timekeeping: Add CLOCK_TAI clockid
[deliverable/linux.git] / kernel / posix-timers.c
1 /*
2 * linux/kernel/posix-timers.c
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30 /* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
38
39 #include <asm/uaccess.h>
40 #include <linux/list.h>
41 #include <linux/init.h>
42 #include <linux/compiler.h>
43 #include <linux/idr.h>
44 #include <linux/posix-clock.h>
45 #include <linux/posix-timers.h>
46 #include <linux/syscalls.h>
47 #include <linux/wait.h>
48 #include <linux/workqueue.h>
49 #include <linux/export.h>
50
51 /*
52 * Management arrays for POSIX timers. Timers are kept in slab memory
53 * Timer ids are allocated by an external routine that keeps track of the
54 * id and the timer. The external interface is:
55 *
56 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
57 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
58 * related it to <ptr>
59 * void idr_remove(struct idr *idp, int id); to release <id>
60 * void idr_init(struct idr *idp); to initialize <idp>
61 * which we supply.
62 * The idr_get_new *may* call slab for more memory so it must not be
63 * called under a spin lock. Likewise idr_remore may release memory
64 * (but it may be ok to do this under a lock...).
65 * idr_find is just a memory look up and is quite fast. A -1 return
66 * indicates that the requested id does not exist.
67 */
68
69 /*
70 * Lets keep our timers in a slab cache :-)
71 */
72 static struct kmem_cache *posix_timers_cache;
73 static struct idr posix_timers_id;
74 static DEFINE_SPINLOCK(idr_lock);
75
76 /*
77 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
78 * SIGEV values. Here we put out an error if this assumption fails.
79 */
80 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
81 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
82 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
83 #endif
84
85 /*
86 * parisc wants ENOTSUP instead of EOPNOTSUPP
87 */
88 #ifndef ENOTSUP
89 # define ENANOSLEEP_NOTSUP EOPNOTSUPP
90 #else
91 # define ENANOSLEEP_NOTSUP ENOTSUP
92 #endif
93
94 /*
95 * The timer ID is turned into a timer address by idr_find().
96 * Verifying a valid ID consists of:
97 *
98 * a) checking that idr_find() returns other than -1.
99 * b) checking that the timer id matches the one in the timer itself.
100 * c) that the timer owner is in the callers thread group.
101 */
102
103 /*
104 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
105 * to implement others. This structure defines the various
106 * clocks.
107 *
108 * RESOLUTION: Clock resolution is used to round up timer and interval
109 * times, NOT to report clock times, which are reported with as
110 * much resolution as the system can muster. In some cases this
111 * resolution may depend on the underlying clock hardware and
112 * may not be quantifiable until run time, and only then is the
113 * necessary code is written. The standard says we should say
114 * something about this issue in the documentation...
115 *
116 * FUNCTIONS: The CLOCKs structure defines possible functions to
117 * handle various clock functions.
118 *
119 * The standard POSIX timer management code assumes the
120 * following: 1.) The k_itimer struct (sched.h) is used for
121 * the timer. 2.) The list, it_lock, it_clock, it_id and
122 * it_pid fields are not modified by timer code.
123 *
124 * Permissions: It is assumed that the clock_settime() function defined
125 * for each clock will take care of permission checks. Some
126 * clocks may be set able by any user (i.e. local process
127 * clocks) others not. Currently the only set able clock we
128 * have is CLOCK_REALTIME and its high res counter part, both of
129 * which we beg off on and pass to do_sys_settimeofday().
130 */
131
132 static struct k_clock posix_clocks[MAX_CLOCKS];
133
134 /*
135 * These ones are defined below.
136 */
137 static int common_nsleep(const clockid_t, int flags, struct timespec *t,
138 struct timespec __user *rmtp);
139 static int common_timer_create(struct k_itimer *new_timer);
140 static void common_timer_get(struct k_itimer *, struct itimerspec *);
141 static int common_timer_set(struct k_itimer *, int,
142 struct itimerspec *, struct itimerspec *);
143 static int common_timer_del(struct k_itimer *timer);
144
145 static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
146
147 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
148
149 #define lock_timer(tid, flags) \
150 ({ struct k_itimer *__timr; \
151 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
152 __timr; \
153 })
154
155 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
156 {
157 spin_unlock_irqrestore(&timr->it_lock, flags);
158 }
159
160 /* Get clock_realtime */
161 static int posix_clock_realtime_get(clockid_t which_clock, struct timespec *tp)
162 {
163 ktime_get_real_ts(tp);
164 return 0;
165 }
166
167 /* Set clock_realtime */
168 static int posix_clock_realtime_set(const clockid_t which_clock,
169 const struct timespec *tp)
170 {
171 return do_sys_settimeofday(tp, NULL);
172 }
173
174 static int posix_clock_realtime_adj(const clockid_t which_clock,
175 struct timex *t)
176 {
177 return do_adjtimex(t);
178 }
179
180 /*
181 * Get monotonic time for posix timers
182 */
183 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
184 {
185 ktime_get_ts(tp);
186 return 0;
187 }
188
189 /*
190 * Get monotonic-raw time for posix timers
191 */
192 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
193 {
194 getrawmonotonic(tp);
195 return 0;
196 }
197
198
199 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp)
200 {
201 *tp = current_kernel_time();
202 return 0;
203 }
204
205 static int posix_get_monotonic_coarse(clockid_t which_clock,
206 struct timespec *tp)
207 {
208 *tp = get_monotonic_coarse();
209 return 0;
210 }
211
212 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp)
213 {
214 *tp = ktime_to_timespec(KTIME_LOW_RES);
215 return 0;
216 }
217
218 static int posix_get_boottime(const clockid_t which_clock, struct timespec *tp)
219 {
220 get_monotonic_boottime(tp);
221 return 0;
222 }
223
224 static int posix_get_tai(clockid_t which_clock, struct timespec *tp)
225 {
226 timekeeping_clocktai(tp);
227 return 0;
228 }
229
230 /*
231 * Initialize everything, well, just everything in Posix clocks/timers ;)
232 */
233 static __init int init_posix_timers(void)
234 {
235 struct k_clock clock_realtime = {
236 .clock_getres = hrtimer_get_res,
237 .clock_get = posix_clock_realtime_get,
238 .clock_set = posix_clock_realtime_set,
239 .clock_adj = posix_clock_realtime_adj,
240 .nsleep = common_nsleep,
241 .nsleep_restart = hrtimer_nanosleep_restart,
242 .timer_create = common_timer_create,
243 .timer_set = common_timer_set,
244 .timer_get = common_timer_get,
245 .timer_del = common_timer_del,
246 };
247 struct k_clock clock_monotonic = {
248 .clock_getres = hrtimer_get_res,
249 .clock_get = posix_ktime_get_ts,
250 .nsleep = common_nsleep,
251 .nsleep_restart = hrtimer_nanosleep_restart,
252 .timer_create = common_timer_create,
253 .timer_set = common_timer_set,
254 .timer_get = common_timer_get,
255 .timer_del = common_timer_del,
256 };
257 struct k_clock clock_monotonic_raw = {
258 .clock_getres = hrtimer_get_res,
259 .clock_get = posix_get_monotonic_raw,
260 };
261 struct k_clock clock_realtime_coarse = {
262 .clock_getres = posix_get_coarse_res,
263 .clock_get = posix_get_realtime_coarse,
264 };
265 struct k_clock clock_monotonic_coarse = {
266 .clock_getres = posix_get_coarse_res,
267 .clock_get = posix_get_monotonic_coarse,
268 };
269 struct k_clock clock_tai = {
270 .clock_getres = hrtimer_get_res,
271 .clock_get = posix_get_tai,
272 };
273 struct k_clock clock_boottime = {
274 .clock_getres = hrtimer_get_res,
275 .clock_get = posix_get_boottime,
276 .nsleep = common_nsleep,
277 .nsleep_restart = hrtimer_nanosleep_restart,
278 .timer_create = common_timer_create,
279 .timer_set = common_timer_set,
280 .timer_get = common_timer_get,
281 .timer_del = common_timer_del,
282 };
283
284 posix_timers_register_clock(CLOCK_REALTIME, &clock_realtime);
285 posix_timers_register_clock(CLOCK_MONOTONIC, &clock_monotonic);
286 posix_timers_register_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
287 posix_timers_register_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse);
288 posix_timers_register_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse);
289 posix_timers_register_clock(CLOCK_BOOTTIME, &clock_boottime);
290 posix_timers_register_clock(CLOCK_TAI, &clock_tai);
291
292 posix_timers_cache = kmem_cache_create("posix_timers_cache",
293 sizeof (struct k_itimer), 0, SLAB_PANIC,
294 NULL);
295 idr_init(&posix_timers_id);
296 return 0;
297 }
298
299 __initcall(init_posix_timers);
300
301 static void schedule_next_timer(struct k_itimer *timr)
302 {
303 struct hrtimer *timer = &timr->it.real.timer;
304
305 if (timr->it.real.interval.tv64 == 0)
306 return;
307
308 timr->it_overrun += (unsigned int) hrtimer_forward(timer,
309 timer->base->get_time(),
310 timr->it.real.interval);
311
312 timr->it_overrun_last = timr->it_overrun;
313 timr->it_overrun = -1;
314 ++timr->it_requeue_pending;
315 hrtimer_restart(timer);
316 }
317
318 /*
319 * This function is exported for use by the signal deliver code. It is
320 * called just prior to the info block being released and passes that
321 * block to us. It's function is to update the overrun entry AND to
322 * restart the timer. It should only be called if the timer is to be
323 * restarted (i.e. we have flagged this in the sys_private entry of the
324 * info block).
325 *
326 * To protect against the timer going away while the interrupt is queued,
327 * we require that the it_requeue_pending flag be set.
328 */
329 void do_schedule_next_timer(struct siginfo *info)
330 {
331 struct k_itimer *timr;
332 unsigned long flags;
333
334 timr = lock_timer(info->si_tid, &flags);
335
336 if (timr && timr->it_requeue_pending == info->si_sys_private) {
337 if (timr->it_clock < 0)
338 posix_cpu_timer_schedule(timr);
339 else
340 schedule_next_timer(timr);
341
342 info->si_overrun += timr->it_overrun_last;
343 }
344
345 if (timr)
346 unlock_timer(timr, flags);
347 }
348
349 int posix_timer_event(struct k_itimer *timr, int si_private)
350 {
351 struct task_struct *task;
352 int shared, ret = -1;
353 /*
354 * FIXME: if ->sigq is queued we can race with
355 * dequeue_signal()->do_schedule_next_timer().
356 *
357 * If dequeue_signal() sees the "right" value of
358 * si_sys_private it calls do_schedule_next_timer().
359 * We re-queue ->sigq and drop ->it_lock().
360 * do_schedule_next_timer() locks the timer
361 * and re-schedules it while ->sigq is pending.
362 * Not really bad, but not that we want.
363 */
364 timr->sigq->info.si_sys_private = si_private;
365
366 rcu_read_lock();
367 task = pid_task(timr->it_pid, PIDTYPE_PID);
368 if (task) {
369 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
370 ret = send_sigqueue(timr->sigq, task, shared);
371 }
372 rcu_read_unlock();
373 /* If we failed to send the signal the timer stops. */
374 return ret > 0;
375 }
376 EXPORT_SYMBOL_GPL(posix_timer_event);
377
378 /*
379 * This function gets called when a POSIX.1b interval timer expires. It
380 * is used as a callback from the kernel internal timer. The
381 * run_timer_list code ALWAYS calls with interrupts on.
382
383 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
384 */
385 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
386 {
387 struct k_itimer *timr;
388 unsigned long flags;
389 int si_private = 0;
390 enum hrtimer_restart ret = HRTIMER_NORESTART;
391
392 timr = container_of(timer, struct k_itimer, it.real.timer);
393 spin_lock_irqsave(&timr->it_lock, flags);
394
395 if (timr->it.real.interval.tv64 != 0)
396 si_private = ++timr->it_requeue_pending;
397
398 if (posix_timer_event(timr, si_private)) {
399 /*
400 * signal was not sent because of sig_ignor
401 * we will not get a call back to restart it AND
402 * it should be restarted.
403 */
404 if (timr->it.real.interval.tv64 != 0) {
405 ktime_t now = hrtimer_cb_get_time(timer);
406
407 /*
408 * FIXME: What we really want, is to stop this
409 * timer completely and restart it in case the
410 * SIG_IGN is removed. This is a non trivial
411 * change which involves sighand locking
412 * (sigh !), which we don't want to do late in
413 * the release cycle.
414 *
415 * For now we just let timers with an interval
416 * less than a jiffie expire every jiffie to
417 * avoid softirq starvation in case of SIG_IGN
418 * and a very small interval, which would put
419 * the timer right back on the softirq pending
420 * list. By moving now ahead of time we trick
421 * hrtimer_forward() to expire the timer
422 * later, while we still maintain the overrun
423 * accuracy, but have some inconsistency in
424 * the timer_gettime() case. This is at least
425 * better than a starved softirq. A more
426 * complex fix which solves also another related
427 * inconsistency is already in the pipeline.
428 */
429 #ifdef CONFIG_HIGH_RES_TIMERS
430 {
431 ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
432
433 if (timr->it.real.interval.tv64 < kj.tv64)
434 now = ktime_add(now, kj);
435 }
436 #endif
437 timr->it_overrun += (unsigned int)
438 hrtimer_forward(timer, now,
439 timr->it.real.interval);
440 ret = HRTIMER_RESTART;
441 ++timr->it_requeue_pending;
442 }
443 }
444
445 unlock_timer(timr, flags);
446 return ret;
447 }
448
449 static struct pid *good_sigevent(sigevent_t * event)
450 {
451 struct task_struct *rtn = current->group_leader;
452
453 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
454 (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
455 !same_thread_group(rtn, current) ||
456 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
457 return NULL;
458
459 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
460 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
461 return NULL;
462
463 return task_pid(rtn);
464 }
465
466 void posix_timers_register_clock(const clockid_t clock_id,
467 struct k_clock *new_clock)
468 {
469 if ((unsigned) clock_id >= MAX_CLOCKS) {
470 printk(KERN_WARNING "POSIX clock register failed for clock_id %d\n",
471 clock_id);
472 return;
473 }
474
475 if (!new_clock->clock_get) {
476 printk(KERN_WARNING "POSIX clock id %d lacks clock_get()\n",
477 clock_id);
478 return;
479 }
480 if (!new_clock->clock_getres) {
481 printk(KERN_WARNING "POSIX clock id %d lacks clock_getres()\n",
482 clock_id);
483 return;
484 }
485
486 posix_clocks[clock_id] = *new_clock;
487 }
488 EXPORT_SYMBOL_GPL(posix_timers_register_clock);
489
490 static struct k_itimer * alloc_posix_timer(void)
491 {
492 struct k_itimer *tmr;
493 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
494 if (!tmr)
495 return tmr;
496 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
497 kmem_cache_free(posix_timers_cache, tmr);
498 return NULL;
499 }
500 memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
501 return tmr;
502 }
503
504 static void k_itimer_rcu_free(struct rcu_head *head)
505 {
506 struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);
507
508 kmem_cache_free(posix_timers_cache, tmr);
509 }
510
511 #define IT_ID_SET 1
512 #define IT_ID_NOT_SET 0
513 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
514 {
515 if (it_id_set) {
516 unsigned long flags;
517 spin_lock_irqsave(&idr_lock, flags);
518 idr_remove(&posix_timers_id, tmr->it_id);
519 spin_unlock_irqrestore(&idr_lock, flags);
520 }
521 put_pid(tmr->it_pid);
522 sigqueue_free(tmr->sigq);
523 call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
524 }
525
526 static struct k_clock *clockid_to_kclock(const clockid_t id)
527 {
528 if (id < 0)
529 return (id & CLOCKFD_MASK) == CLOCKFD ?
530 &clock_posix_dynamic : &clock_posix_cpu;
531
532 if (id >= MAX_CLOCKS || !posix_clocks[id].clock_getres)
533 return NULL;
534 return &posix_clocks[id];
535 }
536
537 static int common_timer_create(struct k_itimer *new_timer)
538 {
539 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
540 return 0;
541 }
542
543 /* Create a POSIX.1b interval timer. */
544
545 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
546 struct sigevent __user *, timer_event_spec,
547 timer_t __user *, created_timer_id)
548 {
549 struct k_clock *kc = clockid_to_kclock(which_clock);
550 struct k_itimer *new_timer;
551 int error, new_timer_id;
552 sigevent_t event;
553 int it_id_set = IT_ID_NOT_SET;
554
555 if (!kc)
556 return -EINVAL;
557 if (!kc->timer_create)
558 return -EOPNOTSUPP;
559
560 new_timer = alloc_posix_timer();
561 if (unlikely(!new_timer))
562 return -EAGAIN;
563
564 spin_lock_init(&new_timer->it_lock);
565
566 idr_preload(GFP_KERNEL);
567 spin_lock_irq(&idr_lock);
568 error = idr_alloc(&posix_timers_id, new_timer, 0, 0, GFP_NOWAIT);
569 spin_unlock_irq(&idr_lock);
570 idr_preload_end();
571 if (error < 0) {
572 /*
573 * Weird looking, but we return EAGAIN if the IDR is
574 * full (proper POSIX return value for this)
575 */
576 if (error == -ENOSPC)
577 error = -EAGAIN;
578 goto out;
579 }
580 new_timer_id = error;
581
582 it_id_set = IT_ID_SET;
583 new_timer->it_id = (timer_t) new_timer_id;
584 new_timer->it_clock = which_clock;
585 new_timer->it_overrun = -1;
586
587 if (timer_event_spec) {
588 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
589 error = -EFAULT;
590 goto out;
591 }
592 rcu_read_lock();
593 new_timer->it_pid = get_pid(good_sigevent(&event));
594 rcu_read_unlock();
595 if (!new_timer->it_pid) {
596 error = -EINVAL;
597 goto out;
598 }
599 } else {
600 event.sigev_notify = SIGEV_SIGNAL;
601 event.sigev_signo = SIGALRM;
602 event.sigev_value.sival_int = new_timer->it_id;
603 new_timer->it_pid = get_pid(task_tgid(current));
604 }
605
606 new_timer->it_sigev_notify = event.sigev_notify;
607 new_timer->sigq->info.si_signo = event.sigev_signo;
608 new_timer->sigq->info.si_value = event.sigev_value;
609 new_timer->sigq->info.si_tid = new_timer->it_id;
610 new_timer->sigq->info.si_code = SI_TIMER;
611
612 if (copy_to_user(created_timer_id,
613 &new_timer_id, sizeof (new_timer_id))) {
614 error = -EFAULT;
615 goto out;
616 }
617
618 error = kc->timer_create(new_timer);
619 if (error)
620 goto out;
621
622 spin_lock_irq(&current->sighand->siglock);
623 new_timer->it_signal = current->signal;
624 list_add(&new_timer->list, &current->signal->posix_timers);
625 spin_unlock_irq(&current->sighand->siglock);
626
627 return 0;
628 /*
629 * In the case of the timer belonging to another task, after
630 * the task is unlocked, the timer is owned by the other task
631 * and may cease to exist at any time. Don't use or modify
632 * new_timer after the unlock call.
633 */
634 out:
635 release_posix_timer(new_timer, it_id_set);
636 return error;
637 }
638
639 /*
640 * Locking issues: We need to protect the result of the id look up until
641 * we get the timer locked down so it is not deleted under us. The
642 * removal is done under the idr spinlock so we use that here to bridge
643 * the find to the timer lock. To avoid a dead lock, the timer id MUST
644 * be release with out holding the timer lock.
645 */
646 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
647 {
648 struct k_itimer *timr;
649
650 /*
651 * timer_t could be any type >= int and we want to make sure any
652 * @timer_id outside positive int range fails lookup.
653 */
654 if ((unsigned long long)timer_id > INT_MAX)
655 return NULL;
656
657 rcu_read_lock();
658 timr = idr_find(&posix_timers_id, (int)timer_id);
659 if (timr) {
660 spin_lock_irqsave(&timr->it_lock, *flags);
661 if (timr->it_signal == current->signal) {
662 rcu_read_unlock();
663 return timr;
664 }
665 spin_unlock_irqrestore(&timr->it_lock, *flags);
666 }
667 rcu_read_unlock();
668
669 return NULL;
670 }
671
672 /*
673 * Get the time remaining on a POSIX.1b interval timer. This function
674 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
675 * mess with irq.
676 *
677 * We have a couple of messes to clean up here. First there is the case
678 * of a timer that has a requeue pending. These timers should appear to
679 * be in the timer list with an expiry as if we were to requeue them
680 * now.
681 *
682 * The second issue is the SIGEV_NONE timer which may be active but is
683 * not really ever put in the timer list (to save system resources).
684 * This timer may be expired, and if so, we will do it here. Otherwise
685 * it is the same as a requeue pending timer WRT to what we should
686 * report.
687 */
688 static void
689 common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
690 {
691 ktime_t now, remaining, iv;
692 struct hrtimer *timer = &timr->it.real.timer;
693
694 memset(cur_setting, 0, sizeof(struct itimerspec));
695
696 iv = timr->it.real.interval;
697
698 /* interval timer ? */
699 if (iv.tv64)
700 cur_setting->it_interval = ktime_to_timespec(iv);
701 else if (!hrtimer_active(timer) &&
702 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
703 return;
704
705 now = timer->base->get_time();
706
707 /*
708 * When a requeue is pending or this is a SIGEV_NONE
709 * timer move the expiry time forward by intervals, so
710 * expiry is > now.
711 */
712 if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
713 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
714 timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
715
716 remaining = ktime_sub(hrtimer_get_expires(timer), now);
717 /* Return 0 only, when the timer is expired and not pending */
718 if (remaining.tv64 <= 0) {
719 /*
720 * A single shot SIGEV_NONE timer must return 0, when
721 * it is expired !
722 */
723 if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
724 cur_setting->it_value.tv_nsec = 1;
725 } else
726 cur_setting->it_value = ktime_to_timespec(remaining);
727 }
728
729 /* Get the time remaining on a POSIX.1b interval timer. */
730 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
731 struct itimerspec __user *, setting)
732 {
733 struct itimerspec cur_setting;
734 struct k_itimer *timr;
735 struct k_clock *kc;
736 unsigned long flags;
737 int ret = 0;
738
739 timr = lock_timer(timer_id, &flags);
740 if (!timr)
741 return -EINVAL;
742
743 kc = clockid_to_kclock(timr->it_clock);
744 if (WARN_ON_ONCE(!kc || !kc->timer_get))
745 ret = -EINVAL;
746 else
747 kc->timer_get(timr, &cur_setting);
748
749 unlock_timer(timr, flags);
750
751 if (!ret && copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
752 return -EFAULT;
753
754 return ret;
755 }
756
757 /*
758 * Get the number of overruns of a POSIX.1b interval timer. This is to
759 * be the overrun of the timer last delivered. At the same time we are
760 * accumulating overruns on the next timer. The overrun is frozen when
761 * the signal is delivered, either at the notify time (if the info block
762 * is not queued) or at the actual delivery time (as we are informed by
763 * the call back to do_schedule_next_timer(). So all we need to do is
764 * to pick up the frozen overrun.
765 */
766 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
767 {
768 struct k_itimer *timr;
769 int overrun;
770 unsigned long flags;
771
772 timr = lock_timer(timer_id, &flags);
773 if (!timr)
774 return -EINVAL;
775
776 overrun = timr->it_overrun_last;
777 unlock_timer(timr, flags);
778
779 return overrun;
780 }
781
782 /* Set a POSIX.1b interval timer. */
783 /* timr->it_lock is taken. */
784 static int
785 common_timer_set(struct k_itimer *timr, int flags,
786 struct itimerspec *new_setting, struct itimerspec *old_setting)
787 {
788 struct hrtimer *timer = &timr->it.real.timer;
789 enum hrtimer_mode mode;
790
791 if (old_setting)
792 common_timer_get(timr, old_setting);
793
794 /* disable the timer */
795 timr->it.real.interval.tv64 = 0;
796 /*
797 * careful here. If smp we could be in the "fire" routine which will
798 * be spinning as we hold the lock. But this is ONLY an SMP issue.
799 */
800 if (hrtimer_try_to_cancel(timer) < 0)
801 return TIMER_RETRY;
802
803 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
804 ~REQUEUE_PENDING;
805 timr->it_overrun_last = 0;
806
807 /* switch off the timer when it_value is zero */
808 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
809 return 0;
810
811 mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
812 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
813 timr->it.real.timer.function = posix_timer_fn;
814
815 hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value));
816
817 /* Convert interval */
818 timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
819
820 /* SIGEV_NONE timers are not queued ! See common_timer_get */
821 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
822 /* Setup correct expiry time for relative timers */
823 if (mode == HRTIMER_MODE_REL) {
824 hrtimer_add_expires(timer, timer->base->get_time());
825 }
826 return 0;
827 }
828
829 hrtimer_start_expires(timer, mode);
830 return 0;
831 }
832
833 /* Set a POSIX.1b interval timer */
834 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
835 const struct itimerspec __user *, new_setting,
836 struct itimerspec __user *, old_setting)
837 {
838 struct k_itimer *timr;
839 struct itimerspec new_spec, old_spec;
840 int error = 0;
841 unsigned long flag;
842 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
843 struct k_clock *kc;
844
845 if (!new_setting)
846 return -EINVAL;
847
848 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
849 return -EFAULT;
850
851 if (!timespec_valid(&new_spec.it_interval) ||
852 !timespec_valid(&new_spec.it_value))
853 return -EINVAL;
854 retry:
855 timr = lock_timer(timer_id, &flag);
856 if (!timr)
857 return -EINVAL;
858
859 kc = clockid_to_kclock(timr->it_clock);
860 if (WARN_ON_ONCE(!kc || !kc->timer_set))
861 error = -EINVAL;
862 else
863 error = kc->timer_set(timr, flags, &new_spec, rtn);
864
865 unlock_timer(timr, flag);
866 if (error == TIMER_RETRY) {
867 rtn = NULL; // We already got the old time...
868 goto retry;
869 }
870
871 if (old_setting && !error &&
872 copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
873 error = -EFAULT;
874
875 return error;
876 }
877
878 static int common_timer_del(struct k_itimer *timer)
879 {
880 timer->it.real.interval.tv64 = 0;
881
882 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
883 return TIMER_RETRY;
884 return 0;
885 }
886
887 static inline int timer_delete_hook(struct k_itimer *timer)
888 {
889 struct k_clock *kc = clockid_to_kclock(timer->it_clock);
890
891 if (WARN_ON_ONCE(!kc || !kc->timer_del))
892 return -EINVAL;
893 return kc->timer_del(timer);
894 }
895
896 /* Delete a POSIX.1b interval timer. */
897 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
898 {
899 struct k_itimer *timer;
900 unsigned long flags;
901
902 retry_delete:
903 timer = lock_timer(timer_id, &flags);
904 if (!timer)
905 return -EINVAL;
906
907 if (timer_delete_hook(timer) == TIMER_RETRY) {
908 unlock_timer(timer, flags);
909 goto retry_delete;
910 }
911
912 spin_lock(&current->sighand->siglock);
913 list_del(&timer->list);
914 spin_unlock(&current->sighand->siglock);
915 /*
916 * This keeps any tasks waiting on the spin lock from thinking
917 * they got something (see the lock code above).
918 */
919 timer->it_signal = NULL;
920
921 unlock_timer(timer, flags);
922 release_posix_timer(timer, IT_ID_SET);
923 return 0;
924 }
925
926 /*
927 * return timer owned by the process, used by exit_itimers
928 */
929 static void itimer_delete(struct k_itimer *timer)
930 {
931 unsigned long flags;
932
933 retry_delete:
934 spin_lock_irqsave(&timer->it_lock, flags);
935
936 if (timer_delete_hook(timer) == TIMER_RETRY) {
937 unlock_timer(timer, flags);
938 goto retry_delete;
939 }
940 list_del(&timer->list);
941 /*
942 * This keeps any tasks waiting on the spin lock from thinking
943 * they got something (see the lock code above).
944 */
945 timer->it_signal = NULL;
946
947 unlock_timer(timer, flags);
948 release_posix_timer(timer, IT_ID_SET);
949 }
950
951 /*
952 * This is called by do_exit or de_thread, only when there are no more
953 * references to the shared signal_struct.
954 */
955 void exit_itimers(struct signal_struct *sig)
956 {
957 struct k_itimer *tmr;
958
959 while (!list_empty(&sig->posix_timers)) {
960 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
961 itimer_delete(tmr);
962 }
963 }
964
965 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
966 const struct timespec __user *, tp)
967 {
968 struct k_clock *kc = clockid_to_kclock(which_clock);
969 struct timespec new_tp;
970
971 if (!kc || !kc->clock_set)
972 return -EINVAL;
973
974 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
975 return -EFAULT;
976
977 return kc->clock_set(which_clock, &new_tp);
978 }
979
980 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
981 struct timespec __user *,tp)
982 {
983 struct k_clock *kc = clockid_to_kclock(which_clock);
984 struct timespec kernel_tp;
985 int error;
986
987 if (!kc)
988 return -EINVAL;
989
990 error = kc->clock_get(which_clock, &kernel_tp);
991
992 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
993 error = -EFAULT;
994
995 return error;
996 }
997
998 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
999 struct timex __user *, utx)
1000 {
1001 struct k_clock *kc = clockid_to_kclock(which_clock);
1002 struct timex ktx;
1003 int err;
1004
1005 if (!kc)
1006 return -EINVAL;
1007 if (!kc->clock_adj)
1008 return -EOPNOTSUPP;
1009
1010 if (copy_from_user(&ktx, utx, sizeof(ktx)))
1011 return -EFAULT;
1012
1013 err = kc->clock_adj(which_clock, &ktx);
1014
1015 if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1016 return -EFAULT;
1017
1018 return err;
1019 }
1020
1021 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1022 struct timespec __user *, tp)
1023 {
1024 struct k_clock *kc = clockid_to_kclock(which_clock);
1025 struct timespec rtn_tp;
1026 int error;
1027
1028 if (!kc)
1029 return -EINVAL;
1030
1031 error = kc->clock_getres(which_clock, &rtn_tp);
1032
1033 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp)))
1034 error = -EFAULT;
1035
1036 return error;
1037 }
1038
1039 /*
1040 * nanosleep for monotonic and realtime clocks
1041 */
1042 static int common_nsleep(const clockid_t which_clock, int flags,
1043 struct timespec *tsave, struct timespec __user *rmtp)
1044 {
1045 return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
1046 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1047 which_clock);
1048 }
1049
1050 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1051 const struct timespec __user *, rqtp,
1052 struct timespec __user *, rmtp)
1053 {
1054 struct k_clock *kc = clockid_to_kclock(which_clock);
1055 struct timespec t;
1056
1057 if (!kc)
1058 return -EINVAL;
1059 if (!kc->nsleep)
1060 return -ENANOSLEEP_NOTSUP;
1061
1062 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1063 return -EFAULT;
1064
1065 if (!timespec_valid(&t))
1066 return -EINVAL;
1067
1068 return kc->nsleep(which_clock, flags, &t, rmtp);
1069 }
1070
1071 /*
1072 * This will restart clock_nanosleep. This is required only by
1073 * compat_clock_nanosleep_restart for now.
1074 */
1075 long clock_nanosleep_restart(struct restart_block *restart_block)
1076 {
1077 clockid_t which_clock = restart_block->nanosleep.clockid;
1078 struct k_clock *kc = clockid_to_kclock(which_clock);
1079
1080 if (WARN_ON_ONCE(!kc || !kc->nsleep_restart))
1081 return -EINVAL;
1082
1083 return kc->nsleep_restart(restart_block);
1084 }
This page took 0.071793 seconds and 6 git commands to generate.