Merge branch 'for-3.7-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
[deliverable/linux.git] / kernel / pid_namespace.c
1 /*
2 * Pid namespaces
3 *
4 * Authors:
5 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
6 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
7 * Many thanks to Oleg Nesterov for comments and help
8 *
9 */
10
11 #include <linux/pid.h>
12 #include <linux/pid_namespace.h>
13 #include <linux/syscalls.h>
14 #include <linux/err.h>
15 #include <linux/acct.h>
16 #include <linux/slab.h>
17 #include <linux/proc_fs.h>
18 #include <linux/reboot.h>
19 #include <linux/export.h>
20
21 #define BITS_PER_PAGE (PAGE_SIZE*8)
22
23 struct pid_cache {
24 int nr_ids;
25 char name[16];
26 struct kmem_cache *cachep;
27 struct list_head list;
28 };
29
30 static LIST_HEAD(pid_caches_lh);
31 static DEFINE_MUTEX(pid_caches_mutex);
32 static struct kmem_cache *pid_ns_cachep;
33
34 /*
35 * creates the kmem cache to allocate pids from.
36 * @nr_ids: the number of numerical ids this pid will have to carry
37 */
38
39 static struct kmem_cache *create_pid_cachep(int nr_ids)
40 {
41 struct pid_cache *pcache;
42 struct kmem_cache *cachep;
43
44 mutex_lock(&pid_caches_mutex);
45 list_for_each_entry(pcache, &pid_caches_lh, list)
46 if (pcache->nr_ids == nr_ids)
47 goto out;
48
49 pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
50 if (pcache == NULL)
51 goto err_alloc;
52
53 snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
54 cachep = kmem_cache_create(pcache->name,
55 sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
56 0, SLAB_HWCACHE_ALIGN, NULL);
57 if (cachep == NULL)
58 goto err_cachep;
59
60 pcache->nr_ids = nr_ids;
61 pcache->cachep = cachep;
62 list_add(&pcache->list, &pid_caches_lh);
63 out:
64 mutex_unlock(&pid_caches_mutex);
65 return pcache->cachep;
66
67 err_cachep:
68 kfree(pcache);
69 err_alloc:
70 mutex_unlock(&pid_caches_mutex);
71 return NULL;
72 }
73
74 static struct pid_namespace *create_pid_namespace(struct pid_namespace *parent_pid_ns)
75 {
76 struct pid_namespace *ns;
77 unsigned int level = parent_pid_ns->level + 1;
78 int i, err = -ENOMEM;
79
80 ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
81 if (ns == NULL)
82 goto out;
83
84 ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
85 if (!ns->pidmap[0].page)
86 goto out_free;
87
88 ns->pid_cachep = create_pid_cachep(level + 1);
89 if (ns->pid_cachep == NULL)
90 goto out_free_map;
91
92 kref_init(&ns->kref);
93 ns->level = level;
94 ns->parent = get_pid_ns(parent_pid_ns);
95
96 set_bit(0, ns->pidmap[0].page);
97 atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
98
99 for (i = 1; i < PIDMAP_ENTRIES; i++)
100 atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
101
102 err = pid_ns_prepare_proc(ns);
103 if (err)
104 goto out_put_parent_pid_ns;
105
106 return ns;
107
108 out_put_parent_pid_ns:
109 put_pid_ns(parent_pid_ns);
110 out_free_map:
111 kfree(ns->pidmap[0].page);
112 out_free:
113 kmem_cache_free(pid_ns_cachep, ns);
114 out:
115 return ERR_PTR(err);
116 }
117
118 static void destroy_pid_namespace(struct pid_namespace *ns)
119 {
120 int i;
121
122 for (i = 0; i < PIDMAP_ENTRIES; i++)
123 kfree(ns->pidmap[i].page);
124 kmem_cache_free(pid_ns_cachep, ns);
125 }
126
127 struct pid_namespace *copy_pid_ns(unsigned long flags, struct pid_namespace *old_ns)
128 {
129 if (!(flags & CLONE_NEWPID))
130 return get_pid_ns(old_ns);
131 if (flags & (CLONE_THREAD|CLONE_PARENT))
132 return ERR_PTR(-EINVAL);
133 return create_pid_namespace(old_ns);
134 }
135
136 static void free_pid_ns(struct kref *kref)
137 {
138 struct pid_namespace *ns;
139
140 ns = container_of(kref, struct pid_namespace, kref);
141 destroy_pid_namespace(ns);
142 }
143
144 void put_pid_ns(struct pid_namespace *ns)
145 {
146 struct pid_namespace *parent;
147
148 while (ns != &init_pid_ns) {
149 parent = ns->parent;
150 if (!kref_put(&ns->kref, free_pid_ns))
151 break;
152 ns = parent;
153 }
154 }
155 EXPORT_SYMBOL_GPL(put_pid_ns);
156
157 void zap_pid_ns_processes(struct pid_namespace *pid_ns)
158 {
159 int nr;
160 int rc;
161 struct task_struct *task, *me = current;
162
163 /* Ignore SIGCHLD causing any terminated children to autoreap */
164 spin_lock_irq(&me->sighand->siglock);
165 me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
166 spin_unlock_irq(&me->sighand->siglock);
167
168 /*
169 * The last thread in the cgroup-init thread group is terminating.
170 * Find remaining pid_ts in the namespace, signal and wait for them
171 * to exit.
172 *
173 * Note: This signals each threads in the namespace - even those that
174 * belong to the same thread group, To avoid this, we would have
175 * to walk the entire tasklist looking a processes in this
176 * namespace, but that could be unnecessarily expensive if the
177 * pid namespace has just a few processes. Or we need to
178 * maintain a tasklist for each pid namespace.
179 *
180 */
181 read_lock(&tasklist_lock);
182 nr = next_pidmap(pid_ns, 1);
183 while (nr > 0) {
184 rcu_read_lock();
185
186 task = pid_task(find_vpid(nr), PIDTYPE_PID);
187 if (task && !__fatal_signal_pending(task))
188 send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
189
190 rcu_read_unlock();
191
192 nr = next_pidmap(pid_ns, nr);
193 }
194 read_unlock(&tasklist_lock);
195
196 /* Firstly reap the EXIT_ZOMBIE children we may have. */
197 do {
198 clear_thread_flag(TIF_SIGPENDING);
199 rc = sys_wait4(-1, NULL, __WALL, NULL);
200 } while (rc != -ECHILD);
201
202 /*
203 * sys_wait4() above can't reap the TASK_DEAD children.
204 * Make sure they all go away, see __unhash_process().
205 */
206 for (;;) {
207 bool need_wait = false;
208
209 read_lock(&tasklist_lock);
210 if (!list_empty(&current->children)) {
211 __set_current_state(TASK_UNINTERRUPTIBLE);
212 need_wait = true;
213 }
214 read_unlock(&tasklist_lock);
215
216 if (!need_wait)
217 break;
218 schedule();
219 }
220
221 if (pid_ns->reboot)
222 current->signal->group_exit_code = pid_ns->reboot;
223
224 acct_exit_ns(pid_ns);
225 return;
226 }
227
228 #ifdef CONFIG_CHECKPOINT_RESTORE
229 static int pid_ns_ctl_handler(struct ctl_table *table, int write,
230 void __user *buffer, size_t *lenp, loff_t *ppos)
231 {
232 struct ctl_table tmp = *table;
233
234 if (write && !capable(CAP_SYS_ADMIN))
235 return -EPERM;
236
237 /*
238 * Writing directly to ns' last_pid field is OK, since this field
239 * is volatile in a living namespace anyway and a code writing to
240 * it should synchronize its usage with external means.
241 */
242
243 tmp.data = &current->nsproxy->pid_ns->last_pid;
244 return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
245 }
246
247 extern int pid_max;
248 static int zero = 0;
249 static struct ctl_table pid_ns_ctl_table[] = {
250 {
251 .procname = "ns_last_pid",
252 .maxlen = sizeof(int),
253 .mode = 0666, /* permissions are checked in the handler */
254 .proc_handler = pid_ns_ctl_handler,
255 .extra1 = &zero,
256 .extra2 = &pid_max,
257 },
258 { }
259 };
260 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
261 #endif /* CONFIG_CHECKPOINT_RESTORE */
262
263 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
264 {
265 if (pid_ns == &init_pid_ns)
266 return 0;
267
268 switch (cmd) {
269 case LINUX_REBOOT_CMD_RESTART2:
270 case LINUX_REBOOT_CMD_RESTART:
271 pid_ns->reboot = SIGHUP;
272 break;
273
274 case LINUX_REBOOT_CMD_POWER_OFF:
275 case LINUX_REBOOT_CMD_HALT:
276 pid_ns->reboot = SIGINT;
277 break;
278 default:
279 return -EINVAL;
280 }
281
282 read_lock(&tasklist_lock);
283 force_sig(SIGKILL, pid_ns->child_reaper);
284 read_unlock(&tasklist_lock);
285
286 do_exit(0);
287
288 /* Not reached */
289 return 0;
290 }
291
292 static __init int pid_namespaces_init(void)
293 {
294 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
295
296 #ifdef CONFIG_CHECKPOINT_RESTORE
297 register_sysctl_paths(kern_path, pid_ns_ctl_table);
298 #endif
299 return 0;
300 }
301
302 __initcall(pid_namespaces_init);
This page took 0.037815 seconds and 5 git commands to generate.