posix-timers: Use sighand lock instead of tasklist_lock on timer deletion
[deliverable/linux.git] / kernel / posix-cpu-timers.c
1 /*
2 * Implement CPU time clocks for the POSIX clock interface.
3 */
4
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
12 #include <linux/random.h>
13 #include <linux/tick.h>
14 #include <linux/workqueue.h>
15
16 /*
17 * Called after updating RLIMIT_CPU to run cpu timer and update
18 * tsk->signal->cputime_expires expiration cache if necessary. Needs
19 * siglock protection since other code may update expiration cache as
20 * well.
21 */
22 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
23 {
24 cputime_t cputime = secs_to_cputime(rlim_new);
25
26 spin_lock_irq(&task->sighand->siglock);
27 set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
28 spin_unlock_irq(&task->sighand->siglock);
29 }
30
31 static int check_clock(const clockid_t which_clock)
32 {
33 int error = 0;
34 struct task_struct *p;
35 const pid_t pid = CPUCLOCK_PID(which_clock);
36
37 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
38 return -EINVAL;
39
40 if (pid == 0)
41 return 0;
42
43 rcu_read_lock();
44 p = find_task_by_vpid(pid);
45 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
46 same_thread_group(p, current) : has_group_leader_pid(p))) {
47 error = -EINVAL;
48 }
49 rcu_read_unlock();
50
51 return error;
52 }
53
54 static inline unsigned long long
55 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
56 {
57 unsigned long long ret;
58
59 ret = 0; /* high half always zero when .cpu used */
60 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
61 ret = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
62 } else {
63 ret = cputime_to_expires(timespec_to_cputime(tp));
64 }
65 return ret;
66 }
67
68 static void sample_to_timespec(const clockid_t which_clock,
69 unsigned long long expires,
70 struct timespec *tp)
71 {
72 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
73 *tp = ns_to_timespec(expires);
74 else
75 cputime_to_timespec((__force cputime_t)expires, tp);
76 }
77
78 /*
79 * Update expiry time from increment, and increase overrun count,
80 * given the current clock sample.
81 */
82 static void bump_cpu_timer(struct k_itimer *timer,
83 unsigned long long now)
84 {
85 int i;
86 unsigned long long delta, incr;
87
88 if (timer->it.cpu.incr == 0)
89 return;
90
91 if (now < timer->it.cpu.expires)
92 return;
93
94 incr = timer->it.cpu.incr;
95 delta = now + incr - timer->it.cpu.expires;
96
97 /* Don't use (incr*2 < delta), incr*2 might overflow. */
98 for (i = 0; incr < delta - incr; i++)
99 incr = incr << 1;
100
101 for (; i >= 0; incr >>= 1, i--) {
102 if (delta < incr)
103 continue;
104
105 timer->it.cpu.expires += incr;
106 timer->it_overrun += 1 << i;
107 delta -= incr;
108 }
109 }
110
111 /**
112 * task_cputime_zero - Check a task_cputime struct for all zero fields.
113 *
114 * @cputime: The struct to compare.
115 *
116 * Checks @cputime to see if all fields are zero. Returns true if all fields
117 * are zero, false if any field is nonzero.
118 */
119 static inline int task_cputime_zero(const struct task_cputime *cputime)
120 {
121 if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
122 return 1;
123 return 0;
124 }
125
126 static inline unsigned long long prof_ticks(struct task_struct *p)
127 {
128 cputime_t utime, stime;
129
130 task_cputime(p, &utime, &stime);
131
132 return cputime_to_expires(utime + stime);
133 }
134 static inline unsigned long long virt_ticks(struct task_struct *p)
135 {
136 cputime_t utime;
137
138 task_cputime(p, &utime, NULL);
139
140 return cputime_to_expires(utime);
141 }
142
143 static int
144 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
145 {
146 int error = check_clock(which_clock);
147 if (!error) {
148 tp->tv_sec = 0;
149 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
150 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
151 /*
152 * If sched_clock is using a cycle counter, we
153 * don't have any idea of its true resolution
154 * exported, but it is much more than 1s/HZ.
155 */
156 tp->tv_nsec = 1;
157 }
158 }
159 return error;
160 }
161
162 static int
163 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
164 {
165 /*
166 * You can never reset a CPU clock, but we check for other errors
167 * in the call before failing with EPERM.
168 */
169 int error = check_clock(which_clock);
170 if (error == 0) {
171 error = -EPERM;
172 }
173 return error;
174 }
175
176
177 /*
178 * Sample a per-thread clock for the given task.
179 */
180 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
181 unsigned long long *sample)
182 {
183 switch (CPUCLOCK_WHICH(which_clock)) {
184 default:
185 return -EINVAL;
186 case CPUCLOCK_PROF:
187 *sample = prof_ticks(p);
188 break;
189 case CPUCLOCK_VIRT:
190 *sample = virt_ticks(p);
191 break;
192 case CPUCLOCK_SCHED:
193 *sample = task_sched_runtime(p);
194 break;
195 }
196 return 0;
197 }
198
199 static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
200 {
201 if (b->utime > a->utime)
202 a->utime = b->utime;
203
204 if (b->stime > a->stime)
205 a->stime = b->stime;
206
207 if (b->sum_exec_runtime > a->sum_exec_runtime)
208 a->sum_exec_runtime = b->sum_exec_runtime;
209 }
210
211 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
212 {
213 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
214 struct task_cputime sum;
215 unsigned long flags;
216
217 if (!cputimer->running) {
218 /*
219 * The POSIX timer interface allows for absolute time expiry
220 * values through the TIMER_ABSTIME flag, therefore we have
221 * to synchronize the timer to the clock every time we start
222 * it.
223 */
224 thread_group_cputime(tsk, &sum);
225 raw_spin_lock_irqsave(&cputimer->lock, flags);
226 cputimer->running = 1;
227 update_gt_cputime(&cputimer->cputime, &sum);
228 } else
229 raw_spin_lock_irqsave(&cputimer->lock, flags);
230 *times = cputimer->cputime;
231 raw_spin_unlock_irqrestore(&cputimer->lock, flags);
232 }
233
234 /*
235 * Sample a process (thread group) clock for the given group_leader task.
236 * Must be called with tasklist_lock held for reading.
237 */
238 static int cpu_clock_sample_group(const clockid_t which_clock,
239 struct task_struct *p,
240 unsigned long long *sample)
241 {
242 struct task_cputime cputime;
243
244 switch (CPUCLOCK_WHICH(which_clock)) {
245 default:
246 return -EINVAL;
247 case CPUCLOCK_PROF:
248 thread_group_cputime(p, &cputime);
249 *sample = cputime_to_expires(cputime.utime + cputime.stime);
250 break;
251 case CPUCLOCK_VIRT:
252 thread_group_cputime(p, &cputime);
253 *sample = cputime_to_expires(cputime.utime);
254 break;
255 case CPUCLOCK_SCHED:
256 thread_group_cputime(p, &cputime);
257 *sample = cputime.sum_exec_runtime;
258 break;
259 }
260 return 0;
261 }
262
263 static int posix_cpu_clock_get_task(struct task_struct *tsk,
264 const clockid_t which_clock,
265 struct timespec *tp)
266 {
267 int err = -EINVAL;
268 unsigned long long rtn;
269
270 if (CPUCLOCK_PERTHREAD(which_clock)) {
271 if (same_thread_group(tsk, current))
272 err = cpu_clock_sample(which_clock, tsk, &rtn);
273 } else {
274 unsigned long flags;
275 struct sighand_struct *sighand;
276
277 /*
278 * while_each_thread() is not yet entirely RCU safe,
279 * keep locking the group while sampling process
280 * clock for now.
281 */
282 sighand = lock_task_sighand(tsk, &flags);
283 if (!sighand)
284 return err;
285
286 if (tsk == current || thread_group_leader(tsk))
287 err = cpu_clock_sample_group(which_clock, tsk, &rtn);
288
289 unlock_task_sighand(tsk, &flags);
290 }
291
292 if (!err)
293 sample_to_timespec(which_clock, rtn, tp);
294
295 return err;
296 }
297
298
299 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
300 {
301 const pid_t pid = CPUCLOCK_PID(which_clock);
302 int err = -EINVAL;
303
304 if (pid == 0) {
305 /*
306 * Special case constant value for our own clocks.
307 * We don't have to do any lookup to find ourselves.
308 */
309 err = posix_cpu_clock_get_task(current, which_clock, tp);
310 } else {
311 /*
312 * Find the given PID, and validate that the caller
313 * should be able to see it.
314 */
315 struct task_struct *p;
316 rcu_read_lock();
317 p = find_task_by_vpid(pid);
318 if (p)
319 err = posix_cpu_clock_get_task(p, which_clock, tp);
320 rcu_read_unlock();
321 }
322
323 return err;
324 }
325
326
327 /*
328 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
329 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
330 * new timer already all-zeros initialized.
331 */
332 static int posix_cpu_timer_create(struct k_itimer *new_timer)
333 {
334 int ret = 0;
335 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
336 struct task_struct *p;
337
338 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
339 return -EINVAL;
340
341 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
342
343 rcu_read_lock();
344 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
345 if (pid == 0) {
346 p = current;
347 } else {
348 p = find_task_by_vpid(pid);
349 if (p && !same_thread_group(p, current))
350 p = NULL;
351 }
352 } else {
353 if (pid == 0) {
354 p = current->group_leader;
355 } else {
356 p = find_task_by_vpid(pid);
357 if (p && !has_group_leader_pid(p))
358 p = NULL;
359 }
360 }
361 new_timer->it.cpu.task = p;
362 if (p) {
363 get_task_struct(p);
364 } else {
365 ret = -EINVAL;
366 }
367 rcu_read_unlock();
368
369 return ret;
370 }
371
372 /*
373 * Clean up a CPU-clock timer that is about to be destroyed.
374 * This is called from timer deletion with the timer already locked.
375 * If we return TIMER_RETRY, it's necessary to release the timer's lock
376 * and try again. (This happens when the timer is in the middle of firing.)
377 */
378 static int posix_cpu_timer_del(struct k_itimer *timer)
379 {
380 int ret = 0;
381 unsigned long flags;
382 struct sighand_struct *sighand;
383 struct task_struct *p = timer->it.cpu.task;
384
385 WARN_ON_ONCE(p == NULL);
386
387 /*
388 * Protect against sighand release/switch in exit/exec and process/
389 * thread timer list entry concurrent read/writes.
390 */
391 sighand = lock_task_sighand(p, &flags);
392 if (unlikely(sighand == NULL)) {
393 /*
394 * We raced with the reaping of the task.
395 * The deletion should have cleared us off the list.
396 */
397 BUG_ON(!list_empty(&timer->it.cpu.entry));
398 } else {
399 if (timer->it.cpu.firing)
400 ret = TIMER_RETRY;
401 else
402 list_del(&timer->it.cpu.entry);
403
404 unlock_task_sighand(p, &flags);
405 }
406
407 if (!ret)
408 put_task_struct(p);
409
410 return ret;
411 }
412
413 static void cleanup_timers_list(struct list_head *head)
414 {
415 struct cpu_timer_list *timer, *next;
416
417 list_for_each_entry_safe(timer, next, head, entry)
418 list_del_init(&timer->entry);
419 }
420
421 /*
422 * Clean out CPU timers still ticking when a thread exited. The task
423 * pointer is cleared, and the expiry time is replaced with the residual
424 * time for later timer_gettime calls to return.
425 * This must be called with the siglock held.
426 */
427 static void cleanup_timers(struct list_head *head)
428 {
429 cleanup_timers_list(head);
430 cleanup_timers_list(++head);
431 cleanup_timers_list(++head);
432 }
433
434 /*
435 * These are both called with the siglock held, when the current thread
436 * is being reaped. When the final (leader) thread in the group is reaped,
437 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
438 */
439 void posix_cpu_timers_exit(struct task_struct *tsk)
440 {
441 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
442 sizeof(unsigned long long));
443 cleanup_timers(tsk->cpu_timers);
444
445 }
446 void posix_cpu_timers_exit_group(struct task_struct *tsk)
447 {
448 cleanup_timers(tsk->signal->cpu_timers);
449 }
450
451 static inline int expires_gt(cputime_t expires, cputime_t new_exp)
452 {
453 return expires == 0 || expires > new_exp;
454 }
455
456 /*
457 * Insert the timer on the appropriate list before any timers that
458 * expire later. This must be called with the tasklist_lock held
459 * for reading, interrupts disabled and p->sighand->siglock taken.
460 */
461 static void arm_timer(struct k_itimer *timer)
462 {
463 struct task_struct *p = timer->it.cpu.task;
464 struct list_head *head, *listpos;
465 struct task_cputime *cputime_expires;
466 struct cpu_timer_list *const nt = &timer->it.cpu;
467 struct cpu_timer_list *next;
468
469 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
470 head = p->cpu_timers;
471 cputime_expires = &p->cputime_expires;
472 } else {
473 head = p->signal->cpu_timers;
474 cputime_expires = &p->signal->cputime_expires;
475 }
476 head += CPUCLOCK_WHICH(timer->it_clock);
477
478 listpos = head;
479 list_for_each_entry(next, head, entry) {
480 if (nt->expires < next->expires)
481 break;
482 listpos = &next->entry;
483 }
484 list_add(&nt->entry, listpos);
485
486 if (listpos == head) {
487 unsigned long long exp = nt->expires;
488
489 /*
490 * We are the new earliest-expiring POSIX 1.b timer, hence
491 * need to update expiration cache. Take into account that
492 * for process timers we share expiration cache with itimers
493 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
494 */
495
496 switch (CPUCLOCK_WHICH(timer->it_clock)) {
497 case CPUCLOCK_PROF:
498 if (expires_gt(cputime_expires->prof_exp, expires_to_cputime(exp)))
499 cputime_expires->prof_exp = expires_to_cputime(exp);
500 break;
501 case CPUCLOCK_VIRT:
502 if (expires_gt(cputime_expires->virt_exp, expires_to_cputime(exp)))
503 cputime_expires->virt_exp = expires_to_cputime(exp);
504 break;
505 case CPUCLOCK_SCHED:
506 if (cputime_expires->sched_exp == 0 ||
507 cputime_expires->sched_exp > exp)
508 cputime_expires->sched_exp = exp;
509 break;
510 }
511 }
512 }
513
514 /*
515 * The timer is locked, fire it and arrange for its reload.
516 */
517 static void cpu_timer_fire(struct k_itimer *timer)
518 {
519 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
520 /*
521 * User don't want any signal.
522 */
523 timer->it.cpu.expires = 0;
524 } else if (unlikely(timer->sigq == NULL)) {
525 /*
526 * This a special case for clock_nanosleep,
527 * not a normal timer from sys_timer_create.
528 */
529 wake_up_process(timer->it_process);
530 timer->it.cpu.expires = 0;
531 } else if (timer->it.cpu.incr == 0) {
532 /*
533 * One-shot timer. Clear it as soon as it's fired.
534 */
535 posix_timer_event(timer, 0);
536 timer->it.cpu.expires = 0;
537 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
538 /*
539 * The signal did not get queued because the signal
540 * was ignored, so we won't get any callback to
541 * reload the timer. But we need to keep it
542 * ticking in case the signal is deliverable next time.
543 */
544 posix_cpu_timer_schedule(timer);
545 }
546 }
547
548 /*
549 * Sample a process (thread group) timer for the given group_leader task.
550 * Must be called with tasklist_lock held for reading.
551 */
552 static int cpu_timer_sample_group(const clockid_t which_clock,
553 struct task_struct *p,
554 unsigned long long *sample)
555 {
556 struct task_cputime cputime;
557
558 thread_group_cputimer(p, &cputime);
559 switch (CPUCLOCK_WHICH(which_clock)) {
560 default:
561 return -EINVAL;
562 case CPUCLOCK_PROF:
563 *sample = cputime_to_expires(cputime.utime + cputime.stime);
564 break;
565 case CPUCLOCK_VIRT:
566 *sample = cputime_to_expires(cputime.utime);
567 break;
568 case CPUCLOCK_SCHED:
569 *sample = cputime.sum_exec_runtime + task_delta_exec(p);
570 break;
571 }
572 return 0;
573 }
574
575 #ifdef CONFIG_NO_HZ_FULL
576 static void nohz_kick_work_fn(struct work_struct *work)
577 {
578 tick_nohz_full_kick_all();
579 }
580
581 static DECLARE_WORK(nohz_kick_work, nohz_kick_work_fn);
582
583 /*
584 * We need the IPIs to be sent from sane process context.
585 * The posix cpu timers are always set with irqs disabled.
586 */
587 static void posix_cpu_timer_kick_nohz(void)
588 {
589 if (context_tracking_is_enabled())
590 schedule_work(&nohz_kick_work);
591 }
592
593 bool posix_cpu_timers_can_stop_tick(struct task_struct *tsk)
594 {
595 if (!task_cputime_zero(&tsk->cputime_expires))
596 return false;
597
598 if (tsk->signal->cputimer.running)
599 return false;
600
601 return true;
602 }
603 #else
604 static inline void posix_cpu_timer_kick_nohz(void) { }
605 #endif
606
607 /*
608 * Guts of sys_timer_settime for CPU timers.
609 * This is called with the timer locked and interrupts disabled.
610 * If we return TIMER_RETRY, it's necessary to release the timer's lock
611 * and try again. (This happens when the timer is in the middle of firing.)
612 */
613 static int posix_cpu_timer_set(struct k_itimer *timer, int flags,
614 struct itimerspec *new, struct itimerspec *old)
615 {
616 struct task_struct *p = timer->it.cpu.task;
617 unsigned long long old_expires, new_expires, old_incr, val;
618 int ret;
619
620 WARN_ON_ONCE(p == NULL);
621
622 new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
623
624 read_lock(&tasklist_lock);
625 /*
626 * We need the tasklist_lock to protect against reaping that
627 * clears p->sighand. If p has just been reaped, we can no
628 * longer get any information about it at all.
629 */
630 if (unlikely(p->sighand == NULL)) {
631 read_unlock(&tasklist_lock);
632 return -ESRCH;
633 }
634
635 /*
636 * Disarm any old timer after extracting its expiry time.
637 */
638 BUG_ON(!irqs_disabled());
639
640 ret = 0;
641 old_incr = timer->it.cpu.incr;
642 spin_lock(&p->sighand->siglock);
643 old_expires = timer->it.cpu.expires;
644 if (unlikely(timer->it.cpu.firing)) {
645 timer->it.cpu.firing = -1;
646 ret = TIMER_RETRY;
647 } else
648 list_del_init(&timer->it.cpu.entry);
649
650 /*
651 * We need to sample the current value to convert the new
652 * value from to relative and absolute, and to convert the
653 * old value from absolute to relative. To set a process
654 * timer, we need a sample to balance the thread expiry
655 * times (in arm_timer). With an absolute time, we must
656 * check if it's already passed. In short, we need a sample.
657 */
658 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
659 cpu_clock_sample(timer->it_clock, p, &val);
660 } else {
661 cpu_timer_sample_group(timer->it_clock, p, &val);
662 }
663
664 if (old) {
665 if (old_expires == 0) {
666 old->it_value.tv_sec = 0;
667 old->it_value.tv_nsec = 0;
668 } else {
669 /*
670 * Update the timer in case it has
671 * overrun already. If it has,
672 * we'll report it as having overrun
673 * and with the next reloaded timer
674 * already ticking, though we are
675 * swallowing that pending
676 * notification here to install the
677 * new setting.
678 */
679 bump_cpu_timer(timer, val);
680 if (val < timer->it.cpu.expires) {
681 old_expires = timer->it.cpu.expires - val;
682 sample_to_timespec(timer->it_clock,
683 old_expires,
684 &old->it_value);
685 } else {
686 old->it_value.tv_nsec = 1;
687 old->it_value.tv_sec = 0;
688 }
689 }
690 }
691
692 if (unlikely(ret)) {
693 /*
694 * We are colliding with the timer actually firing.
695 * Punt after filling in the timer's old value, and
696 * disable this firing since we are already reporting
697 * it as an overrun (thanks to bump_cpu_timer above).
698 */
699 spin_unlock(&p->sighand->siglock);
700 read_unlock(&tasklist_lock);
701 goto out;
702 }
703
704 if (new_expires != 0 && !(flags & TIMER_ABSTIME)) {
705 new_expires += val;
706 }
707
708 /*
709 * Install the new expiry time (or zero).
710 * For a timer with no notification action, we don't actually
711 * arm the timer (we'll just fake it for timer_gettime).
712 */
713 timer->it.cpu.expires = new_expires;
714 if (new_expires != 0 && val < new_expires) {
715 arm_timer(timer);
716 }
717
718 spin_unlock(&p->sighand->siglock);
719 read_unlock(&tasklist_lock);
720
721 /*
722 * Install the new reload setting, and
723 * set up the signal and overrun bookkeeping.
724 */
725 timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
726 &new->it_interval);
727
728 /*
729 * This acts as a modification timestamp for the timer,
730 * so any automatic reload attempt will punt on seeing
731 * that we have reset the timer manually.
732 */
733 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
734 ~REQUEUE_PENDING;
735 timer->it_overrun_last = 0;
736 timer->it_overrun = -1;
737
738 if (new_expires != 0 && !(val < new_expires)) {
739 /*
740 * The designated time already passed, so we notify
741 * immediately, even if the thread never runs to
742 * accumulate more time on this clock.
743 */
744 cpu_timer_fire(timer);
745 }
746
747 ret = 0;
748 out:
749 if (old) {
750 sample_to_timespec(timer->it_clock,
751 old_incr, &old->it_interval);
752 }
753 if (!ret)
754 posix_cpu_timer_kick_nohz();
755 return ret;
756 }
757
758 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
759 {
760 unsigned long long now;
761 struct task_struct *p = timer->it.cpu.task;
762
763 WARN_ON_ONCE(p == NULL);
764
765 /*
766 * Easy part: convert the reload time.
767 */
768 sample_to_timespec(timer->it_clock,
769 timer->it.cpu.incr, &itp->it_interval);
770
771 if (timer->it.cpu.expires == 0) { /* Timer not armed at all. */
772 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
773 return;
774 }
775
776 /*
777 * Sample the clock to take the difference with the expiry time.
778 */
779 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
780 cpu_clock_sample(timer->it_clock, p, &now);
781 } else {
782 read_lock(&tasklist_lock);
783 if (unlikely(p->sighand == NULL)) {
784 /*
785 * The process has been reaped.
786 * We can't even collect a sample any more.
787 * Call the timer disarmed, nothing else to do.
788 */
789 timer->it.cpu.expires = 0;
790 sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
791 &itp->it_value);
792 read_unlock(&tasklist_lock);
793 } else {
794 cpu_timer_sample_group(timer->it_clock, p, &now);
795 }
796 read_unlock(&tasklist_lock);
797 }
798
799 if (now < timer->it.cpu.expires) {
800 sample_to_timespec(timer->it_clock,
801 timer->it.cpu.expires - now,
802 &itp->it_value);
803 } else {
804 /*
805 * The timer should have expired already, but the firing
806 * hasn't taken place yet. Say it's just about to expire.
807 */
808 itp->it_value.tv_nsec = 1;
809 itp->it_value.tv_sec = 0;
810 }
811 }
812
813 static unsigned long long
814 check_timers_list(struct list_head *timers,
815 struct list_head *firing,
816 unsigned long long curr)
817 {
818 int maxfire = 20;
819
820 while (!list_empty(timers)) {
821 struct cpu_timer_list *t;
822
823 t = list_first_entry(timers, struct cpu_timer_list, entry);
824
825 if (!--maxfire || curr < t->expires)
826 return t->expires;
827
828 t->firing = 1;
829 list_move_tail(&t->entry, firing);
830 }
831
832 return 0;
833 }
834
835 /*
836 * Check for any per-thread CPU timers that have fired and move them off
837 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
838 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
839 */
840 static void check_thread_timers(struct task_struct *tsk,
841 struct list_head *firing)
842 {
843 struct list_head *timers = tsk->cpu_timers;
844 struct signal_struct *const sig = tsk->signal;
845 struct task_cputime *tsk_expires = &tsk->cputime_expires;
846 unsigned long long expires;
847 unsigned long soft;
848
849 expires = check_timers_list(timers, firing, prof_ticks(tsk));
850 tsk_expires->prof_exp = expires_to_cputime(expires);
851
852 expires = check_timers_list(++timers, firing, virt_ticks(tsk));
853 tsk_expires->virt_exp = expires_to_cputime(expires);
854
855 tsk_expires->sched_exp = check_timers_list(++timers, firing,
856 tsk->se.sum_exec_runtime);
857
858 /*
859 * Check for the special case thread timers.
860 */
861 soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
862 if (soft != RLIM_INFINITY) {
863 unsigned long hard =
864 ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
865
866 if (hard != RLIM_INFINITY &&
867 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
868 /*
869 * At the hard limit, we just die.
870 * No need to calculate anything else now.
871 */
872 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
873 return;
874 }
875 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
876 /*
877 * At the soft limit, send a SIGXCPU every second.
878 */
879 if (soft < hard) {
880 soft += USEC_PER_SEC;
881 sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
882 }
883 printk(KERN_INFO
884 "RT Watchdog Timeout: %s[%d]\n",
885 tsk->comm, task_pid_nr(tsk));
886 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
887 }
888 }
889 }
890
891 static void stop_process_timers(struct signal_struct *sig)
892 {
893 struct thread_group_cputimer *cputimer = &sig->cputimer;
894 unsigned long flags;
895
896 raw_spin_lock_irqsave(&cputimer->lock, flags);
897 cputimer->running = 0;
898 raw_spin_unlock_irqrestore(&cputimer->lock, flags);
899 }
900
901 static u32 onecputick;
902
903 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
904 unsigned long long *expires,
905 unsigned long long cur_time, int signo)
906 {
907 if (!it->expires)
908 return;
909
910 if (cur_time >= it->expires) {
911 if (it->incr) {
912 it->expires += it->incr;
913 it->error += it->incr_error;
914 if (it->error >= onecputick) {
915 it->expires -= cputime_one_jiffy;
916 it->error -= onecputick;
917 }
918 } else {
919 it->expires = 0;
920 }
921
922 trace_itimer_expire(signo == SIGPROF ?
923 ITIMER_PROF : ITIMER_VIRTUAL,
924 tsk->signal->leader_pid, cur_time);
925 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
926 }
927
928 if (it->expires && (!*expires || it->expires < *expires)) {
929 *expires = it->expires;
930 }
931 }
932
933 /*
934 * Check for any per-thread CPU timers that have fired and move them
935 * off the tsk->*_timers list onto the firing list. Per-thread timers
936 * have already been taken off.
937 */
938 static void check_process_timers(struct task_struct *tsk,
939 struct list_head *firing)
940 {
941 struct signal_struct *const sig = tsk->signal;
942 unsigned long long utime, ptime, virt_expires, prof_expires;
943 unsigned long long sum_sched_runtime, sched_expires;
944 struct list_head *timers = sig->cpu_timers;
945 struct task_cputime cputime;
946 unsigned long soft;
947
948 /*
949 * Collect the current process totals.
950 */
951 thread_group_cputimer(tsk, &cputime);
952 utime = cputime_to_expires(cputime.utime);
953 ptime = utime + cputime_to_expires(cputime.stime);
954 sum_sched_runtime = cputime.sum_exec_runtime;
955
956 prof_expires = check_timers_list(timers, firing, ptime);
957 virt_expires = check_timers_list(++timers, firing, utime);
958 sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
959
960 /*
961 * Check for the special case process timers.
962 */
963 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
964 SIGPROF);
965 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
966 SIGVTALRM);
967 soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
968 if (soft != RLIM_INFINITY) {
969 unsigned long psecs = cputime_to_secs(ptime);
970 unsigned long hard =
971 ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
972 cputime_t x;
973 if (psecs >= hard) {
974 /*
975 * At the hard limit, we just die.
976 * No need to calculate anything else now.
977 */
978 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
979 return;
980 }
981 if (psecs >= soft) {
982 /*
983 * At the soft limit, send a SIGXCPU every second.
984 */
985 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
986 if (soft < hard) {
987 soft++;
988 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
989 }
990 }
991 x = secs_to_cputime(soft);
992 if (!prof_expires || x < prof_expires) {
993 prof_expires = x;
994 }
995 }
996
997 sig->cputime_expires.prof_exp = expires_to_cputime(prof_expires);
998 sig->cputime_expires.virt_exp = expires_to_cputime(virt_expires);
999 sig->cputime_expires.sched_exp = sched_expires;
1000 if (task_cputime_zero(&sig->cputime_expires))
1001 stop_process_timers(sig);
1002 }
1003
1004 /*
1005 * This is called from the signal code (via do_schedule_next_timer)
1006 * when the last timer signal was delivered and we have to reload the timer.
1007 */
1008 void posix_cpu_timer_schedule(struct k_itimer *timer)
1009 {
1010 struct task_struct *p = timer->it.cpu.task;
1011 unsigned long long now;
1012
1013 WARN_ON_ONCE(p == NULL);
1014
1015 /*
1016 * Fetch the current sample and update the timer's expiry time.
1017 */
1018 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1019 cpu_clock_sample(timer->it_clock, p, &now);
1020 bump_cpu_timer(timer, now);
1021 if (unlikely(p->exit_state))
1022 goto out;
1023
1024 read_lock(&tasklist_lock); /* arm_timer needs it. */
1025 spin_lock(&p->sighand->siglock);
1026 } else {
1027 read_lock(&tasklist_lock);
1028 if (unlikely(p->sighand == NULL)) {
1029 /*
1030 * The process has been reaped.
1031 * We can't even collect a sample any more.
1032 */
1033 timer->it.cpu.expires = 0;
1034 read_unlock(&tasklist_lock);
1035 goto out;
1036 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1037 read_unlock(&tasklist_lock);
1038 /* Optimizations: if the process is dying, no need to rearm */
1039 goto out;
1040 }
1041 spin_lock(&p->sighand->siglock);
1042 cpu_timer_sample_group(timer->it_clock, p, &now);
1043 bump_cpu_timer(timer, now);
1044 /* Leave the tasklist_lock locked for the call below. */
1045 }
1046
1047 /*
1048 * Now re-arm for the new expiry time.
1049 */
1050 BUG_ON(!irqs_disabled());
1051 arm_timer(timer);
1052 spin_unlock(&p->sighand->siglock);
1053 read_unlock(&tasklist_lock);
1054
1055 /* Kick full dynticks CPUs in case they need to tick on the new timer */
1056 posix_cpu_timer_kick_nohz();
1057
1058 out:
1059 timer->it_overrun_last = timer->it_overrun;
1060 timer->it_overrun = -1;
1061 ++timer->it_requeue_pending;
1062 }
1063
1064 /**
1065 * task_cputime_expired - Compare two task_cputime entities.
1066 *
1067 * @sample: The task_cputime structure to be checked for expiration.
1068 * @expires: Expiration times, against which @sample will be checked.
1069 *
1070 * Checks @sample against @expires to see if any field of @sample has expired.
1071 * Returns true if any field of the former is greater than the corresponding
1072 * field of the latter if the latter field is set. Otherwise returns false.
1073 */
1074 static inline int task_cputime_expired(const struct task_cputime *sample,
1075 const struct task_cputime *expires)
1076 {
1077 if (expires->utime && sample->utime >= expires->utime)
1078 return 1;
1079 if (expires->stime && sample->utime + sample->stime >= expires->stime)
1080 return 1;
1081 if (expires->sum_exec_runtime != 0 &&
1082 sample->sum_exec_runtime >= expires->sum_exec_runtime)
1083 return 1;
1084 return 0;
1085 }
1086
1087 /**
1088 * fastpath_timer_check - POSIX CPU timers fast path.
1089 *
1090 * @tsk: The task (thread) being checked.
1091 *
1092 * Check the task and thread group timers. If both are zero (there are no
1093 * timers set) return false. Otherwise snapshot the task and thread group
1094 * timers and compare them with the corresponding expiration times. Return
1095 * true if a timer has expired, else return false.
1096 */
1097 static inline int fastpath_timer_check(struct task_struct *tsk)
1098 {
1099 struct signal_struct *sig;
1100 cputime_t utime, stime;
1101
1102 task_cputime(tsk, &utime, &stime);
1103
1104 if (!task_cputime_zero(&tsk->cputime_expires)) {
1105 struct task_cputime task_sample = {
1106 .utime = utime,
1107 .stime = stime,
1108 .sum_exec_runtime = tsk->se.sum_exec_runtime
1109 };
1110
1111 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1112 return 1;
1113 }
1114
1115 sig = tsk->signal;
1116 if (sig->cputimer.running) {
1117 struct task_cputime group_sample;
1118
1119 raw_spin_lock(&sig->cputimer.lock);
1120 group_sample = sig->cputimer.cputime;
1121 raw_spin_unlock(&sig->cputimer.lock);
1122
1123 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1124 return 1;
1125 }
1126
1127 return 0;
1128 }
1129
1130 /*
1131 * This is called from the timer interrupt handler. The irq handler has
1132 * already updated our counts. We need to check if any timers fire now.
1133 * Interrupts are disabled.
1134 */
1135 void run_posix_cpu_timers(struct task_struct *tsk)
1136 {
1137 LIST_HEAD(firing);
1138 struct k_itimer *timer, *next;
1139 unsigned long flags;
1140
1141 BUG_ON(!irqs_disabled());
1142
1143 /*
1144 * The fast path checks that there are no expired thread or thread
1145 * group timers. If that's so, just return.
1146 */
1147 if (!fastpath_timer_check(tsk))
1148 return;
1149
1150 if (!lock_task_sighand(tsk, &flags))
1151 return;
1152 /*
1153 * Here we take off tsk->signal->cpu_timers[N] and
1154 * tsk->cpu_timers[N] all the timers that are firing, and
1155 * put them on the firing list.
1156 */
1157 check_thread_timers(tsk, &firing);
1158 /*
1159 * If there are any active process wide timers (POSIX 1.b, itimers,
1160 * RLIMIT_CPU) cputimer must be running.
1161 */
1162 if (tsk->signal->cputimer.running)
1163 check_process_timers(tsk, &firing);
1164
1165 /*
1166 * We must release these locks before taking any timer's lock.
1167 * There is a potential race with timer deletion here, as the
1168 * siglock now protects our private firing list. We have set
1169 * the firing flag in each timer, so that a deletion attempt
1170 * that gets the timer lock before we do will give it up and
1171 * spin until we've taken care of that timer below.
1172 */
1173 unlock_task_sighand(tsk, &flags);
1174
1175 /*
1176 * Now that all the timers on our list have the firing flag,
1177 * no one will touch their list entries but us. We'll take
1178 * each timer's lock before clearing its firing flag, so no
1179 * timer call will interfere.
1180 */
1181 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1182 int cpu_firing;
1183
1184 spin_lock(&timer->it_lock);
1185 list_del_init(&timer->it.cpu.entry);
1186 cpu_firing = timer->it.cpu.firing;
1187 timer->it.cpu.firing = 0;
1188 /*
1189 * The firing flag is -1 if we collided with a reset
1190 * of the timer, which already reported this
1191 * almost-firing as an overrun. So don't generate an event.
1192 */
1193 if (likely(cpu_firing >= 0))
1194 cpu_timer_fire(timer);
1195 spin_unlock(&timer->it_lock);
1196 }
1197 }
1198
1199 /*
1200 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1201 * The tsk->sighand->siglock must be held by the caller.
1202 */
1203 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1204 cputime_t *newval, cputime_t *oldval)
1205 {
1206 unsigned long long now;
1207
1208 BUG_ON(clock_idx == CPUCLOCK_SCHED);
1209 cpu_timer_sample_group(clock_idx, tsk, &now);
1210
1211 if (oldval) {
1212 /*
1213 * We are setting itimer. The *oldval is absolute and we update
1214 * it to be relative, *newval argument is relative and we update
1215 * it to be absolute.
1216 */
1217 if (*oldval) {
1218 if (*oldval <= now) {
1219 /* Just about to fire. */
1220 *oldval = cputime_one_jiffy;
1221 } else {
1222 *oldval -= now;
1223 }
1224 }
1225
1226 if (!*newval)
1227 goto out;
1228 *newval += now;
1229 }
1230
1231 /*
1232 * Update expiration cache if we are the earliest timer, or eventually
1233 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1234 */
1235 switch (clock_idx) {
1236 case CPUCLOCK_PROF:
1237 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1238 tsk->signal->cputime_expires.prof_exp = *newval;
1239 break;
1240 case CPUCLOCK_VIRT:
1241 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1242 tsk->signal->cputime_expires.virt_exp = *newval;
1243 break;
1244 }
1245 out:
1246 posix_cpu_timer_kick_nohz();
1247 }
1248
1249 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1250 struct timespec *rqtp, struct itimerspec *it)
1251 {
1252 struct k_itimer timer;
1253 int error;
1254
1255 /*
1256 * Set up a temporary timer and then wait for it to go off.
1257 */
1258 memset(&timer, 0, sizeof timer);
1259 spin_lock_init(&timer.it_lock);
1260 timer.it_clock = which_clock;
1261 timer.it_overrun = -1;
1262 error = posix_cpu_timer_create(&timer);
1263 timer.it_process = current;
1264 if (!error) {
1265 static struct itimerspec zero_it;
1266
1267 memset(it, 0, sizeof *it);
1268 it->it_value = *rqtp;
1269
1270 spin_lock_irq(&timer.it_lock);
1271 error = posix_cpu_timer_set(&timer, flags, it, NULL);
1272 if (error) {
1273 spin_unlock_irq(&timer.it_lock);
1274 return error;
1275 }
1276
1277 while (!signal_pending(current)) {
1278 if (timer.it.cpu.expires == 0) {
1279 /*
1280 * Our timer fired and was reset, below
1281 * deletion can not fail.
1282 */
1283 posix_cpu_timer_del(&timer);
1284 spin_unlock_irq(&timer.it_lock);
1285 return 0;
1286 }
1287
1288 /*
1289 * Block until cpu_timer_fire (or a signal) wakes us.
1290 */
1291 __set_current_state(TASK_INTERRUPTIBLE);
1292 spin_unlock_irq(&timer.it_lock);
1293 schedule();
1294 spin_lock_irq(&timer.it_lock);
1295 }
1296
1297 /*
1298 * We were interrupted by a signal.
1299 */
1300 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1301 error = posix_cpu_timer_set(&timer, 0, &zero_it, it);
1302 if (!error) {
1303 /*
1304 * Timer is now unarmed, deletion can not fail.
1305 */
1306 posix_cpu_timer_del(&timer);
1307 }
1308 spin_unlock_irq(&timer.it_lock);
1309
1310 while (error == TIMER_RETRY) {
1311 /*
1312 * We need to handle case when timer was or is in the
1313 * middle of firing. In other cases we already freed
1314 * resources.
1315 */
1316 spin_lock_irq(&timer.it_lock);
1317 error = posix_cpu_timer_del(&timer);
1318 spin_unlock_irq(&timer.it_lock);
1319 }
1320
1321 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1322 /*
1323 * It actually did fire already.
1324 */
1325 return 0;
1326 }
1327
1328 error = -ERESTART_RESTARTBLOCK;
1329 }
1330
1331 return error;
1332 }
1333
1334 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1335
1336 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1337 struct timespec *rqtp, struct timespec __user *rmtp)
1338 {
1339 struct restart_block *restart_block =
1340 &current_thread_info()->restart_block;
1341 struct itimerspec it;
1342 int error;
1343
1344 /*
1345 * Diagnose required errors first.
1346 */
1347 if (CPUCLOCK_PERTHREAD(which_clock) &&
1348 (CPUCLOCK_PID(which_clock) == 0 ||
1349 CPUCLOCK_PID(which_clock) == current->pid))
1350 return -EINVAL;
1351
1352 error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1353
1354 if (error == -ERESTART_RESTARTBLOCK) {
1355
1356 if (flags & TIMER_ABSTIME)
1357 return -ERESTARTNOHAND;
1358 /*
1359 * Report back to the user the time still remaining.
1360 */
1361 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1362 return -EFAULT;
1363
1364 restart_block->fn = posix_cpu_nsleep_restart;
1365 restart_block->nanosleep.clockid = which_clock;
1366 restart_block->nanosleep.rmtp = rmtp;
1367 restart_block->nanosleep.expires = timespec_to_ns(rqtp);
1368 }
1369 return error;
1370 }
1371
1372 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1373 {
1374 clockid_t which_clock = restart_block->nanosleep.clockid;
1375 struct timespec t;
1376 struct itimerspec it;
1377 int error;
1378
1379 t = ns_to_timespec(restart_block->nanosleep.expires);
1380
1381 error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1382
1383 if (error == -ERESTART_RESTARTBLOCK) {
1384 struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
1385 /*
1386 * Report back to the user the time still remaining.
1387 */
1388 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1389 return -EFAULT;
1390
1391 restart_block->nanosleep.expires = timespec_to_ns(&t);
1392 }
1393 return error;
1394
1395 }
1396
1397 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1398 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1399
1400 static int process_cpu_clock_getres(const clockid_t which_clock,
1401 struct timespec *tp)
1402 {
1403 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1404 }
1405 static int process_cpu_clock_get(const clockid_t which_clock,
1406 struct timespec *tp)
1407 {
1408 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1409 }
1410 static int process_cpu_timer_create(struct k_itimer *timer)
1411 {
1412 timer->it_clock = PROCESS_CLOCK;
1413 return posix_cpu_timer_create(timer);
1414 }
1415 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1416 struct timespec *rqtp,
1417 struct timespec __user *rmtp)
1418 {
1419 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1420 }
1421 static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1422 {
1423 return -EINVAL;
1424 }
1425 static int thread_cpu_clock_getres(const clockid_t which_clock,
1426 struct timespec *tp)
1427 {
1428 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1429 }
1430 static int thread_cpu_clock_get(const clockid_t which_clock,
1431 struct timespec *tp)
1432 {
1433 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1434 }
1435 static int thread_cpu_timer_create(struct k_itimer *timer)
1436 {
1437 timer->it_clock = THREAD_CLOCK;
1438 return posix_cpu_timer_create(timer);
1439 }
1440
1441 struct k_clock clock_posix_cpu = {
1442 .clock_getres = posix_cpu_clock_getres,
1443 .clock_set = posix_cpu_clock_set,
1444 .clock_get = posix_cpu_clock_get,
1445 .timer_create = posix_cpu_timer_create,
1446 .nsleep = posix_cpu_nsleep,
1447 .nsleep_restart = posix_cpu_nsleep_restart,
1448 .timer_set = posix_cpu_timer_set,
1449 .timer_del = posix_cpu_timer_del,
1450 .timer_get = posix_cpu_timer_get,
1451 };
1452
1453 static __init int init_posix_cpu_timers(void)
1454 {
1455 struct k_clock process = {
1456 .clock_getres = process_cpu_clock_getres,
1457 .clock_get = process_cpu_clock_get,
1458 .timer_create = process_cpu_timer_create,
1459 .nsleep = process_cpu_nsleep,
1460 .nsleep_restart = process_cpu_nsleep_restart,
1461 };
1462 struct k_clock thread = {
1463 .clock_getres = thread_cpu_clock_getres,
1464 .clock_get = thread_cpu_clock_get,
1465 .timer_create = thread_cpu_timer_create,
1466 };
1467 struct timespec ts;
1468
1469 posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1470 posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1471
1472 cputime_to_timespec(cputime_one_jiffy, &ts);
1473 onecputick = ts.tv_nsec;
1474 WARN_ON(ts.tv_sec != 0);
1475
1476 return 0;
1477 }
1478 __initcall(init_posix_cpu_timers);
This page took 0.060061 seconds and 6 git commands to generate.