Merge branch 'perf/urgent' into perf/core
[deliverable/linux.git] / kernel / perf_event.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/vmalloc.h>
24 #include <linux/hardirq.h>
25 #include <linux/rculist.h>
26 #include <linux/uaccess.h>
27 #include <linux/syscalls.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/perf_event.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/hw_breakpoint.h>
33
34 #include <asm/irq_regs.h>
35
36 /*
37 * Each CPU has a list of per CPU events:
38 */
39 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
40
41 int perf_max_events __read_mostly = 1;
42 static int perf_reserved_percpu __read_mostly;
43 static int perf_overcommit __read_mostly = 1;
44
45 static atomic_t nr_events __read_mostly;
46 static atomic_t nr_mmap_events __read_mostly;
47 static atomic_t nr_comm_events __read_mostly;
48 static atomic_t nr_task_events __read_mostly;
49
50 /*
51 * perf event paranoia level:
52 * -1 - not paranoid at all
53 * 0 - disallow raw tracepoint access for unpriv
54 * 1 - disallow cpu events for unpriv
55 * 2 - disallow kernel profiling for unpriv
56 */
57 int sysctl_perf_event_paranoid __read_mostly = 1;
58
59 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
60
61 /*
62 * max perf event sample rate
63 */
64 int sysctl_perf_event_sample_rate __read_mostly = 100000;
65
66 static atomic64_t perf_event_id;
67
68 /*
69 * Lock for (sysadmin-configurable) event reservations:
70 */
71 static DEFINE_SPINLOCK(perf_resource_lock);
72
73 /*
74 * Architecture provided APIs - weak aliases:
75 */
76 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
77 {
78 return NULL;
79 }
80
81 void __weak hw_perf_disable(void) { barrier(); }
82 void __weak hw_perf_enable(void) { barrier(); }
83
84 int __weak
85 hw_perf_group_sched_in(struct perf_event *group_leader,
86 struct perf_cpu_context *cpuctx,
87 struct perf_event_context *ctx)
88 {
89 return 0;
90 }
91
92 void __weak perf_event_print_debug(void) { }
93
94 static DEFINE_PER_CPU(int, perf_disable_count);
95
96 void perf_disable(void)
97 {
98 if (!__get_cpu_var(perf_disable_count)++)
99 hw_perf_disable();
100 }
101
102 void perf_enable(void)
103 {
104 if (!--__get_cpu_var(perf_disable_count))
105 hw_perf_enable();
106 }
107
108 static void get_ctx(struct perf_event_context *ctx)
109 {
110 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
111 }
112
113 static void free_ctx(struct rcu_head *head)
114 {
115 struct perf_event_context *ctx;
116
117 ctx = container_of(head, struct perf_event_context, rcu_head);
118 kfree(ctx);
119 }
120
121 static void put_ctx(struct perf_event_context *ctx)
122 {
123 if (atomic_dec_and_test(&ctx->refcount)) {
124 if (ctx->parent_ctx)
125 put_ctx(ctx->parent_ctx);
126 if (ctx->task)
127 put_task_struct(ctx->task);
128 call_rcu(&ctx->rcu_head, free_ctx);
129 }
130 }
131
132 static void unclone_ctx(struct perf_event_context *ctx)
133 {
134 if (ctx->parent_ctx) {
135 put_ctx(ctx->parent_ctx);
136 ctx->parent_ctx = NULL;
137 }
138 }
139
140 /*
141 * If we inherit events we want to return the parent event id
142 * to userspace.
143 */
144 static u64 primary_event_id(struct perf_event *event)
145 {
146 u64 id = event->id;
147
148 if (event->parent)
149 id = event->parent->id;
150
151 return id;
152 }
153
154 /*
155 * Get the perf_event_context for a task and lock it.
156 * This has to cope with with the fact that until it is locked,
157 * the context could get moved to another task.
158 */
159 static struct perf_event_context *
160 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
161 {
162 struct perf_event_context *ctx;
163
164 rcu_read_lock();
165 retry:
166 ctx = rcu_dereference(task->perf_event_ctxp);
167 if (ctx) {
168 /*
169 * If this context is a clone of another, it might
170 * get swapped for another underneath us by
171 * perf_event_task_sched_out, though the
172 * rcu_read_lock() protects us from any context
173 * getting freed. Lock the context and check if it
174 * got swapped before we could get the lock, and retry
175 * if so. If we locked the right context, then it
176 * can't get swapped on us any more.
177 */
178 raw_spin_lock_irqsave(&ctx->lock, *flags);
179 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
180 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
181 goto retry;
182 }
183
184 if (!atomic_inc_not_zero(&ctx->refcount)) {
185 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
186 ctx = NULL;
187 }
188 }
189 rcu_read_unlock();
190 return ctx;
191 }
192
193 /*
194 * Get the context for a task and increment its pin_count so it
195 * can't get swapped to another task. This also increments its
196 * reference count so that the context can't get freed.
197 */
198 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
199 {
200 struct perf_event_context *ctx;
201 unsigned long flags;
202
203 ctx = perf_lock_task_context(task, &flags);
204 if (ctx) {
205 ++ctx->pin_count;
206 raw_spin_unlock_irqrestore(&ctx->lock, flags);
207 }
208 return ctx;
209 }
210
211 static void perf_unpin_context(struct perf_event_context *ctx)
212 {
213 unsigned long flags;
214
215 raw_spin_lock_irqsave(&ctx->lock, flags);
216 --ctx->pin_count;
217 raw_spin_unlock_irqrestore(&ctx->lock, flags);
218 put_ctx(ctx);
219 }
220
221 static inline u64 perf_clock(void)
222 {
223 return cpu_clock(raw_smp_processor_id());
224 }
225
226 /*
227 * Update the record of the current time in a context.
228 */
229 static void update_context_time(struct perf_event_context *ctx)
230 {
231 u64 now = perf_clock();
232
233 ctx->time += now - ctx->timestamp;
234 ctx->timestamp = now;
235 }
236
237 /*
238 * Update the total_time_enabled and total_time_running fields for a event.
239 */
240 static void update_event_times(struct perf_event *event)
241 {
242 struct perf_event_context *ctx = event->ctx;
243 u64 run_end;
244
245 if (event->state < PERF_EVENT_STATE_INACTIVE ||
246 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
247 return;
248
249 if (ctx->is_active)
250 run_end = ctx->time;
251 else
252 run_end = event->tstamp_stopped;
253
254 event->total_time_enabled = run_end - event->tstamp_enabled;
255
256 if (event->state == PERF_EVENT_STATE_INACTIVE)
257 run_end = event->tstamp_stopped;
258 else
259 run_end = ctx->time;
260
261 event->total_time_running = run_end - event->tstamp_running;
262 }
263
264 static struct list_head *
265 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
266 {
267 if (event->attr.pinned)
268 return &ctx->pinned_groups;
269 else
270 return &ctx->flexible_groups;
271 }
272
273 /*
274 * Add a event from the lists for its context.
275 * Must be called with ctx->mutex and ctx->lock held.
276 */
277 static void
278 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
279 {
280 struct perf_event *group_leader = event->group_leader;
281
282 /*
283 * Depending on whether it is a standalone or sibling event,
284 * add it straight to the context's event list, or to the group
285 * leader's sibling list:
286 */
287 if (group_leader == event) {
288 struct list_head *list;
289
290 if (is_software_event(event))
291 event->group_flags |= PERF_GROUP_SOFTWARE;
292
293 list = ctx_group_list(event, ctx);
294 list_add_tail(&event->group_entry, list);
295 } else {
296 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
297 !is_software_event(event))
298 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
299
300 list_add_tail(&event->group_entry, &group_leader->sibling_list);
301 group_leader->nr_siblings++;
302 }
303
304 list_add_rcu(&event->event_entry, &ctx->event_list);
305 ctx->nr_events++;
306 if (event->attr.inherit_stat)
307 ctx->nr_stat++;
308 }
309
310 /*
311 * Remove a event from the lists for its context.
312 * Must be called with ctx->mutex and ctx->lock held.
313 */
314 static void
315 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
316 {
317 struct perf_event *sibling, *tmp;
318
319 if (list_empty(&event->group_entry))
320 return;
321 ctx->nr_events--;
322 if (event->attr.inherit_stat)
323 ctx->nr_stat--;
324
325 list_del_init(&event->group_entry);
326 list_del_rcu(&event->event_entry);
327
328 if (event->group_leader != event)
329 event->group_leader->nr_siblings--;
330
331 update_event_times(event);
332
333 /*
334 * If event was in error state, then keep it
335 * that way, otherwise bogus counts will be
336 * returned on read(). The only way to get out
337 * of error state is by explicit re-enabling
338 * of the event
339 */
340 if (event->state > PERF_EVENT_STATE_OFF)
341 event->state = PERF_EVENT_STATE_OFF;
342
343 /*
344 * If this was a group event with sibling events then
345 * upgrade the siblings to singleton events by adding them
346 * to the context list directly:
347 */
348 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
349 struct list_head *list;
350
351 list = ctx_group_list(event, ctx);
352 list_move_tail(&sibling->group_entry, list);
353 sibling->group_leader = sibling;
354
355 /* Inherit group flags from the previous leader */
356 sibling->group_flags = event->group_flags;
357 }
358 }
359
360 static void
361 event_sched_out(struct perf_event *event,
362 struct perf_cpu_context *cpuctx,
363 struct perf_event_context *ctx)
364 {
365 if (event->state != PERF_EVENT_STATE_ACTIVE)
366 return;
367
368 event->state = PERF_EVENT_STATE_INACTIVE;
369 if (event->pending_disable) {
370 event->pending_disable = 0;
371 event->state = PERF_EVENT_STATE_OFF;
372 }
373 event->tstamp_stopped = ctx->time;
374 event->pmu->disable(event);
375 event->oncpu = -1;
376
377 if (!is_software_event(event))
378 cpuctx->active_oncpu--;
379 ctx->nr_active--;
380 if (event->attr.exclusive || !cpuctx->active_oncpu)
381 cpuctx->exclusive = 0;
382 }
383
384 static void
385 group_sched_out(struct perf_event *group_event,
386 struct perf_cpu_context *cpuctx,
387 struct perf_event_context *ctx)
388 {
389 struct perf_event *event;
390
391 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
392 return;
393
394 event_sched_out(group_event, cpuctx, ctx);
395
396 /*
397 * Schedule out siblings (if any):
398 */
399 list_for_each_entry(event, &group_event->sibling_list, group_entry)
400 event_sched_out(event, cpuctx, ctx);
401
402 if (group_event->attr.exclusive)
403 cpuctx->exclusive = 0;
404 }
405
406 /*
407 * Cross CPU call to remove a performance event
408 *
409 * We disable the event on the hardware level first. After that we
410 * remove it from the context list.
411 */
412 static void __perf_event_remove_from_context(void *info)
413 {
414 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
415 struct perf_event *event = info;
416 struct perf_event_context *ctx = event->ctx;
417
418 /*
419 * If this is a task context, we need to check whether it is
420 * the current task context of this cpu. If not it has been
421 * scheduled out before the smp call arrived.
422 */
423 if (ctx->task && cpuctx->task_ctx != ctx)
424 return;
425
426 raw_spin_lock(&ctx->lock);
427 /*
428 * Protect the list operation against NMI by disabling the
429 * events on a global level.
430 */
431 perf_disable();
432
433 event_sched_out(event, cpuctx, ctx);
434
435 list_del_event(event, ctx);
436
437 if (!ctx->task) {
438 /*
439 * Allow more per task events with respect to the
440 * reservation:
441 */
442 cpuctx->max_pertask =
443 min(perf_max_events - ctx->nr_events,
444 perf_max_events - perf_reserved_percpu);
445 }
446
447 perf_enable();
448 raw_spin_unlock(&ctx->lock);
449 }
450
451
452 /*
453 * Remove the event from a task's (or a CPU's) list of events.
454 *
455 * Must be called with ctx->mutex held.
456 *
457 * CPU events are removed with a smp call. For task events we only
458 * call when the task is on a CPU.
459 *
460 * If event->ctx is a cloned context, callers must make sure that
461 * every task struct that event->ctx->task could possibly point to
462 * remains valid. This is OK when called from perf_release since
463 * that only calls us on the top-level context, which can't be a clone.
464 * When called from perf_event_exit_task, it's OK because the
465 * context has been detached from its task.
466 */
467 static void perf_event_remove_from_context(struct perf_event *event)
468 {
469 struct perf_event_context *ctx = event->ctx;
470 struct task_struct *task = ctx->task;
471
472 if (!task) {
473 /*
474 * Per cpu events are removed via an smp call and
475 * the removal is always successful.
476 */
477 smp_call_function_single(event->cpu,
478 __perf_event_remove_from_context,
479 event, 1);
480 return;
481 }
482
483 retry:
484 task_oncpu_function_call(task, __perf_event_remove_from_context,
485 event);
486
487 raw_spin_lock_irq(&ctx->lock);
488 /*
489 * If the context is active we need to retry the smp call.
490 */
491 if (ctx->nr_active && !list_empty(&event->group_entry)) {
492 raw_spin_unlock_irq(&ctx->lock);
493 goto retry;
494 }
495
496 /*
497 * The lock prevents that this context is scheduled in so we
498 * can remove the event safely, if the call above did not
499 * succeed.
500 */
501 if (!list_empty(&event->group_entry))
502 list_del_event(event, ctx);
503 raw_spin_unlock_irq(&ctx->lock);
504 }
505
506 /*
507 * Update total_time_enabled and total_time_running for all events in a group.
508 */
509 static void update_group_times(struct perf_event *leader)
510 {
511 struct perf_event *event;
512
513 update_event_times(leader);
514 list_for_each_entry(event, &leader->sibling_list, group_entry)
515 update_event_times(event);
516 }
517
518 /*
519 * Cross CPU call to disable a performance event
520 */
521 static void __perf_event_disable(void *info)
522 {
523 struct perf_event *event = info;
524 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
525 struct perf_event_context *ctx = event->ctx;
526
527 /*
528 * If this is a per-task event, need to check whether this
529 * event's task is the current task on this cpu.
530 */
531 if (ctx->task && cpuctx->task_ctx != ctx)
532 return;
533
534 raw_spin_lock(&ctx->lock);
535
536 /*
537 * If the event is on, turn it off.
538 * If it is in error state, leave it in error state.
539 */
540 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
541 update_context_time(ctx);
542 update_group_times(event);
543 if (event == event->group_leader)
544 group_sched_out(event, cpuctx, ctx);
545 else
546 event_sched_out(event, cpuctx, ctx);
547 event->state = PERF_EVENT_STATE_OFF;
548 }
549
550 raw_spin_unlock(&ctx->lock);
551 }
552
553 /*
554 * Disable a event.
555 *
556 * If event->ctx is a cloned context, callers must make sure that
557 * every task struct that event->ctx->task could possibly point to
558 * remains valid. This condition is satisifed when called through
559 * perf_event_for_each_child or perf_event_for_each because they
560 * hold the top-level event's child_mutex, so any descendant that
561 * goes to exit will block in sync_child_event.
562 * When called from perf_pending_event it's OK because event->ctx
563 * is the current context on this CPU and preemption is disabled,
564 * hence we can't get into perf_event_task_sched_out for this context.
565 */
566 void perf_event_disable(struct perf_event *event)
567 {
568 struct perf_event_context *ctx = event->ctx;
569 struct task_struct *task = ctx->task;
570
571 if (!task) {
572 /*
573 * Disable the event on the cpu that it's on
574 */
575 smp_call_function_single(event->cpu, __perf_event_disable,
576 event, 1);
577 return;
578 }
579
580 retry:
581 task_oncpu_function_call(task, __perf_event_disable, event);
582
583 raw_spin_lock_irq(&ctx->lock);
584 /*
585 * If the event is still active, we need to retry the cross-call.
586 */
587 if (event->state == PERF_EVENT_STATE_ACTIVE) {
588 raw_spin_unlock_irq(&ctx->lock);
589 goto retry;
590 }
591
592 /*
593 * Since we have the lock this context can't be scheduled
594 * in, so we can change the state safely.
595 */
596 if (event->state == PERF_EVENT_STATE_INACTIVE) {
597 update_group_times(event);
598 event->state = PERF_EVENT_STATE_OFF;
599 }
600
601 raw_spin_unlock_irq(&ctx->lock);
602 }
603
604 static int
605 event_sched_in(struct perf_event *event,
606 struct perf_cpu_context *cpuctx,
607 struct perf_event_context *ctx)
608 {
609 if (event->state <= PERF_EVENT_STATE_OFF)
610 return 0;
611
612 event->state = PERF_EVENT_STATE_ACTIVE;
613 event->oncpu = smp_processor_id();
614 /*
615 * The new state must be visible before we turn it on in the hardware:
616 */
617 smp_wmb();
618
619 if (event->pmu->enable(event)) {
620 event->state = PERF_EVENT_STATE_INACTIVE;
621 event->oncpu = -1;
622 return -EAGAIN;
623 }
624
625 event->tstamp_running += ctx->time - event->tstamp_stopped;
626
627 if (!is_software_event(event))
628 cpuctx->active_oncpu++;
629 ctx->nr_active++;
630
631 if (event->attr.exclusive)
632 cpuctx->exclusive = 1;
633
634 return 0;
635 }
636
637 static int
638 group_sched_in(struct perf_event *group_event,
639 struct perf_cpu_context *cpuctx,
640 struct perf_event_context *ctx)
641 {
642 struct perf_event *event, *partial_group;
643 int ret;
644
645 if (group_event->state == PERF_EVENT_STATE_OFF)
646 return 0;
647
648 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx);
649 if (ret)
650 return ret < 0 ? ret : 0;
651
652 if (event_sched_in(group_event, cpuctx, ctx))
653 return -EAGAIN;
654
655 /*
656 * Schedule in siblings as one group (if any):
657 */
658 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
659 if (event_sched_in(event, cpuctx, ctx)) {
660 partial_group = event;
661 goto group_error;
662 }
663 }
664
665 return 0;
666
667 group_error:
668 /*
669 * Groups can be scheduled in as one unit only, so undo any
670 * partial group before returning:
671 */
672 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
673 if (event == partial_group)
674 break;
675 event_sched_out(event, cpuctx, ctx);
676 }
677 event_sched_out(group_event, cpuctx, ctx);
678
679 return -EAGAIN;
680 }
681
682 /*
683 * Work out whether we can put this event group on the CPU now.
684 */
685 static int group_can_go_on(struct perf_event *event,
686 struct perf_cpu_context *cpuctx,
687 int can_add_hw)
688 {
689 /*
690 * Groups consisting entirely of software events can always go on.
691 */
692 if (event->group_flags & PERF_GROUP_SOFTWARE)
693 return 1;
694 /*
695 * If an exclusive group is already on, no other hardware
696 * events can go on.
697 */
698 if (cpuctx->exclusive)
699 return 0;
700 /*
701 * If this group is exclusive and there are already
702 * events on the CPU, it can't go on.
703 */
704 if (event->attr.exclusive && cpuctx->active_oncpu)
705 return 0;
706 /*
707 * Otherwise, try to add it if all previous groups were able
708 * to go on.
709 */
710 return can_add_hw;
711 }
712
713 static void add_event_to_ctx(struct perf_event *event,
714 struct perf_event_context *ctx)
715 {
716 list_add_event(event, ctx);
717 event->tstamp_enabled = ctx->time;
718 event->tstamp_running = ctx->time;
719 event->tstamp_stopped = ctx->time;
720 }
721
722 /*
723 * Cross CPU call to install and enable a performance event
724 *
725 * Must be called with ctx->mutex held
726 */
727 static void __perf_install_in_context(void *info)
728 {
729 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
730 struct perf_event *event = info;
731 struct perf_event_context *ctx = event->ctx;
732 struct perf_event *leader = event->group_leader;
733 int err;
734
735 /*
736 * If this is a task context, we need to check whether it is
737 * the current task context of this cpu. If not it has been
738 * scheduled out before the smp call arrived.
739 * Or possibly this is the right context but it isn't
740 * on this cpu because it had no events.
741 */
742 if (ctx->task && cpuctx->task_ctx != ctx) {
743 if (cpuctx->task_ctx || ctx->task != current)
744 return;
745 cpuctx->task_ctx = ctx;
746 }
747
748 raw_spin_lock(&ctx->lock);
749 ctx->is_active = 1;
750 update_context_time(ctx);
751
752 /*
753 * Protect the list operation against NMI by disabling the
754 * events on a global level. NOP for non NMI based events.
755 */
756 perf_disable();
757
758 add_event_to_ctx(event, ctx);
759
760 if (event->cpu != -1 && event->cpu != smp_processor_id())
761 goto unlock;
762
763 /*
764 * Don't put the event on if it is disabled or if
765 * it is in a group and the group isn't on.
766 */
767 if (event->state != PERF_EVENT_STATE_INACTIVE ||
768 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
769 goto unlock;
770
771 /*
772 * An exclusive event can't go on if there are already active
773 * hardware events, and no hardware event can go on if there
774 * is already an exclusive event on.
775 */
776 if (!group_can_go_on(event, cpuctx, 1))
777 err = -EEXIST;
778 else
779 err = event_sched_in(event, cpuctx, ctx);
780
781 if (err) {
782 /*
783 * This event couldn't go on. If it is in a group
784 * then we have to pull the whole group off.
785 * If the event group is pinned then put it in error state.
786 */
787 if (leader != event)
788 group_sched_out(leader, cpuctx, ctx);
789 if (leader->attr.pinned) {
790 update_group_times(leader);
791 leader->state = PERF_EVENT_STATE_ERROR;
792 }
793 }
794
795 if (!err && !ctx->task && cpuctx->max_pertask)
796 cpuctx->max_pertask--;
797
798 unlock:
799 perf_enable();
800
801 raw_spin_unlock(&ctx->lock);
802 }
803
804 /*
805 * Attach a performance event to a context
806 *
807 * First we add the event to the list with the hardware enable bit
808 * in event->hw_config cleared.
809 *
810 * If the event is attached to a task which is on a CPU we use a smp
811 * call to enable it in the task context. The task might have been
812 * scheduled away, but we check this in the smp call again.
813 *
814 * Must be called with ctx->mutex held.
815 */
816 static void
817 perf_install_in_context(struct perf_event_context *ctx,
818 struct perf_event *event,
819 int cpu)
820 {
821 struct task_struct *task = ctx->task;
822
823 if (!task) {
824 /*
825 * Per cpu events are installed via an smp call and
826 * the install is always successful.
827 */
828 smp_call_function_single(cpu, __perf_install_in_context,
829 event, 1);
830 return;
831 }
832
833 retry:
834 task_oncpu_function_call(task, __perf_install_in_context,
835 event);
836
837 raw_spin_lock_irq(&ctx->lock);
838 /*
839 * we need to retry the smp call.
840 */
841 if (ctx->is_active && list_empty(&event->group_entry)) {
842 raw_spin_unlock_irq(&ctx->lock);
843 goto retry;
844 }
845
846 /*
847 * The lock prevents that this context is scheduled in so we
848 * can add the event safely, if it the call above did not
849 * succeed.
850 */
851 if (list_empty(&event->group_entry))
852 add_event_to_ctx(event, ctx);
853 raw_spin_unlock_irq(&ctx->lock);
854 }
855
856 /*
857 * Put a event into inactive state and update time fields.
858 * Enabling the leader of a group effectively enables all
859 * the group members that aren't explicitly disabled, so we
860 * have to update their ->tstamp_enabled also.
861 * Note: this works for group members as well as group leaders
862 * since the non-leader members' sibling_lists will be empty.
863 */
864 static void __perf_event_mark_enabled(struct perf_event *event,
865 struct perf_event_context *ctx)
866 {
867 struct perf_event *sub;
868
869 event->state = PERF_EVENT_STATE_INACTIVE;
870 event->tstamp_enabled = ctx->time - event->total_time_enabled;
871 list_for_each_entry(sub, &event->sibling_list, group_entry)
872 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
873 sub->tstamp_enabled =
874 ctx->time - sub->total_time_enabled;
875 }
876
877 /*
878 * Cross CPU call to enable a performance event
879 */
880 static void __perf_event_enable(void *info)
881 {
882 struct perf_event *event = info;
883 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
884 struct perf_event_context *ctx = event->ctx;
885 struct perf_event *leader = event->group_leader;
886 int err;
887
888 /*
889 * If this is a per-task event, need to check whether this
890 * event's task is the current task on this cpu.
891 */
892 if (ctx->task && cpuctx->task_ctx != ctx) {
893 if (cpuctx->task_ctx || ctx->task != current)
894 return;
895 cpuctx->task_ctx = ctx;
896 }
897
898 raw_spin_lock(&ctx->lock);
899 ctx->is_active = 1;
900 update_context_time(ctx);
901
902 if (event->state >= PERF_EVENT_STATE_INACTIVE)
903 goto unlock;
904 __perf_event_mark_enabled(event, ctx);
905
906 if (event->cpu != -1 && event->cpu != smp_processor_id())
907 goto unlock;
908
909 /*
910 * If the event is in a group and isn't the group leader,
911 * then don't put it on unless the group is on.
912 */
913 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
914 goto unlock;
915
916 if (!group_can_go_on(event, cpuctx, 1)) {
917 err = -EEXIST;
918 } else {
919 perf_disable();
920 if (event == leader)
921 err = group_sched_in(event, cpuctx, ctx);
922 else
923 err = event_sched_in(event, cpuctx, ctx);
924 perf_enable();
925 }
926
927 if (err) {
928 /*
929 * If this event can't go on and it's part of a
930 * group, then the whole group has to come off.
931 */
932 if (leader != event)
933 group_sched_out(leader, cpuctx, ctx);
934 if (leader->attr.pinned) {
935 update_group_times(leader);
936 leader->state = PERF_EVENT_STATE_ERROR;
937 }
938 }
939
940 unlock:
941 raw_spin_unlock(&ctx->lock);
942 }
943
944 /*
945 * Enable a event.
946 *
947 * If event->ctx is a cloned context, callers must make sure that
948 * every task struct that event->ctx->task could possibly point to
949 * remains valid. This condition is satisfied when called through
950 * perf_event_for_each_child or perf_event_for_each as described
951 * for perf_event_disable.
952 */
953 void perf_event_enable(struct perf_event *event)
954 {
955 struct perf_event_context *ctx = event->ctx;
956 struct task_struct *task = ctx->task;
957
958 if (!task) {
959 /*
960 * Enable the event on the cpu that it's on
961 */
962 smp_call_function_single(event->cpu, __perf_event_enable,
963 event, 1);
964 return;
965 }
966
967 raw_spin_lock_irq(&ctx->lock);
968 if (event->state >= PERF_EVENT_STATE_INACTIVE)
969 goto out;
970
971 /*
972 * If the event is in error state, clear that first.
973 * That way, if we see the event in error state below, we
974 * know that it has gone back into error state, as distinct
975 * from the task having been scheduled away before the
976 * cross-call arrived.
977 */
978 if (event->state == PERF_EVENT_STATE_ERROR)
979 event->state = PERF_EVENT_STATE_OFF;
980
981 retry:
982 raw_spin_unlock_irq(&ctx->lock);
983 task_oncpu_function_call(task, __perf_event_enable, event);
984
985 raw_spin_lock_irq(&ctx->lock);
986
987 /*
988 * If the context is active and the event is still off,
989 * we need to retry the cross-call.
990 */
991 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
992 goto retry;
993
994 /*
995 * Since we have the lock this context can't be scheduled
996 * in, so we can change the state safely.
997 */
998 if (event->state == PERF_EVENT_STATE_OFF)
999 __perf_event_mark_enabled(event, ctx);
1000
1001 out:
1002 raw_spin_unlock_irq(&ctx->lock);
1003 }
1004
1005 static int perf_event_refresh(struct perf_event *event, int refresh)
1006 {
1007 /*
1008 * not supported on inherited events
1009 */
1010 if (event->attr.inherit)
1011 return -EINVAL;
1012
1013 atomic_add(refresh, &event->event_limit);
1014 perf_event_enable(event);
1015
1016 return 0;
1017 }
1018
1019 enum event_type_t {
1020 EVENT_FLEXIBLE = 0x1,
1021 EVENT_PINNED = 0x2,
1022 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1023 };
1024
1025 static void ctx_sched_out(struct perf_event_context *ctx,
1026 struct perf_cpu_context *cpuctx,
1027 enum event_type_t event_type)
1028 {
1029 struct perf_event *event;
1030
1031 raw_spin_lock(&ctx->lock);
1032 ctx->is_active = 0;
1033 if (likely(!ctx->nr_events))
1034 goto out;
1035 update_context_time(ctx);
1036
1037 perf_disable();
1038 if (!ctx->nr_active)
1039 goto out_enable;
1040
1041 if (event_type & EVENT_PINNED)
1042 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1043 group_sched_out(event, cpuctx, ctx);
1044
1045 if (event_type & EVENT_FLEXIBLE)
1046 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1047 group_sched_out(event, cpuctx, ctx);
1048
1049 out_enable:
1050 perf_enable();
1051 out:
1052 raw_spin_unlock(&ctx->lock);
1053 }
1054
1055 /*
1056 * Test whether two contexts are equivalent, i.e. whether they
1057 * have both been cloned from the same version of the same context
1058 * and they both have the same number of enabled events.
1059 * If the number of enabled events is the same, then the set
1060 * of enabled events should be the same, because these are both
1061 * inherited contexts, therefore we can't access individual events
1062 * in them directly with an fd; we can only enable/disable all
1063 * events via prctl, or enable/disable all events in a family
1064 * via ioctl, which will have the same effect on both contexts.
1065 */
1066 static int context_equiv(struct perf_event_context *ctx1,
1067 struct perf_event_context *ctx2)
1068 {
1069 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1070 && ctx1->parent_gen == ctx2->parent_gen
1071 && !ctx1->pin_count && !ctx2->pin_count;
1072 }
1073
1074 static void __perf_event_sync_stat(struct perf_event *event,
1075 struct perf_event *next_event)
1076 {
1077 u64 value;
1078
1079 if (!event->attr.inherit_stat)
1080 return;
1081
1082 /*
1083 * Update the event value, we cannot use perf_event_read()
1084 * because we're in the middle of a context switch and have IRQs
1085 * disabled, which upsets smp_call_function_single(), however
1086 * we know the event must be on the current CPU, therefore we
1087 * don't need to use it.
1088 */
1089 switch (event->state) {
1090 case PERF_EVENT_STATE_ACTIVE:
1091 event->pmu->read(event);
1092 /* fall-through */
1093
1094 case PERF_EVENT_STATE_INACTIVE:
1095 update_event_times(event);
1096 break;
1097
1098 default:
1099 break;
1100 }
1101
1102 /*
1103 * In order to keep per-task stats reliable we need to flip the event
1104 * values when we flip the contexts.
1105 */
1106 value = atomic64_read(&next_event->count);
1107 value = atomic64_xchg(&event->count, value);
1108 atomic64_set(&next_event->count, value);
1109
1110 swap(event->total_time_enabled, next_event->total_time_enabled);
1111 swap(event->total_time_running, next_event->total_time_running);
1112
1113 /*
1114 * Since we swizzled the values, update the user visible data too.
1115 */
1116 perf_event_update_userpage(event);
1117 perf_event_update_userpage(next_event);
1118 }
1119
1120 #define list_next_entry(pos, member) \
1121 list_entry(pos->member.next, typeof(*pos), member)
1122
1123 static void perf_event_sync_stat(struct perf_event_context *ctx,
1124 struct perf_event_context *next_ctx)
1125 {
1126 struct perf_event *event, *next_event;
1127
1128 if (!ctx->nr_stat)
1129 return;
1130
1131 update_context_time(ctx);
1132
1133 event = list_first_entry(&ctx->event_list,
1134 struct perf_event, event_entry);
1135
1136 next_event = list_first_entry(&next_ctx->event_list,
1137 struct perf_event, event_entry);
1138
1139 while (&event->event_entry != &ctx->event_list &&
1140 &next_event->event_entry != &next_ctx->event_list) {
1141
1142 __perf_event_sync_stat(event, next_event);
1143
1144 event = list_next_entry(event, event_entry);
1145 next_event = list_next_entry(next_event, event_entry);
1146 }
1147 }
1148
1149 /*
1150 * Called from scheduler to remove the events of the current task,
1151 * with interrupts disabled.
1152 *
1153 * We stop each event and update the event value in event->count.
1154 *
1155 * This does not protect us against NMI, but disable()
1156 * sets the disabled bit in the control field of event _before_
1157 * accessing the event control register. If a NMI hits, then it will
1158 * not restart the event.
1159 */
1160 void perf_event_task_sched_out(struct task_struct *task,
1161 struct task_struct *next)
1162 {
1163 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1164 struct perf_event_context *ctx = task->perf_event_ctxp;
1165 struct perf_event_context *next_ctx;
1166 struct perf_event_context *parent;
1167 int do_switch = 1;
1168
1169 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1170
1171 if (likely(!ctx || !cpuctx->task_ctx))
1172 return;
1173
1174 rcu_read_lock();
1175 parent = rcu_dereference(ctx->parent_ctx);
1176 next_ctx = next->perf_event_ctxp;
1177 if (parent && next_ctx &&
1178 rcu_dereference(next_ctx->parent_ctx) == parent) {
1179 /*
1180 * Looks like the two contexts are clones, so we might be
1181 * able to optimize the context switch. We lock both
1182 * contexts and check that they are clones under the
1183 * lock (including re-checking that neither has been
1184 * uncloned in the meantime). It doesn't matter which
1185 * order we take the locks because no other cpu could
1186 * be trying to lock both of these tasks.
1187 */
1188 raw_spin_lock(&ctx->lock);
1189 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1190 if (context_equiv(ctx, next_ctx)) {
1191 /*
1192 * XXX do we need a memory barrier of sorts
1193 * wrt to rcu_dereference() of perf_event_ctxp
1194 */
1195 task->perf_event_ctxp = next_ctx;
1196 next->perf_event_ctxp = ctx;
1197 ctx->task = next;
1198 next_ctx->task = task;
1199 do_switch = 0;
1200
1201 perf_event_sync_stat(ctx, next_ctx);
1202 }
1203 raw_spin_unlock(&next_ctx->lock);
1204 raw_spin_unlock(&ctx->lock);
1205 }
1206 rcu_read_unlock();
1207
1208 if (do_switch) {
1209 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1210 cpuctx->task_ctx = NULL;
1211 }
1212 }
1213
1214 static void task_ctx_sched_out(struct perf_event_context *ctx,
1215 enum event_type_t event_type)
1216 {
1217 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1218
1219 if (!cpuctx->task_ctx)
1220 return;
1221
1222 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1223 return;
1224
1225 ctx_sched_out(ctx, cpuctx, event_type);
1226 cpuctx->task_ctx = NULL;
1227 }
1228
1229 /*
1230 * Called with IRQs disabled
1231 */
1232 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1233 {
1234 task_ctx_sched_out(ctx, EVENT_ALL);
1235 }
1236
1237 /*
1238 * Called with IRQs disabled
1239 */
1240 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1241 enum event_type_t event_type)
1242 {
1243 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1244 }
1245
1246 static void
1247 ctx_pinned_sched_in(struct perf_event_context *ctx,
1248 struct perf_cpu_context *cpuctx)
1249 {
1250 struct perf_event *event;
1251
1252 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1253 if (event->state <= PERF_EVENT_STATE_OFF)
1254 continue;
1255 if (event->cpu != -1 && event->cpu != smp_processor_id())
1256 continue;
1257
1258 if (group_can_go_on(event, cpuctx, 1))
1259 group_sched_in(event, cpuctx, ctx);
1260
1261 /*
1262 * If this pinned group hasn't been scheduled,
1263 * put it in error state.
1264 */
1265 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1266 update_group_times(event);
1267 event->state = PERF_EVENT_STATE_ERROR;
1268 }
1269 }
1270 }
1271
1272 static void
1273 ctx_flexible_sched_in(struct perf_event_context *ctx,
1274 struct perf_cpu_context *cpuctx)
1275 {
1276 struct perf_event *event;
1277 int can_add_hw = 1;
1278
1279 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1280 /* Ignore events in OFF or ERROR state */
1281 if (event->state <= PERF_EVENT_STATE_OFF)
1282 continue;
1283 /*
1284 * Listen to the 'cpu' scheduling filter constraint
1285 * of events:
1286 */
1287 if (event->cpu != -1 && event->cpu != smp_processor_id())
1288 continue;
1289
1290 if (group_can_go_on(event, cpuctx, can_add_hw))
1291 if (group_sched_in(event, cpuctx, ctx))
1292 can_add_hw = 0;
1293 }
1294 }
1295
1296 static void
1297 ctx_sched_in(struct perf_event_context *ctx,
1298 struct perf_cpu_context *cpuctx,
1299 enum event_type_t event_type)
1300 {
1301 raw_spin_lock(&ctx->lock);
1302 ctx->is_active = 1;
1303 if (likely(!ctx->nr_events))
1304 goto out;
1305
1306 ctx->timestamp = perf_clock();
1307
1308 perf_disable();
1309
1310 /*
1311 * First go through the list and put on any pinned groups
1312 * in order to give them the best chance of going on.
1313 */
1314 if (event_type & EVENT_PINNED)
1315 ctx_pinned_sched_in(ctx, cpuctx);
1316
1317 /* Then walk through the lower prio flexible groups */
1318 if (event_type & EVENT_FLEXIBLE)
1319 ctx_flexible_sched_in(ctx, cpuctx);
1320
1321 perf_enable();
1322 out:
1323 raw_spin_unlock(&ctx->lock);
1324 }
1325
1326 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1327 enum event_type_t event_type)
1328 {
1329 struct perf_event_context *ctx = &cpuctx->ctx;
1330
1331 ctx_sched_in(ctx, cpuctx, event_type);
1332 }
1333
1334 static void task_ctx_sched_in(struct task_struct *task,
1335 enum event_type_t event_type)
1336 {
1337 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1338 struct perf_event_context *ctx = task->perf_event_ctxp;
1339
1340 if (likely(!ctx))
1341 return;
1342 if (cpuctx->task_ctx == ctx)
1343 return;
1344 ctx_sched_in(ctx, cpuctx, event_type);
1345 cpuctx->task_ctx = ctx;
1346 }
1347 /*
1348 * Called from scheduler to add the events of the current task
1349 * with interrupts disabled.
1350 *
1351 * We restore the event value and then enable it.
1352 *
1353 * This does not protect us against NMI, but enable()
1354 * sets the enabled bit in the control field of event _before_
1355 * accessing the event control register. If a NMI hits, then it will
1356 * keep the event running.
1357 */
1358 void perf_event_task_sched_in(struct task_struct *task)
1359 {
1360 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1361 struct perf_event_context *ctx = task->perf_event_ctxp;
1362
1363 if (likely(!ctx))
1364 return;
1365
1366 if (cpuctx->task_ctx == ctx)
1367 return;
1368
1369 perf_disable();
1370
1371 /*
1372 * We want to keep the following priority order:
1373 * cpu pinned (that don't need to move), task pinned,
1374 * cpu flexible, task flexible.
1375 */
1376 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1377
1378 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1379 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1380 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1381
1382 cpuctx->task_ctx = ctx;
1383
1384 perf_enable();
1385 }
1386
1387 #define MAX_INTERRUPTS (~0ULL)
1388
1389 static void perf_log_throttle(struct perf_event *event, int enable);
1390
1391 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1392 {
1393 u64 frequency = event->attr.sample_freq;
1394 u64 sec = NSEC_PER_SEC;
1395 u64 divisor, dividend;
1396
1397 int count_fls, nsec_fls, frequency_fls, sec_fls;
1398
1399 count_fls = fls64(count);
1400 nsec_fls = fls64(nsec);
1401 frequency_fls = fls64(frequency);
1402 sec_fls = 30;
1403
1404 /*
1405 * We got @count in @nsec, with a target of sample_freq HZ
1406 * the target period becomes:
1407 *
1408 * @count * 10^9
1409 * period = -------------------
1410 * @nsec * sample_freq
1411 *
1412 */
1413
1414 /*
1415 * Reduce accuracy by one bit such that @a and @b converge
1416 * to a similar magnitude.
1417 */
1418 #define REDUCE_FLS(a, b) \
1419 do { \
1420 if (a##_fls > b##_fls) { \
1421 a >>= 1; \
1422 a##_fls--; \
1423 } else { \
1424 b >>= 1; \
1425 b##_fls--; \
1426 } \
1427 } while (0)
1428
1429 /*
1430 * Reduce accuracy until either term fits in a u64, then proceed with
1431 * the other, so that finally we can do a u64/u64 division.
1432 */
1433 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1434 REDUCE_FLS(nsec, frequency);
1435 REDUCE_FLS(sec, count);
1436 }
1437
1438 if (count_fls + sec_fls > 64) {
1439 divisor = nsec * frequency;
1440
1441 while (count_fls + sec_fls > 64) {
1442 REDUCE_FLS(count, sec);
1443 divisor >>= 1;
1444 }
1445
1446 dividend = count * sec;
1447 } else {
1448 dividend = count * sec;
1449
1450 while (nsec_fls + frequency_fls > 64) {
1451 REDUCE_FLS(nsec, frequency);
1452 dividend >>= 1;
1453 }
1454
1455 divisor = nsec * frequency;
1456 }
1457
1458 return div64_u64(dividend, divisor);
1459 }
1460
1461 static void perf_event_stop(struct perf_event *event)
1462 {
1463 if (!event->pmu->stop)
1464 return event->pmu->disable(event);
1465
1466 return event->pmu->stop(event);
1467 }
1468
1469 static int perf_event_start(struct perf_event *event)
1470 {
1471 if (!event->pmu->start)
1472 return event->pmu->enable(event);
1473
1474 return event->pmu->start(event);
1475 }
1476
1477 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1478 {
1479 struct hw_perf_event *hwc = &event->hw;
1480 u64 period, sample_period;
1481 s64 delta;
1482
1483 period = perf_calculate_period(event, nsec, count);
1484
1485 delta = (s64)(period - hwc->sample_period);
1486 delta = (delta + 7) / 8; /* low pass filter */
1487
1488 sample_period = hwc->sample_period + delta;
1489
1490 if (!sample_period)
1491 sample_period = 1;
1492
1493 hwc->sample_period = sample_period;
1494
1495 if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1496 perf_disable();
1497 perf_event_stop(event);
1498 atomic64_set(&hwc->period_left, 0);
1499 perf_event_start(event);
1500 perf_enable();
1501 }
1502 }
1503
1504 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1505 {
1506 struct perf_event *event;
1507 struct hw_perf_event *hwc;
1508 u64 interrupts, now;
1509 s64 delta;
1510
1511 raw_spin_lock(&ctx->lock);
1512 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1513 if (event->state != PERF_EVENT_STATE_ACTIVE)
1514 continue;
1515
1516 if (event->cpu != -1 && event->cpu != smp_processor_id())
1517 continue;
1518
1519 hwc = &event->hw;
1520
1521 interrupts = hwc->interrupts;
1522 hwc->interrupts = 0;
1523
1524 /*
1525 * unthrottle events on the tick
1526 */
1527 if (interrupts == MAX_INTERRUPTS) {
1528 perf_log_throttle(event, 1);
1529 perf_disable();
1530 event->pmu->unthrottle(event);
1531 perf_enable();
1532 }
1533
1534 if (!event->attr.freq || !event->attr.sample_freq)
1535 continue;
1536
1537 perf_disable();
1538 event->pmu->read(event);
1539 now = atomic64_read(&event->count);
1540 delta = now - hwc->freq_count_stamp;
1541 hwc->freq_count_stamp = now;
1542
1543 if (delta > 0)
1544 perf_adjust_period(event, TICK_NSEC, delta);
1545 perf_enable();
1546 }
1547 raw_spin_unlock(&ctx->lock);
1548 }
1549
1550 /*
1551 * Round-robin a context's events:
1552 */
1553 static void rotate_ctx(struct perf_event_context *ctx)
1554 {
1555 raw_spin_lock(&ctx->lock);
1556
1557 /* Rotate the first entry last of non-pinned groups */
1558 list_rotate_left(&ctx->flexible_groups);
1559
1560 raw_spin_unlock(&ctx->lock);
1561 }
1562
1563 void perf_event_task_tick(struct task_struct *curr)
1564 {
1565 struct perf_cpu_context *cpuctx;
1566 struct perf_event_context *ctx;
1567 int rotate = 0;
1568
1569 if (!atomic_read(&nr_events))
1570 return;
1571
1572 cpuctx = &__get_cpu_var(perf_cpu_context);
1573 if (cpuctx->ctx.nr_events &&
1574 cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1575 rotate = 1;
1576
1577 ctx = curr->perf_event_ctxp;
1578 if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1579 rotate = 1;
1580
1581 perf_ctx_adjust_freq(&cpuctx->ctx);
1582 if (ctx)
1583 perf_ctx_adjust_freq(ctx);
1584
1585 if (!rotate)
1586 return;
1587
1588 perf_disable();
1589 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1590 if (ctx)
1591 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1592
1593 rotate_ctx(&cpuctx->ctx);
1594 if (ctx)
1595 rotate_ctx(ctx);
1596
1597 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1598 if (ctx)
1599 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1600 perf_enable();
1601 }
1602
1603 static int event_enable_on_exec(struct perf_event *event,
1604 struct perf_event_context *ctx)
1605 {
1606 if (!event->attr.enable_on_exec)
1607 return 0;
1608
1609 event->attr.enable_on_exec = 0;
1610 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1611 return 0;
1612
1613 __perf_event_mark_enabled(event, ctx);
1614
1615 return 1;
1616 }
1617
1618 /*
1619 * Enable all of a task's events that have been marked enable-on-exec.
1620 * This expects task == current.
1621 */
1622 static void perf_event_enable_on_exec(struct task_struct *task)
1623 {
1624 struct perf_event_context *ctx;
1625 struct perf_event *event;
1626 unsigned long flags;
1627 int enabled = 0;
1628 int ret;
1629
1630 local_irq_save(flags);
1631 ctx = task->perf_event_ctxp;
1632 if (!ctx || !ctx->nr_events)
1633 goto out;
1634
1635 __perf_event_task_sched_out(ctx);
1636
1637 raw_spin_lock(&ctx->lock);
1638
1639 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1640 ret = event_enable_on_exec(event, ctx);
1641 if (ret)
1642 enabled = 1;
1643 }
1644
1645 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1646 ret = event_enable_on_exec(event, ctx);
1647 if (ret)
1648 enabled = 1;
1649 }
1650
1651 /*
1652 * Unclone this context if we enabled any event.
1653 */
1654 if (enabled)
1655 unclone_ctx(ctx);
1656
1657 raw_spin_unlock(&ctx->lock);
1658
1659 perf_event_task_sched_in(task);
1660 out:
1661 local_irq_restore(flags);
1662 }
1663
1664 /*
1665 * Cross CPU call to read the hardware event
1666 */
1667 static void __perf_event_read(void *info)
1668 {
1669 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1670 struct perf_event *event = info;
1671 struct perf_event_context *ctx = event->ctx;
1672
1673 /*
1674 * If this is a task context, we need to check whether it is
1675 * the current task context of this cpu. If not it has been
1676 * scheduled out before the smp call arrived. In that case
1677 * event->count would have been updated to a recent sample
1678 * when the event was scheduled out.
1679 */
1680 if (ctx->task && cpuctx->task_ctx != ctx)
1681 return;
1682
1683 raw_spin_lock(&ctx->lock);
1684 update_context_time(ctx);
1685 update_event_times(event);
1686 raw_spin_unlock(&ctx->lock);
1687
1688 event->pmu->read(event);
1689 }
1690
1691 static u64 perf_event_read(struct perf_event *event)
1692 {
1693 /*
1694 * If event is enabled and currently active on a CPU, update the
1695 * value in the event structure:
1696 */
1697 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1698 smp_call_function_single(event->oncpu,
1699 __perf_event_read, event, 1);
1700 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1701 struct perf_event_context *ctx = event->ctx;
1702 unsigned long flags;
1703
1704 raw_spin_lock_irqsave(&ctx->lock, flags);
1705 update_context_time(ctx);
1706 update_event_times(event);
1707 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1708 }
1709
1710 return atomic64_read(&event->count);
1711 }
1712
1713 /*
1714 * Initialize the perf_event context in a task_struct:
1715 */
1716 static void
1717 __perf_event_init_context(struct perf_event_context *ctx,
1718 struct task_struct *task)
1719 {
1720 raw_spin_lock_init(&ctx->lock);
1721 mutex_init(&ctx->mutex);
1722 INIT_LIST_HEAD(&ctx->pinned_groups);
1723 INIT_LIST_HEAD(&ctx->flexible_groups);
1724 INIT_LIST_HEAD(&ctx->event_list);
1725 atomic_set(&ctx->refcount, 1);
1726 ctx->task = task;
1727 }
1728
1729 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1730 {
1731 struct perf_event_context *ctx;
1732 struct perf_cpu_context *cpuctx;
1733 struct task_struct *task;
1734 unsigned long flags;
1735 int err;
1736
1737 if (pid == -1 && cpu != -1) {
1738 /* Must be root to operate on a CPU event: */
1739 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1740 return ERR_PTR(-EACCES);
1741
1742 if (cpu < 0 || cpu >= nr_cpumask_bits)
1743 return ERR_PTR(-EINVAL);
1744
1745 /*
1746 * We could be clever and allow to attach a event to an
1747 * offline CPU and activate it when the CPU comes up, but
1748 * that's for later.
1749 */
1750 if (!cpu_online(cpu))
1751 return ERR_PTR(-ENODEV);
1752
1753 cpuctx = &per_cpu(perf_cpu_context, cpu);
1754 ctx = &cpuctx->ctx;
1755 get_ctx(ctx);
1756
1757 return ctx;
1758 }
1759
1760 rcu_read_lock();
1761 if (!pid)
1762 task = current;
1763 else
1764 task = find_task_by_vpid(pid);
1765 if (task)
1766 get_task_struct(task);
1767 rcu_read_unlock();
1768
1769 if (!task)
1770 return ERR_PTR(-ESRCH);
1771
1772 /*
1773 * Can't attach events to a dying task.
1774 */
1775 err = -ESRCH;
1776 if (task->flags & PF_EXITING)
1777 goto errout;
1778
1779 /* Reuse ptrace permission checks for now. */
1780 err = -EACCES;
1781 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1782 goto errout;
1783
1784 retry:
1785 ctx = perf_lock_task_context(task, &flags);
1786 if (ctx) {
1787 unclone_ctx(ctx);
1788 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1789 }
1790
1791 if (!ctx) {
1792 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1793 err = -ENOMEM;
1794 if (!ctx)
1795 goto errout;
1796 __perf_event_init_context(ctx, task);
1797 get_ctx(ctx);
1798 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1799 /*
1800 * We raced with some other task; use
1801 * the context they set.
1802 */
1803 kfree(ctx);
1804 goto retry;
1805 }
1806 get_task_struct(task);
1807 }
1808
1809 put_task_struct(task);
1810 return ctx;
1811
1812 errout:
1813 put_task_struct(task);
1814 return ERR_PTR(err);
1815 }
1816
1817 static void perf_event_free_filter(struct perf_event *event);
1818
1819 static void free_event_rcu(struct rcu_head *head)
1820 {
1821 struct perf_event *event;
1822
1823 event = container_of(head, struct perf_event, rcu_head);
1824 if (event->ns)
1825 put_pid_ns(event->ns);
1826 perf_event_free_filter(event);
1827 kfree(event);
1828 }
1829
1830 static void perf_pending_sync(struct perf_event *event);
1831
1832 static void free_event(struct perf_event *event)
1833 {
1834 perf_pending_sync(event);
1835
1836 if (!event->parent) {
1837 atomic_dec(&nr_events);
1838 if (event->attr.mmap)
1839 atomic_dec(&nr_mmap_events);
1840 if (event->attr.comm)
1841 atomic_dec(&nr_comm_events);
1842 if (event->attr.task)
1843 atomic_dec(&nr_task_events);
1844 }
1845
1846 if (event->output) {
1847 fput(event->output->filp);
1848 event->output = NULL;
1849 }
1850
1851 if (event->destroy)
1852 event->destroy(event);
1853
1854 put_ctx(event->ctx);
1855 call_rcu(&event->rcu_head, free_event_rcu);
1856 }
1857
1858 int perf_event_release_kernel(struct perf_event *event)
1859 {
1860 struct perf_event_context *ctx = event->ctx;
1861
1862 WARN_ON_ONCE(ctx->parent_ctx);
1863 mutex_lock(&ctx->mutex);
1864 perf_event_remove_from_context(event);
1865 mutex_unlock(&ctx->mutex);
1866
1867 mutex_lock(&event->owner->perf_event_mutex);
1868 list_del_init(&event->owner_entry);
1869 mutex_unlock(&event->owner->perf_event_mutex);
1870 put_task_struct(event->owner);
1871
1872 free_event(event);
1873
1874 return 0;
1875 }
1876 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1877
1878 /*
1879 * Called when the last reference to the file is gone.
1880 */
1881 static int perf_release(struct inode *inode, struct file *file)
1882 {
1883 struct perf_event *event = file->private_data;
1884
1885 file->private_data = NULL;
1886
1887 return perf_event_release_kernel(event);
1888 }
1889
1890 static int perf_event_read_size(struct perf_event *event)
1891 {
1892 int entry = sizeof(u64); /* value */
1893 int size = 0;
1894 int nr = 1;
1895
1896 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1897 size += sizeof(u64);
1898
1899 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1900 size += sizeof(u64);
1901
1902 if (event->attr.read_format & PERF_FORMAT_ID)
1903 entry += sizeof(u64);
1904
1905 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1906 nr += event->group_leader->nr_siblings;
1907 size += sizeof(u64);
1908 }
1909
1910 size += entry * nr;
1911
1912 return size;
1913 }
1914
1915 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1916 {
1917 struct perf_event *child;
1918 u64 total = 0;
1919
1920 *enabled = 0;
1921 *running = 0;
1922
1923 mutex_lock(&event->child_mutex);
1924 total += perf_event_read(event);
1925 *enabled += event->total_time_enabled +
1926 atomic64_read(&event->child_total_time_enabled);
1927 *running += event->total_time_running +
1928 atomic64_read(&event->child_total_time_running);
1929
1930 list_for_each_entry(child, &event->child_list, child_list) {
1931 total += perf_event_read(child);
1932 *enabled += child->total_time_enabled;
1933 *running += child->total_time_running;
1934 }
1935 mutex_unlock(&event->child_mutex);
1936
1937 return total;
1938 }
1939 EXPORT_SYMBOL_GPL(perf_event_read_value);
1940
1941 static int perf_event_read_group(struct perf_event *event,
1942 u64 read_format, char __user *buf)
1943 {
1944 struct perf_event *leader = event->group_leader, *sub;
1945 int n = 0, size = 0, ret = -EFAULT;
1946 struct perf_event_context *ctx = leader->ctx;
1947 u64 values[5];
1948 u64 count, enabled, running;
1949
1950 mutex_lock(&ctx->mutex);
1951 count = perf_event_read_value(leader, &enabled, &running);
1952
1953 values[n++] = 1 + leader->nr_siblings;
1954 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1955 values[n++] = enabled;
1956 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1957 values[n++] = running;
1958 values[n++] = count;
1959 if (read_format & PERF_FORMAT_ID)
1960 values[n++] = primary_event_id(leader);
1961
1962 size = n * sizeof(u64);
1963
1964 if (copy_to_user(buf, values, size))
1965 goto unlock;
1966
1967 ret = size;
1968
1969 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1970 n = 0;
1971
1972 values[n++] = perf_event_read_value(sub, &enabled, &running);
1973 if (read_format & PERF_FORMAT_ID)
1974 values[n++] = primary_event_id(sub);
1975
1976 size = n * sizeof(u64);
1977
1978 if (copy_to_user(buf + ret, values, size)) {
1979 ret = -EFAULT;
1980 goto unlock;
1981 }
1982
1983 ret += size;
1984 }
1985 unlock:
1986 mutex_unlock(&ctx->mutex);
1987
1988 return ret;
1989 }
1990
1991 static int perf_event_read_one(struct perf_event *event,
1992 u64 read_format, char __user *buf)
1993 {
1994 u64 enabled, running;
1995 u64 values[4];
1996 int n = 0;
1997
1998 values[n++] = perf_event_read_value(event, &enabled, &running);
1999 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2000 values[n++] = enabled;
2001 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2002 values[n++] = running;
2003 if (read_format & PERF_FORMAT_ID)
2004 values[n++] = primary_event_id(event);
2005
2006 if (copy_to_user(buf, values, n * sizeof(u64)))
2007 return -EFAULT;
2008
2009 return n * sizeof(u64);
2010 }
2011
2012 /*
2013 * Read the performance event - simple non blocking version for now
2014 */
2015 static ssize_t
2016 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2017 {
2018 u64 read_format = event->attr.read_format;
2019 int ret;
2020
2021 /*
2022 * Return end-of-file for a read on a event that is in
2023 * error state (i.e. because it was pinned but it couldn't be
2024 * scheduled on to the CPU at some point).
2025 */
2026 if (event->state == PERF_EVENT_STATE_ERROR)
2027 return 0;
2028
2029 if (count < perf_event_read_size(event))
2030 return -ENOSPC;
2031
2032 WARN_ON_ONCE(event->ctx->parent_ctx);
2033 if (read_format & PERF_FORMAT_GROUP)
2034 ret = perf_event_read_group(event, read_format, buf);
2035 else
2036 ret = perf_event_read_one(event, read_format, buf);
2037
2038 return ret;
2039 }
2040
2041 static ssize_t
2042 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2043 {
2044 struct perf_event *event = file->private_data;
2045
2046 return perf_read_hw(event, buf, count);
2047 }
2048
2049 static unsigned int perf_poll(struct file *file, poll_table *wait)
2050 {
2051 struct perf_event *event = file->private_data;
2052 struct perf_mmap_data *data;
2053 unsigned int events = POLL_HUP;
2054
2055 rcu_read_lock();
2056 data = rcu_dereference(event->data);
2057 if (data)
2058 events = atomic_xchg(&data->poll, 0);
2059 rcu_read_unlock();
2060
2061 poll_wait(file, &event->waitq, wait);
2062
2063 return events;
2064 }
2065
2066 static void perf_event_reset(struct perf_event *event)
2067 {
2068 (void)perf_event_read(event);
2069 atomic64_set(&event->count, 0);
2070 perf_event_update_userpage(event);
2071 }
2072
2073 /*
2074 * Holding the top-level event's child_mutex means that any
2075 * descendant process that has inherited this event will block
2076 * in sync_child_event if it goes to exit, thus satisfying the
2077 * task existence requirements of perf_event_enable/disable.
2078 */
2079 static void perf_event_for_each_child(struct perf_event *event,
2080 void (*func)(struct perf_event *))
2081 {
2082 struct perf_event *child;
2083
2084 WARN_ON_ONCE(event->ctx->parent_ctx);
2085 mutex_lock(&event->child_mutex);
2086 func(event);
2087 list_for_each_entry(child, &event->child_list, child_list)
2088 func(child);
2089 mutex_unlock(&event->child_mutex);
2090 }
2091
2092 static void perf_event_for_each(struct perf_event *event,
2093 void (*func)(struct perf_event *))
2094 {
2095 struct perf_event_context *ctx = event->ctx;
2096 struct perf_event *sibling;
2097
2098 WARN_ON_ONCE(ctx->parent_ctx);
2099 mutex_lock(&ctx->mutex);
2100 event = event->group_leader;
2101
2102 perf_event_for_each_child(event, func);
2103 func(event);
2104 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2105 perf_event_for_each_child(event, func);
2106 mutex_unlock(&ctx->mutex);
2107 }
2108
2109 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2110 {
2111 struct perf_event_context *ctx = event->ctx;
2112 unsigned long size;
2113 int ret = 0;
2114 u64 value;
2115
2116 if (!event->attr.sample_period)
2117 return -EINVAL;
2118
2119 size = copy_from_user(&value, arg, sizeof(value));
2120 if (size != sizeof(value))
2121 return -EFAULT;
2122
2123 if (!value)
2124 return -EINVAL;
2125
2126 raw_spin_lock_irq(&ctx->lock);
2127 if (event->attr.freq) {
2128 if (value > sysctl_perf_event_sample_rate) {
2129 ret = -EINVAL;
2130 goto unlock;
2131 }
2132
2133 event->attr.sample_freq = value;
2134 } else {
2135 event->attr.sample_period = value;
2136 event->hw.sample_period = value;
2137 }
2138 unlock:
2139 raw_spin_unlock_irq(&ctx->lock);
2140
2141 return ret;
2142 }
2143
2144 static int perf_event_set_output(struct perf_event *event, int output_fd);
2145 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2146
2147 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2148 {
2149 struct perf_event *event = file->private_data;
2150 void (*func)(struct perf_event *);
2151 u32 flags = arg;
2152
2153 switch (cmd) {
2154 case PERF_EVENT_IOC_ENABLE:
2155 func = perf_event_enable;
2156 break;
2157 case PERF_EVENT_IOC_DISABLE:
2158 func = perf_event_disable;
2159 break;
2160 case PERF_EVENT_IOC_RESET:
2161 func = perf_event_reset;
2162 break;
2163
2164 case PERF_EVENT_IOC_REFRESH:
2165 return perf_event_refresh(event, arg);
2166
2167 case PERF_EVENT_IOC_PERIOD:
2168 return perf_event_period(event, (u64 __user *)arg);
2169
2170 case PERF_EVENT_IOC_SET_OUTPUT:
2171 return perf_event_set_output(event, arg);
2172
2173 case PERF_EVENT_IOC_SET_FILTER:
2174 return perf_event_set_filter(event, (void __user *)arg);
2175
2176 default:
2177 return -ENOTTY;
2178 }
2179
2180 if (flags & PERF_IOC_FLAG_GROUP)
2181 perf_event_for_each(event, func);
2182 else
2183 perf_event_for_each_child(event, func);
2184
2185 return 0;
2186 }
2187
2188 int perf_event_task_enable(void)
2189 {
2190 struct perf_event *event;
2191
2192 mutex_lock(&current->perf_event_mutex);
2193 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2194 perf_event_for_each_child(event, perf_event_enable);
2195 mutex_unlock(&current->perf_event_mutex);
2196
2197 return 0;
2198 }
2199
2200 int perf_event_task_disable(void)
2201 {
2202 struct perf_event *event;
2203
2204 mutex_lock(&current->perf_event_mutex);
2205 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2206 perf_event_for_each_child(event, perf_event_disable);
2207 mutex_unlock(&current->perf_event_mutex);
2208
2209 return 0;
2210 }
2211
2212 #ifndef PERF_EVENT_INDEX_OFFSET
2213 # define PERF_EVENT_INDEX_OFFSET 0
2214 #endif
2215
2216 static int perf_event_index(struct perf_event *event)
2217 {
2218 if (event->state != PERF_EVENT_STATE_ACTIVE)
2219 return 0;
2220
2221 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2222 }
2223
2224 /*
2225 * Callers need to ensure there can be no nesting of this function, otherwise
2226 * the seqlock logic goes bad. We can not serialize this because the arch
2227 * code calls this from NMI context.
2228 */
2229 void perf_event_update_userpage(struct perf_event *event)
2230 {
2231 struct perf_event_mmap_page *userpg;
2232 struct perf_mmap_data *data;
2233
2234 rcu_read_lock();
2235 data = rcu_dereference(event->data);
2236 if (!data)
2237 goto unlock;
2238
2239 userpg = data->user_page;
2240
2241 /*
2242 * Disable preemption so as to not let the corresponding user-space
2243 * spin too long if we get preempted.
2244 */
2245 preempt_disable();
2246 ++userpg->lock;
2247 barrier();
2248 userpg->index = perf_event_index(event);
2249 userpg->offset = atomic64_read(&event->count);
2250 if (event->state == PERF_EVENT_STATE_ACTIVE)
2251 userpg->offset -= atomic64_read(&event->hw.prev_count);
2252
2253 userpg->time_enabled = event->total_time_enabled +
2254 atomic64_read(&event->child_total_time_enabled);
2255
2256 userpg->time_running = event->total_time_running +
2257 atomic64_read(&event->child_total_time_running);
2258
2259 barrier();
2260 ++userpg->lock;
2261 preempt_enable();
2262 unlock:
2263 rcu_read_unlock();
2264 }
2265
2266 static unsigned long perf_data_size(struct perf_mmap_data *data)
2267 {
2268 return data->nr_pages << (PAGE_SHIFT + data->data_order);
2269 }
2270
2271 #ifndef CONFIG_PERF_USE_VMALLOC
2272
2273 /*
2274 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2275 */
2276
2277 static struct page *
2278 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2279 {
2280 if (pgoff > data->nr_pages)
2281 return NULL;
2282
2283 if (pgoff == 0)
2284 return virt_to_page(data->user_page);
2285
2286 return virt_to_page(data->data_pages[pgoff - 1]);
2287 }
2288
2289 static struct perf_mmap_data *
2290 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2291 {
2292 struct perf_mmap_data *data;
2293 unsigned long size;
2294 int i;
2295
2296 WARN_ON(atomic_read(&event->mmap_count));
2297
2298 size = sizeof(struct perf_mmap_data);
2299 size += nr_pages * sizeof(void *);
2300
2301 data = kzalloc(size, GFP_KERNEL);
2302 if (!data)
2303 goto fail;
2304
2305 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2306 if (!data->user_page)
2307 goto fail_user_page;
2308
2309 for (i = 0; i < nr_pages; i++) {
2310 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2311 if (!data->data_pages[i])
2312 goto fail_data_pages;
2313 }
2314
2315 data->data_order = 0;
2316 data->nr_pages = nr_pages;
2317
2318 return data;
2319
2320 fail_data_pages:
2321 for (i--; i >= 0; i--)
2322 free_page((unsigned long)data->data_pages[i]);
2323
2324 free_page((unsigned long)data->user_page);
2325
2326 fail_user_page:
2327 kfree(data);
2328
2329 fail:
2330 return NULL;
2331 }
2332
2333 static void perf_mmap_free_page(unsigned long addr)
2334 {
2335 struct page *page = virt_to_page((void *)addr);
2336
2337 page->mapping = NULL;
2338 __free_page(page);
2339 }
2340
2341 static void perf_mmap_data_free(struct perf_mmap_data *data)
2342 {
2343 int i;
2344
2345 perf_mmap_free_page((unsigned long)data->user_page);
2346 for (i = 0; i < data->nr_pages; i++)
2347 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2348 kfree(data);
2349 }
2350
2351 #else
2352
2353 /*
2354 * Back perf_mmap() with vmalloc memory.
2355 *
2356 * Required for architectures that have d-cache aliasing issues.
2357 */
2358
2359 static struct page *
2360 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2361 {
2362 if (pgoff > (1UL << data->data_order))
2363 return NULL;
2364
2365 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2366 }
2367
2368 static void perf_mmap_unmark_page(void *addr)
2369 {
2370 struct page *page = vmalloc_to_page(addr);
2371
2372 page->mapping = NULL;
2373 }
2374
2375 static void perf_mmap_data_free_work(struct work_struct *work)
2376 {
2377 struct perf_mmap_data *data;
2378 void *base;
2379 int i, nr;
2380
2381 data = container_of(work, struct perf_mmap_data, work);
2382 nr = 1 << data->data_order;
2383
2384 base = data->user_page;
2385 for (i = 0; i < nr + 1; i++)
2386 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2387
2388 vfree(base);
2389 kfree(data);
2390 }
2391
2392 static void perf_mmap_data_free(struct perf_mmap_data *data)
2393 {
2394 schedule_work(&data->work);
2395 }
2396
2397 static struct perf_mmap_data *
2398 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2399 {
2400 struct perf_mmap_data *data;
2401 unsigned long size;
2402 void *all_buf;
2403
2404 WARN_ON(atomic_read(&event->mmap_count));
2405
2406 size = sizeof(struct perf_mmap_data);
2407 size += sizeof(void *);
2408
2409 data = kzalloc(size, GFP_KERNEL);
2410 if (!data)
2411 goto fail;
2412
2413 INIT_WORK(&data->work, perf_mmap_data_free_work);
2414
2415 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2416 if (!all_buf)
2417 goto fail_all_buf;
2418
2419 data->user_page = all_buf;
2420 data->data_pages[0] = all_buf + PAGE_SIZE;
2421 data->data_order = ilog2(nr_pages);
2422 data->nr_pages = 1;
2423
2424 return data;
2425
2426 fail_all_buf:
2427 kfree(data);
2428
2429 fail:
2430 return NULL;
2431 }
2432
2433 #endif
2434
2435 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2436 {
2437 struct perf_event *event = vma->vm_file->private_data;
2438 struct perf_mmap_data *data;
2439 int ret = VM_FAULT_SIGBUS;
2440
2441 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2442 if (vmf->pgoff == 0)
2443 ret = 0;
2444 return ret;
2445 }
2446
2447 rcu_read_lock();
2448 data = rcu_dereference(event->data);
2449 if (!data)
2450 goto unlock;
2451
2452 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2453 goto unlock;
2454
2455 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2456 if (!vmf->page)
2457 goto unlock;
2458
2459 get_page(vmf->page);
2460 vmf->page->mapping = vma->vm_file->f_mapping;
2461 vmf->page->index = vmf->pgoff;
2462
2463 ret = 0;
2464 unlock:
2465 rcu_read_unlock();
2466
2467 return ret;
2468 }
2469
2470 static void
2471 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2472 {
2473 long max_size = perf_data_size(data);
2474
2475 atomic_set(&data->lock, -1);
2476
2477 if (event->attr.watermark) {
2478 data->watermark = min_t(long, max_size,
2479 event->attr.wakeup_watermark);
2480 }
2481
2482 if (!data->watermark)
2483 data->watermark = max_size / 2;
2484
2485
2486 rcu_assign_pointer(event->data, data);
2487 }
2488
2489 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2490 {
2491 struct perf_mmap_data *data;
2492
2493 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2494 perf_mmap_data_free(data);
2495 }
2496
2497 static void perf_mmap_data_release(struct perf_event *event)
2498 {
2499 struct perf_mmap_data *data = event->data;
2500
2501 WARN_ON(atomic_read(&event->mmap_count));
2502
2503 rcu_assign_pointer(event->data, NULL);
2504 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2505 }
2506
2507 static void perf_mmap_open(struct vm_area_struct *vma)
2508 {
2509 struct perf_event *event = vma->vm_file->private_data;
2510
2511 atomic_inc(&event->mmap_count);
2512 }
2513
2514 static void perf_mmap_close(struct vm_area_struct *vma)
2515 {
2516 struct perf_event *event = vma->vm_file->private_data;
2517
2518 WARN_ON_ONCE(event->ctx->parent_ctx);
2519 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2520 unsigned long size = perf_data_size(event->data);
2521 struct user_struct *user = current_user();
2522
2523 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2524 vma->vm_mm->locked_vm -= event->data->nr_locked;
2525 perf_mmap_data_release(event);
2526 mutex_unlock(&event->mmap_mutex);
2527 }
2528 }
2529
2530 static const struct vm_operations_struct perf_mmap_vmops = {
2531 .open = perf_mmap_open,
2532 .close = perf_mmap_close,
2533 .fault = perf_mmap_fault,
2534 .page_mkwrite = perf_mmap_fault,
2535 };
2536
2537 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2538 {
2539 struct perf_event *event = file->private_data;
2540 unsigned long user_locked, user_lock_limit;
2541 struct user_struct *user = current_user();
2542 unsigned long locked, lock_limit;
2543 struct perf_mmap_data *data;
2544 unsigned long vma_size;
2545 unsigned long nr_pages;
2546 long user_extra, extra;
2547 int ret = 0;
2548
2549 if (!(vma->vm_flags & VM_SHARED))
2550 return -EINVAL;
2551
2552 vma_size = vma->vm_end - vma->vm_start;
2553 nr_pages = (vma_size / PAGE_SIZE) - 1;
2554
2555 /*
2556 * If we have data pages ensure they're a power-of-two number, so we
2557 * can do bitmasks instead of modulo.
2558 */
2559 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2560 return -EINVAL;
2561
2562 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2563 return -EINVAL;
2564
2565 if (vma->vm_pgoff != 0)
2566 return -EINVAL;
2567
2568 WARN_ON_ONCE(event->ctx->parent_ctx);
2569 mutex_lock(&event->mmap_mutex);
2570 if (event->output) {
2571 ret = -EINVAL;
2572 goto unlock;
2573 }
2574
2575 if (atomic_inc_not_zero(&event->mmap_count)) {
2576 if (nr_pages != event->data->nr_pages)
2577 ret = -EINVAL;
2578 goto unlock;
2579 }
2580
2581 user_extra = nr_pages + 1;
2582 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2583
2584 /*
2585 * Increase the limit linearly with more CPUs:
2586 */
2587 user_lock_limit *= num_online_cpus();
2588
2589 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2590
2591 extra = 0;
2592 if (user_locked > user_lock_limit)
2593 extra = user_locked - user_lock_limit;
2594
2595 lock_limit = rlimit(RLIMIT_MEMLOCK);
2596 lock_limit >>= PAGE_SHIFT;
2597 locked = vma->vm_mm->locked_vm + extra;
2598
2599 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2600 !capable(CAP_IPC_LOCK)) {
2601 ret = -EPERM;
2602 goto unlock;
2603 }
2604
2605 WARN_ON(event->data);
2606
2607 data = perf_mmap_data_alloc(event, nr_pages);
2608 ret = -ENOMEM;
2609 if (!data)
2610 goto unlock;
2611
2612 ret = 0;
2613 perf_mmap_data_init(event, data);
2614
2615 atomic_set(&event->mmap_count, 1);
2616 atomic_long_add(user_extra, &user->locked_vm);
2617 vma->vm_mm->locked_vm += extra;
2618 event->data->nr_locked = extra;
2619 if (vma->vm_flags & VM_WRITE)
2620 event->data->writable = 1;
2621
2622 unlock:
2623 mutex_unlock(&event->mmap_mutex);
2624
2625 vma->vm_flags |= VM_RESERVED;
2626 vma->vm_ops = &perf_mmap_vmops;
2627
2628 return ret;
2629 }
2630
2631 static int perf_fasync(int fd, struct file *filp, int on)
2632 {
2633 struct inode *inode = filp->f_path.dentry->d_inode;
2634 struct perf_event *event = filp->private_data;
2635 int retval;
2636
2637 mutex_lock(&inode->i_mutex);
2638 retval = fasync_helper(fd, filp, on, &event->fasync);
2639 mutex_unlock(&inode->i_mutex);
2640
2641 if (retval < 0)
2642 return retval;
2643
2644 return 0;
2645 }
2646
2647 static const struct file_operations perf_fops = {
2648 .release = perf_release,
2649 .read = perf_read,
2650 .poll = perf_poll,
2651 .unlocked_ioctl = perf_ioctl,
2652 .compat_ioctl = perf_ioctl,
2653 .mmap = perf_mmap,
2654 .fasync = perf_fasync,
2655 };
2656
2657 /*
2658 * Perf event wakeup
2659 *
2660 * If there's data, ensure we set the poll() state and publish everything
2661 * to user-space before waking everybody up.
2662 */
2663
2664 void perf_event_wakeup(struct perf_event *event)
2665 {
2666 wake_up_all(&event->waitq);
2667
2668 if (event->pending_kill) {
2669 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2670 event->pending_kill = 0;
2671 }
2672 }
2673
2674 /*
2675 * Pending wakeups
2676 *
2677 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2678 *
2679 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2680 * single linked list and use cmpxchg() to add entries lockless.
2681 */
2682
2683 static void perf_pending_event(struct perf_pending_entry *entry)
2684 {
2685 struct perf_event *event = container_of(entry,
2686 struct perf_event, pending);
2687
2688 if (event->pending_disable) {
2689 event->pending_disable = 0;
2690 __perf_event_disable(event);
2691 }
2692
2693 if (event->pending_wakeup) {
2694 event->pending_wakeup = 0;
2695 perf_event_wakeup(event);
2696 }
2697 }
2698
2699 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2700
2701 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2702 PENDING_TAIL,
2703 };
2704
2705 static void perf_pending_queue(struct perf_pending_entry *entry,
2706 void (*func)(struct perf_pending_entry *))
2707 {
2708 struct perf_pending_entry **head;
2709
2710 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2711 return;
2712
2713 entry->func = func;
2714
2715 head = &get_cpu_var(perf_pending_head);
2716
2717 do {
2718 entry->next = *head;
2719 } while (cmpxchg(head, entry->next, entry) != entry->next);
2720
2721 set_perf_event_pending();
2722
2723 put_cpu_var(perf_pending_head);
2724 }
2725
2726 static int __perf_pending_run(void)
2727 {
2728 struct perf_pending_entry *list;
2729 int nr = 0;
2730
2731 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2732 while (list != PENDING_TAIL) {
2733 void (*func)(struct perf_pending_entry *);
2734 struct perf_pending_entry *entry = list;
2735
2736 list = list->next;
2737
2738 func = entry->func;
2739 entry->next = NULL;
2740 /*
2741 * Ensure we observe the unqueue before we issue the wakeup,
2742 * so that we won't be waiting forever.
2743 * -- see perf_not_pending().
2744 */
2745 smp_wmb();
2746
2747 func(entry);
2748 nr++;
2749 }
2750
2751 return nr;
2752 }
2753
2754 static inline int perf_not_pending(struct perf_event *event)
2755 {
2756 /*
2757 * If we flush on whatever cpu we run, there is a chance we don't
2758 * need to wait.
2759 */
2760 get_cpu();
2761 __perf_pending_run();
2762 put_cpu();
2763
2764 /*
2765 * Ensure we see the proper queue state before going to sleep
2766 * so that we do not miss the wakeup. -- see perf_pending_handle()
2767 */
2768 smp_rmb();
2769 return event->pending.next == NULL;
2770 }
2771
2772 static void perf_pending_sync(struct perf_event *event)
2773 {
2774 wait_event(event->waitq, perf_not_pending(event));
2775 }
2776
2777 void perf_event_do_pending(void)
2778 {
2779 __perf_pending_run();
2780 }
2781
2782 /*
2783 * Callchain support -- arch specific
2784 */
2785
2786 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2787 {
2788 return NULL;
2789 }
2790
2791 #ifdef CONFIG_EVENT_TRACING
2792 __weak
2793 void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
2794 {
2795 }
2796 #endif
2797
2798 /*
2799 * Output
2800 */
2801 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2802 unsigned long offset, unsigned long head)
2803 {
2804 unsigned long mask;
2805
2806 if (!data->writable)
2807 return true;
2808
2809 mask = perf_data_size(data) - 1;
2810
2811 offset = (offset - tail) & mask;
2812 head = (head - tail) & mask;
2813
2814 if ((int)(head - offset) < 0)
2815 return false;
2816
2817 return true;
2818 }
2819
2820 static void perf_output_wakeup(struct perf_output_handle *handle)
2821 {
2822 atomic_set(&handle->data->poll, POLL_IN);
2823
2824 if (handle->nmi) {
2825 handle->event->pending_wakeup = 1;
2826 perf_pending_queue(&handle->event->pending,
2827 perf_pending_event);
2828 } else
2829 perf_event_wakeup(handle->event);
2830 }
2831
2832 /*
2833 * Curious locking construct.
2834 *
2835 * We need to ensure a later event_id doesn't publish a head when a former
2836 * event_id isn't done writing. However since we need to deal with NMIs we
2837 * cannot fully serialize things.
2838 *
2839 * What we do is serialize between CPUs so we only have to deal with NMI
2840 * nesting on a single CPU.
2841 *
2842 * We only publish the head (and generate a wakeup) when the outer-most
2843 * event_id completes.
2844 */
2845 static void perf_output_lock(struct perf_output_handle *handle)
2846 {
2847 struct perf_mmap_data *data = handle->data;
2848 int cur, cpu = get_cpu();
2849
2850 handle->locked = 0;
2851
2852 for (;;) {
2853 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2854 if (cur == -1) {
2855 handle->locked = 1;
2856 break;
2857 }
2858 if (cur == cpu)
2859 break;
2860
2861 cpu_relax();
2862 }
2863 }
2864
2865 static void perf_output_unlock(struct perf_output_handle *handle)
2866 {
2867 struct perf_mmap_data *data = handle->data;
2868 unsigned long head;
2869 int cpu;
2870
2871 data->done_head = data->head;
2872
2873 if (!handle->locked)
2874 goto out;
2875
2876 again:
2877 /*
2878 * The xchg implies a full barrier that ensures all writes are done
2879 * before we publish the new head, matched by a rmb() in userspace when
2880 * reading this position.
2881 */
2882 while ((head = atomic_long_xchg(&data->done_head, 0)))
2883 data->user_page->data_head = head;
2884
2885 /*
2886 * NMI can happen here, which means we can miss a done_head update.
2887 */
2888
2889 cpu = atomic_xchg(&data->lock, -1);
2890 WARN_ON_ONCE(cpu != smp_processor_id());
2891
2892 /*
2893 * Therefore we have to validate we did not indeed do so.
2894 */
2895 if (unlikely(atomic_long_read(&data->done_head))) {
2896 /*
2897 * Since we had it locked, we can lock it again.
2898 */
2899 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2900 cpu_relax();
2901
2902 goto again;
2903 }
2904
2905 if (atomic_xchg(&data->wakeup, 0))
2906 perf_output_wakeup(handle);
2907 out:
2908 put_cpu();
2909 }
2910
2911 void perf_output_copy(struct perf_output_handle *handle,
2912 const void *buf, unsigned int len)
2913 {
2914 unsigned int pages_mask;
2915 unsigned long offset;
2916 unsigned int size;
2917 void **pages;
2918
2919 offset = handle->offset;
2920 pages_mask = handle->data->nr_pages - 1;
2921 pages = handle->data->data_pages;
2922
2923 do {
2924 unsigned long page_offset;
2925 unsigned long page_size;
2926 int nr;
2927
2928 nr = (offset >> PAGE_SHIFT) & pages_mask;
2929 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2930 page_offset = offset & (page_size - 1);
2931 size = min_t(unsigned int, page_size - page_offset, len);
2932
2933 memcpy(pages[nr] + page_offset, buf, size);
2934
2935 len -= size;
2936 buf += size;
2937 offset += size;
2938 } while (len);
2939
2940 handle->offset = offset;
2941
2942 /*
2943 * Check we didn't copy past our reservation window, taking the
2944 * possible unsigned int wrap into account.
2945 */
2946 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2947 }
2948
2949 int perf_output_begin(struct perf_output_handle *handle,
2950 struct perf_event *event, unsigned int size,
2951 int nmi, int sample)
2952 {
2953 struct perf_event *output_event;
2954 struct perf_mmap_data *data;
2955 unsigned long tail, offset, head;
2956 int have_lost;
2957 struct {
2958 struct perf_event_header header;
2959 u64 id;
2960 u64 lost;
2961 } lost_event;
2962
2963 rcu_read_lock();
2964 /*
2965 * For inherited events we send all the output towards the parent.
2966 */
2967 if (event->parent)
2968 event = event->parent;
2969
2970 output_event = rcu_dereference(event->output);
2971 if (output_event)
2972 event = output_event;
2973
2974 data = rcu_dereference(event->data);
2975 if (!data)
2976 goto out;
2977
2978 handle->data = data;
2979 handle->event = event;
2980 handle->nmi = nmi;
2981 handle->sample = sample;
2982
2983 if (!data->nr_pages)
2984 goto fail;
2985
2986 have_lost = atomic_read(&data->lost);
2987 if (have_lost)
2988 size += sizeof(lost_event);
2989
2990 perf_output_lock(handle);
2991
2992 do {
2993 /*
2994 * Userspace could choose to issue a mb() before updating the
2995 * tail pointer. So that all reads will be completed before the
2996 * write is issued.
2997 */
2998 tail = ACCESS_ONCE(data->user_page->data_tail);
2999 smp_rmb();
3000 offset = head = atomic_long_read(&data->head);
3001 head += size;
3002 if (unlikely(!perf_output_space(data, tail, offset, head)))
3003 goto fail;
3004 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
3005
3006 handle->offset = offset;
3007 handle->head = head;
3008
3009 if (head - tail > data->watermark)
3010 atomic_set(&data->wakeup, 1);
3011
3012 if (have_lost) {
3013 lost_event.header.type = PERF_RECORD_LOST;
3014 lost_event.header.misc = 0;
3015 lost_event.header.size = sizeof(lost_event);
3016 lost_event.id = event->id;
3017 lost_event.lost = atomic_xchg(&data->lost, 0);
3018
3019 perf_output_put(handle, lost_event);
3020 }
3021
3022 return 0;
3023
3024 fail:
3025 atomic_inc(&data->lost);
3026 perf_output_unlock(handle);
3027 out:
3028 rcu_read_unlock();
3029
3030 return -ENOSPC;
3031 }
3032
3033 void perf_output_end(struct perf_output_handle *handle)
3034 {
3035 struct perf_event *event = handle->event;
3036 struct perf_mmap_data *data = handle->data;
3037
3038 int wakeup_events = event->attr.wakeup_events;
3039
3040 if (handle->sample && wakeup_events) {
3041 int events = atomic_inc_return(&data->events);
3042 if (events >= wakeup_events) {
3043 atomic_sub(wakeup_events, &data->events);
3044 atomic_set(&data->wakeup, 1);
3045 }
3046 }
3047
3048 perf_output_unlock(handle);
3049 rcu_read_unlock();
3050 }
3051
3052 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3053 {
3054 /*
3055 * only top level events have the pid namespace they were created in
3056 */
3057 if (event->parent)
3058 event = event->parent;
3059
3060 return task_tgid_nr_ns(p, event->ns);
3061 }
3062
3063 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3064 {
3065 /*
3066 * only top level events have the pid namespace they were created in
3067 */
3068 if (event->parent)
3069 event = event->parent;
3070
3071 return task_pid_nr_ns(p, event->ns);
3072 }
3073
3074 static void perf_output_read_one(struct perf_output_handle *handle,
3075 struct perf_event *event)
3076 {
3077 u64 read_format = event->attr.read_format;
3078 u64 values[4];
3079 int n = 0;
3080
3081 values[n++] = atomic64_read(&event->count);
3082 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3083 values[n++] = event->total_time_enabled +
3084 atomic64_read(&event->child_total_time_enabled);
3085 }
3086 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3087 values[n++] = event->total_time_running +
3088 atomic64_read(&event->child_total_time_running);
3089 }
3090 if (read_format & PERF_FORMAT_ID)
3091 values[n++] = primary_event_id(event);
3092
3093 perf_output_copy(handle, values, n * sizeof(u64));
3094 }
3095
3096 /*
3097 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3098 */
3099 static void perf_output_read_group(struct perf_output_handle *handle,
3100 struct perf_event *event)
3101 {
3102 struct perf_event *leader = event->group_leader, *sub;
3103 u64 read_format = event->attr.read_format;
3104 u64 values[5];
3105 int n = 0;
3106
3107 values[n++] = 1 + leader->nr_siblings;
3108
3109 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3110 values[n++] = leader->total_time_enabled;
3111
3112 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3113 values[n++] = leader->total_time_running;
3114
3115 if (leader != event)
3116 leader->pmu->read(leader);
3117
3118 values[n++] = atomic64_read(&leader->count);
3119 if (read_format & PERF_FORMAT_ID)
3120 values[n++] = primary_event_id(leader);
3121
3122 perf_output_copy(handle, values, n * sizeof(u64));
3123
3124 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3125 n = 0;
3126
3127 if (sub != event)
3128 sub->pmu->read(sub);
3129
3130 values[n++] = atomic64_read(&sub->count);
3131 if (read_format & PERF_FORMAT_ID)
3132 values[n++] = primary_event_id(sub);
3133
3134 perf_output_copy(handle, values, n * sizeof(u64));
3135 }
3136 }
3137
3138 static void perf_output_read(struct perf_output_handle *handle,
3139 struct perf_event *event)
3140 {
3141 if (event->attr.read_format & PERF_FORMAT_GROUP)
3142 perf_output_read_group(handle, event);
3143 else
3144 perf_output_read_one(handle, event);
3145 }
3146
3147 void perf_output_sample(struct perf_output_handle *handle,
3148 struct perf_event_header *header,
3149 struct perf_sample_data *data,
3150 struct perf_event *event)
3151 {
3152 u64 sample_type = data->type;
3153
3154 perf_output_put(handle, *header);
3155
3156 if (sample_type & PERF_SAMPLE_IP)
3157 perf_output_put(handle, data->ip);
3158
3159 if (sample_type & PERF_SAMPLE_TID)
3160 perf_output_put(handle, data->tid_entry);
3161
3162 if (sample_type & PERF_SAMPLE_TIME)
3163 perf_output_put(handle, data->time);
3164
3165 if (sample_type & PERF_SAMPLE_ADDR)
3166 perf_output_put(handle, data->addr);
3167
3168 if (sample_type & PERF_SAMPLE_ID)
3169 perf_output_put(handle, data->id);
3170
3171 if (sample_type & PERF_SAMPLE_STREAM_ID)
3172 perf_output_put(handle, data->stream_id);
3173
3174 if (sample_type & PERF_SAMPLE_CPU)
3175 perf_output_put(handle, data->cpu_entry);
3176
3177 if (sample_type & PERF_SAMPLE_PERIOD)
3178 perf_output_put(handle, data->period);
3179
3180 if (sample_type & PERF_SAMPLE_READ)
3181 perf_output_read(handle, event);
3182
3183 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3184 if (data->callchain) {
3185 int size = 1;
3186
3187 if (data->callchain)
3188 size += data->callchain->nr;
3189
3190 size *= sizeof(u64);
3191
3192 perf_output_copy(handle, data->callchain, size);
3193 } else {
3194 u64 nr = 0;
3195 perf_output_put(handle, nr);
3196 }
3197 }
3198
3199 if (sample_type & PERF_SAMPLE_RAW) {
3200 if (data->raw) {
3201 perf_output_put(handle, data->raw->size);
3202 perf_output_copy(handle, data->raw->data,
3203 data->raw->size);
3204 } else {
3205 struct {
3206 u32 size;
3207 u32 data;
3208 } raw = {
3209 .size = sizeof(u32),
3210 .data = 0,
3211 };
3212 perf_output_put(handle, raw);
3213 }
3214 }
3215 }
3216
3217 void perf_prepare_sample(struct perf_event_header *header,
3218 struct perf_sample_data *data,
3219 struct perf_event *event,
3220 struct pt_regs *regs)
3221 {
3222 u64 sample_type = event->attr.sample_type;
3223
3224 data->type = sample_type;
3225
3226 header->type = PERF_RECORD_SAMPLE;
3227 header->size = sizeof(*header);
3228
3229 header->misc = 0;
3230 header->misc |= perf_misc_flags(regs);
3231
3232 if (sample_type & PERF_SAMPLE_IP) {
3233 data->ip = perf_instruction_pointer(regs);
3234
3235 header->size += sizeof(data->ip);
3236 }
3237
3238 if (sample_type & PERF_SAMPLE_TID) {
3239 /* namespace issues */
3240 data->tid_entry.pid = perf_event_pid(event, current);
3241 data->tid_entry.tid = perf_event_tid(event, current);
3242
3243 header->size += sizeof(data->tid_entry);
3244 }
3245
3246 if (sample_type & PERF_SAMPLE_TIME) {
3247 data->time = perf_clock();
3248
3249 header->size += sizeof(data->time);
3250 }
3251
3252 if (sample_type & PERF_SAMPLE_ADDR)
3253 header->size += sizeof(data->addr);
3254
3255 if (sample_type & PERF_SAMPLE_ID) {
3256 data->id = primary_event_id(event);
3257
3258 header->size += sizeof(data->id);
3259 }
3260
3261 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3262 data->stream_id = event->id;
3263
3264 header->size += sizeof(data->stream_id);
3265 }
3266
3267 if (sample_type & PERF_SAMPLE_CPU) {
3268 data->cpu_entry.cpu = raw_smp_processor_id();
3269 data->cpu_entry.reserved = 0;
3270
3271 header->size += sizeof(data->cpu_entry);
3272 }
3273
3274 if (sample_type & PERF_SAMPLE_PERIOD)
3275 header->size += sizeof(data->period);
3276
3277 if (sample_type & PERF_SAMPLE_READ)
3278 header->size += perf_event_read_size(event);
3279
3280 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3281 int size = 1;
3282
3283 data->callchain = perf_callchain(regs);
3284
3285 if (data->callchain)
3286 size += data->callchain->nr;
3287
3288 header->size += size * sizeof(u64);
3289 }
3290
3291 if (sample_type & PERF_SAMPLE_RAW) {
3292 int size = sizeof(u32);
3293
3294 if (data->raw)
3295 size += data->raw->size;
3296 else
3297 size += sizeof(u32);
3298
3299 WARN_ON_ONCE(size & (sizeof(u64)-1));
3300 header->size += size;
3301 }
3302 }
3303
3304 static void perf_event_output(struct perf_event *event, int nmi,
3305 struct perf_sample_data *data,
3306 struct pt_regs *regs)
3307 {
3308 struct perf_output_handle handle;
3309 struct perf_event_header header;
3310
3311 perf_prepare_sample(&header, data, event, regs);
3312
3313 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3314 return;
3315
3316 perf_output_sample(&handle, &header, data, event);
3317
3318 perf_output_end(&handle);
3319 }
3320
3321 /*
3322 * read event_id
3323 */
3324
3325 struct perf_read_event {
3326 struct perf_event_header header;
3327
3328 u32 pid;
3329 u32 tid;
3330 };
3331
3332 static void
3333 perf_event_read_event(struct perf_event *event,
3334 struct task_struct *task)
3335 {
3336 struct perf_output_handle handle;
3337 struct perf_read_event read_event = {
3338 .header = {
3339 .type = PERF_RECORD_READ,
3340 .misc = 0,
3341 .size = sizeof(read_event) + perf_event_read_size(event),
3342 },
3343 .pid = perf_event_pid(event, task),
3344 .tid = perf_event_tid(event, task),
3345 };
3346 int ret;
3347
3348 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3349 if (ret)
3350 return;
3351
3352 perf_output_put(&handle, read_event);
3353 perf_output_read(&handle, event);
3354
3355 perf_output_end(&handle);
3356 }
3357
3358 /*
3359 * task tracking -- fork/exit
3360 *
3361 * enabled by: attr.comm | attr.mmap | attr.task
3362 */
3363
3364 struct perf_task_event {
3365 struct task_struct *task;
3366 struct perf_event_context *task_ctx;
3367
3368 struct {
3369 struct perf_event_header header;
3370
3371 u32 pid;
3372 u32 ppid;
3373 u32 tid;
3374 u32 ptid;
3375 u64 time;
3376 } event_id;
3377 };
3378
3379 static void perf_event_task_output(struct perf_event *event,
3380 struct perf_task_event *task_event)
3381 {
3382 struct perf_output_handle handle;
3383 struct task_struct *task = task_event->task;
3384 unsigned long flags;
3385 int size, ret;
3386
3387 /*
3388 * If this CPU attempts to acquire an rq lock held by a CPU spinning
3389 * in perf_output_lock() from interrupt context, it's game over.
3390 */
3391 local_irq_save(flags);
3392
3393 size = task_event->event_id.header.size;
3394 ret = perf_output_begin(&handle, event, size, 0, 0);
3395
3396 if (ret) {
3397 local_irq_restore(flags);
3398 return;
3399 }
3400
3401 task_event->event_id.pid = perf_event_pid(event, task);
3402 task_event->event_id.ppid = perf_event_pid(event, current);
3403
3404 task_event->event_id.tid = perf_event_tid(event, task);
3405 task_event->event_id.ptid = perf_event_tid(event, current);
3406
3407 perf_output_put(&handle, task_event->event_id);
3408
3409 perf_output_end(&handle);
3410 local_irq_restore(flags);
3411 }
3412
3413 static int perf_event_task_match(struct perf_event *event)
3414 {
3415 if (event->state < PERF_EVENT_STATE_INACTIVE)
3416 return 0;
3417
3418 if (event->cpu != -1 && event->cpu != smp_processor_id())
3419 return 0;
3420
3421 if (event->attr.comm || event->attr.mmap || event->attr.task)
3422 return 1;
3423
3424 return 0;
3425 }
3426
3427 static void perf_event_task_ctx(struct perf_event_context *ctx,
3428 struct perf_task_event *task_event)
3429 {
3430 struct perf_event *event;
3431
3432 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3433 if (perf_event_task_match(event))
3434 perf_event_task_output(event, task_event);
3435 }
3436 }
3437
3438 static void perf_event_task_event(struct perf_task_event *task_event)
3439 {
3440 struct perf_cpu_context *cpuctx;
3441 struct perf_event_context *ctx = task_event->task_ctx;
3442
3443 rcu_read_lock();
3444 cpuctx = &get_cpu_var(perf_cpu_context);
3445 perf_event_task_ctx(&cpuctx->ctx, task_event);
3446 if (!ctx)
3447 ctx = rcu_dereference(current->perf_event_ctxp);
3448 if (ctx)
3449 perf_event_task_ctx(ctx, task_event);
3450 put_cpu_var(perf_cpu_context);
3451 rcu_read_unlock();
3452 }
3453
3454 static void perf_event_task(struct task_struct *task,
3455 struct perf_event_context *task_ctx,
3456 int new)
3457 {
3458 struct perf_task_event task_event;
3459
3460 if (!atomic_read(&nr_comm_events) &&
3461 !atomic_read(&nr_mmap_events) &&
3462 !atomic_read(&nr_task_events))
3463 return;
3464
3465 task_event = (struct perf_task_event){
3466 .task = task,
3467 .task_ctx = task_ctx,
3468 .event_id = {
3469 .header = {
3470 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3471 .misc = 0,
3472 .size = sizeof(task_event.event_id),
3473 },
3474 /* .pid */
3475 /* .ppid */
3476 /* .tid */
3477 /* .ptid */
3478 .time = perf_clock(),
3479 },
3480 };
3481
3482 perf_event_task_event(&task_event);
3483 }
3484
3485 void perf_event_fork(struct task_struct *task)
3486 {
3487 perf_event_task(task, NULL, 1);
3488 }
3489
3490 /*
3491 * comm tracking
3492 */
3493
3494 struct perf_comm_event {
3495 struct task_struct *task;
3496 char *comm;
3497 int comm_size;
3498
3499 struct {
3500 struct perf_event_header header;
3501
3502 u32 pid;
3503 u32 tid;
3504 } event_id;
3505 };
3506
3507 static void perf_event_comm_output(struct perf_event *event,
3508 struct perf_comm_event *comm_event)
3509 {
3510 struct perf_output_handle handle;
3511 int size = comm_event->event_id.header.size;
3512 int ret = perf_output_begin(&handle, event, size, 0, 0);
3513
3514 if (ret)
3515 return;
3516
3517 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3518 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3519
3520 perf_output_put(&handle, comm_event->event_id);
3521 perf_output_copy(&handle, comm_event->comm,
3522 comm_event->comm_size);
3523 perf_output_end(&handle);
3524 }
3525
3526 static int perf_event_comm_match(struct perf_event *event)
3527 {
3528 if (event->state < PERF_EVENT_STATE_INACTIVE)
3529 return 0;
3530
3531 if (event->cpu != -1 && event->cpu != smp_processor_id())
3532 return 0;
3533
3534 if (event->attr.comm)
3535 return 1;
3536
3537 return 0;
3538 }
3539
3540 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3541 struct perf_comm_event *comm_event)
3542 {
3543 struct perf_event *event;
3544
3545 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3546 if (perf_event_comm_match(event))
3547 perf_event_comm_output(event, comm_event);
3548 }
3549 }
3550
3551 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3552 {
3553 struct perf_cpu_context *cpuctx;
3554 struct perf_event_context *ctx;
3555 unsigned int size;
3556 char comm[TASK_COMM_LEN];
3557
3558 memset(comm, 0, sizeof(comm));
3559 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3560 size = ALIGN(strlen(comm)+1, sizeof(u64));
3561
3562 comm_event->comm = comm;
3563 comm_event->comm_size = size;
3564
3565 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3566
3567 rcu_read_lock();
3568 cpuctx = &get_cpu_var(perf_cpu_context);
3569 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3570 ctx = rcu_dereference(current->perf_event_ctxp);
3571 if (ctx)
3572 perf_event_comm_ctx(ctx, comm_event);
3573 put_cpu_var(perf_cpu_context);
3574 rcu_read_unlock();
3575 }
3576
3577 void perf_event_comm(struct task_struct *task)
3578 {
3579 struct perf_comm_event comm_event;
3580
3581 if (task->perf_event_ctxp)
3582 perf_event_enable_on_exec(task);
3583
3584 if (!atomic_read(&nr_comm_events))
3585 return;
3586
3587 comm_event = (struct perf_comm_event){
3588 .task = task,
3589 /* .comm */
3590 /* .comm_size */
3591 .event_id = {
3592 .header = {
3593 .type = PERF_RECORD_COMM,
3594 .misc = 0,
3595 /* .size */
3596 },
3597 /* .pid */
3598 /* .tid */
3599 },
3600 };
3601
3602 perf_event_comm_event(&comm_event);
3603 }
3604
3605 /*
3606 * mmap tracking
3607 */
3608
3609 struct perf_mmap_event {
3610 struct vm_area_struct *vma;
3611
3612 const char *file_name;
3613 int file_size;
3614
3615 struct {
3616 struct perf_event_header header;
3617
3618 u32 pid;
3619 u32 tid;
3620 u64 start;
3621 u64 len;
3622 u64 pgoff;
3623 } event_id;
3624 };
3625
3626 static void perf_event_mmap_output(struct perf_event *event,
3627 struct perf_mmap_event *mmap_event)
3628 {
3629 struct perf_output_handle handle;
3630 int size = mmap_event->event_id.header.size;
3631 int ret = perf_output_begin(&handle, event, size, 0, 0);
3632
3633 if (ret)
3634 return;
3635
3636 mmap_event->event_id.pid = perf_event_pid(event, current);
3637 mmap_event->event_id.tid = perf_event_tid(event, current);
3638
3639 perf_output_put(&handle, mmap_event->event_id);
3640 perf_output_copy(&handle, mmap_event->file_name,
3641 mmap_event->file_size);
3642 perf_output_end(&handle);
3643 }
3644
3645 static int perf_event_mmap_match(struct perf_event *event,
3646 struct perf_mmap_event *mmap_event)
3647 {
3648 if (event->state < PERF_EVENT_STATE_INACTIVE)
3649 return 0;
3650
3651 if (event->cpu != -1 && event->cpu != smp_processor_id())
3652 return 0;
3653
3654 if (event->attr.mmap)
3655 return 1;
3656
3657 return 0;
3658 }
3659
3660 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3661 struct perf_mmap_event *mmap_event)
3662 {
3663 struct perf_event *event;
3664
3665 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3666 if (perf_event_mmap_match(event, mmap_event))
3667 perf_event_mmap_output(event, mmap_event);
3668 }
3669 }
3670
3671 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3672 {
3673 struct perf_cpu_context *cpuctx;
3674 struct perf_event_context *ctx;
3675 struct vm_area_struct *vma = mmap_event->vma;
3676 struct file *file = vma->vm_file;
3677 unsigned int size;
3678 char tmp[16];
3679 char *buf = NULL;
3680 const char *name;
3681
3682 memset(tmp, 0, sizeof(tmp));
3683
3684 if (file) {
3685 /*
3686 * d_path works from the end of the buffer backwards, so we
3687 * need to add enough zero bytes after the string to handle
3688 * the 64bit alignment we do later.
3689 */
3690 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3691 if (!buf) {
3692 name = strncpy(tmp, "//enomem", sizeof(tmp));
3693 goto got_name;
3694 }
3695 name = d_path(&file->f_path, buf, PATH_MAX);
3696 if (IS_ERR(name)) {
3697 name = strncpy(tmp, "//toolong", sizeof(tmp));
3698 goto got_name;
3699 }
3700 } else {
3701 if (arch_vma_name(mmap_event->vma)) {
3702 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3703 sizeof(tmp));
3704 goto got_name;
3705 }
3706
3707 if (!vma->vm_mm) {
3708 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3709 goto got_name;
3710 }
3711
3712 name = strncpy(tmp, "//anon", sizeof(tmp));
3713 goto got_name;
3714 }
3715
3716 got_name:
3717 size = ALIGN(strlen(name)+1, sizeof(u64));
3718
3719 mmap_event->file_name = name;
3720 mmap_event->file_size = size;
3721
3722 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3723
3724 rcu_read_lock();
3725 cpuctx = &get_cpu_var(perf_cpu_context);
3726 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3727 ctx = rcu_dereference(current->perf_event_ctxp);
3728 if (ctx)
3729 perf_event_mmap_ctx(ctx, mmap_event);
3730 put_cpu_var(perf_cpu_context);
3731 rcu_read_unlock();
3732
3733 kfree(buf);
3734 }
3735
3736 void __perf_event_mmap(struct vm_area_struct *vma)
3737 {
3738 struct perf_mmap_event mmap_event;
3739
3740 if (!atomic_read(&nr_mmap_events))
3741 return;
3742
3743 mmap_event = (struct perf_mmap_event){
3744 .vma = vma,
3745 /* .file_name */
3746 /* .file_size */
3747 .event_id = {
3748 .header = {
3749 .type = PERF_RECORD_MMAP,
3750 .misc = 0,
3751 /* .size */
3752 },
3753 /* .pid */
3754 /* .tid */
3755 .start = vma->vm_start,
3756 .len = vma->vm_end - vma->vm_start,
3757 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
3758 },
3759 };
3760
3761 perf_event_mmap_event(&mmap_event);
3762 }
3763
3764 /*
3765 * IRQ throttle logging
3766 */
3767
3768 static void perf_log_throttle(struct perf_event *event, int enable)
3769 {
3770 struct perf_output_handle handle;
3771 int ret;
3772
3773 struct {
3774 struct perf_event_header header;
3775 u64 time;
3776 u64 id;
3777 u64 stream_id;
3778 } throttle_event = {
3779 .header = {
3780 .type = PERF_RECORD_THROTTLE,
3781 .misc = 0,
3782 .size = sizeof(throttle_event),
3783 },
3784 .time = perf_clock(),
3785 .id = primary_event_id(event),
3786 .stream_id = event->id,
3787 };
3788
3789 if (enable)
3790 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3791
3792 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3793 if (ret)
3794 return;
3795
3796 perf_output_put(&handle, throttle_event);
3797 perf_output_end(&handle);
3798 }
3799
3800 /*
3801 * Generic event overflow handling, sampling.
3802 */
3803
3804 static int __perf_event_overflow(struct perf_event *event, int nmi,
3805 int throttle, struct perf_sample_data *data,
3806 struct pt_regs *regs)
3807 {
3808 int events = atomic_read(&event->event_limit);
3809 struct hw_perf_event *hwc = &event->hw;
3810 int ret = 0;
3811
3812 throttle = (throttle && event->pmu->unthrottle != NULL);
3813
3814 if (!throttle) {
3815 hwc->interrupts++;
3816 } else {
3817 if (hwc->interrupts != MAX_INTERRUPTS) {
3818 hwc->interrupts++;
3819 if (HZ * hwc->interrupts >
3820 (u64)sysctl_perf_event_sample_rate) {
3821 hwc->interrupts = MAX_INTERRUPTS;
3822 perf_log_throttle(event, 0);
3823 ret = 1;
3824 }
3825 } else {
3826 /*
3827 * Keep re-disabling events even though on the previous
3828 * pass we disabled it - just in case we raced with a
3829 * sched-in and the event got enabled again:
3830 */
3831 ret = 1;
3832 }
3833 }
3834
3835 if (event->attr.freq) {
3836 u64 now = perf_clock();
3837 s64 delta = now - hwc->freq_time_stamp;
3838
3839 hwc->freq_time_stamp = now;
3840
3841 if (delta > 0 && delta < 2*TICK_NSEC)
3842 perf_adjust_period(event, delta, hwc->last_period);
3843 }
3844
3845 /*
3846 * XXX event_limit might not quite work as expected on inherited
3847 * events
3848 */
3849
3850 event->pending_kill = POLL_IN;
3851 if (events && atomic_dec_and_test(&event->event_limit)) {
3852 ret = 1;
3853 event->pending_kill = POLL_HUP;
3854 if (nmi) {
3855 event->pending_disable = 1;
3856 perf_pending_queue(&event->pending,
3857 perf_pending_event);
3858 } else
3859 perf_event_disable(event);
3860 }
3861
3862 if (event->overflow_handler)
3863 event->overflow_handler(event, nmi, data, regs);
3864 else
3865 perf_event_output(event, nmi, data, regs);
3866
3867 return ret;
3868 }
3869
3870 int perf_event_overflow(struct perf_event *event, int nmi,
3871 struct perf_sample_data *data,
3872 struct pt_regs *regs)
3873 {
3874 return __perf_event_overflow(event, nmi, 1, data, regs);
3875 }
3876
3877 /*
3878 * Generic software event infrastructure
3879 */
3880
3881 /*
3882 * We directly increment event->count and keep a second value in
3883 * event->hw.period_left to count intervals. This period event
3884 * is kept in the range [-sample_period, 0] so that we can use the
3885 * sign as trigger.
3886 */
3887
3888 static u64 perf_swevent_set_period(struct perf_event *event)
3889 {
3890 struct hw_perf_event *hwc = &event->hw;
3891 u64 period = hwc->last_period;
3892 u64 nr, offset;
3893 s64 old, val;
3894
3895 hwc->last_period = hwc->sample_period;
3896
3897 again:
3898 old = val = atomic64_read(&hwc->period_left);
3899 if (val < 0)
3900 return 0;
3901
3902 nr = div64_u64(period + val, period);
3903 offset = nr * period;
3904 val -= offset;
3905 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3906 goto again;
3907
3908 return nr;
3909 }
3910
3911 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3912 int nmi, struct perf_sample_data *data,
3913 struct pt_regs *regs)
3914 {
3915 struct hw_perf_event *hwc = &event->hw;
3916 int throttle = 0;
3917
3918 data->period = event->hw.last_period;
3919 if (!overflow)
3920 overflow = perf_swevent_set_period(event);
3921
3922 if (hwc->interrupts == MAX_INTERRUPTS)
3923 return;
3924
3925 for (; overflow; overflow--) {
3926 if (__perf_event_overflow(event, nmi, throttle,
3927 data, regs)) {
3928 /*
3929 * We inhibit the overflow from happening when
3930 * hwc->interrupts == MAX_INTERRUPTS.
3931 */
3932 break;
3933 }
3934 throttle = 1;
3935 }
3936 }
3937
3938 static void perf_swevent_unthrottle(struct perf_event *event)
3939 {
3940 /*
3941 * Nothing to do, we already reset hwc->interrupts.
3942 */
3943 }
3944
3945 static void perf_swevent_add(struct perf_event *event, u64 nr,
3946 int nmi, struct perf_sample_data *data,
3947 struct pt_regs *regs)
3948 {
3949 struct hw_perf_event *hwc = &event->hw;
3950
3951 atomic64_add(nr, &event->count);
3952
3953 if (!regs)
3954 return;
3955
3956 if (!hwc->sample_period)
3957 return;
3958
3959 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3960 return perf_swevent_overflow(event, 1, nmi, data, regs);
3961
3962 if (atomic64_add_negative(nr, &hwc->period_left))
3963 return;
3964
3965 perf_swevent_overflow(event, 0, nmi, data, regs);
3966 }
3967
3968 static int perf_swevent_is_counting(struct perf_event *event)
3969 {
3970 /*
3971 * The event is active, we're good!
3972 */
3973 if (event->state == PERF_EVENT_STATE_ACTIVE)
3974 return 1;
3975
3976 /*
3977 * The event is off/error, not counting.
3978 */
3979 if (event->state != PERF_EVENT_STATE_INACTIVE)
3980 return 0;
3981
3982 /*
3983 * The event is inactive, if the context is active
3984 * we're part of a group that didn't make it on the 'pmu',
3985 * not counting.
3986 */
3987 if (event->ctx->is_active)
3988 return 0;
3989
3990 /*
3991 * We're inactive and the context is too, this means the
3992 * task is scheduled out, we're counting events that happen
3993 * to us, like migration events.
3994 */
3995 return 1;
3996 }
3997
3998 static int perf_tp_event_match(struct perf_event *event,
3999 struct perf_sample_data *data);
4000
4001 static int perf_exclude_event(struct perf_event *event,
4002 struct pt_regs *regs)
4003 {
4004 if (regs) {
4005 if (event->attr.exclude_user && user_mode(regs))
4006 return 1;
4007
4008 if (event->attr.exclude_kernel && !user_mode(regs))
4009 return 1;
4010 }
4011
4012 return 0;
4013 }
4014
4015 static int perf_swevent_match(struct perf_event *event,
4016 enum perf_type_id type,
4017 u32 event_id,
4018 struct perf_sample_data *data,
4019 struct pt_regs *regs)
4020 {
4021 if (event->cpu != -1 && event->cpu != smp_processor_id())
4022 return 0;
4023
4024 if (!perf_swevent_is_counting(event))
4025 return 0;
4026
4027 if (event->attr.type != type)
4028 return 0;
4029
4030 if (event->attr.config != event_id)
4031 return 0;
4032
4033 if (perf_exclude_event(event, regs))
4034 return 0;
4035
4036 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
4037 !perf_tp_event_match(event, data))
4038 return 0;
4039
4040 return 1;
4041 }
4042
4043 static void perf_swevent_ctx_event(struct perf_event_context *ctx,
4044 enum perf_type_id type,
4045 u32 event_id, u64 nr, int nmi,
4046 struct perf_sample_data *data,
4047 struct pt_regs *regs)
4048 {
4049 struct perf_event *event;
4050
4051 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4052 if (perf_swevent_match(event, type, event_id, data, regs))
4053 perf_swevent_add(event, nr, nmi, data, regs);
4054 }
4055 }
4056
4057 int perf_swevent_get_recursion_context(void)
4058 {
4059 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
4060 int rctx;
4061
4062 if (in_nmi())
4063 rctx = 3;
4064 else if (in_irq())
4065 rctx = 2;
4066 else if (in_softirq())
4067 rctx = 1;
4068 else
4069 rctx = 0;
4070
4071 if (cpuctx->recursion[rctx]) {
4072 put_cpu_var(perf_cpu_context);
4073 return -1;
4074 }
4075
4076 cpuctx->recursion[rctx]++;
4077 barrier();
4078
4079 return rctx;
4080 }
4081 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4082
4083 void perf_swevent_put_recursion_context(int rctx)
4084 {
4085 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4086 barrier();
4087 cpuctx->recursion[rctx]--;
4088 put_cpu_var(perf_cpu_context);
4089 }
4090 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
4091
4092 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4093 u64 nr, int nmi,
4094 struct perf_sample_data *data,
4095 struct pt_regs *regs)
4096 {
4097 struct perf_cpu_context *cpuctx;
4098 struct perf_event_context *ctx;
4099
4100 cpuctx = &__get_cpu_var(perf_cpu_context);
4101 rcu_read_lock();
4102 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
4103 nr, nmi, data, regs);
4104 /*
4105 * doesn't really matter which of the child contexts the
4106 * events ends up in.
4107 */
4108 ctx = rcu_dereference(current->perf_event_ctxp);
4109 if (ctx)
4110 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
4111 rcu_read_unlock();
4112 }
4113
4114 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4115 struct pt_regs *regs, u64 addr)
4116 {
4117 struct perf_sample_data data;
4118 int rctx;
4119
4120 rctx = perf_swevent_get_recursion_context();
4121 if (rctx < 0)
4122 return;
4123
4124 perf_sample_data_init(&data, addr);
4125
4126 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4127
4128 perf_swevent_put_recursion_context(rctx);
4129 }
4130
4131 static void perf_swevent_read(struct perf_event *event)
4132 {
4133 }
4134
4135 static int perf_swevent_enable(struct perf_event *event)
4136 {
4137 struct hw_perf_event *hwc = &event->hw;
4138
4139 if (hwc->sample_period) {
4140 hwc->last_period = hwc->sample_period;
4141 perf_swevent_set_period(event);
4142 }
4143 return 0;
4144 }
4145
4146 static void perf_swevent_disable(struct perf_event *event)
4147 {
4148 }
4149
4150 static const struct pmu perf_ops_generic = {
4151 .enable = perf_swevent_enable,
4152 .disable = perf_swevent_disable,
4153 .read = perf_swevent_read,
4154 .unthrottle = perf_swevent_unthrottle,
4155 };
4156
4157 /*
4158 * hrtimer based swevent callback
4159 */
4160
4161 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4162 {
4163 enum hrtimer_restart ret = HRTIMER_RESTART;
4164 struct perf_sample_data data;
4165 struct pt_regs *regs;
4166 struct perf_event *event;
4167 u64 period;
4168
4169 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4170 event->pmu->read(event);
4171
4172 perf_sample_data_init(&data, 0);
4173 data.period = event->hw.last_period;
4174 regs = get_irq_regs();
4175 /*
4176 * In case we exclude kernel IPs or are somehow not in interrupt
4177 * context, provide the next best thing, the user IP.
4178 */
4179 if ((event->attr.exclude_kernel || !regs) &&
4180 !event->attr.exclude_user)
4181 regs = task_pt_regs(current);
4182
4183 if (regs) {
4184 if (!(event->attr.exclude_idle && current->pid == 0))
4185 if (perf_event_overflow(event, 0, &data, regs))
4186 ret = HRTIMER_NORESTART;
4187 }
4188
4189 period = max_t(u64, 10000, event->hw.sample_period);
4190 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4191
4192 return ret;
4193 }
4194
4195 static void perf_swevent_start_hrtimer(struct perf_event *event)
4196 {
4197 struct hw_perf_event *hwc = &event->hw;
4198
4199 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4200 hwc->hrtimer.function = perf_swevent_hrtimer;
4201 if (hwc->sample_period) {
4202 u64 period;
4203
4204 if (hwc->remaining) {
4205 if (hwc->remaining < 0)
4206 period = 10000;
4207 else
4208 period = hwc->remaining;
4209 hwc->remaining = 0;
4210 } else {
4211 period = max_t(u64, 10000, hwc->sample_period);
4212 }
4213 __hrtimer_start_range_ns(&hwc->hrtimer,
4214 ns_to_ktime(period), 0,
4215 HRTIMER_MODE_REL, 0);
4216 }
4217 }
4218
4219 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4220 {
4221 struct hw_perf_event *hwc = &event->hw;
4222
4223 if (hwc->sample_period) {
4224 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4225 hwc->remaining = ktime_to_ns(remaining);
4226
4227 hrtimer_cancel(&hwc->hrtimer);
4228 }
4229 }
4230
4231 /*
4232 * Software event: cpu wall time clock
4233 */
4234
4235 static void cpu_clock_perf_event_update(struct perf_event *event)
4236 {
4237 int cpu = raw_smp_processor_id();
4238 s64 prev;
4239 u64 now;
4240
4241 now = cpu_clock(cpu);
4242 prev = atomic64_xchg(&event->hw.prev_count, now);
4243 atomic64_add(now - prev, &event->count);
4244 }
4245
4246 static int cpu_clock_perf_event_enable(struct perf_event *event)
4247 {
4248 struct hw_perf_event *hwc = &event->hw;
4249 int cpu = raw_smp_processor_id();
4250
4251 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4252 perf_swevent_start_hrtimer(event);
4253
4254 return 0;
4255 }
4256
4257 static void cpu_clock_perf_event_disable(struct perf_event *event)
4258 {
4259 perf_swevent_cancel_hrtimer(event);
4260 cpu_clock_perf_event_update(event);
4261 }
4262
4263 static void cpu_clock_perf_event_read(struct perf_event *event)
4264 {
4265 cpu_clock_perf_event_update(event);
4266 }
4267
4268 static const struct pmu perf_ops_cpu_clock = {
4269 .enable = cpu_clock_perf_event_enable,
4270 .disable = cpu_clock_perf_event_disable,
4271 .read = cpu_clock_perf_event_read,
4272 };
4273
4274 /*
4275 * Software event: task time clock
4276 */
4277
4278 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4279 {
4280 u64 prev;
4281 s64 delta;
4282
4283 prev = atomic64_xchg(&event->hw.prev_count, now);
4284 delta = now - prev;
4285 atomic64_add(delta, &event->count);
4286 }
4287
4288 static int task_clock_perf_event_enable(struct perf_event *event)
4289 {
4290 struct hw_perf_event *hwc = &event->hw;
4291 u64 now;
4292
4293 now = event->ctx->time;
4294
4295 atomic64_set(&hwc->prev_count, now);
4296
4297 perf_swevent_start_hrtimer(event);
4298
4299 return 0;
4300 }
4301
4302 static void task_clock_perf_event_disable(struct perf_event *event)
4303 {
4304 perf_swevent_cancel_hrtimer(event);
4305 task_clock_perf_event_update(event, event->ctx->time);
4306
4307 }
4308
4309 static void task_clock_perf_event_read(struct perf_event *event)
4310 {
4311 u64 time;
4312
4313 if (!in_nmi()) {
4314 update_context_time(event->ctx);
4315 time = event->ctx->time;
4316 } else {
4317 u64 now = perf_clock();
4318 u64 delta = now - event->ctx->timestamp;
4319 time = event->ctx->time + delta;
4320 }
4321
4322 task_clock_perf_event_update(event, time);
4323 }
4324
4325 static const struct pmu perf_ops_task_clock = {
4326 .enable = task_clock_perf_event_enable,
4327 .disable = task_clock_perf_event_disable,
4328 .read = task_clock_perf_event_read,
4329 };
4330
4331 #ifdef CONFIG_EVENT_TRACING
4332
4333 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4334 int entry_size, struct pt_regs *regs)
4335 {
4336 struct perf_sample_data data;
4337 struct perf_raw_record raw = {
4338 .size = entry_size,
4339 .data = record,
4340 };
4341
4342 perf_sample_data_init(&data, addr);
4343 data.raw = &raw;
4344
4345 /* Trace events already protected against recursion */
4346 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4347 &data, regs);
4348 }
4349 EXPORT_SYMBOL_GPL(perf_tp_event);
4350
4351 static int perf_tp_event_match(struct perf_event *event,
4352 struct perf_sample_data *data)
4353 {
4354 void *record = data->raw->data;
4355
4356 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4357 return 1;
4358 return 0;
4359 }
4360
4361 static void tp_perf_event_destroy(struct perf_event *event)
4362 {
4363 perf_trace_disable(event->attr.config);
4364 }
4365
4366 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4367 {
4368 /*
4369 * Raw tracepoint data is a severe data leak, only allow root to
4370 * have these.
4371 */
4372 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4373 perf_paranoid_tracepoint_raw() &&
4374 !capable(CAP_SYS_ADMIN))
4375 return ERR_PTR(-EPERM);
4376
4377 if (perf_trace_enable(event->attr.config))
4378 return NULL;
4379
4380 event->destroy = tp_perf_event_destroy;
4381
4382 return &perf_ops_generic;
4383 }
4384
4385 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4386 {
4387 char *filter_str;
4388 int ret;
4389
4390 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4391 return -EINVAL;
4392
4393 filter_str = strndup_user(arg, PAGE_SIZE);
4394 if (IS_ERR(filter_str))
4395 return PTR_ERR(filter_str);
4396
4397 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4398
4399 kfree(filter_str);
4400 return ret;
4401 }
4402
4403 static void perf_event_free_filter(struct perf_event *event)
4404 {
4405 ftrace_profile_free_filter(event);
4406 }
4407
4408 #else
4409
4410 static int perf_tp_event_match(struct perf_event *event,
4411 struct perf_sample_data *data)
4412 {
4413 return 1;
4414 }
4415
4416 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4417 {
4418 return NULL;
4419 }
4420
4421 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4422 {
4423 return -ENOENT;
4424 }
4425
4426 static void perf_event_free_filter(struct perf_event *event)
4427 {
4428 }
4429
4430 #endif /* CONFIG_EVENT_TRACING */
4431
4432 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4433 static void bp_perf_event_destroy(struct perf_event *event)
4434 {
4435 release_bp_slot(event);
4436 }
4437
4438 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4439 {
4440 int err;
4441
4442 err = register_perf_hw_breakpoint(bp);
4443 if (err)
4444 return ERR_PTR(err);
4445
4446 bp->destroy = bp_perf_event_destroy;
4447
4448 return &perf_ops_bp;
4449 }
4450
4451 void perf_bp_event(struct perf_event *bp, void *data)
4452 {
4453 struct perf_sample_data sample;
4454 struct pt_regs *regs = data;
4455
4456 perf_sample_data_init(&sample, bp->attr.bp_addr);
4457
4458 if (!perf_exclude_event(bp, regs))
4459 perf_swevent_add(bp, 1, 1, &sample, regs);
4460 }
4461 #else
4462 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4463 {
4464 return NULL;
4465 }
4466
4467 void perf_bp_event(struct perf_event *bp, void *regs)
4468 {
4469 }
4470 #endif
4471
4472 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4473
4474 static void sw_perf_event_destroy(struct perf_event *event)
4475 {
4476 u64 event_id = event->attr.config;
4477
4478 WARN_ON(event->parent);
4479
4480 atomic_dec(&perf_swevent_enabled[event_id]);
4481 }
4482
4483 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4484 {
4485 const struct pmu *pmu = NULL;
4486 u64 event_id = event->attr.config;
4487
4488 /*
4489 * Software events (currently) can't in general distinguish
4490 * between user, kernel and hypervisor events.
4491 * However, context switches and cpu migrations are considered
4492 * to be kernel events, and page faults are never hypervisor
4493 * events.
4494 */
4495 switch (event_id) {
4496 case PERF_COUNT_SW_CPU_CLOCK:
4497 pmu = &perf_ops_cpu_clock;
4498
4499 break;
4500 case PERF_COUNT_SW_TASK_CLOCK:
4501 /*
4502 * If the user instantiates this as a per-cpu event,
4503 * use the cpu_clock event instead.
4504 */
4505 if (event->ctx->task)
4506 pmu = &perf_ops_task_clock;
4507 else
4508 pmu = &perf_ops_cpu_clock;
4509
4510 break;
4511 case PERF_COUNT_SW_PAGE_FAULTS:
4512 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4513 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4514 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4515 case PERF_COUNT_SW_CPU_MIGRATIONS:
4516 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4517 case PERF_COUNT_SW_EMULATION_FAULTS:
4518 if (!event->parent) {
4519 atomic_inc(&perf_swevent_enabled[event_id]);
4520 event->destroy = sw_perf_event_destroy;
4521 }
4522 pmu = &perf_ops_generic;
4523 break;
4524 }
4525
4526 return pmu;
4527 }
4528
4529 /*
4530 * Allocate and initialize a event structure
4531 */
4532 static struct perf_event *
4533 perf_event_alloc(struct perf_event_attr *attr,
4534 int cpu,
4535 struct perf_event_context *ctx,
4536 struct perf_event *group_leader,
4537 struct perf_event *parent_event,
4538 perf_overflow_handler_t overflow_handler,
4539 gfp_t gfpflags)
4540 {
4541 const struct pmu *pmu;
4542 struct perf_event *event;
4543 struct hw_perf_event *hwc;
4544 long err;
4545
4546 event = kzalloc(sizeof(*event), gfpflags);
4547 if (!event)
4548 return ERR_PTR(-ENOMEM);
4549
4550 /*
4551 * Single events are their own group leaders, with an
4552 * empty sibling list:
4553 */
4554 if (!group_leader)
4555 group_leader = event;
4556
4557 mutex_init(&event->child_mutex);
4558 INIT_LIST_HEAD(&event->child_list);
4559
4560 INIT_LIST_HEAD(&event->group_entry);
4561 INIT_LIST_HEAD(&event->event_entry);
4562 INIT_LIST_HEAD(&event->sibling_list);
4563 init_waitqueue_head(&event->waitq);
4564
4565 mutex_init(&event->mmap_mutex);
4566
4567 event->cpu = cpu;
4568 event->attr = *attr;
4569 event->group_leader = group_leader;
4570 event->pmu = NULL;
4571 event->ctx = ctx;
4572 event->oncpu = -1;
4573
4574 event->parent = parent_event;
4575
4576 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4577 event->id = atomic64_inc_return(&perf_event_id);
4578
4579 event->state = PERF_EVENT_STATE_INACTIVE;
4580
4581 if (!overflow_handler && parent_event)
4582 overflow_handler = parent_event->overflow_handler;
4583
4584 event->overflow_handler = overflow_handler;
4585
4586 if (attr->disabled)
4587 event->state = PERF_EVENT_STATE_OFF;
4588
4589 pmu = NULL;
4590
4591 hwc = &event->hw;
4592 hwc->sample_period = attr->sample_period;
4593 if (attr->freq && attr->sample_freq)
4594 hwc->sample_period = 1;
4595 hwc->last_period = hwc->sample_period;
4596
4597 atomic64_set(&hwc->period_left, hwc->sample_period);
4598
4599 /*
4600 * we currently do not support PERF_FORMAT_GROUP on inherited events
4601 */
4602 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4603 goto done;
4604
4605 switch (attr->type) {
4606 case PERF_TYPE_RAW:
4607 case PERF_TYPE_HARDWARE:
4608 case PERF_TYPE_HW_CACHE:
4609 pmu = hw_perf_event_init(event);
4610 break;
4611
4612 case PERF_TYPE_SOFTWARE:
4613 pmu = sw_perf_event_init(event);
4614 break;
4615
4616 case PERF_TYPE_TRACEPOINT:
4617 pmu = tp_perf_event_init(event);
4618 break;
4619
4620 case PERF_TYPE_BREAKPOINT:
4621 pmu = bp_perf_event_init(event);
4622 break;
4623
4624
4625 default:
4626 break;
4627 }
4628 done:
4629 err = 0;
4630 if (!pmu)
4631 err = -EINVAL;
4632 else if (IS_ERR(pmu))
4633 err = PTR_ERR(pmu);
4634
4635 if (err) {
4636 if (event->ns)
4637 put_pid_ns(event->ns);
4638 kfree(event);
4639 return ERR_PTR(err);
4640 }
4641
4642 event->pmu = pmu;
4643
4644 if (!event->parent) {
4645 atomic_inc(&nr_events);
4646 if (event->attr.mmap)
4647 atomic_inc(&nr_mmap_events);
4648 if (event->attr.comm)
4649 atomic_inc(&nr_comm_events);
4650 if (event->attr.task)
4651 atomic_inc(&nr_task_events);
4652 }
4653
4654 return event;
4655 }
4656
4657 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4658 struct perf_event_attr *attr)
4659 {
4660 u32 size;
4661 int ret;
4662
4663 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4664 return -EFAULT;
4665
4666 /*
4667 * zero the full structure, so that a short copy will be nice.
4668 */
4669 memset(attr, 0, sizeof(*attr));
4670
4671 ret = get_user(size, &uattr->size);
4672 if (ret)
4673 return ret;
4674
4675 if (size > PAGE_SIZE) /* silly large */
4676 goto err_size;
4677
4678 if (!size) /* abi compat */
4679 size = PERF_ATTR_SIZE_VER0;
4680
4681 if (size < PERF_ATTR_SIZE_VER0)
4682 goto err_size;
4683
4684 /*
4685 * If we're handed a bigger struct than we know of,
4686 * ensure all the unknown bits are 0 - i.e. new
4687 * user-space does not rely on any kernel feature
4688 * extensions we dont know about yet.
4689 */
4690 if (size > sizeof(*attr)) {
4691 unsigned char __user *addr;
4692 unsigned char __user *end;
4693 unsigned char val;
4694
4695 addr = (void __user *)uattr + sizeof(*attr);
4696 end = (void __user *)uattr + size;
4697
4698 for (; addr < end; addr++) {
4699 ret = get_user(val, addr);
4700 if (ret)
4701 return ret;
4702 if (val)
4703 goto err_size;
4704 }
4705 size = sizeof(*attr);
4706 }
4707
4708 ret = copy_from_user(attr, uattr, size);
4709 if (ret)
4710 return -EFAULT;
4711
4712 /*
4713 * If the type exists, the corresponding creation will verify
4714 * the attr->config.
4715 */
4716 if (attr->type >= PERF_TYPE_MAX)
4717 return -EINVAL;
4718
4719 if (attr->__reserved_1)
4720 return -EINVAL;
4721
4722 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4723 return -EINVAL;
4724
4725 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4726 return -EINVAL;
4727
4728 out:
4729 return ret;
4730
4731 err_size:
4732 put_user(sizeof(*attr), &uattr->size);
4733 ret = -E2BIG;
4734 goto out;
4735 }
4736
4737 static int perf_event_set_output(struct perf_event *event, int output_fd)
4738 {
4739 struct perf_event *output_event = NULL;
4740 struct file *output_file = NULL;
4741 struct perf_event *old_output;
4742 int fput_needed = 0;
4743 int ret = -EINVAL;
4744
4745 if (!output_fd)
4746 goto set;
4747
4748 output_file = fget_light(output_fd, &fput_needed);
4749 if (!output_file)
4750 return -EBADF;
4751
4752 if (output_file->f_op != &perf_fops)
4753 goto out;
4754
4755 output_event = output_file->private_data;
4756
4757 /* Don't chain output fds */
4758 if (output_event->output)
4759 goto out;
4760
4761 /* Don't set an output fd when we already have an output channel */
4762 if (event->data)
4763 goto out;
4764
4765 atomic_long_inc(&output_file->f_count);
4766
4767 set:
4768 mutex_lock(&event->mmap_mutex);
4769 old_output = event->output;
4770 rcu_assign_pointer(event->output, output_event);
4771 mutex_unlock(&event->mmap_mutex);
4772
4773 if (old_output) {
4774 /*
4775 * we need to make sure no existing perf_output_*()
4776 * is still referencing this event.
4777 */
4778 synchronize_rcu();
4779 fput(old_output->filp);
4780 }
4781
4782 ret = 0;
4783 out:
4784 fput_light(output_file, fput_needed);
4785 return ret;
4786 }
4787
4788 /**
4789 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4790 *
4791 * @attr_uptr: event_id type attributes for monitoring/sampling
4792 * @pid: target pid
4793 * @cpu: target cpu
4794 * @group_fd: group leader event fd
4795 */
4796 SYSCALL_DEFINE5(perf_event_open,
4797 struct perf_event_attr __user *, attr_uptr,
4798 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4799 {
4800 struct perf_event *event, *group_leader;
4801 struct perf_event_attr attr;
4802 struct perf_event_context *ctx;
4803 struct file *event_file = NULL;
4804 struct file *group_file = NULL;
4805 int fput_needed = 0;
4806 int fput_needed2 = 0;
4807 int err;
4808
4809 /* for future expandability... */
4810 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4811 return -EINVAL;
4812
4813 err = perf_copy_attr(attr_uptr, &attr);
4814 if (err)
4815 return err;
4816
4817 if (!attr.exclude_kernel) {
4818 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4819 return -EACCES;
4820 }
4821
4822 if (attr.freq) {
4823 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4824 return -EINVAL;
4825 }
4826
4827 /*
4828 * Get the target context (task or percpu):
4829 */
4830 ctx = find_get_context(pid, cpu);
4831 if (IS_ERR(ctx))
4832 return PTR_ERR(ctx);
4833
4834 /*
4835 * Look up the group leader (we will attach this event to it):
4836 */
4837 group_leader = NULL;
4838 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4839 err = -EINVAL;
4840 group_file = fget_light(group_fd, &fput_needed);
4841 if (!group_file)
4842 goto err_put_context;
4843 if (group_file->f_op != &perf_fops)
4844 goto err_put_context;
4845
4846 group_leader = group_file->private_data;
4847 /*
4848 * Do not allow a recursive hierarchy (this new sibling
4849 * becoming part of another group-sibling):
4850 */
4851 if (group_leader->group_leader != group_leader)
4852 goto err_put_context;
4853 /*
4854 * Do not allow to attach to a group in a different
4855 * task or CPU context:
4856 */
4857 if (group_leader->ctx != ctx)
4858 goto err_put_context;
4859 /*
4860 * Only a group leader can be exclusive or pinned
4861 */
4862 if (attr.exclusive || attr.pinned)
4863 goto err_put_context;
4864 }
4865
4866 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4867 NULL, NULL, GFP_KERNEL);
4868 err = PTR_ERR(event);
4869 if (IS_ERR(event))
4870 goto err_put_context;
4871
4872 err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
4873 if (err < 0)
4874 goto err_free_put_context;
4875
4876 event_file = fget_light(err, &fput_needed2);
4877 if (!event_file)
4878 goto err_free_put_context;
4879
4880 if (flags & PERF_FLAG_FD_OUTPUT) {
4881 err = perf_event_set_output(event, group_fd);
4882 if (err)
4883 goto err_fput_free_put_context;
4884 }
4885
4886 event->filp = event_file;
4887 WARN_ON_ONCE(ctx->parent_ctx);
4888 mutex_lock(&ctx->mutex);
4889 perf_install_in_context(ctx, event, cpu);
4890 ++ctx->generation;
4891 mutex_unlock(&ctx->mutex);
4892
4893 event->owner = current;
4894 get_task_struct(current);
4895 mutex_lock(&current->perf_event_mutex);
4896 list_add_tail(&event->owner_entry, &current->perf_event_list);
4897 mutex_unlock(&current->perf_event_mutex);
4898
4899 err_fput_free_put_context:
4900 fput_light(event_file, fput_needed2);
4901
4902 err_free_put_context:
4903 if (err < 0)
4904 kfree(event);
4905
4906 err_put_context:
4907 if (err < 0)
4908 put_ctx(ctx);
4909
4910 fput_light(group_file, fput_needed);
4911
4912 return err;
4913 }
4914
4915 /**
4916 * perf_event_create_kernel_counter
4917 *
4918 * @attr: attributes of the counter to create
4919 * @cpu: cpu in which the counter is bound
4920 * @pid: task to profile
4921 */
4922 struct perf_event *
4923 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4924 pid_t pid,
4925 perf_overflow_handler_t overflow_handler)
4926 {
4927 struct perf_event *event;
4928 struct perf_event_context *ctx;
4929 int err;
4930
4931 /*
4932 * Get the target context (task or percpu):
4933 */
4934
4935 ctx = find_get_context(pid, cpu);
4936 if (IS_ERR(ctx)) {
4937 err = PTR_ERR(ctx);
4938 goto err_exit;
4939 }
4940
4941 event = perf_event_alloc(attr, cpu, ctx, NULL,
4942 NULL, overflow_handler, GFP_KERNEL);
4943 if (IS_ERR(event)) {
4944 err = PTR_ERR(event);
4945 goto err_put_context;
4946 }
4947
4948 event->filp = NULL;
4949 WARN_ON_ONCE(ctx->parent_ctx);
4950 mutex_lock(&ctx->mutex);
4951 perf_install_in_context(ctx, event, cpu);
4952 ++ctx->generation;
4953 mutex_unlock(&ctx->mutex);
4954
4955 event->owner = current;
4956 get_task_struct(current);
4957 mutex_lock(&current->perf_event_mutex);
4958 list_add_tail(&event->owner_entry, &current->perf_event_list);
4959 mutex_unlock(&current->perf_event_mutex);
4960
4961 return event;
4962
4963 err_put_context:
4964 put_ctx(ctx);
4965 err_exit:
4966 return ERR_PTR(err);
4967 }
4968 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4969
4970 /*
4971 * inherit a event from parent task to child task:
4972 */
4973 static struct perf_event *
4974 inherit_event(struct perf_event *parent_event,
4975 struct task_struct *parent,
4976 struct perf_event_context *parent_ctx,
4977 struct task_struct *child,
4978 struct perf_event *group_leader,
4979 struct perf_event_context *child_ctx)
4980 {
4981 struct perf_event *child_event;
4982
4983 /*
4984 * Instead of creating recursive hierarchies of events,
4985 * we link inherited events back to the original parent,
4986 * which has a filp for sure, which we use as the reference
4987 * count:
4988 */
4989 if (parent_event->parent)
4990 parent_event = parent_event->parent;
4991
4992 child_event = perf_event_alloc(&parent_event->attr,
4993 parent_event->cpu, child_ctx,
4994 group_leader, parent_event,
4995 NULL, GFP_KERNEL);
4996 if (IS_ERR(child_event))
4997 return child_event;
4998 get_ctx(child_ctx);
4999
5000 /*
5001 * Make the child state follow the state of the parent event,
5002 * not its attr.disabled bit. We hold the parent's mutex,
5003 * so we won't race with perf_event_{en, dis}able_family.
5004 */
5005 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5006 child_event->state = PERF_EVENT_STATE_INACTIVE;
5007 else
5008 child_event->state = PERF_EVENT_STATE_OFF;
5009
5010 if (parent_event->attr.freq) {
5011 u64 sample_period = parent_event->hw.sample_period;
5012 struct hw_perf_event *hwc = &child_event->hw;
5013
5014 hwc->sample_period = sample_period;
5015 hwc->last_period = sample_period;
5016
5017 atomic64_set(&hwc->period_left, sample_period);
5018 }
5019
5020 child_event->overflow_handler = parent_event->overflow_handler;
5021
5022 /*
5023 * Link it up in the child's context:
5024 */
5025 add_event_to_ctx(child_event, child_ctx);
5026
5027 /*
5028 * Get a reference to the parent filp - we will fput it
5029 * when the child event exits. This is safe to do because
5030 * we are in the parent and we know that the filp still
5031 * exists and has a nonzero count:
5032 */
5033 atomic_long_inc(&parent_event->filp->f_count);
5034
5035 /*
5036 * Link this into the parent event's child list
5037 */
5038 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5039 mutex_lock(&parent_event->child_mutex);
5040 list_add_tail(&child_event->child_list, &parent_event->child_list);
5041 mutex_unlock(&parent_event->child_mutex);
5042
5043 return child_event;
5044 }
5045
5046 static int inherit_group(struct perf_event *parent_event,
5047 struct task_struct *parent,
5048 struct perf_event_context *parent_ctx,
5049 struct task_struct *child,
5050 struct perf_event_context *child_ctx)
5051 {
5052 struct perf_event *leader;
5053 struct perf_event *sub;
5054 struct perf_event *child_ctr;
5055
5056 leader = inherit_event(parent_event, parent, parent_ctx,
5057 child, NULL, child_ctx);
5058 if (IS_ERR(leader))
5059 return PTR_ERR(leader);
5060 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5061 child_ctr = inherit_event(sub, parent, parent_ctx,
5062 child, leader, child_ctx);
5063 if (IS_ERR(child_ctr))
5064 return PTR_ERR(child_ctr);
5065 }
5066 return 0;
5067 }
5068
5069 static void sync_child_event(struct perf_event *child_event,
5070 struct task_struct *child)
5071 {
5072 struct perf_event *parent_event = child_event->parent;
5073 u64 child_val;
5074
5075 if (child_event->attr.inherit_stat)
5076 perf_event_read_event(child_event, child);
5077
5078 child_val = atomic64_read(&child_event->count);
5079
5080 /*
5081 * Add back the child's count to the parent's count:
5082 */
5083 atomic64_add(child_val, &parent_event->count);
5084 atomic64_add(child_event->total_time_enabled,
5085 &parent_event->child_total_time_enabled);
5086 atomic64_add(child_event->total_time_running,
5087 &parent_event->child_total_time_running);
5088
5089 /*
5090 * Remove this event from the parent's list
5091 */
5092 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5093 mutex_lock(&parent_event->child_mutex);
5094 list_del_init(&child_event->child_list);
5095 mutex_unlock(&parent_event->child_mutex);
5096
5097 /*
5098 * Release the parent event, if this was the last
5099 * reference to it.
5100 */
5101 fput(parent_event->filp);
5102 }
5103
5104 static void
5105 __perf_event_exit_task(struct perf_event *child_event,
5106 struct perf_event_context *child_ctx,
5107 struct task_struct *child)
5108 {
5109 struct perf_event *parent_event;
5110
5111 perf_event_remove_from_context(child_event);
5112
5113 parent_event = child_event->parent;
5114 /*
5115 * It can happen that parent exits first, and has events
5116 * that are still around due to the child reference. These
5117 * events need to be zapped - but otherwise linger.
5118 */
5119 if (parent_event) {
5120 sync_child_event(child_event, child);
5121 free_event(child_event);
5122 }
5123 }
5124
5125 /*
5126 * When a child task exits, feed back event values to parent events.
5127 */
5128 void perf_event_exit_task(struct task_struct *child)
5129 {
5130 struct perf_event *child_event, *tmp;
5131 struct perf_event_context *child_ctx;
5132 unsigned long flags;
5133
5134 if (likely(!child->perf_event_ctxp)) {
5135 perf_event_task(child, NULL, 0);
5136 return;
5137 }
5138
5139 local_irq_save(flags);
5140 /*
5141 * We can't reschedule here because interrupts are disabled,
5142 * and either child is current or it is a task that can't be
5143 * scheduled, so we are now safe from rescheduling changing
5144 * our context.
5145 */
5146 child_ctx = child->perf_event_ctxp;
5147 __perf_event_task_sched_out(child_ctx);
5148
5149 /*
5150 * Take the context lock here so that if find_get_context is
5151 * reading child->perf_event_ctxp, we wait until it has
5152 * incremented the context's refcount before we do put_ctx below.
5153 */
5154 raw_spin_lock(&child_ctx->lock);
5155 child->perf_event_ctxp = NULL;
5156 /*
5157 * If this context is a clone; unclone it so it can't get
5158 * swapped to another process while we're removing all
5159 * the events from it.
5160 */
5161 unclone_ctx(child_ctx);
5162 update_context_time(child_ctx);
5163 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5164
5165 /*
5166 * Report the task dead after unscheduling the events so that we
5167 * won't get any samples after PERF_RECORD_EXIT. We can however still
5168 * get a few PERF_RECORD_READ events.
5169 */
5170 perf_event_task(child, child_ctx, 0);
5171
5172 /*
5173 * We can recurse on the same lock type through:
5174 *
5175 * __perf_event_exit_task()
5176 * sync_child_event()
5177 * fput(parent_event->filp)
5178 * perf_release()
5179 * mutex_lock(&ctx->mutex)
5180 *
5181 * But since its the parent context it won't be the same instance.
5182 */
5183 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5184
5185 again:
5186 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5187 group_entry)
5188 __perf_event_exit_task(child_event, child_ctx, child);
5189
5190 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5191 group_entry)
5192 __perf_event_exit_task(child_event, child_ctx, child);
5193
5194 /*
5195 * If the last event was a group event, it will have appended all
5196 * its siblings to the list, but we obtained 'tmp' before that which
5197 * will still point to the list head terminating the iteration.
5198 */
5199 if (!list_empty(&child_ctx->pinned_groups) ||
5200 !list_empty(&child_ctx->flexible_groups))
5201 goto again;
5202
5203 mutex_unlock(&child_ctx->mutex);
5204
5205 put_ctx(child_ctx);
5206 }
5207
5208 static void perf_free_event(struct perf_event *event,
5209 struct perf_event_context *ctx)
5210 {
5211 struct perf_event *parent = event->parent;
5212
5213 if (WARN_ON_ONCE(!parent))
5214 return;
5215
5216 mutex_lock(&parent->child_mutex);
5217 list_del_init(&event->child_list);
5218 mutex_unlock(&parent->child_mutex);
5219
5220 fput(parent->filp);
5221
5222 list_del_event(event, ctx);
5223 free_event(event);
5224 }
5225
5226 /*
5227 * free an unexposed, unused context as created by inheritance by
5228 * init_task below, used by fork() in case of fail.
5229 */
5230 void perf_event_free_task(struct task_struct *task)
5231 {
5232 struct perf_event_context *ctx = task->perf_event_ctxp;
5233 struct perf_event *event, *tmp;
5234
5235 if (!ctx)
5236 return;
5237
5238 mutex_lock(&ctx->mutex);
5239 again:
5240 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5241 perf_free_event(event, ctx);
5242
5243 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5244 group_entry)
5245 perf_free_event(event, ctx);
5246
5247 if (!list_empty(&ctx->pinned_groups) ||
5248 !list_empty(&ctx->flexible_groups))
5249 goto again;
5250
5251 mutex_unlock(&ctx->mutex);
5252
5253 put_ctx(ctx);
5254 }
5255
5256 static int
5257 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5258 struct perf_event_context *parent_ctx,
5259 struct task_struct *child,
5260 int *inherited_all)
5261 {
5262 int ret;
5263 struct perf_event_context *child_ctx = child->perf_event_ctxp;
5264
5265 if (!event->attr.inherit) {
5266 *inherited_all = 0;
5267 return 0;
5268 }
5269
5270 if (!child_ctx) {
5271 /*
5272 * This is executed from the parent task context, so
5273 * inherit events that have been marked for cloning.
5274 * First allocate and initialize a context for the
5275 * child.
5276 */
5277
5278 child_ctx = kzalloc(sizeof(struct perf_event_context),
5279 GFP_KERNEL);
5280 if (!child_ctx)
5281 return -ENOMEM;
5282
5283 __perf_event_init_context(child_ctx, child);
5284 child->perf_event_ctxp = child_ctx;
5285 get_task_struct(child);
5286 }
5287
5288 ret = inherit_group(event, parent, parent_ctx,
5289 child, child_ctx);
5290
5291 if (ret)
5292 *inherited_all = 0;
5293
5294 return ret;
5295 }
5296
5297
5298 /*
5299 * Initialize the perf_event context in task_struct
5300 */
5301 int perf_event_init_task(struct task_struct *child)
5302 {
5303 struct perf_event_context *child_ctx, *parent_ctx;
5304 struct perf_event_context *cloned_ctx;
5305 struct perf_event *event;
5306 struct task_struct *parent = current;
5307 int inherited_all = 1;
5308 int ret = 0;
5309
5310 child->perf_event_ctxp = NULL;
5311
5312 mutex_init(&child->perf_event_mutex);
5313 INIT_LIST_HEAD(&child->perf_event_list);
5314
5315 if (likely(!parent->perf_event_ctxp))
5316 return 0;
5317
5318 /*
5319 * If the parent's context is a clone, pin it so it won't get
5320 * swapped under us.
5321 */
5322 parent_ctx = perf_pin_task_context(parent);
5323
5324 /*
5325 * No need to check if parent_ctx != NULL here; since we saw
5326 * it non-NULL earlier, the only reason for it to become NULL
5327 * is if we exit, and since we're currently in the middle of
5328 * a fork we can't be exiting at the same time.
5329 */
5330
5331 /*
5332 * Lock the parent list. No need to lock the child - not PID
5333 * hashed yet and not running, so nobody can access it.
5334 */
5335 mutex_lock(&parent_ctx->mutex);
5336
5337 /*
5338 * We dont have to disable NMIs - we are only looking at
5339 * the list, not manipulating it:
5340 */
5341 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5342 ret = inherit_task_group(event, parent, parent_ctx, child,
5343 &inherited_all);
5344 if (ret)
5345 break;
5346 }
5347
5348 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5349 ret = inherit_task_group(event, parent, parent_ctx, child,
5350 &inherited_all);
5351 if (ret)
5352 break;
5353 }
5354
5355 child_ctx = child->perf_event_ctxp;
5356
5357 if (child_ctx && inherited_all) {
5358 /*
5359 * Mark the child context as a clone of the parent
5360 * context, or of whatever the parent is a clone of.
5361 * Note that if the parent is a clone, it could get
5362 * uncloned at any point, but that doesn't matter
5363 * because the list of events and the generation
5364 * count can't have changed since we took the mutex.
5365 */
5366 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5367 if (cloned_ctx) {
5368 child_ctx->parent_ctx = cloned_ctx;
5369 child_ctx->parent_gen = parent_ctx->parent_gen;
5370 } else {
5371 child_ctx->parent_ctx = parent_ctx;
5372 child_ctx->parent_gen = parent_ctx->generation;
5373 }
5374 get_ctx(child_ctx->parent_ctx);
5375 }
5376
5377 mutex_unlock(&parent_ctx->mutex);
5378
5379 perf_unpin_context(parent_ctx);
5380
5381 return ret;
5382 }
5383
5384 static void __init perf_event_init_all_cpus(void)
5385 {
5386 int cpu;
5387 struct perf_cpu_context *cpuctx;
5388
5389 for_each_possible_cpu(cpu) {
5390 cpuctx = &per_cpu(perf_cpu_context, cpu);
5391 __perf_event_init_context(&cpuctx->ctx, NULL);
5392 }
5393 }
5394
5395 static void __cpuinit perf_event_init_cpu(int cpu)
5396 {
5397 struct perf_cpu_context *cpuctx;
5398
5399 cpuctx = &per_cpu(perf_cpu_context, cpu);
5400
5401 spin_lock(&perf_resource_lock);
5402 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5403 spin_unlock(&perf_resource_lock);
5404 }
5405
5406 #ifdef CONFIG_HOTPLUG_CPU
5407 static void __perf_event_exit_cpu(void *info)
5408 {
5409 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5410 struct perf_event_context *ctx = &cpuctx->ctx;
5411 struct perf_event *event, *tmp;
5412
5413 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5414 __perf_event_remove_from_context(event);
5415 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5416 __perf_event_remove_from_context(event);
5417 }
5418 static void perf_event_exit_cpu(int cpu)
5419 {
5420 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5421 struct perf_event_context *ctx = &cpuctx->ctx;
5422
5423 mutex_lock(&ctx->mutex);
5424 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5425 mutex_unlock(&ctx->mutex);
5426 }
5427 #else
5428 static inline void perf_event_exit_cpu(int cpu) { }
5429 #endif
5430
5431 static int __cpuinit
5432 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5433 {
5434 unsigned int cpu = (long)hcpu;
5435
5436 switch (action) {
5437
5438 case CPU_UP_PREPARE:
5439 case CPU_UP_PREPARE_FROZEN:
5440 perf_event_init_cpu(cpu);
5441 break;
5442
5443 case CPU_DOWN_PREPARE:
5444 case CPU_DOWN_PREPARE_FROZEN:
5445 perf_event_exit_cpu(cpu);
5446 break;
5447
5448 default:
5449 break;
5450 }
5451
5452 return NOTIFY_OK;
5453 }
5454
5455 /*
5456 * This has to have a higher priority than migration_notifier in sched.c.
5457 */
5458 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5459 .notifier_call = perf_cpu_notify,
5460 .priority = 20,
5461 };
5462
5463 void __init perf_event_init(void)
5464 {
5465 perf_event_init_all_cpus();
5466 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5467 (void *)(long)smp_processor_id());
5468 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5469 (void *)(long)smp_processor_id());
5470 register_cpu_notifier(&perf_cpu_nb);
5471 }
5472
5473 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5474 struct sysdev_class_attribute *attr,
5475 char *buf)
5476 {
5477 return sprintf(buf, "%d\n", perf_reserved_percpu);
5478 }
5479
5480 static ssize_t
5481 perf_set_reserve_percpu(struct sysdev_class *class,
5482 struct sysdev_class_attribute *attr,
5483 const char *buf,
5484 size_t count)
5485 {
5486 struct perf_cpu_context *cpuctx;
5487 unsigned long val;
5488 int err, cpu, mpt;
5489
5490 err = strict_strtoul(buf, 10, &val);
5491 if (err)
5492 return err;
5493 if (val > perf_max_events)
5494 return -EINVAL;
5495
5496 spin_lock(&perf_resource_lock);
5497 perf_reserved_percpu = val;
5498 for_each_online_cpu(cpu) {
5499 cpuctx = &per_cpu(perf_cpu_context, cpu);
5500 raw_spin_lock_irq(&cpuctx->ctx.lock);
5501 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5502 perf_max_events - perf_reserved_percpu);
5503 cpuctx->max_pertask = mpt;
5504 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5505 }
5506 spin_unlock(&perf_resource_lock);
5507
5508 return count;
5509 }
5510
5511 static ssize_t perf_show_overcommit(struct sysdev_class *class,
5512 struct sysdev_class_attribute *attr,
5513 char *buf)
5514 {
5515 return sprintf(buf, "%d\n", perf_overcommit);
5516 }
5517
5518 static ssize_t
5519 perf_set_overcommit(struct sysdev_class *class,
5520 struct sysdev_class_attribute *attr,
5521 const char *buf, size_t count)
5522 {
5523 unsigned long val;
5524 int err;
5525
5526 err = strict_strtoul(buf, 10, &val);
5527 if (err)
5528 return err;
5529 if (val > 1)
5530 return -EINVAL;
5531
5532 spin_lock(&perf_resource_lock);
5533 perf_overcommit = val;
5534 spin_unlock(&perf_resource_lock);
5535
5536 return count;
5537 }
5538
5539 static SYSDEV_CLASS_ATTR(
5540 reserve_percpu,
5541 0644,
5542 perf_show_reserve_percpu,
5543 perf_set_reserve_percpu
5544 );
5545
5546 static SYSDEV_CLASS_ATTR(
5547 overcommit,
5548 0644,
5549 perf_show_overcommit,
5550 perf_set_overcommit
5551 );
5552
5553 static struct attribute *perfclass_attrs[] = {
5554 &attr_reserve_percpu.attr,
5555 &attr_overcommit.attr,
5556 NULL
5557 };
5558
5559 static struct attribute_group perfclass_attr_group = {
5560 .attrs = perfclass_attrs,
5561 .name = "perf_events",
5562 };
5563
5564 static int __init perf_event_sysfs_init(void)
5565 {
5566 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5567 &perfclass_attr_group);
5568 }
5569 device_initcall(perf_event_sysfs_init);
This page took 0.139334 seconds and 6 git commands to generate.