1cf88900ec4fdc162b6ad1250d2c4d13d3895458
[deliverable/linux.git] / kernel / power / snapshot.c
1 /*
2 * linux/kernel/power/snapshot.c
3 *
4 * This file provides system snapshot/restore functionality for swsusp.
5 *
6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8 *
9 * This file is released under the GPLv2.
10 *
11 */
12
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28 #include <linux/list.h>
29 #include <linux/slab.h>
30
31 #include <asm/uaccess.h>
32 #include <asm/mmu_context.h>
33 #include <asm/pgtable.h>
34 #include <asm/tlbflush.h>
35 #include <asm/io.h>
36
37 #include "power.h"
38
39 static int swsusp_page_is_free(struct page *);
40 static void swsusp_set_page_forbidden(struct page *);
41 static void swsusp_unset_page_forbidden(struct page *);
42
43 /*
44 * Number of bytes to reserve for memory allocations made by device drivers
45 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
46 * cause image creation to fail (tunable via /sys/power/reserved_size).
47 */
48 unsigned long reserved_size;
49
50 void __init hibernate_reserved_size_init(void)
51 {
52 reserved_size = SPARE_PAGES * PAGE_SIZE;
53 }
54
55 /*
56 * Preferred image size in bytes (tunable via /sys/power/image_size).
57 * When it is set to N, swsusp will do its best to ensure the image
58 * size will not exceed N bytes, but if that is impossible, it will
59 * try to create the smallest image possible.
60 */
61 unsigned long image_size;
62
63 void __init hibernate_image_size_init(void)
64 {
65 image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
66 }
67
68 /* List of PBEs needed for restoring the pages that were allocated before
69 * the suspend and included in the suspend image, but have also been
70 * allocated by the "resume" kernel, so their contents cannot be written
71 * directly to their "original" page frames.
72 */
73 struct pbe *restore_pblist;
74
75 /* Pointer to an auxiliary buffer (1 page) */
76 static void *buffer;
77
78 /**
79 * @safe_needed - on resume, for storing the PBE list and the image,
80 * we can only use memory pages that do not conflict with the pages
81 * used before suspend. The unsafe pages have PageNosaveFree set
82 * and we count them using unsafe_pages.
83 *
84 * Each allocated image page is marked as PageNosave and PageNosaveFree
85 * so that swsusp_free() can release it.
86 */
87
88 #define PG_ANY 0
89 #define PG_SAFE 1
90 #define PG_UNSAFE_CLEAR 1
91 #define PG_UNSAFE_KEEP 0
92
93 static unsigned int allocated_unsafe_pages;
94
95 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
96 {
97 void *res;
98
99 res = (void *)get_zeroed_page(gfp_mask);
100 if (safe_needed)
101 while (res && swsusp_page_is_free(virt_to_page(res))) {
102 /* The page is unsafe, mark it for swsusp_free() */
103 swsusp_set_page_forbidden(virt_to_page(res));
104 allocated_unsafe_pages++;
105 res = (void *)get_zeroed_page(gfp_mask);
106 }
107 if (res) {
108 swsusp_set_page_forbidden(virt_to_page(res));
109 swsusp_set_page_free(virt_to_page(res));
110 }
111 return res;
112 }
113
114 unsigned long get_safe_page(gfp_t gfp_mask)
115 {
116 return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
117 }
118
119 static struct page *alloc_image_page(gfp_t gfp_mask)
120 {
121 struct page *page;
122
123 page = alloc_page(gfp_mask);
124 if (page) {
125 swsusp_set_page_forbidden(page);
126 swsusp_set_page_free(page);
127 }
128 return page;
129 }
130
131 /**
132 * free_image_page - free page represented by @addr, allocated with
133 * get_image_page (page flags set by it must be cleared)
134 */
135
136 static inline void free_image_page(void *addr, int clear_nosave_free)
137 {
138 struct page *page;
139
140 BUG_ON(!virt_addr_valid(addr));
141
142 page = virt_to_page(addr);
143
144 swsusp_unset_page_forbidden(page);
145 if (clear_nosave_free)
146 swsusp_unset_page_free(page);
147
148 __free_page(page);
149 }
150
151 /* struct linked_page is used to build chains of pages */
152
153 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
154
155 struct linked_page {
156 struct linked_page *next;
157 char data[LINKED_PAGE_DATA_SIZE];
158 } __attribute__((packed));
159
160 static inline void
161 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
162 {
163 while (list) {
164 struct linked_page *lp = list->next;
165
166 free_image_page(list, clear_page_nosave);
167 list = lp;
168 }
169 }
170
171 /**
172 * struct chain_allocator is used for allocating small objects out of
173 * a linked list of pages called 'the chain'.
174 *
175 * The chain grows each time when there is no room for a new object in
176 * the current page. The allocated objects cannot be freed individually.
177 * It is only possible to free them all at once, by freeing the entire
178 * chain.
179 *
180 * NOTE: The chain allocator may be inefficient if the allocated objects
181 * are not much smaller than PAGE_SIZE.
182 */
183
184 struct chain_allocator {
185 struct linked_page *chain; /* the chain */
186 unsigned int used_space; /* total size of objects allocated out
187 * of the current page
188 */
189 gfp_t gfp_mask; /* mask for allocating pages */
190 int safe_needed; /* if set, only "safe" pages are allocated */
191 };
192
193 static void
194 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
195 {
196 ca->chain = NULL;
197 ca->used_space = LINKED_PAGE_DATA_SIZE;
198 ca->gfp_mask = gfp_mask;
199 ca->safe_needed = safe_needed;
200 }
201
202 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
203 {
204 void *ret;
205
206 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
207 struct linked_page *lp;
208
209 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
210 if (!lp)
211 return NULL;
212
213 lp->next = ca->chain;
214 ca->chain = lp;
215 ca->used_space = 0;
216 }
217 ret = ca->chain->data + ca->used_space;
218 ca->used_space += size;
219 return ret;
220 }
221
222 /**
223 * Data types related to memory bitmaps.
224 *
225 * Memory bitmap is a structure consiting of many linked lists of
226 * objects. The main list's elements are of type struct zone_bitmap
227 * and each of them corresonds to one zone. For each zone bitmap
228 * object there is a list of objects of type struct bm_block that
229 * represent each blocks of bitmap in which information is stored.
230 *
231 * struct memory_bitmap contains a pointer to the main list of zone
232 * bitmap objects, a struct bm_position used for browsing the bitmap,
233 * and a pointer to the list of pages used for allocating all of the
234 * zone bitmap objects and bitmap block objects.
235 *
236 * NOTE: It has to be possible to lay out the bitmap in memory
237 * using only allocations of order 0. Additionally, the bitmap is
238 * designed to work with arbitrary number of zones (this is over the
239 * top for now, but let's avoid making unnecessary assumptions ;-).
240 *
241 * struct zone_bitmap contains a pointer to a list of bitmap block
242 * objects and a pointer to the bitmap block object that has been
243 * most recently used for setting bits. Additionally, it contains the
244 * pfns that correspond to the start and end of the represented zone.
245 *
246 * struct bm_block contains a pointer to the memory page in which
247 * information is stored (in the form of a block of bitmap)
248 * It also contains the pfns that correspond to the start and end of
249 * the represented memory area.
250 */
251
252 #define BM_END_OF_MAP (~0UL)
253
254 #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
255
256 struct bm_block {
257 struct list_head hook; /* hook into a list of bitmap blocks */
258 unsigned long start_pfn; /* pfn represented by the first bit */
259 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */
260 unsigned long *data; /* bitmap representing pages */
261 };
262
263 static inline unsigned long bm_block_bits(struct bm_block *bb)
264 {
265 return bb->end_pfn - bb->start_pfn;
266 }
267
268 /* strcut bm_position is used for browsing memory bitmaps */
269
270 struct bm_position {
271 struct bm_block *block;
272 int bit;
273 };
274
275 struct memory_bitmap {
276 struct list_head blocks; /* list of bitmap blocks */
277 struct linked_page *p_list; /* list of pages used to store zone
278 * bitmap objects and bitmap block
279 * objects
280 */
281 struct bm_position cur; /* most recently used bit position */
282 };
283
284 /* Functions that operate on memory bitmaps */
285
286 static void memory_bm_position_reset(struct memory_bitmap *bm)
287 {
288 bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
289 bm->cur.bit = 0;
290 }
291
292 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
293
294 /**
295 * create_bm_block_list - create a list of block bitmap objects
296 * @pages - number of pages to track
297 * @list - list to put the allocated blocks into
298 * @ca - chain allocator to be used for allocating memory
299 */
300 static int create_bm_block_list(unsigned long pages,
301 struct list_head *list,
302 struct chain_allocator *ca)
303 {
304 unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
305
306 while (nr_blocks-- > 0) {
307 struct bm_block *bb;
308
309 bb = chain_alloc(ca, sizeof(struct bm_block));
310 if (!bb)
311 return -ENOMEM;
312 list_add(&bb->hook, list);
313 }
314
315 return 0;
316 }
317
318 struct mem_extent {
319 struct list_head hook;
320 unsigned long start;
321 unsigned long end;
322 };
323
324 /**
325 * free_mem_extents - free a list of memory extents
326 * @list - list of extents to empty
327 */
328 static void free_mem_extents(struct list_head *list)
329 {
330 struct mem_extent *ext, *aux;
331
332 list_for_each_entry_safe(ext, aux, list, hook) {
333 list_del(&ext->hook);
334 kfree(ext);
335 }
336 }
337
338 /**
339 * create_mem_extents - create a list of memory extents representing
340 * contiguous ranges of PFNs
341 * @list - list to put the extents into
342 * @gfp_mask - mask to use for memory allocations
343 */
344 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
345 {
346 struct zone *zone;
347
348 INIT_LIST_HEAD(list);
349
350 for_each_populated_zone(zone) {
351 unsigned long zone_start, zone_end;
352 struct mem_extent *ext, *cur, *aux;
353
354 zone_start = zone->zone_start_pfn;
355 zone_end = zone->zone_start_pfn + zone->spanned_pages;
356
357 list_for_each_entry(ext, list, hook)
358 if (zone_start <= ext->end)
359 break;
360
361 if (&ext->hook == list || zone_end < ext->start) {
362 /* New extent is necessary */
363 struct mem_extent *new_ext;
364
365 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
366 if (!new_ext) {
367 free_mem_extents(list);
368 return -ENOMEM;
369 }
370 new_ext->start = zone_start;
371 new_ext->end = zone_end;
372 list_add_tail(&new_ext->hook, &ext->hook);
373 continue;
374 }
375
376 /* Merge this zone's range of PFNs with the existing one */
377 if (zone_start < ext->start)
378 ext->start = zone_start;
379 if (zone_end > ext->end)
380 ext->end = zone_end;
381
382 /* More merging may be possible */
383 cur = ext;
384 list_for_each_entry_safe_continue(cur, aux, list, hook) {
385 if (zone_end < cur->start)
386 break;
387 if (zone_end < cur->end)
388 ext->end = cur->end;
389 list_del(&cur->hook);
390 kfree(cur);
391 }
392 }
393
394 return 0;
395 }
396
397 /**
398 * memory_bm_create - allocate memory for a memory bitmap
399 */
400 static int
401 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
402 {
403 struct chain_allocator ca;
404 struct list_head mem_extents;
405 struct mem_extent *ext;
406 int error;
407
408 chain_init(&ca, gfp_mask, safe_needed);
409 INIT_LIST_HEAD(&bm->blocks);
410
411 error = create_mem_extents(&mem_extents, gfp_mask);
412 if (error)
413 return error;
414
415 list_for_each_entry(ext, &mem_extents, hook) {
416 struct bm_block *bb;
417 unsigned long pfn = ext->start;
418 unsigned long pages = ext->end - ext->start;
419
420 bb = list_entry(bm->blocks.prev, struct bm_block, hook);
421
422 error = create_bm_block_list(pages, bm->blocks.prev, &ca);
423 if (error)
424 goto Error;
425
426 list_for_each_entry_continue(bb, &bm->blocks, hook) {
427 bb->data = get_image_page(gfp_mask, safe_needed);
428 if (!bb->data) {
429 error = -ENOMEM;
430 goto Error;
431 }
432
433 bb->start_pfn = pfn;
434 if (pages >= BM_BITS_PER_BLOCK) {
435 pfn += BM_BITS_PER_BLOCK;
436 pages -= BM_BITS_PER_BLOCK;
437 } else {
438 /* This is executed only once in the loop */
439 pfn += pages;
440 }
441 bb->end_pfn = pfn;
442 }
443 }
444
445 bm->p_list = ca.chain;
446 memory_bm_position_reset(bm);
447 Exit:
448 free_mem_extents(&mem_extents);
449 return error;
450
451 Error:
452 bm->p_list = ca.chain;
453 memory_bm_free(bm, PG_UNSAFE_CLEAR);
454 goto Exit;
455 }
456
457 /**
458 * memory_bm_free - free memory occupied by the memory bitmap @bm
459 */
460 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
461 {
462 struct bm_block *bb;
463
464 list_for_each_entry(bb, &bm->blocks, hook)
465 if (bb->data)
466 free_image_page(bb->data, clear_nosave_free);
467
468 free_list_of_pages(bm->p_list, clear_nosave_free);
469
470 INIT_LIST_HEAD(&bm->blocks);
471 }
472
473 /**
474 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
475 * to given pfn. The cur_zone_bm member of @bm and the cur_block member
476 * of @bm->cur_zone_bm are updated.
477 */
478 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
479 void **addr, unsigned int *bit_nr)
480 {
481 struct bm_block *bb;
482
483 /*
484 * Check if the pfn corresponds to the current bitmap block and find
485 * the block where it fits if this is not the case.
486 */
487 bb = bm->cur.block;
488 if (pfn < bb->start_pfn)
489 list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
490 if (pfn >= bb->start_pfn)
491 break;
492
493 if (pfn >= bb->end_pfn)
494 list_for_each_entry_continue(bb, &bm->blocks, hook)
495 if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
496 break;
497
498 if (&bb->hook == &bm->blocks)
499 return -EFAULT;
500
501 /* The block has been found */
502 bm->cur.block = bb;
503 pfn -= bb->start_pfn;
504 bm->cur.bit = pfn + 1;
505 *bit_nr = pfn;
506 *addr = bb->data;
507 return 0;
508 }
509
510 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
511 {
512 void *addr;
513 unsigned int bit;
514 int error;
515
516 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
517 BUG_ON(error);
518 set_bit(bit, addr);
519 }
520
521 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
522 {
523 void *addr;
524 unsigned int bit;
525 int error;
526
527 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
528 if (!error)
529 set_bit(bit, addr);
530 return error;
531 }
532
533 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
534 {
535 void *addr;
536 unsigned int bit;
537 int error;
538
539 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
540 BUG_ON(error);
541 clear_bit(bit, addr);
542 }
543
544 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
545 {
546 void *addr;
547 unsigned int bit;
548 int error;
549
550 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
551 BUG_ON(error);
552 return test_bit(bit, addr);
553 }
554
555 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
556 {
557 void *addr;
558 unsigned int bit;
559
560 return !memory_bm_find_bit(bm, pfn, &addr, &bit);
561 }
562
563 /**
564 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit
565 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
566 * returned.
567 *
568 * It is required to run memory_bm_position_reset() before the first call to
569 * this function.
570 */
571
572 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
573 {
574 struct bm_block *bb;
575 int bit;
576
577 bb = bm->cur.block;
578 do {
579 bit = bm->cur.bit;
580 bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
581 if (bit < bm_block_bits(bb))
582 goto Return_pfn;
583
584 bb = list_entry(bb->hook.next, struct bm_block, hook);
585 bm->cur.block = bb;
586 bm->cur.bit = 0;
587 } while (&bb->hook != &bm->blocks);
588
589 memory_bm_position_reset(bm);
590 return BM_END_OF_MAP;
591
592 Return_pfn:
593 bm->cur.bit = bit + 1;
594 return bb->start_pfn + bit;
595 }
596
597 /**
598 * This structure represents a range of page frames the contents of which
599 * should not be saved during the suspend.
600 */
601
602 struct nosave_region {
603 struct list_head list;
604 unsigned long start_pfn;
605 unsigned long end_pfn;
606 };
607
608 static LIST_HEAD(nosave_regions);
609
610 /**
611 * register_nosave_region - register a range of page frames the contents
612 * of which should not be saved during the suspend (to be used in the early
613 * initialization code)
614 */
615
616 void __init
617 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
618 int use_kmalloc)
619 {
620 struct nosave_region *region;
621
622 if (start_pfn >= end_pfn)
623 return;
624
625 if (!list_empty(&nosave_regions)) {
626 /* Try to extend the previous region (they should be sorted) */
627 region = list_entry(nosave_regions.prev,
628 struct nosave_region, list);
629 if (region->end_pfn == start_pfn) {
630 region->end_pfn = end_pfn;
631 goto Report;
632 }
633 }
634 if (use_kmalloc) {
635 /* during init, this shouldn't fail */
636 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
637 BUG_ON(!region);
638 } else
639 /* This allocation cannot fail */
640 region = alloc_bootmem(sizeof(struct nosave_region));
641 region->start_pfn = start_pfn;
642 region->end_pfn = end_pfn;
643 list_add_tail(&region->list, &nosave_regions);
644 Report:
645 printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n",
646 start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
647 }
648
649 /*
650 * Set bits in this map correspond to the page frames the contents of which
651 * should not be saved during the suspend.
652 */
653 static struct memory_bitmap *forbidden_pages_map;
654
655 /* Set bits in this map correspond to free page frames. */
656 static struct memory_bitmap *free_pages_map;
657
658 /*
659 * Each page frame allocated for creating the image is marked by setting the
660 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
661 */
662
663 void swsusp_set_page_free(struct page *page)
664 {
665 if (free_pages_map)
666 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
667 }
668
669 static int swsusp_page_is_free(struct page *page)
670 {
671 return free_pages_map ?
672 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
673 }
674
675 void swsusp_unset_page_free(struct page *page)
676 {
677 if (free_pages_map)
678 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
679 }
680
681 static void swsusp_set_page_forbidden(struct page *page)
682 {
683 if (forbidden_pages_map)
684 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
685 }
686
687 int swsusp_page_is_forbidden(struct page *page)
688 {
689 return forbidden_pages_map ?
690 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
691 }
692
693 static void swsusp_unset_page_forbidden(struct page *page)
694 {
695 if (forbidden_pages_map)
696 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
697 }
698
699 /**
700 * mark_nosave_pages - set bits corresponding to the page frames the
701 * contents of which should not be saved in a given bitmap.
702 */
703
704 static void mark_nosave_pages(struct memory_bitmap *bm)
705 {
706 struct nosave_region *region;
707
708 if (list_empty(&nosave_regions))
709 return;
710
711 list_for_each_entry(region, &nosave_regions, list) {
712 unsigned long pfn;
713
714 pr_debug("PM: Marking nosave pages: %016lx - %016lx\n",
715 region->start_pfn << PAGE_SHIFT,
716 region->end_pfn << PAGE_SHIFT);
717
718 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
719 if (pfn_valid(pfn)) {
720 /*
721 * It is safe to ignore the result of
722 * mem_bm_set_bit_check() here, since we won't
723 * touch the PFNs for which the error is
724 * returned anyway.
725 */
726 mem_bm_set_bit_check(bm, pfn);
727 }
728 }
729 }
730
731 /**
732 * create_basic_memory_bitmaps - create bitmaps needed for marking page
733 * frames that should not be saved and free page frames. The pointers
734 * forbidden_pages_map and free_pages_map are only modified if everything
735 * goes well, because we don't want the bits to be used before both bitmaps
736 * are set up.
737 */
738
739 int create_basic_memory_bitmaps(void)
740 {
741 struct memory_bitmap *bm1, *bm2;
742 int error = 0;
743
744 BUG_ON(forbidden_pages_map || free_pages_map);
745
746 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
747 if (!bm1)
748 return -ENOMEM;
749
750 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
751 if (error)
752 goto Free_first_object;
753
754 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
755 if (!bm2)
756 goto Free_first_bitmap;
757
758 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
759 if (error)
760 goto Free_second_object;
761
762 forbidden_pages_map = bm1;
763 free_pages_map = bm2;
764 mark_nosave_pages(forbidden_pages_map);
765
766 pr_debug("PM: Basic memory bitmaps created\n");
767
768 return 0;
769
770 Free_second_object:
771 kfree(bm2);
772 Free_first_bitmap:
773 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
774 Free_first_object:
775 kfree(bm1);
776 return -ENOMEM;
777 }
778
779 /**
780 * free_basic_memory_bitmaps - free memory bitmaps allocated by
781 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
782 * so that the bitmaps themselves are not referred to while they are being
783 * freed.
784 */
785
786 void free_basic_memory_bitmaps(void)
787 {
788 struct memory_bitmap *bm1, *bm2;
789
790 BUG_ON(!(forbidden_pages_map && free_pages_map));
791
792 bm1 = forbidden_pages_map;
793 bm2 = free_pages_map;
794 forbidden_pages_map = NULL;
795 free_pages_map = NULL;
796 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
797 kfree(bm1);
798 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
799 kfree(bm2);
800
801 pr_debug("PM: Basic memory bitmaps freed\n");
802 }
803
804 /**
805 * snapshot_additional_pages - estimate the number of additional pages
806 * be needed for setting up the suspend image data structures for given
807 * zone (usually the returned value is greater than the exact number)
808 */
809
810 unsigned int snapshot_additional_pages(struct zone *zone)
811 {
812 unsigned int res;
813
814 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
815 res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
816 return 2 * res;
817 }
818
819 #ifdef CONFIG_HIGHMEM
820 /**
821 * count_free_highmem_pages - compute the total number of free highmem
822 * pages, system-wide.
823 */
824
825 static unsigned int count_free_highmem_pages(void)
826 {
827 struct zone *zone;
828 unsigned int cnt = 0;
829
830 for_each_populated_zone(zone)
831 if (is_highmem(zone))
832 cnt += zone_page_state(zone, NR_FREE_PAGES);
833
834 return cnt;
835 }
836
837 /**
838 * saveable_highmem_page - Determine whether a highmem page should be
839 * included in the suspend image.
840 *
841 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
842 * and it isn't a part of a free chunk of pages.
843 */
844 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
845 {
846 struct page *page;
847
848 if (!pfn_valid(pfn))
849 return NULL;
850
851 page = pfn_to_page(pfn);
852 if (page_zone(page) != zone)
853 return NULL;
854
855 BUG_ON(!PageHighMem(page));
856
857 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
858 PageReserved(page))
859 return NULL;
860
861 if (page_is_guard(page))
862 return NULL;
863
864 return page;
865 }
866
867 /**
868 * count_highmem_pages - compute the total number of saveable highmem
869 * pages.
870 */
871
872 static unsigned int count_highmem_pages(void)
873 {
874 struct zone *zone;
875 unsigned int n = 0;
876
877 for_each_populated_zone(zone) {
878 unsigned long pfn, max_zone_pfn;
879
880 if (!is_highmem(zone))
881 continue;
882
883 mark_free_pages(zone);
884 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
885 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
886 if (saveable_highmem_page(zone, pfn))
887 n++;
888 }
889 return n;
890 }
891 #else
892 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
893 {
894 return NULL;
895 }
896 #endif /* CONFIG_HIGHMEM */
897
898 /**
899 * saveable_page - Determine whether a non-highmem page should be included
900 * in the suspend image.
901 *
902 * We should save the page if it isn't Nosave, and is not in the range
903 * of pages statically defined as 'unsaveable', and it isn't a part of
904 * a free chunk of pages.
905 */
906 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
907 {
908 struct page *page;
909
910 if (!pfn_valid(pfn))
911 return NULL;
912
913 page = pfn_to_page(pfn);
914 if (page_zone(page) != zone)
915 return NULL;
916
917 BUG_ON(PageHighMem(page));
918
919 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
920 return NULL;
921
922 if (PageReserved(page)
923 && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
924 return NULL;
925
926 if (page_is_guard(page))
927 return NULL;
928
929 return page;
930 }
931
932 /**
933 * count_data_pages - compute the total number of saveable non-highmem
934 * pages.
935 */
936
937 static unsigned int count_data_pages(void)
938 {
939 struct zone *zone;
940 unsigned long pfn, max_zone_pfn;
941 unsigned int n = 0;
942
943 for_each_populated_zone(zone) {
944 if (is_highmem(zone))
945 continue;
946
947 mark_free_pages(zone);
948 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
949 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
950 if (saveable_page(zone, pfn))
951 n++;
952 }
953 return n;
954 }
955
956 /* This is needed, because copy_page and memcpy are not usable for copying
957 * task structs.
958 */
959 static inline void do_copy_page(long *dst, long *src)
960 {
961 int n;
962
963 for (n = PAGE_SIZE / sizeof(long); n; n--)
964 *dst++ = *src++;
965 }
966
967
968 /**
969 * safe_copy_page - check if the page we are going to copy is marked as
970 * present in the kernel page tables (this always is the case if
971 * CONFIG_DEBUG_PAGEALLOC is not set and in that case
972 * kernel_page_present() always returns 'true').
973 */
974 static void safe_copy_page(void *dst, struct page *s_page)
975 {
976 if (kernel_page_present(s_page)) {
977 do_copy_page(dst, page_address(s_page));
978 } else {
979 kernel_map_pages(s_page, 1, 1);
980 do_copy_page(dst, page_address(s_page));
981 kernel_map_pages(s_page, 1, 0);
982 }
983 }
984
985
986 #ifdef CONFIG_HIGHMEM
987 static inline struct page *
988 page_is_saveable(struct zone *zone, unsigned long pfn)
989 {
990 return is_highmem(zone) ?
991 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
992 }
993
994 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
995 {
996 struct page *s_page, *d_page;
997 void *src, *dst;
998
999 s_page = pfn_to_page(src_pfn);
1000 d_page = pfn_to_page(dst_pfn);
1001 if (PageHighMem(s_page)) {
1002 src = kmap_atomic(s_page, KM_USER0);
1003 dst = kmap_atomic(d_page, KM_USER1);
1004 do_copy_page(dst, src);
1005 kunmap_atomic(dst, KM_USER1);
1006 kunmap_atomic(src, KM_USER0);
1007 } else {
1008 if (PageHighMem(d_page)) {
1009 /* Page pointed to by src may contain some kernel
1010 * data modified by kmap_atomic()
1011 */
1012 safe_copy_page(buffer, s_page);
1013 dst = kmap_atomic(d_page, KM_USER0);
1014 copy_page(dst, buffer);
1015 kunmap_atomic(dst, KM_USER0);
1016 } else {
1017 safe_copy_page(page_address(d_page), s_page);
1018 }
1019 }
1020 }
1021 #else
1022 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
1023
1024 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1025 {
1026 safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1027 pfn_to_page(src_pfn));
1028 }
1029 #endif /* CONFIG_HIGHMEM */
1030
1031 static void
1032 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1033 {
1034 struct zone *zone;
1035 unsigned long pfn;
1036
1037 for_each_populated_zone(zone) {
1038 unsigned long max_zone_pfn;
1039
1040 mark_free_pages(zone);
1041 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1042 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1043 if (page_is_saveable(zone, pfn))
1044 memory_bm_set_bit(orig_bm, pfn);
1045 }
1046 memory_bm_position_reset(orig_bm);
1047 memory_bm_position_reset(copy_bm);
1048 for(;;) {
1049 pfn = memory_bm_next_pfn(orig_bm);
1050 if (unlikely(pfn == BM_END_OF_MAP))
1051 break;
1052 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1053 }
1054 }
1055
1056 /* Total number of image pages */
1057 static unsigned int nr_copy_pages;
1058 /* Number of pages needed for saving the original pfns of the image pages */
1059 static unsigned int nr_meta_pages;
1060 /*
1061 * Numbers of normal and highmem page frames allocated for hibernation image
1062 * before suspending devices.
1063 */
1064 unsigned int alloc_normal, alloc_highmem;
1065 /*
1066 * Memory bitmap used for marking saveable pages (during hibernation) or
1067 * hibernation image pages (during restore)
1068 */
1069 static struct memory_bitmap orig_bm;
1070 /*
1071 * Memory bitmap used during hibernation for marking allocated page frames that
1072 * will contain copies of saveable pages. During restore it is initially used
1073 * for marking hibernation image pages, but then the set bits from it are
1074 * duplicated in @orig_bm and it is released. On highmem systems it is next
1075 * used for marking "safe" highmem pages, but it has to be reinitialized for
1076 * this purpose.
1077 */
1078 static struct memory_bitmap copy_bm;
1079
1080 /**
1081 * swsusp_free - free pages allocated for the suspend.
1082 *
1083 * Suspend pages are alocated before the atomic copy is made, so we
1084 * need to release them after the resume.
1085 */
1086
1087 void swsusp_free(void)
1088 {
1089 struct zone *zone;
1090 unsigned long pfn, max_zone_pfn;
1091
1092 for_each_populated_zone(zone) {
1093 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1094 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1095 if (pfn_valid(pfn)) {
1096 struct page *page = pfn_to_page(pfn);
1097
1098 if (swsusp_page_is_forbidden(page) &&
1099 swsusp_page_is_free(page)) {
1100 swsusp_unset_page_forbidden(page);
1101 swsusp_unset_page_free(page);
1102 __free_page(page);
1103 }
1104 }
1105 }
1106 nr_copy_pages = 0;
1107 nr_meta_pages = 0;
1108 restore_pblist = NULL;
1109 buffer = NULL;
1110 alloc_normal = 0;
1111 alloc_highmem = 0;
1112 }
1113
1114 /* Helper functions used for the shrinking of memory. */
1115
1116 #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1117
1118 /**
1119 * preallocate_image_pages - Allocate a number of pages for hibernation image
1120 * @nr_pages: Number of page frames to allocate.
1121 * @mask: GFP flags to use for the allocation.
1122 *
1123 * Return value: Number of page frames actually allocated
1124 */
1125 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1126 {
1127 unsigned long nr_alloc = 0;
1128
1129 while (nr_pages > 0) {
1130 struct page *page;
1131
1132 page = alloc_image_page(mask);
1133 if (!page)
1134 break;
1135 memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1136 if (PageHighMem(page))
1137 alloc_highmem++;
1138 else
1139 alloc_normal++;
1140 nr_pages--;
1141 nr_alloc++;
1142 }
1143
1144 return nr_alloc;
1145 }
1146
1147 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1148 unsigned long avail_normal)
1149 {
1150 unsigned long alloc;
1151
1152 if (avail_normal <= alloc_normal)
1153 return 0;
1154
1155 alloc = avail_normal - alloc_normal;
1156 if (nr_pages < alloc)
1157 alloc = nr_pages;
1158
1159 return preallocate_image_pages(alloc, GFP_IMAGE);
1160 }
1161
1162 #ifdef CONFIG_HIGHMEM
1163 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1164 {
1165 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1166 }
1167
1168 /**
1169 * __fraction - Compute (an approximation of) x * (multiplier / base)
1170 */
1171 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1172 {
1173 x *= multiplier;
1174 do_div(x, base);
1175 return (unsigned long)x;
1176 }
1177
1178 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1179 unsigned long highmem,
1180 unsigned long total)
1181 {
1182 unsigned long alloc = __fraction(nr_pages, highmem, total);
1183
1184 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1185 }
1186 #else /* CONFIG_HIGHMEM */
1187 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1188 {
1189 return 0;
1190 }
1191
1192 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1193 unsigned long highmem,
1194 unsigned long total)
1195 {
1196 return 0;
1197 }
1198 #endif /* CONFIG_HIGHMEM */
1199
1200 /**
1201 * free_unnecessary_pages - Release preallocated pages not needed for the image
1202 */
1203 static void free_unnecessary_pages(void)
1204 {
1205 unsigned long save, to_free_normal, to_free_highmem;
1206
1207 save = count_data_pages();
1208 if (alloc_normal >= save) {
1209 to_free_normal = alloc_normal - save;
1210 save = 0;
1211 } else {
1212 to_free_normal = 0;
1213 save -= alloc_normal;
1214 }
1215 save += count_highmem_pages();
1216 if (alloc_highmem >= save) {
1217 to_free_highmem = alloc_highmem - save;
1218 } else {
1219 to_free_highmem = 0;
1220 save -= alloc_highmem;
1221 if (to_free_normal > save)
1222 to_free_normal -= save;
1223 else
1224 to_free_normal = 0;
1225 }
1226
1227 memory_bm_position_reset(&copy_bm);
1228
1229 while (to_free_normal > 0 || to_free_highmem > 0) {
1230 unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1231 struct page *page = pfn_to_page(pfn);
1232
1233 if (PageHighMem(page)) {
1234 if (!to_free_highmem)
1235 continue;
1236 to_free_highmem--;
1237 alloc_highmem--;
1238 } else {
1239 if (!to_free_normal)
1240 continue;
1241 to_free_normal--;
1242 alloc_normal--;
1243 }
1244 memory_bm_clear_bit(&copy_bm, pfn);
1245 swsusp_unset_page_forbidden(page);
1246 swsusp_unset_page_free(page);
1247 __free_page(page);
1248 }
1249 }
1250
1251 /**
1252 * minimum_image_size - Estimate the minimum acceptable size of an image
1253 * @saveable: Number of saveable pages in the system.
1254 *
1255 * We want to avoid attempting to free too much memory too hard, so estimate the
1256 * minimum acceptable size of a hibernation image to use as the lower limit for
1257 * preallocating memory.
1258 *
1259 * We assume that the minimum image size should be proportional to
1260 *
1261 * [number of saveable pages] - [number of pages that can be freed in theory]
1262 *
1263 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1264 * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages,
1265 * minus mapped file pages.
1266 */
1267 static unsigned long minimum_image_size(unsigned long saveable)
1268 {
1269 unsigned long size;
1270
1271 size = global_page_state(NR_SLAB_RECLAIMABLE)
1272 + global_page_state(NR_ACTIVE_ANON)
1273 + global_page_state(NR_INACTIVE_ANON)
1274 + global_page_state(NR_ACTIVE_FILE)
1275 + global_page_state(NR_INACTIVE_FILE)
1276 - global_page_state(NR_FILE_MAPPED);
1277
1278 return saveable <= size ? 0 : saveable - size;
1279 }
1280
1281 /**
1282 * hibernate_preallocate_memory - Preallocate memory for hibernation image
1283 *
1284 * To create a hibernation image it is necessary to make a copy of every page
1285 * frame in use. We also need a number of page frames to be free during
1286 * hibernation for allocations made while saving the image and for device
1287 * drivers, in case they need to allocate memory from their hibernation
1288 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1289 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1290 * /sys/power/reserved_size, respectively). To make this happen, we compute the
1291 * total number of available page frames and allocate at least
1292 *
1293 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1294 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1295 *
1296 * of them, which corresponds to the maximum size of a hibernation image.
1297 *
1298 * If image_size is set below the number following from the above formula,
1299 * the preallocation of memory is continued until the total number of saveable
1300 * pages in the system is below the requested image size or the minimum
1301 * acceptable image size returned by minimum_image_size(), whichever is greater.
1302 */
1303 int hibernate_preallocate_memory(void)
1304 {
1305 struct zone *zone;
1306 unsigned long saveable, size, max_size, count, highmem, pages = 0;
1307 unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1308 struct timeval start, stop;
1309 int error;
1310
1311 printk(KERN_INFO "PM: Preallocating image memory... ");
1312 do_gettimeofday(&start);
1313
1314 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1315 if (error)
1316 goto err_out;
1317
1318 error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1319 if (error)
1320 goto err_out;
1321
1322 alloc_normal = 0;
1323 alloc_highmem = 0;
1324
1325 /* Count the number of saveable data pages. */
1326 save_highmem = count_highmem_pages();
1327 saveable = count_data_pages();
1328
1329 /*
1330 * Compute the total number of page frames we can use (count) and the
1331 * number of pages needed for image metadata (size).
1332 */
1333 count = saveable;
1334 saveable += save_highmem;
1335 highmem = save_highmem;
1336 size = 0;
1337 for_each_populated_zone(zone) {
1338 size += snapshot_additional_pages(zone);
1339 if (is_highmem(zone))
1340 highmem += zone_page_state(zone, NR_FREE_PAGES);
1341 else
1342 count += zone_page_state(zone, NR_FREE_PAGES);
1343 }
1344 avail_normal = count;
1345 count += highmem;
1346 count -= totalreserve_pages;
1347
1348 /* Add number of pages required for page keys (s390 only). */
1349 size += page_key_additional_pages(saveable);
1350
1351 /* Compute the maximum number of saveable pages to leave in memory. */
1352 max_size = (count - (size + PAGES_FOR_IO)) / 2
1353 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1354 /* Compute the desired number of image pages specified by image_size. */
1355 size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1356 if (size > max_size)
1357 size = max_size;
1358 /*
1359 * If the desired number of image pages is at least as large as the
1360 * current number of saveable pages in memory, allocate page frames for
1361 * the image and we're done.
1362 */
1363 if (size >= saveable) {
1364 pages = preallocate_image_highmem(save_highmem);
1365 pages += preallocate_image_memory(saveable - pages, avail_normal);
1366 goto out;
1367 }
1368
1369 /* Estimate the minimum size of the image. */
1370 pages = minimum_image_size(saveable);
1371 /*
1372 * To avoid excessive pressure on the normal zone, leave room in it to
1373 * accommodate an image of the minimum size (unless it's already too
1374 * small, in which case don't preallocate pages from it at all).
1375 */
1376 if (avail_normal > pages)
1377 avail_normal -= pages;
1378 else
1379 avail_normal = 0;
1380 if (size < pages)
1381 size = min_t(unsigned long, pages, max_size);
1382
1383 /*
1384 * Let the memory management subsystem know that we're going to need a
1385 * large number of page frames to allocate and make it free some memory.
1386 * NOTE: If this is not done, performance will be hurt badly in some
1387 * test cases.
1388 */
1389 shrink_all_memory(saveable - size);
1390
1391 /*
1392 * The number of saveable pages in memory was too high, so apply some
1393 * pressure to decrease it. First, make room for the largest possible
1394 * image and fail if that doesn't work. Next, try to decrease the size
1395 * of the image as much as indicated by 'size' using allocations from
1396 * highmem and non-highmem zones separately.
1397 */
1398 pages_highmem = preallocate_image_highmem(highmem / 2);
1399 alloc = (count - max_size) - pages_highmem;
1400 pages = preallocate_image_memory(alloc, avail_normal);
1401 if (pages < alloc) {
1402 /* We have exhausted non-highmem pages, try highmem. */
1403 alloc -= pages;
1404 pages += pages_highmem;
1405 pages_highmem = preallocate_image_highmem(alloc);
1406 if (pages_highmem < alloc)
1407 goto err_out;
1408 pages += pages_highmem;
1409 /*
1410 * size is the desired number of saveable pages to leave in
1411 * memory, so try to preallocate (all memory - size) pages.
1412 */
1413 alloc = (count - pages) - size;
1414 pages += preallocate_image_highmem(alloc);
1415 } else {
1416 /*
1417 * There are approximately max_size saveable pages at this point
1418 * and we want to reduce this number down to size.
1419 */
1420 alloc = max_size - size;
1421 size = preallocate_highmem_fraction(alloc, highmem, count);
1422 pages_highmem += size;
1423 alloc -= size;
1424 size = preallocate_image_memory(alloc, avail_normal);
1425 pages_highmem += preallocate_image_highmem(alloc - size);
1426 pages += pages_highmem + size;
1427 }
1428
1429 /*
1430 * We only need as many page frames for the image as there are saveable
1431 * pages in memory, but we have allocated more. Release the excessive
1432 * ones now.
1433 */
1434 free_unnecessary_pages();
1435
1436 out:
1437 do_gettimeofday(&stop);
1438 printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1439 swsusp_show_speed(&start, &stop, pages, "Allocated");
1440
1441 return 0;
1442
1443 err_out:
1444 printk(KERN_CONT "\n");
1445 swsusp_free();
1446 return -ENOMEM;
1447 }
1448
1449 #ifdef CONFIG_HIGHMEM
1450 /**
1451 * count_pages_for_highmem - compute the number of non-highmem pages
1452 * that will be necessary for creating copies of highmem pages.
1453 */
1454
1455 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1456 {
1457 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1458
1459 if (free_highmem >= nr_highmem)
1460 nr_highmem = 0;
1461 else
1462 nr_highmem -= free_highmem;
1463
1464 return nr_highmem;
1465 }
1466 #else
1467 static unsigned int
1468 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1469 #endif /* CONFIG_HIGHMEM */
1470
1471 /**
1472 * enough_free_mem - Make sure we have enough free memory for the
1473 * snapshot image.
1474 */
1475
1476 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1477 {
1478 struct zone *zone;
1479 unsigned int free = alloc_normal;
1480
1481 for_each_populated_zone(zone)
1482 if (!is_highmem(zone))
1483 free += zone_page_state(zone, NR_FREE_PAGES);
1484
1485 nr_pages += count_pages_for_highmem(nr_highmem);
1486 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1487 nr_pages, PAGES_FOR_IO, free);
1488
1489 return free > nr_pages + PAGES_FOR_IO;
1490 }
1491
1492 #ifdef CONFIG_HIGHMEM
1493 /**
1494 * get_highmem_buffer - if there are some highmem pages in the suspend
1495 * image, we may need the buffer to copy them and/or load their data.
1496 */
1497
1498 static inline int get_highmem_buffer(int safe_needed)
1499 {
1500 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1501 return buffer ? 0 : -ENOMEM;
1502 }
1503
1504 /**
1505 * alloc_highmem_image_pages - allocate some highmem pages for the image.
1506 * Try to allocate as many pages as needed, but if the number of free
1507 * highmem pages is lesser than that, allocate them all.
1508 */
1509
1510 static inline unsigned int
1511 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1512 {
1513 unsigned int to_alloc = count_free_highmem_pages();
1514
1515 if (to_alloc > nr_highmem)
1516 to_alloc = nr_highmem;
1517
1518 nr_highmem -= to_alloc;
1519 while (to_alloc-- > 0) {
1520 struct page *page;
1521
1522 page = alloc_image_page(__GFP_HIGHMEM);
1523 memory_bm_set_bit(bm, page_to_pfn(page));
1524 }
1525 return nr_highmem;
1526 }
1527 #else
1528 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1529
1530 static inline unsigned int
1531 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1532 #endif /* CONFIG_HIGHMEM */
1533
1534 /**
1535 * swsusp_alloc - allocate memory for the suspend image
1536 *
1537 * We first try to allocate as many highmem pages as there are
1538 * saveable highmem pages in the system. If that fails, we allocate
1539 * non-highmem pages for the copies of the remaining highmem ones.
1540 *
1541 * In this approach it is likely that the copies of highmem pages will
1542 * also be located in the high memory, because of the way in which
1543 * copy_data_pages() works.
1544 */
1545
1546 static int
1547 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1548 unsigned int nr_pages, unsigned int nr_highmem)
1549 {
1550 if (nr_highmem > 0) {
1551 if (get_highmem_buffer(PG_ANY))
1552 goto err_out;
1553 if (nr_highmem > alloc_highmem) {
1554 nr_highmem -= alloc_highmem;
1555 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1556 }
1557 }
1558 if (nr_pages > alloc_normal) {
1559 nr_pages -= alloc_normal;
1560 while (nr_pages-- > 0) {
1561 struct page *page;
1562
1563 page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1564 if (!page)
1565 goto err_out;
1566 memory_bm_set_bit(copy_bm, page_to_pfn(page));
1567 }
1568 }
1569
1570 return 0;
1571
1572 err_out:
1573 swsusp_free();
1574 return -ENOMEM;
1575 }
1576
1577 asmlinkage int swsusp_save(void)
1578 {
1579 unsigned int nr_pages, nr_highmem;
1580
1581 printk(KERN_INFO "PM: Creating hibernation image:\n");
1582
1583 drain_local_pages(NULL);
1584 nr_pages = count_data_pages();
1585 nr_highmem = count_highmem_pages();
1586 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1587
1588 if (!enough_free_mem(nr_pages, nr_highmem)) {
1589 printk(KERN_ERR "PM: Not enough free memory\n");
1590 return -ENOMEM;
1591 }
1592
1593 if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1594 printk(KERN_ERR "PM: Memory allocation failed\n");
1595 return -ENOMEM;
1596 }
1597
1598 /* During allocating of suspend pagedir, new cold pages may appear.
1599 * Kill them.
1600 */
1601 drain_local_pages(NULL);
1602 copy_data_pages(&copy_bm, &orig_bm);
1603
1604 /*
1605 * End of critical section. From now on, we can write to memory,
1606 * but we should not touch disk. This specially means we must _not_
1607 * touch swap space! Except we must write out our image of course.
1608 */
1609
1610 nr_pages += nr_highmem;
1611 nr_copy_pages = nr_pages;
1612 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1613
1614 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1615 nr_pages);
1616
1617 return 0;
1618 }
1619
1620 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
1621 static int init_header_complete(struct swsusp_info *info)
1622 {
1623 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1624 info->version_code = LINUX_VERSION_CODE;
1625 return 0;
1626 }
1627
1628 static char *check_image_kernel(struct swsusp_info *info)
1629 {
1630 if (info->version_code != LINUX_VERSION_CODE)
1631 return "kernel version";
1632 if (strcmp(info->uts.sysname,init_utsname()->sysname))
1633 return "system type";
1634 if (strcmp(info->uts.release,init_utsname()->release))
1635 return "kernel release";
1636 if (strcmp(info->uts.version,init_utsname()->version))
1637 return "version";
1638 if (strcmp(info->uts.machine,init_utsname()->machine))
1639 return "machine";
1640 return NULL;
1641 }
1642 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1643
1644 unsigned long snapshot_get_image_size(void)
1645 {
1646 return nr_copy_pages + nr_meta_pages + 1;
1647 }
1648
1649 static int init_header(struct swsusp_info *info)
1650 {
1651 memset(info, 0, sizeof(struct swsusp_info));
1652 info->num_physpages = num_physpages;
1653 info->image_pages = nr_copy_pages;
1654 info->pages = snapshot_get_image_size();
1655 info->size = info->pages;
1656 info->size <<= PAGE_SHIFT;
1657 return init_header_complete(info);
1658 }
1659
1660 /**
1661 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1662 * are stored in the array @buf[] (1 page at a time)
1663 */
1664
1665 static inline void
1666 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1667 {
1668 int j;
1669
1670 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1671 buf[j] = memory_bm_next_pfn(bm);
1672 if (unlikely(buf[j] == BM_END_OF_MAP))
1673 break;
1674 /* Save page key for data page (s390 only). */
1675 page_key_read(buf + j);
1676 }
1677 }
1678
1679 /**
1680 * snapshot_read_next - used for reading the system memory snapshot.
1681 *
1682 * On the first call to it @handle should point to a zeroed
1683 * snapshot_handle structure. The structure gets updated and a pointer
1684 * to it should be passed to this function every next time.
1685 *
1686 * On success the function returns a positive number. Then, the caller
1687 * is allowed to read up to the returned number of bytes from the memory
1688 * location computed by the data_of() macro.
1689 *
1690 * The function returns 0 to indicate the end of data stream condition,
1691 * and a negative number is returned on error. In such cases the
1692 * structure pointed to by @handle is not updated and should not be used
1693 * any more.
1694 */
1695
1696 int snapshot_read_next(struct snapshot_handle *handle)
1697 {
1698 if (handle->cur > nr_meta_pages + nr_copy_pages)
1699 return 0;
1700
1701 if (!buffer) {
1702 /* This makes the buffer be freed by swsusp_free() */
1703 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1704 if (!buffer)
1705 return -ENOMEM;
1706 }
1707 if (!handle->cur) {
1708 int error;
1709
1710 error = init_header((struct swsusp_info *)buffer);
1711 if (error)
1712 return error;
1713 handle->buffer = buffer;
1714 memory_bm_position_reset(&orig_bm);
1715 memory_bm_position_reset(&copy_bm);
1716 } else if (handle->cur <= nr_meta_pages) {
1717 clear_page(buffer);
1718 pack_pfns(buffer, &orig_bm);
1719 } else {
1720 struct page *page;
1721
1722 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1723 if (PageHighMem(page)) {
1724 /* Highmem pages are copied to the buffer,
1725 * because we can't return with a kmapped
1726 * highmem page (we may not be called again).
1727 */
1728 void *kaddr;
1729
1730 kaddr = kmap_atomic(page, KM_USER0);
1731 copy_page(buffer, kaddr);
1732 kunmap_atomic(kaddr, KM_USER0);
1733 handle->buffer = buffer;
1734 } else {
1735 handle->buffer = page_address(page);
1736 }
1737 }
1738 handle->cur++;
1739 return PAGE_SIZE;
1740 }
1741
1742 /**
1743 * mark_unsafe_pages - mark the pages that cannot be used for storing
1744 * the image during resume, because they conflict with the pages that
1745 * had been used before suspend
1746 */
1747
1748 static int mark_unsafe_pages(struct memory_bitmap *bm)
1749 {
1750 struct zone *zone;
1751 unsigned long pfn, max_zone_pfn;
1752
1753 /* Clear page flags */
1754 for_each_populated_zone(zone) {
1755 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1756 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1757 if (pfn_valid(pfn))
1758 swsusp_unset_page_free(pfn_to_page(pfn));
1759 }
1760
1761 /* Mark pages that correspond to the "original" pfns as "unsafe" */
1762 memory_bm_position_reset(bm);
1763 do {
1764 pfn = memory_bm_next_pfn(bm);
1765 if (likely(pfn != BM_END_OF_MAP)) {
1766 if (likely(pfn_valid(pfn)))
1767 swsusp_set_page_free(pfn_to_page(pfn));
1768 else
1769 return -EFAULT;
1770 }
1771 } while (pfn != BM_END_OF_MAP);
1772
1773 allocated_unsafe_pages = 0;
1774
1775 return 0;
1776 }
1777
1778 static void
1779 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1780 {
1781 unsigned long pfn;
1782
1783 memory_bm_position_reset(src);
1784 pfn = memory_bm_next_pfn(src);
1785 while (pfn != BM_END_OF_MAP) {
1786 memory_bm_set_bit(dst, pfn);
1787 pfn = memory_bm_next_pfn(src);
1788 }
1789 }
1790
1791 static int check_header(struct swsusp_info *info)
1792 {
1793 char *reason;
1794
1795 reason = check_image_kernel(info);
1796 if (!reason && info->num_physpages != num_physpages)
1797 reason = "memory size";
1798 if (reason) {
1799 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1800 return -EPERM;
1801 }
1802 return 0;
1803 }
1804
1805 /**
1806 * load header - check the image header and copy data from it
1807 */
1808
1809 static int
1810 load_header(struct swsusp_info *info)
1811 {
1812 int error;
1813
1814 restore_pblist = NULL;
1815 error = check_header(info);
1816 if (!error) {
1817 nr_copy_pages = info->image_pages;
1818 nr_meta_pages = info->pages - info->image_pages - 1;
1819 }
1820 return error;
1821 }
1822
1823 /**
1824 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1825 * the corresponding bit in the memory bitmap @bm
1826 */
1827 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1828 {
1829 int j;
1830
1831 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1832 if (unlikely(buf[j] == BM_END_OF_MAP))
1833 break;
1834
1835 /* Extract and buffer page key for data page (s390 only). */
1836 page_key_memorize(buf + j);
1837
1838 if (memory_bm_pfn_present(bm, buf[j]))
1839 memory_bm_set_bit(bm, buf[j]);
1840 else
1841 return -EFAULT;
1842 }
1843
1844 return 0;
1845 }
1846
1847 /* List of "safe" pages that may be used to store data loaded from the suspend
1848 * image
1849 */
1850 static struct linked_page *safe_pages_list;
1851
1852 #ifdef CONFIG_HIGHMEM
1853 /* struct highmem_pbe is used for creating the list of highmem pages that
1854 * should be restored atomically during the resume from disk, because the page
1855 * frames they have occupied before the suspend are in use.
1856 */
1857 struct highmem_pbe {
1858 struct page *copy_page; /* data is here now */
1859 struct page *orig_page; /* data was here before the suspend */
1860 struct highmem_pbe *next;
1861 };
1862
1863 /* List of highmem PBEs needed for restoring the highmem pages that were
1864 * allocated before the suspend and included in the suspend image, but have
1865 * also been allocated by the "resume" kernel, so their contents cannot be
1866 * written directly to their "original" page frames.
1867 */
1868 static struct highmem_pbe *highmem_pblist;
1869
1870 /**
1871 * count_highmem_image_pages - compute the number of highmem pages in the
1872 * suspend image. The bits in the memory bitmap @bm that correspond to the
1873 * image pages are assumed to be set.
1874 */
1875
1876 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1877 {
1878 unsigned long pfn;
1879 unsigned int cnt = 0;
1880
1881 memory_bm_position_reset(bm);
1882 pfn = memory_bm_next_pfn(bm);
1883 while (pfn != BM_END_OF_MAP) {
1884 if (PageHighMem(pfn_to_page(pfn)))
1885 cnt++;
1886
1887 pfn = memory_bm_next_pfn(bm);
1888 }
1889 return cnt;
1890 }
1891
1892 /**
1893 * prepare_highmem_image - try to allocate as many highmem pages as
1894 * there are highmem image pages (@nr_highmem_p points to the variable
1895 * containing the number of highmem image pages). The pages that are
1896 * "safe" (ie. will not be overwritten when the suspend image is
1897 * restored) have the corresponding bits set in @bm (it must be
1898 * unitialized).
1899 *
1900 * NOTE: This function should not be called if there are no highmem
1901 * image pages.
1902 */
1903
1904 static unsigned int safe_highmem_pages;
1905
1906 static struct memory_bitmap *safe_highmem_bm;
1907
1908 static int
1909 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1910 {
1911 unsigned int to_alloc;
1912
1913 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1914 return -ENOMEM;
1915
1916 if (get_highmem_buffer(PG_SAFE))
1917 return -ENOMEM;
1918
1919 to_alloc = count_free_highmem_pages();
1920 if (to_alloc > *nr_highmem_p)
1921 to_alloc = *nr_highmem_p;
1922 else
1923 *nr_highmem_p = to_alloc;
1924
1925 safe_highmem_pages = 0;
1926 while (to_alloc-- > 0) {
1927 struct page *page;
1928
1929 page = alloc_page(__GFP_HIGHMEM);
1930 if (!swsusp_page_is_free(page)) {
1931 /* The page is "safe", set its bit the bitmap */
1932 memory_bm_set_bit(bm, page_to_pfn(page));
1933 safe_highmem_pages++;
1934 }
1935 /* Mark the page as allocated */
1936 swsusp_set_page_forbidden(page);
1937 swsusp_set_page_free(page);
1938 }
1939 memory_bm_position_reset(bm);
1940 safe_highmem_bm = bm;
1941 return 0;
1942 }
1943
1944 /**
1945 * get_highmem_page_buffer - for given highmem image page find the buffer
1946 * that suspend_write_next() should set for its caller to write to.
1947 *
1948 * If the page is to be saved to its "original" page frame or a copy of
1949 * the page is to be made in the highmem, @buffer is returned. Otherwise,
1950 * the copy of the page is to be made in normal memory, so the address of
1951 * the copy is returned.
1952 *
1953 * If @buffer is returned, the caller of suspend_write_next() will write
1954 * the page's contents to @buffer, so they will have to be copied to the
1955 * right location on the next call to suspend_write_next() and it is done
1956 * with the help of copy_last_highmem_page(). For this purpose, if
1957 * @buffer is returned, @last_highmem page is set to the page to which
1958 * the data will have to be copied from @buffer.
1959 */
1960
1961 static struct page *last_highmem_page;
1962
1963 static void *
1964 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1965 {
1966 struct highmem_pbe *pbe;
1967 void *kaddr;
1968
1969 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1970 /* We have allocated the "original" page frame and we can
1971 * use it directly to store the loaded page.
1972 */
1973 last_highmem_page = page;
1974 return buffer;
1975 }
1976 /* The "original" page frame has not been allocated and we have to
1977 * use a "safe" page frame to store the loaded page.
1978 */
1979 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1980 if (!pbe) {
1981 swsusp_free();
1982 return ERR_PTR(-ENOMEM);
1983 }
1984 pbe->orig_page = page;
1985 if (safe_highmem_pages > 0) {
1986 struct page *tmp;
1987
1988 /* Copy of the page will be stored in high memory */
1989 kaddr = buffer;
1990 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1991 safe_highmem_pages--;
1992 last_highmem_page = tmp;
1993 pbe->copy_page = tmp;
1994 } else {
1995 /* Copy of the page will be stored in normal memory */
1996 kaddr = safe_pages_list;
1997 safe_pages_list = safe_pages_list->next;
1998 pbe->copy_page = virt_to_page(kaddr);
1999 }
2000 pbe->next = highmem_pblist;
2001 highmem_pblist = pbe;
2002 return kaddr;
2003 }
2004
2005 /**
2006 * copy_last_highmem_page - copy the contents of a highmem image from
2007 * @buffer, where the caller of snapshot_write_next() has place them,
2008 * to the right location represented by @last_highmem_page .
2009 */
2010
2011 static void copy_last_highmem_page(void)
2012 {
2013 if (last_highmem_page) {
2014 void *dst;
2015
2016 dst = kmap_atomic(last_highmem_page, KM_USER0);
2017 copy_page(dst, buffer);
2018 kunmap_atomic(dst, KM_USER0);
2019 last_highmem_page = NULL;
2020 }
2021 }
2022
2023 static inline int last_highmem_page_copied(void)
2024 {
2025 return !last_highmem_page;
2026 }
2027
2028 static inline void free_highmem_data(void)
2029 {
2030 if (safe_highmem_bm)
2031 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2032
2033 if (buffer)
2034 free_image_page(buffer, PG_UNSAFE_CLEAR);
2035 }
2036 #else
2037 static inline int get_safe_write_buffer(void) { return 0; }
2038
2039 static unsigned int
2040 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2041
2042 static inline int
2043 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2044 {
2045 return 0;
2046 }
2047
2048 static inline void *
2049 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2050 {
2051 return ERR_PTR(-EINVAL);
2052 }
2053
2054 static inline void copy_last_highmem_page(void) {}
2055 static inline int last_highmem_page_copied(void) { return 1; }
2056 static inline void free_highmem_data(void) {}
2057 #endif /* CONFIG_HIGHMEM */
2058
2059 /**
2060 * prepare_image - use the memory bitmap @bm to mark the pages that will
2061 * be overwritten in the process of restoring the system memory state
2062 * from the suspend image ("unsafe" pages) and allocate memory for the
2063 * image.
2064 *
2065 * The idea is to allocate a new memory bitmap first and then allocate
2066 * as many pages as needed for the image data, but not to assign these
2067 * pages to specific tasks initially. Instead, we just mark them as
2068 * allocated and create a lists of "safe" pages that will be used
2069 * later. On systems with high memory a list of "safe" highmem pages is
2070 * also created.
2071 */
2072
2073 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2074
2075 static int
2076 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2077 {
2078 unsigned int nr_pages, nr_highmem;
2079 struct linked_page *sp_list, *lp;
2080 int error;
2081
2082 /* If there is no highmem, the buffer will not be necessary */
2083 free_image_page(buffer, PG_UNSAFE_CLEAR);
2084 buffer = NULL;
2085
2086 nr_highmem = count_highmem_image_pages(bm);
2087 error = mark_unsafe_pages(bm);
2088 if (error)
2089 goto Free;
2090
2091 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2092 if (error)
2093 goto Free;
2094
2095 duplicate_memory_bitmap(new_bm, bm);
2096 memory_bm_free(bm, PG_UNSAFE_KEEP);
2097 if (nr_highmem > 0) {
2098 error = prepare_highmem_image(bm, &nr_highmem);
2099 if (error)
2100 goto Free;
2101 }
2102 /* Reserve some safe pages for potential later use.
2103 *
2104 * NOTE: This way we make sure there will be enough safe pages for the
2105 * chain_alloc() in get_buffer(). It is a bit wasteful, but
2106 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2107 */
2108 sp_list = NULL;
2109 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2110 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2111 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2112 while (nr_pages > 0) {
2113 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2114 if (!lp) {
2115 error = -ENOMEM;
2116 goto Free;
2117 }
2118 lp->next = sp_list;
2119 sp_list = lp;
2120 nr_pages--;
2121 }
2122 /* Preallocate memory for the image */
2123 safe_pages_list = NULL;
2124 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2125 while (nr_pages > 0) {
2126 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2127 if (!lp) {
2128 error = -ENOMEM;
2129 goto Free;
2130 }
2131 if (!swsusp_page_is_free(virt_to_page(lp))) {
2132 /* The page is "safe", add it to the list */
2133 lp->next = safe_pages_list;
2134 safe_pages_list = lp;
2135 }
2136 /* Mark the page as allocated */
2137 swsusp_set_page_forbidden(virt_to_page(lp));
2138 swsusp_set_page_free(virt_to_page(lp));
2139 nr_pages--;
2140 }
2141 /* Free the reserved safe pages so that chain_alloc() can use them */
2142 while (sp_list) {
2143 lp = sp_list->next;
2144 free_image_page(sp_list, PG_UNSAFE_CLEAR);
2145 sp_list = lp;
2146 }
2147 return 0;
2148
2149 Free:
2150 swsusp_free();
2151 return error;
2152 }
2153
2154 /**
2155 * get_buffer - compute the address that snapshot_write_next() should
2156 * set for its caller to write to.
2157 */
2158
2159 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2160 {
2161 struct pbe *pbe;
2162 struct page *page;
2163 unsigned long pfn = memory_bm_next_pfn(bm);
2164
2165 if (pfn == BM_END_OF_MAP)
2166 return ERR_PTR(-EFAULT);
2167
2168 page = pfn_to_page(pfn);
2169 if (PageHighMem(page))
2170 return get_highmem_page_buffer(page, ca);
2171
2172 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2173 /* We have allocated the "original" page frame and we can
2174 * use it directly to store the loaded page.
2175 */
2176 return page_address(page);
2177
2178 /* The "original" page frame has not been allocated and we have to
2179 * use a "safe" page frame to store the loaded page.
2180 */
2181 pbe = chain_alloc(ca, sizeof(struct pbe));
2182 if (!pbe) {
2183 swsusp_free();
2184 return ERR_PTR(-ENOMEM);
2185 }
2186 pbe->orig_address = page_address(page);
2187 pbe->address = safe_pages_list;
2188 safe_pages_list = safe_pages_list->next;
2189 pbe->next = restore_pblist;
2190 restore_pblist = pbe;
2191 return pbe->address;
2192 }
2193
2194 /**
2195 * snapshot_write_next - used for writing the system memory snapshot.
2196 *
2197 * On the first call to it @handle should point to a zeroed
2198 * snapshot_handle structure. The structure gets updated and a pointer
2199 * to it should be passed to this function every next time.
2200 *
2201 * On success the function returns a positive number. Then, the caller
2202 * is allowed to write up to the returned number of bytes to the memory
2203 * location computed by the data_of() macro.
2204 *
2205 * The function returns 0 to indicate the "end of file" condition,
2206 * and a negative number is returned on error. In such cases the
2207 * structure pointed to by @handle is not updated and should not be used
2208 * any more.
2209 */
2210
2211 int snapshot_write_next(struct snapshot_handle *handle)
2212 {
2213 static struct chain_allocator ca;
2214 int error = 0;
2215
2216 /* Check if we have already loaded the entire image */
2217 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2218 return 0;
2219
2220 handle->sync_read = 1;
2221
2222 if (!handle->cur) {
2223 if (!buffer)
2224 /* This makes the buffer be freed by swsusp_free() */
2225 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2226
2227 if (!buffer)
2228 return -ENOMEM;
2229
2230 handle->buffer = buffer;
2231 } else if (handle->cur == 1) {
2232 error = load_header(buffer);
2233 if (error)
2234 return error;
2235
2236 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2237 if (error)
2238 return error;
2239
2240 /* Allocate buffer for page keys. */
2241 error = page_key_alloc(nr_copy_pages);
2242 if (error)
2243 return error;
2244
2245 } else if (handle->cur <= nr_meta_pages + 1) {
2246 error = unpack_orig_pfns(buffer, &copy_bm);
2247 if (error)
2248 return error;
2249
2250 if (handle->cur == nr_meta_pages + 1) {
2251 error = prepare_image(&orig_bm, &copy_bm);
2252 if (error)
2253 return error;
2254
2255 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2256 memory_bm_position_reset(&orig_bm);
2257 restore_pblist = NULL;
2258 handle->buffer = get_buffer(&orig_bm, &ca);
2259 handle->sync_read = 0;
2260 if (IS_ERR(handle->buffer))
2261 return PTR_ERR(handle->buffer);
2262 }
2263 } else {
2264 copy_last_highmem_page();
2265 /* Restore page key for data page (s390 only). */
2266 page_key_write(handle->buffer);
2267 handle->buffer = get_buffer(&orig_bm, &ca);
2268 if (IS_ERR(handle->buffer))
2269 return PTR_ERR(handle->buffer);
2270 if (handle->buffer != buffer)
2271 handle->sync_read = 0;
2272 }
2273 handle->cur++;
2274 return PAGE_SIZE;
2275 }
2276
2277 /**
2278 * snapshot_write_finalize - must be called after the last call to
2279 * snapshot_write_next() in case the last page in the image happens
2280 * to be a highmem page and its contents should be stored in the
2281 * highmem. Additionally, it releases the memory that will not be
2282 * used any more.
2283 */
2284
2285 void snapshot_write_finalize(struct snapshot_handle *handle)
2286 {
2287 copy_last_highmem_page();
2288 /* Restore page key for data page (s390 only). */
2289 page_key_write(handle->buffer);
2290 page_key_free();
2291 /* Free only if we have loaded the image entirely */
2292 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2293 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2294 free_highmem_data();
2295 }
2296 }
2297
2298 int snapshot_image_loaded(struct snapshot_handle *handle)
2299 {
2300 return !(!nr_copy_pages || !last_highmem_page_copied() ||
2301 handle->cur <= nr_meta_pages + nr_copy_pages);
2302 }
2303
2304 #ifdef CONFIG_HIGHMEM
2305 /* Assumes that @buf is ready and points to a "safe" page */
2306 static inline void
2307 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2308 {
2309 void *kaddr1, *kaddr2;
2310
2311 kaddr1 = kmap_atomic(p1, KM_USER0);
2312 kaddr2 = kmap_atomic(p2, KM_USER1);
2313 copy_page(buf, kaddr1);
2314 copy_page(kaddr1, kaddr2);
2315 copy_page(kaddr2, buf);
2316 kunmap_atomic(kaddr2, KM_USER1);
2317 kunmap_atomic(kaddr1, KM_USER0);
2318 }
2319
2320 /**
2321 * restore_highmem - for each highmem page that was allocated before
2322 * the suspend and included in the suspend image, and also has been
2323 * allocated by the "resume" kernel swap its current (ie. "before
2324 * resume") contents with the previous (ie. "before suspend") one.
2325 *
2326 * If the resume eventually fails, we can call this function once
2327 * again and restore the "before resume" highmem state.
2328 */
2329
2330 int restore_highmem(void)
2331 {
2332 struct highmem_pbe *pbe = highmem_pblist;
2333 void *buf;
2334
2335 if (!pbe)
2336 return 0;
2337
2338 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2339 if (!buf)
2340 return -ENOMEM;
2341
2342 while (pbe) {
2343 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2344 pbe = pbe->next;
2345 }
2346 free_image_page(buf, PG_UNSAFE_CLEAR);
2347 return 0;
2348 }
2349 #endif /* CONFIG_HIGHMEM */
This page took 0.203422 seconds and 4 git commands to generate.