proc: Split the namespace stuff out into linux/proc_ns.h
[deliverable/linux.git] / kernel / pid.c
1 /*
2 * Generic pidhash and scalable, time-bounded PID allocator
3 *
4 * (C) 2002-2003 Nadia Yvette Chambers, IBM
5 * (C) 2004 Nadia Yvette Chambers, Oracle
6 * (C) 2002-2004 Ingo Molnar, Red Hat
7 *
8 * pid-structures are backing objects for tasks sharing a given ID to chain
9 * against. There is very little to them aside from hashing them and
10 * parking tasks using given ID's on a list.
11 *
12 * The hash is always changed with the tasklist_lock write-acquired,
13 * and the hash is only accessed with the tasklist_lock at least
14 * read-acquired, so there's no additional SMP locking needed here.
15 *
16 * We have a list of bitmap pages, which bitmaps represent the PID space.
17 * Allocating and freeing PIDs is completely lockless. The worst-case
18 * allocation scenario when all but one out of 1 million PIDs possible are
19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
21 *
22 * Pid namespaces:
23 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
24 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
25 * Many thanks to Oleg Nesterov for comments and help
26 *
27 */
28
29 #include <linux/mm.h>
30 #include <linux/export.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/rculist.h>
34 #include <linux/bootmem.h>
35 #include <linux/hash.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39 #include <linux/proc_ns.h>
40 #include <linux/proc_fs.h>
41
42 #define pid_hashfn(nr, ns) \
43 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
44 static struct hlist_head *pid_hash;
45 static unsigned int pidhash_shift = 4;
46 struct pid init_struct_pid = INIT_STRUCT_PID;
47
48 int pid_max = PID_MAX_DEFAULT;
49
50 #define RESERVED_PIDS 300
51
52 int pid_max_min = RESERVED_PIDS + 1;
53 int pid_max_max = PID_MAX_LIMIT;
54
55 #define BITS_PER_PAGE (PAGE_SIZE*8)
56 #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
57
58 static inline int mk_pid(struct pid_namespace *pid_ns,
59 struct pidmap *map, int off)
60 {
61 return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
62 }
63
64 #define find_next_offset(map, off) \
65 find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
66
67 /*
68 * PID-map pages start out as NULL, they get allocated upon
69 * first use and are never deallocated. This way a low pid_max
70 * value does not cause lots of bitmaps to be allocated, but
71 * the scheme scales to up to 4 million PIDs, runtime.
72 */
73 struct pid_namespace init_pid_ns = {
74 .kref = {
75 .refcount = ATOMIC_INIT(2),
76 },
77 .pidmap = {
78 [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
79 },
80 .last_pid = 0,
81 .level = 0,
82 .child_reaper = &init_task,
83 .user_ns = &init_user_ns,
84 .proc_inum = PROC_PID_INIT_INO,
85 };
86 EXPORT_SYMBOL_GPL(init_pid_ns);
87
88 /*
89 * Note: disable interrupts while the pidmap_lock is held as an
90 * interrupt might come in and do read_lock(&tasklist_lock).
91 *
92 * If we don't disable interrupts there is a nasty deadlock between
93 * detach_pid()->free_pid() and another cpu that does
94 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
95 * read_lock(&tasklist_lock);
96 *
97 * After we clean up the tasklist_lock and know there are no
98 * irq handlers that take it we can leave the interrupts enabled.
99 * For now it is easier to be safe than to prove it can't happen.
100 */
101
102 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
103
104 static void free_pidmap(struct upid *upid)
105 {
106 int nr = upid->nr;
107 struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
108 int offset = nr & BITS_PER_PAGE_MASK;
109
110 clear_bit(offset, map->page);
111 atomic_inc(&map->nr_free);
112 }
113
114 /*
115 * If we started walking pids at 'base', is 'a' seen before 'b'?
116 */
117 static int pid_before(int base, int a, int b)
118 {
119 /*
120 * This is the same as saying
121 *
122 * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
123 * and that mapping orders 'a' and 'b' with respect to 'base'.
124 */
125 return (unsigned)(a - base) < (unsigned)(b - base);
126 }
127
128 /*
129 * We might be racing with someone else trying to set pid_ns->last_pid
130 * at the pid allocation time (there's also a sysctl for this, but racing
131 * with this one is OK, see comment in kernel/pid_namespace.c about it).
132 * We want the winner to have the "later" value, because if the
133 * "earlier" value prevails, then a pid may get reused immediately.
134 *
135 * Since pids rollover, it is not sufficient to just pick the bigger
136 * value. We have to consider where we started counting from.
137 *
138 * 'base' is the value of pid_ns->last_pid that we observed when
139 * we started looking for a pid.
140 *
141 * 'pid' is the pid that we eventually found.
142 */
143 static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
144 {
145 int prev;
146 int last_write = base;
147 do {
148 prev = last_write;
149 last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
150 } while ((prev != last_write) && (pid_before(base, last_write, pid)));
151 }
152
153 static int alloc_pidmap(struct pid_namespace *pid_ns)
154 {
155 int i, offset, max_scan, pid, last = pid_ns->last_pid;
156 struct pidmap *map;
157
158 pid = last + 1;
159 if (pid >= pid_max)
160 pid = RESERVED_PIDS;
161 offset = pid & BITS_PER_PAGE_MASK;
162 map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
163 /*
164 * If last_pid points into the middle of the map->page we
165 * want to scan this bitmap block twice, the second time
166 * we start with offset == 0 (or RESERVED_PIDS).
167 */
168 max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
169 for (i = 0; i <= max_scan; ++i) {
170 if (unlikely(!map->page)) {
171 void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
172 /*
173 * Free the page if someone raced with us
174 * installing it:
175 */
176 spin_lock_irq(&pidmap_lock);
177 if (!map->page) {
178 map->page = page;
179 page = NULL;
180 }
181 spin_unlock_irq(&pidmap_lock);
182 kfree(page);
183 if (unlikely(!map->page))
184 break;
185 }
186 if (likely(atomic_read(&map->nr_free))) {
187 do {
188 if (!test_and_set_bit(offset, map->page)) {
189 atomic_dec(&map->nr_free);
190 set_last_pid(pid_ns, last, pid);
191 return pid;
192 }
193 offset = find_next_offset(map, offset);
194 pid = mk_pid(pid_ns, map, offset);
195 } while (offset < BITS_PER_PAGE && pid < pid_max);
196 }
197 if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
198 ++map;
199 offset = 0;
200 } else {
201 map = &pid_ns->pidmap[0];
202 offset = RESERVED_PIDS;
203 if (unlikely(last == offset))
204 break;
205 }
206 pid = mk_pid(pid_ns, map, offset);
207 }
208 return -1;
209 }
210
211 int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
212 {
213 int offset;
214 struct pidmap *map, *end;
215
216 if (last >= PID_MAX_LIMIT)
217 return -1;
218
219 offset = (last + 1) & BITS_PER_PAGE_MASK;
220 map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
221 end = &pid_ns->pidmap[PIDMAP_ENTRIES];
222 for (; map < end; map++, offset = 0) {
223 if (unlikely(!map->page))
224 continue;
225 offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
226 if (offset < BITS_PER_PAGE)
227 return mk_pid(pid_ns, map, offset);
228 }
229 return -1;
230 }
231
232 void put_pid(struct pid *pid)
233 {
234 struct pid_namespace *ns;
235
236 if (!pid)
237 return;
238
239 ns = pid->numbers[pid->level].ns;
240 if ((atomic_read(&pid->count) == 1) ||
241 atomic_dec_and_test(&pid->count)) {
242 kmem_cache_free(ns->pid_cachep, pid);
243 put_pid_ns(ns);
244 }
245 }
246 EXPORT_SYMBOL_GPL(put_pid);
247
248 static void delayed_put_pid(struct rcu_head *rhp)
249 {
250 struct pid *pid = container_of(rhp, struct pid, rcu);
251 put_pid(pid);
252 }
253
254 void free_pid(struct pid *pid)
255 {
256 /* We can be called with write_lock_irq(&tasklist_lock) held */
257 int i;
258 unsigned long flags;
259
260 spin_lock_irqsave(&pidmap_lock, flags);
261 for (i = 0; i <= pid->level; i++) {
262 struct upid *upid = pid->numbers + i;
263 struct pid_namespace *ns = upid->ns;
264 hlist_del_rcu(&upid->pid_chain);
265 switch(--ns->nr_hashed) {
266 case 1:
267 /* When all that is left in the pid namespace
268 * is the reaper wake up the reaper. The reaper
269 * may be sleeping in zap_pid_ns_processes().
270 */
271 wake_up_process(ns->child_reaper);
272 break;
273 case 0:
274 schedule_work(&ns->proc_work);
275 break;
276 }
277 }
278 spin_unlock_irqrestore(&pidmap_lock, flags);
279
280 for (i = 0; i <= pid->level; i++)
281 free_pidmap(pid->numbers + i);
282
283 call_rcu(&pid->rcu, delayed_put_pid);
284 }
285
286 struct pid *alloc_pid(struct pid_namespace *ns)
287 {
288 struct pid *pid;
289 enum pid_type type;
290 int i, nr;
291 struct pid_namespace *tmp;
292 struct upid *upid;
293
294 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
295 if (!pid)
296 goto out;
297
298 tmp = ns;
299 pid->level = ns->level;
300 for (i = ns->level; i >= 0; i--) {
301 nr = alloc_pidmap(tmp);
302 if (nr < 0)
303 goto out_free;
304
305 pid->numbers[i].nr = nr;
306 pid->numbers[i].ns = tmp;
307 tmp = tmp->parent;
308 }
309
310 if (unlikely(is_child_reaper(pid))) {
311 if (pid_ns_prepare_proc(ns))
312 goto out_free;
313 }
314
315 get_pid_ns(ns);
316 atomic_set(&pid->count, 1);
317 for (type = 0; type < PIDTYPE_MAX; ++type)
318 INIT_HLIST_HEAD(&pid->tasks[type]);
319
320 upid = pid->numbers + ns->level;
321 spin_lock_irq(&pidmap_lock);
322 if (!(ns->nr_hashed & PIDNS_HASH_ADDING))
323 goto out_unlock;
324 for ( ; upid >= pid->numbers; --upid) {
325 hlist_add_head_rcu(&upid->pid_chain,
326 &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
327 upid->ns->nr_hashed++;
328 }
329 spin_unlock_irq(&pidmap_lock);
330
331 out:
332 return pid;
333
334 out_unlock:
335 spin_unlock_irq(&pidmap_lock);
336 out_free:
337 while (++i <= ns->level)
338 free_pidmap(pid->numbers + i);
339
340 kmem_cache_free(ns->pid_cachep, pid);
341 pid = NULL;
342 goto out;
343 }
344
345 void disable_pid_allocation(struct pid_namespace *ns)
346 {
347 spin_lock_irq(&pidmap_lock);
348 ns->nr_hashed &= ~PIDNS_HASH_ADDING;
349 spin_unlock_irq(&pidmap_lock);
350 }
351
352 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
353 {
354 struct upid *pnr;
355
356 hlist_for_each_entry_rcu(pnr,
357 &pid_hash[pid_hashfn(nr, ns)], pid_chain)
358 if (pnr->nr == nr && pnr->ns == ns)
359 return container_of(pnr, struct pid,
360 numbers[ns->level]);
361
362 return NULL;
363 }
364 EXPORT_SYMBOL_GPL(find_pid_ns);
365
366 struct pid *find_vpid(int nr)
367 {
368 return find_pid_ns(nr, task_active_pid_ns(current));
369 }
370 EXPORT_SYMBOL_GPL(find_vpid);
371
372 /*
373 * attach_pid() must be called with the tasklist_lock write-held.
374 */
375 void attach_pid(struct task_struct *task, enum pid_type type,
376 struct pid *pid)
377 {
378 struct pid_link *link;
379
380 link = &task->pids[type];
381 link->pid = pid;
382 hlist_add_head_rcu(&link->node, &pid->tasks[type]);
383 }
384
385 static void __change_pid(struct task_struct *task, enum pid_type type,
386 struct pid *new)
387 {
388 struct pid_link *link;
389 struct pid *pid;
390 int tmp;
391
392 link = &task->pids[type];
393 pid = link->pid;
394
395 hlist_del_rcu(&link->node);
396 link->pid = new;
397
398 for (tmp = PIDTYPE_MAX; --tmp >= 0; )
399 if (!hlist_empty(&pid->tasks[tmp]))
400 return;
401
402 free_pid(pid);
403 }
404
405 void detach_pid(struct task_struct *task, enum pid_type type)
406 {
407 __change_pid(task, type, NULL);
408 }
409
410 void change_pid(struct task_struct *task, enum pid_type type,
411 struct pid *pid)
412 {
413 __change_pid(task, type, pid);
414 attach_pid(task, type, pid);
415 }
416
417 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
418 void transfer_pid(struct task_struct *old, struct task_struct *new,
419 enum pid_type type)
420 {
421 new->pids[type].pid = old->pids[type].pid;
422 hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
423 }
424
425 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
426 {
427 struct task_struct *result = NULL;
428 if (pid) {
429 struct hlist_node *first;
430 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
431 lockdep_tasklist_lock_is_held());
432 if (first)
433 result = hlist_entry(first, struct task_struct, pids[(type)].node);
434 }
435 return result;
436 }
437 EXPORT_SYMBOL(pid_task);
438
439 /*
440 * Must be called under rcu_read_lock().
441 */
442 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
443 {
444 rcu_lockdep_assert(rcu_read_lock_held(),
445 "find_task_by_pid_ns() needs rcu_read_lock()"
446 " protection");
447 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
448 }
449
450 struct task_struct *find_task_by_vpid(pid_t vnr)
451 {
452 return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
453 }
454
455 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
456 {
457 struct pid *pid;
458 rcu_read_lock();
459 if (type != PIDTYPE_PID)
460 task = task->group_leader;
461 pid = get_pid(task->pids[type].pid);
462 rcu_read_unlock();
463 return pid;
464 }
465 EXPORT_SYMBOL_GPL(get_task_pid);
466
467 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
468 {
469 struct task_struct *result;
470 rcu_read_lock();
471 result = pid_task(pid, type);
472 if (result)
473 get_task_struct(result);
474 rcu_read_unlock();
475 return result;
476 }
477 EXPORT_SYMBOL_GPL(get_pid_task);
478
479 struct pid *find_get_pid(pid_t nr)
480 {
481 struct pid *pid;
482
483 rcu_read_lock();
484 pid = get_pid(find_vpid(nr));
485 rcu_read_unlock();
486
487 return pid;
488 }
489 EXPORT_SYMBOL_GPL(find_get_pid);
490
491 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
492 {
493 struct upid *upid;
494 pid_t nr = 0;
495
496 if (pid && ns->level <= pid->level) {
497 upid = &pid->numbers[ns->level];
498 if (upid->ns == ns)
499 nr = upid->nr;
500 }
501 return nr;
502 }
503 EXPORT_SYMBOL_GPL(pid_nr_ns);
504
505 pid_t pid_vnr(struct pid *pid)
506 {
507 return pid_nr_ns(pid, task_active_pid_ns(current));
508 }
509 EXPORT_SYMBOL_GPL(pid_vnr);
510
511 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
512 struct pid_namespace *ns)
513 {
514 pid_t nr = 0;
515
516 rcu_read_lock();
517 if (!ns)
518 ns = task_active_pid_ns(current);
519 if (likely(pid_alive(task))) {
520 if (type != PIDTYPE_PID)
521 task = task->group_leader;
522 nr = pid_nr_ns(task->pids[type].pid, ns);
523 }
524 rcu_read_unlock();
525
526 return nr;
527 }
528 EXPORT_SYMBOL(__task_pid_nr_ns);
529
530 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
531 {
532 return pid_nr_ns(task_tgid(tsk), ns);
533 }
534 EXPORT_SYMBOL(task_tgid_nr_ns);
535
536 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
537 {
538 return ns_of_pid(task_pid(tsk));
539 }
540 EXPORT_SYMBOL_GPL(task_active_pid_ns);
541
542 /*
543 * Used by proc to find the first pid that is greater than or equal to nr.
544 *
545 * If there is a pid at nr this function is exactly the same as find_pid_ns.
546 */
547 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
548 {
549 struct pid *pid;
550
551 do {
552 pid = find_pid_ns(nr, ns);
553 if (pid)
554 break;
555 nr = next_pidmap(ns, nr);
556 } while (nr > 0);
557
558 return pid;
559 }
560
561 /*
562 * The pid hash table is scaled according to the amount of memory in the
563 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
564 * more.
565 */
566 void __init pidhash_init(void)
567 {
568 unsigned int i, pidhash_size;
569
570 pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
571 HASH_EARLY | HASH_SMALL,
572 &pidhash_shift, NULL,
573 0, 4096);
574 pidhash_size = 1U << pidhash_shift;
575
576 for (i = 0; i < pidhash_size; i++)
577 INIT_HLIST_HEAD(&pid_hash[i]);
578 }
579
580 void __init pidmap_init(void)
581 {
582 /* Veryify no one has done anything silly */
583 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_HASH_ADDING);
584
585 /* bump default and minimum pid_max based on number of cpus */
586 pid_max = min(pid_max_max, max_t(int, pid_max,
587 PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
588 pid_max_min = max_t(int, pid_max_min,
589 PIDS_PER_CPU_MIN * num_possible_cpus());
590 pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
591
592 init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
593 /* Reserve PID 0. We never call free_pidmap(0) */
594 set_bit(0, init_pid_ns.pidmap[0].page);
595 atomic_dec(&init_pid_ns.pidmap[0].nr_free);
596 init_pid_ns.nr_hashed = PIDNS_HASH_ADDING;
597
598 init_pid_ns.pid_cachep = KMEM_CACHE(pid,
599 SLAB_HWCACHE_ALIGN | SLAB_PANIC);
600 }
This page took 0.057353 seconds and 5 git commands to generate.