perf: Make clock software events consistent with general exclusion rules
[deliverable/linux.git] / kernel / perf_event.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/vmstat.h>
25 #include <linux/vmalloc.h>
26 #include <linux/hardirq.h>
27 #include <linux/rculist.h>
28 #include <linux/uaccess.h>
29 #include <linux/syscalls.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/perf_event.h>
33 #include <linux/ftrace_event.h>
34 #include <linux/hw_breakpoint.h>
35
36 #include <asm/irq_regs.h>
37
38 /*
39 * Each CPU has a list of per CPU events:
40 */
41 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
42
43 int perf_max_events __read_mostly = 1;
44 static int perf_reserved_percpu __read_mostly;
45 static int perf_overcommit __read_mostly = 1;
46
47 static atomic_t nr_events __read_mostly;
48 static atomic_t nr_mmap_events __read_mostly;
49 static atomic_t nr_comm_events __read_mostly;
50 static atomic_t nr_task_events __read_mostly;
51
52 /*
53 * perf event paranoia level:
54 * -1 - not paranoid at all
55 * 0 - disallow raw tracepoint access for unpriv
56 * 1 - disallow cpu events for unpriv
57 * 2 - disallow kernel profiling for unpriv
58 */
59 int sysctl_perf_event_paranoid __read_mostly = 1;
60
61 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
62
63 /*
64 * max perf event sample rate
65 */
66 int sysctl_perf_event_sample_rate __read_mostly = 100000;
67
68 static atomic64_t perf_event_id;
69
70 /*
71 * Lock for (sysadmin-configurable) event reservations:
72 */
73 static DEFINE_SPINLOCK(perf_resource_lock);
74
75 /*
76 * Architecture provided APIs - weak aliases:
77 */
78 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
79 {
80 return NULL;
81 }
82
83 void __weak hw_perf_disable(void) { barrier(); }
84 void __weak hw_perf_enable(void) { barrier(); }
85
86 int __weak
87 hw_perf_group_sched_in(struct perf_event *group_leader,
88 struct perf_cpu_context *cpuctx,
89 struct perf_event_context *ctx)
90 {
91 return 0;
92 }
93
94 void __weak perf_event_print_debug(void) { }
95
96 static DEFINE_PER_CPU(int, perf_disable_count);
97
98 void perf_disable(void)
99 {
100 if (!__get_cpu_var(perf_disable_count)++)
101 hw_perf_disable();
102 }
103
104 void perf_enable(void)
105 {
106 if (!--__get_cpu_var(perf_disable_count))
107 hw_perf_enable();
108 }
109
110 static void get_ctx(struct perf_event_context *ctx)
111 {
112 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
113 }
114
115 static void free_ctx(struct rcu_head *head)
116 {
117 struct perf_event_context *ctx;
118
119 ctx = container_of(head, struct perf_event_context, rcu_head);
120 kfree(ctx);
121 }
122
123 static void put_ctx(struct perf_event_context *ctx)
124 {
125 if (atomic_dec_and_test(&ctx->refcount)) {
126 if (ctx->parent_ctx)
127 put_ctx(ctx->parent_ctx);
128 if (ctx->task)
129 put_task_struct(ctx->task);
130 call_rcu(&ctx->rcu_head, free_ctx);
131 }
132 }
133
134 static void unclone_ctx(struct perf_event_context *ctx)
135 {
136 if (ctx->parent_ctx) {
137 put_ctx(ctx->parent_ctx);
138 ctx->parent_ctx = NULL;
139 }
140 }
141
142 /*
143 * If we inherit events we want to return the parent event id
144 * to userspace.
145 */
146 static u64 primary_event_id(struct perf_event *event)
147 {
148 u64 id = event->id;
149
150 if (event->parent)
151 id = event->parent->id;
152
153 return id;
154 }
155
156 /*
157 * Get the perf_event_context for a task and lock it.
158 * This has to cope with with the fact that until it is locked,
159 * the context could get moved to another task.
160 */
161 static struct perf_event_context *
162 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
163 {
164 struct perf_event_context *ctx;
165
166 rcu_read_lock();
167 retry:
168 ctx = rcu_dereference(task->perf_event_ctxp);
169 if (ctx) {
170 /*
171 * If this context is a clone of another, it might
172 * get swapped for another underneath us by
173 * perf_event_task_sched_out, though the
174 * rcu_read_lock() protects us from any context
175 * getting freed. Lock the context and check if it
176 * got swapped before we could get the lock, and retry
177 * if so. If we locked the right context, then it
178 * can't get swapped on us any more.
179 */
180 raw_spin_lock_irqsave(&ctx->lock, *flags);
181 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
182 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
183 goto retry;
184 }
185
186 if (!atomic_inc_not_zero(&ctx->refcount)) {
187 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
188 ctx = NULL;
189 }
190 }
191 rcu_read_unlock();
192 return ctx;
193 }
194
195 /*
196 * Get the context for a task and increment its pin_count so it
197 * can't get swapped to another task. This also increments its
198 * reference count so that the context can't get freed.
199 */
200 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
201 {
202 struct perf_event_context *ctx;
203 unsigned long flags;
204
205 ctx = perf_lock_task_context(task, &flags);
206 if (ctx) {
207 ++ctx->pin_count;
208 raw_spin_unlock_irqrestore(&ctx->lock, flags);
209 }
210 return ctx;
211 }
212
213 static void perf_unpin_context(struct perf_event_context *ctx)
214 {
215 unsigned long flags;
216
217 raw_spin_lock_irqsave(&ctx->lock, flags);
218 --ctx->pin_count;
219 raw_spin_unlock_irqrestore(&ctx->lock, flags);
220 put_ctx(ctx);
221 }
222
223 static inline u64 perf_clock(void)
224 {
225 return cpu_clock(raw_smp_processor_id());
226 }
227
228 /*
229 * Update the record of the current time in a context.
230 */
231 static void update_context_time(struct perf_event_context *ctx)
232 {
233 u64 now = perf_clock();
234
235 ctx->time += now - ctx->timestamp;
236 ctx->timestamp = now;
237 }
238
239 /*
240 * Update the total_time_enabled and total_time_running fields for a event.
241 */
242 static void update_event_times(struct perf_event *event)
243 {
244 struct perf_event_context *ctx = event->ctx;
245 u64 run_end;
246
247 if (event->state < PERF_EVENT_STATE_INACTIVE ||
248 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
249 return;
250
251 if (ctx->is_active)
252 run_end = ctx->time;
253 else
254 run_end = event->tstamp_stopped;
255
256 event->total_time_enabled = run_end - event->tstamp_enabled;
257
258 if (event->state == PERF_EVENT_STATE_INACTIVE)
259 run_end = event->tstamp_stopped;
260 else
261 run_end = ctx->time;
262
263 event->total_time_running = run_end - event->tstamp_running;
264 }
265
266 static struct list_head *
267 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
268 {
269 if (event->attr.pinned)
270 return &ctx->pinned_groups;
271 else
272 return &ctx->flexible_groups;
273 }
274
275 /*
276 * Add a event from the lists for its context.
277 * Must be called with ctx->mutex and ctx->lock held.
278 */
279 static void
280 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
281 {
282 struct perf_event *group_leader = event->group_leader;
283
284 /*
285 * Depending on whether it is a standalone or sibling event,
286 * add it straight to the context's event list, or to the group
287 * leader's sibling list:
288 */
289 if (group_leader == event) {
290 struct list_head *list;
291
292 if (is_software_event(event))
293 event->group_flags |= PERF_GROUP_SOFTWARE;
294
295 list = ctx_group_list(event, ctx);
296 list_add_tail(&event->group_entry, list);
297 } else {
298 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
299 !is_software_event(event))
300 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
301
302 list_add_tail(&event->group_entry, &group_leader->sibling_list);
303 group_leader->nr_siblings++;
304 }
305
306 list_add_rcu(&event->event_entry, &ctx->event_list);
307 ctx->nr_events++;
308 if (event->attr.inherit_stat)
309 ctx->nr_stat++;
310 }
311
312 /*
313 * Remove a event from the lists for its context.
314 * Must be called with ctx->mutex and ctx->lock held.
315 */
316 static void
317 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
318 {
319 struct perf_event *sibling, *tmp;
320
321 if (list_empty(&event->group_entry))
322 return;
323 ctx->nr_events--;
324 if (event->attr.inherit_stat)
325 ctx->nr_stat--;
326
327 list_del_init(&event->group_entry);
328 list_del_rcu(&event->event_entry);
329
330 if (event->group_leader != event)
331 event->group_leader->nr_siblings--;
332
333 update_event_times(event);
334
335 /*
336 * If event was in error state, then keep it
337 * that way, otherwise bogus counts will be
338 * returned on read(). The only way to get out
339 * of error state is by explicit re-enabling
340 * of the event
341 */
342 if (event->state > PERF_EVENT_STATE_OFF)
343 event->state = PERF_EVENT_STATE_OFF;
344
345 /*
346 * If this was a group event with sibling events then
347 * upgrade the siblings to singleton events by adding them
348 * to the context list directly:
349 */
350 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
351 struct list_head *list;
352
353 list = ctx_group_list(event, ctx);
354 list_move_tail(&sibling->group_entry, list);
355 sibling->group_leader = sibling;
356
357 /* Inherit group flags from the previous leader */
358 sibling->group_flags = event->group_flags;
359 }
360 }
361
362 static void
363 event_sched_out(struct perf_event *event,
364 struct perf_cpu_context *cpuctx,
365 struct perf_event_context *ctx)
366 {
367 if (event->state != PERF_EVENT_STATE_ACTIVE)
368 return;
369
370 event->state = PERF_EVENT_STATE_INACTIVE;
371 if (event->pending_disable) {
372 event->pending_disable = 0;
373 event->state = PERF_EVENT_STATE_OFF;
374 }
375 event->tstamp_stopped = ctx->time;
376 event->pmu->disable(event);
377 event->oncpu = -1;
378
379 if (!is_software_event(event))
380 cpuctx->active_oncpu--;
381 ctx->nr_active--;
382 if (event->attr.exclusive || !cpuctx->active_oncpu)
383 cpuctx->exclusive = 0;
384 }
385
386 static void
387 group_sched_out(struct perf_event *group_event,
388 struct perf_cpu_context *cpuctx,
389 struct perf_event_context *ctx)
390 {
391 struct perf_event *event;
392
393 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
394 return;
395
396 event_sched_out(group_event, cpuctx, ctx);
397
398 /*
399 * Schedule out siblings (if any):
400 */
401 list_for_each_entry(event, &group_event->sibling_list, group_entry)
402 event_sched_out(event, cpuctx, ctx);
403
404 if (group_event->attr.exclusive)
405 cpuctx->exclusive = 0;
406 }
407
408 /*
409 * Cross CPU call to remove a performance event
410 *
411 * We disable the event on the hardware level first. After that we
412 * remove it from the context list.
413 */
414 static void __perf_event_remove_from_context(void *info)
415 {
416 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
417 struct perf_event *event = info;
418 struct perf_event_context *ctx = event->ctx;
419
420 /*
421 * If this is a task context, we need to check whether it is
422 * the current task context of this cpu. If not it has been
423 * scheduled out before the smp call arrived.
424 */
425 if (ctx->task && cpuctx->task_ctx != ctx)
426 return;
427
428 raw_spin_lock(&ctx->lock);
429 /*
430 * Protect the list operation against NMI by disabling the
431 * events on a global level.
432 */
433 perf_disable();
434
435 event_sched_out(event, cpuctx, ctx);
436
437 list_del_event(event, ctx);
438
439 if (!ctx->task) {
440 /*
441 * Allow more per task events with respect to the
442 * reservation:
443 */
444 cpuctx->max_pertask =
445 min(perf_max_events - ctx->nr_events,
446 perf_max_events - perf_reserved_percpu);
447 }
448
449 perf_enable();
450 raw_spin_unlock(&ctx->lock);
451 }
452
453
454 /*
455 * Remove the event from a task's (or a CPU's) list of events.
456 *
457 * Must be called with ctx->mutex held.
458 *
459 * CPU events are removed with a smp call. For task events we only
460 * call when the task is on a CPU.
461 *
462 * If event->ctx is a cloned context, callers must make sure that
463 * every task struct that event->ctx->task could possibly point to
464 * remains valid. This is OK when called from perf_release since
465 * that only calls us on the top-level context, which can't be a clone.
466 * When called from perf_event_exit_task, it's OK because the
467 * context has been detached from its task.
468 */
469 static void perf_event_remove_from_context(struct perf_event *event)
470 {
471 struct perf_event_context *ctx = event->ctx;
472 struct task_struct *task = ctx->task;
473
474 if (!task) {
475 /*
476 * Per cpu events are removed via an smp call and
477 * the removal is always successful.
478 */
479 smp_call_function_single(event->cpu,
480 __perf_event_remove_from_context,
481 event, 1);
482 return;
483 }
484
485 retry:
486 task_oncpu_function_call(task, __perf_event_remove_from_context,
487 event);
488
489 raw_spin_lock_irq(&ctx->lock);
490 /*
491 * If the context is active we need to retry the smp call.
492 */
493 if (ctx->nr_active && !list_empty(&event->group_entry)) {
494 raw_spin_unlock_irq(&ctx->lock);
495 goto retry;
496 }
497
498 /*
499 * The lock prevents that this context is scheduled in so we
500 * can remove the event safely, if the call above did not
501 * succeed.
502 */
503 if (!list_empty(&event->group_entry))
504 list_del_event(event, ctx);
505 raw_spin_unlock_irq(&ctx->lock);
506 }
507
508 /*
509 * Update total_time_enabled and total_time_running for all events in a group.
510 */
511 static void update_group_times(struct perf_event *leader)
512 {
513 struct perf_event *event;
514
515 update_event_times(leader);
516 list_for_each_entry(event, &leader->sibling_list, group_entry)
517 update_event_times(event);
518 }
519
520 /*
521 * Cross CPU call to disable a performance event
522 */
523 static void __perf_event_disable(void *info)
524 {
525 struct perf_event *event = info;
526 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
527 struct perf_event_context *ctx = event->ctx;
528
529 /*
530 * If this is a per-task event, need to check whether this
531 * event's task is the current task on this cpu.
532 */
533 if (ctx->task && cpuctx->task_ctx != ctx)
534 return;
535
536 raw_spin_lock(&ctx->lock);
537
538 /*
539 * If the event is on, turn it off.
540 * If it is in error state, leave it in error state.
541 */
542 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
543 update_context_time(ctx);
544 update_group_times(event);
545 if (event == event->group_leader)
546 group_sched_out(event, cpuctx, ctx);
547 else
548 event_sched_out(event, cpuctx, ctx);
549 event->state = PERF_EVENT_STATE_OFF;
550 }
551
552 raw_spin_unlock(&ctx->lock);
553 }
554
555 /*
556 * Disable a event.
557 *
558 * If event->ctx is a cloned context, callers must make sure that
559 * every task struct that event->ctx->task could possibly point to
560 * remains valid. This condition is satisifed when called through
561 * perf_event_for_each_child or perf_event_for_each because they
562 * hold the top-level event's child_mutex, so any descendant that
563 * goes to exit will block in sync_child_event.
564 * When called from perf_pending_event it's OK because event->ctx
565 * is the current context on this CPU and preemption is disabled,
566 * hence we can't get into perf_event_task_sched_out for this context.
567 */
568 void perf_event_disable(struct perf_event *event)
569 {
570 struct perf_event_context *ctx = event->ctx;
571 struct task_struct *task = ctx->task;
572
573 if (!task) {
574 /*
575 * Disable the event on the cpu that it's on
576 */
577 smp_call_function_single(event->cpu, __perf_event_disable,
578 event, 1);
579 return;
580 }
581
582 retry:
583 task_oncpu_function_call(task, __perf_event_disable, event);
584
585 raw_spin_lock_irq(&ctx->lock);
586 /*
587 * If the event is still active, we need to retry the cross-call.
588 */
589 if (event->state == PERF_EVENT_STATE_ACTIVE) {
590 raw_spin_unlock_irq(&ctx->lock);
591 goto retry;
592 }
593
594 /*
595 * Since we have the lock this context can't be scheduled
596 * in, so we can change the state safely.
597 */
598 if (event->state == PERF_EVENT_STATE_INACTIVE) {
599 update_group_times(event);
600 event->state = PERF_EVENT_STATE_OFF;
601 }
602
603 raw_spin_unlock_irq(&ctx->lock);
604 }
605
606 static int
607 event_sched_in(struct perf_event *event,
608 struct perf_cpu_context *cpuctx,
609 struct perf_event_context *ctx)
610 {
611 if (event->state <= PERF_EVENT_STATE_OFF)
612 return 0;
613
614 event->state = PERF_EVENT_STATE_ACTIVE;
615 event->oncpu = smp_processor_id();
616 /*
617 * The new state must be visible before we turn it on in the hardware:
618 */
619 smp_wmb();
620
621 if (event->pmu->enable(event)) {
622 event->state = PERF_EVENT_STATE_INACTIVE;
623 event->oncpu = -1;
624 return -EAGAIN;
625 }
626
627 event->tstamp_running += ctx->time - event->tstamp_stopped;
628
629 if (!is_software_event(event))
630 cpuctx->active_oncpu++;
631 ctx->nr_active++;
632
633 if (event->attr.exclusive)
634 cpuctx->exclusive = 1;
635
636 return 0;
637 }
638
639 static int
640 group_sched_in(struct perf_event *group_event,
641 struct perf_cpu_context *cpuctx,
642 struct perf_event_context *ctx)
643 {
644 struct perf_event *event, *partial_group;
645 int ret;
646
647 if (group_event->state == PERF_EVENT_STATE_OFF)
648 return 0;
649
650 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx);
651 if (ret)
652 return ret < 0 ? ret : 0;
653
654 if (event_sched_in(group_event, cpuctx, ctx))
655 return -EAGAIN;
656
657 /*
658 * Schedule in siblings as one group (if any):
659 */
660 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
661 if (event_sched_in(event, cpuctx, ctx)) {
662 partial_group = event;
663 goto group_error;
664 }
665 }
666
667 return 0;
668
669 group_error:
670 /*
671 * Groups can be scheduled in as one unit only, so undo any
672 * partial group before returning:
673 */
674 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
675 if (event == partial_group)
676 break;
677 event_sched_out(event, cpuctx, ctx);
678 }
679 event_sched_out(group_event, cpuctx, ctx);
680
681 return -EAGAIN;
682 }
683
684 /*
685 * Work out whether we can put this event group on the CPU now.
686 */
687 static int group_can_go_on(struct perf_event *event,
688 struct perf_cpu_context *cpuctx,
689 int can_add_hw)
690 {
691 /*
692 * Groups consisting entirely of software events can always go on.
693 */
694 if (event->group_flags & PERF_GROUP_SOFTWARE)
695 return 1;
696 /*
697 * If an exclusive group is already on, no other hardware
698 * events can go on.
699 */
700 if (cpuctx->exclusive)
701 return 0;
702 /*
703 * If this group is exclusive and there are already
704 * events on the CPU, it can't go on.
705 */
706 if (event->attr.exclusive && cpuctx->active_oncpu)
707 return 0;
708 /*
709 * Otherwise, try to add it if all previous groups were able
710 * to go on.
711 */
712 return can_add_hw;
713 }
714
715 static void add_event_to_ctx(struct perf_event *event,
716 struct perf_event_context *ctx)
717 {
718 list_add_event(event, ctx);
719 event->tstamp_enabled = ctx->time;
720 event->tstamp_running = ctx->time;
721 event->tstamp_stopped = ctx->time;
722 }
723
724 /*
725 * Cross CPU call to install and enable a performance event
726 *
727 * Must be called with ctx->mutex held
728 */
729 static void __perf_install_in_context(void *info)
730 {
731 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
732 struct perf_event *event = info;
733 struct perf_event_context *ctx = event->ctx;
734 struct perf_event *leader = event->group_leader;
735 int err;
736
737 /*
738 * If this is a task context, we need to check whether it is
739 * the current task context of this cpu. If not it has been
740 * scheduled out before the smp call arrived.
741 * Or possibly this is the right context but it isn't
742 * on this cpu because it had no events.
743 */
744 if (ctx->task && cpuctx->task_ctx != ctx) {
745 if (cpuctx->task_ctx || ctx->task != current)
746 return;
747 cpuctx->task_ctx = ctx;
748 }
749
750 raw_spin_lock(&ctx->lock);
751 ctx->is_active = 1;
752 update_context_time(ctx);
753
754 /*
755 * Protect the list operation against NMI by disabling the
756 * events on a global level. NOP for non NMI based events.
757 */
758 perf_disable();
759
760 add_event_to_ctx(event, ctx);
761
762 if (event->cpu != -1 && event->cpu != smp_processor_id())
763 goto unlock;
764
765 /*
766 * Don't put the event on if it is disabled or if
767 * it is in a group and the group isn't on.
768 */
769 if (event->state != PERF_EVENT_STATE_INACTIVE ||
770 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
771 goto unlock;
772
773 /*
774 * An exclusive event can't go on if there are already active
775 * hardware events, and no hardware event can go on if there
776 * is already an exclusive event on.
777 */
778 if (!group_can_go_on(event, cpuctx, 1))
779 err = -EEXIST;
780 else
781 err = event_sched_in(event, cpuctx, ctx);
782
783 if (err) {
784 /*
785 * This event couldn't go on. If it is in a group
786 * then we have to pull the whole group off.
787 * If the event group is pinned then put it in error state.
788 */
789 if (leader != event)
790 group_sched_out(leader, cpuctx, ctx);
791 if (leader->attr.pinned) {
792 update_group_times(leader);
793 leader->state = PERF_EVENT_STATE_ERROR;
794 }
795 }
796
797 if (!err && !ctx->task && cpuctx->max_pertask)
798 cpuctx->max_pertask--;
799
800 unlock:
801 perf_enable();
802
803 raw_spin_unlock(&ctx->lock);
804 }
805
806 /*
807 * Attach a performance event to a context
808 *
809 * First we add the event to the list with the hardware enable bit
810 * in event->hw_config cleared.
811 *
812 * If the event is attached to a task which is on a CPU we use a smp
813 * call to enable it in the task context. The task might have been
814 * scheduled away, but we check this in the smp call again.
815 *
816 * Must be called with ctx->mutex held.
817 */
818 static void
819 perf_install_in_context(struct perf_event_context *ctx,
820 struct perf_event *event,
821 int cpu)
822 {
823 struct task_struct *task = ctx->task;
824
825 if (!task) {
826 /*
827 * Per cpu events are installed via an smp call and
828 * the install is always successful.
829 */
830 smp_call_function_single(cpu, __perf_install_in_context,
831 event, 1);
832 return;
833 }
834
835 retry:
836 task_oncpu_function_call(task, __perf_install_in_context,
837 event);
838
839 raw_spin_lock_irq(&ctx->lock);
840 /*
841 * we need to retry the smp call.
842 */
843 if (ctx->is_active && list_empty(&event->group_entry)) {
844 raw_spin_unlock_irq(&ctx->lock);
845 goto retry;
846 }
847
848 /*
849 * The lock prevents that this context is scheduled in so we
850 * can add the event safely, if it the call above did not
851 * succeed.
852 */
853 if (list_empty(&event->group_entry))
854 add_event_to_ctx(event, ctx);
855 raw_spin_unlock_irq(&ctx->lock);
856 }
857
858 /*
859 * Put a event into inactive state and update time fields.
860 * Enabling the leader of a group effectively enables all
861 * the group members that aren't explicitly disabled, so we
862 * have to update their ->tstamp_enabled also.
863 * Note: this works for group members as well as group leaders
864 * since the non-leader members' sibling_lists will be empty.
865 */
866 static void __perf_event_mark_enabled(struct perf_event *event,
867 struct perf_event_context *ctx)
868 {
869 struct perf_event *sub;
870
871 event->state = PERF_EVENT_STATE_INACTIVE;
872 event->tstamp_enabled = ctx->time - event->total_time_enabled;
873 list_for_each_entry(sub, &event->sibling_list, group_entry)
874 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
875 sub->tstamp_enabled =
876 ctx->time - sub->total_time_enabled;
877 }
878
879 /*
880 * Cross CPU call to enable a performance event
881 */
882 static void __perf_event_enable(void *info)
883 {
884 struct perf_event *event = info;
885 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
886 struct perf_event_context *ctx = event->ctx;
887 struct perf_event *leader = event->group_leader;
888 int err;
889
890 /*
891 * If this is a per-task event, need to check whether this
892 * event's task is the current task on this cpu.
893 */
894 if (ctx->task && cpuctx->task_ctx != ctx) {
895 if (cpuctx->task_ctx || ctx->task != current)
896 return;
897 cpuctx->task_ctx = ctx;
898 }
899
900 raw_spin_lock(&ctx->lock);
901 ctx->is_active = 1;
902 update_context_time(ctx);
903
904 if (event->state >= PERF_EVENT_STATE_INACTIVE)
905 goto unlock;
906 __perf_event_mark_enabled(event, ctx);
907
908 if (event->cpu != -1 && event->cpu != smp_processor_id())
909 goto unlock;
910
911 /*
912 * If the event is in a group and isn't the group leader,
913 * then don't put it on unless the group is on.
914 */
915 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
916 goto unlock;
917
918 if (!group_can_go_on(event, cpuctx, 1)) {
919 err = -EEXIST;
920 } else {
921 perf_disable();
922 if (event == leader)
923 err = group_sched_in(event, cpuctx, ctx);
924 else
925 err = event_sched_in(event, cpuctx, ctx);
926 perf_enable();
927 }
928
929 if (err) {
930 /*
931 * If this event can't go on and it's part of a
932 * group, then the whole group has to come off.
933 */
934 if (leader != event)
935 group_sched_out(leader, cpuctx, ctx);
936 if (leader->attr.pinned) {
937 update_group_times(leader);
938 leader->state = PERF_EVENT_STATE_ERROR;
939 }
940 }
941
942 unlock:
943 raw_spin_unlock(&ctx->lock);
944 }
945
946 /*
947 * Enable a event.
948 *
949 * If event->ctx is a cloned context, callers must make sure that
950 * every task struct that event->ctx->task could possibly point to
951 * remains valid. This condition is satisfied when called through
952 * perf_event_for_each_child or perf_event_for_each as described
953 * for perf_event_disable.
954 */
955 void perf_event_enable(struct perf_event *event)
956 {
957 struct perf_event_context *ctx = event->ctx;
958 struct task_struct *task = ctx->task;
959
960 if (!task) {
961 /*
962 * Enable the event on the cpu that it's on
963 */
964 smp_call_function_single(event->cpu, __perf_event_enable,
965 event, 1);
966 return;
967 }
968
969 raw_spin_lock_irq(&ctx->lock);
970 if (event->state >= PERF_EVENT_STATE_INACTIVE)
971 goto out;
972
973 /*
974 * If the event is in error state, clear that first.
975 * That way, if we see the event in error state below, we
976 * know that it has gone back into error state, as distinct
977 * from the task having been scheduled away before the
978 * cross-call arrived.
979 */
980 if (event->state == PERF_EVENT_STATE_ERROR)
981 event->state = PERF_EVENT_STATE_OFF;
982
983 retry:
984 raw_spin_unlock_irq(&ctx->lock);
985 task_oncpu_function_call(task, __perf_event_enable, event);
986
987 raw_spin_lock_irq(&ctx->lock);
988
989 /*
990 * If the context is active and the event is still off,
991 * we need to retry the cross-call.
992 */
993 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
994 goto retry;
995
996 /*
997 * Since we have the lock this context can't be scheduled
998 * in, so we can change the state safely.
999 */
1000 if (event->state == PERF_EVENT_STATE_OFF)
1001 __perf_event_mark_enabled(event, ctx);
1002
1003 out:
1004 raw_spin_unlock_irq(&ctx->lock);
1005 }
1006
1007 static int perf_event_refresh(struct perf_event *event, int refresh)
1008 {
1009 /*
1010 * not supported on inherited events
1011 */
1012 if (event->attr.inherit)
1013 return -EINVAL;
1014
1015 atomic_add(refresh, &event->event_limit);
1016 perf_event_enable(event);
1017
1018 return 0;
1019 }
1020
1021 enum event_type_t {
1022 EVENT_FLEXIBLE = 0x1,
1023 EVENT_PINNED = 0x2,
1024 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1025 };
1026
1027 static void ctx_sched_out(struct perf_event_context *ctx,
1028 struct perf_cpu_context *cpuctx,
1029 enum event_type_t event_type)
1030 {
1031 struct perf_event *event;
1032
1033 raw_spin_lock(&ctx->lock);
1034 ctx->is_active = 0;
1035 if (likely(!ctx->nr_events))
1036 goto out;
1037 update_context_time(ctx);
1038
1039 perf_disable();
1040 if (!ctx->nr_active)
1041 goto out_enable;
1042
1043 if (event_type & EVENT_PINNED)
1044 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1045 group_sched_out(event, cpuctx, ctx);
1046
1047 if (event_type & EVENT_FLEXIBLE)
1048 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1049 group_sched_out(event, cpuctx, ctx);
1050
1051 out_enable:
1052 perf_enable();
1053 out:
1054 raw_spin_unlock(&ctx->lock);
1055 }
1056
1057 /*
1058 * Test whether two contexts are equivalent, i.e. whether they
1059 * have both been cloned from the same version of the same context
1060 * and they both have the same number of enabled events.
1061 * If the number of enabled events is the same, then the set
1062 * of enabled events should be the same, because these are both
1063 * inherited contexts, therefore we can't access individual events
1064 * in them directly with an fd; we can only enable/disable all
1065 * events via prctl, or enable/disable all events in a family
1066 * via ioctl, which will have the same effect on both contexts.
1067 */
1068 static int context_equiv(struct perf_event_context *ctx1,
1069 struct perf_event_context *ctx2)
1070 {
1071 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1072 && ctx1->parent_gen == ctx2->parent_gen
1073 && !ctx1->pin_count && !ctx2->pin_count;
1074 }
1075
1076 static void __perf_event_sync_stat(struct perf_event *event,
1077 struct perf_event *next_event)
1078 {
1079 u64 value;
1080
1081 if (!event->attr.inherit_stat)
1082 return;
1083
1084 /*
1085 * Update the event value, we cannot use perf_event_read()
1086 * because we're in the middle of a context switch and have IRQs
1087 * disabled, which upsets smp_call_function_single(), however
1088 * we know the event must be on the current CPU, therefore we
1089 * don't need to use it.
1090 */
1091 switch (event->state) {
1092 case PERF_EVENT_STATE_ACTIVE:
1093 event->pmu->read(event);
1094 /* fall-through */
1095
1096 case PERF_EVENT_STATE_INACTIVE:
1097 update_event_times(event);
1098 break;
1099
1100 default:
1101 break;
1102 }
1103
1104 /*
1105 * In order to keep per-task stats reliable we need to flip the event
1106 * values when we flip the contexts.
1107 */
1108 value = atomic64_read(&next_event->count);
1109 value = atomic64_xchg(&event->count, value);
1110 atomic64_set(&next_event->count, value);
1111
1112 swap(event->total_time_enabled, next_event->total_time_enabled);
1113 swap(event->total_time_running, next_event->total_time_running);
1114
1115 /*
1116 * Since we swizzled the values, update the user visible data too.
1117 */
1118 perf_event_update_userpage(event);
1119 perf_event_update_userpage(next_event);
1120 }
1121
1122 #define list_next_entry(pos, member) \
1123 list_entry(pos->member.next, typeof(*pos), member)
1124
1125 static void perf_event_sync_stat(struct perf_event_context *ctx,
1126 struct perf_event_context *next_ctx)
1127 {
1128 struct perf_event *event, *next_event;
1129
1130 if (!ctx->nr_stat)
1131 return;
1132
1133 update_context_time(ctx);
1134
1135 event = list_first_entry(&ctx->event_list,
1136 struct perf_event, event_entry);
1137
1138 next_event = list_first_entry(&next_ctx->event_list,
1139 struct perf_event, event_entry);
1140
1141 while (&event->event_entry != &ctx->event_list &&
1142 &next_event->event_entry != &next_ctx->event_list) {
1143
1144 __perf_event_sync_stat(event, next_event);
1145
1146 event = list_next_entry(event, event_entry);
1147 next_event = list_next_entry(next_event, event_entry);
1148 }
1149 }
1150
1151 /*
1152 * Called from scheduler to remove the events of the current task,
1153 * with interrupts disabled.
1154 *
1155 * We stop each event and update the event value in event->count.
1156 *
1157 * This does not protect us against NMI, but disable()
1158 * sets the disabled bit in the control field of event _before_
1159 * accessing the event control register. If a NMI hits, then it will
1160 * not restart the event.
1161 */
1162 void perf_event_task_sched_out(struct task_struct *task,
1163 struct task_struct *next)
1164 {
1165 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1166 struct perf_event_context *ctx = task->perf_event_ctxp;
1167 struct perf_event_context *next_ctx;
1168 struct perf_event_context *parent;
1169 int do_switch = 1;
1170
1171 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1172
1173 if (likely(!ctx || !cpuctx->task_ctx))
1174 return;
1175
1176 rcu_read_lock();
1177 parent = rcu_dereference(ctx->parent_ctx);
1178 next_ctx = next->perf_event_ctxp;
1179 if (parent && next_ctx &&
1180 rcu_dereference(next_ctx->parent_ctx) == parent) {
1181 /*
1182 * Looks like the two contexts are clones, so we might be
1183 * able to optimize the context switch. We lock both
1184 * contexts and check that they are clones under the
1185 * lock (including re-checking that neither has been
1186 * uncloned in the meantime). It doesn't matter which
1187 * order we take the locks because no other cpu could
1188 * be trying to lock both of these tasks.
1189 */
1190 raw_spin_lock(&ctx->lock);
1191 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1192 if (context_equiv(ctx, next_ctx)) {
1193 /*
1194 * XXX do we need a memory barrier of sorts
1195 * wrt to rcu_dereference() of perf_event_ctxp
1196 */
1197 task->perf_event_ctxp = next_ctx;
1198 next->perf_event_ctxp = ctx;
1199 ctx->task = next;
1200 next_ctx->task = task;
1201 do_switch = 0;
1202
1203 perf_event_sync_stat(ctx, next_ctx);
1204 }
1205 raw_spin_unlock(&next_ctx->lock);
1206 raw_spin_unlock(&ctx->lock);
1207 }
1208 rcu_read_unlock();
1209
1210 if (do_switch) {
1211 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1212 cpuctx->task_ctx = NULL;
1213 }
1214 }
1215
1216 static void task_ctx_sched_out(struct perf_event_context *ctx,
1217 enum event_type_t event_type)
1218 {
1219 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1220
1221 if (!cpuctx->task_ctx)
1222 return;
1223
1224 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1225 return;
1226
1227 ctx_sched_out(ctx, cpuctx, event_type);
1228 cpuctx->task_ctx = NULL;
1229 }
1230
1231 /*
1232 * Called with IRQs disabled
1233 */
1234 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1235 {
1236 task_ctx_sched_out(ctx, EVENT_ALL);
1237 }
1238
1239 /*
1240 * Called with IRQs disabled
1241 */
1242 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1243 enum event_type_t event_type)
1244 {
1245 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1246 }
1247
1248 static void
1249 ctx_pinned_sched_in(struct perf_event_context *ctx,
1250 struct perf_cpu_context *cpuctx)
1251 {
1252 struct perf_event *event;
1253
1254 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1255 if (event->state <= PERF_EVENT_STATE_OFF)
1256 continue;
1257 if (event->cpu != -1 && event->cpu != smp_processor_id())
1258 continue;
1259
1260 if (group_can_go_on(event, cpuctx, 1))
1261 group_sched_in(event, cpuctx, ctx);
1262
1263 /*
1264 * If this pinned group hasn't been scheduled,
1265 * put it in error state.
1266 */
1267 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1268 update_group_times(event);
1269 event->state = PERF_EVENT_STATE_ERROR;
1270 }
1271 }
1272 }
1273
1274 static void
1275 ctx_flexible_sched_in(struct perf_event_context *ctx,
1276 struct perf_cpu_context *cpuctx)
1277 {
1278 struct perf_event *event;
1279 int can_add_hw = 1;
1280
1281 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1282 /* Ignore events in OFF or ERROR state */
1283 if (event->state <= PERF_EVENT_STATE_OFF)
1284 continue;
1285 /*
1286 * Listen to the 'cpu' scheduling filter constraint
1287 * of events:
1288 */
1289 if (event->cpu != -1 && event->cpu != smp_processor_id())
1290 continue;
1291
1292 if (group_can_go_on(event, cpuctx, can_add_hw))
1293 if (group_sched_in(event, cpuctx, ctx))
1294 can_add_hw = 0;
1295 }
1296 }
1297
1298 static void
1299 ctx_sched_in(struct perf_event_context *ctx,
1300 struct perf_cpu_context *cpuctx,
1301 enum event_type_t event_type)
1302 {
1303 raw_spin_lock(&ctx->lock);
1304 ctx->is_active = 1;
1305 if (likely(!ctx->nr_events))
1306 goto out;
1307
1308 ctx->timestamp = perf_clock();
1309
1310 perf_disable();
1311
1312 /*
1313 * First go through the list and put on any pinned groups
1314 * in order to give them the best chance of going on.
1315 */
1316 if (event_type & EVENT_PINNED)
1317 ctx_pinned_sched_in(ctx, cpuctx);
1318
1319 /* Then walk through the lower prio flexible groups */
1320 if (event_type & EVENT_FLEXIBLE)
1321 ctx_flexible_sched_in(ctx, cpuctx);
1322
1323 perf_enable();
1324 out:
1325 raw_spin_unlock(&ctx->lock);
1326 }
1327
1328 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1329 enum event_type_t event_type)
1330 {
1331 struct perf_event_context *ctx = &cpuctx->ctx;
1332
1333 ctx_sched_in(ctx, cpuctx, event_type);
1334 }
1335
1336 static void task_ctx_sched_in(struct task_struct *task,
1337 enum event_type_t event_type)
1338 {
1339 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1340 struct perf_event_context *ctx = task->perf_event_ctxp;
1341
1342 if (likely(!ctx))
1343 return;
1344 if (cpuctx->task_ctx == ctx)
1345 return;
1346 ctx_sched_in(ctx, cpuctx, event_type);
1347 cpuctx->task_ctx = ctx;
1348 }
1349 /*
1350 * Called from scheduler to add the events of the current task
1351 * with interrupts disabled.
1352 *
1353 * We restore the event value and then enable it.
1354 *
1355 * This does not protect us against NMI, but enable()
1356 * sets the enabled bit in the control field of event _before_
1357 * accessing the event control register. If a NMI hits, then it will
1358 * keep the event running.
1359 */
1360 void perf_event_task_sched_in(struct task_struct *task)
1361 {
1362 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1363 struct perf_event_context *ctx = task->perf_event_ctxp;
1364
1365 if (likely(!ctx))
1366 return;
1367
1368 if (cpuctx->task_ctx == ctx)
1369 return;
1370
1371 perf_disable();
1372
1373 /*
1374 * We want to keep the following priority order:
1375 * cpu pinned (that don't need to move), task pinned,
1376 * cpu flexible, task flexible.
1377 */
1378 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1379
1380 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1381 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1382 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1383
1384 cpuctx->task_ctx = ctx;
1385
1386 perf_enable();
1387 }
1388
1389 #define MAX_INTERRUPTS (~0ULL)
1390
1391 static void perf_log_throttle(struct perf_event *event, int enable);
1392
1393 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1394 {
1395 u64 frequency = event->attr.sample_freq;
1396 u64 sec = NSEC_PER_SEC;
1397 u64 divisor, dividend;
1398
1399 int count_fls, nsec_fls, frequency_fls, sec_fls;
1400
1401 count_fls = fls64(count);
1402 nsec_fls = fls64(nsec);
1403 frequency_fls = fls64(frequency);
1404 sec_fls = 30;
1405
1406 /*
1407 * We got @count in @nsec, with a target of sample_freq HZ
1408 * the target period becomes:
1409 *
1410 * @count * 10^9
1411 * period = -------------------
1412 * @nsec * sample_freq
1413 *
1414 */
1415
1416 /*
1417 * Reduce accuracy by one bit such that @a and @b converge
1418 * to a similar magnitude.
1419 */
1420 #define REDUCE_FLS(a, b) \
1421 do { \
1422 if (a##_fls > b##_fls) { \
1423 a >>= 1; \
1424 a##_fls--; \
1425 } else { \
1426 b >>= 1; \
1427 b##_fls--; \
1428 } \
1429 } while (0)
1430
1431 /*
1432 * Reduce accuracy until either term fits in a u64, then proceed with
1433 * the other, so that finally we can do a u64/u64 division.
1434 */
1435 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1436 REDUCE_FLS(nsec, frequency);
1437 REDUCE_FLS(sec, count);
1438 }
1439
1440 if (count_fls + sec_fls > 64) {
1441 divisor = nsec * frequency;
1442
1443 while (count_fls + sec_fls > 64) {
1444 REDUCE_FLS(count, sec);
1445 divisor >>= 1;
1446 }
1447
1448 dividend = count * sec;
1449 } else {
1450 dividend = count * sec;
1451
1452 while (nsec_fls + frequency_fls > 64) {
1453 REDUCE_FLS(nsec, frequency);
1454 dividend >>= 1;
1455 }
1456
1457 divisor = nsec * frequency;
1458 }
1459
1460 return div64_u64(dividend, divisor);
1461 }
1462
1463 static void perf_event_stop(struct perf_event *event)
1464 {
1465 if (!event->pmu->stop)
1466 return event->pmu->disable(event);
1467
1468 return event->pmu->stop(event);
1469 }
1470
1471 static int perf_event_start(struct perf_event *event)
1472 {
1473 if (!event->pmu->start)
1474 return event->pmu->enable(event);
1475
1476 return event->pmu->start(event);
1477 }
1478
1479 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1480 {
1481 struct hw_perf_event *hwc = &event->hw;
1482 u64 period, sample_period;
1483 s64 delta;
1484
1485 period = perf_calculate_period(event, nsec, count);
1486
1487 delta = (s64)(period - hwc->sample_period);
1488 delta = (delta + 7) / 8; /* low pass filter */
1489
1490 sample_period = hwc->sample_period + delta;
1491
1492 if (!sample_period)
1493 sample_period = 1;
1494
1495 hwc->sample_period = sample_period;
1496
1497 if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1498 perf_disable();
1499 perf_event_stop(event);
1500 atomic64_set(&hwc->period_left, 0);
1501 perf_event_start(event);
1502 perf_enable();
1503 }
1504 }
1505
1506 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1507 {
1508 struct perf_event *event;
1509 struct hw_perf_event *hwc;
1510 u64 interrupts, now;
1511 s64 delta;
1512
1513 raw_spin_lock(&ctx->lock);
1514 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1515 if (event->state != PERF_EVENT_STATE_ACTIVE)
1516 continue;
1517
1518 if (event->cpu != -1 && event->cpu != smp_processor_id())
1519 continue;
1520
1521 hwc = &event->hw;
1522
1523 interrupts = hwc->interrupts;
1524 hwc->interrupts = 0;
1525
1526 /*
1527 * unthrottle events on the tick
1528 */
1529 if (interrupts == MAX_INTERRUPTS) {
1530 perf_log_throttle(event, 1);
1531 perf_disable();
1532 event->pmu->unthrottle(event);
1533 perf_enable();
1534 }
1535
1536 if (!event->attr.freq || !event->attr.sample_freq)
1537 continue;
1538
1539 perf_disable();
1540 event->pmu->read(event);
1541 now = atomic64_read(&event->count);
1542 delta = now - hwc->freq_count_stamp;
1543 hwc->freq_count_stamp = now;
1544
1545 if (delta > 0)
1546 perf_adjust_period(event, TICK_NSEC, delta);
1547 perf_enable();
1548 }
1549 raw_spin_unlock(&ctx->lock);
1550 }
1551
1552 /*
1553 * Round-robin a context's events:
1554 */
1555 static void rotate_ctx(struct perf_event_context *ctx)
1556 {
1557 raw_spin_lock(&ctx->lock);
1558
1559 /* Rotate the first entry last of non-pinned groups */
1560 list_rotate_left(&ctx->flexible_groups);
1561
1562 raw_spin_unlock(&ctx->lock);
1563 }
1564
1565 void perf_event_task_tick(struct task_struct *curr)
1566 {
1567 struct perf_cpu_context *cpuctx;
1568 struct perf_event_context *ctx;
1569 int rotate = 0;
1570
1571 if (!atomic_read(&nr_events))
1572 return;
1573
1574 cpuctx = &__get_cpu_var(perf_cpu_context);
1575 if (cpuctx->ctx.nr_events &&
1576 cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1577 rotate = 1;
1578
1579 ctx = curr->perf_event_ctxp;
1580 if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1581 rotate = 1;
1582
1583 perf_ctx_adjust_freq(&cpuctx->ctx);
1584 if (ctx)
1585 perf_ctx_adjust_freq(ctx);
1586
1587 if (!rotate)
1588 return;
1589
1590 perf_disable();
1591 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1592 if (ctx)
1593 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1594
1595 rotate_ctx(&cpuctx->ctx);
1596 if (ctx)
1597 rotate_ctx(ctx);
1598
1599 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1600 if (ctx)
1601 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1602 perf_enable();
1603 }
1604
1605 static int event_enable_on_exec(struct perf_event *event,
1606 struct perf_event_context *ctx)
1607 {
1608 if (!event->attr.enable_on_exec)
1609 return 0;
1610
1611 event->attr.enable_on_exec = 0;
1612 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1613 return 0;
1614
1615 __perf_event_mark_enabled(event, ctx);
1616
1617 return 1;
1618 }
1619
1620 /*
1621 * Enable all of a task's events that have been marked enable-on-exec.
1622 * This expects task == current.
1623 */
1624 static void perf_event_enable_on_exec(struct task_struct *task)
1625 {
1626 struct perf_event_context *ctx;
1627 struct perf_event *event;
1628 unsigned long flags;
1629 int enabled = 0;
1630 int ret;
1631
1632 local_irq_save(flags);
1633 ctx = task->perf_event_ctxp;
1634 if (!ctx || !ctx->nr_events)
1635 goto out;
1636
1637 __perf_event_task_sched_out(ctx);
1638
1639 raw_spin_lock(&ctx->lock);
1640
1641 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1642 ret = event_enable_on_exec(event, ctx);
1643 if (ret)
1644 enabled = 1;
1645 }
1646
1647 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1648 ret = event_enable_on_exec(event, ctx);
1649 if (ret)
1650 enabled = 1;
1651 }
1652
1653 /*
1654 * Unclone this context if we enabled any event.
1655 */
1656 if (enabled)
1657 unclone_ctx(ctx);
1658
1659 raw_spin_unlock(&ctx->lock);
1660
1661 perf_event_task_sched_in(task);
1662 out:
1663 local_irq_restore(flags);
1664 }
1665
1666 /*
1667 * Cross CPU call to read the hardware event
1668 */
1669 static void __perf_event_read(void *info)
1670 {
1671 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1672 struct perf_event *event = info;
1673 struct perf_event_context *ctx = event->ctx;
1674
1675 /*
1676 * If this is a task context, we need to check whether it is
1677 * the current task context of this cpu. If not it has been
1678 * scheduled out before the smp call arrived. In that case
1679 * event->count would have been updated to a recent sample
1680 * when the event was scheduled out.
1681 */
1682 if (ctx->task && cpuctx->task_ctx != ctx)
1683 return;
1684
1685 raw_spin_lock(&ctx->lock);
1686 update_context_time(ctx);
1687 update_event_times(event);
1688 raw_spin_unlock(&ctx->lock);
1689
1690 event->pmu->read(event);
1691 }
1692
1693 static u64 perf_event_read(struct perf_event *event)
1694 {
1695 /*
1696 * If event is enabled and currently active on a CPU, update the
1697 * value in the event structure:
1698 */
1699 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1700 smp_call_function_single(event->oncpu,
1701 __perf_event_read, event, 1);
1702 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1703 struct perf_event_context *ctx = event->ctx;
1704 unsigned long flags;
1705
1706 raw_spin_lock_irqsave(&ctx->lock, flags);
1707 update_context_time(ctx);
1708 update_event_times(event);
1709 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1710 }
1711
1712 return atomic64_read(&event->count);
1713 }
1714
1715 /*
1716 * Initialize the perf_event context in a task_struct:
1717 */
1718 static void
1719 __perf_event_init_context(struct perf_event_context *ctx,
1720 struct task_struct *task)
1721 {
1722 raw_spin_lock_init(&ctx->lock);
1723 mutex_init(&ctx->mutex);
1724 INIT_LIST_HEAD(&ctx->pinned_groups);
1725 INIT_LIST_HEAD(&ctx->flexible_groups);
1726 INIT_LIST_HEAD(&ctx->event_list);
1727 atomic_set(&ctx->refcount, 1);
1728 ctx->task = task;
1729 }
1730
1731 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1732 {
1733 struct perf_event_context *ctx;
1734 struct perf_cpu_context *cpuctx;
1735 struct task_struct *task;
1736 unsigned long flags;
1737 int err;
1738
1739 if (pid == -1 && cpu != -1) {
1740 /* Must be root to operate on a CPU event: */
1741 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1742 return ERR_PTR(-EACCES);
1743
1744 if (cpu < 0 || cpu >= nr_cpumask_bits)
1745 return ERR_PTR(-EINVAL);
1746
1747 /*
1748 * We could be clever and allow to attach a event to an
1749 * offline CPU and activate it when the CPU comes up, but
1750 * that's for later.
1751 */
1752 if (!cpu_online(cpu))
1753 return ERR_PTR(-ENODEV);
1754
1755 cpuctx = &per_cpu(perf_cpu_context, cpu);
1756 ctx = &cpuctx->ctx;
1757 get_ctx(ctx);
1758
1759 return ctx;
1760 }
1761
1762 rcu_read_lock();
1763 if (!pid)
1764 task = current;
1765 else
1766 task = find_task_by_vpid(pid);
1767 if (task)
1768 get_task_struct(task);
1769 rcu_read_unlock();
1770
1771 if (!task)
1772 return ERR_PTR(-ESRCH);
1773
1774 /*
1775 * Can't attach events to a dying task.
1776 */
1777 err = -ESRCH;
1778 if (task->flags & PF_EXITING)
1779 goto errout;
1780
1781 /* Reuse ptrace permission checks for now. */
1782 err = -EACCES;
1783 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1784 goto errout;
1785
1786 retry:
1787 ctx = perf_lock_task_context(task, &flags);
1788 if (ctx) {
1789 unclone_ctx(ctx);
1790 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1791 }
1792
1793 if (!ctx) {
1794 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1795 err = -ENOMEM;
1796 if (!ctx)
1797 goto errout;
1798 __perf_event_init_context(ctx, task);
1799 get_ctx(ctx);
1800 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1801 /*
1802 * We raced with some other task; use
1803 * the context they set.
1804 */
1805 kfree(ctx);
1806 goto retry;
1807 }
1808 get_task_struct(task);
1809 }
1810
1811 put_task_struct(task);
1812 return ctx;
1813
1814 errout:
1815 put_task_struct(task);
1816 return ERR_PTR(err);
1817 }
1818
1819 static void perf_event_free_filter(struct perf_event *event);
1820
1821 static void free_event_rcu(struct rcu_head *head)
1822 {
1823 struct perf_event *event;
1824
1825 event = container_of(head, struct perf_event, rcu_head);
1826 if (event->ns)
1827 put_pid_ns(event->ns);
1828 perf_event_free_filter(event);
1829 kfree(event);
1830 }
1831
1832 static void perf_pending_sync(struct perf_event *event);
1833
1834 static void free_event(struct perf_event *event)
1835 {
1836 perf_pending_sync(event);
1837
1838 if (!event->parent) {
1839 atomic_dec(&nr_events);
1840 if (event->attr.mmap)
1841 atomic_dec(&nr_mmap_events);
1842 if (event->attr.comm)
1843 atomic_dec(&nr_comm_events);
1844 if (event->attr.task)
1845 atomic_dec(&nr_task_events);
1846 }
1847
1848 if (event->output) {
1849 fput(event->output->filp);
1850 event->output = NULL;
1851 }
1852
1853 if (event->destroy)
1854 event->destroy(event);
1855
1856 put_ctx(event->ctx);
1857 call_rcu(&event->rcu_head, free_event_rcu);
1858 }
1859
1860 int perf_event_release_kernel(struct perf_event *event)
1861 {
1862 struct perf_event_context *ctx = event->ctx;
1863
1864 WARN_ON_ONCE(ctx->parent_ctx);
1865 mutex_lock(&ctx->mutex);
1866 perf_event_remove_from_context(event);
1867 mutex_unlock(&ctx->mutex);
1868
1869 mutex_lock(&event->owner->perf_event_mutex);
1870 list_del_init(&event->owner_entry);
1871 mutex_unlock(&event->owner->perf_event_mutex);
1872 put_task_struct(event->owner);
1873
1874 free_event(event);
1875
1876 return 0;
1877 }
1878 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1879
1880 /*
1881 * Called when the last reference to the file is gone.
1882 */
1883 static int perf_release(struct inode *inode, struct file *file)
1884 {
1885 struct perf_event *event = file->private_data;
1886
1887 file->private_data = NULL;
1888
1889 return perf_event_release_kernel(event);
1890 }
1891
1892 static int perf_event_read_size(struct perf_event *event)
1893 {
1894 int entry = sizeof(u64); /* value */
1895 int size = 0;
1896 int nr = 1;
1897
1898 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1899 size += sizeof(u64);
1900
1901 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1902 size += sizeof(u64);
1903
1904 if (event->attr.read_format & PERF_FORMAT_ID)
1905 entry += sizeof(u64);
1906
1907 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1908 nr += event->group_leader->nr_siblings;
1909 size += sizeof(u64);
1910 }
1911
1912 size += entry * nr;
1913
1914 return size;
1915 }
1916
1917 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1918 {
1919 struct perf_event *child;
1920 u64 total = 0;
1921
1922 *enabled = 0;
1923 *running = 0;
1924
1925 mutex_lock(&event->child_mutex);
1926 total += perf_event_read(event);
1927 *enabled += event->total_time_enabled +
1928 atomic64_read(&event->child_total_time_enabled);
1929 *running += event->total_time_running +
1930 atomic64_read(&event->child_total_time_running);
1931
1932 list_for_each_entry(child, &event->child_list, child_list) {
1933 total += perf_event_read(child);
1934 *enabled += child->total_time_enabled;
1935 *running += child->total_time_running;
1936 }
1937 mutex_unlock(&event->child_mutex);
1938
1939 return total;
1940 }
1941 EXPORT_SYMBOL_GPL(perf_event_read_value);
1942
1943 static int perf_event_read_group(struct perf_event *event,
1944 u64 read_format, char __user *buf)
1945 {
1946 struct perf_event *leader = event->group_leader, *sub;
1947 int n = 0, size = 0, ret = -EFAULT;
1948 struct perf_event_context *ctx = leader->ctx;
1949 u64 values[5];
1950 u64 count, enabled, running;
1951
1952 mutex_lock(&ctx->mutex);
1953 count = perf_event_read_value(leader, &enabled, &running);
1954
1955 values[n++] = 1 + leader->nr_siblings;
1956 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1957 values[n++] = enabled;
1958 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1959 values[n++] = running;
1960 values[n++] = count;
1961 if (read_format & PERF_FORMAT_ID)
1962 values[n++] = primary_event_id(leader);
1963
1964 size = n * sizeof(u64);
1965
1966 if (copy_to_user(buf, values, size))
1967 goto unlock;
1968
1969 ret = size;
1970
1971 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1972 n = 0;
1973
1974 values[n++] = perf_event_read_value(sub, &enabled, &running);
1975 if (read_format & PERF_FORMAT_ID)
1976 values[n++] = primary_event_id(sub);
1977
1978 size = n * sizeof(u64);
1979
1980 if (copy_to_user(buf + ret, values, size)) {
1981 ret = -EFAULT;
1982 goto unlock;
1983 }
1984
1985 ret += size;
1986 }
1987 unlock:
1988 mutex_unlock(&ctx->mutex);
1989
1990 return ret;
1991 }
1992
1993 static int perf_event_read_one(struct perf_event *event,
1994 u64 read_format, char __user *buf)
1995 {
1996 u64 enabled, running;
1997 u64 values[4];
1998 int n = 0;
1999
2000 values[n++] = perf_event_read_value(event, &enabled, &running);
2001 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2002 values[n++] = enabled;
2003 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2004 values[n++] = running;
2005 if (read_format & PERF_FORMAT_ID)
2006 values[n++] = primary_event_id(event);
2007
2008 if (copy_to_user(buf, values, n * sizeof(u64)))
2009 return -EFAULT;
2010
2011 return n * sizeof(u64);
2012 }
2013
2014 /*
2015 * Read the performance event - simple non blocking version for now
2016 */
2017 static ssize_t
2018 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2019 {
2020 u64 read_format = event->attr.read_format;
2021 int ret;
2022
2023 /*
2024 * Return end-of-file for a read on a event that is in
2025 * error state (i.e. because it was pinned but it couldn't be
2026 * scheduled on to the CPU at some point).
2027 */
2028 if (event->state == PERF_EVENT_STATE_ERROR)
2029 return 0;
2030
2031 if (count < perf_event_read_size(event))
2032 return -ENOSPC;
2033
2034 WARN_ON_ONCE(event->ctx->parent_ctx);
2035 if (read_format & PERF_FORMAT_GROUP)
2036 ret = perf_event_read_group(event, read_format, buf);
2037 else
2038 ret = perf_event_read_one(event, read_format, buf);
2039
2040 return ret;
2041 }
2042
2043 static ssize_t
2044 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2045 {
2046 struct perf_event *event = file->private_data;
2047
2048 return perf_read_hw(event, buf, count);
2049 }
2050
2051 static unsigned int perf_poll(struct file *file, poll_table *wait)
2052 {
2053 struct perf_event *event = file->private_data;
2054 struct perf_mmap_data *data;
2055 unsigned int events = POLL_HUP;
2056
2057 rcu_read_lock();
2058 data = rcu_dereference(event->data);
2059 if (data)
2060 events = atomic_xchg(&data->poll, 0);
2061 rcu_read_unlock();
2062
2063 poll_wait(file, &event->waitq, wait);
2064
2065 return events;
2066 }
2067
2068 static void perf_event_reset(struct perf_event *event)
2069 {
2070 (void)perf_event_read(event);
2071 atomic64_set(&event->count, 0);
2072 perf_event_update_userpage(event);
2073 }
2074
2075 /*
2076 * Holding the top-level event's child_mutex means that any
2077 * descendant process that has inherited this event will block
2078 * in sync_child_event if it goes to exit, thus satisfying the
2079 * task existence requirements of perf_event_enable/disable.
2080 */
2081 static void perf_event_for_each_child(struct perf_event *event,
2082 void (*func)(struct perf_event *))
2083 {
2084 struct perf_event *child;
2085
2086 WARN_ON_ONCE(event->ctx->parent_ctx);
2087 mutex_lock(&event->child_mutex);
2088 func(event);
2089 list_for_each_entry(child, &event->child_list, child_list)
2090 func(child);
2091 mutex_unlock(&event->child_mutex);
2092 }
2093
2094 static void perf_event_for_each(struct perf_event *event,
2095 void (*func)(struct perf_event *))
2096 {
2097 struct perf_event_context *ctx = event->ctx;
2098 struct perf_event *sibling;
2099
2100 WARN_ON_ONCE(ctx->parent_ctx);
2101 mutex_lock(&ctx->mutex);
2102 event = event->group_leader;
2103
2104 perf_event_for_each_child(event, func);
2105 func(event);
2106 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2107 perf_event_for_each_child(event, func);
2108 mutex_unlock(&ctx->mutex);
2109 }
2110
2111 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2112 {
2113 struct perf_event_context *ctx = event->ctx;
2114 unsigned long size;
2115 int ret = 0;
2116 u64 value;
2117
2118 if (!event->attr.sample_period)
2119 return -EINVAL;
2120
2121 size = copy_from_user(&value, arg, sizeof(value));
2122 if (size != sizeof(value))
2123 return -EFAULT;
2124
2125 if (!value)
2126 return -EINVAL;
2127
2128 raw_spin_lock_irq(&ctx->lock);
2129 if (event->attr.freq) {
2130 if (value > sysctl_perf_event_sample_rate) {
2131 ret = -EINVAL;
2132 goto unlock;
2133 }
2134
2135 event->attr.sample_freq = value;
2136 } else {
2137 event->attr.sample_period = value;
2138 event->hw.sample_period = value;
2139 }
2140 unlock:
2141 raw_spin_unlock_irq(&ctx->lock);
2142
2143 return ret;
2144 }
2145
2146 static int perf_event_set_output(struct perf_event *event, int output_fd);
2147 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2148
2149 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2150 {
2151 struct perf_event *event = file->private_data;
2152 void (*func)(struct perf_event *);
2153 u32 flags = arg;
2154
2155 switch (cmd) {
2156 case PERF_EVENT_IOC_ENABLE:
2157 func = perf_event_enable;
2158 break;
2159 case PERF_EVENT_IOC_DISABLE:
2160 func = perf_event_disable;
2161 break;
2162 case PERF_EVENT_IOC_RESET:
2163 func = perf_event_reset;
2164 break;
2165
2166 case PERF_EVENT_IOC_REFRESH:
2167 return perf_event_refresh(event, arg);
2168
2169 case PERF_EVENT_IOC_PERIOD:
2170 return perf_event_period(event, (u64 __user *)arg);
2171
2172 case PERF_EVENT_IOC_SET_OUTPUT:
2173 return perf_event_set_output(event, arg);
2174
2175 case PERF_EVENT_IOC_SET_FILTER:
2176 return perf_event_set_filter(event, (void __user *)arg);
2177
2178 default:
2179 return -ENOTTY;
2180 }
2181
2182 if (flags & PERF_IOC_FLAG_GROUP)
2183 perf_event_for_each(event, func);
2184 else
2185 perf_event_for_each_child(event, func);
2186
2187 return 0;
2188 }
2189
2190 int perf_event_task_enable(void)
2191 {
2192 struct perf_event *event;
2193
2194 mutex_lock(&current->perf_event_mutex);
2195 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2196 perf_event_for_each_child(event, perf_event_enable);
2197 mutex_unlock(&current->perf_event_mutex);
2198
2199 return 0;
2200 }
2201
2202 int perf_event_task_disable(void)
2203 {
2204 struct perf_event *event;
2205
2206 mutex_lock(&current->perf_event_mutex);
2207 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2208 perf_event_for_each_child(event, perf_event_disable);
2209 mutex_unlock(&current->perf_event_mutex);
2210
2211 return 0;
2212 }
2213
2214 #ifndef PERF_EVENT_INDEX_OFFSET
2215 # define PERF_EVENT_INDEX_OFFSET 0
2216 #endif
2217
2218 static int perf_event_index(struct perf_event *event)
2219 {
2220 if (event->state != PERF_EVENT_STATE_ACTIVE)
2221 return 0;
2222
2223 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2224 }
2225
2226 /*
2227 * Callers need to ensure there can be no nesting of this function, otherwise
2228 * the seqlock logic goes bad. We can not serialize this because the arch
2229 * code calls this from NMI context.
2230 */
2231 void perf_event_update_userpage(struct perf_event *event)
2232 {
2233 struct perf_event_mmap_page *userpg;
2234 struct perf_mmap_data *data;
2235
2236 rcu_read_lock();
2237 data = rcu_dereference(event->data);
2238 if (!data)
2239 goto unlock;
2240
2241 userpg = data->user_page;
2242
2243 /*
2244 * Disable preemption so as to not let the corresponding user-space
2245 * spin too long if we get preempted.
2246 */
2247 preempt_disable();
2248 ++userpg->lock;
2249 barrier();
2250 userpg->index = perf_event_index(event);
2251 userpg->offset = atomic64_read(&event->count);
2252 if (event->state == PERF_EVENT_STATE_ACTIVE)
2253 userpg->offset -= atomic64_read(&event->hw.prev_count);
2254
2255 userpg->time_enabled = event->total_time_enabled +
2256 atomic64_read(&event->child_total_time_enabled);
2257
2258 userpg->time_running = event->total_time_running +
2259 atomic64_read(&event->child_total_time_running);
2260
2261 barrier();
2262 ++userpg->lock;
2263 preempt_enable();
2264 unlock:
2265 rcu_read_unlock();
2266 }
2267
2268 static unsigned long perf_data_size(struct perf_mmap_data *data)
2269 {
2270 return data->nr_pages << (PAGE_SHIFT + data->data_order);
2271 }
2272
2273 #ifndef CONFIG_PERF_USE_VMALLOC
2274
2275 /*
2276 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2277 */
2278
2279 static struct page *
2280 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2281 {
2282 if (pgoff > data->nr_pages)
2283 return NULL;
2284
2285 if (pgoff == 0)
2286 return virt_to_page(data->user_page);
2287
2288 return virt_to_page(data->data_pages[pgoff - 1]);
2289 }
2290
2291 static struct perf_mmap_data *
2292 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2293 {
2294 struct perf_mmap_data *data;
2295 unsigned long size;
2296 int i;
2297
2298 WARN_ON(atomic_read(&event->mmap_count));
2299
2300 size = sizeof(struct perf_mmap_data);
2301 size += nr_pages * sizeof(void *);
2302
2303 data = kzalloc(size, GFP_KERNEL);
2304 if (!data)
2305 goto fail;
2306
2307 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2308 if (!data->user_page)
2309 goto fail_user_page;
2310
2311 for (i = 0; i < nr_pages; i++) {
2312 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2313 if (!data->data_pages[i])
2314 goto fail_data_pages;
2315 }
2316
2317 data->data_order = 0;
2318 data->nr_pages = nr_pages;
2319
2320 return data;
2321
2322 fail_data_pages:
2323 for (i--; i >= 0; i--)
2324 free_page((unsigned long)data->data_pages[i]);
2325
2326 free_page((unsigned long)data->user_page);
2327
2328 fail_user_page:
2329 kfree(data);
2330
2331 fail:
2332 return NULL;
2333 }
2334
2335 static void perf_mmap_free_page(unsigned long addr)
2336 {
2337 struct page *page = virt_to_page((void *)addr);
2338
2339 page->mapping = NULL;
2340 __free_page(page);
2341 }
2342
2343 static void perf_mmap_data_free(struct perf_mmap_data *data)
2344 {
2345 int i;
2346
2347 perf_mmap_free_page((unsigned long)data->user_page);
2348 for (i = 0; i < data->nr_pages; i++)
2349 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2350 kfree(data);
2351 }
2352
2353 #else
2354
2355 /*
2356 * Back perf_mmap() with vmalloc memory.
2357 *
2358 * Required for architectures that have d-cache aliasing issues.
2359 */
2360
2361 static struct page *
2362 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2363 {
2364 if (pgoff > (1UL << data->data_order))
2365 return NULL;
2366
2367 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2368 }
2369
2370 static void perf_mmap_unmark_page(void *addr)
2371 {
2372 struct page *page = vmalloc_to_page(addr);
2373
2374 page->mapping = NULL;
2375 }
2376
2377 static void perf_mmap_data_free_work(struct work_struct *work)
2378 {
2379 struct perf_mmap_data *data;
2380 void *base;
2381 int i, nr;
2382
2383 data = container_of(work, struct perf_mmap_data, work);
2384 nr = 1 << data->data_order;
2385
2386 base = data->user_page;
2387 for (i = 0; i < nr + 1; i++)
2388 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2389
2390 vfree(base);
2391 kfree(data);
2392 }
2393
2394 static void perf_mmap_data_free(struct perf_mmap_data *data)
2395 {
2396 schedule_work(&data->work);
2397 }
2398
2399 static struct perf_mmap_data *
2400 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2401 {
2402 struct perf_mmap_data *data;
2403 unsigned long size;
2404 void *all_buf;
2405
2406 WARN_ON(atomic_read(&event->mmap_count));
2407
2408 size = sizeof(struct perf_mmap_data);
2409 size += sizeof(void *);
2410
2411 data = kzalloc(size, GFP_KERNEL);
2412 if (!data)
2413 goto fail;
2414
2415 INIT_WORK(&data->work, perf_mmap_data_free_work);
2416
2417 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2418 if (!all_buf)
2419 goto fail_all_buf;
2420
2421 data->user_page = all_buf;
2422 data->data_pages[0] = all_buf + PAGE_SIZE;
2423 data->data_order = ilog2(nr_pages);
2424 data->nr_pages = 1;
2425
2426 return data;
2427
2428 fail_all_buf:
2429 kfree(data);
2430
2431 fail:
2432 return NULL;
2433 }
2434
2435 #endif
2436
2437 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2438 {
2439 struct perf_event *event = vma->vm_file->private_data;
2440 struct perf_mmap_data *data;
2441 int ret = VM_FAULT_SIGBUS;
2442
2443 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2444 if (vmf->pgoff == 0)
2445 ret = 0;
2446 return ret;
2447 }
2448
2449 rcu_read_lock();
2450 data = rcu_dereference(event->data);
2451 if (!data)
2452 goto unlock;
2453
2454 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2455 goto unlock;
2456
2457 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2458 if (!vmf->page)
2459 goto unlock;
2460
2461 get_page(vmf->page);
2462 vmf->page->mapping = vma->vm_file->f_mapping;
2463 vmf->page->index = vmf->pgoff;
2464
2465 ret = 0;
2466 unlock:
2467 rcu_read_unlock();
2468
2469 return ret;
2470 }
2471
2472 static void
2473 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2474 {
2475 long max_size = perf_data_size(data);
2476
2477 atomic_set(&data->lock, -1);
2478
2479 if (event->attr.watermark) {
2480 data->watermark = min_t(long, max_size,
2481 event->attr.wakeup_watermark);
2482 }
2483
2484 if (!data->watermark)
2485 data->watermark = max_size / 2;
2486
2487
2488 rcu_assign_pointer(event->data, data);
2489 }
2490
2491 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2492 {
2493 struct perf_mmap_data *data;
2494
2495 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2496 perf_mmap_data_free(data);
2497 }
2498
2499 static void perf_mmap_data_release(struct perf_event *event)
2500 {
2501 struct perf_mmap_data *data = event->data;
2502
2503 WARN_ON(atomic_read(&event->mmap_count));
2504
2505 rcu_assign_pointer(event->data, NULL);
2506 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2507 }
2508
2509 static void perf_mmap_open(struct vm_area_struct *vma)
2510 {
2511 struct perf_event *event = vma->vm_file->private_data;
2512
2513 atomic_inc(&event->mmap_count);
2514 }
2515
2516 static void perf_mmap_close(struct vm_area_struct *vma)
2517 {
2518 struct perf_event *event = vma->vm_file->private_data;
2519
2520 WARN_ON_ONCE(event->ctx->parent_ctx);
2521 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2522 unsigned long size = perf_data_size(event->data);
2523 struct user_struct *user = current_user();
2524
2525 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2526 vma->vm_mm->locked_vm -= event->data->nr_locked;
2527 perf_mmap_data_release(event);
2528 mutex_unlock(&event->mmap_mutex);
2529 }
2530 }
2531
2532 static const struct vm_operations_struct perf_mmap_vmops = {
2533 .open = perf_mmap_open,
2534 .close = perf_mmap_close,
2535 .fault = perf_mmap_fault,
2536 .page_mkwrite = perf_mmap_fault,
2537 };
2538
2539 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2540 {
2541 struct perf_event *event = file->private_data;
2542 unsigned long user_locked, user_lock_limit;
2543 struct user_struct *user = current_user();
2544 unsigned long locked, lock_limit;
2545 struct perf_mmap_data *data;
2546 unsigned long vma_size;
2547 unsigned long nr_pages;
2548 long user_extra, extra;
2549 int ret = 0;
2550
2551 if (!(vma->vm_flags & VM_SHARED))
2552 return -EINVAL;
2553
2554 vma_size = vma->vm_end - vma->vm_start;
2555 nr_pages = (vma_size / PAGE_SIZE) - 1;
2556
2557 /*
2558 * If we have data pages ensure they're a power-of-two number, so we
2559 * can do bitmasks instead of modulo.
2560 */
2561 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2562 return -EINVAL;
2563
2564 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2565 return -EINVAL;
2566
2567 if (vma->vm_pgoff != 0)
2568 return -EINVAL;
2569
2570 WARN_ON_ONCE(event->ctx->parent_ctx);
2571 mutex_lock(&event->mmap_mutex);
2572 if (event->output) {
2573 ret = -EINVAL;
2574 goto unlock;
2575 }
2576
2577 if (atomic_inc_not_zero(&event->mmap_count)) {
2578 if (nr_pages != event->data->nr_pages)
2579 ret = -EINVAL;
2580 goto unlock;
2581 }
2582
2583 user_extra = nr_pages + 1;
2584 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2585
2586 /*
2587 * Increase the limit linearly with more CPUs:
2588 */
2589 user_lock_limit *= num_online_cpus();
2590
2591 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2592
2593 extra = 0;
2594 if (user_locked > user_lock_limit)
2595 extra = user_locked - user_lock_limit;
2596
2597 lock_limit = rlimit(RLIMIT_MEMLOCK);
2598 lock_limit >>= PAGE_SHIFT;
2599 locked = vma->vm_mm->locked_vm + extra;
2600
2601 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2602 !capable(CAP_IPC_LOCK)) {
2603 ret = -EPERM;
2604 goto unlock;
2605 }
2606
2607 WARN_ON(event->data);
2608
2609 data = perf_mmap_data_alloc(event, nr_pages);
2610 ret = -ENOMEM;
2611 if (!data)
2612 goto unlock;
2613
2614 ret = 0;
2615 perf_mmap_data_init(event, data);
2616
2617 atomic_set(&event->mmap_count, 1);
2618 atomic_long_add(user_extra, &user->locked_vm);
2619 vma->vm_mm->locked_vm += extra;
2620 event->data->nr_locked = extra;
2621 if (vma->vm_flags & VM_WRITE)
2622 event->data->writable = 1;
2623
2624 unlock:
2625 mutex_unlock(&event->mmap_mutex);
2626
2627 vma->vm_flags |= VM_RESERVED;
2628 vma->vm_ops = &perf_mmap_vmops;
2629
2630 return ret;
2631 }
2632
2633 static int perf_fasync(int fd, struct file *filp, int on)
2634 {
2635 struct inode *inode = filp->f_path.dentry->d_inode;
2636 struct perf_event *event = filp->private_data;
2637 int retval;
2638
2639 mutex_lock(&inode->i_mutex);
2640 retval = fasync_helper(fd, filp, on, &event->fasync);
2641 mutex_unlock(&inode->i_mutex);
2642
2643 if (retval < 0)
2644 return retval;
2645
2646 return 0;
2647 }
2648
2649 static const struct file_operations perf_fops = {
2650 .llseek = no_llseek,
2651 .release = perf_release,
2652 .read = perf_read,
2653 .poll = perf_poll,
2654 .unlocked_ioctl = perf_ioctl,
2655 .compat_ioctl = perf_ioctl,
2656 .mmap = perf_mmap,
2657 .fasync = perf_fasync,
2658 };
2659
2660 /*
2661 * Perf event wakeup
2662 *
2663 * If there's data, ensure we set the poll() state and publish everything
2664 * to user-space before waking everybody up.
2665 */
2666
2667 void perf_event_wakeup(struct perf_event *event)
2668 {
2669 wake_up_all(&event->waitq);
2670
2671 if (event->pending_kill) {
2672 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2673 event->pending_kill = 0;
2674 }
2675 }
2676
2677 /*
2678 * Pending wakeups
2679 *
2680 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2681 *
2682 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2683 * single linked list and use cmpxchg() to add entries lockless.
2684 */
2685
2686 static void perf_pending_event(struct perf_pending_entry *entry)
2687 {
2688 struct perf_event *event = container_of(entry,
2689 struct perf_event, pending);
2690
2691 if (event->pending_disable) {
2692 event->pending_disable = 0;
2693 __perf_event_disable(event);
2694 }
2695
2696 if (event->pending_wakeup) {
2697 event->pending_wakeup = 0;
2698 perf_event_wakeup(event);
2699 }
2700 }
2701
2702 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2703
2704 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2705 PENDING_TAIL,
2706 };
2707
2708 static void perf_pending_queue(struct perf_pending_entry *entry,
2709 void (*func)(struct perf_pending_entry *))
2710 {
2711 struct perf_pending_entry **head;
2712
2713 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2714 return;
2715
2716 entry->func = func;
2717
2718 head = &get_cpu_var(perf_pending_head);
2719
2720 do {
2721 entry->next = *head;
2722 } while (cmpxchg(head, entry->next, entry) != entry->next);
2723
2724 set_perf_event_pending();
2725
2726 put_cpu_var(perf_pending_head);
2727 }
2728
2729 static int __perf_pending_run(void)
2730 {
2731 struct perf_pending_entry *list;
2732 int nr = 0;
2733
2734 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2735 while (list != PENDING_TAIL) {
2736 void (*func)(struct perf_pending_entry *);
2737 struct perf_pending_entry *entry = list;
2738
2739 list = list->next;
2740
2741 func = entry->func;
2742 entry->next = NULL;
2743 /*
2744 * Ensure we observe the unqueue before we issue the wakeup,
2745 * so that we won't be waiting forever.
2746 * -- see perf_not_pending().
2747 */
2748 smp_wmb();
2749
2750 func(entry);
2751 nr++;
2752 }
2753
2754 return nr;
2755 }
2756
2757 static inline int perf_not_pending(struct perf_event *event)
2758 {
2759 /*
2760 * If we flush on whatever cpu we run, there is a chance we don't
2761 * need to wait.
2762 */
2763 get_cpu();
2764 __perf_pending_run();
2765 put_cpu();
2766
2767 /*
2768 * Ensure we see the proper queue state before going to sleep
2769 * so that we do not miss the wakeup. -- see perf_pending_handle()
2770 */
2771 smp_rmb();
2772 return event->pending.next == NULL;
2773 }
2774
2775 static void perf_pending_sync(struct perf_event *event)
2776 {
2777 wait_event(event->waitq, perf_not_pending(event));
2778 }
2779
2780 void perf_event_do_pending(void)
2781 {
2782 __perf_pending_run();
2783 }
2784
2785 /*
2786 * Callchain support -- arch specific
2787 */
2788
2789 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2790 {
2791 return NULL;
2792 }
2793
2794 __weak
2795 void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
2796 {
2797 }
2798
2799
2800 /*
2801 * Output
2802 */
2803 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2804 unsigned long offset, unsigned long head)
2805 {
2806 unsigned long mask;
2807
2808 if (!data->writable)
2809 return true;
2810
2811 mask = perf_data_size(data) - 1;
2812
2813 offset = (offset - tail) & mask;
2814 head = (head - tail) & mask;
2815
2816 if ((int)(head - offset) < 0)
2817 return false;
2818
2819 return true;
2820 }
2821
2822 static void perf_output_wakeup(struct perf_output_handle *handle)
2823 {
2824 atomic_set(&handle->data->poll, POLL_IN);
2825
2826 if (handle->nmi) {
2827 handle->event->pending_wakeup = 1;
2828 perf_pending_queue(&handle->event->pending,
2829 perf_pending_event);
2830 } else
2831 perf_event_wakeup(handle->event);
2832 }
2833
2834 /*
2835 * Curious locking construct.
2836 *
2837 * We need to ensure a later event_id doesn't publish a head when a former
2838 * event_id isn't done writing. However since we need to deal with NMIs we
2839 * cannot fully serialize things.
2840 *
2841 * What we do is serialize between CPUs so we only have to deal with NMI
2842 * nesting on a single CPU.
2843 *
2844 * We only publish the head (and generate a wakeup) when the outer-most
2845 * event_id completes.
2846 */
2847 static void perf_output_lock(struct perf_output_handle *handle)
2848 {
2849 struct perf_mmap_data *data = handle->data;
2850 int cur, cpu = get_cpu();
2851
2852 handle->locked = 0;
2853
2854 for (;;) {
2855 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2856 if (cur == -1) {
2857 handle->locked = 1;
2858 break;
2859 }
2860 if (cur == cpu)
2861 break;
2862
2863 cpu_relax();
2864 }
2865 }
2866
2867 static void perf_output_unlock(struct perf_output_handle *handle)
2868 {
2869 struct perf_mmap_data *data = handle->data;
2870 unsigned long head;
2871 int cpu;
2872
2873 data->done_head = data->head;
2874
2875 if (!handle->locked)
2876 goto out;
2877
2878 again:
2879 /*
2880 * The xchg implies a full barrier that ensures all writes are done
2881 * before we publish the new head, matched by a rmb() in userspace when
2882 * reading this position.
2883 */
2884 while ((head = atomic_long_xchg(&data->done_head, 0)))
2885 data->user_page->data_head = head;
2886
2887 /*
2888 * NMI can happen here, which means we can miss a done_head update.
2889 */
2890
2891 cpu = atomic_xchg(&data->lock, -1);
2892 WARN_ON_ONCE(cpu != smp_processor_id());
2893
2894 /*
2895 * Therefore we have to validate we did not indeed do so.
2896 */
2897 if (unlikely(atomic_long_read(&data->done_head))) {
2898 /*
2899 * Since we had it locked, we can lock it again.
2900 */
2901 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2902 cpu_relax();
2903
2904 goto again;
2905 }
2906
2907 if (atomic_xchg(&data->wakeup, 0))
2908 perf_output_wakeup(handle);
2909 out:
2910 put_cpu();
2911 }
2912
2913 void perf_output_copy(struct perf_output_handle *handle,
2914 const void *buf, unsigned int len)
2915 {
2916 unsigned int pages_mask;
2917 unsigned long offset;
2918 unsigned int size;
2919 void **pages;
2920
2921 offset = handle->offset;
2922 pages_mask = handle->data->nr_pages - 1;
2923 pages = handle->data->data_pages;
2924
2925 do {
2926 unsigned long page_offset;
2927 unsigned long page_size;
2928 int nr;
2929
2930 nr = (offset >> PAGE_SHIFT) & pages_mask;
2931 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2932 page_offset = offset & (page_size - 1);
2933 size = min_t(unsigned int, page_size - page_offset, len);
2934
2935 memcpy(pages[nr] + page_offset, buf, size);
2936
2937 len -= size;
2938 buf += size;
2939 offset += size;
2940 } while (len);
2941
2942 handle->offset = offset;
2943
2944 /*
2945 * Check we didn't copy past our reservation window, taking the
2946 * possible unsigned int wrap into account.
2947 */
2948 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2949 }
2950
2951 int perf_output_begin(struct perf_output_handle *handle,
2952 struct perf_event *event, unsigned int size,
2953 int nmi, int sample)
2954 {
2955 struct perf_event *output_event;
2956 struct perf_mmap_data *data;
2957 unsigned long tail, offset, head;
2958 int have_lost;
2959 struct {
2960 struct perf_event_header header;
2961 u64 id;
2962 u64 lost;
2963 } lost_event;
2964
2965 rcu_read_lock();
2966 /*
2967 * For inherited events we send all the output towards the parent.
2968 */
2969 if (event->parent)
2970 event = event->parent;
2971
2972 output_event = rcu_dereference(event->output);
2973 if (output_event)
2974 event = output_event;
2975
2976 data = rcu_dereference(event->data);
2977 if (!data)
2978 goto out;
2979
2980 handle->data = data;
2981 handle->event = event;
2982 handle->nmi = nmi;
2983 handle->sample = sample;
2984
2985 if (!data->nr_pages)
2986 goto fail;
2987
2988 have_lost = atomic_read(&data->lost);
2989 if (have_lost)
2990 size += sizeof(lost_event);
2991
2992 perf_output_lock(handle);
2993
2994 do {
2995 /*
2996 * Userspace could choose to issue a mb() before updating the
2997 * tail pointer. So that all reads will be completed before the
2998 * write is issued.
2999 */
3000 tail = ACCESS_ONCE(data->user_page->data_tail);
3001 smp_rmb();
3002 offset = head = atomic_long_read(&data->head);
3003 head += size;
3004 if (unlikely(!perf_output_space(data, tail, offset, head)))
3005 goto fail;
3006 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
3007
3008 handle->offset = offset;
3009 handle->head = head;
3010
3011 if (head - tail > data->watermark)
3012 atomic_set(&data->wakeup, 1);
3013
3014 if (have_lost) {
3015 lost_event.header.type = PERF_RECORD_LOST;
3016 lost_event.header.misc = 0;
3017 lost_event.header.size = sizeof(lost_event);
3018 lost_event.id = event->id;
3019 lost_event.lost = atomic_xchg(&data->lost, 0);
3020
3021 perf_output_put(handle, lost_event);
3022 }
3023
3024 return 0;
3025
3026 fail:
3027 atomic_inc(&data->lost);
3028 perf_output_unlock(handle);
3029 out:
3030 rcu_read_unlock();
3031
3032 return -ENOSPC;
3033 }
3034
3035 void perf_output_end(struct perf_output_handle *handle)
3036 {
3037 struct perf_event *event = handle->event;
3038 struct perf_mmap_data *data = handle->data;
3039
3040 int wakeup_events = event->attr.wakeup_events;
3041
3042 if (handle->sample && wakeup_events) {
3043 int events = atomic_inc_return(&data->events);
3044 if (events >= wakeup_events) {
3045 atomic_sub(wakeup_events, &data->events);
3046 atomic_set(&data->wakeup, 1);
3047 }
3048 }
3049
3050 perf_output_unlock(handle);
3051 rcu_read_unlock();
3052 }
3053
3054 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3055 {
3056 /*
3057 * only top level events have the pid namespace they were created in
3058 */
3059 if (event->parent)
3060 event = event->parent;
3061
3062 return task_tgid_nr_ns(p, event->ns);
3063 }
3064
3065 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3066 {
3067 /*
3068 * only top level events have the pid namespace they were created in
3069 */
3070 if (event->parent)
3071 event = event->parent;
3072
3073 return task_pid_nr_ns(p, event->ns);
3074 }
3075
3076 static void perf_output_read_one(struct perf_output_handle *handle,
3077 struct perf_event *event)
3078 {
3079 u64 read_format = event->attr.read_format;
3080 u64 values[4];
3081 int n = 0;
3082
3083 values[n++] = atomic64_read(&event->count);
3084 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3085 values[n++] = event->total_time_enabled +
3086 atomic64_read(&event->child_total_time_enabled);
3087 }
3088 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3089 values[n++] = event->total_time_running +
3090 atomic64_read(&event->child_total_time_running);
3091 }
3092 if (read_format & PERF_FORMAT_ID)
3093 values[n++] = primary_event_id(event);
3094
3095 perf_output_copy(handle, values, n * sizeof(u64));
3096 }
3097
3098 /*
3099 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3100 */
3101 static void perf_output_read_group(struct perf_output_handle *handle,
3102 struct perf_event *event)
3103 {
3104 struct perf_event *leader = event->group_leader, *sub;
3105 u64 read_format = event->attr.read_format;
3106 u64 values[5];
3107 int n = 0;
3108
3109 values[n++] = 1 + leader->nr_siblings;
3110
3111 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3112 values[n++] = leader->total_time_enabled;
3113
3114 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3115 values[n++] = leader->total_time_running;
3116
3117 if (leader != event)
3118 leader->pmu->read(leader);
3119
3120 values[n++] = atomic64_read(&leader->count);
3121 if (read_format & PERF_FORMAT_ID)
3122 values[n++] = primary_event_id(leader);
3123
3124 perf_output_copy(handle, values, n * sizeof(u64));
3125
3126 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3127 n = 0;
3128
3129 if (sub != event)
3130 sub->pmu->read(sub);
3131
3132 values[n++] = atomic64_read(&sub->count);
3133 if (read_format & PERF_FORMAT_ID)
3134 values[n++] = primary_event_id(sub);
3135
3136 perf_output_copy(handle, values, n * sizeof(u64));
3137 }
3138 }
3139
3140 static void perf_output_read(struct perf_output_handle *handle,
3141 struct perf_event *event)
3142 {
3143 if (event->attr.read_format & PERF_FORMAT_GROUP)
3144 perf_output_read_group(handle, event);
3145 else
3146 perf_output_read_one(handle, event);
3147 }
3148
3149 void perf_output_sample(struct perf_output_handle *handle,
3150 struct perf_event_header *header,
3151 struct perf_sample_data *data,
3152 struct perf_event *event)
3153 {
3154 u64 sample_type = data->type;
3155
3156 perf_output_put(handle, *header);
3157
3158 if (sample_type & PERF_SAMPLE_IP)
3159 perf_output_put(handle, data->ip);
3160
3161 if (sample_type & PERF_SAMPLE_TID)
3162 perf_output_put(handle, data->tid_entry);
3163
3164 if (sample_type & PERF_SAMPLE_TIME)
3165 perf_output_put(handle, data->time);
3166
3167 if (sample_type & PERF_SAMPLE_ADDR)
3168 perf_output_put(handle, data->addr);
3169
3170 if (sample_type & PERF_SAMPLE_ID)
3171 perf_output_put(handle, data->id);
3172
3173 if (sample_type & PERF_SAMPLE_STREAM_ID)
3174 perf_output_put(handle, data->stream_id);
3175
3176 if (sample_type & PERF_SAMPLE_CPU)
3177 perf_output_put(handle, data->cpu_entry);
3178
3179 if (sample_type & PERF_SAMPLE_PERIOD)
3180 perf_output_put(handle, data->period);
3181
3182 if (sample_type & PERF_SAMPLE_READ)
3183 perf_output_read(handle, event);
3184
3185 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3186 if (data->callchain) {
3187 int size = 1;
3188
3189 if (data->callchain)
3190 size += data->callchain->nr;
3191
3192 size *= sizeof(u64);
3193
3194 perf_output_copy(handle, data->callchain, size);
3195 } else {
3196 u64 nr = 0;
3197 perf_output_put(handle, nr);
3198 }
3199 }
3200
3201 if (sample_type & PERF_SAMPLE_RAW) {
3202 if (data->raw) {
3203 perf_output_put(handle, data->raw->size);
3204 perf_output_copy(handle, data->raw->data,
3205 data->raw->size);
3206 } else {
3207 struct {
3208 u32 size;
3209 u32 data;
3210 } raw = {
3211 .size = sizeof(u32),
3212 .data = 0,
3213 };
3214 perf_output_put(handle, raw);
3215 }
3216 }
3217 }
3218
3219 void perf_prepare_sample(struct perf_event_header *header,
3220 struct perf_sample_data *data,
3221 struct perf_event *event,
3222 struct pt_regs *regs)
3223 {
3224 u64 sample_type = event->attr.sample_type;
3225
3226 data->type = sample_type;
3227
3228 header->type = PERF_RECORD_SAMPLE;
3229 header->size = sizeof(*header);
3230
3231 header->misc = 0;
3232 header->misc |= perf_misc_flags(regs);
3233
3234 if (sample_type & PERF_SAMPLE_IP) {
3235 data->ip = perf_instruction_pointer(regs);
3236
3237 header->size += sizeof(data->ip);
3238 }
3239
3240 if (sample_type & PERF_SAMPLE_TID) {
3241 /* namespace issues */
3242 data->tid_entry.pid = perf_event_pid(event, current);
3243 data->tid_entry.tid = perf_event_tid(event, current);
3244
3245 header->size += sizeof(data->tid_entry);
3246 }
3247
3248 if (sample_type & PERF_SAMPLE_TIME) {
3249 data->time = perf_clock();
3250
3251 header->size += sizeof(data->time);
3252 }
3253
3254 if (sample_type & PERF_SAMPLE_ADDR)
3255 header->size += sizeof(data->addr);
3256
3257 if (sample_type & PERF_SAMPLE_ID) {
3258 data->id = primary_event_id(event);
3259
3260 header->size += sizeof(data->id);
3261 }
3262
3263 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3264 data->stream_id = event->id;
3265
3266 header->size += sizeof(data->stream_id);
3267 }
3268
3269 if (sample_type & PERF_SAMPLE_CPU) {
3270 data->cpu_entry.cpu = raw_smp_processor_id();
3271 data->cpu_entry.reserved = 0;
3272
3273 header->size += sizeof(data->cpu_entry);
3274 }
3275
3276 if (sample_type & PERF_SAMPLE_PERIOD)
3277 header->size += sizeof(data->period);
3278
3279 if (sample_type & PERF_SAMPLE_READ)
3280 header->size += perf_event_read_size(event);
3281
3282 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3283 int size = 1;
3284
3285 data->callchain = perf_callchain(regs);
3286
3287 if (data->callchain)
3288 size += data->callchain->nr;
3289
3290 header->size += size * sizeof(u64);
3291 }
3292
3293 if (sample_type & PERF_SAMPLE_RAW) {
3294 int size = sizeof(u32);
3295
3296 if (data->raw)
3297 size += data->raw->size;
3298 else
3299 size += sizeof(u32);
3300
3301 WARN_ON_ONCE(size & (sizeof(u64)-1));
3302 header->size += size;
3303 }
3304 }
3305
3306 static void perf_event_output(struct perf_event *event, int nmi,
3307 struct perf_sample_data *data,
3308 struct pt_regs *regs)
3309 {
3310 struct perf_output_handle handle;
3311 struct perf_event_header header;
3312
3313 perf_prepare_sample(&header, data, event, regs);
3314
3315 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3316 return;
3317
3318 perf_output_sample(&handle, &header, data, event);
3319
3320 perf_output_end(&handle);
3321 }
3322
3323 /*
3324 * read event_id
3325 */
3326
3327 struct perf_read_event {
3328 struct perf_event_header header;
3329
3330 u32 pid;
3331 u32 tid;
3332 };
3333
3334 static void
3335 perf_event_read_event(struct perf_event *event,
3336 struct task_struct *task)
3337 {
3338 struct perf_output_handle handle;
3339 struct perf_read_event read_event = {
3340 .header = {
3341 .type = PERF_RECORD_READ,
3342 .misc = 0,
3343 .size = sizeof(read_event) + perf_event_read_size(event),
3344 },
3345 .pid = perf_event_pid(event, task),
3346 .tid = perf_event_tid(event, task),
3347 };
3348 int ret;
3349
3350 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3351 if (ret)
3352 return;
3353
3354 perf_output_put(&handle, read_event);
3355 perf_output_read(&handle, event);
3356
3357 perf_output_end(&handle);
3358 }
3359
3360 /*
3361 * task tracking -- fork/exit
3362 *
3363 * enabled by: attr.comm | attr.mmap | attr.task
3364 */
3365
3366 struct perf_task_event {
3367 struct task_struct *task;
3368 struct perf_event_context *task_ctx;
3369
3370 struct {
3371 struct perf_event_header header;
3372
3373 u32 pid;
3374 u32 ppid;
3375 u32 tid;
3376 u32 ptid;
3377 u64 time;
3378 } event_id;
3379 };
3380
3381 static void perf_event_task_output(struct perf_event *event,
3382 struct perf_task_event *task_event)
3383 {
3384 struct perf_output_handle handle;
3385 struct task_struct *task = task_event->task;
3386 unsigned long flags;
3387 int size, ret;
3388
3389 /*
3390 * If this CPU attempts to acquire an rq lock held by a CPU spinning
3391 * in perf_output_lock() from interrupt context, it's game over.
3392 */
3393 local_irq_save(flags);
3394
3395 size = task_event->event_id.header.size;
3396 ret = perf_output_begin(&handle, event, size, 0, 0);
3397
3398 if (ret) {
3399 local_irq_restore(flags);
3400 return;
3401 }
3402
3403 task_event->event_id.pid = perf_event_pid(event, task);
3404 task_event->event_id.ppid = perf_event_pid(event, current);
3405
3406 task_event->event_id.tid = perf_event_tid(event, task);
3407 task_event->event_id.ptid = perf_event_tid(event, current);
3408
3409 perf_output_put(&handle, task_event->event_id);
3410
3411 perf_output_end(&handle);
3412 local_irq_restore(flags);
3413 }
3414
3415 static int perf_event_task_match(struct perf_event *event)
3416 {
3417 if (event->state < PERF_EVENT_STATE_INACTIVE)
3418 return 0;
3419
3420 if (event->cpu != -1 && event->cpu != smp_processor_id())
3421 return 0;
3422
3423 if (event->attr.comm || event->attr.mmap || event->attr.task)
3424 return 1;
3425
3426 return 0;
3427 }
3428
3429 static void perf_event_task_ctx(struct perf_event_context *ctx,
3430 struct perf_task_event *task_event)
3431 {
3432 struct perf_event *event;
3433
3434 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3435 if (perf_event_task_match(event))
3436 perf_event_task_output(event, task_event);
3437 }
3438 }
3439
3440 static void perf_event_task_event(struct perf_task_event *task_event)
3441 {
3442 struct perf_cpu_context *cpuctx;
3443 struct perf_event_context *ctx = task_event->task_ctx;
3444
3445 rcu_read_lock();
3446 cpuctx = &get_cpu_var(perf_cpu_context);
3447 perf_event_task_ctx(&cpuctx->ctx, task_event);
3448 if (!ctx)
3449 ctx = rcu_dereference(current->perf_event_ctxp);
3450 if (ctx)
3451 perf_event_task_ctx(ctx, task_event);
3452 put_cpu_var(perf_cpu_context);
3453 rcu_read_unlock();
3454 }
3455
3456 static void perf_event_task(struct task_struct *task,
3457 struct perf_event_context *task_ctx,
3458 int new)
3459 {
3460 struct perf_task_event task_event;
3461
3462 if (!atomic_read(&nr_comm_events) &&
3463 !atomic_read(&nr_mmap_events) &&
3464 !atomic_read(&nr_task_events))
3465 return;
3466
3467 task_event = (struct perf_task_event){
3468 .task = task,
3469 .task_ctx = task_ctx,
3470 .event_id = {
3471 .header = {
3472 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3473 .misc = 0,
3474 .size = sizeof(task_event.event_id),
3475 },
3476 /* .pid */
3477 /* .ppid */
3478 /* .tid */
3479 /* .ptid */
3480 .time = perf_clock(),
3481 },
3482 };
3483
3484 perf_event_task_event(&task_event);
3485 }
3486
3487 void perf_event_fork(struct task_struct *task)
3488 {
3489 perf_event_task(task, NULL, 1);
3490 }
3491
3492 /*
3493 * comm tracking
3494 */
3495
3496 struct perf_comm_event {
3497 struct task_struct *task;
3498 char *comm;
3499 int comm_size;
3500
3501 struct {
3502 struct perf_event_header header;
3503
3504 u32 pid;
3505 u32 tid;
3506 } event_id;
3507 };
3508
3509 static void perf_event_comm_output(struct perf_event *event,
3510 struct perf_comm_event *comm_event)
3511 {
3512 struct perf_output_handle handle;
3513 int size = comm_event->event_id.header.size;
3514 int ret = perf_output_begin(&handle, event, size, 0, 0);
3515
3516 if (ret)
3517 return;
3518
3519 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3520 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3521
3522 perf_output_put(&handle, comm_event->event_id);
3523 perf_output_copy(&handle, comm_event->comm,
3524 comm_event->comm_size);
3525 perf_output_end(&handle);
3526 }
3527
3528 static int perf_event_comm_match(struct perf_event *event)
3529 {
3530 if (event->state < PERF_EVENT_STATE_INACTIVE)
3531 return 0;
3532
3533 if (event->cpu != -1 && event->cpu != smp_processor_id())
3534 return 0;
3535
3536 if (event->attr.comm)
3537 return 1;
3538
3539 return 0;
3540 }
3541
3542 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3543 struct perf_comm_event *comm_event)
3544 {
3545 struct perf_event *event;
3546
3547 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3548 if (perf_event_comm_match(event))
3549 perf_event_comm_output(event, comm_event);
3550 }
3551 }
3552
3553 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3554 {
3555 struct perf_cpu_context *cpuctx;
3556 struct perf_event_context *ctx;
3557 unsigned int size;
3558 char comm[TASK_COMM_LEN];
3559
3560 memset(comm, 0, sizeof(comm));
3561 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3562 size = ALIGN(strlen(comm)+1, sizeof(u64));
3563
3564 comm_event->comm = comm;
3565 comm_event->comm_size = size;
3566
3567 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3568
3569 rcu_read_lock();
3570 cpuctx = &get_cpu_var(perf_cpu_context);
3571 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3572 ctx = rcu_dereference(current->perf_event_ctxp);
3573 if (ctx)
3574 perf_event_comm_ctx(ctx, comm_event);
3575 put_cpu_var(perf_cpu_context);
3576 rcu_read_unlock();
3577 }
3578
3579 void perf_event_comm(struct task_struct *task)
3580 {
3581 struct perf_comm_event comm_event;
3582
3583 if (task->perf_event_ctxp)
3584 perf_event_enable_on_exec(task);
3585
3586 if (!atomic_read(&nr_comm_events))
3587 return;
3588
3589 comm_event = (struct perf_comm_event){
3590 .task = task,
3591 /* .comm */
3592 /* .comm_size */
3593 .event_id = {
3594 .header = {
3595 .type = PERF_RECORD_COMM,
3596 .misc = 0,
3597 /* .size */
3598 },
3599 /* .pid */
3600 /* .tid */
3601 },
3602 };
3603
3604 perf_event_comm_event(&comm_event);
3605 }
3606
3607 /*
3608 * mmap tracking
3609 */
3610
3611 struct perf_mmap_event {
3612 struct vm_area_struct *vma;
3613
3614 const char *file_name;
3615 int file_size;
3616
3617 struct {
3618 struct perf_event_header header;
3619
3620 u32 pid;
3621 u32 tid;
3622 u64 start;
3623 u64 len;
3624 u64 pgoff;
3625 } event_id;
3626 };
3627
3628 static void perf_event_mmap_output(struct perf_event *event,
3629 struct perf_mmap_event *mmap_event)
3630 {
3631 struct perf_output_handle handle;
3632 int size = mmap_event->event_id.header.size;
3633 int ret = perf_output_begin(&handle, event, size, 0, 0);
3634
3635 if (ret)
3636 return;
3637
3638 mmap_event->event_id.pid = perf_event_pid(event, current);
3639 mmap_event->event_id.tid = perf_event_tid(event, current);
3640
3641 perf_output_put(&handle, mmap_event->event_id);
3642 perf_output_copy(&handle, mmap_event->file_name,
3643 mmap_event->file_size);
3644 perf_output_end(&handle);
3645 }
3646
3647 static int perf_event_mmap_match(struct perf_event *event,
3648 struct perf_mmap_event *mmap_event)
3649 {
3650 if (event->state < PERF_EVENT_STATE_INACTIVE)
3651 return 0;
3652
3653 if (event->cpu != -1 && event->cpu != smp_processor_id())
3654 return 0;
3655
3656 if (event->attr.mmap)
3657 return 1;
3658
3659 return 0;
3660 }
3661
3662 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3663 struct perf_mmap_event *mmap_event)
3664 {
3665 struct perf_event *event;
3666
3667 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3668 if (perf_event_mmap_match(event, mmap_event))
3669 perf_event_mmap_output(event, mmap_event);
3670 }
3671 }
3672
3673 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3674 {
3675 struct perf_cpu_context *cpuctx;
3676 struct perf_event_context *ctx;
3677 struct vm_area_struct *vma = mmap_event->vma;
3678 struct file *file = vma->vm_file;
3679 unsigned int size;
3680 char tmp[16];
3681 char *buf = NULL;
3682 const char *name;
3683
3684 memset(tmp, 0, sizeof(tmp));
3685
3686 if (file) {
3687 /*
3688 * d_path works from the end of the buffer backwards, so we
3689 * need to add enough zero bytes after the string to handle
3690 * the 64bit alignment we do later.
3691 */
3692 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3693 if (!buf) {
3694 name = strncpy(tmp, "//enomem", sizeof(tmp));
3695 goto got_name;
3696 }
3697 name = d_path(&file->f_path, buf, PATH_MAX);
3698 if (IS_ERR(name)) {
3699 name = strncpy(tmp, "//toolong", sizeof(tmp));
3700 goto got_name;
3701 }
3702 } else {
3703 if (arch_vma_name(mmap_event->vma)) {
3704 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3705 sizeof(tmp));
3706 goto got_name;
3707 }
3708
3709 if (!vma->vm_mm) {
3710 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3711 goto got_name;
3712 }
3713
3714 name = strncpy(tmp, "//anon", sizeof(tmp));
3715 goto got_name;
3716 }
3717
3718 got_name:
3719 size = ALIGN(strlen(name)+1, sizeof(u64));
3720
3721 mmap_event->file_name = name;
3722 mmap_event->file_size = size;
3723
3724 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3725
3726 rcu_read_lock();
3727 cpuctx = &get_cpu_var(perf_cpu_context);
3728 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3729 ctx = rcu_dereference(current->perf_event_ctxp);
3730 if (ctx)
3731 perf_event_mmap_ctx(ctx, mmap_event);
3732 put_cpu_var(perf_cpu_context);
3733 rcu_read_unlock();
3734
3735 kfree(buf);
3736 }
3737
3738 void __perf_event_mmap(struct vm_area_struct *vma)
3739 {
3740 struct perf_mmap_event mmap_event;
3741
3742 if (!atomic_read(&nr_mmap_events))
3743 return;
3744
3745 mmap_event = (struct perf_mmap_event){
3746 .vma = vma,
3747 /* .file_name */
3748 /* .file_size */
3749 .event_id = {
3750 .header = {
3751 .type = PERF_RECORD_MMAP,
3752 .misc = 0,
3753 /* .size */
3754 },
3755 /* .pid */
3756 /* .tid */
3757 .start = vma->vm_start,
3758 .len = vma->vm_end - vma->vm_start,
3759 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
3760 },
3761 };
3762
3763 perf_event_mmap_event(&mmap_event);
3764 }
3765
3766 /*
3767 * IRQ throttle logging
3768 */
3769
3770 static void perf_log_throttle(struct perf_event *event, int enable)
3771 {
3772 struct perf_output_handle handle;
3773 int ret;
3774
3775 struct {
3776 struct perf_event_header header;
3777 u64 time;
3778 u64 id;
3779 u64 stream_id;
3780 } throttle_event = {
3781 .header = {
3782 .type = PERF_RECORD_THROTTLE,
3783 .misc = 0,
3784 .size = sizeof(throttle_event),
3785 },
3786 .time = perf_clock(),
3787 .id = primary_event_id(event),
3788 .stream_id = event->id,
3789 };
3790
3791 if (enable)
3792 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3793
3794 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3795 if (ret)
3796 return;
3797
3798 perf_output_put(&handle, throttle_event);
3799 perf_output_end(&handle);
3800 }
3801
3802 /*
3803 * Generic event overflow handling, sampling.
3804 */
3805
3806 static int __perf_event_overflow(struct perf_event *event, int nmi,
3807 int throttle, struct perf_sample_data *data,
3808 struct pt_regs *regs)
3809 {
3810 int events = atomic_read(&event->event_limit);
3811 struct hw_perf_event *hwc = &event->hw;
3812 int ret = 0;
3813
3814 throttle = (throttle && event->pmu->unthrottle != NULL);
3815
3816 if (!throttle) {
3817 hwc->interrupts++;
3818 } else {
3819 if (hwc->interrupts != MAX_INTERRUPTS) {
3820 hwc->interrupts++;
3821 if (HZ * hwc->interrupts >
3822 (u64)sysctl_perf_event_sample_rate) {
3823 hwc->interrupts = MAX_INTERRUPTS;
3824 perf_log_throttle(event, 0);
3825 ret = 1;
3826 }
3827 } else {
3828 /*
3829 * Keep re-disabling events even though on the previous
3830 * pass we disabled it - just in case we raced with a
3831 * sched-in and the event got enabled again:
3832 */
3833 ret = 1;
3834 }
3835 }
3836
3837 if (event->attr.freq) {
3838 u64 now = perf_clock();
3839 s64 delta = now - hwc->freq_time_stamp;
3840
3841 hwc->freq_time_stamp = now;
3842
3843 if (delta > 0 && delta < 2*TICK_NSEC)
3844 perf_adjust_period(event, delta, hwc->last_period);
3845 }
3846
3847 /*
3848 * XXX event_limit might not quite work as expected on inherited
3849 * events
3850 */
3851
3852 event->pending_kill = POLL_IN;
3853 if (events && atomic_dec_and_test(&event->event_limit)) {
3854 ret = 1;
3855 event->pending_kill = POLL_HUP;
3856 if (nmi) {
3857 event->pending_disable = 1;
3858 perf_pending_queue(&event->pending,
3859 perf_pending_event);
3860 } else
3861 perf_event_disable(event);
3862 }
3863
3864 if (event->overflow_handler)
3865 event->overflow_handler(event, nmi, data, regs);
3866 else
3867 perf_event_output(event, nmi, data, regs);
3868
3869 return ret;
3870 }
3871
3872 int perf_event_overflow(struct perf_event *event, int nmi,
3873 struct perf_sample_data *data,
3874 struct pt_regs *regs)
3875 {
3876 return __perf_event_overflow(event, nmi, 1, data, regs);
3877 }
3878
3879 /*
3880 * Generic software event infrastructure
3881 */
3882
3883 /*
3884 * We directly increment event->count and keep a second value in
3885 * event->hw.period_left to count intervals. This period event
3886 * is kept in the range [-sample_period, 0] so that we can use the
3887 * sign as trigger.
3888 */
3889
3890 static u64 perf_swevent_set_period(struct perf_event *event)
3891 {
3892 struct hw_perf_event *hwc = &event->hw;
3893 u64 period = hwc->last_period;
3894 u64 nr, offset;
3895 s64 old, val;
3896
3897 hwc->last_period = hwc->sample_period;
3898
3899 again:
3900 old = val = atomic64_read(&hwc->period_left);
3901 if (val < 0)
3902 return 0;
3903
3904 nr = div64_u64(period + val, period);
3905 offset = nr * period;
3906 val -= offset;
3907 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3908 goto again;
3909
3910 return nr;
3911 }
3912
3913 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3914 int nmi, struct perf_sample_data *data,
3915 struct pt_regs *regs)
3916 {
3917 struct hw_perf_event *hwc = &event->hw;
3918 int throttle = 0;
3919
3920 data->period = event->hw.last_period;
3921 if (!overflow)
3922 overflow = perf_swevent_set_period(event);
3923
3924 if (hwc->interrupts == MAX_INTERRUPTS)
3925 return;
3926
3927 for (; overflow; overflow--) {
3928 if (__perf_event_overflow(event, nmi, throttle,
3929 data, regs)) {
3930 /*
3931 * We inhibit the overflow from happening when
3932 * hwc->interrupts == MAX_INTERRUPTS.
3933 */
3934 break;
3935 }
3936 throttle = 1;
3937 }
3938 }
3939
3940 static void perf_swevent_unthrottle(struct perf_event *event)
3941 {
3942 /*
3943 * Nothing to do, we already reset hwc->interrupts.
3944 */
3945 }
3946
3947 static void perf_swevent_add(struct perf_event *event, u64 nr,
3948 int nmi, struct perf_sample_data *data,
3949 struct pt_regs *regs)
3950 {
3951 struct hw_perf_event *hwc = &event->hw;
3952
3953 atomic64_add(nr, &event->count);
3954
3955 if (!regs)
3956 return;
3957
3958 if (!hwc->sample_period)
3959 return;
3960
3961 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3962 return perf_swevent_overflow(event, 1, nmi, data, regs);
3963
3964 if (atomic64_add_negative(nr, &hwc->period_left))
3965 return;
3966
3967 perf_swevent_overflow(event, 0, nmi, data, regs);
3968 }
3969
3970 static int perf_tp_event_match(struct perf_event *event,
3971 struct perf_sample_data *data);
3972
3973 static int perf_exclude_event(struct perf_event *event,
3974 struct pt_regs *regs)
3975 {
3976 if (regs) {
3977 if (event->attr.exclude_user && user_mode(regs))
3978 return 1;
3979
3980 if (event->attr.exclude_kernel && !user_mode(regs))
3981 return 1;
3982 }
3983
3984 return 0;
3985 }
3986
3987 static int perf_swevent_match(struct perf_event *event,
3988 enum perf_type_id type,
3989 u32 event_id,
3990 struct perf_sample_data *data,
3991 struct pt_regs *regs)
3992 {
3993 if (event->attr.type != type)
3994 return 0;
3995
3996 if (event->attr.config != event_id)
3997 return 0;
3998
3999 if (perf_exclude_event(event, regs))
4000 return 0;
4001
4002 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
4003 !perf_tp_event_match(event, data))
4004 return 0;
4005
4006 return 1;
4007 }
4008
4009 static inline u64 swevent_hash(u64 type, u32 event_id)
4010 {
4011 u64 val = event_id | (type << 32);
4012
4013 return hash_64(val, SWEVENT_HLIST_BITS);
4014 }
4015
4016 static struct hlist_head *
4017 find_swevent_head(struct perf_cpu_context *ctx, u64 type, u32 event_id)
4018 {
4019 u64 hash;
4020 struct swevent_hlist *hlist;
4021
4022 hash = swevent_hash(type, event_id);
4023
4024 hlist = rcu_dereference(ctx->swevent_hlist);
4025 if (!hlist)
4026 return NULL;
4027
4028 return &hlist->heads[hash];
4029 }
4030
4031 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4032 u64 nr, int nmi,
4033 struct perf_sample_data *data,
4034 struct pt_regs *regs)
4035 {
4036 struct perf_cpu_context *cpuctx;
4037 struct perf_event *event;
4038 struct hlist_node *node;
4039 struct hlist_head *head;
4040
4041 cpuctx = &__get_cpu_var(perf_cpu_context);
4042
4043 rcu_read_lock();
4044
4045 head = find_swevent_head(cpuctx, type, event_id);
4046
4047 if (!head)
4048 goto end;
4049
4050 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4051 if (perf_swevent_match(event, type, event_id, data, regs))
4052 perf_swevent_add(event, nr, nmi, data, regs);
4053 }
4054 end:
4055 rcu_read_unlock();
4056 }
4057
4058 int perf_swevent_get_recursion_context(void)
4059 {
4060 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
4061 int rctx;
4062
4063 if (in_nmi())
4064 rctx = 3;
4065 else if (in_irq())
4066 rctx = 2;
4067 else if (in_softirq())
4068 rctx = 1;
4069 else
4070 rctx = 0;
4071
4072 if (cpuctx->recursion[rctx]) {
4073 put_cpu_var(perf_cpu_context);
4074 return -1;
4075 }
4076
4077 cpuctx->recursion[rctx]++;
4078 barrier();
4079
4080 return rctx;
4081 }
4082 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4083
4084 void perf_swevent_put_recursion_context(int rctx)
4085 {
4086 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4087 barrier();
4088 cpuctx->recursion[rctx]--;
4089 put_cpu_var(perf_cpu_context);
4090 }
4091 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
4092
4093
4094 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4095 struct pt_regs *regs, u64 addr)
4096 {
4097 struct perf_sample_data data;
4098 int rctx;
4099
4100 rctx = perf_swevent_get_recursion_context();
4101 if (rctx < 0)
4102 return;
4103
4104 perf_sample_data_init(&data, addr);
4105
4106 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4107
4108 perf_swevent_put_recursion_context(rctx);
4109 }
4110
4111 static void perf_swevent_read(struct perf_event *event)
4112 {
4113 }
4114
4115 static int perf_swevent_enable(struct perf_event *event)
4116 {
4117 struct hw_perf_event *hwc = &event->hw;
4118 struct perf_cpu_context *cpuctx;
4119 struct hlist_head *head;
4120
4121 cpuctx = &__get_cpu_var(perf_cpu_context);
4122
4123 if (hwc->sample_period) {
4124 hwc->last_period = hwc->sample_period;
4125 perf_swevent_set_period(event);
4126 }
4127
4128 head = find_swevent_head(cpuctx, event->attr.type, event->attr.config);
4129 if (WARN_ON_ONCE(!head))
4130 return -EINVAL;
4131
4132 hlist_add_head_rcu(&event->hlist_entry, head);
4133
4134 return 0;
4135 }
4136
4137 static void perf_swevent_disable(struct perf_event *event)
4138 {
4139 hlist_del_rcu(&event->hlist_entry);
4140 }
4141
4142 static const struct pmu perf_ops_generic = {
4143 .enable = perf_swevent_enable,
4144 .disable = perf_swevent_disable,
4145 .read = perf_swevent_read,
4146 .unthrottle = perf_swevent_unthrottle,
4147 };
4148
4149 /*
4150 * hrtimer based swevent callback
4151 */
4152
4153 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4154 {
4155 enum hrtimer_restart ret = HRTIMER_RESTART;
4156 struct perf_sample_data data;
4157 struct pt_regs *regs;
4158 struct perf_event *event;
4159 u64 period;
4160
4161 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4162 event->pmu->read(event);
4163
4164 perf_sample_data_init(&data, 0);
4165 data.period = event->hw.last_period;
4166 regs = get_irq_regs();
4167
4168 if (regs && !perf_exclude_event(event, regs)) {
4169 if (!(event->attr.exclude_idle && current->pid == 0))
4170 if (perf_event_overflow(event, 0, &data, regs))
4171 ret = HRTIMER_NORESTART;
4172 }
4173
4174 period = max_t(u64, 10000, event->hw.sample_period);
4175 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4176
4177 return ret;
4178 }
4179
4180 static void perf_swevent_start_hrtimer(struct perf_event *event)
4181 {
4182 struct hw_perf_event *hwc = &event->hw;
4183
4184 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4185 hwc->hrtimer.function = perf_swevent_hrtimer;
4186 if (hwc->sample_period) {
4187 u64 period;
4188
4189 if (hwc->remaining) {
4190 if (hwc->remaining < 0)
4191 period = 10000;
4192 else
4193 period = hwc->remaining;
4194 hwc->remaining = 0;
4195 } else {
4196 period = max_t(u64, 10000, hwc->sample_period);
4197 }
4198 __hrtimer_start_range_ns(&hwc->hrtimer,
4199 ns_to_ktime(period), 0,
4200 HRTIMER_MODE_REL, 0);
4201 }
4202 }
4203
4204 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4205 {
4206 struct hw_perf_event *hwc = &event->hw;
4207
4208 if (hwc->sample_period) {
4209 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4210 hwc->remaining = ktime_to_ns(remaining);
4211
4212 hrtimer_cancel(&hwc->hrtimer);
4213 }
4214 }
4215
4216 /*
4217 * Software event: cpu wall time clock
4218 */
4219
4220 static void cpu_clock_perf_event_update(struct perf_event *event)
4221 {
4222 int cpu = raw_smp_processor_id();
4223 s64 prev;
4224 u64 now;
4225
4226 now = cpu_clock(cpu);
4227 prev = atomic64_xchg(&event->hw.prev_count, now);
4228 atomic64_add(now - prev, &event->count);
4229 }
4230
4231 static int cpu_clock_perf_event_enable(struct perf_event *event)
4232 {
4233 struct hw_perf_event *hwc = &event->hw;
4234 int cpu = raw_smp_processor_id();
4235
4236 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4237 perf_swevent_start_hrtimer(event);
4238
4239 return 0;
4240 }
4241
4242 static void cpu_clock_perf_event_disable(struct perf_event *event)
4243 {
4244 perf_swevent_cancel_hrtimer(event);
4245 cpu_clock_perf_event_update(event);
4246 }
4247
4248 static void cpu_clock_perf_event_read(struct perf_event *event)
4249 {
4250 cpu_clock_perf_event_update(event);
4251 }
4252
4253 static const struct pmu perf_ops_cpu_clock = {
4254 .enable = cpu_clock_perf_event_enable,
4255 .disable = cpu_clock_perf_event_disable,
4256 .read = cpu_clock_perf_event_read,
4257 };
4258
4259 /*
4260 * Software event: task time clock
4261 */
4262
4263 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4264 {
4265 u64 prev;
4266 s64 delta;
4267
4268 prev = atomic64_xchg(&event->hw.prev_count, now);
4269 delta = now - prev;
4270 atomic64_add(delta, &event->count);
4271 }
4272
4273 static int task_clock_perf_event_enable(struct perf_event *event)
4274 {
4275 struct hw_perf_event *hwc = &event->hw;
4276 u64 now;
4277
4278 now = event->ctx->time;
4279
4280 atomic64_set(&hwc->prev_count, now);
4281
4282 perf_swevent_start_hrtimer(event);
4283
4284 return 0;
4285 }
4286
4287 static void task_clock_perf_event_disable(struct perf_event *event)
4288 {
4289 perf_swevent_cancel_hrtimer(event);
4290 task_clock_perf_event_update(event, event->ctx->time);
4291
4292 }
4293
4294 static void task_clock_perf_event_read(struct perf_event *event)
4295 {
4296 u64 time;
4297
4298 if (!in_nmi()) {
4299 update_context_time(event->ctx);
4300 time = event->ctx->time;
4301 } else {
4302 u64 now = perf_clock();
4303 u64 delta = now - event->ctx->timestamp;
4304 time = event->ctx->time + delta;
4305 }
4306
4307 task_clock_perf_event_update(event, time);
4308 }
4309
4310 static const struct pmu perf_ops_task_clock = {
4311 .enable = task_clock_perf_event_enable,
4312 .disable = task_clock_perf_event_disable,
4313 .read = task_clock_perf_event_read,
4314 };
4315
4316 #ifdef CONFIG_EVENT_TRACING
4317
4318 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4319 int entry_size, struct pt_regs *regs)
4320 {
4321 struct perf_sample_data data;
4322 struct perf_raw_record raw = {
4323 .size = entry_size,
4324 .data = record,
4325 };
4326
4327 perf_sample_data_init(&data, addr);
4328 data.raw = &raw;
4329
4330 /* Trace events already protected against recursion */
4331 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4332 &data, regs);
4333 }
4334 EXPORT_SYMBOL_GPL(perf_tp_event);
4335
4336 static int perf_tp_event_match(struct perf_event *event,
4337 struct perf_sample_data *data)
4338 {
4339 void *record = data->raw->data;
4340
4341 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4342 return 1;
4343 return 0;
4344 }
4345
4346 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4347 {
4348 struct swevent_hlist *hlist;
4349
4350 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4351 kfree(hlist);
4352 }
4353
4354 static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
4355 {
4356 struct swevent_hlist *hlist;
4357
4358 if (!cpuctx->swevent_hlist)
4359 return;
4360
4361 hlist = cpuctx->swevent_hlist;
4362 rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
4363 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4364 }
4365
4366 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4367 {
4368 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4369
4370 mutex_lock(&cpuctx->hlist_mutex);
4371
4372 if (!--cpuctx->hlist_refcount)
4373 swevent_hlist_release(cpuctx);
4374
4375 mutex_unlock(&cpuctx->hlist_mutex);
4376 }
4377
4378 static void swevent_hlist_put(struct perf_event *event)
4379 {
4380 int cpu;
4381
4382 if (event->cpu != -1) {
4383 swevent_hlist_put_cpu(event, event->cpu);
4384 return;
4385 }
4386
4387 for_each_possible_cpu(cpu)
4388 swevent_hlist_put_cpu(event, cpu);
4389 }
4390
4391 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4392 {
4393 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
4394 int err = 0;
4395
4396 mutex_lock(&cpuctx->hlist_mutex);
4397
4398 if (!cpuctx->swevent_hlist && cpu_online(cpu)) {
4399 struct swevent_hlist *hlist;
4400
4401 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4402 if (!hlist) {
4403 err = -ENOMEM;
4404 goto exit;
4405 }
4406 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
4407 }
4408 cpuctx->hlist_refcount++;
4409 exit:
4410 mutex_unlock(&cpuctx->hlist_mutex);
4411
4412 return err;
4413 }
4414
4415 static int swevent_hlist_get(struct perf_event *event)
4416 {
4417 int err;
4418 int cpu, failed_cpu;
4419
4420 if (event->cpu != -1)
4421 return swevent_hlist_get_cpu(event, event->cpu);
4422
4423 get_online_cpus();
4424 for_each_possible_cpu(cpu) {
4425 err = swevent_hlist_get_cpu(event, cpu);
4426 if (err) {
4427 failed_cpu = cpu;
4428 goto fail;
4429 }
4430 }
4431 put_online_cpus();
4432
4433 return 0;
4434 fail:
4435 for_each_possible_cpu(cpu) {
4436 if (cpu == failed_cpu)
4437 break;
4438 swevent_hlist_put_cpu(event, cpu);
4439 }
4440
4441 put_online_cpus();
4442 return err;
4443 }
4444
4445 static void tp_perf_event_destroy(struct perf_event *event)
4446 {
4447 perf_trace_disable(event->attr.config);
4448 swevent_hlist_put(event);
4449 }
4450
4451 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4452 {
4453 int err;
4454
4455 /*
4456 * Raw tracepoint data is a severe data leak, only allow root to
4457 * have these.
4458 */
4459 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4460 perf_paranoid_tracepoint_raw() &&
4461 !capable(CAP_SYS_ADMIN))
4462 return ERR_PTR(-EPERM);
4463
4464 if (perf_trace_enable(event->attr.config))
4465 return NULL;
4466
4467 event->destroy = tp_perf_event_destroy;
4468 err = swevent_hlist_get(event);
4469 if (err) {
4470 perf_trace_disable(event->attr.config);
4471 return ERR_PTR(err);
4472 }
4473
4474 return &perf_ops_generic;
4475 }
4476
4477 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4478 {
4479 char *filter_str;
4480 int ret;
4481
4482 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4483 return -EINVAL;
4484
4485 filter_str = strndup_user(arg, PAGE_SIZE);
4486 if (IS_ERR(filter_str))
4487 return PTR_ERR(filter_str);
4488
4489 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4490
4491 kfree(filter_str);
4492 return ret;
4493 }
4494
4495 static void perf_event_free_filter(struct perf_event *event)
4496 {
4497 ftrace_profile_free_filter(event);
4498 }
4499
4500 #else
4501
4502 static int perf_tp_event_match(struct perf_event *event,
4503 struct perf_sample_data *data)
4504 {
4505 return 1;
4506 }
4507
4508 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4509 {
4510 return NULL;
4511 }
4512
4513 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4514 {
4515 return -ENOENT;
4516 }
4517
4518 static void perf_event_free_filter(struct perf_event *event)
4519 {
4520 }
4521
4522 #endif /* CONFIG_EVENT_TRACING */
4523
4524 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4525 static void bp_perf_event_destroy(struct perf_event *event)
4526 {
4527 release_bp_slot(event);
4528 }
4529
4530 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4531 {
4532 int err;
4533
4534 err = register_perf_hw_breakpoint(bp);
4535 if (err)
4536 return ERR_PTR(err);
4537
4538 bp->destroy = bp_perf_event_destroy;
4539
4540 return &perf_ops_bp;
4541 }
4542
4543 void perf_bp_event(struct perf_event *bp, void *data)
4544 {
4545 struct perf_sample_data sample;
4546 struct pt_regs *regs = data;
4547
4548 perf_sample_data_init(&sample, bp->attr.bp_addr);
4549
4550 if (!perf_exclude_event(bp, regs))
4551 perf_swevent_add(bp, 1, 1, &sample, regs);
4552 }
4553 #else
4554 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4555 {
4556 return NULL;
4557 }
4558
4559 void perf_bp_event(struct perf_event *bp, void *regs)
4560 {
4561 }
4562 #endif
4563
4564 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4565
4566 static void sw_perf_event_destroy(struct perf_event *event)
4567 {
4568 u64 event_id = event->attr.config;
4569
4570 WARN_ON(event->parent);
4571
4572 atomic_dec(&perf_swevent_enabled[event_id]);
4573 swevent_hlist_put(event);
4574 }
4575
4576 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4577 {
4578 const struct pmu *pmu = NULL;
4579 u64 event_id = event->attr.config;
4580
4581 /*
4582 * Software events (currently) can't in general distinguish
4583 * between user, kernel and hypervisor events.
4584 * However, context switches and cpu migrations are considered
4585 * to be kernel events, and page faults are never hypervisor
4586 * events.
4587 */
4588 switch (event_id) {
4589 case PERF_COUNT_SW_CPU_CLOCK:
4590 pmu = &perf_ops_cpu_clock;
4591
4592 break;
4593 case PERF_COUNT_SW_TASK_CLOCK:
4594 /*
4595 * If the user instantiates this as a per-cpu event,
4596 * use the cpu_clock event instead.
4597 */
4598 if (event->ctx->task)
4599 pmu = &perf_ops_task_clock;
4600 else
4601 pmu = &perf_ops_cpu_clock;
4602
4603 break;
4604 case PERF_COUNT_SW_PAGE_FAULTS:
4605 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4606 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4607 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4608 case PERF_COUNT_SW_CPU_MIGRATIONS:
4609 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4610 case PERF_COUNT_SW_EMULATION_FAULTS:
4611 if (!event->parent) {
4612 int err;
4613
4614 err = swevent_hlist_get(event);
4615 if (err)
4616 return ERR_PTR(err);
4617
4618 atomic_inc(&perf_swevent_enabled[event_id]);
4619 event->destroy = sw_perf_event_destroy;
4620 }
4621 pmu = &perf_ops_generic;
4622 break;
4623 }
4624
4625 return pmu;
4626 }
4627
4628 /*
4629 * Allocate and initialize a event structure
4630 */
4631 static struct perf_event *
4632 perf_event_alloc(struct perf_event_attr *attr,
4633 int cpu,
4634 struct perf_event_context *ctx,
4635 struct perf_event *group_leader,
4636 struct perf_event *parent_event,
4637 perf_overflow_handler_t overflow_handler,
4638 gfp_t gfpflags)
4639 {
4640 const struct pmu *pmu;
4641 struct perf_event *event;
4642 struct hw_perf_event *hwc;
4643 long err;
4644
4645 event = kzalloc(sizeof(*event), gfpflags);
4646 if (!event)
4647 return ERR_PTR(-ENOMEM);
4648
4649 /*
4650 * Single events are their own group leaders, with an
4651 * empty sibling list:
4652 */
4653 if (!group_leader)
4654 group_leader = event;
4655
4656 mutex_init(&event->child_mutex);
4657 INIT_LIST_HEAD(&event->child_list);
4658
4659 INIT_LIST_HEAD(&event->group_entry);
4660 INIT_LIST_HEAD(&event->event_entry);
4661 INIT_LIST_HEAD(&event->sibling_list);
4662 init_waitqueue_head(&event->waitq);
4663
4664 mutex_init(&event->mmap_mutex);
4665
4666 event->cpu = cpu;
4667 event->attr = *attr;
4668 event->group_leader = group_leader;
4669 event->pmu = NULL;
4670 event->ctx = ctx;
4671 event->oncpu = -1;
4672
4673 event->parent = parent_event;
4674
4675 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4676 event->id = atomic64_inc_return(&perf_event_id);
4677
4678 event->state = PERF_EVENT_STATE_INACTIVE;
4679
4680 if (!overflow_handler && parent_event)
4681 overflow_handler = parent_event->overflow_handler;
4682
4683 event->overflow_handler = overflow_handler;
4684
4685 if (attr->disabled)
4686 event->state = PERF_EVENT_STATE_OFF;
4687
4688 pmu = NULL;
4689
4690 hwc = &event->hw;
4691 hwc->sample_period = attr->sample_period;
4692 if (attr->freq && attr->sample_freq)
4693 hwc->sample_period = 1;
4694 hwc->last_period = hwc->sample_period;
4695
4696 atomic64_set(&hwc->period_left, hwc->sample_period);
4697
4698 /*
4699 * we currently do not support PERF_FORMAT_GROUP on inherited events
4700 */
4701 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4702 goto done;
4703
4704 switch (attr->type) {
4705 case PERF_TYPE_RAW:
4706 case PERF_TYPE_HARDWARE:
4707 case PERF_TYPE_HW_CACHE:
4708 pmu = hw_perf_event_init(event);
4709 break;
4710
4711 case PERF_TYPE_SOFTWARE:
4712 pmu = sw_perf_event_init(event);
4713 break;
4714
4715 case PERF_TYPE_TRACEPOINT:
4716 pmu = tp_perf_event_init(event);
4717 break;
4718
4719 case PERF_TYPE_BREAKPOINT:
4720 pmu = bp_perf_event_init(event);
4721 break;
4722
4723
4724 default:
4725 break;
4726 }
4727 done:
4728 err = 0;
4729 if (!pmu)
4730 err = -EINVAL;
4731 else if (IS_ERR(pmu))
4732 err = PTR_ERR(pmu);
4733
4734 if (err) {
4735 if (event->ns)
4736 put_pid_ns(event->ns);
4737 kfree(event);
4738 return ERR_PTR(err);
4739 }
4740
4741 event->pmu = pmu;
4742
4743 if (!event->parent) {
4744 atomic_inc(&nr_events);
4745 if (event->attr.mmap)
4746 atomic_inc(&nr_mmap_events);
4747 if (event->attr.comm)
4748 atomic_inc(&nr_comm_events);
4749 if (event->attr.task)
4750 atomic_inc(&nr_task_events);
4751 }
4752
4753 return event;
4754 }
4755
4756 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4757 struct perf_event_attr *attr)
4758 {
4759 u32 size;
4760 int ret;
4761
4762 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4763 return -EFAULT;
4764
4765 /*
4766 * zero the full structure, so that a short copy will be nice.
4767 */
4768 memset(attr, 0, sizeof(*attr));
4769
4770 ret = get_user(size, &uattr->size);
4771 if (ret)
4772 return ret;
4773
4774 if (size > PAGE_SIZE) /* silly large */
4775 goto err_size;
4776
4777 if (!size) /* abi compat */
4778 size = PERF_ATTR_SIZE_VER0;
4779
4780 if (size < PERF_ATTR_SIZE_VER0)
4781 goto err_size;
4782
4783 /*
4784 * If we're handed a bigger struct than we know of,
4785 * ensure all the unknown bits are 0 - i.e. new
4786 * user-space does not rely on any kernel feature
4787 * extensions we dont know about yet.
4788 */
4789 if (size > sizeof(*attr)) {
4790 unsigned char __user *addr;
4791 unsigned char __user *end;
4792 unsigned char val;
4793
4794 addr = (void __user *)uattr + sizeof(*attr);
4795 end = (void __user *)uattr + size;
4796
4797 for (; addr < end; addr++) {
4798 ret = get_user(val, addr);
4799 if (ret)
4800 return ret;
4801 if (val)
4802 goto err_size;
4803 }
4804 size = sizeof(*attr);
4805 }
4806
4807 ret = copy_from_user(attr, uattr, size);
4808 if (ret)
4809 return -EFAULT;
4810
4811 /*
4812 * If the type exists, the corresponding creation will verify
4813 * the attr->config.
4814 */
4815 if (attr->type >= PERF_TYPE_MAX)
4816 return -EINVAL;
4817
4818 if (attr->__reserved_1)
4819 return -EINVAL;
4820
4821 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4822 return -EINVAL;
4823
4824 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4825 return -EINVAL;
4826
4827 out:
4828 return ret;
4829
4830 err_size:
4831 put_user(sizeof(*attr), &uattr->size);
4832 ret = -E2BIG;
4833 goto out;
4834 }
4835
4836 static int perf_event_set_output(struct perf_event *event, int output_fd)
4837 {
4838 struct perf_event *output_event = NULL;
4839 struct file *output_file = NULL;
4840 struct perf_event *old_output;
4841 int fput_needed = 0;
4842 int ret = -EINVAL;
4843
4844 if (!output_fd)
4845 goto set;
4846
4847 output_file = fget_light(output_fd, &fput_needed);
4848 if (!output_file)
4849 return -EBADF;
4850
4851 if (output_file->f_op != &perf_fops)
4852 goto out;
4853
4854 output_event = output_file->private_data;
4855
4856 /* Don't chain output fds */
4857 if (output_event->output)
4858 goto out;
4859
4860 /* Don't set an output fd when we already have an output channel */
4861 if (event->data)
4862 goto out;
4863
4864 atomic_long_inc(&output_file->f_count);
4865
4866 set:
4867 mutex_lock(&event->mmap_mutex);
4868 old_output = event->output;
4869 rcu_assign_pointer(event->output, output_event);
4870 mutex_unlock(&event->mmap_mutex);
4871
4872 if (old_output) {
4873 /*
4874 * we need to make sure no existing perf_output_*()
4875 * is still referencing this event.
4876 */
4877 synchronize_rcu();
4878 fput(old_output->filp);
4879 }
4880
4881 ret = 0;
4882 out:
4883 fput_light(output_file, fput_needed);
4884 return ret;
4885 }
4886
4887 /**
4888 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4889 *
4890 * @attr_uptr: event_id type attributes for monitoring/sampling
4891 * @pid: target pid
4892 * @cpu: target cpu
4893 * @group_fd: group leader event fd
4894 */
4895 SYSCALL_DEFINE5(perf_event_open,
4896 struct perf_event_attr __user *, attr_uptr,
4897 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4898 {
4899 struct perf_event *event, *group_leader;
4900 struct perf_event_attr attr;
4901 struct perf_event_context *ctx;
4902 struct file *event_file = NULL;
4903 struct file *group_file = NULL;
4904 int fput_needed = 0;
4905 int fput_needed2 = 0;
4906 int err;
4907
4908 /* for future expandability... */
4909 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4910 return -EINVAL;
4911
4912 err = perf_copy_attr(attr_uptr, &attr);
4913 if (err)
4914 return err;
4915
4916 if (!attr.exclude_kernel) {
4917 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4918 return -EACCES;
4919 }
4920
4921 if (attr.freq) {
4922 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4923 return -EINVAL;
4924 }
4925
4926 /*
4927 * Get the target context (task or percpu):
4928 */
4929 ctx = find_get_context(pid, cpu);
4930 if (IS_ERR(ctx))
4931 return PTR_ERR(ctx);
4932
4933 /*
4934 * Look up the group leader (we will attach this event to it):
4935 */
4936 group_leader = NULL;
4937 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4938 err = -EINVAL;
4939 group_file = fget_light(group_fd, &fput_needed);
4940 if (!group_file)
4941 goto err_put_context;
4942 if (group_file->f_op != &perf_fops)
4943 goto err_put_context;
4944
4945 group_leader = group_file->private_data;
4946 /*
4947 * Do not allow a recursive hierarchy (this new sibling
4948 * becoming part of another group-sibling):
4949 */
4950 if (group_leader->group_leader != group_leader)
4951 goto err_put_context;
4952 /*
4953 * Do not allow to attach to a group in a different
4954 * task or CPU context:
4955 */
4956 if (group_leader->ctx != ctx)
4957 goto err_put_context;
4958 /*
4959 * Only a group leader can be exclusive or pinned
4960 */
4961 if (attr.exclusive || attr.pinned)
4962 goto err_put_context;
4963 }
4964
4965 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4966 NULL, NULL, GFP_KERNEL);
4967 err = PTR_ERR(event);
4968 if (IS_ERR(event))
4969 goto err_put_context;
4970
4971 err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
4972 if (err < 0)
4973 goto err_free_put_context;
4974
4975 event_file = fget_light(err, &fput_needed2);
4976 if (!event_file)
4977 goto err_free_put_context;
4978
4979 if (flags & PERF_FLAG_FD_OUTPUT) {
4980 err = perf_event_set_output(event, group_fd);
4981 if (err)
4982 goto err_fput_free_put_context;
4983 }
4984
4985 event->filp = event_file;
4986 WARN_ON_ONCE(ctx->parent_ctx);
4987 mutex_lock(&ctx->mutex);
4988 perf_install_in_context(ctx, event, cpu);
4989 ++ctx->generation;
4990 mutex_unlock(&ctx->mutex);
4991
4992 event->owner = current;
4993 get_task_struct(current);
4994 mutex_lock(&current->perf_event_mutex);
4995 list_add_tail(&event->owner_entry, &current->perf_event_list);
4996 mutex_unlock(&current->perf_event_mutex);
4997
4998 err_fput_free_put_context:
4999 fput_light(event_file, fput_needed2);
5000
5001 err_free_put_context:
5002 if (err < 0)
5003 kfree(event);
5004
5005 err_put_context:
5006 if (err < 0)
5007 put_ctx(ctx);
5008
5009 fput_light(group_file, fput_needed);
5010
5011 return err;
5012 }
5013
5014 /**
5015 * perf_event_create_kernel_counter
5016 *
5017 * @attr: attributes of the counter to create
5018 * @cpu: cpu in which the counter is bound
5019 * @pid: task to profile
5020 */
5021 struct perf_event *
5022 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5023 pid_t pid,
5024 perf_overflow_handler_t overflow_handler)
5025 {
5026 struct perf_event *event;
5027 struct perf_event_context *ctx;
5028 int err;
5029
5030 /*
5031 * Get the target context (task or percpu):
5032 */
5033
5034 ctx = find_get_context(pid, cpu);
5035 if (IS_ERR(ctx)) {
5036 err = PTR_ERR(ctx);
5037 goto err_exit;
5038 }
5039
5040 event = perf_event_alloc(attr, cpu, ctx, NULL,
5041 NULL, overflow_handler, GFP_KERNEL);
5042 if (IS_ERR(event)) {
5043 err = PTR_ERR(event);
5044 goto err_put_context;
5045 }
5046
5047 event->filp = NULL;
5048 WARN_ON_ONCE(ctx->parent_ctx);
5049 mutex_lock(&ctx->mutex);
5050 perf_install_in_context(ctx, event, cpu);
5051 ++ctx->generation;
5052 mutex_unlock(&ctx->mutex);
5053
5054 event->owner = current;
5055 get_task_struct(current);
5056 mutex_lock(&current->perf_event_mutex);
5057 list_add_tail(&event->owner_entry, &current->perf_event_list);
5058 mutex_unlock(&current->perf_event_mutex);
5059
5060 return event;
5061
5062 err_put_context:
5063 put_ctx(ctx);
5064 err_exit:
5065 return ERR_PTR(err);
5066 }
5067 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5068
5069 /*
5070 * inherit a event from parent task to child task:
5071 */
5072 static struct perf_event *
5073 inherit_event(struct perf_event *parent_event,
5074 struct task_struct *parent,
5075 struct perf_event_context *parent_ctx,
5076 struct task_struct *child,
5077 struct perf_event *group_leader,
5078 struct perf_event_context *child_ctx)
5079 {
5080 struct perf_event *child_event;
5081
5082 /*
5083 * Instead of creating recursive hierarchies of events,
5084 * we link inherited events back to the original parent,
5085 * which has a filp for sure, which we use as the reference
5086 * count:
5087 */
5088 if (parent_event->parent)
5089 parent_event = parent_event->parent;
5090
5091 child_event = perf_event_alloc(&parent_event->attr,
5092 parent_event->cpu, child_ctx,
5093 group_leader, parent_event,
5094 NULL, GFP_KERNEL);
5095 if (IS_ERR(child_event))
5096 return child_event;
5097 get_ctx(child_ctx);
5098
5099 /*
5100 * Make the child state follow the state of the parent event,
5101 * not its attr.disabled bit. We hold the parent's mutex,
5102 * so we won't race with perf_event_{en, dis}able_family.
5103 */
5104 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5105 child_event->state = PERF_EVENT_STATE_INACTIVE;
5106 else
5107 child_event->state = PERF_EVENT_STATE_OFF;
5108
5109 if (parent_event->attr.freq) {
5110 u64 sample_period = parent_event->hw.sample_period;
5111 struct hw_perf_event *hwc = &child_event->hw;
5112
5113 hwc->sample_period = sample_period;
5114 hwc->last_period = sample_period;
5115
5116 atomic64_set(&hwc->period_left, sample_period);
5117 }
5118
5119 child_event->overflow_handler = parent_event->overflow_handler;
5120
5121 /*
5122 * Link it up in the child's context:
5123 */
5124 add_event_to_ctx(child_event, child_ctx);
5125
5126 /*
5127 * Get a reference to the parent filp - we will fput it
5128 * when the child event exits. This is safe to do because
5129 * we are in the parent and we know that the filp still
5130 * exists and has a nonzero count:
5131 */
5132 atomic_long_inc(&parent_event->filp->f_count);
5133
5134 /*
5135 * Link this into the parent event's child list
5136 */
5137 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5138 mutex_lock(&parent_event->child_mutex);
5139 list_add_tail(&child_event->child_list, &parent_event->child_list);
5140 mutex_unlock(&parent_event->child_mutex);
5141
5142 return child_event;
5143 }
5144
5145 static int inherit_group(struct perf_event *parent_event,
5146 struct task_struct *parent,
5147 struct perf_event_context *parent_ctx,
5148 struct task_struct *child,
5149 struct perf_event_context *child_ctx)
5150 {
5151 struct perf_event *leader;
5152 struct perf_event *sub;
5153 struct perf_event *child_ctr;
5154
5155 leader = inherit_event(parent_event, parent, parent_ctx,
5156 child, NULL, child_ctx);
5157 if (IS_ERR(leader))
5158 return PTR_ERR(leader);
5159 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5160 child_ctr = inherit_event(sub, parent, parent_ctx,
5161 child, leader, child_ctx);
5162 if (IS_ERR(child_ctr))
5163 return PTR_ERR(child_ctr);
5164 }
5165 return 0;
5166 }
5167
5168 static void sync_child_event(struct perf_event *child_event,
5169 struct task_struct *child)
5170 {
5171 struct perf_event *parent_event = child_event->parent;
5172 u64 child_val;
5173
5174 if (child_event->attr.inherit_stat)
5175 perf_event_read_event(child_event, child);
5176
5177 child_val = atomic64_read(&child_event->count);
5178
5179 /*
5180 * Add back the child's count to the parent's count:
5181 */
5182 atomic64_add(child_val, &parent_event->count);
5183 atomic64_add(child_event->total_time_enabled,
5184 &parent_event->child_total_time_enabled);
5185 atomic64_add(child_event->total_time_running,
5186 &parent_event->child_total_time_running);
5187
5188 /*
5189 * Remove this event from the parent's list
5190 */
5191 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5192 mutex_lock(&parent_event->child_mutex);
5193 list_del_init(&child_event->child_list);
5194 mutex_unlock(&parent_event->child_mutex);
5195
5196 /*
5197 * Release the parent event, if this was the last
5198 * reference to it.
5199 */
5200 fput(parent_event->filp);
5201 }
5202
5203 static void
5204 __perf_event_exit_task(struct perf_event *child_event,
5205 struct perf_event_context *child_ctx,
5206 struct task_struct *child)
5207 {
5208 struct perf_event *parent_event;
5209
5210 perf_event_remove_from_context(child_event);
5211
5212 parent_event = child_event->parent;
5213 /*
5214 * It can happen that parent exits first, and has events
5215 * that are still around due to the child reference. These
5216 * events need to be zapped - but otherwise linger.
5217 */
5218 if (parent_event) {
5219 sync_child_event(child_event, child);
5220 free_event(child_event);
5221 }
5222 }
5223
5224 /*
5225 * When a child task exits, feed back event values to parent events.
5226 */
5227 void perf_event_exit_task(struct task_struct *child)
5228 {
5229 struct perf_event *child_event, *tmp;
5230 struct perf_event_context *child_ctx;
5231 unsigned long flags;
5232
5233 if (likely(!child->perf_event_ctxp)) {
5234 perf_event_task(child, NULL, 0);
5235 return;
5236 }
5237
5238 local_irq_save(flags);
5239 /*
5240 * We can't reschedule here because interrupts are disabled,
5241 * and either child is current or it is a task that can't be
5242 * scheduled, so we are now safe from rescheduling changing
5243 * our context.
5244 */
5245 child_ctx = child->perf_event_ctxp;
5246 __perf_event_task_sched_out(child_ctx);
5247
5248 /*
5249 * Take the context lock here so that if find_get_context is
5250 * reading child->perf_event_ctxp, we wait until it has
5251 * incremented the context's refcount before we do put_ctx below.
5252 */
5253 raw_spin_lock(&child_ctx->lock);
5254 child->perf_event_ctxp = NULL;
5255 /*
5256 * If this context is a clone; unclone it so it can't get
5257 * swapped to another process while we're removing all
5258 * the events from it.
5259 */
5260 unclone_ctx(child_ctx);
5261 update_context_time(child_ctx);
5262 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5263
5264 /*
5265 * Report the task dead after unscheduling the events so that we
5266 * won't get any samples after PERF_RECORD_EXIT. We can however still
5267 * get a few PERF_RECORD_READ events.
5268 */
5269 perf_event_task(child, child_ctx, 0);
5270
5271 /*
5272 * We can recurse on the same lock type through:
5273 *
5274 * __perf_event_exit_task()
5275 * sync_child_event()
5276 * fput(parent_event->filp)
5277 * perf_release()
5278 * mutex_lock(&ctx->mutex)
5279 *
5280 * But since its the parent context it won't be the same instance.
5281 */
5282 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5283
5284 again:
5285 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5286 group_entry)
5287 __perf_event_exit_task(child_event, child_ctx, child);
5288
5289 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5290 group_entry)
5291 __perf_event_exit_task(child_event, child_ctx, child);
5292
5293 /*
5294 * If the last event was a group event, it will have appended all
5295 * its siblings to the list, but we obtained 'tmp' before that which
5296 * will still point to the list head terminating the iteration.
5297 */
5298 if (!list_empty(&child_ctx->pinned_groups) ||
5299 !list_empty(&child_ctx->flexible_groups))
5300 goto again;
5301
5302 mutex_unlock(&child_ctx->mutex);
5303
5304 put_ctx(child_ctx);
5305 }
5306
5307 static void perf_free_event(struct perf_event *event,
5308 struct perf_event_context *ctx)
5309 {
5310 struct perf_event *parent = event->parent;
5311
5312 if (WARN_ON_ONCE(!parent))
5313 return;
5314
5315 mutex_lock(&parent->child_mutex);
5316 list_del_init(&event->child_list);
5317 mutex_unlock(&parent->child_mutex);
5318
5319 fput(parent->filp);
5320
5321 list_del_event(event, ctx);
5322 free_event(event);
5323 }
5324
5325 /*
5326 * free an unexposed, unused context as created by inheritance by
5327 * init_task below, used by fork() in case of fail.
5328 */
5329 void perf_event_free_task(struct task_struct *task)
5330 {
5331 struct perf_event_context *ctx = task->perf_event_ctxp;
5332 struct perf_event *event, *tmp;
5333
5334 if (!ctx)
5335 return;
5336
5337 mutex_lock(&ctx->mutex);
5338 again:
5339 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5340 perf_free_event(event, ctx);
5341
5342 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5343 group_entry)
5344 perf_free_event(event, ctx);
5345
5346 if (!list_empty(&ctx->pinned_groups) ||
5347 !list_empty(&ctx->flexible_groups))
5348 goto again;
5349
5350 mutex_unlock(&ctx->mutex);
5351
5352 put_ctx(ctx);
5353 }
5354
5355 static int
5356 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5357 struct perf_event_context *parent_ctx,
5358 struct task_struct *child,
5359 int *inherited_all)
5360 {
5361 int ret;
5362 struct perf_event_context *child_ctx = child->perf_event_ctxp;
5363
5364 if (!event->attr.inherit) {
5365 *inherited_all = 0;
5366 return 0;
5367 }
5368
5369 if (!child_ctx) {
5370 /*
5371 * This is executed from the parent task context, so
5372 * inherit events that have been marked for cloning.
5373 * First allocate and initialize a context for the
5374 * child.
5375 */
5376
5377 child_ctx = kzalloc(sizeof(struct perf_event_context),
5378 GFP_KERNEL);
5379 if (!child_ctx)
5380 return -ENOMEM;
5381
5382 __perf_event_init_context(child_ctx, child);
5383 child->perf_event_ctxp = child_ctx;
5384 get_task_struct(child);
5385 }
5386
5387 ret = inherit_group(event, parent, parent_ctx,
5388 child, child_ctx);
5389
5390 if (ret)
5391 *inherited_all = 0;
5392
5393 return ret;
5394 }
5395
5396
5397 /*
5398 * Initialize the perf_event context in task_struct
5399 */
5400 int perf_event_init_task(struct task_struct *child)
5401 {
5402 struct perf_event_context *child_ctx, *parent_ctx;
5403 struct perf_event_context *cloned_ctx;
5404 struct perf_event *event;
5405 struct task_struct *parent = current;
5406 int inherited_all = 1;
5407 int ret = 0;
5408
5409 child->perf_event_ctxp = NULL;
5410
5411 mutex_init(&child->perf_event_mutex);
5412 INIT_LIST_HEAD(&child->perf_event_list);
5413
5414 if (likely(!parent->perf_event_ctxp))
5415 return 0;
5416
5417 /*
5418 * If the parent's context is a clone, pin it so it won't get
5419 * swapped under us.
5420 */
5421 parent_ctx = perf_pin_task_context(parent);
5422
5423 /*
5424 * No need to check if parent_ctx != NULL here; since we saw
5425 * it non-NULL earlier, the only reason for it to become NULL
5426 * is if we exit, and since we're currently in the middle of
5427 * a fork we can't be exiting at the same time.
5428 */
5429
5430 /*
5431 * Lock the parent list. No need to lock the child - not PID
5432 * hashed yet and not running, so nobody can access it.
5433 */
5434 mutex_lock(&parent_ctx->mutex);
5435
5436 /*
5437 * We dont have to disable NMIs - we are only looking at
5438 * the list, not manipulating it:
5439 */
5440 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5441 ret = inherit_task_group(event, parent, parent_ctx, child,
5442 &inherited_all);
5443 if (ret)
5444 break;
5445 }
5446
5447 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5448 ret = inherit_task_group(event, parent, parent_ctx, child,
5449 &inherited_all);
5450 if (ret)
5451 break;
5452 }
5453
5454 child_ctx = child->perf_event_ctxp;
5455
5456 if (child_ctx && inherited_all) {
5457 /*
5458 * Mark the child context as a clone of the parent
5459 * context, or of whatever the parent is a clone of.
5460 * Note that if the parent is a clone, it could get
5461 * uncloned at any point, but that doesn't matter
5462 * because the list of events and the generation
5463 * count can't have changed since we took the mutex.
5464 */
5465 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5466 if (cloned_ctx) {
5467 child_ctx->parent_ctx = cloned_ctx;
5468 child_ctx->parent_gen = parent_ctx->parent_gen;
5469 } else {
5470 child_ctx->parent_ctx = parent_ctx;
5471 child_ctx->parent_gen = parent_ctx->generation;
5472 }
5473 get_ctx(child_ctx->parent_ctx);
5474 }
5475
5476 mutex_unlock(&parent_ctx->mutex);
5477
5478 perf_unpin_context(parent_ctx);
5479
5480 return ret;
5481 }
5482
5483 static void __init perf_event_init_all_cpus(void)
5484 {
5485 int cpu;
5486 struct perf_cpu_context *cpuctx;
5487
5488 for_each_possible_cpu(cpu) {
5489 cpuctx = &per_cpu(perf_cpu_context, cpu);
5490 mutex_init(&cpuctx->hlist_mutex);
5491 __perf_event_init_context(&cpuctx->ctx, NULL);
5492 }
5493 }
5494
5495 static void __cpuinit perf_event_init_cpu(int cpu)
5496 {
5497 struct perf_cpu_context *cpuctx;
5498
5499 cpuctx = &per_cpu(perf_cpu_context, cpu);
5500
5501 spin_lock(&perf_resource_lock);
5502 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5503 spin_unlock(&perf_resource_lock);
5504
5505 mutex_lock(&cpuctx->hlist_mutex);
5506 if (cpuctx->hlist_refcount > 0) {
5507 struct swevent_hlist *hlist;
5508
5509 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5510 WARN_ON_ONCE(!hlist);
5511 rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
5512 }
5513 mutex_unlock(&cpuctx->hlist_mutex);
5514 }
5515
5516 #ifdef CONFIG_HOTPLUG_CPU
5517 static void __perf_event_exit_cpu(void *info)
5518 {
5519 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5520 struct perf_event_context *ctx = &cpuctx->ctx;
5521 struct perf_event *event, *tmp;
5522
5523 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5524 __perf_event_remove_from_context(event);
5525 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5526 __perf_event_remove_from_context(event);
5527 }
5528 static void perf_event_exit_cpu(int cpu)
5529 {
5530 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5531 struct perf_event_context *ctx = &cpuctx->ctx;
5532
5533 mutex_lock(&cpuctx->hlist_mutex);
5534 swevent_hlist_release(cpuctx);
5535 mutex_unlock(&cpuctx->hlist_mutex);
5536
5537 mutex_lock(&ctx->mutex);
5538 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5539 mutex_unlock(&ctx->mutex);
5540 }
5541 #else
5542 static inline void perf_event_exit_cpu(int cpu) { }
5543 #endif
5544
5545 static int __cpuinit
5546 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5547 {
5548 unsigned int cpu = (long)hcpu;
5549
5550 switch (action) {
5551
5552 case CPU_UP_PREPARE:
5553 case CPU_UP_PREPARE_FROZEN:
5554 perf_event_init_cpu(cpu);
5555 break;
5556
5557 case CPU_DOWN_PREPARE:
5558 case CPU_DOWN_PREPARE_FROZEN:
5559 perf_event_exit_cpu(cpu);
5560 break;
5561
5562 default:
5563 break;
5564 }
5565
5566 return NOTIFY_OK;
5567 }
5568
5569 /*
5570 * This has to have a higher priority than migration_notifier in sched.c.
5571 */
5572 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5573 .notifier_call = perf_cpu_notify,
5574 .priority = 20,
5575 };
5576
5577 void __init perf_event_init(void)
5578 {
5579 perf_event_init_all_cpus();
5580 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5581 (void *)(long)smp_processor_id());
5582 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5583 (void *)(long)smp_processor_id());
5584 register_cpu_notifier(&perf_cpu_nb);
5585 }
5586
5587 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5588 struct sysdev_class_attribute *attr,
5589 char *buf)
5590 {
5591 return sprintf(buf, "%d\n", perf_reserved_percpu);
5592 }
5593
5594 static ssize_t
5595 perf_set_reserve_percpu(struct sysdev_class *class,
5596 struct sysdev_class_attribute *attr,
5597 const char *buf,
5598 size_t count)
5599 {
5600 struct perf_cpu_context *cpuctx;
5601 unsigned long val;
5602 int err, cpu, mpt;
5603
5604 err = strict_strtoul(buf, 10, &val);
5605 if (err)
5606 return err;
5607 if (val > perf_max_events)
5608 return -EINVAL;
5609
5610 spin_lock(&perf_resource_lock);
5611 perf_reserved_percpu = val;
5612 for_each_online_cpu(cpu) {
5613 cpuctx = &per_cpu(perf_cpu_context, cpu);
5614 raw_spin_lock_irq(&cpuctx->ctx.lock);
5615 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5616 perf_max_events - perf_reserved_percpu);
5617 cpuctx->max_pertask = mpt;
5618 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5619 }
5620 spin_unlock(&perf_resource_lock);
5621
5622 return count;
5623 }
5624
5625 static ssize_t perf_show_overcommit(struct sysdev_class *class,
5626 struct sysdev_class_attribute *attr,
5627 char *buf)
5628 {
5629 return sprintf(buf, "%d\n", perf_overcommit);
5630 }
5631
5632 static ssize_t
5633 perf_set_overcommit(struct sysdev_class *class,
5634 struct sysdev_class_attribute *attr,
5635 const char *buf, size_t count)
5636 {
5637 unsigned long val;
5638 int err;
5639
5640 err = strict_strtoul(buf, 10, &val);
5641 if (err)
5642 return err;
5643 if (val > 1)
5644 return -EINVAL;
5645
5646 spin_lock(&perf_resource_lock);
5647 perf_overcommit = val;
5648 spin_unlock(&perf_resource_lock);
5649
5650 return count;
5651 }
5652
5653 static SYSDEV_CLASS_ATTR(
5654 reserve_percpu,
5655 0644,
5656 perf_show_reserve_percpu,
5657 perf_set_reserve_percpu
5658 );
5659
5660 static SYSDEV_CLASS_ATTR(
5661 overcommit,
5662 0644,
5663 perf_show_overcommit,
5664 perf_set_overcommit
5665 );
5666
5667 static struct attribute *perfclass_attrs[] = {
5668 &attr_reserve_percpu.attr,
5669 &attr_overcommit.attr,
5670 NULL
5671 };
5672
5673 static struct attribute_group perfclass_attr_group = {
5674 .attrs = perfclass_attrs,
5675 .name = "perf_events",
5676 };
5677
5678 static int __init perf_event_sysfs_init(void)
5679 {
5680 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5681 &perfclass_attr_group);
5682 }
5683 device_initcall(perf_event_sysfs_init);
This page took 0.140794 seconds and 6 git commands to generate.