Deprecate find_task_by_pid()
[deliverable/linux.git] / kernel / pid.c
1 /*
2 * Generic pidhash and scalable, time-bounded PID allocator
3 *
4 * (C) 2002-2003 William Irwin, IBM
5 * (C) 2004 William Irwin, Oracle
6 * (C) 2002-2004 Ingo Molnar, Red Hat
7 *
8 * pid-structures are backing objects for tasks sharing a given ID to chain
9 * against. There is very little to them aside from hashing them and
10 * parking tasks using given ID's on a list.
11 *
12 * The hash is always changed with the tasklist_lock write-acquired,
13 * and the hash is only accessed with the tasklist_lock at least
14 * read-acquired, so there's no additional SMP locking needed here.
15 *
16 * We have a list of bitmap pages, which bitmaps represent the PID space.
17 * Allocating and freeing PIDs is completely lockless. The worst-case
18 * allocation scenario when all but one out of 1 million PIDs possible are
19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
21 *
22 * Pid namespaces:
23 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
24 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
25 * Many thanks to Oleg Nesterov for comments and help
26 *
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/bootmem.h>
34 #include <linux/hash.h>
35 #include <linux/pid_namespace.h>
36 #include <linux/init_task.h>
37 #include <linux/syscalls.h>
38
39 #define pid_hashfn(nr, ns) \
40 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
41 static struct hlist_head *pid_hash;
42 static int pidhash_shift;
43 struct pid init_struct_pid = INIT_STRUCT_PID;
44
45 int pid_max = PID_MAX_DEFAULT;
46
47 #define RESERVED_PIDS 300
48
49 int pid_max_min = RESERVED_PIDS + 1;
50 int pid_max_max = PID_MAX_LIMIT;
51
52 #define BITS_PER_PAGE (PAGE_SIZE*8)
53 #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
54
55 static inline int mk_pid(struct pid_namespace *pid_ns,
56 struct pidmap *map, int off)
57 {
58 return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
59 }
60
61 #define find_next_offset(map, off) \
62 find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
63
64 /*
65 * PID-map pages start out as NULL, they get allocated upon
66 * first use and are never deallocated. This way a low pid_max
67 * value does not cause lots of bitmaps to be allocated, but
68 * the scheme scales to up to 4 million PIDs, runtime.
69 */
70 struct pid_namespace init_pid_ns = {
71 .kref = {
72 .refcount = ATOMIC_INIT(2),
73 },
74 .pidmap = {
75 [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
76 },
77 .last_pid = 0,
78 .level = 0,
79 .child_reaper = &init_task,
80 };
81 EXPORT_SYMBOL_GPL(init_pid_ns);
82
83 int is_container_init(struct task_struct *tsk)
84 {
85 int ret = 0;
86 struct pid *pid;
87
88 rcu_read_lock();
89 pid = task_pid(tsk);
90 if (pid != NULL && pid->numbers[pid->level].nr == 1)
91 ret = 1;
92 rcu_read_unlock();
93
94 return ret;
95 }
96 EXPORT_SYMBOL(is_container_init);
97
98 /*
99 * Note: disable interrupts while the pidmap_lock is held as an
100 * interrupt might come in and do read_lock(&tasklist_lock).
101 *
102 * If we don't disable interrupts there is a nasty deadlock between
103 * detach_pid()->free_pid() and another cpu that does
104 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
105 * read_lock(&tasklist_lock);
106 *
107 * After we clean up the tasklist_lock and know there are no
108 * irq handlers that take it we can leave the interrupts enabled.
109 * For now it is easier to be safe than to prove it can't happen.
110 */
111
112 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
113
114 static void free_pidmap(struct upid *upid)
115 {
116 int nr = upid->nr;
117 struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
118 int offset = nr & BITS_PER_PAGE_MASK;
119
120 clear_bit(offset, map->page);
121 atomic_inc(&map->nr_free);
122 }
123
124 static int alloc_pidmap(struct pid_namespace *pid_ns)
125 {
126 int i, offset, max_scan, pid, last = pid_ns->last_pid;
127 struct pidmap *map;
128
129 pid = last + 1;
130 if (pid >= pid_max)
131 pid = RESERVED_PIDS;
132 offset = pid & BITS_PER_PAGE_MASK;
133 map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
134 max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset;
135 for (i = 0; i <= max_scan; ++i) {
136 if (unlikely(!map->page)) {
137 void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
138 /*
139 * Free the page if someone raced with us
140 * installing it:
141 */
142 spin_lock_irq(&pidmap_lock);
143 if (map->page)
144 kfree(page);
145 else
146 map->page = page;
147 spin_unlock_irq(&pidmap_lock);
148 if (unlikely(!map->page))
149 break;
150 }
151 if (likely(atomic_read(&map->nr_free))) {
152 do {
153 if (!test_and_set_bit(offset, map->page)) {
154 atomic_dec(&map->nr_free);
155 pid_ns->last_pid = pid;
156 return pid;
157 }
158 offset = find_next_offset(map, offset);
159 pid = mk_pid(pid_ns, map, offset);
160 /*
161 * find_next_offset() found a bit, the pid from it
162 * is in-bounds, and if we fell back to the last
163 * bitmap block and the final block was the same
164 * as the starting point, pid is before last_pid.
165 */
166 } while (offset < BITS_PER_PAGE && pid < pid_max &&
167 (i != max_scan || pid < last ||
168 !((last+1) & BITS_PER_PAGE_MASK)));
169 }
170 if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
171 ++map;
172 offset = 0;
173 } else {
174 map = &pid_ns->pidmap[0];
175 offset = RESERVED_PIDS;
176 if (unlikely(last == offset))
177 break;
178 }
179 pid = mk_pid(pid_ns, map, offset);
180 }
181 return -1;
182 }
183
184 int next_pidmap(struct pid_namespace *pid_ns, int last)
185 {
186 int offset;
187 struct pidmap *map, *end;
188
189 offset = (last + 1) & BITS_PER_PAGE_MASK;
190 map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
191 end = &pid_ns->pidmap[PIDMAP_ENTRIES];
192 for (; map < end; map++, offset = 0) {
193 if (unlikely(!map->page))
194 continue;
195 offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
196 if (offset < BITS_PER_PAGE)
197 return mk_pid(pid_ns, map, offset);
198 }
199 return -1;
200 }
201
202 void put_pid(struct pid *pid)
203 {
204 struct pid_namespace *ns;
205
206 if (!pid)
207 return;
208
209 ns = pid->numbers[pid->level].ns;
210 if ((atomic_read(&pid->count) == 1) ||
211 atomic_dec_and_test(&pid->count)) {
212 kmem_cache_free(ns->pid_cachep, pid);
213 put_pid_ns(ns);
214 }
215 }
216 EXPORT_SYMBOL_GPL(put_pid);
217
218 static void delayed_put_pid(struct rcu_head *rhp)
219 {
220 struct pid *pid = container_of(rhp, struct pid, rcu);
221 put_pid(pid);
222 }
223
224 void free_pid(struct pid *pid)
225 {
226 /* We can be called with write_lock_irq(&tasklist_lock) held */
227 int i;
228 unsigned long flags;
229
230 spin_lock_irqsave(&pidmap_lock, flags);
231 for (i = 0; i <= pid->level; i++)
232 hlist_del_rcu(&pid->numbers[i].pid_chain);
233 spin_unlock_irqrestore(&pidmap_lock, flags);
234
235 for (i = 0; i <= pid->level; i++)
236 free_pidmap(pid->numbers + i);
237
238 call_rcu(&pid->rcu, delayed_put_pid);
239 }
240
241 struct pid *alloc_pid(struct pid_namespace *ns)
242 {
243 struct pid *pid;
244 enum pid_type type;
245 int i, nr;
246 struct pid_namespace *tmp;
247 struct upid *upid;
248
249 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
250 if (!pid)
251 goto out;
252
253 tmp = ns;
254 for (i = ns->level; i >= 0; i--) {
255 nr = alloc_pidmap(tmp);
256 if (nr < 0)
257 goto out_free;
258
259 pid->numbers[i].nr = nr;
260 pid->numbers[i].ns = tmp;
261 tmp = tmp->parent;
262 }
263
264 get_pid_ns(ns);
265 pid->level = ns->level;
266 atomic_set(&pid->count, 1);
267 for (type = 0; type < PIDTYPE_MAX; ++type)
268 INIT_HLIST_HEAD(&pid->tasks[type]);
269
270 spin_lock_irq(&pidmap_lock);
271 for (i = ns->level; i >= 0; i--) {
272 upid = &pid->numbers[i];
273 hlist_add_head_rcu(&upid->pid_chain,
274 &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
275 }
276 spin_unlock_irq(&pidmap_lock);
277
278 out:
279 return pid;
280
281 out_free:
282 while (++i <= ns->level)
283 free_pidmap(pid->numbers + i);
284
285 kmem_cache_free(ns->pid_cachep, pid);
286 pid = NULL;
287 goto out;
288 }
289
290 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
291 {
292 struct hlist_node *elem;
293 struct upid *pnr;
294
295 hlist_for_each_entry_rcu(pnr, elem,
296 &pid_hash[pid_hashfn(nr, ns)], pid_chain)
297 if (pnr->nr == nr && pnr->ns == ns)
298 return container_of(pnr, struct pid,
299 numbers[ns->level]);
300
301 return NULL;
302 }
303 EXPORT_SYMBOL_GPL(find_pid_ns);
304
305 struct pid *find_vpid(int nr)
306 {
307 return find_pid_ns(nr, current->nsproxy->pid_ns);
308 }
309 EXPORT_SYMBOL_GPL(find_vpid);
310
311 struct pid *find_pid(int nr)
312 {
313 return find_pid_ns(nr, &init_pid_ns);
314 }
315 EXPORT_SYMBOL_GPL(find_pid);
316
317 /*
318 * attach_pid() must be called with the tasklist_lock write-held.
319 */
320 int attach_pid(struct task_struct *task, enum pid_type type,
321 struct pid *pid)
322 {
323 struct pid_link *link;
324
325 link = &task->pids[type];
326 link->pid = pid;
327 hlist_add_head_rcu(&link->node, &pid->tasks[type]);
328
329 return 0;
330 }
331
332 void detach_pid(struct task_struct *task, enum pid_type type)
333 {
334 struct pid_link *link;
335 struct pid *pid;
336 int tmp;
337
338 link = &task->pids[type];
339 pid = link->pid;
340
341 hlist_del_rcu(&link->node);
342 link->pid = NULL;
343
344 for (tmp = PIDTYPE_MAX; --tmp >= 0; )
345 if (!hlist_empty(&pid->tasks[tmp]))
346 return;
347
348 free_pid(pid);
349 }
350
351 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
352 void transfer_pid(struct task_struct *old, struct task_struct *new,
353 enum pid_type type)
354 {
355 new->pids[type].pid = old->pids[type].pid;
356 hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
357 old->pids[type].pid = NULL;
358 }
359
360 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
361 {
362 struct task_struct *result = NULL;
363 if (pid) {
364 struct hlist_node *first;
365 first = rcu_dereference(pid->tasks[type].first);
366 if (first)
367 result = hlist_entry(first, struct task_struct, pids[(type)].node);
368 }
369 return result;
370 }
371 EXPORT_SYMBOL(pid_task);
372
373 /*
374 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
375 */
376 struct task_struct *find_task_by_pid_type_ns(int type, int nr,
377 struct pid_namespace *ns)
378 {
379 return pid_task(find_pid_ns(nr, ns), type);
380 }
381
382 EXPORT_SYMBOL(find_task_by_pid_type_ns);
383
384 struct task_struct *find_task_by_vpid(pid_t vnr)
385 {
386 return find_task_by_pid_type_ns(PIDTYPE_PID, vnr,
387 current->nsproxy->pid_ns);
388 }
389 EXPORT_SYMBOL(find_task_by_vpid);
390
391 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
392 {
393 return find_task_by_pid_type_ns(PIDTYPE_PID, nr, ns);
394 }
395 EXPORT_SYMBOL(find_task_by_pid_ns);
396
397 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
398 {
399 struct pid *pid;
400 rcu_read_lock();
401 pid = get_pid(task->pids[type].pid);
402 rcu_read_unlock();
403 return pid;
404 }
405
406 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
407 {
408 struct task_struct *result;
409 rcu_read_lock();
410 result = pid_task(pid, type);
411 if (result)
412 get_task_struct(result);
413 rcu_read_unlock();
414 return result;
415 }
416
417 struct pid *find_get_pid(pid_t nr)
418 {
419 struct pid *pid;
420
421 rcu_read_lock();
422 pid = get_pid(find_vpid(nr));
423 rcu_read_unlock();
424
425 return pid;
426 }
427
428 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
429 {
430 struct upid *upid;
431 pid_t nr = 0;
432
433 if (pid && ns->level <= pid->level) {
434 upid = &pid->numbers[ns->level];
435 if (upid->ns == ns)
436 nr = upid->nr;
437 }
438 return nr;
439 }
440
441 pid_t pid_vnr(struct pid *pid)
442 {
443 return pid_nr_ns(pid, current->nsproxy->pid_ns);
444 }
445 EXPORT_SYMBOL_GPL(pid_vnr);
446
447 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
448 {
449 return pid_nr_ns(task_pid(tsk), ns);
450 }
451 EXPORT_SYMBOL(task_pid_nr_ns);
452
453 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
454 {
455 return pid_nr_ns(task_tgid(tsk), ns);
456 }
457 EXPORT_SYMBOL(task_tgid_nr_ns);
458
459 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
460 {
461 return pid_nr_ns(task_pgrp(tsk), ns);
462 }
463 EXPORT_SYMBOL(task_pgrp_nr_ns);
464
465 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
466 {
467 return pid_nr_ns(task_session(tsk), ns);
468 }
469 EXPORT_SYMBOL(task_session_nr_ns);
470
471 /*
472 * Used by proc to find the first pid that is greater then or equal to nr.
473 *
474 * If there is a pid at nr this function is exactly the same as find_pid.
475 */
476 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
477 {
478 struct pid *pid;
479
480 do {
481 pid = find_pid_ns(nr, ns);
482 if (pid)
483 break;
484 nr = next_pidmap(ns, nr);
485 } while (nr > 0);
486
487 return pid;
488 }
489 EXPORT_SYMBOL_GPL(find_get_pid);
490
491 /*
492 * The pid hash table is scaled according to the amount of memory in the
493 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
494 * more.
495 */
496 void __init pidhash_init(void)
497 {
498 int i, pidhash_size;
499 unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT);
500
501 pidhash_shift = max(4, fls(megabytes * 4));
502 pidhash_shift = min(12, pidhash_shift);
503 pidhash_size = 1 << pidhash_shift;
504
505 printk("PID hash table entries: %d (order: %d, %Zd bytes)\n",
506 pidhash_size, pidhash_shift,
507 pidhash_size * sizeof(struct hlist_head));
508
509 pid_hash = alloc_bootmem(pidhash_size * sizeof(*(pid_hash)));
510 if (!pid_hash)
511 panic("Could not alloc pidhash!\n");
512 for (i = 0; i < pidhash_size; i++)
513 INIT_HLIST_HEAD(&pid_hash[i]);
514 }
515
516 void __init pidmap_init(void)
517 {
518 init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
519 /* Reserve PID 0. We never call free_pidmap(0) */
520 set_bit(0, init_pid_ns.pidmap[0].page);
521 atomic_dec(&init_pid_ns.pidmap[0].nr_free);
522
523 init_pid_ns.pid_cachep = KMEM_CACHE(pid,
524 SLAB_HWCACHE_ALIGN | SLAB_PANIC);
525 }
This page took 0.06813 seconds and 5 git commands to generate.