[PATCH] hrtimers: fix possible use of NULL pointer in posix-timers
[deliverable/linux.git] / kernel / posix-timers.c
1 /*
2 * linux/kernel/posix_timers.c
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30 /* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33 #include <linux/mm.h>
34 #include <linux/smp_lock.h>
35 #include <linux/interrupt.h>
36 #include <linux/slab.h>
37 #include <linux/time.h>
38
39 #include <asm/uaccess.h>
40 #include <asm/semaphore.h>
41 #include <linux/list.h>
42 #include <linux/init.h>
43 #include <linux/compiler.h>
44 #include <linux/idr.h>
45 #include <linux/posix-timers.h>
46 #include <linux/syscalls.h>
47 #include <linux/wait.h>
48 #include <linux/workqueue.h>
49 #include <linux/module.h>
50
51 /*
52 * Management arrays for POSIX timers. Timers are kept in slab memory
53 * Timer ids are allocated by an external routine that keeps track of the
54 * id and the timer. The external interface is:
55 *
56 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
57 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
58 * related it to <ptr>
59 * void idr_remove(struct idr *idp, int id); to release <id>
60 * void idr_init(struct idr *idp); to initialize <idp>
61 * which we supply.
62 * The idr_get_new *may* call slab for more memory so it must not be
63 * called under a spin lock. Likewise idr_remore may release memory
64 * (but it may be ok to do this under a lock...).
65 * idr_find is just a memory look up and is quite fast. A -1 return
66 * indicates that the requested id does not exist.
67 */
68
69 /*
70 * Lets keep our timers in a slab cache :-)
71 */
72 static kmem_cache_t *posix_timers_cache;
73 static struct idr posix_timers_id;
74 static DEFINE_SPINLOCK(idr_lock);
75
76 /*
77 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
78 * SIGEV values. Here we put out an error if this assumption fails.
79 */
80 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
81 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
82 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
83 #endif
84
85
86 /*
87 * The timer ID is turned into a timer address by idr_find().
88 * Verifying a valid ID consists of:
89 *
90 * a) checking that idr_find() returns other than -1.
91 * b) checking that the timer id matches the one in the timer itself.
92 * c) that the timer owner is in the callers thread group.
93 */
94
95 /*
96 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
97 * to implement others. This structure defines the various
98 * clocks and allows the possibility of adding others. We
99 * provide an interface to add clocks to the table and expect
100 * the "arch" code to add at least one clock that is high
101 * resolution. Here we define the standard CLOCK_REALTIME as a
102 * 1/HZ resolution clock.
103 *
104 * RESOLUTION: Clock resolution is used to round up timer and interval
105 * times, NOT to report clock times, which are reported with as
106 * much resolution as the system can muster. In some cases this
107 * resolution may depend on the underlying clock hardware and
108 * may not be quantifiable until run time, and only then is the
109 * necessary code is written. The standard says we should say
110 * something about this issue in the documentation...
111 *
112 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
113 * various clock functions. For clocks that use the standard
114 * system timer code these entries should be NULL. This will
115 * allow dispatch without the overhead of indirect function
116 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
117 * must supply functions here, even if the function just returns
118 * ENOSYS. The standard POSIX timer management code assumes the
119 * following: 1.) The k_itimer struct (sched.h) is used for the
120 * timer. 2.) The list, it_lock, it_clock, it_id and it_process
121 * fields are not modified by timer code.
122 *
123 * At this time all functions EXCEPT clock_nanosleep can be
124 * redirected by the CLOCKS structure. Clock_nanosleep is in
125 * there, but the code ignores it.
126 *
127 * Permissions: It is assumed that the clock_settime() function defined
128 * for each clock will take care of permission checks. Some
129 * clocks may be set able by any user (i.e. local process
130 * clocks) others not. Currently the only set able clock we
131 * have is CLOCK_REALTIME and its high res counter part, both of
132 * which we beg off on and pass to do_sys_settimeofday().
133 */
134
135 static struct k_clock posix_clocks[MAX_CLOCKS];
136
137 /*
138 * These ones are defined below.
139 */
140 static int common_nsleep(const clockid_t, int flags, struct timespec *t,
141 struct timespec __user *rmtp);
142 static void common_timer_get(struct k_itimer *, struct itimerspec *);
143 static int common_timer_set(struct k_itimer *, int,
144 struct itimerspec *, struct itimerspec *);
145 static int common_timer_del(struct k_itimer *timer);
146
147 static int posix_timer_fn(void *data);
148
149 static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
150
151 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
152 {
153 spin_unlock_irqrestore(&timr->it_lock, flags);
154 }
155
156 /*
157 * Call the k_clock hook function if non-null, or the default function.
158 */
159 #define CLOCK_DISPATCH(clock, call, arglist) \
160 ((clock) < 0 ? posix_cpu_##call arglist : \
161 (posix_clocks[clock].call != NULL \
162 ? (*posix_clocks[clock].call) arglist : common_##call arglist))
163
164 /*
165 * Default clock hook functions when the struct k_clock passed
166 * to register_posix_clock leaves a function pointer null.
167 *
168 * The function common_CALL is the default implementation for
169 * the function pointer CALL in struct k_clock.
170 */
171
172 static inline int common_clock_getres(const clockid_t which_clock,
173 struct timespec *tp)
174 {
175 tp->tv_sec = 0;
176 tp->tv_nsec = posix_clocks[which_clock].res;
177 return 0;
178 }
179
180 /*
181 * Get real time for posix timers
182 */
183 static int common_clock_get(clockid_t which_clock, struct timespec *tp)
184 {
185 ktime_get_real_ts(tp);
186 return 0;
187 }
188
189 static inline int common_clock_set(const clockid_t which_clock,
190 struct timespec *tp)
191 {
192 return do_sys_settimeofday(tp, NULL);
193 }
194
195 static int common_timer_create(struct k_itimer *new_timer)
196 {
197 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock);
198 new_timer->it.real.timer.data = new_timer;
199 new_timer->it.real.timer.function = posix_timer_fn;
200 return 0;
201 }
202
203 /*
204 * Return nonzero if we know a priori this clockid_t value is bogus.
205 */
206 static inline int invalid_clockid(const clockid_t which_clock)
207 {
208 if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */
209 return 0;
210 if ((unsigned) which_clock >= MAX_CLOCKS)
211 return 1;
212 if (posix_clocks[which_clock].clock_getres != NULL)
213 return 0;
214 if (posix_clocks[which_clock].res != 0)
215 return 0;
216 return 1;
217 }
218
219 /*
220 * Get monotonic time for posix timers
221 */
222 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
223 {
224 ktime_get_ts(tp);
225 return 0;
226 }
227
228 /*
229 * Initialize everything, well, just everything in Posix clocks/timers ;)
230 */
231 static __init int init_posix_timers(void)
232 {
233 struct k_clock clock_realtime = {
234 .clock_getres = hrtimer_get_res,
235 };
236 struct k_clock clock_monotonic = {
237 .clock_getres = hrtimer_get_res,
238 .clock_get = posix_ktime_get_ts,
239 .clock_set = do_posix_clock_nosettime,
240 };
241
242 register_posix_clock(CLOCK_REALTIME, &clock_realtime);
243 register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
244
245 posix_timers_cache = kmem_cache_create("posix_timers_cache",
246 sizeof (struct k_itimer), 0, 0, NULL, NULL);
247 idr_init(&posix_timers_id);
248 return 0;
249 }
250
251 __initcall(init_posix_timers);
252
253 static void schedule_next_timer(struct k_itimer *timr)
254 {
255 if (timr->it.real.interval.tv64 == 0)
256 return;
257
258 timr->it_overrun += hrtimer_forward(&timr->it.real.timer,
259 timr->it.real.interval);
260 timr->it_overrun_last = timr->it_overrun;
261 timr->it_overrun = -1;
262 ++timr->it_requeue_pending;
263 hrtimer_restart(&timr->it.real.timer);
264 }
265
266 /*
267 * This function is exported for use by the signal deliver code. It is
268 * called just prior to the info block being released and passes that
269 * block to us. It's function is to update the overrun entry AND to
270 * restart the timer. It should only be called if the timer is to be
271 * restarted (i.e. we have flagged this in the sys_private entry of the
272 * info block).
273 *
274 * To protect aginst the timer going away while the interrupt is queued,
275 * we require that the it_requeue_pending flag be set.
276 */
277 void do_schedule_next_timer(struct siginfo *info)
278 {
279 struct k_itimer *timr;
280 unsigned long flags;
281
282 timr = lock_timer(info->si_tid, &flags);
283
284 if (timr && timr->it_requeue_pending == info->si_sys_private) {
285 if (timr->it_clock < 0)
286 posix_cpu_timer_schedule(timr);
287 else
288 schedule_next_timer(timr);
289
290 info->si_overrun = timr->it_overrun_last;
291 }
292
293 if (timr)
294 unlock_timer(timr, flags);
295 }
296
297 int posix_timer_event(struct k_itimer *timr,int si_private)
298 {
299 memset(&timr->sigq->info, 0, sizeof(siginfo_t));
300 timr->sigq->info.si_sys_private = si_private;
301 /* Send signal to the process that owns this timer.*/
302
303 timr->sigq->info.si_signo = timr->it_sigev_signo;
304 timr->sigq->info.si_errno = 0;
305 timr->sigq->info.si_code = SI_TIMER;
306 timr->sigq->info.si_tid = timr->it_id;
307 timr->sigq->info.si_value = timr->it_sigev_value;
308
309 if (timr->it_sigev_notify & SIGEV_THREAD_ID) {
310 struct task_struct *leader;
311 int ret = send_sigqueue(timr->it_sigev_signo, timr->sigq,
312 timr->it_process);
313
314 if (likely(ret >= 0))
315 return ret;
316
317 timr->it_sigev_notify = SIGEV_SIGNAL;
318 leader = timr->it_process->group_leader;
319 put_task_struct(timr->it_process);
320 timr->it_process = leader;
321 }
322
323 return send_group_sigqueue(timr->it_sigev_signo, timr->sigq,
324 timr->it_process);
325 }
326 EXPORT_SYMBOL_GPL(posix_timer_event);
327
328 /*
329 * This function gets called when a POSIX.1b interval timer expires. It
330 * is used as a callback from the kernel internal timer. The
331 * run_timer_list code ALWAYS calls with interrupts on.
332
333 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
334 */
335 static int posix_timer_fn(void *data)
336 {
337 struct k_itimer *timr = data;
338 unsigned long flags;
339 int si_private = 0;
340 int ret = HRTIMER_NORESTART;
341
342 spin_lock_irqsave(&timr->it_lock, flags);
343
344 if (timr->it.real.interval.tv64 != 0)
345 si_private = ++timr->it_requeue_pending;
346
347 if (posix_timer_event(timr, si_private)) {
348 /*
349 * signal was not sent because of sig_ignor
350 * we will not get a call back to restart it AND
351 * it should be restarted.
352 */
353 if (timr->it.real.interval.tv64 != 0) {
354 timr->it_overrun +=
355 hrtimer_forward(&timr->it.real.timer,
356 timr->it.real.interval);
357 ret = HRTIMER_RESTART;
358 }
359 }
360
361 unlock_timer(timr, flags);
362 return ret;
363 }
364
365 static struct task_struct * good_sigevent(sigevent_t * event)
366 {
367 struct task_struct *rtn = current->group_leader;
368
369 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
370 (!(rtn = find_task_by_pid(event->sigev_notify_thread_id)) ||
371 rtn->tgid != current->tgid ||
372 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
373 return NULL;
374
375 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
376 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
377 return NULL;
378
379 return rtn;
380 }
381
382 void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
383 {
384 if ((unsigned) clock_id >= MAX_CLOCKS) {
385 printk("POSIX clock register failed for clock_id %d\n",
386 clock_id);
387 return;
388 }
389
390 posix_clocks[clock_id] = *new_clock;
391 }
392 EXPORT_SYMBOL_GPL(register_posix_clock);
393
394 static struct k_itimer * alloc_posix_timer(void)
395 {
396 struct k_itimer *tmr;
397 tmr = kmem_cache_alloc(posix_timers_cache, GFP_KERNEL);
398 if (!tmr)
399 return tmr;
400 memset(tmr, 0, sizeof (struct k_itimer));
401 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
402 kmem_cache_free(posix_timers_cache, tmr);
403 tmr = NULL;
404 }
405 return tmr;
406 }
407
408 #define IT_ID_SET 1
409 #define IT_ID_NOT_SET 0
410 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
411 {
412 if (it_id_set) {
413 unsigned long flags;
414 spin_lock_irqsave(&idr_lock, flags);
415 idr_remove(&posix_timers_id, tmr->it_id);
416 spin_unlock_irqrestore(&idr_lock, flags);
417 }
418 sigqueue_free(tmr->sigq);
419 if (unlikely(tmr->it_process) &&
420 tmr->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
421 put_task_struct(tmr->it_process);
422 kmem_cache_free(posix_timers_cache, tmr);
423 }
424
425 /* Create a POSIX.1b interval timer. */
426
427 asmlinkage long
428 sys_timer_create(const clockid_t which_clock,
429 struct sigevent __user *timer_event_spec,
430 timer_t __user * created_timer_id)
431 {
432 int error = 0;
433 struct k_itimer *new_timer = NULL;
434 int new_timer_id;
435 struct task_struct *process = NULL;
436 unsigned long flags;
437 sigevent_t event;
438 int it_id_set = IT_ID_NOT_SET;
439
440 if (invalid_clockid(which_clock))
441 return -EINVAL;
442
443 new_timer = alloc_posix_timer();
444 if (unlikely(!new_timer))
445 return -EAGAIN;
446
447 spin_lock_init(&new_timer->it_lock);
448 retry:
449 if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
450 error = -EAGAIN;
451 goto out;
452 }
453 spin_lock_irq(&idr_lock);
454 error = idr_get_new(&posix_timers_id, (void *) new_timer,
455 &new_timer_id);
456 spin_unlock_irq(&idr_lock);
457 if (error == -EAGAIN)
458 goto retry;
459 else if (error) {
460 /*
461 * Wierd looking, but we return EAGAIN if the IDR is
462 * full (proper POSIX return value for this)
463 */
464 error = -EAGAIN;
465 goto out;
466 }
467
468 it_id_set = IT_ID_SET;
469 new_timer->it_id = (timer_t) new_timer_id;
470 new_timer->it_clock = which_clock;
471 new_timer->it_overrun = -1;
472 error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
473 if (error)
474 goto out;
475
476 /*
477 * return the timer_id now. The next step is hard to
478 * back out if there is an error.
479 */
480 if (copy_to_user(created_timer_id,
481 &new_timer_id, sizeof (new_timer_id))) {
482 error = -EFAULT;
483 goto out;
484 }
485 if (timer_event_spec) {
486 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
487 error = -EFAULT;
488 goto out;
489 }
490 new_timer->it_sigev_notify = event.sigev_notify;
491 new_timer->it_sigev_signo = event.sigev_signo;
492 new_timer->it_sigev_value = event.sigev_value;
493
494 read_lock(&tasklist_lock);
495 if ((process = good_sigevent(&event))) {
496 /*
497 * We may be setting up this process for another
498 * thread. It may be exiting. To catch this
499 * case the we check the PF_EXITING flag. If
500 * the flag is not set, the siglock will catch
501 * him before it is too late (in exit_itimers).
502 *
503 * The exec case is a bit more invloved but easy
504 * to code. If the process is in our thread
505 * group (and it must be or we would not allow
506 * it here) and is doing an exec, it will cause
507 * us to be killed. In this case it will wait
508 * for us to die which means we can finish this
509 * linkage with our last gasp. I.e. no code :)
510 */
511 spin_lock_irqsave(&process->sighand->siglock, flags);
512 if (!(process->flags & PF_EXITING)) {
513 new_timer->it_process = process;
514 list_add(&new_timer->list,
515 &process->signal->posix_timers);
516 spin_unlock_irqrestore(&process->sighand->siglock, flags);
517 if (new_timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
518 get_task_struct(process);
519 } else {
520 spin_unlock_irqrestore(&process->sighand->siglock, flags);
521 process = NULL;
522 }
523 }
524 read_unlock(&tasklist_lock);
525 if (!process) {
526 error = -EINVAL;
527 goto out;
528 }
529 } else {
530 new_timer->it_sigev_notify = SIGEV_SIGNAL;
531 new_timer->it_sigev_signo = SIGALRM;
532 new_timer->it_sigev_value.sival_int = new_timer->it_id;
533 process = current->group_leader;
534 spin_lock_irqsave(&process->sighand->siglock, flags);
535 new_timer->it_process = process;
536 list_add(&new_timer->list, &process->signal->posix_timers);
537 spin_unlock_irqrestore(&process->sighand->siglock, flags);
538 }
539
540 /*
541 * In the case of the timer belonging to another task, after
542 * the task is unlocked, the timer is owned by the other task
543 * and may cease to exist at any time. Don't use or modify
544 * new_timer after the unlock call.
545 */
546
547 out:
548 if (error)
549 release_posix_timer(new_timer, it_id_set);
550
551 return error;
552 }
553
554 /*
555 * Locking issues: We need to protect the result of the id look up until
556 * we get the timer locked down so it is not deleted under us. The
557 * removal is done under the idr spinlock so we use that here to bridge
558 * the find to the timer lock. To avoid a dead lock, the timer id MUST
559 * be release with out holding the timer lock.
560 */
561 static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags)
562 {
563 struct k_itimer *timr;
564 /*
565 * Watch out here. We do a irqsave on the idr_lock and pass the
566 * flags part over to the timer lock. Must not let interrupts in
567 * while we are moving the lock.
568 */
569
570 spin_lock_irqsave(&idr_lock, *flags);
571 timr = (struct k_itimer *) idr_find(&posix_timers_id, (int) timer_id);
572 if (timr) {
573 spin_lock(&timr->it_lock);
574 spin_unlock(&idr_lock);
575
576 if ((timr->it_id != timer_id) || !(timr->it_process) ||
577 timr->it_process->tgid != current->tgid) {
578 unlock_timer(timr, *flags);
579 timr = NULL;
580 }
581 } else
582 spin_unlock_irqrestore(&idr_lock, *flags);
583
584 return timr;
585 }
586
587 /*
588 * Get the time remaining on a POSIX.1b interval timer. This function
589 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
590 * mess with irq.
591 *
592 * We have a couple of messes to clean up here. First there is the case
593 * of a timer that has a requeue pending. These timers should appear to
594 * be in the timer list with an expiry as if we were to requeue them
595 * now.
596 *
597 * The second issue is the SIGEV_NONE timer which may be active but is
598 * not really ever put in the timer list (to save system resources).
599 * This timer may be expired, and if so, we will do it here. Otherwise
600 * it is the same as a requeue pending timer WRT to what we should
601 * report.
602 */
603 static void
604 common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
605 {
606 ktime_t remaining;
607 struct hrtimer *timer = &timr->it.real.timer;
608
609 memset(cur_setting, 0, sizeof(struct itimerspec));
610 remaining = hrtimer_get_remaining(timer);
611
612 /* Time left ? or timer pending */
613 if (remaining.tv64 > 0 || hrtimer_active(timer))
614 goto calci;
615 /* interval timer ? */
616 if (timr->it.real.interval.tv64 == 0)
617 return;
618 /*
619 * When a requeue is pending or this is a SIGEV_NONE timer
620 * move the expiry time forward by intervals, so expiry is >
621 * now.
622 */
623 if (timr->it_requeue_pending & REQUEUE_PENDING ||
624 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
625 timr->it_overrun +=
626 hrtimer_forward(timer, timr->it.real.interval);
627 remaining = hrtimer_get_remaining(timer);
628 }
629 calci:
630 /* interval timer ? */
631 if (timr->it.real.interval.tv64 != 0)
632 cur_setting->it_interval =
633 ktime_to_timespec(timr->it.real.interval);
634 /* Return 0 only, when the timer is expired and not pending */
635 if (remaining.tv64 <= 0)
636 cur_setting->it_value.tv_nsec = 1;
637 else
638 cur_setting->it_value = ktime_to_timespec(remaining);
639 }
640
641 /* Get the time remaining on a POSIX.1b interval timer. */
642 asmlinkage long
643 sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting)
644 {
645 struct k_itimer *timr;
646 struct itimerspec cur_setting;
647 unsigned long flags;
648
649 timr = lock_timer(timer_id, &flags);
650 if (!timr)
651 return -EINVAL;
652
653 CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
654
655 unlock_timer(timr, flags);
656
657 if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
658 return -EFAULT;
659
660 return 0;
661 }
662
663 /*
664 * Get the number of overruns of a POSIX.1b interval timer. This is to
665 * be the overrun of the timer last delivered. At the same time we are
666 * accumulating overruns on the next timer. The overrun is frozen when
667 * the signal is delivered, either at the notify time (if the info block
668 * is not queued) or at the actual delivery time (as we are informed by
669 * the call back to do_schedule_next_timer(). So all we need to do is
670 * to pick up the frozen overrun.
671 */
672 asmlinkage long
673 sys_timer_getoverrun(timer_t timer_id)
674 {
675 struct k_itimer *timr;
676 int overrun;
677 long flags;
678
679 timr = lock_timer(timer_id, &flags);
680 if (!timr)
681 return -EINVAL;
682
683 overrun = timr->it_overrun_last;
684 unlock_timer(timr, flags);
685
686 return overrun;
687 }
688
689 /* Set a POSIX.1b interval timer. */
690 /* timr->it_lock is taken. */
691 static int
692 common_timer_set(struct k_itimer *timr, int flags,
693 struct itimerspec *new_setting, struct itimerspec *old_setting)
694 {
695 struct hrtimer *timer = &timr->it.real.timer;
696
697 if (old_setting)
698 common_timer_get(timr, old_setting);
699
700 /* disable the timer */
701 timr->it.real.interval.tv64 = 0;
702 /*
703 * careful here. If smp we could be in the "fire" routine which will
704 * be spinning as we hold the lock. But this is ONLY an SMP issue.
705 */
706 if (hrtimer_try_to_cancel(timer) < 0)
707 return TIMER_RETRY;
708
709 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
710 ~REQUEUE_PENDING;
711 timr->it_overrun_last = 0;
712
713 /* switch off the timer when it_value is zero */
714 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
715 return 0;
716
717 /* Posix madness. Only absolute CLOCK_REALTIME timers
718 * are affected by clock sets. So we must reiniatilize
719 * the timer.
720 */
721 if (timr->it_clock == CLOCK_REALTIME && (flags & TIMER_ABSTIME))
722 hrtimer_rebase(timer, CLOCK_REALTIME);
723 else
724 hrtimer_rebase(timer, CLOCK_MONOTONIC);
725
726 timer->expires = timespec_to_ktime(new_setting->it_value);
727
728 /* Convert interval */
729 timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
730
731 /* SIGEV_NONE timers are not queued ! See common_timer_get */
732 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
733 return 0;
734
735 hrtimer_start(timer, timer->expires, (flags & TIMER_ABSTIME) ?
736 HRTIMER_ABS : HRTIMER_REL);
737 return 0;
738 }
739
740 /* Set a POSIX.1b interval timer */
741 asmlinkage long
742 sys_timer_settime(timer_t timer_id, int flags,
743 const struct itimerspec __user *new_setting,
744 struct itimerspec __user *old_setting)
745 {
746 struct k_itimer *timr;
747 struct itimerspec new_spec, old_spec;
748 int error = 0;
749 long flag;
750 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
751
752 if (!new_setting)
753 return -EINVAL;
754
755 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
756 return -EFAULT;
757
758 if (!timespec_valid(&new_spec.it_interval) ||
759 !timespec_valid(&new_spec.it_value))
760 return -EINVAL;
761 retry:
762 timr = lock_timer(timer_id, &flag);
763 if (!timr)
764 return -EINVAL;
765
766 error = CLOCK_DISPATCH(timr->it_clock, timer_set,
767 (timr, flags, &new_spec, rtn));
768
769 unlock_timer(timr, flag);
770 if (error == TIMER_RETRY) {
771 rtn = NULL; // We already got the old time...
772 goto retry;
773 }
774
775 if (old_setting && !error &&
776 copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
777 error = -EFAULT;
778
779 return error;
780 }
781
782 static inline int common_timer_del(struct k_itimer *timer)
783 {
784 timer->it.real.interval.tv64 = 0;
785
786 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
787 return TIMER_RETRY;
788 return 0;
789 }
790
791 static inline int timer_delete_hook(struct k_itimer *timer)
792 {
793 return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
794 }
795
796 /* Delete a POSIX.1b interval timer. */
797 asmlinkage long
798 sys_timer_delete(timer_t timer_id)
799 {
800 struct k_itimer *timer;
801 long flags;
802
803 retry_delete:
804 timer = lock_timer(timer_id, &flags);
805 if (!timer)
806 return -EINVAL;
807
808 if (timer_delete_hook(timer) == TIMER_RETRY) {
809 unlock_timer(timer, flags);
810 goto retry_delete;
811 }
812
813 spin_lock(&current->sighand->siglock);
814 list_del(&timer->list);
815 spin_unlock(&current->sighand->siglock);
816 /*
817 * This keeps any tasks waiting on the spin lock from thinking
818 * they got something (see the lock code above).
819 */
820 if (timer->it_process) {
821 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
822 put_task_struct(timer->it_process);
823 timer->it_process = NULL;
824 }
825 unlock_timer(timer, flags);
826 release_posix_timer(timer, IT_ID_SET);
827 return 0;
828 }
829
830 /*
831 * return timer owned by the process, used by exit_itimers
832 */
833 static void itimer_delete(struct k_itimer *timer)
834 {
835 unsigned long flags;
836
837 retry_delete:
838 spin_lock_irqsave(&timer->it_lock, flags);
839
840 if (timer_delete_hook(timer) == TIMER_RETRY) {
841 unlock_timer(timer, flags);
842 goto retry_delete;
843 }
844 list_del(&timer->list);
845 /*
846 * This keeps any tasks waiting on the spin lock from thinking
847 * they got something (see the lock code above).
848 */
849 if (timer->it_process) {
850 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
851 put_task_struct(timer->it_process);
852 timer->it_process = NULL;
853 }
854 unlock_timer(timer, flags);
855 release_posix_timer(timer, IT_ID_SET);
856 }
857
858 /*
859 * This is called by do_exit or de_thread, only when there are no more
860 * references to the shared signal_struct.
861 */
862 void exit_itimers(struct signal_struct *sig)
863 {
864 struct k_itimer *tmr;
865
866 while (!list_empty(&sig->posix_timers)) {
867 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
868 itimer_delete(tmr);
869 }
870 }
871
872 /* Not available / possible... functions */
873 int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp)
874 {
875 return -EINVAL;
876 }
877 EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
878
879 int do_posix_clock_notimer_create(struct k_itimer *timer)
880 {
881 return -EINVAL;
882 }
883 EXPORT_SYMBOL_GPL(do_posix_clock_notimer_create);
884
885 int do_posix_clock_nonanosleep(const clockid_t clock, int flags,
886 struct timespec *t, struct timespec __user *r)
887 {
888 #ifndef ENOTSUP
889 return -EOPNOTSUPP; /* aka ENOTSUP in userland for POSIX */
890 #else /* parisc does define it separately. */
891 return -ENOTSUP;
892 #endif
893 }
894 EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
895
896 asmlinkage long sys_clock_settime(const clockid_t which_clock,
897 const struct timespec __user *tp)
898 {
899 struct timespec new_tp;
900
901 if (invalid_clockid(which_clock))
902 return -EINVAL;
903 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
904 return -EFAULT;
905
906 return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
907 }
908
909 asmlinkage long
910 sys_clock_gettime(const clockid_t which_clock, struct timespec __user *tp)
911 {
912 struct timespec kernel_tp;
913 int error;
914
915 if (invalid_clockid(which_clock))
916 return -EINVAL;
917 error = CLOCK_DISPATCH(which_clock, clock_get,
918 (which_clock, &kernel_tp));
919 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
920 error = -EFAULT;
921
922 return error;
923
924 }
925
926 asmlinkage long
927 sys_clock_getres(const clockid_t which_clock, struct timespec __user *tp)
928 {
929 struct timespec rtn_tp;
930 int error;
931
932 if (invalid_clockid(which_clock))
933 return -EINVAL;
934
935 error = CLOCK_DISPATCH(which_clock, clock_getres,
936 (which_clock, &rtn_tp));
937
938 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
939 error = -EFAULT;
940 }
941
942 return error;
943 }
944
945 /*
946 * nanosleep for monotonic and realtime clocks
947 */
948 static int common_nsleep(const clockid_t which_clock, int flags,
949 struct timespec *tsave, struct timespec __user *rmtp)
950 {
951 int mode = flags & TIMER_ABSTIME ? HRTIMER_ABS : HRTIMER_REL;
952 int clockid = which_clock;
953
954 switch (which_clock) {
955 case CLOCK_REALTIME:
956 /* Posix madness. Only absolute timers on clock realtime
957 are affected by clock set. */
958 if (mode != HRTIMER_ABS)
959 clockid = CLOCK_MONOTONIC;
960 case CLOCK_MONOTONIC:
961 break;
962 default:
963 return -EINVAL;
964 }
965 return hrtimer_nanosleep(tsave, rmtp, mode, clockid);
966 }
967
968 asmlinkage long
969 sys_clock_nanosleep(const clockid_t which_clock, int flags,
970 const struct timespec __user *rqtp,
971 struct timespec __user *rmtp)
972 {
973 struct timespec t;
974
975 if (invalid_clockid(which_clock))
976 return -EINVAL;
977
978 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
979 return -EFAULT;
980
981 if (!timespec_valid(&t))
982 return -EINVAL;
983
984 return CLOCK_DISPATCH(which_clock, nsleep,
985 (which_clock, flags, &t, rmtp));
986 }
This page took 0.092267 seconds and 5 git commands to generate.