timers: split process wide cpu clocks/timers, fix
[deliverable/linux.git] / kernel / posix-cpu-timers.c
1 /*
2 * Implement CPU time clocks for the POSIX clock interface.
3 */
4
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
11
12 /*
13 * Called after updating RLIMIT_CPU to set timer expiration if necessary.
14 */
15 void update_rlimit_cpu(unsigned long rlim_new)
16 {
17 cputime_t cputime;
18
19 cputime = secs_to_cputime(rlim_new);
20 if (cputime_eq(current->signal->it_prof_expires, cputime_zero) ||
21 cputime_lt(current->signal->it_prof_expires, cputime)) {
22 spin_lock_irq(&current->sighand->siglock);
23 set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL);
24 spin_unlock_irq(&current->sighand->siglock);
25 }
26 }
27
28 static int check_clock(const clockid_t which_clock)
29 {
30 int error = 0;
31 struct task_struct *p;
32 const pid_t pid = CPUCLOCK_PID(which_clock);
33
34 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
35 return -EINVAL;
36
37 if (pid == 0)
38 return 0;
39
40 read_lock(&tasklist_lock);
41 p = find_task_by_vpid(pid);
42 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
43 same_thread_group(p, current) : thread_group_leader(p))) {
44 error = -EINVAL;
45 }
46 read_unlock(&tasklist_lock);
47
48 return error;
49 }
50
51 static inline union cpu_time_count
52 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
53 {
54 union cpu_time_count ret;
55 ret.sched = 0; /* high half always zero when .cpu used */
56 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
57 ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
58 } else {
59 ret.cpu = timespec_to_cputime(tp);
60 }
61 return ret;
62 }
63
64 static void sample_to_timespec(const clockid_t which_clock,
65 union cpu_time_count cpu,
66 struct timespec *tp)
67 {
68 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
69 *tp = ns_to_timespec(cpu.sched);
70 else
71 cputime_to_timespec(cpu.cpu, tp);
72 }
73
74 static inline int cpu_time_before(const clockid_t which_clock,
75 union cpu_time_count now,
76 union cpu_time_count then)
77 {
78 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
79 return now.sched < then.sched;
80 } else {
81 return cputime_lt(now.cpu, then.cpu);
82 }
83 }
84 static inline void cpu_time_add(const clockid_t which_clock,
85 union cpu_time_count *acc,
86 union cpu_time_count val)
87 {
88 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
89 acc->sched += val.sched;
90 } else {
91 acc->cpu = cputime_add(acc->cpu, val.cpu);
92 }
93 }
94 static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
95 union cpu_time_count a,
96 union cpu_time_count b)
97 {
98 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
99 a.sched -= b.sched;
100 } else {
101 a.cpu = cputime_sub(a.cpu, b.cpu);
102 }
103 return a;
104 }
105
106 /*
107 * Divide and limit the result to res >= 1
108 *
109 * This is necessary to prevent signal delivery starvation, when the result of
110 * the division would be rounded down to 0.
111 */
112 static inline cputime_t cputime_div_non_zero(cputime_t time, unsigned long div)
113 {
114 cputime_t res = cputime_div(time, div);
115
116 return max_t(cputime_t, res, 1);
117 }
118
119 /*
120 * Update expiry time from increment, and increase overrun count,
121 * given the current clock sample.
122 */
123 static void bump_cpu_timer(struct k_itimer *timer,
124 union cpu_time_count now)
125 {
126 int i;
127
128 if (timer->it.cpu.incr.sched == 0)
129 return;
130
131 if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
132 unsigned long long delta, incr;
133
134 if (now.sched < timer->it.cpu.expires.sched)
135 return;
136 incr = timer->it.cpu.incr.sched;
137 delta = now.sched + incr - timer->it.cpu.expires.sched;
138 /* Don't use (incr*2 < delta), incr*2 might overflow. */
139 for (i = 0; incr < delta - incr; i++)
140 incr = incr << 1;
141 for (; i >= 0; incr >>= 1, i--) {
142 if (delta < incr)
143 continue;
144 timer->it.cpu.expires.sched += incr;
145 timer->it_overrun += 1 << i;
146 delta -= incr;
147 }
148 } else {
149 cputime_t delta, incr;
150
151 if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu))
152 return;
153 incr = timer->it.cpu.incr.cpu;
154 delta = cputime_sub(cputime_add(now.cpu, incr),
155 timer->it.cpu.expires.cpu);
156 /* Don't use (incr*2 < delta), incr*2 might overflow. */
157 for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++)
158 incr = cputime_add(incr, incr);
159 for (; i >= 0; incr = cputime_halve(incr), i--) {
160 if (cputime_lt(delta, incr))
161 continue;
162 timer->it.cpu.expires.cpu =
163 cputime_add(timer->it.cpu.expires.cpu, incr);
164 timer->it_overrun += 1 << i;
165 delta = cputime_sub(delta, incr);
166 }
167 }
168 }
169
170 static inline cputime_t prof_ticks(struct task_struct *p)
171 {
172 return cputime_add(p->utime, p->stime);
173 }
174 static inline cputime_t virt_ticks(struct task_struct *p)
175 {
176 return p->utime;
177 }
178
179 int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
180 {
181 int error = check_clock(which_clock);
182 if (!error) {
183 tp->tv_sec = 0;
184 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
185 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
186 /*
187 * If sched_clock is using a cycle counter, we
188 * don't have any idea of its true resolution
189 * exported, but it is much more than 1s/HZ.
190 */
191 tp->tv_nsec = 1;
192 }
193 }
194 return error;
195 }
196
197 int posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
198 {
199 /*
200 * You can never reset a CPU clock, but we check for other errors
201 * in the call before failing with EPERM.
202 */
203 int error = check_clock(which_clock);
204 if (error == 0) {
205 error = -EPERM;
206 }
207 return error;
208 }
209
210
211 /*
212 * Sample a per-thread clock for the given task.
213 */
214 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
215 union cpu_time_count *cpu)
216 {
217 switch (CPUCLOCK_WHICH(which_clock)) {
218 default:
219 return -EINVAL;
220 case CPUCLOCK_PROF:
221 cpu->cpu = prof_ticks(p);
222 break;
223 case CPUCLOCK_VIRT:
224 cpu->cpu = virt_ticks(p);
225 break;
226 case CPUCLOCK_SCHED:
227 cpu->sched = p->se.sum_exec_runtime + task_delta_exec(p);
228 break;
229 }
230 return 0;
231 }
232
233 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
234 {
235 struct sighand_struct *sighand;
236 struct signal_struct *sig;
237 struct task_struct *t;
238
239 *times = INIT_CPUTIME;
240
241 rcu_read_lock();
242 sighand = rcu_dereference(tsk->sighand);
243 if (!sighand)
244 goto out;
245
246 sig = tsk->signal;
247
248 t = tsk;
249 do {
250 times->utime = cputime_add(times->utime, t->utime);
251 times->stime = cputime_add(times->stime, t->stime);
252 times->sum_exec_runtime += t->se.sum_exec_runtime;
253
254 t = next_thread(t);
255 } while (t != tsk);
256
257 times->utime = cputime_add(times->utime, sig->utime);
258 times->stime = cputime_add(times->stime, sig->stime);
259 times->sum_exec_runtime += sig->sum_sched_runtime;
260 out:
261 rcu_read_unlock();
262 }
263
264 /*
265 * Sample a process (thread group) clock for the given group_leader task.
266 * Must be called with tasklist_lock held for reading.
267 */
268 static int cpu_clock_sample_group(const clockid_t which_clock,
269 struct task_struct *p,
270 union cpu_time_count *cpu)
271 {
272 struct task_cputime cputime;
273
274 thread_group_cputime(p, &cputime);
275 switch (CPUCLOCK_WHICH(which_clock)) {
276 default:
277 return -EINVAL;
278 case CPUCLOCK_PROF:
279 cpu->cpu = cputime_add(cputime.utime, cputime.stime);
280 break;
281 case CPUCLOCK_VIRT:
282 cpu->cpu = cputime.utime;
283 break;
284 case CPUCLOCK_SCHED:
285 cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p);
286 break;
287 }
288 return 0;
289 }
290
291
292 int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
293 {
294 const pid_t pid = CPUCLOCK_PID(which_clock);
295 int error = -EINVAL;
296 union cpu_time_count rtn;
297
298 if (pid == 0) {
299 /*
300 * Special case constant value for our own clocks.
301 * We don't have to do any lookup to find ourselves.
302 */
303 if (CPUCLOCK_PERTHREAD(which_clock)) {
304 /*
305 * Sampling just ourselves we can do with no locking.
306 */
307 error = cpu_clock_sample(which_clock,
308 current, &rtn);
309 } else {
310 read_lock(&tasklist_lock);
311 error = cpu_clock_sample_group(which_clock,
312 current, &rtn);
313 read_unlock(&tasklist_lock);
314 }
315 } else {
316 /*
317 * Find the given PID, and validate that the caller
318 * should be able to see it.
319 */
320 struct task_struct *p;
321 rcu_read_lock();
322 p = find_task_by_vpid(pid);
323 if (p) {
324 if (CPUCLOCK_PERTHREAD(which_clock)) {
325 if (same_thread_group(p, current)) {
326 error = cpu_clock_sample(which_clock,
327 p, &rtn);
328 }
329 } else {
330 read_lock(&tasklist_lock);
331 if (thread_group_leader(p) && p->signal) {
332 error =
333 cpu_clock_sample_group(which_clock,
334 p, &rtn);
335 }
336 read_unlock(&tasklist_lock);
337 }
338 }
339 rcu_read_unlock();
340 }
341
342 if (error)
343 return error;
344 sample_to_timespec(which_clock, rtn, tp);
345 return 0;
346 }
347
348
349 /*
350 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
351 * This is called from sys_timer_create with the new timer already locked.
352 */
353 int posix_cpu_timer_create(struct k_itimer *new_timer)
354 {
355 int ret = 0;
356 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
357 struct task_struct *p;
358
359 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
360 return -EINVAL;
361
362 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
363 new_timer->it.cpu.incr.sched = 0;
364 new_timer->it.cpu.expires.sched = 0;
365
366 read_lock(&tasklist_lock);
367 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
368 if (pid == 0) {
369 p = current;
370 } else {
371 p = find_task_by_vpid(pid);
372 if (p && !same_thread_group(p, current))
373 p = NULL;
374 }
375 } else {
376 if (pid == 0) {
377 p = current->group_leader;
378 } else {
379 p = find_task_by_vpid(pid);
380 if (p && !thread_group_leader(p))
381 p = NULL;
382 }
383 }
384 new_timer->it.cpu.task = p;
385 if (p) {
386 get_task_struct(p);
387 } else {
388 ret = -EINVAL;
389 }
390 read_unlock(&tasklist_lock);
391
392 return ret;
393 }
394
395 /*
396 * Clean up a CPU-clock timer that is about to be destroyed.
397 * This is called from timer deletion with the timer already locked.
398 * If we return TIMER_RETRY, it's necessary to release the timer's lock
399 * and try again. (This happens when the timer is in the middle of firing.)
400 */
401 int posix_cpu_timer_del(struct k_itimer *timer)
402 {
403 struct task_struct *p = timer->it.cpu.task;
404 int ret = 0;
405
406 if (likely(p != NULL)) {
407 read_lock(&tasklist_lock);
408 if (unlikely(p->signal == NULL)) {
409 /*
410 * We raced with the reaping of the task.
411 * The deletion should have cleared us off the list.
412 */
413 BUG_ON(!list_empty(&timer->it.cpu.entry));
414 } else {
415 spin_lock(&p->sighand->siglock);
416 if (timer->it.cpu.firing)
417 ret = TIMER_RETRY;
418 else
419 list_del(&timer->it.cpu.entry);
420 spin_unlock(&p->sighand->siglock);
421 }
422 read_unlock(&tasklist_lock);
423
424 if (!ret)
425 put_task_struct(p);
426 }
427
428 return ret;
429 }
430
431 /*
432 * Clean out CPU timers still ticking when a thread exited. The task
433 * pointer is cleared, and the expiry time is replaced with the residual
434 * time for later timer_gettime calls to return.
435 * This must be called with the siglock held.
436 */
437 static void cleanup_timers(struct list_head *head,
438 cputime_t utime, cputime_t stime,
439 unsigned long long sum_exec_runtime)
440 {
441 struct cpu_timer_list *timer, *next;
442 cputime_t ptime = cputime_add(utime, stime);
443
444 list_for_each_entry_safe(timer, next, head, entry) {
445 list_del_init(&timer->entry);
446 if (cputime_lt(timer->expires.cpu, ptime)) {
447 timer->expires.cpu = cputime_zero;
448 } else {
449 timer->expires.cpu = cputime_sub(timer->expires.cpu,
450 ptime);
451 }
452 }
453
454 ++head;
455 list_for_each_entry_safe(timer, next, head, entry) {
456 list_del_init(&timer->entry);
457 if (cputime_lt(timer->expires.cpu, utime)) {
458 timer->expires.cpu = cputime_zero;
459 } else {
460 timer->expires.cpu = cputime_sub(timer->expires.cpu,
461 utime);
462 }
463 }
464
465 ++head;
466 list_for_each_entry_safe(timer, next, head, entry) {
467 list_del_init(&timer->entry);
468 if (timer->expires.sched < sum_exec_runtime) {
469 timer->expires.sched = 0;
470 } else {
471 timer->expires.sched -= sum_exec_runtime;
472 }
473 }
474 }
475
476 /*
477 * These are both called with the siglock held, when the current thread
478 * is being reaped. When the final (leader) thread in the group is reaped,
479 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
480 */
481 void posix_cpu_timers_exit(struct task_struct *tsk)
482 {
483 cleanup_timers(tsk->cpu_timers,
484 tsk->utime, tsk->stime, tsk->se.sum_exec_runtime);
485
486 }
487 void posix_cpu_timers_exit_group(struct task_struct *tsk)
488 {
489 struct task_cputime cputime;
490
491 thread_group_cputimer(tsk, &cputime);
492 cleanup_timers(tsk->signal->cpu_timers,
493 cputime.utime, cputime.stime, cputime.sum_exec_runtime);
494 }
495
496 static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
497 {
498 /*
499 * That's all for this thread or process.
500 * We leave our residual in expires to be reported.
501 */
502 put_task_struct(timer->it.cpu.task);
503 timer->it.cpu.task = NULL;
504 timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
505 timer->it.cpu.expires,
506 now);
507 }
508
509 /*
510 * Insert the timer on the appropriate list before any timers that
511 * expire later. This must be called with the tasklist_lock held
512 * for reading, and interrupts disabled.
513 */
514 static void arm_timer(struct k_itimer *timer, union cpu_time_count now)
515 {
516 struct task_struct *p = timer->it.cpu.task;
517 struct list_head *head, *listpos;
518 struct cpu_timer_list *const nt = &timer->it.cpu;
519 struct cpu_timer_list *next;
520 unsigned long i;
521
522 head = (CPUCLOCK_PERTHREAD(timer->it_clock) ?
523 p->cpu_timers : p->signal->cpu_timers);
524 head += CPUCLOCK_WHICH(timer->it_clock);
525
526 BUG_ON(!irqs_disabled());
527 spin_lock(&p->sighand->siglock);
528
529 listpos = head;
530 if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
531 list_for_each_entry(next, head, entry) {
532 if (next->expires.sched > nt->expires.sched)
533 break;
534 listpos = &next->entry;
535 }
536 } else {
537 list_for_each_entry(next, head, entry) {
538 if (cputime_gt(next->expires.cpu, nt->expires.cpu))
539 break;
540 listpos = &next->entry;
541 }
542 }
543 list_add(&nt->entry, listpos);
544
545 if (listpos == head) {
546 /*
547 * We are the new earliest-expiring timer.
548 * If we are a thread timer, there can always
549 * be a process timer telling us to stop earlier.
550 */
551
552 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
553 switch (CPUCLOCK_WHICH(timer->it_clock)) {
554 default:
555 BUG();
556 case CPUCLOCK_PROF:
557 if (cputime_eq(p->cputime_expires.prof_exp,
558 cputime_zero) ||
559 cputime_gt(p->cputime_expires.prof_exp,
560 nt->expires.cpu))
561 p->cputime_expires.prof_exp =
562 nt->expires.cpu;
563 break;
564 case CPUCLOCK_VIRT:
565 if (cputime_eq(p->cputime_expires.virt_exp,
566 cputime_zero) ||
567 cputime_gt(p->cputime_expires.virt_exp,
568 nt->expires.cpu))
569 p->cputime_expires.virt_exp =
570 nt->expires.cpu;
571 break;
572 case CPUCLOCK_SCHED:
573 if (p->cputime_expires.sched_exp == 0 ||
574 p->cputime_expires.sched_exp >
575 nt->expires.sched)
576 p->cputime_expires.sched_exp =
577 nt->expires.sched;
578 break;
579 }
580 } else {
581 /*
582 * For a process timer, set the cached expiration time.
583 */
584 switch (CPUCLOCK_WHICH(timer->it_clock)) {
585 default:
586 BUG();
587 case CPUCLOCK_VIRT:
588 if (!cputime_eq(p->signal->it_virt_expires,
589 cputime_zero) &&
590 cputime_lt(p->signal->it_virt_expires,
591 timer->it.cpu.expires.cpu))
592 break;
593 p->signal->cputime_expires.virt_exp =
594 timer->it.cpu.expires.cpu;
595 break;
596 case CPUCLOCK_PROF:
597 if (!cputime_eq(p->signal->it_prof_expires,
598 cputime_zero) &&
599 cputime_lt(p->signal->it_prof_expires,
600 timer->it.cpu.expires.cpu))
601 break;
602 i = p->signal->rlim[RLIMIT_CPU].rlim_cur;
603 if (i != RLIM_INFINITY &&
604 i <= cputime_to_secs(timer->it.cpu.expires.cpu))
605 break;
606 p->signal->cputime_expires.prof_exp =
607 timer->it.cpu.expires.cpu;
608 break;
609 case CPUCLOCK_SCHED:
610 p->signal->cputime_expires.sched_exp =
611 timer->it.cpu.expires.sched;
612 break;
613 }
614 }
615 }
616
617 spin_unlock(&p->sighand->siglock);
618 }
619
620 /*
621 * The timer is locked, fire it and arrange for its reload.
622 */
623 static void cpu_timer_fire(struct k_itimer *timer)
624 {
625 if (unlikely(timer->sigq == NULL)) {
626 /*
627 * This a special case for clock_nanosleep,
628 * not a normal timer from sys_timer_create.
629 */
630 wake_up_process(timer->it_process);
631 timer->it.cpu.expires.sched = 0;
632 } else if (timer->it.cpu.incr.sched == 0) {
633 /*
634 * One-shot timer. Clear it as soon as it's fired.
635 */
636 posix_timer_event(timer, 0);
637 timer->it.cpu.expires.sched = 0;
638 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
639 /*
640 * The signal did not get queued because the signal
641 * was ignored, so we won't get any callback to
642 * reload the timer. But we need to keep it
643 * ticking in case the signal is deliverable next time.
644 */
645 posix_cpu_timer_schedule(timer);
646 }
647 }
648
649 /*
650 * Guts of sys_timer_settime for CPU timers.
651 * This is called with the timer locked and interrupts disabled.
652 * If we return TIMER_RETRY, it's necessary to release the timer's lock
653 * and try again. (This happens when the timer is in the middle of firing.)
654 */
655 int posix_cpu_timer_set(struct k_itimer *timer, int flags,
656 struct itimerspec *new, struct itimerspec *old)
657 {
658 struct task_struct *p = timer->it.cpu.task;
659 union cpu_time_count old_expires, new_expires, val;
660 int ret;
661
662 if (unlikely(p == NULL)) {
663 /*
664 * Timer refers to a dead task's clock.
665 */
666 return -ESRCH;
667 }
668
669 new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
670
671 read_lock(&tasklist_lock);
672 /*
673 * We need the tasklist_lock to protect against reaping that
674 * clears p->signal. If p has just been reaped, we can no
675 * longer get any information about it at all.
676 */
677 if (unlikely(p->signal == NULL)) {
678 read_unlock(&tasklist_lock);
679 put_task_struct(p);
680 timer->it.cpu.task = NULL;
681 return -ESRCH;
682 }
683
684 /*
685 * Disarm any old timer after extracting its expiry time.
686 */
687 BUG_ON(!irqs_disabled());
688
689 ret = 0;
690 spin_lock(&p->sighand->siglock);
691 old_expires = timer->it.cpu.expires;
692 if (unlikely(timer->it.cpu.firing)) {
693 timer->it.cpu.firing = -1;
694 ret = TIMER_RETRY;
695 } else
696 list_del_init(&timer->it.cpu.entry);
697 spin_unlock(&p->sighand->siglock);
698
699 /*
700 * We need to sample the current value to convert the new
701 * value from to relative and absolute, and to convert the
702 * old value from absolute to relative. To set a process
703 * timer, we need a sample to balance the thread expiry
704 * times (in arm_timer). With an absolute time, we must
705 * check if it's already passed. In short, we need a sample.
706 */
707 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
708 cpu_clock_sample(timer->it_clock, p, &val);
709 } else {
710 cpu_clock_sample_group(timer->it_clock, p, &val);
711 }
712
713 if (old) {
714 if (old_expires.sched == 0) {
715 old->it_value.tv_sec = 0;
716 old->it_value.tv_nsec = 0;
717 } else {
718 /*
719 * Update the timer in case it has
720 * overrun already. If it has,
721 * we'll report it as having overrun
722 * and with the next reloaded timer
723 * already ticking, though we are
724 * swallowing that pending
725 * notification here to install the
726 * new setting.
727 */
728 bump_cpu_timer(timer, val);
729 if (cpu_time_before(timer->it_clock, val,
730 timer->it.cpu.expires)) {
731 old_expires = cpu_time_sub(
732 timer->it_clock,
733 timer->it.cpu.expires, val);
734 sample_to_timespec(timer->it_clock,
735 old_expires,
736 &old->it_value);
737 } else {
738 old->it_value.tv_nsec = 1;
739 old->it_value.tv_sec = 0;
740 }
741 }
742 }
743
744 if (unlikely(ret)) {
745 /*
746 * We are colliding with the timer actually firing.
747 * Punt after filling in the timer's old value, and
748 * disable this firing since we are already reporting
749 * it as an overrun (thanks to bump_cpu_timer above).
750 */
751 read_unlock(&tasklist_lock);
752 goto out;
753 }
754
755 if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
756 cpu_time_add(timer->it_clock, &new_expires, val);
757 }
758
759 /*
760 * Install the new expiry time (or zero).
761 * For a timer with no notification action, we don't actually
762 * arm the timer (we'll just fake it for timer_gettime).
763 */
764 timer->it.cpu.expires = new_expires;
765 if (new_expires.sched != 0 &&
766 (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
767 cpu_time_before(timer->it_clock, val, new_expires)) {
768 arm_timer(timer, val);
769 }
770
771 read_unlock(&tasklist_lock);
772
773 /*
774 * Install the new reload setting, and
775 * set up the signal and overrun bookkeeping.
776 */
777 timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
778 &new->it_interval);
779
780 /*
781 * This acts as a modification timestamp for the timer,
782 * so any automatic reload attempt will punt on seeing
783 * that we have reset the timer manually.
784 */
785 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
786 ~REQUEUE_PENDING;
787 timer->it_overrun_last = 0;
788 timer->it_overrun = -1;
789
790 if (new_expires.sched != 0 &&
791 (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
792 !cpu_time_before(timer->it_clock, val, new_expires)) {
793 /*
794 * The designated time already passed, so we notify
795 * immediately, even if the thread never runs to
796 * accumulate more time on this clock.
797 */
798 cpu_timer_fire(timer);
799 }
800
801 ret = 0;
802 out:
803 if (old) {
804 sample_to_timespec(timer->it_clock,
805 timer->it.cpu.incr, &old->it_interval);
806 }
807 return ret;
808 }
809
810 void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
811 {
812 union cpu_time_count now;
813 struct task_struct *p = timer->it.cpu.task;
814 int clear_dead;
815
816 /*
817 * Easy part: convert the reload time.
818 */
819 sample_to_timespec(timer->it_clock,
820 timer->it.cpu.incr, &itp->it_interval);
821
822 if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all. */
823 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
824 return;
825 }
826
827 if (unlikely(p == NULL)) {
828 /*
829 * This task already died and the timer will never fire.
830 * In this case, expires is actually the dead value.
831 */
832 dead:
833 sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
834 &itp->it_value);
835 return;
836 }
837
838 /*
839 * Sample the clock to take the difference with the expiry time.
840 */
841 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
842 cpu_clock_sample(timer->it_clock, p, &now);
843 clear_dead = p->exit_state;
844 } else {
845 read_lock(&tasklist_lock);
846 if (unlikely(p->signal == NULL)) {
847 /*
848 * The process has been reaped.
849 * We can't even collect a sample any more.
850 * Call the timer disarmed, nothing else to do.
851 */
852 put_task_struct(p);
853 timer->it.cpu.task = NULL;
854 timer->it.cpu.expires.sched = 0;
855 read_unlock(&tasklist_lock);
856 goto dead;
857 } else {
858 cpu_clock_sample_group(timer->it_clock, p, &now);
859 clear_dead = (unlikely(p->exit_state) &&
860 thread_group_empty(p));
861 }
862 read_unlock(&tasklist_lock);
863 }
864
865 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
866 if (timer->it.cpu.incr.sched == 0 &&
867 cpu_time_before(timer->it_clock,
868 timer->it.cpu.expires, now)) {
869 /*
870 * Do-nothing timer expired and has no reload,
871 * so it's as if it was never set.
872 */
873 timer->it.cpu.expires.sched = 0;
874 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
875 return;
876 }
877 /*
878 * Account for any expirations and reloads that should
879 * have happened.
880 */
881 bump_cpu_timer(timer, now);
882 }
883
884 if (unlikely(clear_dead)) {
885 /*
886 * We've noticed that the thread is dead, but
887 * not yet reaped. Take this opportunity to
888 * drop our task ref.
889 */
890 clear_dead_task(timer, now);
891 goto dead;
892 }
893
894 if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
895 sample_to_timespec(timer->it_clock,
896 cpu_time_sub(timer->it_clock,
897 timer->it.cpu.expires, now),
898 &itp->it_value);
899 } else {
900 /*
901 * The timer should have expired already, but the firing
902 * hasn't taken place yet. Say it's just about to expire.
903 */
904 itp->it_value.tv_nsec = 1;
905 itp->it_value.tv_sec = 0;
906 }
907 }
908
909 /*
910 * Check for any per-thread CPU timers that have fired and move them off
911 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
912 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
913 */
914 static void check_thread_timers(struct task_struct *tsk,
915 struct list_head *firing)
916 {
917 int maxfire;
918 struct list_head *timers = tsk->cpu_timers;
919 struct signal_struct *const sig = tsk->signal;
920
921 maxfire = 20;
922 tsk->cputime_expires.prof_exp = cputime_zero;
923 while (!list_empty(timers)) {
924 struct cpu_timer_list *t = list_first_entry(timers,
925 struct cpu_timer_list,
926 entry);
927 if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) {
928 tsk->cputime_expires.prof_exp = t->expires.cpu;
929 break;
930 }
931 t->firing = 1;
932 list_move_tail(&t->entry, firing);
933 }
934
935 ++timers;
936 maxfire = 20;
937 tsk->cputime_expires.virt_exp = cputime_zero;
938 while (!list_empty(timers)) {
939 struct cpu_timer_list *t = list_first_entry(timers,
940 struct cpu_timer_list,
941 entry);
942 if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) {
943 tsk->cputime_expires.virt_exp = t->expires.cpu;
944 break;
945 }
946 t->firing = 1;
947 list_move_tail(&t->entry, firing);
948 }
949
950 ++timers;
951 maxfire = 20;
952 tsk->cputime_expires.sched_exp = 0;
953 while (!list_empty(timers)) {
954 struct cpu_timer_list *t = list_first_entry(timers,
955 struct cpu_timer_list,
956 entry);
957 if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
958 tsk->cputime_expires.sched_exp = t->expires.sched;
959 break;
960 }
961 t->firing = 1;
962 list_move_tail(&t->entry, firing);
963 }
964
965 /*
966 * Check for the special case thread timers.
967 */
968 if (sig->rlim[RLIMIT_RTTIME].rlim_cur != RLIM_INFINITY) {
969 unsigned long hard = sig->rlim[RLIMIT_RTTIME].rlim_max;
970 unsigned long *soft = &sig->rlim[RLIMIT_RTTIME].rlim_cur;
971
972 if (hard != RLIM_INFINITY &&
973 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
974 /*
975 * At the hard limit, we just die.
976 * No need to calculate anything else now.
977 */
978 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
979 return;
980 }
981 if (tsk->rt.timeout > DIV_ROUND_UP(*soft, USEC_PER_SEC/HZ)) {
982 /*
983 * At the soft limit, send a SIGXCPU every second.
984 */
985 if (sig->rlim[RLIMIT_RTTIME].rlim_cur
986 < sig->rlim[RLIMIT_RTTIME].rlim_max) {
987 sig->rlim[RLIMIT_RTTIME].rlim_cur +=
988 USEC_PER_SEC;
989 }
990 printk(KERN_INFO
991 "RT Watchdog Timeout: %s[%d]\n",
992 tsk->comm, task_pid_nr(tsk));
993 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
994 }
995 }
996 }
997
998 static void stop_process_timers(struct task_struct *tsk)
999 {
1000 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
1001 unsigned long flags;
1002
1003 if (!cputimer->running)
1004 return;
1005
1006 spin_lock_irqsave(&cputimer->lock, flags);
1007 cputimer->running = 0;
1008 spin_unlock_irqrestore(&cputimer->lock, flags);
1009 }
1010
1011 /*
1012 * Check for any per-thread CPU timers that have fired and move them
1013 * off the tsk->*_timers list onto the firing list. Per-thread timers
1014 * have already been taken off.
1015 */
1016 static void check_process_timers(struct task_struct *tsk,
1017 struct list_head *firing)
1018 {
1019 int maxfire;
1020 struct signal_struct *const sig = tsk->signal;
1021 cputime_t utime, ptime, virt_expires, prof_expires;
1022 unsigned long long sum_sched_runtime, sched_expires;
1023 struct list_head *timers = sig->cpu_timers;
1024 struct task_cputime cputime;
1025
1026 /*
1027 * Don't sample the current process CPU clocks if there are no timers.
1028 */
1029 if (list_empty(&timers[CPUCLOCK_PROF]) &&
1030 cputime_eq(sig->it_prof_expires, cputime_zero) &&
1031 sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY &&
1032 list_empty(&timers[CPUCLOCK_VIRT]) &&
1033 cputime_eq(sig->it_virt_expires, cputime_zero) &&
1034 list_empty(&timers[CPUCLOCK_SCHED])) {
1035 stop_process_timers(tsk);
1036 return;
1037 }
1038
1039 /*
1040 * Collect the current process totals.
1041 */
1042 thread_group_cputimer(tsk, &cputime);
1043 utime = cputime.utime;
1044 ptime = cputime_add(utime, cputime.stime);
1045 sum_sched_runtime = cputime.sum_exec_runtime;
1046 maxfire = 20;
1047 prof_expires = cputime_zero;
1048 while (!list_empty(timers)) {
1049 struct cpu_timer_list *tl = list_first_entry(timers,
1050 struct cpu_timer_list,
1051 entry);
1052 if (!--maxfire || cputime_lt(ptime, tl->expires.cpu)) {
1053 prof_expires = tl->expires.cpu;
1054 break;
1055 }
1056 tl->firing = 1;
1057 list_move_tail(&tl->entry, firing);
1058 }
1059
1060 ++timers;
1061 maxfire = 20;
1062 virt_expires = cputime_zero;
1063 while (!list_empty(timers)) {
1064 struct cpu_timer_list *tl = list_first_entry(timers,
1065 struct cpu_timer_list,
1066 entry);
1067 if (!--maxfire || cputime_lt(utime, tl->expires.cpu)) {
1068 virt_expires = tl->expires.cpu;
1069 break;
1070 }
1071 tl->firing = 1;
1072 list_move_tail(&tl->entry, firing);
1073 }
1074
1075 ++timers;
1076 maxfire = 20;
1077 sched_expires = 0;
1078 while (!list_empty(timers)) {
1079 struct cpu_timer_list *tl = list_first_entry(timers,
1080 struct cpu_timer_list,
1081 entry);
1082 if (!--maxfire || sum_sched_runtime < tl->expires.sched) {
1083 sched_expires = tl->expires.sched;
1084 break;
1085 }
1086 tl->firing = 1;
1087 list_move_tail(&tl->entry, firing);
1088 }
1089
1090 /*
1091 * Check for the special case process timers.
1092 */
1093 if (!cputime_eq(sig->it_prof_expires, cputime_zero)) {
1094 if (cputime_ge(ptime, sig->it_prof_expires)) {
1095 /* ITIMER_PROF fires and reloads. */
1096 sig->it_prof_expires = sig->it_prof_incr;
1097 if (!cputime_eq(sig->it_prof_expires, cputime_zero)) {
1098 sig->it_prof_expires = cputime_add(
1099 sig->it_prof_expires, ptime);
1100 }
1101 __group_send_sig_info(SIGPROF, SEND_SIG_PRIV, tsk);
1102 }
1103 if (!cputime_eq(sig->it_prof_expires, cputime_zero) &&
1104 (cputime_eq(prof_expires, cputime_zero) ||
1105 cputime_lt(sig->it_prof_expires, prof_expires))) {
1106 prof_expires = sig->it_prof_expires;
1107 }
1108 }
1109 if (!cputime_eq(sig->it_virt_expires, cputime_zero)) {
1110 if (cputime_ge(utime, sig->it_virt_expires)) {
1111 /* ITIMER_VIRTUAL fires and reloads. */
1112 sig->it_virt_expires = sig->it_virt_incr;
1113 if (!cputime_eq(sig->it_virt_expires, cputime_zero)) {
1114 sig->it_virt_expires = cputime_add(
1115 sig->it_virt_expires, utime);
1116 }
1117 __group_send_sig_info(SIGVTALRM, SEND_SIG_PRIV, tsk);
1118 }
1119 if (!cputime_eq(sig->it_virt_expires, cputime_zero) &&
1120 (cputime_eq(virt_expires, cputime_zero) ||
1121 cputime_lt(sig->it_virt_expires, virt_expires))) {
1122 virt_expires = sig->it_virt_expires;
1123 }
1124 }
1125 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1126 unsigned long psecs = cputime_to_secs(ptime);
1127 cputime_t x;
1128 if (psecs >= sig->rlim[RLIMIT_CPU].rlim_max) {
1129 /*
1130 * At the hard limit, we just die.
1131 * No need to calculate anything else now.
1132 */
1133 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1134 return;
1135 }
1136 if (psecs >= sig->rlim[RLIMIT_CPU].rlim_cur) {
1137 /*
1138 * At the soft limit, send a SIGXCPU every second.
1139 */
1140 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1141 if (sig->rlim[RLIMIT_CPU].rlim_cur
1142 < sig->rlim[RLIMIT_CPU].rlim_max) {
1143 sig->rlim[RLIMIT_CPU].rlim_cur++;
1144 }
1145 }
1146 x = secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
1147 if (cputime_eq(prof_expires, cputime_zero) ||
1148 cputime_lt(x, prof_expires)) {
1149 prof_expires = x;
1150 }
1151 }
1152
1153 if (!cputime_eq(prof_expires, cputime_zero) &&
1154 (cputime_eq(sig->cputime_expires.prof_exp, cputime_zero) ||
1155 cputime_gt(sig->cputime_expires.prof_exp, prof_expires)))
1156 sig->cputime_expires.prof_exp = prof_expires;
1157 if (!cputime_eq(virt_expires, cputime_zero) &&
1158 (cputime_eq(sig->cputime_expires.virt_exp, cputime_zero) ||
1159 cputime_gt(sig->cputime_expires.virt_exp, virt_expires)))
1160 sig->cputime_expires.virt_exp = virt_expires;
1161 if (sched_expires != 0 &&
1162 (sig->cputime_expires.sched_exp == 0 ||
1163 sig->cputime_expires.sched_exp > sched_expires))
1164 sig->cputime_expires.sched_exp = sched_expires;
1165 }
1166
1167 /*
1168 * This is called from the signal code (via do_schedule_next_timer)
1169 * when the last timer signal was delivered and we have to reload the timer.
1170 */
1171 void posix_cpu_timer_schedule(struct k_itimer *timer)
1172 {
1173 struct task_struct *p = timer->it.cpu.task;
1174 union cpu_time_count now;
1175
1176 if (unlikely(p == NULL))
1177 /*
1178 * The task was cleaned up already, no future firings.
1179 */
1180 goto out;
1181
1182 /*
1183 * Fetch the current sample and update the timer's expiry time.
1184 */
1185 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1186 cpu_clock_sample(timer->it_clock, p, &now);
1187 bump_cpu_timer(timer, now);
1188 if (unlikely(p->exit_state)) {
1189 clear_dead_task(timer, now);
1190 goto out;
1191 }
1192 read_lock(&tasklist_lock); /* arm_timer needs it. */
1193 } else {
1194 read_lock(&tasklist_lock);
1195 if (unlikely(p->signal == NULL)) {
1196 /*
1197 * The process has been reaped.
1198 * We can't even collect a sample any more.
1199 */
1200 put_task_struct(p);
1201 timer->it.cpu.task = p = NULL;
1202 timer->it.cpu.expires.sched = 0;
1203 goto out_unlock;
1204 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1205 /*
1206 * We've noticed that the thread is dead, but
1207 * not yet reaped. Take this opportunity to
1208 * drop our task ref.
1209 */
1210 clear_dead_task(timer, now);
1211 goto out_unlock;
1212 }
1213 cpu_clock_sample_group(timer->it_clock, p, &now);
1214 bump_cpu_timer(timer, now);
1215 /* Leave the tasklist_lock locked for the call below. */
1216 }
1217
1218 /*
1219 * Now re-arm for the new expiry time.
1220 */
1221 arm_timer(timer, now);
1222
1223 out_unlock:
1224 read_unlock(&tasklist_lock);
1225
1226 out:
1227 timer->it_overrun_last = timer->it_overrun;
1228 timer->it_overrun = -1;
1229 ++timer->it_requeue_pending;
1230 }
1231
1232 /**
1233 * task_cputime_zero - Check a task_cputime struct for all zero fields.
1234 *
1235 * @cputime: The struct to compare.
1236 *
1237 * Checks @cputime to see if all fields are zero. Returns true if all fields
1238 * are zero, false if any field is nonzero.
1239 */
1240 static inline int task_cputime_zero(const struct task_cputime *cputime)
1241 {
1242 if (cputime_eq(cputime->utime, cputime_zero) &&
1243 cputime_eq(cputime->stime, cputime_zero) &&
1244 cputime->sum_exec_runtime == 0)
1245 return 1;
1246 return 0;
1247 }
1248
1249 /**
1250 * task_cputime_expired - Compare two task_cputime entities.
1251 *
1252 * @sample: The task_cputime structure to be checked for expiration.
1253 * @expires: Expiration times, against which @sample will be checked.
1254 *
1255 * Checks @sample against @expires to see if any field of @sample has expired.
1256 * Returns true if any field of the former is greater than the corresponding
1257 * field of the latter if the latter field is set. Otherwise returns false.
1258 */
1259 static inline int task_cputime_expired(const struct task_cputime *sample,
1260 const struct task_cputime *expires)
1261 {
1262 if (!cputime_eq(expires->utime, cputime_zero) &&
1263 cputime_ge(sample->utime, expires->utime))
1264 return 1;
1265 if (!cputime_eq(expires->stime, cputime_zero) &&
1266 cputime_ge(cputime_add(sample->utime, sample->stime),
1267 expires->stime))
1268 return 1;
1269 if (expires->sum_exec_runtime != 0 &&
1270 sample->sum_exec_runtime >= expires->sum_exec_runtime)
1271 return 1;
1272 return 0;
1273 }
1274
1275 /**
1276 * fastpath_timer_check - POSIX CPU timers fast path.
1277 *
1278 * @tsk: The task (thread) being checked.
1279 *
1280 * Check the task and thread group timers. If both are zero (there are no
1281 * timers set) return false. Otherwise snapshot the task and thread group
1282 * timers and compare them with the corresponding expiration times. Return
1283 * true if a timer has expired, else return false.
1284 */
1285 static inline int fastpath_timer_check(struct task_struct *tsk)
1286 {
1287 struct signal_struct *sig;
1288
1289 /* tsk == current, ensure it is safe to use ->signal/sighand */
1290 if (unlikely(tsk->exit_state))
1291 return 0;
1292
1293 if (!task_cputime_zero(&tsk->cputime_expires)) {
1294 struct task_cputime task_sample = {
1295 .utime = tsk->utime,
1296 .stime = tsk->stime,
1297 .sum_exec_runtime = tsk->se.sum_exec_runtime
1298 };
1299
1300 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1301 return 1;
1302 }
1303
1304 sig = tsk->signal;
1305 if (!task_cputime_zero(&sig->cputime_expires)) {
1306 struct task_cputime group_sample;
1307
1308 thread_group_cputimer(tsk, &group_sample);
1309 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1310 return 1;
1311 }
1312 return 0;
1313 }
1314
1315 /*
1316 * This is called from the timer interrupt handler. The irq handler has
1317 * already updated our counts. We need to check if any timers fire now.
1318 * Interrupts are disabled.
1319 */
1320 void run_posix_cpu_timers(struct task_struct *tsk)
1321 {
1322 LIST_HEAD(firing);
1323 struct k_itimer *timer, *next;
1324
1325 BUG_ON(!irqs_disabled());
1326
1327 /*
1328 * The fast path checks that there are no expired thread or thread
1329 * group timers. If that's so, just return.
1330 */
1331 if (!fastpath_timer_check(tsk))
1332 return;
1333
1334 spin_lock(&tsk->sighand->siglock);
1335 /*
1336 * Here we take off tsk->signal->cpu_timers[N] and
1337 * tsk->cpu_timers[N] all the timers that are firing, and
1338 * put them on the firing list.
1339 */
1340 check_thread_timers(tsk, &firing);
1341 check_process_timers(tsk, &firing);
1342
1343 /*
1344 * We must release these locks before taking any timer's lock.
1345 * There is a potential race with timer deletion here, as the
1346 * siglock now protects our private firing list. We have set
1347 * the firing flag in each timer, so that a deletion attempt
1348 * that gets the timer lock before we do will give it up and
1349 * spin until we've taken care of that timer below.
1350 */
1351 spin_unlock(&tsk->sighand->siglock);
1352
1353 /*
1354 * Now that all the timers on our list have the firing flag,
1355 * noone will touch their list entries but us. We'll take
1356 * each timer's lock before clearing its firing flag, so no
1357 * timer call will interfere.
1358 */
1359 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1360 int firing;
1361 spin_lock(&timer->it_lock);
1362 list_del_init(&timer->it.cpu.entry);
1363 firing = timer->it.cpu.firing;
1364 timer->it.cpu.firing = 0;
1365 /*
1366 * The firing flag is -1 if we collided with a reset
1367 * of the timer, which already reported this
1368 * almost-firing as an overrun. So don't generate an event.
1369 */
1370 if (likely(firing >= 0)) {
1371 cpu_timer_fire(timer);
1372 }
1373 spin_unlock(&timer->it_lock);
1374 }
1375 }
1376
1377 /*
1378 * Sample a process (thread group) timer for the given group_leader task.
1379 * Must be called with tasklist_lock held for reading.
1380 */
1381 static int cpu_timer_sample_group(const clockid_t which_clock,
1382 struct task_struct *p,
1383 union cpu_time_count *cpu)
1384 {
1385 struct task_cputime cputime;
1386
1387 thread_group_cputimer(p, &cputime);
1388 switch (CPUCLOCK_WHICH(which_clock)) {
1389 default:
1390 return -EINVAL;
1391 case CPUCLOCK_PROF:
1392 cpu->cpu = cputime_add(cputime.utime, cputime.stime);
1393 break;
1394 case CPUCLOCK_VIRT:
1395 cpu->cpu = cputime.utime;
1396 break;
1397 case CPUCLOCK_SCHED:
1398 cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p);
1399 break;
1400 }
1401 return 0;
1402 }
1403
1404 /*
1405 * Set one of the process-wide special case CPU timers.
1406 * The tsk->sighand->siglock must be held by the caller.
1407 * The *newval argument is relative and we update it to be absolute, *oldval
1408 * is absolute and we update it to be relative.
1409 */
1410 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1411 cputime_t *newval, cputime_t *oldval)
1412 {
1413 union cpu_time_count now;
1414 struct list_head *head;
1415
1416 BUG_ON(clock_idx == CPUCLOCK_SCHED);
1417 cpu_timer_sample_group(clock_idx, tsk, &now);
1418
1419 if (oldval) {
1420 if (!cputime_eq(*oldval, cputime_zero)) {
1421 if (cputime_le(*oldval, now.cpu)) {
1422 /* Just about to fire. */
1423 *oldval = jiffies_to_cputime(1);
1424 } else {
1425 *oldval = cputime_sub(*oldval, now.cpu);
1426 }
1427 }
1428
1429 if (cputime_eq(*newval, cputime_zero))
1430 return;
1431 *newval = cputime_add(*newval, now.cpu);
1432
1433 /*
1434 * If the RLIMIT_CPU timer will expire before the
1435 * ITIMER_PROF timer, we have nothing else to do.
1436 */
1437 if (tsk->signal->rlim[RLIMIT_CPU].rlim_cur
1438 < cputime_to_secs(*newval))
1439 return;
1440 }
1441
1442 /*
1443 * Check whether there are any process timers already set to fire
1444 * before this one. If so, we don't have anything more to do.
1445 */
1446 head = &tsk->signal->cpu_timers[clock_idx];
1447 if (list_empty(head) ||
1448 cputime_ge(list_first_entry(head,
1449 struct cpu_timer_list, entry)->expires.cpu,
1450 *newval)) {
1451 switch (clock_idx) {
1452 case CPUCLOCK_PROF:
1453 tsk->signal->cputime_expires.prof_exp = *newval;
1454 break;
1455 case CPUCLOCK_VIRT:
1456 tsk->signal->cputime_expires.virt_exp = *newval;
1457 break;
1458 }
1459 }
1460 }
1461
1462 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1463 struct timespec *rqtp, struct itimerspec *it)
1464 {
1465 struct k_itimer timer;
1466 int error;
1467
1468 /*
1469 * Set up a temporary timer and then wait for it to go off.
1470 */
1471 memset(&timer, 0, sizeof timer);
1472 spin_lock_init(&timer.it_lock);
1473 timer.it_clock = which_clock;
1474 timer.it_overrun = -1;
1475 error = posix_cpu_timer_create(&timer);
1476 timer.it_process = current;
1477 if (!error) {
1478 static struct itimerspec zero_it;
1479
1480 memset(it, 0, sizeof *it);
1481 it->it_value = *rqtp;
1482
1483 spin_lock_irq(&timer.it_lock);
1484 error = posix_cpu_timer_set(&timer, flags, it, NULL);
1485 if (error) {
1486 spin_unlock_irq(&timer.it_lock);
1487 return error;
1488 }
1489
1490 while (!signal_pending(current)) {
1491 if (timer.it.cpu.expires.sched == 0) {
1492 /*
1493 * Our timer fired and was reset.
1494 */
1495 spin_unlock_irq(&timer.it_lock);
1496 return 0;
1497 }
1498
1499 /*
1500 * Block until cpu_timer_fire (or a signal) wakes us.
1501 */
1502 __set_current_state(TASK_INTERRUPTIBLE);
1503 spin_unlock_irq(&timer.it_lock);
1504 schedule();
1505 spin_lock_irq(&timer.it_lock);
1506 }
1507
1508 /*
1509 * We were interrupted by a signal.
1510 */
1511 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1512 posix_cpu_timer_set(&timer, 0, &zero_it, it);
1513 spin_unlock_irq(&timer.it_lock);
1514
1515 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1516 /*
1517 * It actually did fire already.
1518 */
1519 return 0;
1520 }
1521
1522 error = -ERESTART_RESTARTBLOCK;
1523 }
1524
1525 return error;
1526 }
1527
1528 int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1529 struct timespec *rqtp, struct timespec __user *rmtp)
1530 {
1531 struct restart_block *restart_block =
1532 &current_thread_info()->restart_block;
1533 struct itimerspec it;
1534 int error;
1535
1536 /*
1537 * Diagnose required errors first.
1538 */
1539 if (CPUCLOCK_PERTHREAD(which_clock) &&
1540 (CPUCLOCK_PID(which_clock) == 0 ||
1541 CPUCLOCK_PID(which_clock) == current->pid))
1542 return -EINVAL;
1543
1544 error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1545
1546 if (error == -ERESTART_RESTARTBLOCK) {
1547
1548 if (flags & TIMER_ABSTIME)
1549 return -ERESTARTNOHAND;
1550 /*
1551 * Report back to the user the time still remaining.
1552 */
1553 if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1554 return -EFAULT;
1555
1556 restart_block->fn = posix_cpu_nsleep_restart;
1557 restart_block->arg0 = which_clock;
1558 restart_block->arg1 = (unsigned long) rmtp;
1559 restart_block->arg2 = rqtp->tv_sec;
1560 restart_block->arg3 = rqtp->tv_nsec;
1561 }
1562 return error;
1563 }
1564
1565 long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1566 {
1567 clockid_t which_clock = restart_block->arg0;
1568 struct timespec __user *rmtp;
1569 struct timespec t;
1570 struct itimerspec it;
1571 int error;
1572
1573 rmtp = (struct timespec __user *) restart_block->arg1;
1574 t.tv_sec = restart_block->arg2;
1575 t.tv_nsec = restart_block->arg3;
1576
1577 restart_block->fn = do_no_restart_syscall;
1578 error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1579
1580 if (error == -ERESTART_RESTARTBLOCK) {
1581 /*
1582 * Report back to the user the time still remaining.
1583 */
1584 if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1585 return -EFAULT;
1586
1587 restart_block->fn = posix_cpu_nsleep_restart;
1588 restart_block->arg0 = which_clock;
1589 restart_block->arg1 = (unsigned long) rmtp;
1590 restart_block->arg2 = t.tv_sec;
1591 restart_block->arg3 = t.tv_nsec;
1592 }
1593 return error;
1594
1595 }
1596
1597
1598 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1599 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1600
1601 static int process_cpu_clock_getres(const clockid_t which_clock,
1602 struct timespec *tp)
1603 {
1604 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1605 }
1606 static int process_cpu_clock_get(const clockid_t which_clock,
1607 struct timespec *tp)
1608 {
1609 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1610 }
1611 static int process_cpu_timer_create(struct k_itimer *timer)
1612 {
1613 timer->it_clock = PROCESS_CLOCK;
1614 return posix_cpu_timer_create(timer);
1615 }
1616 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1617 struct timespec *rqtp,
1618 struct timespec __user *rmtp)
1619 {
1620 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1621 }
1622 static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1623 {
1624 return -EINVAL;
1625 }
1626 static int thread_cpu_clock_getres(const clockid_t which_clock,
1627 struct timespec *tp)
1628 {
1629 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1630 }
1631 static int thread_cpu_clock_get(const clockid_t which_clock,
1632 struct timespec *tp)
1633 {
1634 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1635 }
1636 static int thread_cpu_timer_create(struct k_itimer *timer)
1637 {
1638 timer->it_clock = THREAD_CLOCK;
1639 return posix_cpu_timer_create(timer);
1640 }
1641 static int thread_cpu_nsleep(const clockid_t which_clock, int flags,
1642 struct timespec *rqtp, struct timespec __user *rmtp)
1643 {
1644 return -EINVAL;
1645 }
1646 static long thread_cpu_nsleep_restart(struct restart_block *restart_block)
1647 {
1648 return -EINVAL;
1649 }
1650
1651 static __init int init_posix_cpu_timers(void)
1652 {
1653 struct k_clock process = {
1654 .clock_getres = process_cpu_clock_getres,
1655 .clock_get = process_cpu_clock_get,
1656 .clock_set = do_posix_clock_nosettime,
1657 .timer_create = process_cpu_timer_create,
1658 .nsleep = process_cpu_nsleep,
1659 .nsleep_restart = process_cpu_nsleep_restart,
1660 };
1661 struct k_clock thread = {
1662 .clock_getres = thread_cpu_clock_getres,
1663 .clock_get = thread_cpu_clock_get,
1664 .clock_set = do_posix_clock_nosettime,
1665 .timer_create = thread_cpu_timer_create,
1666 .nsleep = thread_cpu_nsleep,
1667 .nsleep_restart = thread_cpu_nsleep_restart,
1668 };
1669
1670 register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1671 register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1672
1673 return 0;
1674 }
1675 __initcall(init_posix_cpu_timers);
This page took 0.063144 seconds and 6 git commands to generate.