clocksource: introduce CLOCK_MONOTONIC_RAW
[deliverable/linux.git] / kernel / posix-timers.c
1 /*
2 * linux/kernel/posix-timers.c
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30 /* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
38
39 #include <asm/uaccess.h>
40 #include <linux/list.h>
41 #include <linux/init.h>
42 #include <linux/compiler.h>
43 #include <linux/idr.h>
44 #include <linux/posix-timers.h>
45 #include <linux/syscalls.h>
46 #include <linux/wait.h>
47 #include <linux/workqueue.h>
48 #include <linux/module.h>
49
50 /*
51 * Management arrays for POSIX timers. Timers are kept in slab memory
52 * Timer ids are allocated by an external routine that keeps track of the
53 * id and the timer. The external interface is:
54 *
55 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
56 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
57 * related it to <ptr>
58 * void idr_remove(struct idr *idp, int id); to release <id>
59 * void idr_init(struct idr *idp); to initialize <idp>
60 * which we supply.
61 * The idr_get_new *may* call slab for more memory so it must not be
62 * called under a spin lock. Likewise idr_remore may release memory
63 * (but it may be ok to do this under a lock...).
64 * idr_find is just a memory look up and is quite fast. A -1 return
65 * indicates that the requested id does not exist.
66 */
67
68 /*
69 * Lets keep our timers in a slab cache :-)
70 */
71 static struct kmem_cache *posix_timers_cache;
72 static struct idr posix_timers_id;
73 static DEFINE_SPINLOCK(idr_lock);
74
75 /*
76 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
77 * SIGEV values. Here we put out an error if this assumption fails.
78 */
79 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
80 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
81 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
82 #endif
83
84
85 /*
86 * The timer ID is turned into a timer address by idr_find().
87 * Verifying a valid ID consists of:
88 *
89 * a) checking that idr_find() returns other than -1.
90 * b) checking that the timer id matches the one in the timer itself.
91 * c) that the timer owner is in the callers thread group.
92 */
93
94 /*
95 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
96 * to implement others. This structure defines the various
97 * clocks and allows the possibility of adding others. We
98 * provide an interface to add clocks to the table and expect
99 * the "arch" code to add at least one clock that is high
100 * resolution. Here we define the standard CLOCK_REALTIME as a
101 * 1/HZ resolution clock.
102 *
103 * RESOLUTION: Clock resolution is used to round up timer and interval
104 * times, NOT to report clock times, which are reported with as
105 * much resolution as the system can muster. In some cases this
106 * resolution may depend on the underlying clock hardware and
107 * may not be quantifiable until run time, and only then is the
108 * necessary code is written. The standard says we should say
109 * something about this issue in the documentation...
110 *
111 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
112 * various clock functions. For clocks that use the standard
113 * system timer code these entries should be NULL. This will
114 * allow dispatch without the overhead of indirect function
115 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
116 * must supply functions here, even if the function just returns
117 * ENOSYS. The standard POSIX timer management code assumes the
118 * following: 1.) The k_itimer struct (sched.h) is used for the
119 * timer. 2.) The list, it_lock, it_clock, it_id and it_process
120 * fields are not modified by timer code.
121 *
122 * At this time all functions EXCEPT clock_nanosleep can be
123 * redirected by the CLOCKS structure. Clock_nanosleep is in
124 * there, but the code ignores it.
125 *
126 * Permissions: It is assumed that the clock_settime() function defined
127 * for each clock will take care of permission checks. Some
128 * clocks may be set able by any user (i.e. local process
129 * clocks) others not. Currently the only set able clock we
130 * have is CLOCK_REALTIME and its high res counter part, both of
131 * which we beg off on and pass to do_sys_settimeofday().
132 */
133
134 static struct k_clock posix_clocks[MAX_CLOCKS];
135
136 /*
137 * These ones are defined below.
138 */
139 static int common_nsleep(const clockid_t, int flags, struct timespec *t,
140 struct timespec __user *rmtp);
141 static void common_timer_get(struct k_itimer *, struct itimerspec *);
142 static int common_timer_set(struct k_itimer *, int,
143 struct itimerspec *, struct itimerspec *);
144 static int common_timer_del(struct k_itimer *timer);
145
146 static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
147
148 static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
149
150 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
151 {
152 spin_unlock_irqrestore(&timr->it_lock, flags);
153 }
154
155 /*
156 * Call the k_clock hook function if non-null, or the default function.
157 */
158 #define CLOCK_DISPATCH(clock, call, arglist) \
159 ((clock) < 0 ? posix_cpu_##call arglist : \
160 (posix_clocks[clock].call != NULL \
161 ? (*posix_clocks[clock].call) arglist : common_##call arglist))
162
163 /*
164 * Default clock hook functions when the struct k_clock passed
165 * to register_posix_clock leaves a function pointer null.
166 *
167 * The function common_CALL is the default implementation for
168 * the function pointer CALL in struct k_clock.
169 */
170
171 static inline int common_clock_getres(const clockid_t which_clock,
172 struct timespec *tp)
173 {
174 tp->tv_sec = 0;
175 tp->tv_nsec = posix_clocks[which_clock].res;
176 return 0;
177 }
178
179 /*
180 * Get real time for posix timers
181 */
182 static int common_clock_get(clockid_t which_clock, struct timespec *tp)
183 {
184 ktime_get_real_ts(tp);
185 return 0;
186 }
187
188 static inline int common_clock_set(const clockid_t which_clock,
189 struct timespec *tp)
190 {
191 return do_sys_settimeofday(tp, NULL);
192 }
193
194 static int common_timer_create(struct k_itimer *new_timer)
195 {
196 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
197 return 0;
198 }
199
200 /*
201 * Return nonzero if we know a priori this clockid_t value is bogus.
202 */
203 static inline int invalid_clockid(const clockid_t which_clock)
204 {
205 if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */
206 return 0;
207 if ((unsigned) which_clock >= MAX_CLOCKS)
208 return 1;
209 if (posix_clocks[which_clock].clock_getres != NULL)
210 return 0;
211 if (posix_clocks[which_clock].res != 0)
212 return 0;
213 return 1;
214 }
215
216 /*
217 * Get monotonic time for posix timers
218 */
219 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
220 {
221 ktime_get_ts(tp);
222 return 0;
223 }
224
225 /*
226 * Get monotonic time for posix timers
227 */
228 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
229 {
230 getrawmonotonic(tp);
231 return 0;
232 }
233
234 /*
235 * Initialize everything, well, just everything in Posix clocks/timers ;)
236 */
237 static __init int init_posix_timers(void)
238 {
239 struct k_clock clock_realtime = {
240 .clock_getres = hrtimer_get_res,
241 };
242 struct k_clock clock_monotonic = {
243 .clock_getres = hrtimer_get_res,
244 .clock_get = posix_ktime_get_ts,
245 .clock_set = do_posix_clock_nosettime,
246 };
247 struct k_clock clock_monotonic_raw = {
248 .clock_getres = hrtimer_get_res,
249 .clock_get = posix_get_monotonic_raw,
250 .clock_set = do_posix_clock_nosettime,
251 };
252
253 register_posix_clock(CLOCK_REALTIME, &clock_realtime);
254 register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
255 register_posix_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
256
257 posix_timers_cache = kmem_cache_create("posix_timers_cache",
258 sizeof (struct k_itimer), 0, SLAB_PANIC,
259 NULL);
260 idr_init(&posix_timers_id);
261 return 0;
262 }
263
264 __initcall(init_posix_timers);
265
266 static void schedule_next_timer(struct k_itimer *timr)
267 {
268 struct hrtimer *timer = &timr->it.real.timer;
269
270 if (timr->it.real.interval.tv64 == 0)
271 return;
272
273 timr->it_overrun += (unsigned int) hrtimer_forward(timer,
274 timer->base->get_time(),
275 timr->it.real.interval);
276
277 timr->it_overrun_last = timr->it_overrun;
278 timr->it_overrun = -1;
279 ++timr->it_requeue_pending;
280 hrtimer_restart(timer);
281 }
282
283 /*
284 * This function is exported for use by the signal deliver code. It is
285 * called just prior to the info block being released and passes that
286 * block to us. It's function is to update the overrun entry AND to
287 * restart the timer. It should only be called if the timer is to be
288 * restarted (i.e. we have flagged this in the sys_private entry of the
289 * info block).
290 *
291 * To protect aginst the timer going away while the interrupt is queued,
292 * we require that the it_requeue_pending flag be set.
293 */
294 void do_schedule_next_timer(struct siginfo *info)
295 {
296 struct k_itimer *timr;
297 unsigned long flags;
298
299 timr = lock_timer(info->si_tid, &flags);
300
301 if (timr && timr->it_requeue_pending == info->si_sys_private) {
302 if (timr->it_clock < 0)
303 posix_cpu_timer_schedule(timr);
304 else
305 schedule_next_timer(timr);
306
307 info->si_overrun += timr->it_overrun_last;
308 }
309
310 if (timr)
311 unlock_timer(timr, flags);
312 }
313
314 int posix_timer_event(struct k_itimer *timr, int si_private)
315 {
316 /*
317 * FIXME: if ->sigq is queued we can race with
318 * dequeue_signal()->do_schedule_next_timer().
319 *
320 * If dequeue_signal() sees the "right" value of
321 * si_sys_private it calls do_schedule_next_timer().
322 * We re-queue ->sigq and drop ->it_lock().
323 * do_schedule_next_timer() locks the timer
324 * and re-schedules it while ->sigq is pending.
325 * Not really bad, but not that we want.
326 */
327 timr->sigq->info.si_sys_private = si_private;
328
329 timr->sigq->info.si_signo = timr->it_sigev_signo;
330 timr->sigq->info.si_code = SI_TIMER;
331 timr->sigq->info.si_tid = timr->it_id;
332 timr->sigq->info.si_value = timr->it_sigev_value;
333
334 if (timr->it_sigev_notify & SIGEV_THREAD_ID) {
335 struct task_struct *leader;
336 int ret = send_sigqueue(timr->sigq, timr->it_process, 0);
337
338 if (likely(ret >= 0))
339 return ret;
340
341 timr->it_sigev_notify = SIGEV_SIGNAL;
342 leader = timr->it_process->group_leader;
343 put_task_struct(timr->it_process);
344 timr->it_process = leader;
345 }
346
347 return send_sigqueue(timr->sigq, timr->it_process, 1);
348 }
349 EXPORT_SYMBOL_GPL(posix_timer_event);
350
351 /*
352 * This function gets called when a POSIX.1b interval timer expires. It
353 * is used as a callback from the kernel internal timer. The
354 * run_timer_list code ALWAYS calls with interrupts on.
355
356 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
357 */
358 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
359 {
360 struct k_itimer *timr;
361 unsigned long flags;
362 int si_private = 0;
363 enum hrtimer_restart ret = HRTIMER_NORESTART;
364
365 timr = container_of(timer, struct k_itimer, it.real.timer);
366 spin_lock_irqsave(&timr->it_lock, flags);
367
368 if (timr->it.real.interval.tv64 != 0)
369 si_private = ++timr->it_requeue_pending;
370
371 if (posix_timer_event(timr, si_private)) {
372 /*
373 * signal was not sent because of sig_ignor
374 * we will not get a call back to restart it AND
375 * it should be restarted.
376 */
377 if (timr->it.real.interval.tv64 != 0) {
378 ktime_t now = hrtimer_cb_get_time(timer);
379
380 /*
381 * FIXME: What we really want, is to stop this
382 * timer completely and restart it in case the
383 * SIG_IGN is removed. This is a non trivial
384 * change which involves sighand locking
385 * (sigh !), which we don't want to do late in
386 * the release cycle.
387 *
388 * For now we just let timers with an interval
389 * less than a jiffie expire every jiffie to
390 * avoid softirq starvation in case of SIG_IGN
391 * and a very small interval, which would put
392 * the timer right back on the softirq pending
393 * list. By moving now ahead of time we trick
394 * hrtimer_forward() to expire the timer
395 * later, while we still maintain the overrun
396 * accuracy, but have some inconsistency in
397 * the timer_gettime() case. This is at least
398 * better than a starved softirq. A more
399 * complex fix which solves also another related
400 * inconsistency is already in the pipeline.
401 */
402 #ifdef CONFIG_HIGH_RES_TIMERS
403 {
404 ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
405
406 if (timr->it.real.interval.tv64 < kj.tv64)
407 now = ktime_add(now, kj);
408 }
409 #endif
410 timr->it_overrun += (unsigned int)
411 hrtimer_forward(timer, now,
412 timr->it.real.interval);
413 ret = HRTIMER_RESTART;
414 ++timr->it_requeue_pending;
415 }
416 }
417
418 unlock_timer(timr, flags);
419 return ret;
420 }
421
422 static struct task_struct * good_sigevent(sigevent_t * event)
423 {
424 struct task_struct *rtn = current->group_leader;
425
426 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
427 (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
428 !same_thread_group(rtn, current) ||
429 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
430 return NULL;
431
432 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
433 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
434 return NULL;
435
436 return rtn;
437 }
438
439 void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
440 {
441 if ((unsigned) clock_id >= MAX_CLOCKS) {
442 printk("POSIX clock register failed for clock_id %d\n",
443 clock_id);
444 return;
445 }
446
447 posix_clocks[clock_id] = *new_clock;
448 }
449 EXPORT_SYMBOL_GPL(register_posix_clock);
450
451 static struct k_itimer * alloc_posix_timer(void)
452 {
453 struct k_itimer *tmr;
454 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
455 if (!tmr)
456 return tmr;
457 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
458 kmem_cache_free(posix_timers_cache, tmr);
459 tmr = NULL;
460 }
461 memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
462 return tmr;
463 }
464
465 #define IT_ID_SET 1
466 #define IT_ID_NOT_SET 0
467 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
468 {
469 if (it_id_set) {
470 unsigned long flags;
471 spin_lock_irqsave(&idr_lock, flags);
472 idr_remove(&posix_timers_id, tmr->it_id);
473 spin_unlock_irqrestore(&idr_lock, flags);
474 }
475 sigqueue_free(tmr->sigq);
476 kmem_cache_free(posix_timers_cache, tmr);
477 }
478
479 /* Create a POSIX.1b interval timer. */
480
481 asmlinkage long
482 sys_timer_create(const clockid_t which_clock,
483 struct sigevent __user *timer_event_spec,
484 timer_t __user * created_timer_id)
485 {
486 int error = 0;
487 struct k_itimer *new_timer = NULL;
488 int new_timer_id;
489 struct task_struct *process = NULL;
490 unsigned long flags;
491 sigevent_t event;
492 int it_id_set = IT_ID_NOT_SET;
493
494 if (invalid_clockid(which_clock))
495 return -EINVAL;
496
497 new_timer = alloc_posix_timer();
498 if (unlikely(!new_timer))
499 return -EAGAIN;
500
501 spin_lock_init(&new_timer->it_lock);
502 retry:
503 if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
504 error = -EAGAIN;
505 goto out;
506 }
507 spin_lock_irq(&idr_lock);
508 error = idr_get_new(&posix_timers_id, (void *) new_timer,
509 &new_timer_id);
510 spin_unlock_irq(&idr_lock);
511 if (error == -EAGAIN)
512 goto retry;
513 else if (error) {
514 /*
515 * Weird looking, but we return EAGAIN if the IDR is
516 * full (proper POSIX return value for this)
517 */
518 error = -EAGAIN;
519 goto out;
520 }
521
522 it_id_set = IT_ID_SET;
523 new_timer->it_id = (timer_t) new_timer_id;
524 new_timer->it_clock = which_clock;
525 new_timer->it_overrun = -1;
526 error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
527 if (error)
528 goto out;
529
530 /*
531 * return the timer_id now. The next step is hard to
532 * back out if there is an error.
533 */
534 if (copy_to_user(created_timer_id,
535 &new_timer_id, sizeof (new_timer_id))) {
536 error = -EFAULT;
537 goto out;
538 }
539 if (timer_event_spec) {
540 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
541 error = -EFAULT;
542 goto out;
543 }
544 new_timer->it_sigev_notify = event.sigev_notify;
545 new_timer->it_sigev_signo = event.sigev_signo;
546 new_timer->it_sigev_value = event.sigev_value;
547
548 read_lock(&tasklist_lock);
549 if ((process = good_sigevent(&event))) {
550 /*
551 * We may be setting up this process for another
552 * thread. It may be exiting. To catch this
553 * case the we check the PF_EXITING flag. If
554 * the flag is not set, the siglock will catch
555 * him before it is too late (in exit_itimers).
556 *
557 * The exec case is a bit more invloved but easy
558 * to code. If the process is in our thread
559 * group (and it must be or we would not allow
560 * it here) and is doing an exec, it will cause
561 * us to be killed. In this case it will wait
562 * for us to die which means we can finish this
563 * linkage with our last gasp. I.e. no code :)
564 */
565 spin_lock_irqsave(&process->sighand->siglock, flags);
566 if (!(process->flags & PF_EXITING)) {
567 new_timer->it_process = process;
568 list_add(&new_timer->list,
569 &process->signal->posix_timers);
570 if (new_timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
571 get_task_struct(process);
572 spin_unlock_irqrestore(&process->sighand->siglock, flags);
573 } else {
574 spin_unlock_irqrestore(&process->sighand->siglock, flags);
575 process = NULL;
576 }
577 }
578 read_unlock(&tasklist_lock);
579 if (!process) {
580 error = -EINVAL;
581 goto out;
582 }
583 } else {
584 new_timer->it_sigev_notify = SIGEV_SIGNAL;
585 new_timer->it_sigev_signo = SIGALRM;
586 new_timer->it_sigev_value.sival_int = new_timer->it_id;
587 process = current->group_leader;
588 spin_lock_irqsave(&process->sighand->siglock, flags);
589 new_timer->it_process = process;
590 list_add(&new_timer->list, &process->signal->posix_timers);
591 spin_unlock_irqrestore(&process->sighand->siglock, flags);
592 }
593
594 /*
595 * In the case of the timer belonging to another task, after
596 * the task is unlocked, the timer is owned by the other task
597 * and may cease to exist at any time. Don't use or modify
598 * new_timer after the unlock call.
599 */
600
601 out:
602 if (error)
603 release_posix_timer(new_timer, it_id_set);
604
605 return error;
606 }
607
608 /*
609 * Locking issues: We need to protect the result of the id look up until
610 * we get the timer locked down so it is not deleted under us. The
611 * removal is done under the idr spinlock so we use that here to bridge
612 * the find to the timer lock. To avoid a dead lock, the timer id MUST
613 * be release with out holding the timer lock.
614 */
615 static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags)
616 {
617 struct k_itimer *timr;
618 /*
619 * Watch out here. We do a irqsave on the idr_lock and pass the
620 * flags part over to the timer lock. Must not let interrupts in
621 * while we are moving the lock.
622 */
623
624 spin_lock_irqsave(&idr_lock, *flags);
625 timr = (struct k_itimer *) idr_find(&posix_timers_id, (int) timer_id);
626 if (timr) {
627 spin_lock(&timr->it_lock);
628
629 if ((timr->it_id != timer_id) || !(timr->it_process) ||
630 !same_thread_group(timr->it_process, current)) {
631 spin_unlock(&timr->it_lock);
632 spin_unlock_irqrestore(&idr_lock, *flags);
633 timr = NULL;
634 } else
635 spin_unlock(&idr_lock);
636 } else
637 spin_unlock_irqrestore(&idr_lock, *flags);
638
639 return timr;
640 }
641
642 /*
643 * Get the time remaining on a POSIX.1b interval timer. This function
644 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
645 * mess with irq.
646 *
647 * We have a couple of messes to clean up here. First there is the case
648 * of a timer that has a requeue pending. These timers should appear to
649 * be in the timer list with an expiry as if we were to requeue them
650 * now.
651 *
652 * The second issue is the SIGEV_NONE timer which may be active but is
653 * not really ever put in the timer list (to save system resources).
654 * This timer may be expired, and if so, we will do it here. Otherwise
655 * it is the same as a requeue pending timer WRT to what we should
656 * report.
657 */
658 static void
659 common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
660 {
661 ktime_t now, remaining, iv;
662 struct hrtimer *timer = &timr->it.real.timer;
663
664 memset(cur_setting, 0, sizeof(struct itimerspec));
665
666 iv = timr->it.real.interval;
667
668 /* interval timer ? */
669 if (iv.tv64)
670 cur_setting->it_interval = ktime_to_timespec(iv);
671 else if (!hrtimer_active(timer) &&
672 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
673 return;
674
675 now = timer->base->get_time();
676
677 /*
678 * When a requeue is pending or this is a SIGEV_NONE
679 * timer move the expiry time forward by intervals, so
680 * expiry is > now.
681 */
682 if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
683 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
684 timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
685
686 remaining = ktime_sub(timer->expires, now);
687 /* Return 0 only, when the timer is expired and not pending */
688 if (remaining.tv64 <= 0) {
689 /*
690 * A single shot SIGEV_NONE timer must return 0, when
691 * it is expired !
692 */
693 if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
694 cur_setting->it_value.tv_nsec = 1;
695 } else
696 cur_setting->it_value = ktime_to_timespec(remaining);
697 }
698
699 /* Get the time remaining on a POSIX.1b interval timer. */
700 asmlinkage long
701 sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting)
702 {
703 struct k_itimer *timr;
704 struct itimerspec cur_setting;
705 unsigned long flags;
706
707 timr = lock_timer(timer_id, &flags);
708 if (!timr)
709 return -EINVAL;
710
711 CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
712
713 unlock_timer(timr, flags);
714
715 if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
716 return -EFAULT;
717
718 return 0;
719 }
720
721 /*
722 * Get the number of overruns of a POSIX.1b interval timer. This is to
723 * be the overrun of the timer last delivered. At the same time we are
724 * accumulating overruns on the next timer. The overrun is frozen when
725 * the signal is delivered, either at the notify time (if the info block
726 * is not queued) or at the actual delivery time (as we are informed by
727 * the call back to do_schedule_next_timer(). So all we need to do is
728 * to pick up the frozen overrun.
729 */
730 asmlinkage long
731 sys_timer_getoverrun(timer_t timer_id)
732 {
733 struct k_itimer *timr;
734 int overrun;
735 unsigned long flags;
736
737 timr = lock_timer(timer_id, &flags);
738 if (!timr)
739 return -EINVAL;
740
741 overrun = timr->it_overrun_last;
742 unlock_timer(timr, flags);
743
744 return overrun;
745 }
746
747 /* Set a POSIX.1b interval timer. */
748 /* timr->it_lock is taken. */
749 static int
750 common_timer_set(struct k_itimer *timr, int flags,
751 struct itimerspec *new_setting, struct itimerspec *old_setting)
752 {
753 struct hrtimer *timer = &timr->it.real.timer;
754 enum hrtimer_mode mode;
755
756 if (old_setting)
757 common_timer_get(timr, old_setting);
758
759 /* disable the timer */
760 timr->it.real.interval.tv64 = 0;
761 /*
762 * careful here. If smp we could be in the "fire" routine which will
763 * be spinning as we hold the lock. But this is ONLY an SMP issue.
764 */
765 if (hrtimer_try_to_cancel(timer) < 0)
766 return TIMER_RETRY;
767
768 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
769 ~REQUEUE_PENDING;
770 timr->it_overrun_last = 0;
771
772 /* switch off the timer when it_value is zero */
773 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
774 return 0;
775
776 mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
777 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
778 timr->it.real.timer.function = posix_timer_fn;
779
780 timer->expires = timespec_to_ktime(new_setting->it_value);
781
782 /* Convert interval */
783 timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
784
785 /* SIGEV_NONE timers are not queued ! See common_timer_get */
786 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
787 /* Setup correct expiry time for relative timers */
788 if (mode == HRTIMER_MODE_REL) {
789 timer->expires =
790 ktime_add_safe(timer->expires,
791 timer->base->get_time());
792 }
793 return 0;
794 }
795
796 hrtimer_start(timer, timer->expires, mode);
797 return 0;
798 }
799
800 /* Set a POSIX.1b interval timer */
801 asmlinkage long
802 sys_timer_settime(timer_t timer_id, int flags,
803 const struct itimerspec __user *new_setting,
804 struct itimerspec __user *old_setting)
805 {
806 struct k_itimer *timr;
807 struct itimerspec new_spec, old_spec;
808 int error = 0;
809 unsigned long flag;
810 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
811
812 if (!new_setting)
813 return -EINVAL;
814
815 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
816 return -EFAULT;
817
818 if (!timespec_valid(&new_spec.it_interval) ||
819 !timespec_valid(&new_spec.it_value))
820 return -EINVAL;
821 retry:
822 timr = lock_timer(timer_id, &flag);
823 if (!timr)
824 return -EINVAL;
825
826 error = CLOCK_DISPATCH(timr->it_clock, timer_set,
827 (timr, flags, &new_spec, rtn));
828
829 unlock_timer(timr, flag);
830 if (error == TIMER_RETRY) {
831 rtn = NULL; // We already got the old time...
832 goto retry;
833 }
834
835 if (old_setting && !error &&
836 copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
837 error = -EFAULT;
838
839 return error;
840 }
841
842 static inline int common_timer_del(struct k_itimer *timer)
843 {
844 timer->it.real.interval.tv64 = 0;
845
846 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
847 return TIMER_RETRY;
848 return 0;
849 }
850
851 static inline int timer_delete_hook(struct k_itimer *timer)
852 {
853 return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
854 }
855
856 /* Delete a POSIX.1b interval timer. */
857 asmlinkage long
858 sys_timer_delete(timer_t timer_id)
859 {
860 struct k_itimer *timer;
861 unsigned long flags;
862
863 retry_delete:
864 timer = lock_timer(timer_id, &flags);
865 if (!timer)
866 return -EINVAL;
867
868 if (timer_delete_hook(timer) == TIMER_RETRY) {
869 unlock_timer(timer, flags);
870 goto retry_delete;
871 }
872
873 spin_lock(&current->sighand->siglock);
874 list_del(&timer->list);
875 spin_unlock(&current->sighand->siglock);
876 /*
877 * This keeps any tasks waiting on the spin lock from thinking
878 * they got something (see the lock code above).
879 */
880 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
881 put_task_struct(timer->it_process);
882 timer->it_process = NULL;
883
884 unlock_timer(timer, flags);
885 release_posix_timer(timer, IT_ID_SET);
886 return 0;
887 }
888
889 /*
890 * return timer owned by the process, used by exit_itimers
891 */
892 static void itimer_delete(struct k_itimer *timer)
893 {
894 unsigned long flags;
895
896 retry_delete:
897 spin_lock_irqsave(&timer->it_lock, flags);
898
899 if (timer_delete_hook(timer) == TIMER_RETRY) {
900 unlock_timer(timer, flags);
901 goto retry_delete;
902 }
903 list_del(&timer->list);
904 /*
905 * This keeps any tasks waiting on the spin lock from thinking
906 * they got something (see the lock code above).
907 */
908 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
909 put_task_struct(timer->it_process);
910 timer->it_process = NULL;
911
912 unlock_timer(timer, flags);
913 release_posix_timer(timer, IT_ID_SET);
914 }
915
916 /*
917 * This is called by do_exit or de_thread, only when there are no more
918 * references to the shared signal_struct.
919 */
920 void exit_itimers(struct signal_struct *sig)
921 {
922 struct k_itimer *tmr;
923
924 while (!list_empty(&sig->posix_timers)) {
925 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
926 itimer_delete(tmr);
927 }
928 }
929
930 /* Not available / possible... functions */
931 int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp)
932 {
933 return -EINVAL;
934 }
935 EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
936
937 int do_posix_clock_nonanosleep(const clockid_t clock, int flags,
938 struct timespec *t, struct timespec __user *r)
939 {
940 #ifndef ENOTSUP
941 return -EOPNOTSUPP; /* aka ENOTSUP in userland for POSIX */
942 #else /* parisc does define it separately. */
943 return -ENOTSUP;
944 #endif
945 }
946 EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
947
948 asmlinkage long sys_clock_settime(const clockid_t which_clock,
949 const struct timespec __user *tp)
950 {
951 struct timespec new_tp;
952
953 if (invalid_clockid(which_clock))
954 return -EINVAL;
955 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
956 return -EFAULT;
957
958 return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
959 }
960
961 asmlinkage long
962 sys_clock_gettime(const clockid_t which_clock, struct timespec __user *tp)
963 {
964 struct timespec kernel_tp;
965 int error;
966
967 if (invalid_clockid(which_clock))
968 return -EINVAL;
969 error = CLOCK_DISPATCH(which_clock, clock_get,
970 (which_clock, &kernel_tp));
971 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
972 error = -EFAULT;
973
974 return error;
975
976 }
977
978 asmlinkage long
979 sys_clock_getres(const clockid_t which_clock, struct timespec __user *tp)
980 {
981 struct timespec rtn_tp;
982 int error;
983
984 if (invalid_clockid(which_clock))
985 return -EINVAL;
986
987 error = CLOCK_DISPATCH(which_clock, clock_getres,
988 (which_clock, &rtn_tp));
989
990 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
991 error = -EFAULT;
992 }
993
994 return error;
995 }
996
997 /*
998 * nanosleep for monotonic and realtime clocks
999 */
1000 static int common_nsleep(const clockid_t which_clock, int flags,
1001 struct timespec *tsave, struct timespec __user *rmtp)
1002 {
1003 return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
1004 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1005 which_clock);
1006 }
1007
1008 asmlinkage long
1009 sys_clock_nanosleep(const clockid_t which_clock, int flags,
1010 const struct timespec __user *rqtp,
1011 struct timespec __user *rmtp)
1012 {
1013 struct timespec t;
1014
1015 if (invalid_clockid(which_clock))
1016 return -EINVAL;
1017
1018 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1019 return -EFAULT;
1020
1021 if (!timespec_valid(&t))
1022 return -EINVAL;
1023
1024 return CLOCK_DISPATCH(which_clock, nsleep,
1025 (which_clock, flags, &t, rmtp));
1026 }
1027
1028 /*
1029 * nanosleep_restart for monotonic and realtime clocks
1030 */
1031 static int common_nsleep_restart(struct restart_block *restart_block)
1032 {
1033 return hrtimer_nanosleep_restart(restart_block);
1034 }
1035
1036 /*
1037 * This will restart clock_nanosleep. This is required only by
1038 * compat_clock_nanosleep_restart for now.
1039 */
1040 long
1041 clock_nanosleep_restart(struct restart_block *restart_block)
1042 {
1043 clockid_t which_clock = restart_block->arg0;
1044
1045 return CLOCK_DISPATCH(which_clock, nsleep_restart,
1046 (restart_block));
1047 }
This page took 0.085062 seconds and 6 git commands to generate.