr.config;
4471 u64 type = event->attr.type;
4472
4473 /*
4474 * Event scheduling is always serialized against hlist allocation
4475 * and release. Which makes the protected version suitable here.
4476 * The context lock guarantees that.
4477 */
4478 hlist = rcu_dereference_protected(swhash->swevent_hlist,
4479 lockdep_is_held(&event->ctx->lock));
4480 if (!hlist)
4481 return NULL;
4482
4483 return __find_swevent_head(hlist, type, event_id);
4484 }
4485
4486 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4487 u64 nr, int nmi,
4488 struct perf_sample_data *data,
4489 struct pt_regs *regs)
4490 {
4491 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4492 struct perf_event *event;
4493 struct hlist_node *node;
4494 struct hlist_head *head;
4495
4496 rcu_read_lock();
4497 head = find_swevent_head_rcu(swhash, type, event_id);
4498 if (!head)
4499 goto end;
4500
4501 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4502 if (perf_swevent_match(event, type, event_id, data, regs))
4503 perf_swevent_event(event, nr, nmi, data, regs);
4504 }
4505 end:
4506 rcu_read_unlock();
4507 }
4508
4509 int perf_swevent_get_recursion_context(void)
4510 {
4511 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4512
4513 return get_recursion_context(swhash->recursion);
4514 }
4515 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4516
4517 void inline perf_swevent_put_recursion_context(int rctx)
4518 {
4519 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4520
4521 put_recursion_context(swhash->recursion, rctx);
4522 }
4523
4524 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4525 struct pt_regs *regs, u64 addr)
4526 {
4527 struct perf_sample_data data;
4528 int rctx;
4529
4530 preempt_disable_notrace();
4531 rctx = perf_swevent_get_recursion_context();
4532 if (rctx < 0)
4533 return;
4534
4535 perf_sample_data_init(&data, addr);
4536
4537 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4538
4539 perf_swevent_put_recursion_context(rctx);
4540 preempt_enable_notrace();
4541 }
4542
4543 static void perf_swevent_read(struct perf_event *event)
4544 {
4545 }
4546
4547 static int perf_swevent_add(struct perf_event *event, int flags)
4548 {
4549 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4550 struct hw_perf_event *hwc = &event->hw;
4551 struct hlist_head *head;
4552
4553 if (hwc->sample_period) {
4554 hwc->last_period = hwc->sample_period;
4555 perf_swevent_set_period(event);
4556 }
4557
4558 hwc->state = !(flags & PERF_EF_START);
4559
4560 head = find_swevent_head(swhash, event);
4561 if (WARN_ON_ONCE(!head))
4562 return -EINVAL;
4563
4564 hlist_add_head_rcu(&event->hlist_entry, head);
4565
4566 return 0;
4567 }
4568
4569 static void perf_swevent_del(struct perf_event *event, int flags)
4570 {
4571 hlist_del_rcu(&event->hlist_entry);
4572 }
4573
4574 static void perf_swevent_start(struct perf_event *event, int flags)
4575 {
4576 event->hw.state = 0;
4577 }
4578
4579 static void perf_swevent_stop(struct perf_event *event, int flags)
4580 {
4581 event->hw.state = PERF_HES_STOPPED;
4582 }
4583
4584 /* Deref the hlist from the update side */
4585 static inline struct swevent_hlist *
4586 swevent_hlist_deref(struct swevent_htable *swhash)
4587 {
4588 return rcu_dereference_protected(swhash->swevent_hlist,
4589 lockdep_is_held(&swhash->hlist_mutex));
4590 }
4591
4592 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4593 {
4594 struct swevent_hlist *hlist;
4595
4596 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4597 kfree(hlist);
4598 }
4599
4600 static void swevent_hlist_release(struct swevent_htable *swhash)
4601 {
4602 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4603
4604 if (!hlist)
4605 return;
4606
4607 rcu_assign_pointer(swhash->swevent_hlist, NULL);
4608 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4609 }
4610
4611 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4612 {
4613 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4614
4615 mutex_lock(&swhash->hlist_mutex);
4616
4617 if (!--swhash->hlist_refcount)
4618 swevent_hlist_release(swhash);
4619
4620 mutex_unlock(&swhash->hlist_mutex);
4621 }
4622
4623 static void swevent_hlist_put(struct perf_event *event)
4624 {
4625 int cpu;
4626
4627 if (event->cpu != -1) {
4628 swevent_hlist_put_cpu(event, event->cpu);
4629 return;
4630 }
4631
4632 for_each_possible_cpu(cpu)
4633 swevent_hlist_put_cpu(event, cpu);
4634 }
4635
4636 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4637 {
4638 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4639 int err = 0;
4640
4641 mutex_lock(&swhash->hlist_mutex);
4642
4643 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4644 struct swevent_hlist *hlist;
4645
4646 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4647 if (!hlist) {
4648 err = -ENOMEM;
4649 goto exit;
4650 }
4651 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4652 }
4653 swhash->hlist_refcount++;
4654 exit:
4655 mutex_unlock(&swhash->hlist_mutex);
4656
4657 return err;
4658 }
4659
4660 static int swevent_hlist_get(struct perf_event *event)
4661 {
4662 int err;
4663 int cpu, failed_cpu;
4664
4665 if (event->cpu != -1)
4666 return swevent_hlist_get_cpu(event, event->cpu);
4667
4668 get_online_cpus();
4669 for_each_possible_cpu(cpu) {
4670 err = swevent_hlist_get_cpu(event, cpu);
4671 if (err) {
4672 failed_cpu = cpu;
4673 goto fail;
4674 }
4675 }
4676 put_online_cpus();
4677
4678 return 0;
4679 fail:
4680 for_each_possible_cpu(cpu) {
4681 if (cpu == failed_cpu)
4682 break;
4683 swevent_hlist_put_cpu(event, cpu);
4684 }
4685
4686 put_online_cpus();
4687 return err;
4688 }
4689
4690 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4691
4692 static void sw_perf_event_destroy(struct perf_event *event)
4693 {
4694 u64 event_id = event->attr.config;
4695
4696 WARN_ON(event->parent);
4697
4698 jump_label_dec(&perf_swevent_enabled[event_id]);
4699 swevent_hlist_put(event);
4700 }
4701
4702 static int perf_swevent_init(struct perf_event *event)
4703 {
4704 int event_id = event->attr.config;
4705
4706 if (event->attr.type != PERF_TYPE_SOFTWARE)
4707 return -ENOENT;
4708
4709 switch (event_id) {
4710 case PERF_COUNT_SW_CPU_CLOCK:
4711 case PERF_COUNT_SW_TASK_CLOCK:
4712 return -ENOENT;
4713
4714 default:
4715 break;
4716 }
4717
4718 if (event_id > PERF_COUNT_SW_MAX)
4719 return -ENOENT;
4720
4721 if (!event->parent) {
4722 int err;
4723
4724 err = swevent_hlist_get(event);
4725 if (err)
4726 return err;
4727
4728 jump_label_inc(&perf_swevent_enabled[event_id]);
4729 event->destroy = sw_perf_event_destroy;
4730 }
4731
4732 return 0;
4733 }
4734
4735 static struct pmu perf_swevent = {
4736 .task_ctx_nr = perf_sw_context,
4737
4738 .event_init = perf_swevent_init,
4739 .add = perf_swevent_add,
4740 .del = perf_swevent_del,
4741 .start = perf_swevent_start,
4742 .stop = perf_swevent_stop,
4743 .read = perf_swevent_read,
4744 };
4745
4746 #ifdef CONFIG_EVENT_TRACING
4747
4748 static int perf_tp_filter_match(struct perf_event *event,
4749 struct perf_sample_data *data)
4750 {
4751 void *record = data->raw->data;
4752
4753 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4754 return 1;
4755 return 0;
4756 }
4757
4758 static int perf_tp_event_match(struct perf_event *event,
4759 struct perf_sample_data *data,
4760 struct pt_regs *regs)
4761 {
4762 /*
4763 * All tracepoints are from kernel-space.
4764 */
4765 if (event->attr.exclude_kernel)
4766 return 0;
4767
4768 if (!perf_tp_filter_match(event, data))
4769 return 0;
4770
4771 return 1;
4772 }
4773
4774 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4775 struct pt_regs *regs, struct hlist_head *head, int rctx)
4776 {
4777 struct perf_sample_data data;
4778 struct perf_event *event;
4779 struct hlist_node *node;
4780
4781 struct perf_raw_record raw = {
4782 .size = entry_size,
4783 .data = record,
4784 };
4785
4786 perf_sample_data_init(&data, addr);
4787 data.raw = &raw;
4788
4789 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4790 if (perf_tp_event_match(event, &data, regs))
4791 perf_swevent_event(event, count, 1, &data, regs);
4792 }
4793
4794 perf_swevent_put_recursion_context(rctx);
4795 }
4796 EXPORT_SYMBOL_GPL(perf_tp_event);
4797
4798 static void tp_perf_event_destroy(struct perf_event *event)
4799 {
4800 perf_trace_destroy(event);
4801 }
4802
4803 static int perf_tp_event_init(struct perf_event *event)
4804 {
4805 int err;
4806
4807 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4808 return -ENOENT;
4809
4810 /*
4811 * Raw tracepoint data is a severe data leak, only allow root to
4812 * have these.
4813 */
4814 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4815 perf_paranoid_tracepoint_raw() &&
4816 !capable(CAP_SYS_ADMIN))
4817 return -EPERM;
4818
4819 err = perf_trace_init(event);
4820 if (err)
4821 return err;
4822
4823 event->destroy = tp_perf_event_destroy;
4824
4825 return 0;
4826 }
4827
4828 static struct pmu perf_tracepoint = {
4829 .task_ctx_nr = perf_sw_context,
4830
4831 .event_init = perf_tp_event_init,
4832 .add = perf_trace_add,
4833 .del = perf_trace_del,
4834 .start = perf_swevent_start,
4835 .stop = perf_swevent_stop,
4836 .read = perf_swevent_read,
4837 };
4838
4839 static inline void perf_tp_register(void)
4840 {
4841 perf_pmu_register(&perf_tracepoint);
4842 }
4843
4844 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4845 {
4846 char *filter_str;
4847 int ret;
4848
4849 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4850 return -EINVAL;
4851
4852 filter_str = strndup_user(arg, PAGE_SIZE);
4853 if (IS_ERR(filter_str))
4854 return PTR_ERR(filter_str);
4855
4856 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4857
4858 kfree(filter_str);
4859 return ret;
4860 }
4861
4862 static void perf_event_free_filter(struct perf_event *event)
4863 {
4864 ftrace_profile_free_filter(event);
4865 }
4866
4867 #else
4868
4869 static inline void perf_tp_register(void)
4870 {
4871 }
4872
4873 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4874 {
4875 return -ENOENT;
4876 }
4877
4878 static void perf_event_free_filter(struct perf_event *event)
4879 {
4880 }
4881
4882 #endif /* CONFIG_EVENT_TRACING */
4883
4884 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4885 void perf_bp_event(struct perf_event *bp, void *data)
4886 {
4887 struct perf_sample_data sample;
4888 struct pt_regs *regs = data;
4889
4890 perf_sample_data_init(&sample, bp->attr.bp_addr);
4891
4892 if (!bp->hw.state && !perf_exclude_event(bp, regs))
4893 perf_swevent_event(bp, 1, 1, &sample, regs);
4894 }
4895 #endif
4896
4897 /*
4898 * hrtimer based swevent callback
4899 */
4900
4901 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4902 {
4903 enum hrtimer_restart ret = HRTIMER_RESTART;
4904 struct perf_sample_data data;
4905 struct pt_regs *regs;
4906 struct perf_event *event;
4907 u64 period;
4908
4909 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4910 event->pmu->read(event);
4911
4912 perf_sample_data_init(&data, 0);
4913 data.period = event->hw.last_period;
4914 regs = get_irq_regs();
4915
4916 if (regs && !perf_exclude_event(event, regs)) {
4917 if (!(event->attr.exclude_idle && current->pid == 0))
4918 if (perf_event_overflow(event, 0, &data, regs))
4919 ret = HRTIMER_NORESTART;
4920 }
4921
4922 period = max_t(u64, 10000, event->hw.sample_period);
4923 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4924
4925 return ret;
4926 }
4927
4928 static void perf_swevent_start_hrtimer(struct perf_event *event)
4929 {
4930 struct hw_perf_event *hwc = &event->hw;
4931
4932 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4933 hwc->hrtimer.function = perf_swevent_hrtimer;
4934 if (hwc->sample_period) {
4935 s64 period = local64_read(&hwc->period_left);
4936
4937 if (period) {
4938 if (period < 0)
4939 period = 10000;
4940
4941 local64_set(&hwc->period_left, 0);
4942 } else {
4943 period = max_t(u64, 10000, hwc->sample_period);
4944 }
4945 __hrtimer_start_range_ns(&hwc->hrtimer,
4946 ns_to_ktime(period), 0,
4947 HRTIMER_MODE_REL_PINNED, 0);
4948 }
4949 }
4950
4951 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4952 {
4953 struct hw_perf_event *hwc = &event->hw;
4954
4955 if (hwc->sample_period) {
4956 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4957 local64_set(&hwc->period_left, ktime_to_ns(remaining));
4958
4959 hrtimer_cancel(&hwc->hrtimer);
4960 }
4961 }
4962
4963 /*
4964 * Software event: cpu wall time clock
4965 */
4966
4967 static void cpu_clock_event_update(struct perf_event *event)
4968 {
4969 s64 prev;
4970 u64 now;
4971
4972 now = local_clock();
4973 prev = local64_xchg(&event->hw.prev_count, now);
4974 local64_add(now - prev, &event->count);
4975 }
4976
4977 static void cpu_clock_event_start(struct perf_event *event, int flags)
4978 {
4979 local64_set(&event->hw.prev_count, local_clock());
4980 perf_swevent_start_hrtimer(event);
4981 }
4982
4983 static void cpu_clock_event_stop(struct perf_event *event, int flags)
4984 {
4985 perf_swevent_cancel_hrtimer(event);
4986 cpu_clock_event_update(event);
4987 }
4988
4989 static int cpu_clock_event_add(struct perf_event *event, int flags)
4990 {
4991 if (flags & PERF_EF_START)
4992 cpu_clock_event_start(event, flags);
4993
4994 return 0;
4995 }
4996
4997 static void cpu_clock_event_del(struct perf_event *event, int flags)
4998 {
4999 cpu_clock_event_stop(event, flags);
5000 }
5001
5002 static void cpu_clock_event_read(struct perf_event *event)
5003 {
5004 cpu_clock_event_update(event);
5005 }
5006
5007 static int cpu_clock_event_init(struct perf_event *event)
5008 {
5009 if (event->attr.type != PERF_TYPE_SOFTWARE)
5010 return -ENOENT;
5011
5012 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5013 return -ENOENT;
5014
5015 return 0;
5016 }
5017
5018 static struct pmu perf_cpu_clock = {
5019 .task_ctx_nr = perf_sw_context,
5020
5021 .event_init = cpu_clock_event_init,
5022 .add = cpu_clock_event_add,
5023 .del = cpu_clock_event_del,
5024 .start = cpu_clock_event_start,
5025 .stop = cpu_clock_event_stop,
5026 .read = cpu_clock_event_read,
5027 };
5028
5029 /*
5030 * Software event: task time clock
5031 */
5032
5033 static void task_clock_event_update(struct perf_event *event, u64 now)
5034 {
5035 u64 prev;
5036 s64 delta;
5037
5038 prev = local64_xchg(&event->hw.prev_count, now);
5039 delta = now - prev;
5040 local64_add(delta, &event->count);
5041 }
5042
5043 static void task_clock_event_start(struct perf_event *event, int flags)
5044 {
5045 local64_set(&event->hw.prev_count, event->ctx->time);
5046 perf_swevent_start_hrtimer(event);
5047 }
5048
5049 static void task_clock_event_stop(struct perf_event *event, int flags)
5050 {
5051 perf_swevent_cancel_hrtimer(event);
5052 task_clock_event_update(event, event->ctx->time);
5053 }
5054
5055 static int task_clock_event_add(struct perf_event *event, int flags)
5056 {
5057 if (flags & PERF_EF_START)
5058 task_clock_event_start(event, flags);
5059
5060 return 0;
5061 }
5062
5063 static void task_clock_event_del(struct perf_event *event, int flags)
5064 {
5065 task_clock_event_stop(event, PERF_EF_UPDATE);
5066 }
5067
5068 static void task_clock_event_read(struct perf_event *event)
5069 {
5070 u64 time;
5071
5072 if (!in_nmi()) {
5073 update_context_time(event->ctx);
5074 time = event->ctx->time;
5075 } else {
5076 u64 now = perf_clock();
5077 u64 delta = now - event->ctx->timestamp;
5078 time = event->ctx->time + delta;
5079 }
5080
5081 task_clock_event_update(event, time);
5082 }
5083
5084 static int task_clock_event_init(struct perf_event *event)
5085 {
5086 if (event->attr.type != PERF_TYPE_SOFTWARE)
5087 return -ENOENT;
5088
5089 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5090 return -ENOENT;
5091
5092 return 0;
5093 }
5094
5095 static struct pmu perf_task_clock = {
5096 .task_ctx_nr = perf_sw_context,
5097
5098 .event_init = task_clock_event_init,
5099 .add = task_clock_event_add,
5100 .del = task_clock_event_del,
5101 .start = task_clock_event_start,
5102 .stop = task_clock_event_stop,
5103 .read = task_clock_event_read,
5104 };
5105
5106 static void perf_pmu_nop_void(struct pmu *pmu)
5107 {
5108 }
5109
5110 static int perf_pmu_nop_int(struct pmu *pmu)
5111 {
5112 return 0;
5113 }
5114
5115 static void perf_pmu_start_txn(struct pmu *pmu)
5116 {
5117 perf_pmu_disable(pmu);
5118 }
5119
5120 static int perf_pmu_commit_txn(struct pmu *pmu)
5121 {
5122 perf_pmu_enable(pmu);
5123 return 0;
5124 }
5125
5126 static void perf_pmu_cancel_txn(struct pmu *pmu)
5127 {
5128 perf_pmu_enable(pmu);
5129 }
5130
5131 /*
5132 * Ensures all contexts with the same task_ctx_nr have the same
5133 * pmu_cpu_context too.
5134 */
5135 static void *find_pmu_context(int ctxn)
5136 {
5137 struct pmu *pmu;
5138
5139 if (ctxn < 0)
5140 return NULL;
5141
5142 list_for_each_entry(pmu, &pmus, entry) {
5143 if (pmu->task_ctx_nr == ctxn)
5144 return pmu->pmu_cpu_context;
5145 }
5146
5147 return NULL;
5148 }
5149
5150 static void free_pmu_context(void * __percpu cpu_context)
5151 {
5152 struct pmu *pmu;
5153
5154 mutex_lock(&pmus_lock);
5155 /*
5156 * Like a real lame refcount.
5157 */
5158 list_for_each_entry(pmu, &pmus, entry) {
5159 if (pmu->pmu_cpu_context == cpu_context)
5160 goto out;
5161 }
5162
5163 free_percpu(cpu_context);
5164 out:
5165 mutex_unlock(&pmus_lock);
5166 }
5167
5168 int perf_pmu_register(struct pmu *pmu)
5169 {
5170 int cpu, ret;
5171
5172 mutex_lock(&pmus_lock);
5173 ret = -ENOMEM;
5174 pmu->pmu_disable_count = alloc_percpu(int);
5175 if (!pmu->pmu_disable_count)
5176 goto unlock;
5177
5178 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5179 if (pmu->pmu_cpu_context)
5180 goto got_cpu_context;
5181
5182 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5183 if (!pmu->pmu_cpu_context)
5184 goto free_pdc;
5185
5186 for_each_possible_cpu(cpu) {
5187 struct perf_cpu_context *cpuctx;
5188
5189 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5190 __perf_event_init_context(&cpuctx->ctx);
5191 cpuctx->ctx.type = cpu_context;
5192 cpuctx->ctx.pmu = pmu;
5193 cpuctx->jiffies_interval = 1;
5194 INIT_LIST_HEAD(&cpuctx->rotation_list);
5195 }
5196
5197 got_cpu_context:
5198 if (!pmu->start_txn) {
5199 if (pmu->pmu_enable) {
5200 /*
5201 * If we have pmu_enable/pmu_disable calls, install
5202 * transaction stubs that use that to try and batch
5203 * hardware accesses.
5204 */
5205 pmu->start_txn = perf_pmu_start_txn;
5206 pmu->commit_txn = perf_pmu_commit_txn;
5207 pmu->cancel_txn = perf_pmu_cancel_txn;
5208 } else {
5209 pmu->start_txn = perf_pmu_nop_void;
5210 pmu->commit_txn = perf_pmu_nop_int;
5211 pmu->cancel_txn = perf_pmu_nop_void;
5212 }
5213 }
5214
5215 if (!pmu->pmu_enable) {
5216 pmu->pmu_enable = perf_pmu_nop_void;
5217 pmu->pmu_disable = perf_pmu_nop_void;
5218 }
5219
5220 list_add_rcu(&pmu->entry, &pmus);
5221 ret = 0;
5222 unlock:
5223 mutex_unlock(&pmus_lock);
5224
5225 return ret;
5226
5227 free_pdc:
5228 free_percpu(pmu->pmu_disable_count);
5229 goto unlock;
5230 }
5231
5232 void perf_pmu_unregister(struct pmu *pmu)
5233 {
5234 mutex_lock(&pmus_lock);
5235 list_del_rcu(&pmu->entry);
5236 mutex_unlock(&pmus_lock);
5237
5238 /*
5239 * We dereference the pmu list under both SRCU and regular RCU, so
5240 * synchronize against both of those.
5241 */
5242 synchronize_srcu(&pmus_srcu);
5243 synchronize_rcu();
5244
5245 free_percpu(pmu->pmu_disable_count);
5246 free_pmu_context(pmu->pmu_cpu_context);
5247 }
5248
5249 struct pmu *perf_init_event(struct perf_event *event)
5250 {
5251 struct pmu *pmu = NULL;
5252 int idx;
5253
5254 idx = srcu_read_lock(&pmus_srcu);
5255 list_for_each_entry_rcu(pmu, &pmus, entry) {
5256 int ret = pmu->event_init(event);
5257 if (!ret)
5258 goto unlock;
5259
5260 if (ret != -ENOENT) {
5261 pmu = ERR_PTR(ret);
5262 goto unlock;
5263 }
5264 }
5265 pmu = ERR_PTR(-ENOENT);
5266 unlock:
5267 srcu_read_unlock(&pmus_srcu, idx);
5268
5269 return pmu;
5270 }
5271
5272 /*
5273 * Allocate and initialize a event structure
5274 */
5275 static struct perf_event *
5276 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5277 struct task_struct *task,
5278 struct perf_event *group_leader,
5279 struct perf_event *parent_event,
5280 perf_overflow_handler_t overflow_handler)
5281 {
5282 struct pmu *pmu;
5283 struct perf_event *event;
5284 struct hw_perf_event *hwc;
5285 long err;
5286
5287 event = kzalloc(sizeof(*event), GFP_KERNEL);
5288 if (!event)
5289 return ERR_PTR(-ENOMEM);
5290
5291 /*
5292 * Single events are their own group leaders, with an
5293 * empty sibling list:
5294 */
5295 if (!group_leader)
5296 group_leader = event;
5297
5298 mutex_init(&event->child_mutex);
5299 INIT_LIST_HEAD(&event->child_list);
5300
5301 INIT_LIST_HEAD(&event->group_entry);
5302 INIT_LIST_HEAD(&event->event_entry);
5303 INIT_LIST_HEAD(&event->sibling_list);
5304 init_waitqueue_head(&event->waitq);
5305 init_irq_work(&event->pending, perf_pending_event);
5306
5307 mutex_init(&event->mmap_mutex);
5308
5309 event->cpu = cpu;
5310 event->attr = *attr;
5311 event->group_leader = group_leader;
5312 event->pmu = NULL;
5313 event->oncpu = -1;
5314
5315 event->parent = parent_event;
5316
5317 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5318 event->id = atomic64_inc_return(&perf_event_id);
5319
5320 event->state = PERF_EVENT_STATE_INACTIVE;
5321
5322 if (task) {
5323 event->attach_state = PERF_ATTACH_TASK;
5324 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5325 /*
5326 * hw_breakpoint is a bit difficult here..
5327 */
5328 if (attr->type == PERF_TYPE_BREAKPOINT)
5329 event->hw.bp_target = task;
5330 #endif
5331 }
5332
5333 if (!overflow_handler && parent_event)
5334 overflow_handler = parent_event->overflow_handler;
5335
5336 event->overflow_handler = overflow_handler;
5337
5338 if (attr->disabled)
5339 event->state = PERF_EVENT_STATE_OFF;
5340
5341 pmu = NULL;
5342
5343 hwc = &event->hw;
5344 hwc->sample_period = attr->sample_period;
5345 if (attr->freq && attr->sample_freq)
5346 hwc->sample_period = 1;
5347 hwc->last_period = hwc->sample_period;
5348
5349 local64_set(&hwc->period_left, hwc->sample_period);
5350
5351 /*
5352 * we currently do not support PERF_FORMAT_GROUP on inherited events
5353 */
5354 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5355 goto done;
5356
5357 pmu = perf_init_event(event);
5358
5359 done:
5360 err = 0;
5361 if (!pmu)
5362 err = -EINVAL;
5363 else if (IS_ERR(pmu))
5364 err = PTR_ERR(pmu);
5365
5366 if (err) {
5367 if (event->ns)
5368 put_pid_ns(event->ns);
5369 kfree(event);
5370 return ERR_PTR(err);
5371 }
5372
5373 event->pmu = pmu;
5374
5375 if (!event->parent) {
5376 if (event->attach_state & PERF_ATTACH_TASK)
5377 jump_label_inc(&perf_task_events);
5378 if (event->attr.mmap || event->attr.mmap_data)
5379 atomic_inc(&nr_mmap_events);
5380 if (event->attr.comm)
5381 atomic_inc(&nr_comm_events);
5382 if (event->attr.task)
5383 atomic_inc(&nr_task_events);
5384 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5385 err = get_callchain_buffers();
5386 if (err) {
5387 free_event(event);
5388 return ERR_PTR(err);
5389 }
5390 }
5391 }
5392
5393 return event;
5394 }
5395
5396 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5397 struct perf_event_attr *attr)
5398 {
5399 u32 size;
5400 int ret;
5401
5402 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5403 return -EFAULT;
5404
5405 /*
5406 * zero the full structure, so that a short copy will be nice.
5407 */
5408 memset(attr, 0, sizeof(*attr));
5409
5410 ret = get_user(size, &uattr->size);
5411 if (ret)
5412 return ret;
5413
5414 if (size > PAGE_SIZE) /* silly large */
5415 goto err_size;
5416
5417 if (!size) /* abi compat */
5418 size = PERF_ATTR_SIZE_VER0;
5419
5420 if (size < PERF_ATTR_SIZE_VER0)
5421 goto err_size;
5422
5423 /*
5424 * If we're handed a bigger struct than we know of,
5425 * ensure all the unknown bits are 0 - i.e. new
5426 * user-space does not rely on any kernel feature
5427 * extensions we dont know about yet.
5428 */
5429 if (size > sizeof(*attr)) {
5430 unsigned char __user *addr;
5431 unsigned char __user *end;
5432 unsigned char val;
5433
5434 addr = (void __user *)uattr + sizeof(*attr);
5435 end = (void __user *)uattr + size;
5436
5437 for (; addr < end; addr++) {
5438 ret = get_user(val, addr);
5439 if (ret)
5440 return ret;
5441 if (val)
5442 goto err_size;
5443 }
5444 size = sizeof(*attr);
5445 }
5446
5447 ret = copy_from_user(attr, uattr, size);
5448 if (ret)
5449 return -EFAULT;
5450
5451 /*
5452 * If the type exists, the corresponding creation will verify
5453 * the attr->config.
5454 */
5455 if (attr->type >= PERF_TYPE_MAX)
5456 return -EINVAL;
5457
5458 if (attr->__reserved_1)
5459 return -EINVAL;
5460
5461 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5462 return -EINVAL;
5463
5464 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5465 return -EINVAL;
5466
5467 out:
5468 return ret;
5469
5470 err_size:
5471 put_user(sizeof(*attr), &uattr->size);
5472 ret = -E2BIG;
5473 goto out;
5474 }
5475
5476 static int
5477 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5478 {
5479 struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5480 int ret = -EINVAL;
5481
5482 if (!output_event)
5483 goto set;
5484
5485 /* don't allow circular references */
5486 if (event == output_event)
5487 goto out;
5488
5489 /*
5490 * Don't allow cross-cpu buffers
5491 */
5492 if (output_event->cpu != event->cpu)
5493 goto out;
5494
5495 /*
5496 * If its not a per-cpu buffer, it must be the same task.
5497 */
5498 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5499 goto out;
5500
5501 set:
5502 mutex_lock(&event->mmap_mutex);
5503 /* Can't redirect output if we've got an active mmap() */
5504 if (atomic_read(&event->mmap_count))
5505 goto unlock;
5506
5507 if (output_event) {
5508 /* get the buffer we want to redirect to */
5509 buffer = perf_buffer_get(output_event);
5510 if (!buffer)
5511 goto unlock;
5512 }
5513
5514 old_buffer = event->buffer;
5515 rcu_assign_pointer(event->buffer, buffer);
5516 ret = 0;
5517 unlock:
5518 mutex_unlock(&event->mmap_mutex);
5519
5520 if (old_buffer)
5521 perf_buffer_put(old_buffer);
5522 out:
5523 return ret;
5524 }
5525
5526 /**
5527 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5528 *
5529 * @attr_uptr: event_id type attributes for monitoring/sampling
5530 * @pid: target pid
5531 * @cpu: target cpu
5532 * @group_fd: group leader event fd
5533 */
5534 SYSCALL_DEFINE5(perf_event_open,
5535 struct perf_event_attr __user *, attr_uptr,
5536 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5537 {
5538 struct perf_event *group_leader = NULL, *output_event = NULL;
5539 struct perf_event *event, *sibling;
5540 struct perf_event_attr attr;
5541 struct perf_event_context *ctx;
5542 struct file *event_file = NULL;
5543 struct file *group_file = NULL;
5544 struct task_struct *task = NULL;
5545 struct pmu *pmu;
5546 int event_fd;
5547 int move_group = 0;
5548 int fput_needed = 0;
5549 int err;
5550
5551 /* for future expandability... */
5552 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5553 return -EINVAL;
5554
5555 err = perf_copy_attr(attr_uptr, &attr);
5556 if (err)
5557 return err;
5558
5559 if (!attr.exclude_kernel) {
5560 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5561 return -EACCES;
5562 }
5563
5564 if (attr.freq) {
5565 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5566 return -EINVAL;
5567 }
5568
5569 event_fd = get_unused_fd_flags(O_RDWR);
5570 if (event_fd < 0)
5571 return event_fd;
5572
5573 if (group_fd != -1) {
5574 group_leader = perf_fget_light(group_fd, &fput_needed);
5575 if (IS_ERR(group_leader)) {
5576 err = PTR_ERR(group_leader);
5577 goto err_fd;
5578 }
5579 group_file = group_leader->filp;
5580 if (flags & PERF_FLAG_FD_OUTPUT)
5581 output_event = group_leader;
5582 if (flags & PERF_FLAG_FD_NO_GROUP)
5583 group_leader = NULL;
5584 }
5585
5586 if (pid != -1) {
5587 task = find_lively_task_by_vpid(pid);
5588 if (IS_ERR(task)) {
5589 err = PTR_ERR(task);
5590 goto err_group_fd;
5591 }
5592 }
5593
5594 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
5595 if (IS_ERR(event)) {
5596 err = PTR_ERR(event);
5597 goto err_task;
5598 }
5599
5600 /*
5601 * Special case software events and allow them to be part of
5602 * any hardware group.
5603 */
5604 pmu = event->pmu;
5605
5606 if (group_leader &&
5607 (is_software_event(event) != is_software_event(group_leader))) {
5608 if (is_software_event(event)) {
5609 /*
5610 * If event and group_leader are not both a software
5611 * event, and event is, then group leader is not.
5612 *
5613 * Allow the addition of software events to !software
5614 * groups, this is safe because software events never
5615 * fail to schedule.
5616 */
5617 pmu = group_leader->pmu;
5618 } else if (is_software_event(group_leader) &&
5619 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
5620 /*
5621 * In case the group is a pure software group, and we
5622 * try to add a hardware event, move the whole group to
5623 * the hardware context.
5624 */
5625 move_group = 1;
5626 }
5627 }
5628
5629 /*
5630 * Get the target context (task or percpu):
5631 */
5632 ctx = find_get_context(pmu, task, cpu);
5633 if (IS_ERR(ctx)) {
5634 err = PTR_ERR(ctx);
5635 goto err_alloc;
5636 }
5637
5638 /*
5639 * Look up the group leader (we will attach this event to it):
5640 */
5641 if (group_leader) {
5642 err = -EINVAL;
5643
5644 /*
5645 * Do not allow a recursive hierarchy (this new sibling
5646 * becoming part of another group-sibling):
5647 */
5648 if (group_leader->group_leader != group_leader)
5649 goto err_context;
5650 /*
5651 * Do not allow to attach to a group in a different
5652 * task or CPU context:
5653 */
5654 if (move_group) {
5655 if (group_leader->ctx->type != ctx->type)
5656 goto err_context;
5657 } else {
5658 if (group_leader->ctx != ctx)
5659 goto err_context;
5660 }
5661
5662 /*
5663 * Only a group leader can be exclusive or pinned
5664 */
5665 if (attr.exclusive || attr.pinned)
5666 goto err_context;
5667 }
5668
5669 if (output_event) {
5670 err = perf_event_set_output(event, output_event);
5671 if (err)
5672 goto err_context;
5673 }
5674
5675 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5676 if (IS_ERR(event_file)) {
5677 err = PTR_ERR(event_file);
5678 goto err_context;
5679 }
5680
5681 if (move_group) {
5682 struct perf_event_context *gctx = group_leader->ctx;
5683
5684 mutex_lock(&gctx->mutex);
5685 perf_event_remove_from_context(group_leader);
5686 list_for_each_entry(sibling, &group_leader->sibling_list,
5687 group_entry) {
5688 perf_event_remove_from_context(sibling);
5689 put_ctx(gctx);
5690 }
5691 mutex_unlock(&gctx->mutex);
5692 put_ctx(gctx);
5693 }
5694
5695 event->filp = event_file;
5696 WARN_ON_ONCE(ctx->parent_ctx);
5697 mutex_lock(&ctx->mutex);
5698
5699 if (move_group) {
5700 perf_install_in_context(ctx, group_leader, cpu);
5701 get_ctx(ctx);
5702 list_for_each_entry(sibling, &group_leader->sibling_list,
5703 group_entry) {
5704 perf_install_in_context(ctx, sibling, cpu);
5705 get_ctx(ctx);
5706 }
5707 }
5708
5709 perf_install_in_context(ctx, event, cpu);
5710 ++ctx->generation;
5711 mutex_unlock(&ctx->mutex);
5712
5713 event->owner = current;
5714
5715 mutex_lock(&current->perf_event_mutex);
5716 list_add_tail(&event->owner_entry, &current->perf_event_list);
5717 mutex_unlock(&current->perf_event_mutex);
5718
5719 /*
5720 * Drop the reference on the group_event after placing the
5721 * new event on the sibling_list. This ensures destruction
5722 * of the group leader will find the pointer to itself in
5723 * perf_group_detach().
5724 */
5725 fput_light(group_file, fput_needed);
5726 fd_install(event_fd, event_file);
5727 return event_fd;
5728
5729 err_context:
5730 put_ctx(ctx);
5731 err_alloc:
5732 free_event(event);
5733 err_task:
5734 if (task)
5735 put_task_struct(task);
5736 err_group_fd:
5737 fput_light(group_file, fput_needed);
5738 err_fd:
5739 put_unused_fd(event_fd);
5740 return err;
5741 }
5742
5743 /**
5744 * perf_event_create_kernel_counter
5745 *
5746 * @attr: attributes of the counter to create
5747 * @cpu: cpu in which the counter is bound
5748 * @task: task to profile (NULL for percpu)
5749 */
5750 struct perf_event *
5751 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5752 struct task_struct *task,
5753 perf_overflow_handler_t overflow_handler)
5754 {
5755 struct perf_event_context *ctx;
5756 struct perf_event *event;
5757 int err;
5758
5759 /*
5760 * Get the target context (task or percpu):
5761 */
5762
5763 event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
5764 if (IS_ERR(event)) {
5765 err = PTR_ERR(event);
5766 goto err;
5767 }
5768
5769 ctx = find_get_context(event->pmu, task, cpu);
5770 if (IS_ERR(ctx)) {
5771 err = PTR_ERR(ctx);
5772 goto err_free;
5773 }
5774
5775 event->filp = NULL;
5776 WARN_ON_ONCE(ctx->parent_ctx);
5777 mutex_lock(&ctx->mutex);
5778 perf_install_in_context(ctx, event, cpu);
5779 ++ctx->generation;
5780 mutex_unlock(&ctx->mutex);
5781
5782 return event;
5783
5784 err_free:
5785 free_event(event);
5786 err:
5787 return ERR_PTR(err);
5788 }
5789 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5790
5791 static void sync_child_event(struct perf_event *child_event,
5792 struct task_struct *child)
5793 {
5794 struct perf_event *parent_event = child_event->parent;
5795 u64 child_val;
5796
5797 if (child_event->attr.inherit_stat)
5798 perf_event_read_event(child_event, child);
5799
5800 child_val = perf_event_count(child_event);
5801
5802 /*
5803 * Add back the child's count to the parent's count:
5804 */
5805 atomic64_add(child_val, &parent_event->child_count);
5806 atomic64_add(child_event->total_time_enabled,
5807 &parent_event->child_total_time_enabled);
5808 atomic64_add(child_event->total_time_running,
5809 &parent_event->child_total_time_running);
5810
5811 /*
5812 * Remove this event from the parent's list
5813 */
5814 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5815 mutex_lock(&parent_event->child_mutex);
5816 list_del_init(&child_event->child_list);
5817 mutex_unlock(&parent_event->child_mutex);
5818
5819 /*
5820 * Release the parent event, if this was the last
5821 * reference to it.
5822 */
5823 fput(parent_event->filp);
5824 }
5825
5826 static void
5827 __perf_event_exit_task(struct perf_event *child_event,
5828 struct perf_event_context *child_ctx,
5829 struct task_struct *child)
5830 {
5831 struct perf_event *parent_event;
5832
5833 perf_event_remove_from_context(child_event);
5834
5835 parent_event = child_event->parent;
5836 /*
5837 * It can happen that parent exits first, and has events
5838 * that are still around due to the child reference. These
5839 * events need to be zapped - but otherwise linger.
5840 */
5841 if (parent_event) {
5842 sync_child_event(child_event, child);
5843 free_event(child_event);
5844 }
5845 }
5846
5847 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
5848 {
5849 struct perf_event *child_event, *tmp;
5850 struct perf_event_context *child_ctx;
5851 unsigned long flags;
5852
5853 if (likely(!child->perf_event_ctxp[ctxn])) {
5854 perf_event_task(child, NULL, 0);
5855 return;
5856 }
5857
5858 local_irq_save(flags);
5859 /*
5860 * We can't reschedule here because interrupts are disabled,
5861 * and either child is current or it is a task that can't be
5862 * scheduled, so we are now safe from rescheduling changing
5863 * our context.
5864 */
5865 child_ctx = child->perf_event_ctxp[ctxn];
5866 task_ctx_sched_out(child_ctx, EVENT_ALL);
5867
5868 /*
5869 * Take the context lock here so that if find_get_context is
5870 * reading child->perf_event_ctxp, we wait until it has
5871 * incremented the context's refcount before we do put_ctx below.
5872 */
5873 raw_spin_lock(&child_ctx->lock);
5874 child->perf_event_ctxp[ctxn] = NULL;
5875 /*
5876 * If this context is a clone; unclone it so it can't get
5877 * swapped to another process while we're removing all
5878 * the events from it.
5879 */
5880 unclone_ctx(child_ctx);
5881 update_context_time(child_ctx);
5882 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5883
5884 /*
5885 * Report the task dead after unscheduling the events so that we
5886 * won't get any samples after PERF_RECORD_EXIT. We can however still
5887 * get a few PERF_RECORD_READ events.
5888 */
5889 perf_event_task(child, child_ctx, 0);
5890
5891 /*
5892 * We can recurse on the same lock type through:
5893 *
5894 * __perf_event_exit_task()
5895 * sync_child_event()
5896 * fput(parent_event->filp)
5897 * perf_release()
5898 * mutex_lock(&ctx->mutex)
5899 *
5900 * But since its the parent context it won't be the same instance.
5901 */
5902 mutex_lock(&child_ctx->mutex);
5903
5904 again:
5905 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5906 group_entry)
5907 __perf_event_exit_task(child_event, child_ctx, child);
5908
5909 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5910 group_entry)
5911 __perf_event_exit_task(child_event, child_ctx, child);
5912
5913 /*
5914 * If the last event was a group event, it will have appended all
5915 * its siblings to the list, but we obtained 'tmp' before that which
5916 * will still point to the list head terminating the iteration.
5917 */
5918 if (!list_empty(&child_ctx->pinned_groups) ||
5919 !list_empty(&child_ctx->flexible_groups))
5920 goto again;
5921
5922 mutex_unlock(&child_ctx->mutex);
5923
5924 put_ctx(child_ctx);
5925 }
5926
5927 /*
5928 * When a child task exits, feed back event values to parent events.
5929 */
5930 void perf_event_exit_task(struct task_struct *child)
5931 {
5932 struct perf_event *event, *tmp;
5933 int ctxn;
5934
5935 mutex_lock(&child->perf_event_mutex);
5936 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
5937 owner_entry) {
5938 list_del_init(&event->owner_entry);
5939
5940 /*
5941 * Ensure the list deletion is visible before we clear
5942 * the owner, closes a race against perf_release() where
5943 * we need to serialize on the owner->perf_event_mutex.
5944 */
5945 smp_wmb();
5946 event->owner = NULL;
5947 }
5948 mutex_unlock(&child->perf_event_mutex);
5949
5950 for_each_task_context_nr(ctxn)
5951 perf_event_exit_task_context(child, ctxn);
5952 }
5953
5954 static void perf_free_event(struct perf_event *event,
5955 struct perf_event_context *ctx)
5956 {
5957 struct perf_event *parent = event->parent;
5958
5959 if (WARN_ON_ONCE(!parent))
5960 return;
5961
5962 mutex_lock(&parent->child_mutex);
5963 list_del_init(&event->child_list);
5964 mutex_unlock(&parent->child_mutex);
5965
5966 fput(parent->filp);
5967
5968 perf_group_detach(event);
5969 list_del_event(event, ctx);
5970 free_event(event);
5971 }
5972
5973 /*
5974 * free an unexposed, unused context as created by inheritance by
5975 * perf_event_init_task below, used by fork() in case of fail.
5976 */
5977 void perf_event_free_task(struct task_struct *task)
5978 {
5979 struct perf_event_context *ctx;
5980 struct perf_event *event, *tmp;
5981 int ctxn;
5982
5983 for_each_task_context_nr(ctxn) {
5984 ctx = task->perf_event_ctxp[ctxn];
5985 if (!ctx)
5986 continue;
5987
5988 mutex_lock(&ctx->mutex);
5989 again:
5990 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
5991 group_entry)
5992 perf_free_event(event, ctx);
5993
5994 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5995 group_entry)
5996 perf_free_event(event, ctx);
5997
5998 if (!list_empty(&ctx->pinned_groups) ||
5999 !list_empty(&ctx->flexible_groups))
6000 goto again;
6001
6002 mutex_unlock(&ctx->mutex);
6003
6004 put_ctx(ctx);
6005 }
6006 }
6007
6008 void perf_event_delayed_put(struct task_struct *task)
6009 {
6010 int ctxn;
6011
6012 for_each_task_context_nr(ctxn)
6013 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6014 }
6015
6016 /*
6017 * inherit a event from parent task to child task:
6018 */
6019 static struct perf_event *
6020 inherit_event(struct perf_event *parent_event,
6021 struct task_struct *parent,
6022 struct perf_event_context *parent_ctx,
6023 struct task_struct *child,
6024 struct perf_event *group_leader,
6025 struct perf_event_context *child_ctx)
6026 {
6027 struct perf_event *child_event;
6028 unsigned long flags;
6029
6030 /*
6031 * Instead of creating recursive hierarchies of events,
6032 * we link inherited events back to the original parent,
6033 * which has a filp for sure, which we use as the reference
6034 * count:
6035 */
6036 if (parent_event->parent)
6037 parent_event = parent_event->parent;
6038
6039 child_event = perf_event_alloc(&parent_event->attr,
6040 parent_event->cpu,
6041 child,
6042 group_leader, parent_event,
6043 NULL);
6044 if (IS_ERR(child_event))
6045 return child_event;
6046 get_ctx(child_ctx);
6047
6048 /*
6049 * Make the child state follow the state of the parent event,
6050 * not its attr.disabled bit. We hold the parent's mutex,
6051 * so we won't race with perf_event_{en, dis}able_family.
6052 */
6053 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6054 child_event->state = PERF_EVENT_STATE_INACTIVE;
6055 else
6056 child_event->state = PERF_EVENT_STATE_OFF;
6057
6058 if (parent_event->attr.freq) {
6059 u64 sample_period = parent_event->hw.sample_period;
6060 struct hw_perf_event *hwc = &child_event->hw;
6061
6062 hwc->sample_period = sample_period;
6063 hwc->last_period = sample_period;
6064
6065 local64_set(&hwc->period_left, sample_period);
6066 }
6067
6068 child_event->ctx = child_ctx;
6069 child_event->overflow_handler = parent_event->overflow_handler;
6070
6071 /*
6072 * Link it up in the child's context:
6073 */
6074 raw_spin_lock_irqsave(&child_ctx->lock, flags);
6075 add_event_to_ctx(child_event, child_ctx);
6076 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6077
6078 /*
6079 * Get a reference to the parent filp - we will fput it
6080 * when the child event exits. This is safe to do because
6081 * we are in the parent and we know that the filp still
6082 * exists and has a nonzero count:
6083 */
6084 atomic_long_inc(&parent_event->filp->f_count);
6085
6086 /*
6087 * Link this into the parent event's child list
6088 */
6089 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6090 mutex_lock(&parent_event->child_mutex);
6091 list_add_tail(&child_event->child_list, &parent_event->child_list);
6092 mutex_unlock(&parent_event->child_mutex);
6093
6094 return child_event;
6095 }
6096
6097 static int inherit_group(struct perf_event *parent_event,
6098 struct task_struct *parent,
6099 struct perf_event_context *parent_ctx,
6100 struct task_struct *child,
6101 struct perf_event_context *child_ctx)
6102 {
6103 struct perf_event *leader;
6104 struct perf_event *sub;
6105 struct perf_event *child_ctr;
6106
6107 leader = inherit_event(parent_event, parent, parent_ctx,
6108 child, NULL, child_ctx);
6109 if (IS_ERR(leader))
6110 return PTR_ERR(leader);
6111 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6112 child_ctr = inherit_event(sub, parent, parent_ctx,
6113 child, leader, child_ctx);
6114 if (IS_ERR(child_ctr))
6115 return PTR_ERR(child_ctr);
6116 }
6117 return 0;
6118 }
6119
6120 static int
6121 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6122 struct perf_event_context *parent_ctx,
6123 struct task_struct *child, int ctxn,
6124 int *inherited_all)
6125 {
6126 int ret;
6127 struct perf_event_context *child_ctx;
6128
6129 if (!event->attr.inherit) {
6130 *inherited_all = 0;
6131 return 0;
6132 }
6133
6134 child_ctx = child->perf_event_ctxp[ctxn];
6135 if (!child_ctx) {
6136 /*
6137 * This is executed from the parent task context, so
6138 * inherit events that have been marked for cloning.
6139 * First allocate and initialize a context for the
6140 * child.
6141 */
6142
6143 child_ctx = alloc_perf_context(event->pmu, child);
6144 if (!child_ctx)
6145 return -ENOMEM;
6146
6147 child->perf_event_ctxp[ctxn] = child_ctx;
6148 }
6149
6150 ret = inherit_group(event, parent, parent_ctx,
6151 child, child_ctx);
6152
6153 if (ret)
6154 *inherited_all = 0;
6155
6156 return ret;
6157 }
6158
6159 /*
6160 * Initialize the perf_event context in task_struct
6161 */
6162 int perf_event_init_context(struct task_struct *child, int ctxn)
6163 {
6164 struct perf_event_context *child_ctx, *parent_ctx;
6165 struct perf_event_context *cloned_ctx;
6166 struct perf_event *event;
6167 struct task_struct *parent = current;
6168 int inherited_all = 1;
6169 unsigned long flags;
6170 int ret = 0;
6171
6172 child->perf_event_ctxp[ctxn] = NULL;
6173
6174 mutex_init(&child->perf_event_mutex);
6175 INIT_LIST_HEAD(&child->perf_event_list);
6176
6177 if (likely(!parent->perf_event_ctxp[ctxn]))
6178 return 0;
6179
6180 /*
6181 * If the parent's context is a clone, pin it so it won't get
6182 * swapped under us.
6183 */
6184 parent_ctx = perf_pin_task_context(parent, ctxn);
6185
6186 /*
6187 * No need to check if parent_ctx != NULL here; since we saw
6188 * it non-NULL earlier, the only reason for it to become NULL
6189 * is if we exit, and since we're currently in the middle of
6190 * a fork we can't be exiting at the same time.
6191 */
6192
6193 /*
6194 * Lock the parent list. No need to lock the child - not PID
6195 * hashed yet and not running, so nobody can access it.
6196 */
6197 mutex_lock(&parent_ctx->mutex);
6198
6199 /*
6200 * We dont have to disable NMIs - we are only looking at
6201 * the list, not manipulating it:
6202 */
6203 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6204 ret = inherit_task_group(event, parent, parent_ctx,
6205 child, ctxn, &inherited_all);
6206 if (ret)
6207 break;
6208 }
6209
6210 /*
6211 * We can't hold ctx->lock when iterating the ->flexible_group list due
6212 * to allocations, but we need to prevent rotation because
6213 * rotate_ctx() will change the list from interrupt context.
6214 */
6215 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6216 parent_ctx->rotate_disable = 1;
6217 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6218
6219 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6220 ret = inherit_task_group(event, parent, parent_ctx,
6221 child, ctxn, &inherited_all);
6222 if (ret)
6223 break;
6224 }
6225
6226 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6227 parent_ctx->rotate_disable = 0;
6228 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6229
6230 child_ctx = child->perf_event_ctxp[ctxn];
6231
6232 if (child_ctx && inherited_all) {
6233 /*
6234 * Mark the child context as a clone of the parent
6235 * context, or of whatever the parent is a clone of.
6236 * Note that if the parent is a clone, it could get
6237 * uncloned at any point, but that doesn't matter
6238 * because the list of events and the generation
6239 * count can't have changed since we took the mutex.
6240 */
6241 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
6242 if (cloned_ctx) {
6243 child_ctx->parent_ctx = cloned_ctx;
6244 child_ctx->parent_gen = parent_ctx->parent_gen;
6245 } else {
6246 child_ctx->parent_ctx = parent_ctx;
6247 child_ctx->parent_gen = parent_ctx->generation;
6248 }
6249 get_ctx(child_ctx->parent_ctx);
6250 }
6251
6252 mutex_unlock(&parent_ctx->mutex);
6253
6254 perf_unpin_context(parent_ctx);
6255
6256 return ret;
6257 }
6258
6259 /*
6260 * Initialize the perf_event context in task_struct
6261 */
6262 int perf_event_init_task(struct task_struct *child)
6263 {
6264 int ctxn, ret;
6265
6266 for_each_task_context_nr(ctxn) {
6267 ret = perf_event_init_context(child, ctxn);
6268 if (ret)
6269 return ret;
6270 }
6271
6272 return 0;
6273 }
6274
6275 static void __init perf_event_init_all_cpus(void)
6276 {
6277 struct swevent_htable *swhash;
6278 int cpu;
6279
6280 for_each_possible_cpu(cpu) {
6281 swhash = &per_cpu(swevent_htable, cpu);
6282 mutex_init(&swhash->hlist_mutex);
6283 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6284 }
6285 }
6286
6287 static void __cpuinit perf_event_init_cpu(int cpu)
6288 {
6289 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6290
6291 mutex_lock(&swhash->hlist_mutex);
6292 if (swhash->hlist_refcount > 0) {
6293 struct swevent_hlist *hlist;
6294
6295 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6296 WARN_ON(!hlist);
6297 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6298 }
6299 mutex_unlock(&swhash->hlist_mutex);
6300 }
6301
6302 #ifdef CONFIG_HOTPLUG_CPU
6303 static void perf_pmu_rotate_stop(struct pmu *pmu)
6304 {
6305 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6306
6307 WARN_ON(!irqs_disabled());
6308
6309 list_del_init(&cpuctx->rotation_list);
6310 }
6311
6312 static void __perf_event_exit_context(void *__info)
6313 {
6314 struct perf_event_context *ctx = __info;
6315 struct perf_event *event, *tmp;
6316
6317 perf_pmu_rotate_stop(ctx->pmu);
6318
6319 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6320 __perf_event_remove_from_context(event);
6321 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6322 __perf_event_remove_from_context(event);
6323 }
6324
6325 static void perf_event_exit_cpu_context(int cpu)
6326 {
6327 struct perf_event_context *ctx;
6328 struct pmu *pmu;
6329 int idx;
6330
6331 idx = srcu_read_lock(&pmus_srcu);
6332 list_for_each_entry_rcu(pmu, &pmus, entry) {
6333 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6334
6335 mutex_lock(&ctx->mutex);
6336 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6337 mutex_unlock(&ctx->mutex);
6338 }
6339 srcu_read_unlock(&pmus_srcu, idx);
6340 }
6341
6342 static void perf_event_exit_cpu(int cpu)
6343 {
6344 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6345
6346 mutex_lock(&swhash->hlist_mutex);
6347 swevent_hlist_release(swhash);
6348 mutex_unlock(&swhash->hlist_mutex);
6349
6350 perf_event_exit_cpu_context(cpu);
6351 }
6352 #else
6353 static inline void perf_event_exit_cpu(int cpu) { }
6354 #endif
6355
6356 static int __cpuinit
6357 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6358 {
6359 unsigned int cpu = (long)hcpu;
6360
6361 switch (action & ~CPU_TASKS_FROZEN) {
6362
6363 case CPU_UP_PREPARE:
6364 case CPU_DOWN_FAILED:
6365 perf_event_init_cpu(cpu);
6366 break;
6367
6368 case CPU_UP_CANCELED:
6369 case CPU_DOWN_PREPARE:
6370 perf_event_exit_cpu(cpu);
6371 break;
6372
6373 default:
6374 break;
6375 }
6376
6377 return NOTIFY_OK;
6378 }
6379
6380 void __init perf_event_init(void)
6381 {
6382 int ret;
6383
6384 perf_event_init_all_cpus();
6385 init_srcu_struct(&pmus_srcu);
6386 perf_pmu_register(&perf_swevent);
6387 perf_pmu_register(&perf_cpu_clock);
6388 perf_pmu_register(&perf_task_clock);
6389 perf_tp_register();
6390 perf_cpu_notifier(perf_cpu_notify);
6391
6392 ret = init_hw_breakpoint();
6393 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
6394 }
This page took 0.159467 seconds and 6 git commands to generate.