posix-timers: lock_timer: make it readable
[deliverable/linux.git] / kernel / posix-timers.c
1 /*
2 * linux/kernel/posix-timers.c
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30 /* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
38
39 #include <asm/uaccess.h>
40 #include <linux/list.h>
41 #include <linux/init.h>
42 #include <linux/compiler.h>
43 #include <linux/idr.h>
44 #include <linux/posix-timers.h>
45 #include <linux/syscalls.h>
46 #include <linux/wait.h>
47 #include <linux/workqueue.h>
48 #include <linux/module.h>
49
50 /*
51 * Management arrays for POSIX timers. Timers are kept in slab memory
52 * Timer ids are allocated by an external routine that keeps track of the
53 * id and the timer. The external interface is:
54 *
55 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
56 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
57 * related it to <ptr>
58 * void idr_remove(struct idr *idp, int id); to release <id>
59 * void idr_init(struct idr *idp); to initialize <idp>
60 * which we supply.
61 * The idr_get_new *may* call slab for more memory so it must not be
62 * called under a spin lock. Likewise idr_remore may release memory
63 * (but it may be ok to do this under a lock...).
64 * idr_find is just a memory look up and is quite fast. A -1 return
65 * indicates that the requested id does not exist.
66 */
67
68 /*
69 * Lets keep our timers in a slab cache :-)
70 */
71 static struct kmem_cache *posix_timers_cache;
72 static struct idr posix_timers_id;
73 static DEFINE_SPINLOCK(idr_lock);
74
75 /*
76 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
77 * SIGEV values. Here we put out an error if this assumption fails.
78 */
79 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
80 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
81 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
82 #endif
83
84
85 /*
86 * The timer ID is turned into a timer address by idr_find().
87 * Verifying a valid ID consists of:
88 *
89 * a) checking that idr_find() returns other than -1.
90 * b) checking that the timer id matches the one in the timer itself.
91 * c) that the timer owner is in the callers thread group.
92 */
93
94 /*
95 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
96 * to implement others. This structure defines the various
97 * clocks and allows the possibility of adding others. We
98 * provide an interface to add clocks to the table and expect
99 * the "arch" code to add at least one clock that is high
100 * resolution. Here we define the standard CLOCK_REALTIME as a
101 * 1/HZ resolution clock.
102 *
103 * RESOLUTION: Clock resolution is used to round up timer and interval
104 * times, NOT to report clock times, which are reported with as
105 * much resolution as the system can muster. In some cases this
106 * resolution may depend on the underlying clock hardware and
107 * may not be quantifiable until run time, and only then is the
108 * necessary code is written. The standard says we should say
109 * something about this issue in the documentation...
110 *
111 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
112 * various clock functions. For clocks that use the standard
113 * system timer code these entries should be NULL. This will
114 * allow dispatch without the overhead of indirect function
115 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
116 * must supply functions here, even if the function just returns
117 * ENOSYS. The standard POSIX timer management code assumes the
118 * following: 1.) The k_itimer struct (sched.h) is used for the
119 * timer. 2.) The list, it_lock, it_clock, it_id and it_process
120 * fields are not modified by timer code.
121 *
122 * At this time all functions EXCEPT clock_nanosleep can be
123 * redirected by the CLOCKS structure. Clock_nanosleep is in
124 * there, but the code ignores it.
125 *
126 * Permissions: It is assumed that the clock_settime() function defined
127 * for each clock will take care of permission checks. Some
128 * clocks may be set able by any user (i.e. local process
129 * clocks) others not. Currently the only set able clock we
130 * have is CLOCK_REALTIME and its high res counter part, both of
131 * which we beg off on and pass to do_sys_settimeofday().
132 */
133
134 static struct k_clock posix_clocks[MAX_CLOCKS];
135
136 /*
137 * These ones are defined below.
138 */
139 static int common_nsleep(const clockid_t, int flags, struct timespec *t,
140 struct timespec __user *rmtp);
141 static void common_timer_get(struct k_itimer *, struct itimerspec *);
142 static int common_timer_set(struct k_itimer *, int,
143 struct itimerspec *, struct itimerspec *);
144 static int common_timer_del(struct k_itimer *timer);
145
146 static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
147
148 static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
149
150 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
151 {
152 spin_unlock_irqrestore(&timr->it_lock, flags);
153 }
154
155 /*
156 * Call the k_clock hook function if non-null, or the default function.
157 */
158 #define CLOCK_DISPATCH(clock, call, arglist) \
159 ((clock) < 0 ? posix_cpu_##call arglist : \
160 (posix_clocks[clock].call != NULL \
161 ? (*posix_clocks[clock].call) arglist : common_##call arglist))
162
163 /*
164 * Default clock hook functions when the struct k_clock passed
165 * to register_posix_clock leaves a function pointer null.
166 *
167 * The function common_CALL is the default implementation for
168 * the function pointer CALL in struct k_clock.
169 */
170
171 static inline int common_clock_getres(const clockid_t which_clock,
172 struct timespec *tp)
173 {
174 tp->tv_sec = 0;
175 tp->tv_nsec = posix_clocks[which_clock].res;
176 return 0;
177 }
178
179 /*
180 * Get real time for posix timers
181 */
182 static int common_clock_get(clockid_t which_clock, struct timespec *tp)
183 {
184 ktime_get_real_ts(tp);
185 return 0;
186 }
187
188 static inline int common_clock_set(const clockid_t which_clock,
189 struct timespec *tp)
190 {
191 return do_sys_settimeofday(tp, NULL);
192 }
193
194 static int common_timer_create(struct k_itimer *new_timer)
195 {
196 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
197 return 0;
198 }
199
200 /*
201 * Return nonzero if we know a priori this clockid_t value is bogus.
202 */
203 static inline int invalid_clockid(const clockid_t which_clock)
204 {
205 if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */
206 return 0;
207 if ((unsigned) which_clock >= MAX_CLOCKS)
208 return 1;
209 if (posix_clocks[which_clock].clock_getres != NULL)
210 return 0;
211 if (posix_clocks[which_clock].res != 0)
212 return 0;
213 return 1;
214 }
215
216 /*
217 * Get monotonic time for posix timers
218 */
219 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
220 {
221 ktime_get_ts(tp);
222 return 0;
223 }
224
225 /*
226 * Initialize everything, well, just everything in Posix clocks/timers ;)
227 */
228 static __init int init_posix_timers(void)
229 {
230 struct k_clock clock_realtime = {
231 .clock_getres = hrtimer_get_res,
232 };
233 struct k_clock clock_monotonic = {
234 .clock_getres = hrtimer_get_res,
235 .clock_get = posix_ktime_get_ts,
236 .clock_set = do_posix_clock_nosettime,
237 };
238
239 register_posix_clock(CLOCK_REALTIME, &clock_realtime);
240 register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
241
242 posix_timers_cache = kmem_cache_create("posix_timers_cache",
243 sizeof (struct k_itimer), 0, SLAB_PANIC,
244 NULL);
245 idr_init(&posix_timers_id);
246 return 0;
247 }
248
249 __initcall(init_posix_timers);
250
251 static void schedule_next_timer(struct k_itimer *timr)
252 {
253 struct hrtimer *timer = &timr->it.real.timer;
254
255 if (timr->it.real.interval.tv64 == 0)
256 return;
257
258 timr->it_overrun += (unsigned int) hrtimer_forward(timer,
259 timer->base->get_time(),
260 timr->it.real.interval);
261
262 timr->it_overrun_last = timr->it_overrun;
263 timr->it_overrun = -1;
264 ++timr->it_requeue_pending;
265 hrtimer_restart(timer);
266 }
267
268 /*
269 * This function is exported for use by the signal deliver code. It is
270 * called just prior to the info block being released and passes that
271 * block to us. It's function is to update the overrun entry AND to
272 * restart the timer. It should only be called if the timer is to be
273 * restarted (i.e. we have flagged this in the sys_private entry of the
274 * info block).
275 *
276 * To protect aginst the timer going away while the interrupt is queued,
277 * we require that the it_requeue_pending flag be set.
278 */
279 void do_schedule_next_timer(struct siginfo *info)
280 {
281 struct k_itimer *timr;
282 unsigned long flags;
283
284 timr = lock_timer(info->si_tid, &flags);
285
286 if (timr && timr->it_requeue_pending == info->si_sys_private) {
287 if (timr->it_clock < 0)
288 posix_cpu_timer_schedule(timr);
289 else
290 schedule_next_timer(timr);
291
292 info->si_overrun += timr->it_overrun_last;
293 }
294
295 if (timr)
296 unlock_timer(timr, flags);
297 }
298
299 int posix_timer_event(struct k_itimer *timr, int si_private)
300 {
301 int shared, ret;
302 /*
303 * FIXME: if ->sigq is queued we can race with
304 * dequeue_signal()->do_schedule_next_timer().
305 *
306 * If dequeue_signal() sees the "right" value of
307 * si_sys_private it calls do_schedule_next_timer().
308 * We re-queue ->sigq and drop ->it_lock().
309 * do_schedule_next_timer() locks the timer
310 * and re-schedules it while ->sigq is pending.
311 * Not really bad, but not that we want.
312 */
313 timr->sigq->info.si_sys_private = si_private;
314
315 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
316 ret = send_sigqueue(timr->sigq, timr->it_process, shared);
317 /* If we failed to send the signal the timer stops. */
318 return ret > 0;
319 }
320 EXPORT_SYMBOL_GPL(posix_timer_event);
321
322 /*
323 * This function gets called when a POSIX.1b interval timer expires. It
324 * is used as a callback from the kernel internal timer. The
325 * run_timer_list code ALWAYS calls with interrupts on.
326
327 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
328 */
329 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
330 {
331 struct k_itimer *timr;
332 unsigned long flags;
333 int si_private = 0;
334 enum hrtimer_restart ret = HRTIMER_NORESTART;
335
336 timr = container_of(timer, struct k_itimer, it.real.timer);
337 spin_lock_irqsave(&timr->it_lock, flags);
338
339 if (timr->it.real.interval.tv64 != 0)
340 si_private = ++timr->it_requeue_pending;
341
342 if (posix_timer_event(timr, si_private)) {
343 /*
344 * signal was not sent because of sig_ignor
345 * we will not get a call back to restart it AND
346 * it should be restarted.
347 */
348 if (timr->it.real.interval.tv64 != 0) {
349 ktime_t now = hrtimer_cb_get_time(timer);
350
351 /*
352 * FIXME: What we really want, is to stop this
353 * timer completely and restart it in case the
354 * SIG_IGN is removed. This is a non trivial
355 * change which involves sighand locking
356 * (sigh !), which we don't want to do late in
357 * the release cycle.
358 *
359 * For now we just let timers with an interval
360 * less than a jiffie expire every jiffie to
361 * avoid softirq starvation in case of SIG_IGN
362 * and a very small interval, which would put
363 * the timer right back on the softirq pending
364 * list. By moving now ahead of time we trick
365 * hrtimer_forward() to expire the timer
366 * later, while we still maintain the overrun
367 * accuracy, but have some inconsistency in
368 * the timer_gettime() case. This is at least
369 * better than a starved softirq. A more
370 * complex fix which solves also another related
371 * inconsistency is already in the pipeline.
372 */
373 #ifdef CONFIG_HIGH_RES_TIMERS
374 {
375 ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
376
377 if (timr->it.real.interval.tv64 < kj.tv64)
378 now = ktime_add(now, kj);
379 }
380 #endif
381 timr->it_overrun += (unsigned int)
382 hrtimer_forward(timer, now,
383 timr->it.real.interval);
384 ret = HRTIMER_RESTART;
385 ++timr->it_requeue_pending;
386 }
387 }
388
389 unlock_timer(timr, flags);
390 return ret;
391 }
392
393 static struct task_struct * good_sigevent(sigevent_t * event)
394 {
395 struct task_struct *rtn = current->group_leader;
396
397 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
398 (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
399 !same_thread_group(rtn, current) ||
400 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
401 return NULL;
402
403 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
404 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
405 return NULL;
406
407 return rtn;
408 }
409
410 void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
411 {
412 if ((unsigned) clock_id >= MAX_CLOCKS) {
413 printk("POSIX clock register failed for clock_id %d\n",
414 clock_id);
415 return;
416 }
417
418 posix_clocks[clock_id] = *new_clock;
419 }
420 EXPORT_SYMBOL_GPL(register_posix_clock);
421
422 static struct k_itimer * alloc_posix_timer(void)
423 {
424 struct k_itimer *tmr;
425 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
426 if (!tmr)
427 return tmr;
428 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
429 kmem_cache_free(posix_timers_cache, tmr);
430 tmr = NULL;
431 }
432 memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
433 return tmr;
434 }
435
436 #define IT_ID_SET 1
437 #define IT_ID_NOT_SET 0
438 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
439 {
440 if (it_id_set) {
441 unsigned long flags;
442 spin_lock_irqsave(&idr_lock, flags);
443 idr_remove(&posix_timers_id, tmr->it_id);
444 spin_unlock_irqrestore(&idr_lock, flags);
445 }
446 sigqueue_free(tmr->sigq);
447 kmem_cache_free(posix_timers_cache, tmr);
448 }
449
450 /* Create a POSIX.1b interval timer. */
451
452 asmlinkage long
453 sys_timer_create(const clockid_t which_clock,
454 struct sigevent __user *timer_event_spec,
455 timer_t __user * created_timer_id)
456 {
457 struct k_itimer *new_timer;
458 int error, new_timer_id;
459 struct task_struct *process;
460 sigevent_t event;
461 int it_id_set = IT_ID_NOT_SET;
462
463 if (invalid_clockid(which_clock))
464 return -EINVAL;
465
466 new_timer = alloc_posix_timer();
467 if (unlikely(!new_timer))
468 return -EAGAIN;
469
470 spin_lock_init(&new_timer->it_lock);
471 retry:
472 if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
473 error = -EAGAIN;
474 goto out;
475 }
476 spin_lock_irq(&idr_lock);
477 error = idr_get_new(&posix_timers_id, new_timer, &new_timer_id);
478 spin_unlock_irq(&idr_lock);
479 if (error) {
480 if (error == -EAGAIN)
481 goto retry;
482 /*
483 * Weird looking, but we return EAGAIN if the IDR is
484 * full (proper POSIX return value for this)
485 */
486 error = -EAGAIN;
487 goto out;
488 }
489
490 it_id_set = IT_ID_SET;
491 new_timer->it_id = (timer_t) new_timer_id;
492 new_timer->it_clock = which_clock;
493 new_timer->it_overrun = -1;
494 error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
495 if (error)
496 goto out;
497
498 /*
499 * return the timer_id now. The next step is hard to
500 * back out if there is an error.
501 */
502 if (copy_to_user(created_timer_id,
503 &new_timer_id, sizeof (new_timer_id))) {
504 error = -EFAULT;
505 goto out;
506 }
507 if (timer_event_spec) {
508 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
509 error = -EFAULT;
510 goto out;
511 }
512 rcu_read_lock();
513 process = good_sigevent(&event);
514 if (process)
515 get_task_struct(process);
516 rcu_read_unlock();
517 if (!process) {
518 error = -EINVAL;
519 goto out;
520 }
521 } else {
522 event.sigev_notify = SIGEV_SIGNAL;
523 event.sigev_signo = SIGALRM;
524 event.sigev_value.sival_int = new_timer->it_id;
525 process = current->group_leader;
526 get_task_struct(process);
527 }
528
529 new_timer->it_sigev_notify = event.sigev_notify;
530 new_timer->sigq->info.si_signo = event.sigev_signo;
531 new_timer->sigq->info.si_value = event.sigev_value;
532 new_timer->sigq->info.si_tid = new_timer->it_id;
533 new_timer->sigq->info.si_code = SI_TIMER;
534
535 spin_lock_irq(&current->sighand->siglock);
536 new_timer->it_process = process;
537 list_add(&new_timer->list, &current->signal->posix_timers);
538 spin_unlock_irq(&current->sighand->siglock);
539
540 return 0;
541 /*
542 * In the case of the timer belonging to another task, after
543 * the task is unlocked, the timer is owned by the other task
544 * and may cease to exist at any time. Don't use or modify
545 * new_timer after the unlock call.
546 */
547 out:
548 release_posix_timer(new_timer, it_id_set);
549 return error;
550 }
551
552 /*
553 * Locking issues: We need to protect the result of the id look up until
554 * we get the timer locked down so it is not deleted under us. The
555 * removal is done under the idr spinlock so we use that here to bridge
556 * the find to the timer lock. To avoid a dead lock, the timer id MUST
557 * be release with out holding the timer lock.
558 */
559 static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags)
560 {
561 struct k_itimer *timr;
562 /*
563 * Watch out here. We do a irqsave on the idr_lock and pass the
564 * flags part over to the timer lock. Must not let interrupts in
565 * while we are moving the lock.
566 */
567 spin_lock_irqsave(&idr_lock, *flags);
568 timr = idr_find(&posix_timers_id, (int)timer_id);
569 if (timr) {
570 spin_lock(&timr->it_lock);
571 if (timr->it_process &&
572 same_thread_group(timr->it_process, current)) {
573 spin_unlock(&idr_lock);
574 return timr;
575 }
576 spin_unlock(&timr->it_lock);
577 }
578 spin_unlock_irqrestore(&idr_lock, *flags);
579
580 return NULL;
581 }
582
583 /*
584 * Get the time remaining on a POSIX.1b interval timer. This function
585 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
586 * mess with irq.
587 *
588 * We have a couple of messes to clean up here. First there is the case
589 * of a timer that has a requeue pending. These timers should appear to
590 * be in the timer list with an expiry as if we were to requeue them
591 * now.
592 *
593 * The second issue is the SIGEV_NONE timer which may be active but is
594 * not really ever put in the timer list (to save system resources).
595 * This timer may be expired, and if so, we will do it here. Otherwise
596 * it is the same as a requeue pending timer WRT to what we should
597 * report.
598 */
599 static void
600 common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
601 {
602 ktime_t now, remaining, iv;
603 struct hrtimer *timer = &timr->it.real.timer;
604
605 memset(cur_setting, 0, sizeof(struct itimerspec));
606
607 iv = timr->it.real.interval;
608
609 /* interval timer ? */
610 if (iv.tv64)
611 cur_setting->it_interval = ktime_to_timespec(iv);
612 else if (!hrtimer_active(timer) &&
613 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
614 return;
615
616 now = timer->base->get_time();
617
618 /*
619 * When a requeue is pending or this is a SIGEV_NONE
620 * timer move the expiry time forward by intervals, so
621 * expiry is > now.
622 */
623 if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
624 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
625 timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
626
627 remaining = ktime_sub(timer->expires, now);
628 /* Return 0 only, when the timer is expired and not pending */
629 if (remaining.tv64 <= 0) {
630 /*
631 * A single shot SIGEV_NONE timer must return 0, when
632 * it is expired !
633 */
634 if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
635 cur_setting->it_value.tv_nsec = 1;
636 } else
637 cur_setting->it_value = ktime_to_timespec(remaining);
638 }
639
640 /* Get the time remaining on a POSIX.1b interval timer. */
641 asmlinkage long
642 sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting)
643 {
644 struct k_itimer *timr;
645 struct itimerspec cur_setting;
646 unsigned long flags;
647
648 timr = lock_timer(timer_id, &flags);
649 if (!timr)
650 return -EINVAL;
651
652 CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
653
654 unlock_timer(timr, flags);
655
656 if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
657 return -EFAULT;
658
659 return 0;
660 }
661
662 /*
663 * Get the number of overruns of a POSIX.1b interval timer. This is to
664 * be the overrun of the timer last delivered. At the same time we are
665 * accumulating overruns on the next timer. The overrun is frozen when
666 * the signal is delivered, either at the notify time (if the info block
667 * is not queued) or at the actual delivery time (as we are informed by
668 * the call back to do_schedule_next_timer(). So all we need to do is
669 * to pick up the frozen overrun.
670 */
671 asmlinkage long
672 sys_timer_getoverrun(timer_t timer_id)
673 {
674 struct k_itimer *timr;
675 int overrun;
676 unsigned long flags;
677
678 timr = lock_timer(timer_id, &flags);
679 if (!timr)
680 return -EINVAL;
681
682 overrun = timr->it_overrun_last;
683 unlock_timer(timr, flags);
684
685 return overrun;
686 }
687
688 /* Set a POSIX.1b interval timer. */
689 /* timr->it_lock is taken. */
690 static int
691 common_timer_set(struct k_itimer *timr, int flags,
692 struct itimerspec *new_setting, struct itimerspec *old_setting)
693 {
694 struct hrtimer *timer = &timr->it.real.timer;
695 enum hrtimer_mode mode;
696
697 if (old_setting)
698 common_timer_get(timr, old_setting);
699
700 /* disable the timer */
701 timr->it.real.interval.tv64 = 0;
702 /*
703 * careful here. If smp we could be in the "fire" routine which will
704 * be spinning as we hold the lock. But this is ONLY an SMP issue.
705 */
706 if (hrtimer_try_to_cancel(timer) < 0)
707 return TIMER_RETRY;
708
709 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
710 ~REQUEUE_PENDING;
711 timr->it_overrun_last = 0;
712
713 /* switch off the timer when it_value is zero */
714 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
715 return 0;
716
717 mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
718 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
719 timr->it.real.timer.function = posix_timer_fn;
720
721 timer->expires = timespec_to_ktime(new_setting->it_value);
722
723 /* Convert interval */
724 timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
725
726 /* SIGEV_NONE timers are not queued ! See common_timer_get */
727 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
728 /* Setup correct expiry time for relative timers */
729 if (mode == HRTIMER_MODE_REL) {
730 timer->expires =
731 ktime_add_safe(timer->expires,
732 timer->base->get_time());
733 }
734 return 0;
735 }
736
737 hrtimer_start(timer, timer->expires, mode);
738 return 0;
739 }
740
741 /* Set a POSIX.1b interval timer */
742 asmlinkage long
743 sys_timer_settime(timer_t timer_id, int flags,
744 const struct itimerspec __user *new_setting,
745 struct itimerspec __user *old_setting)
746 {
747 struct k_itimer *timr;
748 struct itimerspec new_spec, old_spec;
749 int error = 0;
750 unsigned long flag;
751 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
752
753 if (!new_setting)
754 return -EINVAL;
755
756 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
757 return -EFAULT;
758
759 if (!timespec_valid(&new_spec.it_interval) ||
760 !timespec_valid(&new_spec.it_value))
761 return -EINVAL;
762 retry:
763 timr = lock_timer(timer_id, &flag);
764 if (!timr)
765 return -EINVAL;
766
767 error = CLOCK_DISPATCH(timr->it_clock, timer_set,
768 (timr, flags, &new_spec, rtn));
769
770 unlock_timer(timr, flag);
771 if (error == TIMER_RETRY) {
772 rtn = NULL; // We already got the old time...
773 goto retry;
774 }
775
776 if (old_setting && !error &&
777 copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
778 error = -EFAULT;
779
780 return error;
781 }
782
783 static inline int common_timer_del(struct k_itimer *timer)
784 {
785 timer->it.real.interval.tv64 = 0;
786
787 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
788 return TIMER_RETRY;
789 return 0;
790 }
791
792 static inline int timer_delete_hook(struct k_itimer *timer)
793 {
794 return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
795 }
796
797 /* Delete a POSIX.1b interval timer. */
798 asmlinkage long
799 sys_timer_delete(timer_t timer_id)
800 {
801 struct k_itimer *timer;
802 unsigned long flags;
803
804 retry_delete:
805 timer = lock_timer(timer_id, &flags);
806 if (!timer)
807 return -EINVAL;
808
809 if (timer_delete_hook(timer) == TIMER_RETRY) {
810 unlock_timer(timer, flags);
811 goto retry_delete;
812 }
813
814 spin_lock(&current->sighand->siglock);
815 list_del(&timer->list);
816 spin_unlock(&current->sighand->siglock);
817 /*
818 * This keeps any tasks waiting on the spin lock from thinking
819 * they got something (see the lock code above).
820 */
821 put_task_struct(timer->it_process);
822 timer->it_process = NULL;
823
824 unlock_timer(timer, flags);
825 release_posix_timer(timer, IT_ID_SET);
826 return 0;
827 }
828
829 /*
830 * return timer owned by the process, used by exit_itimers
831 */
832 static void itimer_delete(struct k_itimer *timer)
833 {
834 unsigned long flags;
835
836 retry_delete:
837 spin_lock_irqsave(&timer->it_lock, flags);
838
839 if (timer_delete_hook(timer) == TIMER_RETRY) {
840 unlock_timer(timer, flags);
841 goto retry_delete;
842 }
843 list_del(&timer->list);
844 /*
845 * This keeps any tasks waiting on the spin lock from thinking
846 * they got something (see the lock code above).
847 */
848 put_task_struct(timer->it_process);
849 timer->it_process = NULL;
850
851 unlock_timer(timer, flags);
852 release_posix_timer(timer, IT_ID_SET);
853 }
854
855 /*
856 * This is called by do_exit or de_thread, only when there are no more
857 * references to the shared signal_struct.
858 */
859 void exit_itimers(struct signal_struct *sig)
860 {
861 struct k_itimer *tmr;
862
863 while (!list_empty(&sig->posix_timers)) {
864 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
865 itimer_delete(tmr);
866 }
867 }
868
869 /* Not available / possible... functions */
870 int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp)
871 {
872 return -EINVAL;
873 }
874 EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
875
876 int do_posix_clock_nonanosleep(const clockid_t clock, int flags,
877 struct timespec *t, struct timespec __user *r)
878 {
879 #ifndef ENOTSUP
880 return -EOPNOTSUPP; /* aka ENOTSUP in userland for POSIX */
881 #else /* parisc does define it separately. */
882 return -ENOTSUP;
883 #endif
884 }
885 EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
886
887 asmlinkage long sys_clock_settime(const clockid_t which_clock,
888 const struct timespec __user *tp)
889 {
890 struct timespec new_tp;
891
892 if (invalid_clockid(which_clock))
893 return -EINVAL;
894 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
895 return -EFAULT;
896
897 return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
898 }
899
900 asmlinkage long
901 sys_clock_gettime(const clockid_t which_clock, struct timespec __user *tp)
902 {
903 struct timespec kernel_tp;
904 int error;
905
906 if (invalid_clockid(which_clock))
907 return -EINVAL;
908 error = CLOCK_DISPATCH(which_clock, clock_get,
909 (which_clock, &kernel_tp));
910 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
911 error = -EFAULT;
912
913 return error;
914
915 }
916
917 asmlinkage long
918 sys_clock_getres(const clockid_t which_clock, struct timespec __user *tp)
919 {
920 struct timespec rtn_tp;
921 int error;
922
923 if (invalid_clockid(which_clock))
924 return -EINVAL;
925
926 error = CLOCK_DISPATCH(which_clock, clock_getres,
927 (which_clock, &rtn_tp));
928
929 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
930 error = -EFAULT;
931 }
932
933 return error;
934 }
935
936 /*
937 * nanosleep for monotonic and realtime clocks
938 */
939 static int common_nsleep(const clockid_t which_clock, int flags,
940 struct timespec *tsave, struct timespec __user *rmtp)
941 {
942 return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
943 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
944 which_clock);
945 }
946
947 asmlinkage long
948 sys_clock_nanosleep(const clockid_t which_clock, int flags,
949 const struct timespec __user *rqtp,
950 struct timespec __user *rmtp)
951 {
952 struct timespec t;
953
954 if (invalid_clockid(which_clock))
955 return -EINVAL;
956
957 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
958 return -EFAULT;
959
960 if (!timespec_valid(&t))
961 return -EINVAL;
962
963 return CLOCK_DISPATCH(which_clock, nsleep,
964 (which_clock, flags, &t, rmtp));
965 }
966
967 /*
968 * nanosleep_restart for monotonic and realtime clocks
969 */
970 static int common_nsleep_restart(struct restart_block *restart_block)
971 {
972 return hrtimer_nanosleep_restart(restart_block);
973 }
974
975 /*
976 * This will restart clock_nanosleep. This is required only by
977 * compat_clock_nanosleep_restart for now.
978 */
979 long
980 clock_nanosleep_restart(struct restart_block *restart_block)
981 {
982 clockid_t which_clock = restart_block->arg0;
983
984 return CLOCK_DISPATCH(which_clock, nsleep_restart,
985 (restart_block));
986 }
This page took 0.050487 seconds and 6 git commands to generate.