posix_cpu_timers: consolidate timer list cleanups
[deliverable/linux.git] / kernel / posix-cpu-timers.c
1 /*
2 * Implement CPU time clocks for the POSIX clock interface.
3 */
4
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
12 #include <linux/random.h>
13 #include <linux/tick.h>
14 #include <linux/workqueue.h>
15
16 /*
17 * Called after updating RLIMIT_CPU to run cpu timer and update
18 * tsk->signal->cputime_expires expiration cache if necessary. Needs
19 * siglock protection since other code may update expiration cache as
20 * well.
21 */
22 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
23 {
24 cputime_t cputime = secs_to_cputime(rlim_new);
25
26 spin_lock_irq(&task->sighand->siglock);
27 set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
28 spin_unlock_irq(&task->sighand->siglock);
29 }
30
31 static int check_clock(const clockid_t which_clock)
32 {
33 int error = 0;
34 struct task_struct *p;
35 const pid_t pid = CPUCLOCK_PID(which_clock);
36
37 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
38 return -EINVAL;
39
40 if (pid == 0)
41 return 0;
42
43 rcu_read_lock();
44 p = find_task_by_vpid(pid);
45 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
46 same_thread_group(p, current) : has_group_leader_pid(p))) {
47 error = -EINVAL;
48 }
49 rcu_read_unlock();
50
51 return error;
52 }
53
54 static inline unsigned long long
55 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
56 {
57 unsigned long long ret;
58
59 ret = 0; /* high half always zero when .cpu used */
60 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
61 ret = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
62 } else {
63 ret = cputime_to_expires(timespec_to_cputime(tp));
64 }
65 return ret;
66 }
67
68 static void sample_to_timespec(const clockid_t which_clock,
69 unsigned long long expires,
70 struct timespec *tp)
71 {
72 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
73 *tp = ns_to_timespec(expires);
74 else
75 cputime_to_timespec((__force cputime_t)expires, tp);
76 }
77
78 /*
79 * Update expiry time from increment, and increase overrun count,
80 * given the current clock sample.
81 */
82 static void bump_cpu_timer(struct k_itimer *timer,
83 unsigned long long now)
84 {
85 int i;
86 unsigned long long delta, incr;
87
88 if (timer->it.cpu.incr == 0)
89 return;
90
91 if (now < timer->it.cpu.expires)
92 return;
93
94 incr = timer->it.cpu.incr;
95 delta = now + incr - timer->it.cpu.expires;
96
97 /* Don't use (incr*2 < delta), incr*2 might overflow. */
98 for (i = 0; incr < delta - incr; i++)
99 incr = incr << 1;
100
101 for (; i >= 0; incr >>= 1, i--) {
102 if (delta < incr)
103 continue;
104
105 timer->it.cpu.expires += incr;
106 timer->it_overrun += 1 << i;
107 delta -= incr;
108 }
109 }
110
111 /**
112 * task_cputime_zero - Check a task_cputime struct for all zero fields.
113 *
114 * @cputime: The struct to compare.
115 *
116 * Checks @cputime to see if all fields are zero. Returns true if all fields
117 * are zero, false if any field is nonzero.
118 */
119 static inline int task_cputime_zero(const struct task_cputime *cputime)
120 {
121 if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
122 return 1;
123 return 0;
124 }
125
126 static inline unsigned long long prof_ticks(struct task_struct *p)
127 {
128 cputime_t utime, stime;
129
130 task_cputime(p, &utime, &stime);
131
132 return cputime_to_expires(utime + stime);
133 }
134 static inline unsigned long long virt_ticks(struct task_struct *p)
135 {
136 cputime_t utime;
137
138 task_cputime(p, &utime, NULL);
139
140 return cputime_to_expires(utime);
141 }
142
143 static int
144 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
145 {
146 int error = check_clock(which_clock);
147 if (!error) {
148 tp->tv_sec = 0;
149 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
150 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
151 /*
152 * If sched_clock is using a cycle counter, we
153 * don't have any idea of its true resolution
154 * exported, but it is much more than 1s/HZ.
155 */
156 tp->tv_nsec = 1;
157 }
158 }
159 return error;
160 }
161
162 static int
163 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
164 {
165 /*
166 * You can never reset a CPU clock, but we check for other errors
167 * in the call before failing with EPERM.
168 */
169 int error = check_clock(which_clock);
170 if (error == 0) {
171 error = -EPERM;
172 }
173 return error;
174 }
175
176
177 /*
178 * Sample a per-thread clock for the given task.
179 */
180 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
181 unsigned long long *sample)
182 {
183 switch (CPUCLOCK_WHICH(which_clock)) {
184 default:
185 return -EINVAL;
186 case CPUCLOCK_PROF:
187 *sample = prof_ticks(p);
188 break;
189 case CPUCLOCK_VIRT:
190 *sample = virt_ticks(p);
191 break;
192 case CPUCLOCK_SCHED:
193 *sample = task_sched_runtime(p);
194 break;
195 }
196 return 0;
197 }
198
199 static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
200 {
201 if (b->utime > a->utime)
202 a->utime = b->utime;
203
204 if (b->stime > a->stime)
205 a->stime = b->stime;
206
207 if (b->sum_exec_runtime > a->sum_exec_runtime)
208 a->sum_exec_runtime = b->sum_exec_runtime;
209 }
210
211 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
212 {
213 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
214 struct task_cputime sum;
215 unsigned long flags;
216
217 if (!cputimer->running) {
218 /*
219 * The POSIX timer interface allows for absolute time expiry
220 * values through the TIMER_ABSTIME flag, therefore we have
221 * to synchronize the timer to the clock every time we start
222 * it.
223 */
224 thread_group_cputime(tsk, &sum);
225 raw_spin_lock_irqsave(&cputimer->lock, flags);
226 cputimer->running = 1;
227 update_gt_cputime(&cputimer->cputime, &sum);
228 } else
229 raw_spin_lock_irqsave(&cputimer->lock, flags);
230 *times = cputimer->cputime;
231 raw_spin_unlock_irqrestore(&cputimer->lock, flags);
232 }
233
234 /*
235 * Sample a process (thread group) clock for the given group_leader task.
236 * Must be called with tasklist_lock held for reading.
237 */
238 static int cpu_clock_sample_group(const clockid_t which_clock,
239 struct task_struct *p,
240 unsigned long long *sample)
241 {
242 struct task_cputime cputime;
243
244 switch (CPUCLOCK_WHICH(which_clock)) {
245 default:
246 return -EINVAL;
247 case CPUCLOCK_PROF:
248 thread_group_cputime(p, &cputime);
249 *sample = cputime_to_expires(cputime.utime + cputime.stime);
250 break;
251 case CPUCLOCK_VIRT:
252 thread_group_cputime(p, &cputime);
253 *sample = cputime_to_expires(cputime.utime);
254 break;
255 case CPUCLOCK_SCHED:
256 thread_group_cputime(p, &cputime);
257 *sample = cputime.sum_exec_runtime;
258 break;
259 }
260 return 0;
261 }
262
263
264 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
265 {
266 const pid_t pid = CPUCLOCK_PID(which_clock);
267 int error = -EINVAL;
268 unsigned long long rtn;
269
270 if (pid == 0) {
271 /*
272 * Special case constant value for our own clocks.
273 * We don't have to do any lookup to find ourselves.
274 */
275 if (CPUCLOCK_PERTHREAD(which_clock)) {
276 /*
277 * Sampling just ourselves we can do with no locking.
278 */
279 error = cpu_clock_sample(which_clock,
280 current, &rtn);
281 } else {
282 read_lock(&tasklist_lock);
283 error = cpu_clock_sample_group(which_clock,
284 current, &rtn);
285 read_unlock(&tasklist_lock);
286 }
287 } else {
288 /*
289 * Find the given PID, and validate that the caller
290 * should be able to see it.
291 */
292 struct task_struct *p;
293 rcu_read_lock();
294 p = find_task_by_vpid(pid);
295 if (p) {
296 if (CPUCLOCK_PERTHREAD(which_clock)) {
297 if (same_thread_group(p, current)) {
298 error = cpu_clock_sample(which_clock,
299 p, &rtn);
300 }
301 } else {
302 read_lock(&tasklist_lock);
303 if (thread_group_leader(p) && p->sighand) {
304 error =
305 cpu_clock_sample_group(which_clock,
306 p, &rtn);
307 }
308 read_unlock(&tasklist_lock);
309 }
310 }
311 rcu_read_unlock();
312 }
313
314 if (error)
315 return error;
316 sample_to_timespec(which_clock, rtn, tp);
317 return 0;
318 }
319
320
321 /*
322 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
323 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
324 * new timer already all-zeros initialized.
325 */
326 static int posix_cpu_timer_create(struct k_itimer *new_timer)
327 {
328 int ret = 0;
329 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
330 struct task_struct *p;
331
332 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
333 return -EINVAL;
334
335 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
336
337 rcu_read_lock();
338 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
339 if (pid == 0) {
340 p = current;
341 } else {
342 p = find_task_by_vpid(pid);
343 if (p && !same_thread_group(p, current))
344 p = NULL;
345 }
346 } else {
347 if (pid == 0) {
348 p = current->group_leader;
349 } else {
350 p = find_task_by_vpid(pid);
351 if (p && !has_group_leader_pid(p))
352 p = NULL;
353 }
354 }
355 new_timer->it.cpu.task = p;
356 if (p) {
357 get_task_struct(p);
358 } else {
359 ret = -EINVAL;
360 }
361 rcu_read_unlock();
362
363 return ret;
364 }
365
366 /*
367 * Clean up a CPU-clock timer that is about to be destroyed.
368 * This is called from timer deletion with the timer already locked.
369 * If we return TIMER_RETRY, it's necessary to release the timer's lock
370 * and try again. (This happens when the timer is in the middle of firing.)
371 */
372 static int posix_cpu_timer_del(struct k_itimer *timer)
373 {
374 struct task_struct *p = timer->it.cpu.task;
375 int ret = 0;
376
377 if (likely(p != NULL)) {
378 read_lock(&tasklist_lock);
379 if (unlikely(p->sighand == NULL)) {
380 /*
381 * We raced with the reaping of the task.
382 * The deletion should have cleared us off the list.
383 */
384 BUG_ON(!list_empty(&timer->it.cpu.entry));
385 } else {
386 spin_lock(&p->sighand->siglock);
387 if (timer->it.cpu.firing)
388 ret = TIMER_RETRY;
389 else
390 list_del(&timer->it.cpu.entry);
391 spin_unlock(&p->sighand->siglock);
392 }
393 read_unlock(&tasklist_lock);
394
395 if (!ret)
396 put_task_struct(p);
397 }
398
399 return ret;
400 }
401
402 static void cleanup_timers_list(struct list_head *head,
403 unsigned long long curr)
404 {
405 struct cpu_timer_list *timer, *next;
406
407 list_for_each_entry_safe(timer, next, head, entry) {
408 list_del_init(&timer->entry);
409 if (timer->expires < curr) {
410 timer->expires = 0;
411 } else {
412 timer->expires -= curr;
413 }
414 }
415 }
416
417 /*
418 * Clean out CPU timers still ticking when a thread exited. The task
419 * pointer is cleared, and the expiry time is replaced with the residual
420 * time for later timer_gettime calls to return.
421 * This must be called with the siglock held.
422 */
423 static void cleanup_timers(struct list_head *head,
424 cputime_t utime, cputime_t stime,
425 unsigned long long sum_exec_runtime)
426 {
427
428 cputime_t ptime = utime + stime;
429
430 cleanup_timers_list(head, cputime_to_expires(ptime));
431 cleanup_timers_list(++head, cputime_to_expires(utime));
432 cleanup_timers_list(++head, sum_exec_runtime);
433 }
434
435 /*
436 * These are both called with the siglock held, when the current thread
437 * is being reaped. When the final (leader) thread in the group is reaped,
438 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
439 */
440 void posix_cpu_timers_exit(struct task_struct *tsk)
441 {
442 cputime_t utime, stime;
443
444 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
445 sizeof(unsigned long long));
446 task_cputime(tsk, &utime, &stime);
447 cleanup_timers(tsk->cpu_timers,
448 utime, stime, tsk->se.sum_exec_runtime);
449
450 }
451 void posix_cpu_timers_exit_group(struct task_struct *tsk)
452 {
453 struct signal_struct *const sig = tsk->signal;
454 cputime_t utime, stime;
455
456 task_cputime(tsk, &utime, &stime);
457 cleanup_timers(tsk->signal->cpu_timers,
458 utime + sig->utime, stime + sig->stime,
459 tsk->se.sum_exec_runtime + sig->sum_sched_runtime);
460 }
461
462 static void clear_dead_task(struct k_itimer *timer, unsigned long long now)
463 {
464 /*
465 * That's all for this thread or process.
466 * We leave our residual in expires to be reported.
467 */
468 put_task_struct(timer->it.cpu.task);
469 timer->it.cpu.task = NULL;
470 timer->it.cpu.expires -= now;
471 }
472
473 static inline int expires_gt(cputime_t expires, cputime_t new_exp)
474 {
475 return expires == 0 || expires > new_exp;
476 }
477
478 /*
479 * Insert the timer on the appropriate list before any timers that
480 * expire later. This must be called with the tasklist_lock held
481 * for reading, interrupts disabled and p->sighand->siglock taken.
482 */
483 static void arm_timer(struct k_itimer *timer)
484 {
485 struct task_struct *p = timer->it.cpu.task;
486 struct list_head *head, *listpos;
487 struct task_cputime *cputime_expires;
488 struct cpu_timer_list *const nt = &timer->it.cpu;
489 struct cpu_timer_list *next;
490
491 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
492 head = p->cpu_timers;
493 cputime_expires = &p->cputime_expires;
494 } else {
495 head = p->signal->cpu_timers;
496 cputime_expires = &p->signal->cputime_expires;
497 }
498 head += CPUCLOCK_WHICH(timer->it_clock);
499
500 listpos = head;
501 list_for_each_entry(next, head, entry) {
502 if (nt->expires < next->expires)
503 break;
504 listpos = &next->entry;
505 }
506 list_add(&nt->entry, listpos);
507
508 if (listpos == head) {
509 unsigned long long exp = nt->expires;
510
511 /*
512 * We are the new earliest-expiring POSIX 1.b timer, hence
513 * need to update expiration cache. Take into account that
514 * for process timers we share expiration cache with itimers
515 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
516 */
517
518 switch (CPUCLOCK_WHICH(timer->it_clock)) {
519 case CPUCLOCK_PROF:
520 if (expires_gt(cputime_expires->prof_exp, expires_to_cputime(exp)))
521 cputime_expires->prof_exp = expires_to_cputime(exp);
522 break;
523 case CPUCLOCK_VIRT:
524 if (expires_gt(cputime_expires->virt_exp, expires_to_cputime(exp)))
525 cputime_expires->virt_exp = expires_to_cputime(exp);
526 break;
527 case CPUCLOCK_SCHED:
528 if (cputime_expires->sched_exp == 0 ||
529 cputime_expires->sched_exp > exp)
530 cputime_expires->sched_exp = exp;
531 break;
532 }
533 }
534 }
535
536 /*
537 * The timer is locked, fire it and arrange for its reload.
538 */
539 static void cpu_timer_fire(struct k_itimer *timer)
540 {
541 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
542 /*
543 * User don't want any signal.
544 */
545 timer->it.cpu.expires = 0;
546 } else if (unlikely(timer->sigq == NULL)) {
547 /*
548 * This a special case for clock_nanosleep,
549 * not a normal timer from sys_timer_create.
550 */
551 wake_up_process(timer->it_process);
552 timer->it.cpu.expires = 0;
553 } else if (timer->it.cpu.incr == 0) {
554 /*
555 * One-shot timer. Clear it as soon as it's fired.
556 */
557 posix_timer_event(timer, 0);
558 timer->it.cpu.expires = 0;
559 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
560 /*
561 * The signal did not get queued because the signal
562 * was ignored, so we won't get any callback to
563 * reload the timer. But we need to keep it
564 * ticking in case the signal is deliverable next time.
565 */
566 posix_cpu_timer_schedule(timer);
567 }
568 }
569
570 /*
571 * Sample a process (thread group) timer for the given group_leader task.
572 * Must be called with tasklist_lock held for reading.
573 */
574 static int cpu_timer_sample_group(const clockid_t which_clock,
575 struct task_struct *p,
576 unsigned long long *sample)
577 {
578 struct task_cputime cputime;
579
580 thread_group_cputimer(p, &cputime);
581 switch (CPUCLOCK_WHICH(which_clock)) {
582 default:
583 return -EINVAL;
584 case CPUCLOCK_PROF:
585 *sample = cputime_to_expires(cputime.utime + cputime.stime);
586 break;
587 case CPUCLOCK_VIRT:
588 *sample = cputime_to_expires(cputime.utime);
589 break;
590 case CPUCLOCK_SCHED:
591 *sample = cputime.sum_exec_runtime + task_delta_exec(p);
592 break;
593 }
594 return 0;
595 }
596
597 #ifdef CONFIG_NO_HZ_FULL
598 static void nohz_kick_work_fn(struct work_struct *work)
599 {
600 tick_nohz_full_kick_all();
601 }
602
603 static DECLARE_WORK(nohz_kick_work, nohz_kick_work_fn);
604
605 /*
606 * We need the IPIs to be sent from sane process context.
607 * The posix cpu timers are always set with irqs disabled.
608 */
609 static void posix_cpu_timer_kick_nohz(void)
610 {
611 schedule_work(&nohz_kick_work);
612 }
613
614 bool posix_cpu_timers_can_stop_tick(struct task_struct *tsk)
615 {
616 if (!task_cputime_zero(&tsk->cputime_expires))
617 return false;
618
619 if (tsk->signal->cputimer.running)
620 return false;
621
622 return true;
623 }
624 #else
625 static inline void posix_cpu_timer_kick_nohz(void) { }
626 #endif
627
628 /*
629 * Guts of sys_timer_settime for CPU timers.
630 * This is called with the timer locked and interrupts disabled.
631 * If we return TIMER_RETRY, it's necessary to release the timer's lock
632 * and try again. (This happens when the timer is in the middle of firing.)
633 */
634 static int posix_cpu_timer_set(struct k_itimer *timer, int flags,
635 struct itimerspec *new, struct itimerspec *old)
636 {
637 struct task_struct *p = timer->it.cpu.task;
638 unsigned long long old_expires, new_expires, old_incr, val;
639 int ret;
640
641 if (unlikely(p == NULL)) {
642 /*
643 * Timer refers to a dead task's clock.
644 */
645 return -ESRCH;
646 }
647
648 new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
649
650 read_lock(&tasklist_lock);
651 /*
652 * We need the tasklist_lock to protect against reaping that
653 * clears p->sighand. If p has just been reaped, we can no
654 * longer get any information about it at all.
655 */
656 if (unlikely(p->sighand == NULL)) {
657 read_unlock(&tasklist_lock);
658 put_task_struct(p);
659 timer->it.cpu.task = NULL;
660 return -ESRCH;
661 }
662
663 /*
664 * Disarm any old timer after extracting its expiry time.
665 */
666 BUG_ON(!irqs_disabled());
667
668 ret = 0;
669 old_incr = timer->it.cpu.incr;
670 spin_lock(&p->sighand->siglock);
671 old_expires = timer->it.cpu.expires;
672 if (unlikely(timer->it.cpu.firing)) {
673 timer->it.cpu.firing = -1;
674 ret = TIMER_RETRY;
675 } else
676 list_del_init(&timer->it.cpu.entry);
677
678 /*
679 * We need to sample the current value to convert the new
680 * value from to relative and absolute, and to convert the
681 * old value from absolute to relative. To set a process
682 * timer, we need a sample to balance the thread expiry
683 * times (in arm_timer). With an absolute time, we must
684 * check if it's already passed. In short, we need a sample.
685 */
686 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
687 cpu_clock_sample(timer->it_clock, p, &val);
688 } else {
689 cpu_timer_sample_group(timer->it_clock, p, &val);
690 }
691
692 if (old) {
693 if (old_expires == 0) {
694 old->it_value.tv_sec = 0;
695 old->it_value.tv_nsec = 0;
696 } else {
697 /*
698 * Update the timer in case it has
699 * overrun already. If it has,
700 * we'll report it as having overrun
701 * and with the next reloaded timer
702 * already ticking, though we are
703 * swallowing that pending
704 * notification here to install the
705 * new setting.
706 */
707 bump_cpu_timer(timer, val);
708 if (val < timer->it.cpu.expires) {
709 old_expires = timer->it.cpu.expires - val;
710 sample_to_timespec(timer->it_clock,
711 old_expires,
712 &old->it_value);
713 } else {
714 old->it_value.tv_nsec = 1;
715 old->it_value.tv_sec = 0;
716 }
717 }
718 }
719
720 if (unlikely(ret)) {
721 /*
722 * We are colliding with the timer actually firing.
723 * Punt after filling in the timer's old value, and
724 * disable this firing since we are already reporting
725 * it as an overrun (thanks to bump_cpu_timer above).
726 */
727 spin_unlock(&p->sighand->siglock);
728 read_unlock(&tasklist_lock);
729 goto out;
730 }
731
732 if (new_expires != 0 && !(flags & TIMER_ABSTIME)) {
733 new_expires += val;
734 }
735
736 /*
737 * Install the new expiry time (or zero).
738 * For a timer with no notification action, we don't actually
739 * arm the timer (we'll just fake it for timer_gettime).
740 */
741 timer->it.cpu.expires = new_expires;
742 if (new_expires != 0 && val < new_expires) {
743 arm_timer(timer);
744 }
745
746 spin_unlock(&p->sighand->siglock);
747 read_unlock(&tasklist_lock);
748
749 /*
750 * Install the new reload setting, and
751 * set up the signal and overrun bookkeeping.
752 */
753 timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
754 &new->it_interval);
755
756 /*
757 * This acts as a modification timestamp for the timer,
758 * so any automatic reload attempt will punt on seeing
759 * that we have reset the timer manually.
760 */
761 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
762 ~REQUEUE_PENDING;
763 timer->it_overrun_last = 0;
764 timer->it_overrun = -1;
765
766 if (new_expires != 0 && !(val < new_expires)) {
767 /*
768 * The designated time already passed, so we notify
769 * immediately, even if the thread never runs to
770 * accumulate more time on this clock.
771 */
772 cpu_timer_fire(timer);
773 }
774
775 ret = 0;
776 out:
777 if (old) {
778 sample_to_timespec(timer->it_clock,
779 old_incr, &old->it_interval);
780 }
781 if (!ret)
782 posix_cpu_timer_kick_nohz();
783 return ret;
784 }
785
786 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
787 {
788 unsigned long long now;
789 struct task_struct *p = timer->it.cpu.task;
790 int clear_dead;
791
792 /*
793 * Easy part: convert the reload time.
794 */
795 sample_to_timespec(timer->it_clock,
796 timer->it.cpu.incr, &itp->it_interval);
797
798 if (timer->it.cpu.expires == 0) { /* Timer not armed at all. */
799 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
800 return;
801 }
802
803 if (unlikely(p == NULL)) {
804 /*
805 * This task already died and the timer will never fire.
806 * In this case, expires is actually the dead value.
807 */
808 dead:
809 sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
810 &itp->it_value);
811 return;
812 }
813
814 /*
815 * Sample the clock to take the difference with the expiry time.
816 */
817 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
818 cpu_clock_sample(timer->it_clock, p, &now);
819 clear_dead = p->exit_state;
820 } else {
821 read_lock(&tasklist_lock);
822 if (unlikely(p->sighand == NULL)) {
823 /*
824 * The process has been reaped.
825 * We can't even collect a sample any more.
826 * Call the timer disarmed, nothing else to do.
827 */
828 put_task_struct(p);
829 timer->it.cpu.task = NULL;
830 timer->it.cpu.expires = 0;
831 read_unlock(&tasklist_lock);
832 goto dead;
833 } else {
834 cpu_timer_sample_group(timer->it_clock, p, &now);
835 clear_dead = (unlikely(p->exit_state) &&
836 thread_group_empty(p));
837 }
838 read_unlock(&tasklist_lock);
839 }
840
841 if (unlikely(clear_dead)) {
842 /*
843 * We've noticed that the thread is dead, but
844 * not yet reaped. Take this opportunity to
845 * drop our task ref.
846 */
847 clear_dead_task(timer, now);
848 goto dead;
849 }
850
851 if (now < timer->it.cpu.expires) {
852 sample_to_timespec(timer->it_clock,
853 timer->it.cpu.expires - now,
854 &itp->it_value);
855 } else {
856 /*
857 * The timer should have expired already, but the firing
858 * hasn't taken place yet. Say it's just about to expire.
859 */
860 itp->it_value.tv_nsec = 1;
861 itp->it_value.tv_sec = 0;
862 }
863 }
864
865 /*
866 * Check for any per-thread CPU timers that have fired and move them off
867 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
868 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
869 */
870 static void check_thread_timers(struct task_struct *tsk,
871 struct list_head *firing)
872 {
873 int maxfire;
874 struct list_head *timers = tsk->cpu_timers;
875 struct signal_struct *const sig = tsk->signal;
876 unsigned long soft;
877
878 maxfire = 20;
879 tsk->cputime_expires.prof_exp = 0;
880 while (!list_empty(timers)) {
881 struct cpu_timer_list *t = list_first_entry(timers,
882 struct cpu_timer_list,
883 entry);
884 if (!--maxfire || prof_ticks(tsk) < t->expires) {
885 tsk->cputime_expires.prof_exp = expires_to_cputime(t->expires);
886 break;
887 }
888 t->firing = 1;
889 list_move_tail(&t->entry, firing);
890 }
891
892 ++timers;
893 maxfire = 20;
894 tsk->cputime_expires.virt_exp = 0;
895 while (!list_empty(timers)) {
896 struct cpu_timer_list *t = list_first_entry(timers,
897 struct cpu_timer_list,
898 entry);
899 if (!--maxfire || virt_ticks(tsk) < t->expires) {
900 tsk->cputime_expires.virt_exp = expires_to_cputime(t->expires);
901 break;
902 }
903 t->firing = 1;
904 list_move_tail(&t->entry, firing);
905 }
906
907 ++timers;
908 maxfire = 20;
909 tsk->cputime_expires.sched_exp = 0;
910 while (!list_empty(timers)) {
911 struct cpu_timer_list *t = list_first_entry(timers,
912 struct cpu_timer_list,
913 entry);
914 if (!--maxfire || tsk->se.sum_exec_runtime < t->expires) {
915 tsk->cputime_expires.sched_exp = t->expires;
916 break;
917 }
918 t->firing = 1;
919 list_move_tail(&t->entry, firing);
920 }
921
922 /*
923 * Check for the special case thread timers.
924 */
925 soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
926 if (soft != RLIM_INFINITY) {
927 unsigned long hard =
928 ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
929
930 if (hard != RLIM_INFINITY &&
931 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
932 /*
933 * At the hard limit, we just die.
934 * No need to calculate anything else now.
935 */
936 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
937 return;
938 }
939 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
940 /*
941 * At the soft limit, send a SIGXCPU every second.
942 */
943 if (soft < hard) {
944 soft += USEC_PER_SEC;
945 sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
946 }
947 printk(KERN_INFO
948 "RT Watchdog Timeout: %s[%d]\n",
949 tsk->comm, task_pid_nr(tsk));
950 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
951 }
952 }
953 }
954
955 static void stop_process_timers(struct signal_struct *sig)
956 {
957 struct thread_group_cputimer *cputimer = &sig->cputimer;
958 unsigned long flags;
959
960 raw_spin_lock_irqsave(&cputimer->lock, flags);
961 cputimer->running = 0;
962 raw_spin_unlock_irqrestore(&cputimer->lock, flags);
963 }
964
965 static u32 onecputick;
966
967 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
968 unsigned long long *expires,
969 unsigned long long cur_time, int signo)
970 {
971 if (!it->expires)
972 return;
973
974 if (cur_time >= it->expires) {
975 if (it->incr) {
976 it->expires += it->incr;
977 it->error += it->incr_error;
978 if (it->error >= onecputick) {
979 it->expires -= cputime_one_jiffy;
980 it->error -= onecputick;
981 }
982 } else {
983 it->expires = 0;
984 }
985
986 trace_itimer_expire(signo == SIGPROF ?
987 ITIMER_PROF : ITIMER_VIRTUAL,
988 tsk->signal->leader_pid, cur_time);
989 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
990 }
991
992 if (it->expires && (!*expires || it->expires < *expires)) {
993 *expires = it->expires;
994 }
995 }
996
997 /*
998 * Check for any per-thread CPU timers that have fired and move them
999 * off the tsk->*_timers list onto the firing list. Per-thread timers
1000 * have already been taken off.
1001 */
1002 static void check_process_timers(struct task_struct *tsk,
1003 struct list_head *firing)
1004 {
1005 int maxfire;
1006 struct signal_struct *const sig = tsk->signal;
1007 unsigned long long utime, ptime, virt_expires, prof_expires;
1008 unsigned long long sum_sched_runtime, sched_expires;
1009 struct list_head *timers = sig->cpu_timers;
1010 struct task_cputime cputime;
1011 unsigned long soft;
1012
1013 /*
1014 * Collect the current process totals.
1015 */
1016 thread_group_cputimer(tsk, &cputime);
1017 utime = cputime_to_expires(cputime.utime);
1018 ptime = utime + cputime_to_expires(cputime.stime);
1019 sum_sched_runtime = cputime.sum_exec_runtime;
1020 maxfire = 20;
1021 prof_expires = 0;
1022 while (!list_empty(timers)) {
1023 struct cpu_timer_list *tl = list_first_entry(timers,
1024 struct cpu_timer_list,
1025 entry);
1026 if (!--maxfire || ptime < tl->expires) {
1027 prof_expires = tl->expires;
1028 break;
1029 }
1030 tl->firing = 1;
1031 list_move_tail(&tl->entry, firing);
1032 }
1033
1034 ++timers;
1035 maxfire = 20;
1036 virt_expires = 0;
1037 while (!list_empty(timers)) {
1038 struct cpu_timer_list *tl = list_first_entry(timers,
1039 struct cpu_timer_list,
1040 entry);
1041 if (!--maxfire || utime < tl->expires) {
1042 virt_expires = tl->expires;
1043 break;
1044 }
1045 tl->firing = 1;
1046 list_move_tail(&tl->entry, firing);
1047 }
1048
1049 ++timers;
1050 maxfire = 20;
1051 sched_expires = 0;
1052 while (!list_empty(timers)) {
1053 struct cpu_timer_list *tl = list_first_entry(timers,
1054 struct cpu_timer_list,
1055 entry);
1056 if (!--maxfire || sum_sched_runtime < tl->expires) {
1057 sched_expires = tl->expires;
1058 break;
1059 }
1060 tl->firing = 1;
1061 list_move_tail(&tl->entry, firing);
1062 }
1063
1064 /*
1065 * Check for the special case process timers.
1066 */
1067 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
1068 SIGPROF);
1069 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
1070 SIGVTALRM);
1071 soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1072 if (soft != RLIM_INFINITY) {
1073 unsigned long psecs = cputime_to_secs(ptime);
1074 unsigned long hard =
1075 ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
1076 cputime_t x;
1077 if (psecs >= hard) {
1078 /*
1079 * At the hard limit, we just die.
1080 * No need to calculate anything else now.
1081 */
1082 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1083 return;
1084 }
1085 if (psecs >= soft) {
1086 /*
1087 * At the soft limit, send a SIGXCPU every second.
1088 */
1089 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1090 if (soft < hard) {
1091 soft++;
1092 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
1093 }
1094 }
1095 x = secs_to_cputime(soft);
1096 if (!prof_expires || x < prof_expires) {
1097 prof_expires = x;
1098 }
1099 }
1100
1101 sig->cputime_expires.prof_exp = expires_to_cputime(prof_expires);
1102 sig->cputime_expires.virt_exp = expires_to_cputime(virt_expires);
1103 sig->cputime_expires.sched_exp = sched_expires;
1104 if (task_cputime_zero(&sig->cputime_expires))
1105 stop_process_timers(sig);
1106 }
1107
1108 /*
1109 * This is called from the signal code (via do_schedule_next_timer)
1110 * when the last timer signal was delivered and we have to reload the timer.
1111 */
1112 void posix_cpu_timer_schedule(struct k_itimer *timer)
1113 {
1114 struct task_struct *p = timer->it.cpu.task;
1115 unsigned long long now;
1116
1117 if (unlikely(p == NULL))
1118 /*
1119 * The task was cleaned up already, no future firings.
1120 */
1121 goto out;
1122
1123 /*
1124 * Fetch the current sample and update the timer's expiry time.
1125 */
1126 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1127 cpu_clock_sample(timer->it_clock, p, &now);
1128 bump_cpu_timer(timer, now);
1129 if (unlikely(p->exit_state)) {
1130 clear_dead_task(timer, now);
1131 goto out;
1132 }
1133 read_lock(&tasklist_lock); /* arm_timer needs it. */
1134 spin_lock(&p->sighand->siglock);
1135 } else {
1136 read_lock(&tasklist_lock);
1137 if (unlikely(p->sighand == NULL)) {
1138 /*
1139 * The process has been reaped.
1140 * We can't even collect a sample any more.
1141 */
1142 put_task_struct(p);
1143 timer->it.cpu.task = p = NULL;
1144 timer->it.cpu.expires = 0;
1145 goto out_unlock;
1146 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1147 /*
1148 * We've noticed that the thread is dead, but
1149 * not yet reaped. Take this opportunity to
1150 * drop our task ref.
1151 */
1152 clear_dead_task(timer, now);
1153 goto out_unlock;
1154 }
1155 spin_lock(&p->sighand->siglock);
1156 cpu_timer_sample_group(timer->it_clock, p, &now);
1157 bump_cpu_timer(timer, now);
1158 /* Leave the tasklist_lock locked for the call below. */
1159 }
1160
1161 /*
1162 * Now re-arm for the new expiry time.
1163 */
1164 BUG_ON(!irqs_disabled());
1165 arm_timer(timer);
1166 spin_unlock(&p->sighand->siglock);
1167
1168 out_unlock:
1169 read_unlock(&tasklist_lock);
1170
1171 out:
1172 timer->it_overrun_last = timer->it_overrun;
1173 timer->it_overrun = -1;
1174 ++timer->it_requeue_pending;
1175 }
1176
1177 /**
1178 * task_cputime_expired - Compare two task_cputime entities.
1179 *
1180 * @sample: The task_cputime structure to be checked for expiration.
1181 * @expires: Expiration times, against which @sample will be checked.
1182 *
1183 * Checks @sample against @expires to see if any field of @sample has expired.
1184 * Returns true if any field of the former is greater than the corresponding
1185 * field of the latter if the latter field is set. Otherwise returns false.
1186 */
1187 static inline int task_cputime_expired(const struct task_cputime *sample,
1188 const struct task_cputime *expires)
1189 {
1190 if (expires->utime && sample->utime >= expires->utime)
1191 return 1;
1192 if (expires->stime && sample->utime + sample->stime >= expires->stime)
1193 return 1;
1194 if (expires->sum_exec_runtime != 0 &&
1195 sample->sum_exec_runtime >= expires->sum_exec_runtime)
1196 return 1;
1197 return 0;
1198 }
1199
1200 /**
1201 * fastpath_timer_check - POSIX CPU timers fast path.
1202 *
1203 * @tsk: The task (thread) being checked.
1204 *
1205 * Check the task and thread group timers. If both are zero (there are no
1206 * timers set) return false. Otherwise snapshot the task and thread group
1207 * timers and compare them with the corresponding expiration times. Return
1208 * true if a timer has expired, else return false.
1209 */
1210 static inline int fastpath_timer_check(struct task_struct *tsk)
1211 {
1212 struct signal_struct *sig;
1213 cputime_t utime, stime;
1214
1215 task_cputime(tsk, &utime, &stime);
1216
1217 if (!task_cputime_zero(&tsk->cputime_expires)) {
1218 struct task_cputime task_sample = {
1219 .utime = utime,
1220 .stime = stime,
1221 .sum_exec_runtime = tsk->se.sum_exec_runtime
1222 };
1223
1224 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1225 return 1;
1226 }
1227
1228 sig = tsk->signal;
1229 if (sig->cputimer.running) {
1230 struct task_cputime group_sample;
1231
1232 raw_spin_lock(&sig->cputimer.lock);
1233 group_sample = sig->cputimer.cputime;
1234 raw_spin_unlock(&sig->cputimer.lock);
1235
1236 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1237 return 1;
1238 }
1239
1240 return 0;
1241 }
1242
1243 /*
1244 * This is called from the timer interrupt handler. The irq handler has
1245 * already updated our counts. We need to check if any timers fire now.
1246 * Interrupts are disabled.
1247 */
1248 void run_posix_cpu_timers(struct task_struct *tsk)
1249 {
1250 LIST_HEAD(firing);
1251 struct k_itimer *timer, *next;
1252 unsigned long flags;
1253
1254 BUG_ON(!irqs_disabled());
1255
1256 /*
1257 * The fast path checks that there are no expired thread or thread
1258 * group timers. If that's so, just return.
1259 */
1260 if (!fastpath_timer_check(tsk))
1261 return;
1262
1263 if (!lock_task_sighand(tsk, &flags))
1264 return;
1265 /*
1266 * Here we take off tsk->signal->cpu_timers[N] and
1267 * tsk->cpu_timers[N] all the timers that are firing, and
1268 * put them on the firing list.
1269 */
1270 check_thread_timers(tsk, &firing);
1271 /*
1272 * If there are any active process wide timers (POSIX 1.b, itimers,
1273 * RLIMIT_CPU) cputimer must be running.
1274 */
1275 if (tsk->signal->cputimer.running)
1276 check_process_timers(tsk, &firing);
1277
1278 /*
1279 * We must release these locks before taking any timer's lock.
1280 * There is a potential race with timer deletion here, as the
1281 * siglock now protects our private firing list. We have set
1282 * the firing flag in each timer, so that a deletion attempt
1283 * that gets the timer lock before we do will give it up and
1284 * spin until we've taken care of that timer below.
1285 */
1286 unlock_task_sighand(tsk, &flags);
1287
1288 /*
1289 * Now that all the timers on our list have the firing flag,
1290 * no one will touch their list entries but us. We'll take
1291 * each timer's lock before clearing its firing flag, so no
1292 * timer call will interfere.
1293 */
1294 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1295 int cpu_firing;
1296
1297 spin_lock(&timer->it_lock);
1298 list_del_init(&timer->it.cpu.entry);
1299 cpu_firing = timer->it.cpu.firing;
1300 timer->it.cpu.firing = 0;
1301 /*
1302 * The firing flag is -1 if we collided with a reset
1303 * of the timer, which already reported this
1304 * almost-firing as an overrun. So don't generate an event.
1305 */
1306 if (likely(cpu_firing >= 0))
1307 cpu_timer_fire(timer);
1308 spin_unlock(&timer->it_lock);
1309 }
1310
1311 /*
1312 * In case some timers were rescheduled after the queue got emptied,
1313 * wake up full dynticks CPUs.
1314 */
1315 if (tsk->signal->cputimer.running)
1316 posix_cpu_timer_kick_nohz();
1317 }
1318
1319 /*
1320 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1321 * The tsk->sighand->siglock must be held by the caller.
1322 */
1323 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1324 cputime_t *newval, cputime_t *oldval)
1325 {
1326 unsigned long long now;
1327
1328 BUG_ON(clock_idx == CPUCLOCK_SCHED);
1329 cpu_timer_sample_group(clock_idx, tsk, &now);
1330
1331 if (oldval) {
1332 /*
1333 * We are setting itimer. The *oldval is absolute and we update
1334 * it to be relative, *newval argument is relative and we update
1335 * it to be absolute.
1336 */
1337 if (*oldval) {
1338 if (*oldval <= now) {
1339 /* Just about to fire. */
1340 *oldval = cputime_one_jiffy;
1341 } else {
1342 *oldval -= now;
1343 }
1344 }
1345
1346 if (!*newval)
1347 goto out;
1348 *newval += now;
1349 }
1350
1351 /*
1352 * Update expiration cache if we are the earliest timer, or eventually
1353 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1354 */
1355 switch (clock_idx) {
1356 case CPUCLOCK_PROF:
1357 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1358 tsk->signal->cputime_expires.prof_exp = *newval;
1359 break;
1360 case CPUCLOCK_VIRT:
1361 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1362 tsk->signal->cputime_expires.virt_exp = *newval;
1363 break;
1364 }
1365 out:
1366 posix_cpu_timer_kick_nohz();
1367 }
1368
1369 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1370 struct timespec *rqtp, struct itimerspec *it)
1371 {
1372 struct k_itimer timer;
1373 int error;
1374
1375 /*
1376 * Set up a temporary timer and then wait for it to go off.
1377 */
1378 memset(&timer, 0, sizeof timer);
1379 spin_lock_init(&timer.it_lock);
1380 timer.it_clock = which_clock;
1381 timer.it_overrun = -1;
1382 error = posix_cpu_timer_create(&timer);
1383 timer.it_process = current;
1384 if (!error) {
1385 static struct itimerspec zero_it;
1386
1387 memset(it, 0, sizeof *it);
1388 it->it_value = *rqtp;
1389
1390 spin_lock_irq(&timer.it_lock);
1391 error = posix_cpu_timer_set(&timer, flags, it, NULL);
1392 if (error) {
1393 spin_unlock_irq(&timer.it_lock);
1394 return error;
1395 }
1396
1397 while (!signal_pending(current)) {
1398 if (timer.it.cpu.expires == 0) {
1399 /*
1400 * Our timer fired and was reset, below
1401 * deletion can not fail.
1402 */
1403 posix_cpu_timer_del(&timer);
1404 spin_unlock_irq(&timer.it_lock);
1405 return 0;
1406 }
1407
1408 /*
1409 * Block until cpu_timer_fire (or a signal) wakes us.
1410 */
1411 __set_current_state(TASK_INTERRUPTIBLE);
1412 spin_unlock_irq(&timer.it_lock);
1413 schedule();
1414 spin_lock_irq(&timer.it_lock);
1415 }
1416
1417 /*
1418 * We were interrupted by a signal.
1419 */
1420 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1421 error = posix_cpu_timer_set(&timer, 0, &zero_it, it);
1422 if (!error) {
1423 /*
1424 * Timer is now unarmed, deletion can not fail.
1425 */
1426 posix_cpu_timer_del(&timer);
1427 }
1428 spin_unlock_irq(&timer.it_lock);
1429
1430 while (error == TIMER_RETRY) {
1431 /*
1432 * We need to handle case when timer was or is in the
1433 * middle of firing. In other cases we already freed
1434 * resources.
1435 */
1436 spin_lock_irq(&timer.it_lock);
1437 error = posix_cpu_timer_del(&timer);
1438 spin_unlock_irq(&timer.it_lock);
1439 }
1440
1441 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1442 /*
1443 * It actually did fire already.
1444 */
1445 return 0;
1446 }
1447
1448 error = -ERESTART_RESTARTBLOCK;
1449 }
1450
1451 return error;
1452 }
1453
1454 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1455
1456 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1457 struct timespec *rqtp, struct timespec __user *rmtp)
1458 {
1459 struct restart_block *restart_block =
1460 &current_thread_info()->restart_block;
1461 struct itimerspec it;
1462 int error;
1463
1464 /*
1465 * Diagnose required errors first.
1466 */
1467 if (CPUCLOCK_PERTHREAD(which_clock) &&
1468 (CPUCLOCK_PID(which_clock) == 0 ||
1469 CPUCLOCK_PID(which_clock) == current->pid))
1470 return -EINVAL;
1471
1472 error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1473
1474 if (error == -ERESTART_RESTARTBLOCK) {
1475
1476 if (flags & TIMER_ABSTIME)
1477 return -ERESTARTNOHAND;
1478 /*
1479 * Report back to the user the time still remaining.
1480 */
1481 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1482 return -EFAULT;
1483
1484 restart_block->fn = posix_cpu_nsleep_restart;
1485 restart_block->nanosleep.clockid = which_clock;
1486 restart_block->nanosleep.rmtp = rmtp;
1487 restart_block->nanosleep.expires = timespec_to_ns(rqtp);
1488 }
1489 return error;
1490 }
1491
1492 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1493 {
1494 clockid_t which_clock = restart_block->nanosleep.clockid;
1495 struct timespec t;
1496 struct itimerspec it;
1497 int error;
1498
1499 t = ns_to_timespec(restart_block->nanosleep.expires);
1500
1501 error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1502
1503 if (error == -ERESTART_RESTARTBLOCK) {
1504 struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
1505 /*
1506 * Report back to the user the time still remaining.
1507 */
1508 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1509 return -EFAULT;
1510
1511 restart_block->nanosleep.expires = timespec_to_ns(&t);
1512 }
1513 return error;
1514
1515 }
1516
1517 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1518 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1519
1520 static int process_cpu_clock_getres(const clockid_t which_clock,
1521 struct timespec *tp)
1522 {
1523 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1524 }
1525 static int process_cpu_clock_get(const clockid_t which_clock,
1526 struct timespec *tp)
1527 {
1528 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1529 }
1530 static int process_cpu_timer_create(struct k_itimer *timer)
1531 {
1532 timer->it_clock = PROCESS_CLOCK;
1533 return posix_cpu_timer_create(timer);
1534 }
1535 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1536 struct timespec *rqtp,
1537 struct timespec __user *rmtp)
1538 {
1539 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1540 }
1541 static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1542 {
1543 return -EINVAL;
1544 }
1545 static int thread_cpu_clock_getres(const clockid_t which_clock,
1546 struct timespec *tp)
1547 {
1548 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1549 }
1550 static int thread_cpu_clock_get(const clockid_t which_clock,
1551 struct timespec *tp)
1552 {
1553 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1554 }
1555 static int thread_cpu_timer_create(struct k_itimer *timer)
1556 {
1557 timer->it_clock = THREAD_CLOCK;
1558 return posix_cpu_timer_create(timer);
1559 }
1560
1561 struct k_clock clock_posix_cpu = {
1562 .clock_getres = posix_cpu_clock_getres,
1563 .clock_set = posix_cpu_clock_set,
1564 .clock_get = posix_cpu_clock_get,
1565 .timer_create = posix_cpu_timer_create,
1566 .nsleep = posix_cpu_nsleep,
1567 .nsleep_restart = posix_cpu_nsleep_restart,
1568 .timer_set = posix_cpu_timer_set,
1569 .timer_del = posix_cpu_timer_del,
1570 .timer_get = posix_cpu_timer_get,
1571 };
1572
1573 static __init int init_posix_cpu_timers(void)
1574 {
1575 struct k_clock process = {
1576 .clock_getres = process_cpu_clock_getres,
1577 .clock_get = process_cpu_clock_get,
1578 .timer_create = process_cpu_timer_create,
1579 .nsleep = process_cpu_nsleep,
1580 .nsleep_restart = process_cpu_nsleep_restart,
1581 };
1582 struct k_clock thread = {
1583 .clock_getres = thread_cpu_clock_getres,
1584 .clock_get = thread_cpu_clock_get,
1585 .timer_create = thread_cpu_timer_create,
1586 };
1587 struct timespec ts;
1588
1589 posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1590 posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1591
1592 cputime_to_timespec(cputime_one_jiffy, &ts);
1593 onecputick = ts.tv_nsec;
1594 WARN_ON(ts.tv_sec != 0);
1595
1596 return 0;
1597 }
1598 __initcall(init_posix_cpu_timers);
This page took 0.083186 seconds and 6 git commands to generate.